diff --git a/autosklearn/data/target_validator.py b/autosklearn/data/target_validator.py index 8a09f22e8f..5e9e1e0c86 100644 --- a/autosklearn/data/target_validator.py +++ b/autosklearn/data/target_validator.py @@ -166,6 +166,7 @@ def _fit( # The label encoder makes sure data is, and remains # 1 dimensional self.encoder = preprocessing.OrdinalEncoder(handle_unknown='use_encoded_value', + dtype=np.int32, unknown_value=-1) else: # We should not reach this if statement as we check for type of targets before diff --git a/autosklearn/ensemble_builder.py b/autosklearn/ensemble_builder.py index ca92830c98..780e264e29 100644 --- a/autosklearn/ensemble_builder.py +++ b/autosklearn/ensemble_builder.py @@ -1260,8 +1260,7 @@ def fit_ensemble(self, selected_keys: list): try: self.logger.debug( - "Fitting the ensemble on %d models.", - len(predictions_train), + f"Fitting the ensemble on {len(predictions_train)} models: {include_num_runs}" ) start_time = time.time() ensemble.fit(predictions_train, self.y_true_ensemble, diff --git a/autosklearn/evaluation/__init__.py b/autosklearn/evaluation/__init__.py index 6df39da521..d108bb4da7 100644 --- a/autosklearn/evaluation/__init__.py +++ b/autosklearn/evaluation/__init__.py @@ -130,6 +130,7 @@ def __init__( init_params: Optional[Dict[str, Any]] = None, budget_type: Optional[str] = None, ta: Optional[Callable] = None, + compute_train_loss: bool = False, **resampling_strategy_args: Any, ): @@ -190,6 +191,7 @@ def __init__( self.disable_file_output = disable_file_output self.init_params = init_params self.budget_type = budget_type + self.compute_train_loss = compute_train_loss if memory_limit is not None: memory_limit = int(math.ceil(memory_limit)) @@ -204,6 +206,7 @@ def __init__( self._get_test_loss = True else: self._get_test_loss = False + del dm self.port = port self.pynisher_context = pynisher_context @@ -461,9 +464,11 @@ def run( additional_run_info['learning_curve'] = learning_curve additional_run_info['learning_curve_runtime'] = learning_curve_runtime - train_learning_curve = autosklearn.evaluation.util.extract_learning_curve( - info, 'train_loss' - ) + train_learning_curve = [] + if self.compute_train_loss: + train_learning_curve = autosklearn.evaluation.util.extract_learning_curve( + info, 'train_loss' + ) if len(train_learning_curve) > 1: additional_run_info['train_learning_curve'] = train_learning_curve additional_run_info['learning_curve_runtime'] = learning_curve_runtime @@ -498,5 +503,11 @@ def run( runtime = float(obj.wall_clock_time) autosklearn.evaluation.util.empty_queue(queue) - self.logger.info("Finished evaluating configuration %d" % config_id) + self.logger.info( + "Finished evaluating configuration c:{}/i:{} with status {}".format( + config_id, + instance, + status + ) + ) return status, cost, runtime, additional_run_info diff --git a/autosklearn/evaluation/train_evaluator.py b/autosklearn/evaluation/train_evaluator.py index b253516085..3468d2f8e7 100644 --- a/autosklearn/evaluation/train_evaluator.py +++ b/autosklearn/evaluation/train_evaluator.py @@ -31,6 +31,7 @@ from autosklearn.metrics import Scorer from autosklearn.util.backend import Backend from autosklearn.util.logging_ import PicklableClientLogger +import gc __all__ = ['TrainEvaluator', 'eval_holdout', 'eval_iterative_holdout', @@ -190,6 +191,7 @@ def __init__( exclude: Optional[List[str]] = None, disable_file_output: bool = False, init_params: Optional[Dict[str, Any]] = None, + compute_train_loss: bool = False, ): super().__init__( @@ -222,8 +224,7 @@ def __init__( self.X_train = self.datamanager.data['X_train'] self.Y_train = self.datamanager.data['Y_train'] self.Y_optimization: Optional[Union[List, np.ndarray]] = None - self.Y_targets = [None] * self.num_cv_folds - self.Y_train_targets = np.ones(self.Y_train.shape) * np.NaN + self.Y_optimization_pred: Optional[Union[List, np.ndarray]] = None self.models = [None] * self.num_cv_folds self.indices: List[Optional[Tuple[List[int], List[int]]]] = [None] * self.num_cv_folds @@ -233,6 +234,11 @@ def __init__( # opposite. self.partial = True self.keep_models = keep_models + # By default, we do not calculate train-performance. + # Only if the user provided this flag, we compute it + self.compute_train_loss = compute_train_loss + if self.compute_train_loss: + self.Y_train_targets = np.ones(self.Y_train.shape) * np.NaN def fit_predict_and_loss(self, iterative: bool = False) -> None: """Fit, predict and compute the loss for cross-validation and @@ -267,7 +273,6 @@ def fit_predict_and_loss(self, iterative: bool = False) -> None: converged = [False] * self.num_cv_folds Y_train_pred = [None] * self.num_cv_folds - Y_optimization_pred = [None] * self.num_cv_folds Y_valid_pred = [None] * self.num_cv_folds Y_test_pred = [None] * self.num_cv_folds train_splits = [None] * self.num_cv_folds @@ -321,9 +326,10 @@ def fit_predict_and_loss(self, iterative: bool = False) -> None: model = self.models[i] if iterations[i] == 1: - self.Y_train_targets[train_indices] = \ - self.Y_train[train_indices] - self.Y_targets[i] = self.Y_train[test_indices] + if self.compute_train_loss: + self.Y_train_targets[train_indices] = self.Y_train[ + train_indices + ] Xt, fit_params = model.fit_transformer( self.X_train[train_indices], @@ -346,28 +352,40 @@ def fit_predict_and_loss(self, iterative: bool = False) -> None: train_indices=train_indices, test_indices=test_indices, ) + if self.num_cv_folds == 1: + self.Y_optimization_pred = opt_pred + else: + if self.Y_optimization_pred is None: + y_shape = opt_pred.shape + self.Y_optimization_pred = np.zeros( + (self.X_train.shape[0], 1 if len(y_shape) == 1 else y_shape[1]), + dtype=np.float32, + ) + self.Y_optimization_pred[test_indices] = opt_pred + del opt_pred Y_train_pred[i] = train_pred - Y_optimization_pred[i] = opt_pred Y_valid_pred[i] = valid_pred Y_test_pred[i] = test_pred - train_splits[i] = train_indices # Compute train loss of this fold and store it. train_loss could # either be a scalar or a dict of scalars with metrics as keys. - train_loss = self._loss( - self.Y_train_targets[train_indices], - train_pred, - ) - train_losses[i] = train_loss + if self.compute_train_loss: + train_splits[i] = train_indices + train_loss: Optional[Union[float, Dict[str, float]]] = self._loss( + self.Y_train_targets[train_indices], + train_pred, + ) + train_losses[i] = train_loss + # number of training data points for this fold. Used for weighting # the average. train_fold_weights[i] = len(train_indices) # Compute validation loss of this fold and store it. optimization_loss = self._loss( - self.Y_targets[i], - opt_pred, + self.Y_train[test_indices], + self.Y_optimization_pred[test_indices], ) opt_losses[i] = optimization_loss # number of optimization data points for this fold. @@ -384,6 +402,8 @@ def fit_predict_and_loss(self, iterative: bool = False) -> None: iterations[i] = iterations[i] + 1 + gc.collect() + # Compute weights of each fold based on the number of samples in each # fold. train_fold_weights_percentage = [ @@ -396,13 +416,17 @@ def fit_predict_and_loss(self, iterative: bool = False) -> None: # train_losses is a list of either scalars or dicts. If it contains # dicts, then train_loss is computed using the target metric # (self.metric). - if all(isinstance(elem, dict) for elem in train_losses): - train_loss = np.average([train_losses[i][str(self.metric)] - for i in range(self.num_cv_folds)], - weights=train_fold_weights_percentage, - ) + if self.compute_train_loss: + if all(isinstance(elem, dict) for elem in train_losses): + train_loss = np.average([train_losses[i][str(self.metric)] + for i in range(self.num_cv_folds)], + weights=train_fold_weights_percentage, + ) + else: + train_loss = np.average(train_losses, + weights=train_fold_weights_percentage) else: - train_loss = np.average(train_losses, weights=train_fold_weights_percentage) + train_loss = None # if all_scoring_function is true, return a dict of opt_loss. # Otherwise, return a scalar. @@ -419,16 +443,9 @@ def fit_predict_and_loss(self, iterative: bool = False) -> None: else: opt_loss = np.average(opt_losses, weights=opt_fold_weights_percentage) - Y_targets = self.Y_targets - Y_train_targets = self.Y_train_targets - - Y_optimization_preds = np.concatenate( - [Y_optimization_pred[i] for i in range(self.num_cv_folds) - if Y_optimization_pred[i] is not None]) - Y_targets = np.concatenate([ - Y_targets[i] for i in range(self.num_cv_folds) - if Y_targets[i] is not None - ]) + # No need to generate the targets, they are same as y_train + if self.Y_optimization is None: + self.Y_optimization = self.Y_train if self.X_valid is not None: Y_valid_preds = np.array([Y_valid_pred[i] @@ -450,8 +467,8 @@ def fit_predict_and_loss(self, iterative: bool = False) -> None: else: Y_test_preds = None - self.Y_optimization = Y_targets - self.Y_actual_train = Y_train_targets + if self.compute_train_loss: + self.Y_actual_train = self.Y_train_targets self.model = self._get_model() status = StatusType.DONOTADVANCE @@ -461,7 +478,7 @@ def fit_predict_and_loss(self, iterative: bool = False) -> None: self.finish_up( loss=opt_loss, train_loss=train_loss, - opt_pred=Y_optimization_preds, + opt_pred=self.Y_optimization_pred, valid_pred=Y_valid_preds, test_pred=Y_test_preds, additional_run_info=additional_run_info, @@ -475,7 +492,6 @@ def fit_predict_and_loss(self, iterative: bool = False) -> None: self.partial = False Y_train_pred = [None] * self.num_cv_folds - Y_optimization_pred = [None] * self.num_cv_folds Y_valid_pred = [None] * self.num_cv_folds Y_test_pred = [None] * self.num_cv_folds train_splits = [None] * self.num_cv_folds @@ -537,27 +553,39 @@ def fit_predict_and_loss(self, iterative: bool = False) -> None: (additional_run_info, i) ) + if self.num_cv_folds == 1: + self.Y_optimization_pred = opt_pred + else: + if self.Y_optimization_pred is None: + y_shape = opt_pred.shape + self.Y_optimization_pred = np.zeros( + (self.X_train.shape[0], 1 if len(y_shape) == 1 else y_shape[1]), + dtype=np.float32, + ) + self.Y_optimization_pred[test_split] = opt_pred + Y_train_pred[i] = train_pred - Y_optimization_pred[i] = opt_pred Y_valid_pred[i] = valid_pred Y_test_pred[i] = test_pred - train_splits[i] = train_split # Compute train loss of this fold and store it. train_loss could # either be a scalar or a dict of scalars with metrics as keys. - train_loss = self._loss( - self.Y_train_targets[train_split], - train_pred, - ) - train_losses.append(train_loss) + if self.compute_train_loss: + train_splits[i] = train_split + train_loss = self._loss( + self.Y_train_targets[train_split], + train_pred, + ) + train_losses.append(train_loss) # number of training data points for this fold. Used for weighting # the average. train_fold_weights.append(len(train_split)) # Compute validation loss of this fold and store it. optimization_loss = self._loss( - self.Y_targets[i], - opt_pred, + self.Y_train[test_split], + self.Y_optimization_pred if self.num_cv_folds == 1 + else self.Y_optimization_pred[test_split], ) opt_losses.append(optimization_loss) # number of optimization data points for this fold. Used for weighting @@ -571,13 +599,16 @@ def fit_predict_and_loss(self, iterative: bool = False) -> None: # train_losses is a list of either scalars or dicts. If it contains dicts, # then train_loss is computed using the target metric (self.metric). - if all(isinstance(elem, dict) for elem in train_losses): - train_loss = np.average([train_losses[i][str(self.metric)] - for i in range(self.num_cv_folds)], - weights=train_fold_weights, - ) + if self.compute_train_loss: + if all(isinstance(elem, dict) for elem in train_losses): + train_loss = np.average([train_losses[i][str(self.metric)] + for i in range(self.num_cv_folds)], + weights=train_fold_weights, + ) + else: + train_loss = np.average(train_losses, weights=train_fold_weights) else: - train_loss = np.average(train_losses, weights=train_fold_weights) + train_loss = None # if all_scoring_function is true, return a dict of opt_loss. Otherwise, # return a scalar. @@ -591,14 +622,8 @@ def fit_predict_and_loss(self, iterative: bool = False) -> None: else: opt_loss = np.average(opt_losses, weights=opt_fold_weights) - Y_targets = self.Y_targets - Y_train_targets = self.Y_train_targets - - Y_optimization_pred = np.concatenate( - [Y_optimization_pred[i] for i in range(self.num_cv_folds) - if Y_optimization_pred[i] is not None]) - Y_targets = np.concatenate([Y_targets[i] for i in range(self.num_cv_folds) - if Y_targets[i] is not None]) + if self.Y_optimization is None: + self.Y_optimization = self.Y_train if self.X_valid is not None: Y_valid_pred = np.array([Y_valid_pred[i] @@ -616,8 +641,8 @@ def fit_predict_and_loss(self, iterative: bool = False) -> None: if len(np.shape(Y_test_pred)) == 3: Y_test_pred = np.nanmean(Y_test_pred, axis=0) - self.Y_optimization = Y_targets - self.Y_actual_train = Y_train_targets + if self.compute_train_loss: + self.Y_actual_train = self.Y_train_targets if self.num_cv_folds > 1: self.model = self._get_model() @@ -653,7 +678,7 @@ def fit_predict_and_loss(self, iterative: bool = False) -> None: self.finish_up( loss=opt_loss, train_loss=train_loss, - opt_pred=Y_optimization_pred, + opt_pred=self.Y_optimization_pred, valid_pred=Y_valid_pred if self.X_valid is not None else None, test_pred=Y_test_pred if self.X_test is not None else None, additional_run_info=additional_run_info, @@ -700,8 +725,12 @@ def partial_fit_predict_and_loss(self, fold: int, iterative: bool = False) -> No add_model_to_self=True, ) ) - train_loss = self._loss(self.Y_actual_train, train_pred) - loss = self._loss(self.Y_targets[fold], opt_pred) + if self.compute_train_loss: + train_loss: Optional[Union[float, Dict[str, float]]] = self._loss( + self.Y_actual_train, train_pred) + else: + train_loss = None + loss = self._loss(self.Y_train[test_split], opt_pred) if self.model.estimator_supports_iterative_fit(): model_max_iter = self.model.get_max_iter() @@ -741,7 +770,8 @@ def _partial_fit_and_predict_iterative(self, fold: int, train_indices: List[int] Xt, fit_params = model.fit_transformer(self.X_train[train_indices], self.Y_train[train_indices]) - self.Y_train_targets[train_indices] = self.Y_train[train_indices] + if self.compute_train_loss: + self.Y_train_targets[train_indices] = self.Y_train[train_indices] iteration = 1 total_n_iteration = 0 @@ -775,7 +805,11 @@ def _partial_fit_and_predict_iterative(self, fold: int, train_indices: List[int] if add_model_to_self: self.model = model - train_loss = self._loss(self.Y_train[train_indices], Y_train_pred) + if self.compute_train_loss: + train_loss: Optional[Union[float, Dict[str, float]]] = self._loss( + self.Y_train[train_indices], Y_train_pred) + else: + train_loss = None loss = self._loss(self.Y_train[test_indices], Y_optimization_pred) additional_run_info = model.get_additional_run_info() @@ -814,7 +848,10 @@ def _partial_fit_and_predict_iterative(self, fold: int, train_indices: List[int] additional_run_info ) = self._partial_fit_and_predict_standard(fold, train_indices, test_indices, add_model_to_self) - train_loss = self._loss(self.Y_train[train_indices], Y_train_pred) + if self.compute_train_loss: + train_loss = self._loss(self.Y_train[train_indices], Y_train_pred) + else: + train_loss = None loss = self._loss(self.Y_train[test_indices], Y_optimization_pred) if self.model.estimator_supports_iterative_fit(): model_max_iter = self.model.get_max_iter() @@ -861,8 +898,8 @@ def _partial_fit_and_predict_standard( else: self.models[fold] = model - self.Y_targets[fold] = self.Y_train[test_indices] - self.Y_train_targets[train_indices] = self.Y_train[train_indices] + if self.compute_train_loss: + self.Y_train_targets[train_indices] = self.Y_train[train_indices] train_pred, opt_pred, valid_pred, test_pred = self._predict( model=model, @@ -892,8 +929,8 @@ def _partial_fit_and_predict_budget( model = self._get_model() self.indices[fold] = ((train_indices, test_indices)) - self.Y_targets[fold] = self.Y_train[test_indices] - self.Y_train_targets[train_indices] = self.Y_train[train_indices] + if self.compute_train_loss: + self.Y_train_targets[train_indices] = self.Y_train[train_indices] _fit_with_budget( X_train=self.X_train, @@ -929,9 +966,11 @@ def _partial_fit_and_predict_budget( def _predict(self, model: BaseEstimator, test_indices: List[int], train_indices: List[int]) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: - train_pred = self.predict_function(self.X_train[train_indices], - model, self.task_type, - self.Y_train[train_indices]) + train_pred = None + if self.compute_train_loss: + train_pred = self.predict_function(self.X_train[train_indices], + model, self.task_type, + self.Y_train[train_indices]) opt_pred = self.predict_function(self.X_train[test_indices], model, self.task_type, diff --git a/autosklearn/metalearning/files/accuracy_binary.classification_dense/algorithm_runs.arff b/autosklearn/metalearning/files/accuracy_binary.classification_dense/algorithm_runs.arff index c09d9871bb..d9e5f11d06 100644 --- a/autosklearn/metalearning/files/accuracy_binary.classification_dense/algorithm_runs.arff +++ b/autosklearn/metalearning/files/accuracy_binary.classification_dense/algorithm_runs.arff @@ -11,8 +11,8 @@ twonorm,1.0,1,0.015561015561015523,ok autouniv-au1-1000,1.0,7,0.18787878787878787,ok hill-valley,1.0,9,0.0,ok eye_movements,1.0,14,0.17655210643015518,ok -abalone,1.0,17,0.7670537010159652,ok -tamilnadu-electricity,1.0,19,0.9385715231349705,ok +abalone,1.0,709,0.05224963715529751,ok +tamilnadu-electricity,1.0,709,0.05924405904547558,ok xd6,1.0,22,0.0,ok colleges_usnews,1.0,25,0.2517482517482518,ok pc4,1.0,28,0.079002079002079,ok @@ -34,7 +34,7 @@ cardiotocography,1.0,83,0.0,ok kick,1.0,86,0.09483474505896028,ok microaggregation2,1.0,88,0.3684848484848485,ok monks-problems-2,1.0,91,0.0,ok -autouniv-au6-750,1.0,97,0.6720647773279352,ok +autouniv-au6-750,1.0,709,0.1578947368421053,ok meta_stream_intervals.arff,1.0,99,0.004898013955984992,ok diabetes130us,1.0,102,0.3863676969805253,ok steel-plates-fault,1.0,105,0.21562499999999996,ok @@ -46,7 +46,7 @@ isolet,1.0,121,0.03342401865526623,ok led24,1.0,124,0.2547348484848485,ok satimage,1.0,129,0.07873644507307875,ok pbcseq,1.0,131,0.14352574102964122,ok -bachchoralharmony,1.0,134,0.8801498127340824,ok +bachchoralharmony,1.0,709,0.7019796682718031,ok compas-two-years,1.0,138,0.3256748994830557,ok volcanoes-b6,1.0,142,0.030520646319569078,ok philippine,1.0,145,0.16943866943866948,ok @@ -54,10 +54,10 @@ irish,1.0,147,0.0,ok monks-problems-1,1.0,149,0.0,ok porto-seguro,1.0,150,0.03627449482992995,ok arsenic-female-lung,1.0,154,0.005434782608695676,ok -autouniv-au7-1100,1.0,160,0.5371900826446281,ok +autouniv-au7-1100,1.0,709,0.26997245179063367,ok steel-plates-fault,1.0,162,0.0,ok speeddating,1.0,165,0.12590448625180894,ok -devnagari-script,1.0,171,0.03764822134387347,ok +devnagari-script,1.0,709,0.02154150197628457,ok arsenic-male-lung,1.0,172,0.0,ok fars,1.0,173,0.19925567994237525,ok wdbc,1.0,176,0.010695187165775444,ok @@ -66,7 +66,7 @@ rmftsa_ladata,1.0,184,0.09580838323353291,ok banknote-authentication,1.0,188,0.0,ok visualizing_soil,1.0,191,0.00035075412136087447,ok wine-quality-white,1.0,193,0.31311881188118806,ok -analcatdata_dmft,1.0,197,0.7832699619771863,ok +analcatdata_dmft,1.0,709,0.2433460076045627,ok ova_colon,1.0,199,0.03339882121807469,ok volcanoes-e1,1.0,204,0.07435897435897432,ok cpu_small,1.0,206,0.06992230854605996,ok @@ -100,7 +100,7 @@ mc1,1.0,302,0.004803073967339144,ok ova_prostate,1.0,304,0.0,ok volcanoes-b2,1.0,310,0.02840909090909094,ok hypothyroid,1.0,313,0.002411575562700996,ok -autouniv-au7-700,1.0,315,0.48051948051948057,ok +autouniv-au7-700,1.0,709,0.37662337662337664,ok ova_lung,1.0,317,0.013752455795677854,ok pokerhand,1.0,322,0.0009647853352628966,ok quake,1.0,327,0.42618384401114207,ok @@ -150,7 +150,7 @@ micro-mass,1.0,480,0.07446808510638303,ok indian_pines,1.0,485,0.0553529996685449,ok miceprotein,1.0,486,0.0,ok diabetes,1.0,492,0.23320158102766797,ok -collins,1.0,494,0.696969696969697,ok +collins,1.0,709,0.2212121212121212,ok internet-advertisements,1.0,499,0.020332717190388205,ok ova_endometrium,1.0,503,0.037328094302554016,ok phishingwebsites,1.0,506,0.023300438596491224,ok @@ -164,7 +164,7 @@ gtsrb-hog01,1.0,528,0.005962820063135754,ok puma32h,1.0,532,0.0828708842027377,ok bioresponse,1.0,536,0.20856911883589324,ok cjs,1.0,538,0.0032537960954447387,ok -spoken-arabic-digit,1.0,543,0.7427538734258812,ok +spoken-arabic-digit,1.0,709,0.12207334760687893,ok fri_c4_500_100,1.0,546,0.08484848484848484,ok ova_kidney,1.0,548,0.00982318271119842,ok ldpa,1.0,553,0.005643071154164292,ok diff --git a/autosklearn/metalearning/files/accuracy_binary.classification_dense/configurations.csv b/autosklearn/metalearning/files/accuracy_binary.classification_dense/configurations.csv index 86c9bdf47c..0aba914e64 100644 --- a/autosklearn/metalearning/files/accuracy_binary.classification_dense/configurations.csv +++ b/autosklearn/metalearning/files/accuracy_binary.classification_dense/configurations.csv @@ -204,3 +204,4 @@ idx,balancing:strategy,classifier:__choice__,classifier:adaboost:algorithm,class 701,none,liblinear_svc,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,17045.7732372673,False,True,1,squared_hinge,ovr,l2,0.0008192814934567822,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,no_encoding,minority_coalescer,0.008405913574040906,mean,robust_scaler,,,0.9598706457974426,0.1882826974837794,select_percentile_classification,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,63.57218134514263,mutual_info,,, 702,weighting,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,train,3.387912939529945e-10,0.30755227194768237,auto,255,None,60,39,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,none,,,,,select_percentile_classification,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,93.39844669585806,f_classif,,, 707,weighting,lda,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,auto,,0.00018030860519654287,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,no_encoding,minority_coalescer,0.041538950281903686,mean,robust_scaler,,,0.8898452660666816,0.1704082739702074,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,,0.0005845623820571637,8606,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +709,weighting,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,0.0001,auto,0.9,0.999,train,1E-08,2,0.0003,32,128,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,one_hot_encoding,minority_coalescer,0.004071801722749603,median,quantile_transformer,1000,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, diff --git a/autosklearn/metalearning/files/accuracy_multiclass.classification_dense/algorithm_runs.arff b/autosklearn/metalearning/files/accuracy_multiclass.classification_dense/algorithm_runs.arff index c09d9871bb..d9e5f11d06 100644 --- a/autosklearn/metalearning/files/accuracy_multiclass.classification_dense/algorithm_runs.arff +++ b/autosklearn/metalearning/files/accuracy_multiclass.classification_dense/algorithm_runs.arff @@ -11,8 +11,8 @@ twonorm,1.0,1,0.015561015561015523,ok autouniv-au1-1000,1.0,7,0.18787878787878787,ok hill-valley,1.0,9,0.0,ok eye_movements,1.0,14,0.17655210643015518,ok -abalone,1.0,17,0.7670537010159652,ok -tamilnadu-electricity,1.0,19,0.9385715231349705,ok +abalone,1.0,709,0.05224963715529751,ok +tamilnadu-electricity,1.0,709,0.05924405904547558,ok xd6,1.0,22,0.0,ok colleges_usnews,1.0,25,0.2517482517482518,ok pc4,1.0,28,0.079002079002079,ok @@ -34,7 +34,7 @@ cardiotocography,1.0,83,0.0,ok kick,1.0,86,0.09483474505896028,ok microaggregation2,1.0,88,0.3684848484848485,ok monks-problems-2,1.0,91,0.0,ok -autouniv-au6-750,1.0,97,0.6720647773279352,ok +autouniv-au6-750,1.0,709,0.1578947368421053,ok meta_stream_intervals.arff,1.0,99,0.004898013955984992,ok diabetes130us,1.0,102,0.3863676969805253,ok steel-plates-fault,1.0,105,0.21562499999999996,ok @@ -46,7 +46,7 @@ isolet,1.0,121,0.03342401865526623,ok led24,1.0,124,0.2547348484848485,ok satimage,1.0,129,0.07873644507307875,ok pbcseq,1.0,131,0.14352574102964122,ok -bachchoralharmony,1.0,134,0.8801498127340824,ok +bachchoralharmony,1.0,709,0.7019796682718031,ok compas-two-years,1.0,138,0.3256748994830557,ok volcanoes-b6,1.0,142,0.030520646319569078,ok philippine,1.0,145,0.16943866943866948,ok @@ -54,10 +54,10 @@ irish,1.0,147,0.0,ok monks-problems-1,1.0,149,0.0,ok porto-seguro,1.0,150,0.03627449482992995,ok arsenic-female-lung,1.0,154,0.005434782608695676,ok -autouniv-au7-1100,1.0,160,0.5371900826446281,ok +autouniv-au7-1100,1.0,709,0.26997245179063367,ok steel-plates-fault,1.0,162,0.0,ok speeddating,1.0,165,0.12590448625180894,ok -devnagari-script,1.0,171,0.03764822134387347,ok +devnagari-script,1.0,709,0.02154150197628457,ok arsenic-male-lung,1.0,172,0.0,ok fars,1.0,173,0.19925567994237525,ok wdbc,1.0,176,0.010695187165775444,ok @@ -66,7 +66,7 @@ rmftsa_ladata,1.0,184,0.09580838323353291,ok banknote-authentication,1.0,188,0.0,ok visualizing_soil,1.0,191,0.00035075412136087447,ok wine-quality-white,1.0,193,0.31311881188118806,ok -analcatdata_dmft,1.0,197,0.7832699619771863,ok +analcatdata_dmft,1.0,709,0.2433460076045627,ok ova_colon,1.0,199,0.03339882121807469,ok volcanoes-e1,1.0,204,0.07435897435897432,ok cpu_small,1.0,206,0.06992230854605996,ok @@ -100,7 +100,7 @@ mc1,1.0,302,0.004803073967339144,ok ova_prostate,1.0,304,0.0,ok volcanoes-b2,1.0,310,0.02840909090909094,ok hypothyroid,1.0,313,0.002411575562700996,ok -autouniv-au7-700,1.0,315,0.48051948051948057,ok +autouniv-au7-700,1.0,709,0.37662337662337664,ok ova_lung,1.0,317,0.013752455795677854,ok pokerhand,1.0,322,0.0009647853352628966,ok quake,1.0,327,0.42618384401114207,ok @@ -150,7 +150,7 @@ micro-mass,1.0,480,0.07446808510638303,ok indian_pines,1.0,485,0.0553529996685449,ok miceprotein,1.0,486,0.0,ok diabetes,1.0,492,0.23320158102766797,ok -collins,1.0,494,0.696969696969697,ok +collins,1.0,709,0.2212121212121212,ok internet-advertisements,1.0,499,0.020332717190388205,ok ova_endometrium,1.0,503,0.037328094302554016,ok phishingwebsites,1.0,506,0.023300438596491224,ok @@ -164,7 +164,7 @@ gtsrb-hog01,1.0,528,0.005962820063135754,ok puma32h,1.0,532,0.0828708842027377,ok bioresponse,1.0,536,0.20856911883589324,ok cjs,1.0,538,0.0032537960954447387,ok -spoken-arabic-digit,1.0,543,0.7427538734258812,ok +spoken-arabic-digit,1.0,709,0.12207334760687893,ok fri_c4_500_100,1.0,546,0.08484848484848484,ok ova_kidney,1.0,548,0.00982318271119842,ok ldpa,1.0,553,0.005643071154164292,ok diff --git a/autosklearn/metalearning/files/accuracy_multiclass.classification_dense/configurations.csv b/autosklearn/metalearning/files/accuracy_multiclass.classification_dense/configurations.csv index 86c9bdf47c..0aba914e64 100644 --- a/autosklearn/metalearning/files/accuracy_multiclass.classification_dense/configurations.csv +++ b/autosklearn/metalearning/files/accuracy_multiclass.classification_dense/configurations.csv @@ -204,3 +204,4 @@ idx,balancing:strategy,classifier:__choice__,classifier:adaboost:algorithm,class 701,none,liblinear_svc,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,17045.7732372673,False,True,1,squared_hinge,ovr,l2,0.0008192814934567822,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,no_encoding,minority_coalescer,0.008405913574040906,mean,robust_scaler,,,0.9598706457974426,0.1882826974837794,select_percentile_classification,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,63.57218134514263,mutual_info,,, 702,weighting,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,train,3.387912939529945e-10,0.30755227194768237,auto,255,None,60,39,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,none,,,,,select_percentile_classification,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,93.39844669585806,f_classif,,, 707,weighting,lda,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,auto,,0.00018030860519654287,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,no_encoding,minority_coalescer,0.041538950281903686,mean,robust_scaler,,,0.8898452660666816,0.1704082739702074,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,,0.0005845623820571637,8606,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +709,weighting,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,0.0001,auto,0.9,0.999,train,1E-08,2,0.0003,32,128,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,one_hot_encoding,minority_coalescer,0.004071801722749603,median,quantile_transformer,1000,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, diff --git a/autosklearn/metalearning/files/balanced_accuracy_binary.classification_dense/algorithm_runs.arff b/autosklearn/metalearning/files/balanced_accuracy_binary.classification_dense/algorithm_runs.arff index 642b8e1219..44d4baf63e 100644 --- a/autosklearn/metalearning/files/balanced_accuracy_binary.classification_dense/algorithm_runs.arff +++ b/autosklearn/metalearning/files/balanced_accuracy_binary.classification_dense/algorithm_runs.arff @@ -11,8 +11,8 @@ twonorm,1.0,1,0.01565922561525568,ok autouniv-au1-1000,1.0,5,0.25950000000000006,ok hill-valley,1.0,9,0.0,ok eye_movements,1.0,14,0.17681209540342113,ok -abalone,1.0,17,0.8769085717046411,ok -tamilnadu-electricity,1.0,19,0.947756348266465,ok +abalone,1.0,709,0.11341504710773154,ok +tamilnadu-electricity,1.0,709,0.04755653538107785,ok xd6,1.0,22,0.0,ok colleges_usnews,1.0,25,0.25167376749847836,ok pc4,1.0,29,0.09702797202797209,ok @@ -20,23 +20,23 @@ fri_c3_500_50,1.0,32,0.1011018463371054,ok run_or_walk_information,1.0,37,0.008410684831804849,ok satellite,1.0,42,0.03017286537454167,ok 2dplanes,1.0,43,0.06880799167253038,ok -wine-quality-red,1.0,47,0.6161336684542298,ok +wine-quality-red,1.0,709,0.30593389790637504,ok arsenic-female-bladder,1.0,52,0.1940880503144654,ok kuzushiji-mnist,1.0,56,0.021482498414330586,ok anneal,1.0,59,0.0009216589861751334,ok fri_c3_1000_25,1.0,61,0.07383792677910317,ok pollen,1.0,67,0.48644136848276476,ok -volcanoes-b5,1.0,68,0.5699847967928948,ok +volcanoes-b5,1.0,709,0.26897722411117975,ok titanic,1.0,72,0.29320987654320985,ok strikes,1.0,75,0.0,ok madeline,1.0,81,0.0821005669048338,ok cardiotocography,1.0,83,0.0,ok kick,1.0,84,0.3006417025492927,ok -microaggregation2,1.0,89,0.4916187730470363,ok +microaggregation2,1.0,709,0.3777507888408984,ok monks-problems-2,1.0,91,0.0,ok -autouniv-au6-750,1.0,95,0.7612754085799343,ok +autouniv-au6-750,1.0,709,0.1241263679082587,ok meta_stream_intervals.arff,1.0,98,0.006967878468411404,ok -diabetes130us,1.0,101,0.5067441114849294,ok +diabetes130us,1.0,709,0.4118415380351441,ok steel-plates-fault,1.0,104,0.19263434860176276,ok bank8fm,1.0,108,0.054070141112634085,ok semeion,1.0,113,0.031490541211592005,ok @@ -46,18 +46,18 @@ isolet,1.0,121,0.033152523763478325,ok led24,1.0,124,0.25890692593605036,ok satimage,1.0,129,0.10112177411403478,ok pbcseq,1.0,131,0.1434266632917307,ok -bachchoralharmony,1.0,134,0.9175415800871299,ok +bachchoralharmony,1.0,709,0.3875832875858466,ok compas-two-years,1.0,138,0.3265118829110152,ok -volcanoes-b6,1.0,143,0.5809143287967867,ok +volcanoes-b6,1.0,709,0.2390641802397251,ok philippine,1.0,145,0.16948482215796368,ok irish,1.0,147,0.0,ok monks-problems-1,1.0,149,0.0,ok porto-seguro,1.0,150,0.3988950321221292,ok arsenic-female-lung,1.0,154,0.05555555555555558,ok -autouniv-au7-1100,1.0,159,0.5064077630375687,ok +autouniv-au7-1100,1.0,709,0.2838726245505907,ok steel-plates-fault,1.0,162,0.0,ok speeddating,1.0,168,0.22671228902772056,ok -devnagari-script,1.0,171,0.03767826945318897,ok +devnagari-script,1.0,709,0.021739130434782594,ok arsenic-male-lung,1.0,172,0.0,ok fars,1.0,174,0.39134793637762566,ok wdbc,1.0,176,0.01449275362318847,ok @@ -65,10 +65,10 @@ hiva_agnostic,1.0,181,0.28794275953202053,ok rmftsa_ladata,1.0,185,0.09256715506715507,ok banknote-authentication,1.0,188,0.0,ok visualizing_soil,1.0,191,0.0003103662321539691,ok -wine-quality-white,1.0,194,0.5594259465253884,ok -analcatdata_dmft,1.0,197,0.7737781849718646,ok +wine-quality-white,1.0,709,0.28548558778040434,ok +analcatdata_dmft,1.0,709,0.2372536438556463,ok ova_colon,1.0,199,0.06985388361958478,ok -volcanoes-e1,1.0,203,0.7058646616541353,ok +volcanoes-e1,1.0,709,0.2258013454689355,ok cpu_small,1.0,206,0.08179300997192374,ok gametes_heterogeneity_20atts_1600_het_0.4_0.2_75_edm-2_001,1.0,211,0.26064295662411874,ok dresses-sales,1.0,214,0.37422037422037424,ok @@ -77,10 +77,10 @@ parity5_plus_5,1.0,222,0.0,ok delta_ailerons,1.0,227,0.05943422519509478,ok gametes_heterogeneity_20atts_1600_het_0.4_0.2_50_edm-2_001,1.0,230,0.28459230117593004,ok mammography,1.0,233,0.0645452024403772,ok -first-order-theorem-proving,1.0,236,0.4963289871477006,ok +first-order-theorem-proving,1.0,709,0.4063548645225059,ok pol,1.0,238,0.010955207771181863,ok one-hundred-plants-margin,1.0,243,0.14592241658568195,ok -volcanoes-a2,1.0,246,0.5618923065238854,ok +volcanoes-a2,1.0,709,0.27818850155692254,ok kdd_el_nino-small,1.0,251,0.0555267254800208,ok kc2,1.0,255,0.21854575163398693,ok fri_c3_1000_10,1.0,257,0.07222776116096163,ok @@ -98,16 +98,16 @@ arsenic-male-bladder,1.0,294,0.13372093023255816,ok letter,1.0,298,0.0302953166025568,ok mc1,1.0,301,0.11897921491600949,ok ova_prostate,1.0,304,0.0,ok -volcanoes-b2,1.0,308,0.6049296764663846,ok +volcanoes-b2,1.0,709,0.2505278585090791,ok hypothyroid,1.0,313,0.25043630017452,ok -autouniv-au7-700,1.0,315,0.48565916634574835,ok +autouniv-au7-700,1.0,709,0.3746500155874639,ok ova_lung,1.0,318,0.0742391077756932,ok pokerhand,1.0,322,0.15738714306963697,ok quake,1.0,325,0.4566588050314466,ok stock,1.0,329,0.029126808928133352,ok fri_c2_1000_25,1.0,332,0.05855211119062864,ok fried,1.0,338,0.05970753367223658,ok -volcanoes-a4,1.0,342,0.6090137328339575,ok +volcanoes-a4,1.0,709,0.32727840199750313,ok no2,1.0,345,0.32140758154569493,ok space_ga,1.0,347,0.1251789549033644,ok led-display-domain-7digit,1.0,352,0.22896929824561407,ok @@ -117,7 +117,7 @@ ova_breast,1.0,364,0.02820688083845979,ok mozilla4,1.0,367,0.057752752285568865,ok churn,1.0,370,0.09994486131421865,ok rl,1.0,375,0.17550484692926682,ok -volcanoes-a3,1.0,377,0.5921428571428572,ok +volcanoes-a3,1.0,709,0.3635897435897436,ok profb,1.0,379,0.2641435306443164,ok bank32nh,1.0,384,0.19108836369110338,ok cylinder-bands,1.0,388,0.16560846560846554,ok @@ -133,7 +133,7 @@ wilt,1.0,421,0.04880593092794183,ok magictelescope,1.0,425,0.12872306147306456,ok pc3,1.0,428,0.18599435122113306,ok japanesevowels,1.0,434,0.007347987818080326,ok -volcanoes-b1,1.0,435,0.6702470997649754,ok +volcanoes-b1,1.0,709,0.2750187216422184,ok fri_c1_1000_50,1.0,440,0.06399204244031831,ok splice,1.0,444,0.03519156774858112,ok optdigits,1.0,445,0.006898860431585718,ok @@ -150,7 +150,7 @@ micro-mass,1.0,480,0.0688694638694638,ok indian_pines,1.0,485,0.06809369628097439,ok miceprotein,1.0,486,0.0,ok diabetes,1.0,489,0.23524844720496896,ok -collins,1.0,494,0.7292812799100832,ok +collins,1.0,709,0.19234712380249908,ok internet-advertisements,1.0,499,0.05529848302957552,ok ova_endometrium,1.0,500,0.2015848670756646,ok phishingwebsites,1.0,506,0.024655738306104125,ok @@ -164,7 +164,7 @@ gtsrb-hog01,1.0,529,0.006539945570489758,ok puma32h,1.0,532,0.08290275761973875,ok bioresponse,1.0,536,0.21245605620589147,ok cjs,1.0,538,0.0021739130434782483,ok -spoken-arabic-digit,1.0,543,0.7427910860239428,ok +spoken-arabic-digit,1.0,709,0.12078554185046508,ok fri_c4_500_100,1.0,546,0.08922235363690123,ok ova_kidney,1.0,549,0.01312332209973155,ok ldpa,1.0,553,0.012296136894902499,ok @@ -177,7 +177,7 @@ kdd_internet_usage,1.0,573,0.12425897115198847,ok kin8nm,1.0,578,0.08507835912444572,ok dna,1.0,579,0.03591082203249496,ok gametes_epistasis_3-way_20atts_0.2h_edm-1_1,1.0,585,0.3280686892472038,ok -volcanoes-d4,1.0,586,0.6129977423609093,ok +volcanoes-d4,1.0,709,0.21706864564007422,ok fri_c0_1000_5,1.0,590,0.06341911764705888,ok gesturephasesegmentationprocessed,1.0,594,0.3420059330064098,ok ova_ovary,1.0,598,0.06628418849678863,ok @@ -196,7 +196,7 @@ eating,1.0,640,0.2829086031298169,ok eeg-eye-state,1.0,643,0.019845559156376535,ok artificial-characters,1.0,647,0.09627924935929022,ok climate-model-simulation-crashes,1.0,650,0.0457317073170731,ok -volcanoes-d1,1.0,652,0.6733972083836718,ok +volcanoes-d1,1.0,709,0.19926199261992616,ok cpu_act,1.0,657,0.07139897376319104,ok wind,1.0,659,0.12518590637984695,ok fri_c3_500_10,1.0,666,0.09081542537533127,ok diff --git a/autosklearn/metalearning/files/balanced_accuracy_binary.classification_dense/configurations.csv b/autosklearn/metalearning/files/balanced_accuracy_binary.classification_dense/configurations.csv index 3712b358d0..cf5c462684 100644 --- a/autosklearn/metalearning/files/balanced_accuracy_binary.classification_dense/configurations.csv +++ b/autosklearn/metalearning/files/balanced_accuracy_binary.classification_dense/configurations.csv @@ -204,3 +204,4 @@ idx,balancing:strategy,classifier:__choice__,classifier:adaboost:algorithm,class 701,none,liblinear_svc,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,17045.7732372673,False,True,1,squared_hinge,ovr,l2,0.0008192814934567822,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,no_encoding,minority_coalescer,0.008405913574040906,mean,robust_scaler,,,0.9598706457974426,0.1882826974837794,select_percentile_classification,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,63.57218134514263,mutual_info,,, 702,weighting,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,train,3.387912939529945e-10,0.30755227194768237,auto,255,None,60,39,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,none,,,,,select_percentile_classification,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,93.39844669585806,f_classif,,, 707,weighting,lda,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,auto,,0.00018030860519654287,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,no_encoding,minority_coalescer,0.041538950281903686,mean,robust_scaler,,,0.8898452660666816,0.1704082739702074,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,,0.0005845623820571637,8606,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +709,weighting,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,0.0001,auto,0.9,0.999,train,1E-08,2,0.0003,32,128,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,one_hot_encoding,minority_coalescer,0.004071801722749603,median,quantile_transformer,1000,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, diff --git a/autosklearn/metalearning/files/balanced_accuracy_multiclass.classification_dense/algorithm_runs.arff b/autosklearn/metalearning/files/balanced_accuracy_multiclass.classification_dense/algorithm_runs.arff index 642b8e1219..44d4baf63e 100644 --- a/autosklearn/metalearning/files/balanced_accuracy_multiclass.classification_dense/algorithm_runs.arff +++ b/autosklearn/metalearning/files/balanced_accuracy_multiclass.classification_dense/algorithm_runs.arff @@ -11,8 +11,8 @@ twonorm,1.0,1,0.01565922561525568,ok autouniv-au1-1000,1.0,5,0.25950000000000006,ok hill-valley,1.0,9,0.0,ok eye_movements,1.0,14,0.17681209540342113,ok -abalone,1.0,17,0.8769085717046411,ok -tamilnadu-electricity,1.0,19,0.947756348266465,ok +abalone,1.0,709,0.11341504710773154,ok +tamilnadu-electricity,1.0,709,0.04755653538107785,ok xd6,1.0,22,0.0,ok colleges_usnews,1.0,25,0.25167376749847836,ok pc4,1.0,29,0.09702797202797209,ok @@ -20,23 +20,23 @@ fri_c3_500_50,1.0,32,0.1011018463371054,ok run_or_walk_information,1.0,37,0.008410684831804849,ok satellite,1.0,42,0.03017286537454167,ok 2dplanes,1.0,43,0.06880799167253038,ok -wine-quality-red,1.0,47,0.6161336684542298,ok +wine-quality-red,1.0,709,0.30593389790637504,ok arsenic-female-bladder,1.0,52,0.1940880503144654,ok kuzushiji-mnist,1.0,56,0.021482498414330586,ok anneal,1.0,59,0.0009216589861751334,ok fri_c3_1000_25,1.0,61,0.07383792677910317,ok pollen,1.0,67,0.48644136848276476,ok -volcanoes-b5,1.0,68,0.5699847967928948,ok +volcanoes-b5,1.0,709,0.26897722411117975,ok titanic,1.0,72,0.29320987654320985,ok strikes,1.0,75,0.0,ok madeline,1.0,81,0.0821005669048338,ok cardiotocography,1.0,83,0.0,ok kick,1.0,84,0.3006417025492927,ok -microaggregation2,1.0,89,0.4916187730470363,ok +microaggregation2,1.0,709,0.3777507888408984,ok monks-problems-2,1.0,91,0.0,ok -autouniv-au6-750,1.0,95,0.7612754085799343,ok +autouniv-au6-750,1.0,709,0.1241263679082587,ok meta_stream_intervals.arff,1.0,98,0.006967878468411404,ok -diabetes130us,1.0,101,0.5067441114849294,ok +diabetes130us,1.0,709,0.4118415380351441,ok steel-plates-fault,1.0,104,0.19263434860176276,ok bank8fm,1.0,108,0.054070141112634085,ok semeion,1.0,113,0.031490541211592005,ok @@ -46,18 +46,18 @@ isolet,1.0,121,0.033152523763478325,ok led24,1.0,124,0.25890692593605036,ok satimage,1.0,129,0.10112177411403478,ok pbcseq,1.0,131,0.1434266632917307,ok -bachchoralharmony,1.0,134,0.9175415800871299,ok +bachchoralharmony,1.0,709,0.3875832875858466,ok compas-two-years,1.0,138,0.3265118829110152,ok -volcanoes-b6,1.0,143,0.5809143287967867,ok +volcanoes-b6,1.0,709,0.2390641802397251,ok philippine,1.0,145,0.16948482215796368,ok irish,1.0,147,0.0,ok monks-problems-1,1.0,149,0.0,ok porto-seguro,1.0,150,0.3988950321221292,ok arsenic-female-lung,1.0,154,0.05555555555555558,ok -autouniv-au7-1100,1.0,159,0.5064077630375687,ok +autouniv-au7-1100,1.0,709,0.2838726245505907,ok steel-plates-fault,1.0,162,0.0,ok speeddating,1.0,168,0.22671228902772056,ok -devnagari-script,1.0,171,0.03767826945318897,ok +devnagari-script,1.0,709,0.021739130434782594,ok arsenic-male-lung,1.0,172,0.0,ok fars,1.0,174,0.39134793637762566,ok wdbc,1.0,176,0.01449275362318847,ok @@ -65,10 +65,10 @@ hiva_agnostic,1.0,181,0.28794275953202053,ok rmftsa_ladata,1.0,185,0.09256715506715507,ok banknote-authentication,1.0,188,0.0,ok visualizing_soil,1.0,191,0.0003103662321539691,ok -wine-quality-white,1.0,194,0.5594259465253884,ok -analcatdata_dmft,1.0,197,0.7737781849718646,ok +wine-quality-white,1.0,709,0.28548558778040434,ok +analcatdata_dmft,1.0,709,0.2372536438556463,ok ova_colon,1.0,199,0.06985388361958478,ok -volcanoes-e1,1.0,203,0.7058646616541353,ok +volcanoes-e1,1.0,709,0.2258013454689355,ok cpu_small,1.0,206,0.08179300997192374,ok gametes_heterogeneity_20atts_1600_het_0.4_0.2_75_edm-2_001,1.0,211,0.26064295662411874,ok dresses-sales,1.0,214,0.37422037422037424,ok @@ -77,10 +77,10 @@ parity5_plus_5,1.0,222,0.0,ok delta_ailerons,1.0,227,0.05943422519509478,ok gametes_heterogeneity_20atts_1600_het_0.4_0.2_50_edm-2_001,1.0,230,0.28459230117593004,ok mammography,1.0,233,0.0645452024403772,ok -first-order-theorem-proving,1.0,236,0.4963289871477006,ok +first-order-theorem-proving,1.0,709,0.4063548645225059,ok pol,1.0,238,0.010955207771181863,ok one-hundred-plants-margin,1.0,243,0.14592241658568195,ok -volcanoes-a2,1.0,246,0.5618923065238854,ok +volcanoes-a2,1.0,709,0.27818850155692254,ok kdd_el_nino-small,1.0,251,0.0555267254800208,ok kc2,1.0,255,0.21854575163398693,ok fri_c3_1000_10,1.0,257,0.07222776116096163,ok @@ -98,16 +98,16 @@ arsenic-male-bladder,1.0,294,0.13372093023255816,ok letter,1.0,298,0.0302953166025568,ok mc1,1.0,301,0.11897921491600949,ok ova_prostate,1.0,304,0.0,ok -volcanoes-b2,1.0,308,0.6049296764663846,ok +volcanoes-b2,1.0,709,0.2505278585090791,ok hypothyroid,1.0,313,0.25043630017452,ok -autouniv-au7-700,1.0,315,0.48565916634574835,ok +autouniv-au7-700,1.0,709,0.3746500155874639,ok ova_lung,1.0,318,0.0742391077756932,ok pokerhand,1.0,322,0.15738714306963697,ok quake,1.0,325,0.4566588050314466,ok stock,1.0,329,0.029126808928133352,ok fri_c2_1000_25,1.0,332,0.05855211119062864,ok fried,1.0,338,0.05970753367223658,ok -volcanoes-a4,1.0,342,0.6090137328339575,ok +volcanoes-a4,1.0,709,0.32727840199750313,ok no2,1.0,345,0.32140758154569493,ok space_ga,1.0,347,0.1251789549033644,ok led-display-domain-7digit,1.0,352,0.22896929824561407,ok @@ -117,7 +117,7 @@ ova_breast,1.0,364,0.02820688083845979,ok mozilla4,1.0,367,0.057752752285568865,ok churn,1.0,370,0.09994486131421865,ok rl,1.0,375,0.17550484692926682,ok -volcanoes-a3,1.0,377,0.5921428571428572,ok +volcanoes-a3,1.0,709,0.3635897435897436,ok profb,1.0,379,0.2641435306443164,ok bank32nh,1.0,384,0.19108836369110338,ok cylinder-bands,1.0,388,0.16560846560846554,ok @@ -133,7 +133,7 @@ wilt,1.0,421,0.04880593092794183,ok magictelescope,1.0,425,0.12872306147306456,ok pc3,1.0,428,0.18599435122113306,ok japanesevowels,1.0,434,0.007347987818080326,ok -volcanoes-b1,1.0,435,0.6702470997649754,ok +volcanoes-b1,1.0,709,0.2750187216422184,ok fri_c1_1000_50,1.0,440,0.06399204244031831,ok splice,1.0,444,0.03519156774858112,ok optdigits,1.0,445,0.006898860431585718,ok @@ -150,7 +150,7 @@ micro-mass,1.0,480,0.0688694638694638,ok indian_pines,1.0,485,0.06809369628097439,ok miceprotein,1.0,486,0.0,ok diabetes,1.0,489,0.23524844720496896,ok -collins,1.0,494,0.7292812799100832,ok +collins,1.0,709,0.19234712380249908,ok internet-advertisements,1.0,499,0.05529848302957552,ok ova_endometrium,1.0,500,0.2015848670756646,ok phishingwebsites,1.0,506,0.024655738306104125,ok @@ -164,7 +164,7 @@ gtsrb-hog01,1.0,529,0.006539945570489758,ok puma32h,1.0,532,0.08290275761973875,ok bioresponse,1.0,536,0.21245605620589147,ok cjs,1.0,538,0.0021739130434782483,ok -spoken-arabic-digit,1.0,543,0.7427910860239428,ok +spoken-arabic-digit,1.0,709,0.12078554185046508,ok fri_c4_500_100,1.0,546,0.08922235363690123,ok ova_kidney,1.0,549,0.01312332209973155,ok ldpa,1.0,553,0.012296136894902499,ok @@ -177,7 +177,7 @@ kdd_internet_usage,1.0,573,0.12425897115198847,ok kin8nm,1.0,578,0.08507835912444572,ok dna,1.0,579,0.03591082203249496,ok gametes_epistasis_3-way_20atts_0.2h_edm-1_1,1.0,585,0.3280686892472038,ok -volcanoes-d4,1.0,586,0.6129977423609093,ok +volcanoes-d4,1.0,709,0.21706864564007422,ok fri_c0_1000_5,1.0,590,0.06341911764705888,ok gesturephasesegmentationprocessed,1.0,594,0.3420059330064098,ok ova_ovary,1.0,598,0.06628418849678863,ok @@ -196,7 +196,7 @@ eating,1.0,640,0.2829086031298169,ok eeg-eye-state,1.0,643,0.019845559156376535,ok artificial-characters,1.0,647,0.09627924935929022,ok climate-model-simulation-crashes,1.0,650,0.0457317073170731,ok -volcanoes-d1,1.0,652,0.6733972083836718,ok +volcanoes-d1,1.0,709,0.19926199261992616,ok cpu_act,1.0,657,0.07139897376319104,ok wind,1.0,659,0.12518590637984695,ok fri_c3_500_10,1.0,666,0.09081542537533127,ok diff --git a/autosklearn/metalearning/files/balanced_accuracy_multiclass.classification_dense/configurations.csv b/autosklearn/metalearning/files/balanced_accuracy_multiclass.classification_dense/configurations.csv index 3712b358d0..cf5c462684 100644 --- a/autosklearn/metalearning/files/balanced_accuracy_multiclass.classification_dense/configurations.csv +++ b/autosklearn/metalearning/files/balanced_accuracy_multiclass.classification_dense/configurations.csv @@ -204,3 +204,4 @@ idx,balancing:strategy,classifier:__choice__,classifier:adaboost:algorithm,class 701,none,liblinear_svc,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,17045.7732372673,False,True,1,squared_hinge,ovr,l2,0.0008192814934567822,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,no_encoding,minority_coalescer,0.008405913574040906,mean,robust_scaler,,,0.9598706457974426,0.1882826974837794,select_percentile_classification,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,63.57218134514263,mutual_info,,, 702,weighting,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,train,3.387912939529945e-10,0.30755227194768237,auto,255,None,60,39,18,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,one_hot_encoding,minority_coalescer,0.010000000000000004,most_frequent,none,,,,,select_percentile_classification,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,93.39844669585806,f_classif,,, 707,weighting,lda,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,auto,,0.00018030860519654287,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,no_encoding,minority_coalescer,0.041538950281903686,mean,robust_scaler,,,0.8898452660666816,0.1704082739702074,kitchen_sinks,,,,,,,,,,,,,,,,,,,,,,,,0.0005845623820571637,8606,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +709,weighting,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,0.0001,auto,0.9,0.999,train,1E-08,2,0.0003,32,128,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,one_hot_encoding,minority_coalescer,0.004071801722749603,median,quantile_transformer,1000,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, diff --git a/autosklearn/metalearning/files/log_loss_binary.classification_dense/algorithm_runs.arff b/autosklearn/metalearning/files/log_loss_binary.classification_dense/algorithm_runs.arff index 889cc292b3..1cec3c541b 100644 --- a/autosklearn/metalearning/files/log_loss_binary.classification_dense/algorithm_runs.arff +++ b/autosklearn/metalearning/files/log_loss_binary.classification_dense/algorithm_runs.arff @@ -46,7 +46,7 @@ isolet,1.0,123,0.16356916174675815,ok led24,1.0,124,0.7814469293719439,ok satimage,1.0,129,0.23632698635562363,ok pbcseq,1.0,133,0.3965121399605423,ok -bachchoralharmony,1.0,134,3.5570787530713313,ok +bachchoralharmony,1.0,709,2.5870167462116758,ok compas-two-years,1.0,139,0.6145546685461338,ok volcanoes-b6,1.0,142,0.13378592547234638,ok philippine,1.0,145,0.37128927711646215,ok @@ -94,7 +94,7 @@ cmc,1.0,281,0.8842480351945765,ok delta_elevators,1.0,286,0.28829474115557374,ok kropt,1.0,289,0.32042209965538,ok mnist_784,1.0,290,0.1849885060869448,ok -arsenic-male-bladder,1.0,293,0.10375917546132216,ok +arsenic-male-bladder,1.0,709,0.09755482598717143,ok letter,1.0,299,0.13082042502993893,ok mc1,1.0,300,0.021251873902710102,ok ova_prostate,1.0,307,0.0,ok diff --git a/autosklearn/metalearning/files/log_loss_binary.classification_dense/configurations.csv b/autosklearn/metalearning/files/log_loss_binary.classification_dense/configurations.csv index 49e6d86159..10d93fb58f 100644 --- a/autosklearn/metalearning/files/log_loss_binary.classification_dense/configurations.csv +++ b/autosklearn/metalearning/files/log_loss_binary.classification_dense/configurations.csv @@ -204,3 +204,4 @@ idx,balancing:strategy,classifier:__choice__,classifier:adaboost:algorithm,class 700,none,libsvm_svc,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,11.971574533613923,-0.39588785696879913,2,0.5649333295846743,poly,-1,False,0.0005016673735160964,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,no_encoding,minority_coalescer,0.006581276380447836,mean,none,,,,,select_percentile_classification,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,58.914624158252536,mutual_info,,, 702,none,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,train,2.459103572787973e-05,0.7160373349401171,auto,255,None,3,11,12,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,, 708,none,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,tanh,0.0014187815366827666,auto,0.9,0.999,train,1e-08,1,0.0008372397492611581,32,54,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,no_encoding,minority_coalescer,0.002841707358825979,most_frequent,robust_scaler,,,0.8646269699284821,0.022276271975525615,fast_ica,,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +709,weighting,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,0.0001,auto,0.9,0.999,train,1E-08,2,0.0003,32,128,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,one_hot_encoding,minority_coalescer,0.004071801722749603,median,quantile_transformer,1000,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, diff --git a/autosklearn/metalearning/files/log_loss_multiclass.classification_dense/algorithm_runs.arff b/autosklearn/metalearning/files/log_loss_multiclass.classification_dense/algorithm_runs.arff index 889cc292b3..1cec3c541b 100644 --- a/autosklearn/metalearning/files/log_loss_multiclass.classification_dense/algorithm_runs.arff +++ b/autosklearn/metalearning/files/log_loss_multiclass.classification_dense/algorithm_runs.arff @@ -46,7 +46,7 @@ isolet,1.0,123,0.16356916174675815,ok led24,1.0,124,0.7814469293719439,ok satimage,1.0,129,0.23632698635562363,ok pbcseq,1.0,133,0.3965121399605423,ok -bachchoralharmony,1.0,134,3.5570787530713313,ok +bachchoralharmony,1.0,709,2.5870167462116758,ok compas-two-years,1.0,139,0.6145546685461338,ok volcanoes-b6,1.0,142,0.13378592547234638,ok philippine,1.0,145,0.37128927711646215,ok @@ -94,7 +94,7 @@ cmc,1.0,281,0.8842480351945765,ok delta_elevators,1.0,286,0.28829474115557374,ok kropt,1.0,289,0.32042209965538,ok mnist_784,1.0,290,0.1849885060869448,ok -arsenic-male-bladder,1.0,293,0.10375917546132216,ok +arsenic-male-bladder,1.0,709,0.09755482598717143,ok letter,1.0,299,0.13082042502993893,ok mc1,1.0,300,0.021251873902710102,ok ova_prostate,1.0,307,0.0,ok diff --git a/autosklearn/metalearning/files/log_loss_multiclass.classification_dense/configurations.csv b/autosklearn/metalearning/files/log_loss_multiclass.classification_dense/configurations.csv index 49e6d86159..10d93fb58f 100644 --- a/autosklearn/metalearning/files/log_loss_multiclass.classification_dense/configurations.csv +++ b/autosklearn/metalearning/files/log_loss_multiclass.classification_dense/configurations.csv @@ -204,3 +204,4 @@ idx,balancing:strategy,classifier:__choice__,classifier:adaboost:algorithm,class 700,none,libsvm_svc,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,11.971574533613923,-0.39588785696879913,2,0.5649333295846743,poly,-1,False,0.0005016673735160964,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,no_encoding,minority_coalescer,0.006581276380447836,mean,none,,,,,select_percentile_classification,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,58.914624158252536,mutual_info,,, 702,none,gradient_boosting,,,,,,,,,,,,,,,,,,,,,,,,train,2.459103572787973e-05,0.7160373349401171,auto,255,None,3,11,12,loss,1e-07,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,no_encoding,no_coalescense,,most_frequent,minmax,,,,,polynomial,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,3,True,False,,,,,,,,,,,, 708,none,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,tanh,0.0014187815366827666,auto,0.9,0.999,train,1e-08,1,0.0008372397492611581,32,54,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,no_encoding,minority_coalescer,0.002841707358825979,most_frequent,robust_scaler,,,0.8646269699284821,0.022276271975525615,fast_ica,,,,,,,,,,,deflation,cube,,False,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +709,weighting,mlp,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,relu,0.0001,auto,0.9,0.999,train,1E-08,2,0.0003,32,128,True,adam,0.0001,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,one_hot_encoding,minority_coalescer,0.004071801722749603,median,quantile_transformer,1000,normal,,,no_preprocessing,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, diff --git a/autosklearn/smbo.py b/autosklearn/smbo.py index 2be6eaacab..81d96cea93 100644 --- a/autosklearn/smbo.py +++ b/autosklearn/smbo.py @@ -482,6 +482,7 @@ def run_smbo(self): ) scenario_dict.update(self.smac_scenario_args) + del self.datamanager smac_args = { 'scenario_dict': scenario_dict, 'seed': seed, diff --git a/autosklearn/util/common.py b/autosklearn/util/common.py index 4905d0eaa8..20c477ac60 100644 --- a/autosklearn/util/common.py +++ b/autosklearn/util/common.py @@ -1,16 +1,48 @@ # -*- encoding: utf-8 -*- import os +import resource import warnings import numpy as np +import psutil + __all__ = [ 'check_pid', 'warn_if_not_float' ] +def print_memory(tag: str = '', extra: bool = True, include_all: bool = False) -> str: + memory = [] + processes = [(str(os.getpid()), f"{tag}-current")] + + if include_all: + processes.append((str(os.getppid()), f"{tag}-parent")) + parent = psutil.Process(os.getpid()) + for children in parent.children(recursive=True): + if children.pid: + processes.append((str(children.pid), f"{tag}-children")) + + for pid, name in processes: + filename = '/proc/' + str(pid) + '/status' + if pid and os.path.exists('/proc/' + str(pid) + '/status'): + with open(filename, 'r') as fin: + data = fin.read() + for line in data.split('\n'): + if 'Vm' not in line: + continue + data = data.strip().replace('\t', ' ') + memory.append(f"{name}-{pid}-{line}") + memory.append("\n") + + if extra: + memory.append(f"rsuage={resource.getrusage(resource.RUSAGE_SELF)}") + + return "\n".join(memory) + + def warn_if_not_float(X: np.ndarray, estimator: str = 'This algorithm') -> bool: """Warning utility function to check that data type is floating point. Returns True if a warning was raised (i.e. the input is not float) and diff --git a/requirements.txt b/requirements.txt index a29774a201..57ddeaba90 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,7 +1,7 @@ setuptools numpy>=1.9.0 -scipy>=0.14.1 +scipy>=0.14.1,<1.7.0 joblib scikit-learn>=0.24.0,<0.25.0