diff --git a/.github/ISSUE_TEMPLATE/bug_report.md b/.github/ISSUE_TEMPLATE/bug_report.md new file mode 100644 index 0000000..3898aa8 --- /dev/null +++ b/.github/ISSUE_TEMPLATE/bug_report.md @@ -0,0 +1,28 @@ +--- +name: Bug Report +about: Create a bug report about an issue with the library + +--- + + +**Describe the bug** + + + +**To Reproduce** + +Steps to reproduce the behavior: + +1. +2. +3. + +**Expected Behavior** + + + +**python-adc-eval version:** + +**Additional Information** + + diff --git a/.github/ISSUE_TEMPLATE/feature_request.md b/.github/ISSUE_TEMPLATE/feature_request.md new file mode 100644 index 0000000..67815eb --- /dev/null +++ b/.github/ISSUE_TEMPLATE/feature_request.md @@ -0,0 +1,13 @@ +--- +name: Feature request +about: Suggest a new feature for this library to support + +--- + +**Description** + + + +**Additional Information** + + diff --git a/.github/dependabot.yml b/.github/dependabot.yml new file mode 100644 index 0000000..b396869 --- /dev/null +++ b/.github/dependabot.yml @@ -0,0 +1,9 @@ +version: 2 +updates: +- package-ecosystem: pip + directory: "/" + schedule: + interval: weekly + open-pull-requests-limit: 10 + reviewers: + - fronzbot diff --git a/.github/workflows/lint.yml b/.github/workflows/lint.yml new file mode 100644 index 0000000..9bc50f3 --- /dev/null +++ b/.github/workflows/lint.yml @@ -0,0 +1,29 @@ +name: Lint + +on: + push: + branches: [main, dev] + pull_request: + branches: [main, dev] + +jobs: + lint: + runs-on: ubuntu-latest + strategy: + matrix: + python-version: [3.9] + + steps: + - uses: actions/checkout@v2 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v1 + with: + python-version: ${{ matrix.python-version }} + - name: Install dependencies + run: | + python -m pip install --upgrade pip + pip install -r requirements.txt + pip install -r requirements_test.txt + - name: Lint + run: | + tox -r -e lint diff --git a/.github/workflows/publish.yml b/.github/workflows/publish.yml new file mode 100644 index 0000000..57427e9 --- /dev/null +++ b/.github/workflows/publish.yml @@ -0,0 +1,26 @@ +name: Upload Python Package + +on: + release: + types: [created] + +jobs: + deploy: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v2 + - name: Set up Python + uses: actions/setup-python@v1 + with: + python-version: '3.9' + - name: Install dependencies + run: | + python -m pip install --upgrade pip + pip install twine build + - name: Build and publish + env: + TWINE_USERNAME: ${{ secrets.PYPI_USERNAME }} + TWINE_PASSWORD: ${{ secrets.PYPI_PASSWORD }} + run: | + python -m build + twine upload dist/* diff --git a/.gitignore b/.gitignore index ed8ebf5..f575ec5 100644 --- a/.gitignore +++ b/.gitignore @@ -1 +1,4 @@ -__pycache__ \ No newline at end of file +__pycache__ +.tox +python_adc_eval.egg-info +dist diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000..1a415fc --- /dev/null +++ b/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2023 Kevin Fronczak + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/MANIFEST.in b/MANIFEST.in new file mode 100644 index 0000000..8da04a0 --- /dev/null +++ b/MANIFEST.in @@ -0,0 +1,3 @@ +include README.rst +include LICENSE +include requirements.txt diff --git a/README.md b/README.md deleted file mode 100644 index 7173c5b..0000000 --- a/README.md +++ /dev/null @@ -1,14 +0,0 @@ -# ADC evaluation tool - -Tiny tools collection (Python [NumPy](https://numpy.org/)+[Matplotlib](https://matplotlib.org/) based) to do spectral analysis and calculate the key performance parameters of an ADC. Just collect some data from the ADC, specify basic ADC parameters and run analysis. See [example.ipynb](example.ipynb) (you will need [Jupyter Notebook](https://jupyter.org/) to be installed). - -![analyser](analyser.png) - -References: -- [Analog Devices MT-003 TUTORIAL "Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so You Don't Get Lost in the Noise Floor"](https://www.analog.com/media/en/training-seminars/tutorials/MT-003.pdf) -- [National Instruments Application Note 041 "The Fundamentals of FFT-Based Signal Analysis and Measurement"](http://www.sjsu.edu/people/burford.furman/docs/me120/FFT_tutorial_NI.pdf) - -Inspired by Linear Technology (now Analog Devices) [PScope](https://www.analog.com/en/technical-articles/pscope-basics.html) tool. - -![pscope](pscope.png) -Image source: [Creating an ADC Using FPGA Resources WP - Lattice](https://www.latticesemi.com/-/media/LatticeSemi/Documents/WhitePapers/AG/CreatingAnADCUsingFPGAResources.ashx?document_id=36525) diff --git a/README.rst b/README.rst new file mode 100644 index 0000000..4164dee --- /dev/null +++ b/README.rst @@ -0,0 +1,65 @@ +python-adc-eval |Lint| |PyPi Version| |Codestyle| +=================================================== + +A python-based ADC evaluation tool, suitable for standalone or library-based usage + +Details +-------- + +Package based on +`esynr3z/adc-eval `__ + +Tiny tools collection (Python +`NumPy `__\ +\ `Matplotlib `__ +based) to do spectral analysis and calculate the key performance +parameters of an ADC. Just collect some data from the ADC, specify basic +ADC parameters and run analysis. See `example.ipynb `__ +(you will need `Jupyter Notebook `__ to be +installed). + +.. figure:: analyser.png + :alt: analyser + + analyser + +References: - `Analog Devices MT-003 TUTORIAL “Understand SINAD, ENOB, +SNR, THD, THD + N, and SFDR so You Don’t Get Lost in the Noise +Floor” `__ +- `National Instruments Application Note 041 “The Fundamentals of +FFT-Based Signal Analysis and +Measurement” `__ + +Inspired by Linear Technology (now Analog Devices) +`PScope `__ +tool. + + +USAGE +======= + +To load the library in a module: + +.. code-block:: python + + import adc_eval + + +Given an array of values representing the output of an ADC, the spectrum can be analyzed with the following: + +.. code-block:: python + + import adc_eval + + adc_eval.spectrum.analyze(, , , , window='hanning', no_plot=) + + +|pscope| Image source: `Creating an ADC Using FPGA Resources WP - +Lattice `__ + +.. |pscope| image:: pscope.png +.. |Lint| image:: https://github.com/fronzbot/python-adc-eval/workflows/Lint/badge.svg + :target: https://github.com/fronzbot/python-adc-eval/actions?query=workflow%3ALint +.. |PyPi Version| image:: https://img.shields.io/pypi/v/spithon.svg + :target: https://pypi.org/project/python-adc-eval +.. |Codestyle| image:: https://img.shields.io/badge/code%20style-black-000000.svg + :target: https://github.com/psf/black diff --git a/adc_eval/__init__.py b/adc_eval/__init__.py new file mode 100644 index 0000000..b4593a3 --- /dev/null +++ b/adc_eval/__init__.py @@ -0,0 +1 @@ +"""Initialization file for module.""" diff --git a/converters.py b/adc_eval/converters.py similarity index 67% rename from converters.py rename to adc_eval/converters.py index 0cf441b..bea7480 100644 --- a/converters.py +++ b/adc_eval/converters.py @@ -1,15 +1,13 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- - -""" -Analog <-> Digital converters behavioral models -""" +"""Analog <-> Digital converters behavioral models.""" import numpy as np -def analog2digital(sig_f, sample_freq=1e6, sample_n=1024, sample_bits=8, vref=3.3, noisy_lsb=1): - sample_quants = 2 ** sample_bits +def analog2digital( + sig_f, sample_freq=1e6, sample_n=1024, sample_bits=8, vref=3.3, noisy_lsb=1 +): + """Analog to digital converter.""" + sample_quants = 2**sample_bits sample_prd = 1 / sample_freq t = np.arange(0, sample_n * sample_prd, sample_prd) dv = vref / sample_quants @@ -25,6 +23,7 @@ def analog2digital(sig_f, sample_freq=1e6, sample_n=1024, sample_bits=8, vref=3. def digital2analog(samples, sample_bits=8, vref=3.3): - quants = 2 ** sample_bits + """Digital to analog converter.""" + quants = 2**sample_bits dv = vref / quants return samples * dv diff --git a/signals.py b/adc_eval/signals.py similarity index 69% rename from signals.py rename to adc_eval/signals.py index 1755f98..0aeb71c 100644 --- a/signals.py +++ b/adc_eval/signals.py @@ -1,16 +1,13 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- - -""" -Some basic signal functions -""" +"""Basic signal functions.""" import numpy as np def sin(t, peak=1.5, offset=1.65, freq=1e3, ph0=0): + """Generate a sine wave.""" return offset + peak * np.sin(ph0 + 2 * np.pi * freq * t) def noise(t, mean=0, std=0.1): + """Generate random noise.""" return np.random.normal(mean, std, size=len(t)) diff --git a/adc_eval/spectrum.py b/adc_eval/spectrum.py new file mode 100644 index 0000000..22458ae --- /dev/null +++ b/adc_eval/spectrum.py @@ -0,0 +1,334 @@ +"""Spectral analysis module. + +References: + - Analog Devices MT-003 TUTORIAL + "Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so You Don't Get Lost in the Noise Floor" + - National Instruments Application Note 041 + "The Fundamentals of FFT-Based Signal Analysis and Measurement" + +""" + +import matplotlib +import matplotlib.pyplot as plt +import numpy as np + + +def db2amp(db): + """Decibels to amplitutde ratio.""" + return 10 ** (0.05 * db) + + +def amp2db(a): + """Amplitutde ratio to decibels.""" + return 20 * np.log10(a) + + +def db2pow(db): + """Decibels to power ratio.""" + return 10 ** (0.1 * db) + + +def pow2db(p): + """Power ratio to decibels.""" + return 10 * np.log10(p) + + +def enob(sinad): + """Calculate ENOB from SINAD.""" + return (sinad - 1.76) / 6.02 + + +def snr_theor(n): + """Theoretical SNR of an ideal n-bit ADC in dB.""" + return 6.02 * n + 1.76 + + +def noise_floor(snr, m): + """Noise floor of the m-point FFT in dB.""" + return -snr - 10 * np.log10(m / 2) + + +def harmonics(psp, fft_n, ref_pow, sample_freq, leak=20, n=5, window="hanning"): + """Obtain first n harmonics properties from power spectrum.""" + # Coherence Gain and Noise Power Bandwidth for different windows + win_params = { + "uniform": {"cg": 1.0, "npb": 1.0}, + "hanning": {"cg": 0.5, "npb": 1.5}, + "hamming": {"cg": 0.54, "npb": 1.36}, + "blackman": {"cg": 0.42, "npb": 1.73}, + }[window] + fft_n = len(psp) * 2 # one side spectrum provided + df = sample_freq / fft_n + # calculate fundamental frequency + fund_bin = np.argmax(psp) + fund_freq = np.sum( + [psp[i] * i * df for i in range(fund_bin - leak, fund_bin + leak + 1)] + ) / np.sum(psp[fund_bin - leak : fund_bin + leak + 1]) + if np.isinf: + fund_freq = fund_bin * df + + # calculate harmonics info + h = [] + for i in range(1, n + 1): + h_i = {"num": i} + zone_freq = (fund_freq * i) % sample_freq + h_i["freq"] = ( + sample_freq - zone_freq if zone_freq >= (sample_freq / 2) else zone_freq + ) + h_i["central_bin"] = int(h_i["freq"] / df) + h_i["bins"] = np.array( + range(h_i["central_bin"] - leak, h_i["central_bin"] + leak + 1) + ) + h_i["pow"] = ( + ((1 / win_params["cg"]) ** 2) * np.sum(psp[h_i["bins"]]) / win_params["npb"] + ) + h_i["vrms"] = np.sqrt(h_i["pow"]) + if i == 1: + h_i["db"] = "%.2f dBFS" % pow2db(h_i["pow"] / ref_pow) + else: + try: + h_i["db"] = "%.2f dBc" % pow2db(h_i["pow"] / h[0]["pow"]) + except IndexError: + continue + h += [h_i] + return h + + +def signal_noise(psp, harms): + """Obtain different signal+noise characteristics from spectrum.""" + # noise + distortion power + nd_psp = np.copy(psp) + nd_psp[harms[0]["bins"]] = 0 # remove main harmonic + nd_psp[0] = 0 # remove dc + nd_pow = sum(nd_psp) + # noise power + n_psp = np.copy(psp) + for h in harms: + n_psp[h["bins"]] = 0 # remove all harmonics + n_psp[0] = 0 # remove dc + n_pow = sum(n_psp) + # distortion power + d_pow = np.sum([h["pow"] for h in harms]) - harms[0]["pow"] + # calculate results + sinad = pow2db(harms[0]["pow"] / nd_pow) + thd = pow2db(harms[0]["pow"] / d_pow) + snr = pow2db(harms[0]["pow"] / n_pow) + sfdr = pow2db(max(nd_psp) / harms[0]["pow"]) + return sinad, thd, snr, sfdr + + +def analyze(sig, adc_bits, adc_vref, adc_freq, window="hanning", no_plot=False): + """Do spectral analysis for ADC samples.""" + # Calculate some useful parameters + sig_vpeak_max = adc_vref / 2 + sig_vrms_max = sig_vpeak_max / np.sqrt(2) + sig_pow_max = sig_vrms_max**2 + ref_pow = sig_pow_max + adc_prd = 1 / adc_freq + adc_quants = 2**adc_bits + dv = adc_vref / adc_quants + sig_n = len(sig) + dt = 1 / adc_freq + fft_n = sig_n + df = adc_freq / fft_n + win_coef = {"uniform": np.ones(sig_n), "hanning": np.hanning(sig_n)}[window] + sp_leak = 20 # spectru leak bins + h_n = 5 # harmonics number + + # Convert samples to voltage + sig_v = sig * dv + + # Remove DC and apply window + sig_dc = np.mean(sig_v) + sig_windowed = (sig_v - sig_dc) * win_coef + + # Calculate one-side amplitude spectrum (Vrms) + asp = np.sqrt(2) * np.abs(np.fft.rfft(sig_windowed)) / sig_n + + # Calculate one-side power spectrum (Vrms^2) + psp = np.power(asp, 2) + psp_db = pow2db(psp / ref_pow) + + # Calculate harmonics + h = harmonics( + psp=psp, + fft_n=fft_n, + ref_pow=ref_pow, + sample_freq=adc_freq, + leak=sp_leak, + n=h_n, + window=window, + ) + + # Input signal parameters (based on 1st harmonic) + sig_pow = h[0]["pow"] + sig_vrms = h[0]["vrms"] + sig_vpeak = sig_vrms * np.sqrt(2) + sig_freq = h[0]["freq"] + sig_prd = 1 / sig_freq + + # Calculate SINAD, THD, SNR, SFDR + adc_sinad, adc_thd, adc_snr, adc_sfdr = signal_noise(psp, h) + + # Calculate ENOB + # sinad correction to normalize ENOB to full-scale regardless of input signal amplitude + adc_enob = enob(adc_sinad + pow2db(ref_pow / sig_pow)) + + # Calculate Noise Floor + adc_noise_floor = noise_floor(adc_snr, fft_n) + harm = {} + for index, h_i in enumerate(h): + harm[h_i["num"]] = [h_i["freq"], h_i["db"]] + + result_data = { + "points": fft_n, + "fbin": df, + "window": window, + "harmonics": harm, + "fin": sig_freq, + "vpeak": sig_vpeak, + "offset": sig_dc, + "fsamp": adc_freq, + "tsamp": adc_prd, + "vref": adc_vref, + "bits": adc_bits, + "quants": adc_quants, + "quant": dv * 1e3, + "snr": adc_snr, + "sinad": adc_sinad, + "thd": adc_thd, + "enob": adc_enob, + "noise_floor": adc_noise_floor, + } + + if not no_plot: + # Create plots + plt.figure(figsize=(14, 7)) + gs = matplotlib.gridspec.GridSpec(2, 2, width_ratios=[3, 1]) + + # Time plot + ax_time = plt.subplot(gs[0, 0]) + ax_time_xlim = min(sig_n, int(5 * sig_prd / dt)) + ax_time.plot(np.arange(0, ax_time_xlim), sig[:ax_time_xlim], color="C0") + ax_time.set(ylabel="ADC code", ylim=[0, adc_quants]) + ax_time.set( + yticks=list(range(0, adc_quants, adc_quants // 8)) + [adc_quants - 1] + ) + ax_time.set(xlabel="Sample", xlim=[0, ax_time_xlim - 1]) + ax_time.set(xticks=range(0, ax_time_xlim, max(1, ax_time_xlim // 20))) + ax_time.grid(True) + ax_time_xsec = ax_time.twiny() + ax_time_xsec.set(xticks=ax_time.get_xticks()) + ax_time_xsec.set(xbound=ax_time.get_xbound()) + ax_time_xsec.set_xticklabels( + ["%.02f" % (x * dt * 1e3) for x in ax_time.get_xticks()] + ) + ax_time_xsec.set_xlabel("Time, ms") + ax_time_ysec = ax_time.twinx() + ax_time_ysec.set(yticks=ax_time.get_yticks()) + ax_time_ysec.set(ybound=ax_time.get_ybound()) + ax_time_ysec.set_yticklabels(["%.02f" % (x * dv) for x in ax_time.get_yticks()]) + ax_time_ysec.set_ylabel("Voltage, V") + + # Frequency plot + ax_freq = plt.subplot(gs[1, 0]) + ax_freq.plot( + np.arange(0, len(psp_db)), psp_db, color="C0", zorder=0, label="Spectrum" + ) + for h_i in h: + ax_freq.text( + h_i["central_bin"] + 2, + psp_db[h_i["central_bin"]], + str(h_i["num"]), + va="bottom", + ha="left", + weight="bold", + ) + ax_freq.plot(h_i["bins"], psp_db[h_i["bins"]], color="C4") + ax_freq.plot(0, 0, color="C4", label="Harmonics") + ax_freq.set(ylabel="dB", ylim=[-150, 10]) + ax_freq.set(xlabel="Sample", xlim=[0, fft_n / 2]) + ax_freq.set(xticks=list(range(0, fft_n // 2, fft_n // 32)) + [fft_n // 2 - 1]) + ax_freq.grid(True) + ax_freq.legend(loc="lower right", ncol=3) + ax_freq_sec = ax_freq.twiny() + ax_freq_sec.set_xticks(ax_freq.get_xticks()) + ax_freq_sec.set_xbound(ax_freq.get_xbound()) + ax_freq_sec.set_xticklabels( + ["%.02f" % (x * df * 1e-3) for x in ax_freq.get_xticks()] + ) + ax_freq_sec.set_xlabel("Frequency, kHz") + + # Information plot + ax_info = plt.subplot(gs[:, 1]) + ax_info.set(xlim=[0, 10], xticks=[], ylim=[0, 10], yticks=[]) + harmonics_str = "\n".join( + [ + "%d%s @ %-10s : %s" + % ( + h_i["num"], + ["st", "nd", "rd", "th", "th"][h_i["num"] - 1], + "%0.3f kHz" % (h_i["freq"] * 1e-3), + h_i["db"], + ) + for h_i in h + ] + ) + ax_info_str = """ + ========= FFT ========== + Points : {fft_n} + Freq. resolution : {fft_res:.4} Hz + Window : {fft_window} + + ======= Harmonics ====== + {harmonics_str} + + ===== Input signal ===== + Frequency : {sig_freq:.4} kHz + Amplitude (Vpeak): {sig_vpeak:.4} V + DC offset : {sig_dc:.4} V + + ========= ADC ========== + Sampling freq. : {adc_freq:.4} kHz + Sampling period : {adc_prd:.4} us + Reference volt. : {adc_vref:.4} V + Bits : {adc_bits} bits + Quants : {adc_quants} + Quant : {adc_quant:.4} mV + SNR : {adc_snr:.4} dB + SINAD : {adc_sinad:.4} dB + THD : {adc_thd:.4} dB + ENOB : {adc_enob:.4} bits + SFDR : {adc_sfdr:.4} dBc + Noise floor : {adc_nfloor:.4} dBFS + """.format( + fft_n=fft_n, + fft_res=df, + fft_window=window, + harmonics_str=harmonics_str, + sig_freq=sig_freq * 1e-3, + sig_vpeak=sig_vpeak, + sig_dc=sig_dc, + adc_freq=adc_freq * 1e-3, + adc_prd=adc_prd * 1e6, + adc_vref=adc_vref, + adc_bits=adc_bits, + adc_quants=adc_quants, + adc_quant=dv * 1e3, + adc_snr=adc_snr, + adc_thd=adc_thd, + adc_sinad=adc_sinad, + adc_enob=adc_enob, + adc_sfdr=adc_sfdr, + adc_nfloor=adc_noise_floor, + ) + ax_info.text(1, 9.5, ax_info_str, va="top", ha="left", family="monospace") + + # General plotting settings + plt.tight_layout() + plt.style.use("bmh") + + # Show the result + plt.show() + + return result_data diff --git a/example.ipynb b/example.ipynb deleted file mode 100644 index 510534e..0000000 --- a/example.ipynb +++ /dev/null @@ -1,102 +0,0 @@ -{ - "metadata": { - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.10" - }, - "orig_nbformat": 2, - "kernelspec": { - "name": "python3", - "display_name": "Python 3.8.10 64-bit" - }, - "interpreter": { - "hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1" - } - }, - "nbformat": 4, - "nbformat_minor": 2, - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "%load_ext autoreload\n", - "%autoreload 2" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "from scipy import signal\n", - "import matplotlib\n", - "import matplotlib.pyplot as plt\n", - "import spectrum\n", - "import signals\n", - "import converters" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": "
", - "image/svg+xml": "\n\n\n\n \n \n \n \n 2021-07-24T11:22:34.927500\n image/svg+xml\n \n \n Matplotlib v3.3.4, https://matplotlib.org/\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9QAAAHwCAYAAABHdieNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gc1dX/P0fSqhfLsmzLllzADfeKjW2EsWkmBAIhBAgthUBo6UB+CYGQ8IYE0nhDKCm0hJKQ8MYkmI4RBvcm926rF6v3snt/f8ysvJJ3pS0zo91lPs+zj1Yzs/OdM/fu7C3nniNKKWxsbGxsbGxsbGxsbGxsbAIjZrAvwMbGxsbGxsbGxsbGxsYmErE71DY2NjY2NjY2NjY2NjY2QWB3qG1sbGxsbGxsbGxsbGxsgsDuUNvY2NjY2NjY2NjY2NjYBIHdobaxsbGxsbGxsbGxsbGxCQK7Q21jY2NjY2NjY2NjY2NjEwR2h9rGxsYmTBGR3SKybLCvw8bGxsbGxsbGxjtxg30BNjY2Np9WRKTZ499koANw6v/fopSaZv1V2djY2NjY2NjY+IsopQb7GmxsbGw+9YjIMeBrSql3B/tabGxsbGxsbGxs/MN2+baxsbEJU0TkmIicp79/QET+ISJ/FZEmEdkpIpNE5AciUiUixSJygcdnM0TkzyJSLiKlIvIzEYn1U3eNfvwnItIsIq+LSJaI/E1EGkVkk4iM048VEfmNfg2N+nVNN+WG2NjY2NjY2NiEGXaH2sbGxiZy+CzwApAJbAPeQnuOjwYeBJ7yOPZZoBuYAMwBLgC+FoDW1cD1+rlPB9YBzwBDgb3A/fpxFwD5wCQgA7gKqAnUMBsbGxsbGxubSMTuUNvY2NhEDh8ppd5SSnUD/wCygYeVUl3Ay8A4ERkiIiOAi4FvKaValFJVwG/QOsn+8oxS6rBSqgFYDRxWSr3roT1HP64LSAOmoC0j2quUKjfCWBsbGxsbGxubcMcOSmZjY2MTOVR6vG8DTiilnB7/A6QCowAHUC4i7uNjgOIQtPr+nwqglHpfRH4PPA6MFZF/Ad9TSjUGoGVjY2NjY2NjE5HYM9Q2NjY20UcxWsTwYUqpIfor3ayo4Uqpx5RS84CpaK7f3zdDx8bGxsbGxsYm3LA71DY2NjZRhu5y/TbwKxFJF5EYETldRM4BEJFxIqLcgcVCQUQWiMhCEXEALUA74Ar1vDY2NjY2NjY2kYDdobaxsbGJTm4A4oE9QB3wKpCj78sDjgOlBuikA3/UNY6jBSR7xIDz2tjY2NjY2NiEPXYeahsbG5tPGSLyI6BaKfXUgAfb2NjY2NjY2Nj4xO5Q29jY2NjY2NjY2NjY2NgEge3ybWNjY2NjY2NjY2NjY2MTBHaH2sbGxsbGxsbGxsbGxsYmCCK2Qy0iF4nIfhE5JCL3etmfICKv6Ps3eEazFZEf6Nv3i8iFZuvp+8eISLOIfM9MPRFxiMhzIrJTRPaKyA8M0ssXka0i0i0iV3psny0i60Rkt4gUisgXzdTT940Rkbd1+/b4G6nYD83v6OcrFJH3RGSsx74bReSg/rrRAj2niGzXX6ss0PuFiOzSX0aV4a16PdwuImtFZKq+/UwP23aIyOUm633JQ2+7iLhEZLYRmh7HfV60qNnz9f+zROQD/Tv/e3+0QtQbJyJtHjY+abJevIg8o9/vHSKyzAg9EblJRKo97Piavn2s/jzYLtqz5laT9c7tU2faReRzoerpx1ylfw93i8iLHtvfFJF6EfmPP7YZpBnws9SPe/obj/t2QETqPfaZ8Rz1qafvTxeREn+/hyHa90v9Hu8VkcdETiaBD1FzjP482Sba8/tiffv5IrJF/x5uEZHlZurp+2bKyd/8nSKSaIDeWNF+kwpFZI2I5HrsM6PO+NTT9wdUZ2xsbGxQSkXcC4gFDgOnoUWx3QFM7XPMbcCT+vurgVf091P14xOA8fp5Ys3S89j/KvAP4Hsm23ct8LL+Phk4BowzQG8cMBN4HrjSY/skYKL+fhRQDgwxS0/ftwY4X3+fCiQbdE/PdZ8L+IbHPR0KHNH/ZurvM83S0/9vNuE74cu+zwDvAHFACrAJSDdAL93j/aXAmx71Mk5/nwNUuf83Q6/PMTOAw0bdU/24NKAAWA/M17elAEuBW4HfW6A3DthldJ3pR+924Bn9/XBgCxBjQBne5O1+6ccn6O9T0Z5ro8zS63PMUKCWAZ4zfupNBLahPz+A4R77VgCfBf5jZBkOoLmGAJ6l/tYZj+PvBP7icR8Nf4760vPY9jvgxYHK2QD7FgMf6+eIBdYBywwqw6eBb+jvpwLH9Pdz3N8DYDpQarJeHFAIzNL/z8KY9tM/gBv198uBF8ysM770gqkz9st+2S/7pZSK2BnqM4FDSqkjSqlO4GXgsj7HXAY8p79/FVihjxZfhtbh7FBKHQUO6eczSw99ZuMosNsC+xSQIiJxQBLQCTSGqqeUOqaUKqRPflml1AGl1EH9fRla5yjbLD3RZh3jlFLv6Mc1K6VaB9DzV/MDj3OtB9yj1hcC7yilapVSdWidz4tM1AuGUPSmAgVKqW6lVAtag8kI+zzrXQpa3UQp1aqU6ta3J7q3m6XXh2v0z/qDP99DgJ8Cv0DLv+y+lhal1FrPbWbqBUkoelOB9wGUUlVAPTDfIL1TUEp1KqU69H8T8M+7Kmi9PlwJrPbjOeOP3s3A4/pzxH3v0N+/BzQFeG1Bawb5LA30nl4DvKS/N+U52o8eIjIPGIGWk90fQtFTaM+zeLQ66gAqDdJUaOnpADKAMgCl1Db9dxe09kWSiCSYpQdcABQqpXbo+jVKKacBej3PE+ADj/1m1RlfesHUGRsbG5uI7VCPBoo9/i/Rt3k9Rm+8N6CNpvrzWcP0RCQVuAf4yQAahuihda5b0GaKi4BHlVK1BugNiIicidaYOGyi3iSgXkT+pbujPSIisX58LlDNrwKrQ7jeUPQAEkVks4isFz9cTUPU2wFcJCLJIjIMbSY7zwg9EbldRA4DvwTu8ti+UER2AzuBWz062KboefBFPBrcoWqKyFwgTyn1Xz/PaabeeP078aGInG2y3g7gUhGJE5HxwDwMqjPA53VXzFdFpOecIpInIoX6OX7h0ZEwRc+Dq/GvzvijNwmYJCIf69/tgToHZmoG8yz1+zkj2pKS8ZzsuJj6HO2rJyIxwK8Av5ZZhaqnlFqH1jkr119vKaX2GqT5AHCdiJQAb6DNjPfl88BWj4EnM/QmAUpE3hJtCcbdA2j5q7cDuEJ/fzmQJiJmtte86gVZZ2xsbGwitkMdSTwA/EYp1WyR3pmAE839ejzwXRE5zWxREckBXgC+rJRyDXR8CMQBZ6P94C1Ac+u6yUgBEbkObbbtESPPG6DeWKXUfDQX/t+KyOlm6Sml3kZrNH2C1nFYh1aHQkYp9bhS6nS0QaUfeWzfoJSahlaGP/BnHV4oeqB14oFWpdQuI7T0xtevge8acb4Q9cqBMUqpOcB3gBdFJN3LcUbp/QWtoboZ+C1a3TGizryOtkRlJtpslNsLB6VUsb59AnCjiIwwUw96nmszgLcM0ALt+TURWIY2u/lHERli0LkD1TT7WXo18KofM5hm6d0GvKGUKrFCT0QmAGegef6MBpb7ObDlD9cAzyqlcoGLgRf07ye69jQ0L5JbTNaLQ1vK8iX97+UissIAve8B54jINuAcoBSDfoMC1DO7ztjY2EQpkdqhLqX3bEiuvs3rMbr7cwZQ4+dnjdRbCPxSRI4B3wL+n4jcYaLetWhrR7t0176PGdgVM5h70oPecP8v8EOl1Ho/PhKKXgmwXXfn6gb+D5hrlKaInAf8ELjUY6TfrDrjSw+lVKn+9wjaOsc5Jus9pJSarZQ6HxDggBF6HrwMfK7vRn0Gpxlt/Z/Zev7ONPqrmYZ23Wv07/ciYJXogbuCIGg9pS1hqQFQSm1B8xKZZKJet1Lq23qduQwYggF1RnchddfLP6HNfNPnmDJgF1pn0Gy9q4DXlFJdA2j5pYf2/FqlP5+Pot2ziX6c2wzNYJ6lgXwP+37fTHuO+tA7C7hDr7uPAjeIyMMm6l0OrNdd55vRPIDOGkDPX82vAn+HnpnwRGAYgB5Q6zXgBqXUQN5hoeqVoC0POqEvD3gDA+qMUqpMKXWFPiD4Q31bvZ/XaqReMHXGxsbGJmKDksWhBacYz8mgE9P6HHM7vYN2/V1/P43eQcmOMHBQjaD1+hzzAP4FJQvFvns4GSwoBdgDzAxVz+PYZ+kdlCweeA/4lpHl149erH58tv7/M8DtBt3TOWgdkYl9tg9FWwOfqb+OAkNN1MvkZACmYcBB+gmMY4BeLJClv5+J1lkZKEiYP3oTPd5/Ftisvx/PyaBkY9HW5w0zS0//PwatUXWaGfVUP34NetAuj2034X9QsqD10OIWxOrvT9NtDbmO9qOXDKTo789Ha2Qb8R3M8Xjv7qCA1ihO8vh+HABmmKXnsW09cK5R5Ye2/vM5/f0wNNfULI/9ywgsKFnQmgTxLPW3zgBT0ALHicc2U56jvvSC+R6GaN8XgXf1czjQfhc/a1AZrgZu0t+fgfbMFLSBrB3AFQbXGV96mcBW9MCSur2fMUBvGHpQQ+Ah4EEz64wvvWDqjP2yX/bLfimlIrNDrZQCzQ3pAFoH4Yf6tgfRZt5AG1H9B1rQsY14NKTRRiQPA/uBlWbreZzjAfzoUIeihxap9R9oAUr2AN83SG8B2uh0C9pM+G59+3VAF7Dd4zXbLD193/logbN2onW44w2y8V20IDJuO1Z5fPYr+r0+hObWbpoeWrTYnWgNgZ3AV03WS9Tryh60DsSA5een3u/0ergdbW3hNH379R7btwKfM1NP37eMPp0lIzT7HLsGjw41WoO7Fm0GvoQBBkVC0UNbP+l5TwdsyIeoNw7t+blXr1djDSrDn+t27NDLcEqf7/wO/e/XzdTzsLGUAaKXB6gnaG70e9C+21d7fPYjoBpo0+vLhRZoBvws9afOoP3WPezls4Y/R/vT89h/E/4PbAWlhzZA8RTad2IP8GsD681UNG+zHWjf8Qv07T9C+43c7vEabpaevu86tO/MLuCXBtl3JdrA8QE0T5EEM+tMf3rB1Bn7Zb/sl/0SpRQ2NjY2NjY2NjY2NjY2NjaBEalrqG1sbGxsbGxsbGxsbGxsBpVB6VCLSKyepuM/+v/jRWSDiBwSkVdEJF7fPlZE3tNTmqzRg2+4z+EUke36a9Vg2GFjY2NjY2NjYxP5iEiiiGwUkR0isltETkl3KiK3ishOve25VrR87u59P9DbsftF5EJrr97GxmYwGRSXbxH5Dlrk6XSl1CUi8nfgX0qpl0XkSWCHUuoJEfkHWoCW50RkOdr6mev1czQrpVItv3gbGxsbGxsbG5uoQkQELdhis4g4gLXAN5VH9hIRSVdKNervLwVuU0pdpHesX0JLXToKLbbEJGVd2jgbG5tBxPIZan2W+TNogSDcD7DlwKv6Ic9xMt3NVOB9/f0HwGWWXaiNjY2NjY2Njc2nAqXRrP/r0F+qzzGNHv+meOy/DHhZaSkMj6IFUTvT5Eu2sbEJE+IGQfO3wN1oOU5BS99Rr7Q8mKBFNx2tv98BXIEWvfdyIE1EspSWbzVRRDYD3WjRNv+vr9C7776r+s7Ai4gWjU0EoOe9+7hQ9iuliImJ8bm/77ZQ97tcLkTEVJv67h9IM1Sb+mq6XC5iY2NNtanvPY2JiTHVJs/9nnpmlqN7mzf7jLap735fmkbZ5OuemmmTt3tqpk2e+51Op1f7Buu5ZoRNffd73lMrnmue99Qsm/q7p1Y810T6/60I1abBeK557vf2W2GkTVY913ztD/a5FohNZj3XBtof6HMtWJuUUjQ2NtLQ0ADAyJEjufjii7WdOiISC2wBJgCPK6U20AcRuR34DlparuX65tFoWTLceLZlLWPNmjUqISHBalkbm08Fra2tJ1asWJHtbZ+lHWoRuQSoUkptEZFlfnzke8DvReQmoAAthYnbfWasUqpURE4D3heRnUqpw54f7uzs5KyzzjLs+gfinHPO4cMPP4xavcHQtPUiW28wNG29yNYbDE1bL7L1BkPT1otsPYB169adsk1pLtqzRWQI8JqITFdK7epzzOPA4yJyLVrqshstuFy/SEhIYMqUKYN9GTY2UcnWrVuP+9pn9Qz1EuBSEbkYLfdtOtrs8xARiVPaLHUuWscZpVQZ2gw1IpIKfF4pVa/vcx9zRETWAHPQcg4OGh0dHVGtNxiatl5k6w2Gpq0X2XqDoWnrRbbeYGjaepGtNxBKqXoR+QC4CC3ntjdeBp7Q35cCeR77etqyNjY20Y+la6iVUj9QSuUqpcYBVwPvK6W+hLY++kr9sBuBfwOIyDARcV/jD4C/6NszRSTBfQxaR32PZYb4IDY2Nqr1BkPT1otsvcHQtPUiW28wNG29yNYbDE1bL7L1vCEi2frMNCKSBJwP7OtzzESPfz8DHNTfrwKuFpEEERkPTAQ2mn7RNjY2YcFgrKH2xj3AyyLyM2Ab8Gd9+zLg5yKi0Fy+b9e3nwE8JSIutEGBh5VSp3SorX5AX3HFFVGtNxiatl5k6w2Gpq0X2XqDoWnrRbbeYGjaepGtBxAbG9s3zU0O8Jy+jjoG+LtS6j8i8iCwWSm1CrhDRM4DuoA6dHdvpdRu0TLW7EGL7XO7siN829h8ahi0DrVSag2wRn9/BC/REJVSr3Iy+rfn9k+AGQNpWN2hPv/886NabzA0bb3I1hsMTVsvsvUGQ9PWi2y9wdC09SJbDyAuLq5vBO9CtOWD9Nn+Y4/33/R1PqXUQ8BDRl6jjY1NZGB52iwrcUd2tIqxY8dGtd5gaNp6ka03GJq2XmTrDYamrRfZeoOhaetFtp6NjY2NkUR1h9qdOsEqiouLo1pvMDRtvcjWs1Kzy+niv/tOsOPAMUv03ER7GUZznbH1okMvWM2yxg6cruDaCdF+T6NdL9hyt7GxsfFGVHeorcbqGXGr9azW7HS6IMrvabTrWaVZ0dTBd/5zkN+tLebD0g7q2rpM13QT7WUYCXXG6VK8daCGvVUtluiFiq03uJpNHd38/INj3PT3Pfz8g2Om6xmBrWccR2vb+Oqrgx7H1sbGJooIl6BkpmD1D0JOTk5U61mpWd3SyW2v7Weoo5tzuyv4zJRhpCWYX12jvQyjsc58fKyeXxUU0dypxX/Z0xjLXzaV8d18a1wIo70MI6HO/HtPNU+u1zLULMhN58b5OUwalmyaXqjYeoOnua20iUcKjnOiRRt0Kzhaz+aSRubnppuiZxS2nnH8aWMZZY2dlunZ2NhEP1E9Q221y3dJSUlU61mp+detFTS0dzMmoZO/bCrnSy/t5ol1JVQ0mZurMtrLMJrqTJfTxRPrSvjJu0dp7nRy1pgMfnfpJGamd/PWgdqgZysDJdrLMNzrTEunk5e2VwLgiBU2lTRyx//t5yfvHOFobZvhekZg61mv2dHt4on1Jdyz+hAnWro4Y3gyl03NBuDJ9aV0B+gCHO33NFr1tpU2samkkWRHVDd/bWxsLMaeoTaQzMzMqNazSrO4vp23DtQQIzBr9BCaEmLZWtrEa7ur+feeas4eN4QrZw5ncnaK4drRXobRUmfKmzr4n/ePsb+6lViBr505miumZyMibMpKgxMd/P6TYh67dDKxMeY+B6K9DMO9zry6s4qG9m6mj0jhx+eN5x+FVazaU83Hxxv45HgD55w2hOvn5pA3JNEQPSOw9azVPHSilV+sOc7x+nZiBK6bm8M1s0bgVIpNJY0U1bezak81V0wfboieGdh6oeNSij9u1DxZvjhrBLjKTNe0sbH5dGAP0RlIV5d16zYHQ88qzee2lONScOGkLKZmOXh45QSeuHwy503IRIAPj9Zz578P8N3/HGTd8QZcBnoiRHsZRkOdWXusntte28/+6lZGpMbz689O4vMzhvcMoC3MSWBYioODJ9p480CNodreiPYyDOc6U9faxT93VgHw1QWjGJLk4OaFo3n2i9O4bGo2cTHCmiP13PzPvTzy4XHKG717uET7PY12PV+aTpfi5R0V3LXqAMfr28nNSOB3l07iujkjiY0R4mNjuGXhaABe2FpBfQCxF6L9nkaj3prDdRyqaSMr2cHlAQye2NjY2AxEVHeorXb5bm5ujmo9KzQPnGil4Gg98bHCdXNH9uidnpXM3cvG8fzV0/jCjOEkO2LYWdHM/e8c4Wuv7uWNfSfo7HaFrB/tZRjJdabT6eLxT0p48N2jtHQ6OWtsBn+4fDJnDO/tqdDR2sKteiP5L5vKaGzvNkTfF9FehuFcZ/62vYL2bheLxqQzbWRqz/asZAe3L87lmaumcvGULAR452AtX/nHHn67toiq5t7rJ6P9nka7njfN8sYOvvffg/xlUzndLsVlU4fxh8unnOLZtGhMOvNz02jpdPLM5vKg9czG1guNTqerp3xvnJdDYlxUN39tbGwsJqqfKFa7fI8fPz6q9azQfGaT5oJ16dRsslPiT9HLTonn5oWj+ds107ll4WiGpzooaejgt2uLue7l3fx1m7b2OliivQwjtc6UN3bw7dcP8O891cTFCN9YNJoHzhvvNVDd+PHjOXv8EGaPSqWpw8mzW/xvJAdDtJdhuNaZssYO/rv3BAJ8ef4or8cMT43nW0vH8JcvTOX8iUNRwBv7avjy3/fwh3Ul1LZ2+a1nJLaeeZpKKd7cX8Otr+1jd2ULQ5Pj+J+LTuf2xXleO1Eiwq2LcokVeHN/DQdOtAakZxW2Xmis2nOCyuZOxmYmcv7EoaZq2djYfPqI6g611TPUR48ejWo9szW3lzWxpbSJZEcMV88a0a9eSnwsn58xnGevmsYPzh3LhKwk6tu7eX5LOde9tIu/76gM6hqivQwjsc4UHK3jG6/t4+CJNkakxvObz07k8unDfQ6YHT16FBHh9rO0RvJ/957goJ+N5GCI9jIM1zrz3JZynArOmziU8UOT+j02Jz2B758zlqc/fwbLThtCl0vxf7urufGV3fxxQyn7Dx0x6tL9ItrLcLDqTH1bFz959yi//qiIti4X+eOH8PQVZwwYwXvMkEQ+Ny0bBTyxrsSvtkO039No0mvq6Oal7RUA3HzmKNPjatjY2Hz6iOoOtdU4HI6o1jNTUynFX/TZ6S/MHEF6YpxfenExwrmnD+Xxz03mkYsnsDAvnQ6n4s+byk5x6/SHaC/DSKozmot3MT977xitXS6WjsvgicsnDxiMzq03NjOJy6cPRwGPf1Ji6Fp7b3pWEe16/mgermnlg8N1OGKEG+b6n25nzJBE/t/y8Tx1xRSWjM2gw6n4x84q1lWYuyygL9FehoNRZyrbha//cx+fHG8gJT6We5aN5YfLx/X8lgzEdXNzGJIYx+7KFj44XDfg8dF+T6NJ75UdlTR1OJmVk8qCANOj2djY2PhDVHeorXb5zs7Ojmo9MzXXFTWwr7qVIYlxXDH9pIa/eiLCrFFp/PTC01l22hAU8PbB2oCvI9rLMFLqTFljB99adYB/7zlBXIxw21m53LdiPKl+5CL31PvSnJEMTYpjT1UL7wZRH/wh2sswHOvMn/XBt89OHcaItPiAzz9+aBL3n38av79sMsmOGDacgKL69qCuNRiivQyt1Otyuvjt2iKe299JfXs3s3JSeeqKKayYMDSgNkBKfCxfWaAtHfjjxjLaupz9Hh/N9zSa9KqaO3ltdzUAN5852vJ2oY2NzaeDqO5QW+3yXVZmbQoGq/XM0nS6FM9s0ta5XjtnJEmO2JD0LpiUBcA7B2oCnpWM9jKMhDpT2dTJ7f+3n0M1bYxMi+e3n53E56Zl+90Q8tRLiY/la2dqAcr+tLGM5g7jZyKjvQzDrc7sKGtic4m2NOSa2SND0pmUnUz++EzOSOvmHZMGXLwR7WVopd6/d1fzxr4apqV18/WFo/nFxRMYnhr4IAvABZOGMmlYMjWtXby8vf9lQ9F8T6NJ79kt5XQ5Feeensmk7GRTNGxsbGws7VCLSKKIbBSRHSKyW0R+om9/VkSOish2/TVb354hIq97HP/lPudLF5ESEfm9Dz3TbfJk6FBrA11YrWeW5vuHazle386I1HgunpIVst6cUWkMS3FQ3tTJrorAIodGexlGQp1580ANLZ2ae94fPjc54EZQX70VEzKZPiKF+vZuXthaEdC5gtEzm2jX609TKcWfPJaGZPjpztsfF0wayrHWWN49WIvTZc0gbLSXoZV67x7SBkLmjc3iyhnDiQnhdz9GNG8YgFd3VflMswbRfU+jRe9wTSvvHawlLka4af7AS0NEJE9EPhCRPXqb85tejvHZLhWRX4jILv31RYPNsbGxCWOsnqHuAJYrpWYBs4GLRGSRvu/7SqnZ+mu7vu12YI9+/DLgVyLiOfT8U6DAl5jVM9Tt7da5DA6GnhmanU4Xz2/ROjk3zBtJfGzvKhmMXmyM9ETxfOtAYLNO0V6G4V5nlFJ8cFgrs2tnj/TLxXsgPRHh9sW5xAj8e081R2vbAj5nIHpmE+16/Wl+fKyB/dWtZCb1XhoSCtNGpDA6Wahp7WJbWZMh5xyIaC9Dq/SO1LRxpLadtIRYxqUa83s/dUQKKyZk0uVUPLWh1Odx0XpPo0nvTxvLUMClU4eRk5bgz0e6ge8qpaYCi4DbRWRqn2O8tktF5DPAXLS27ULgeyJiL9i2sfmUYGmHWmm4pwwd+qu/X0EFpIk21ZwK1KI98BCRecAI4G3zrjgwWlvNiyQcDnpmaL6xr6YnlcXy008doQ5W74KJ2kx3wdF6Wjv7XwtnhF6wRLteoJr7qlspa+xkaHIcM3NSB/6An3qnZyXz2TOG4VJagDIjB9uivQzDpc44XYq/bNZmp7/UZ2lIKIgI0zO191a5fUd7GVql974++HbO+Eza24wbKPvagtEkxsXwyfEGtpQ0ej0mWu9ptOhtLmlkS2kTKfGxXOvn0hClVLlSaqv+vgnYC4zuexje26VTgQKlVLdSqgUoBC4yxhobG5twJ3R/uQARkVhgCzABeFwptUFEvgE8JCI/Bt4D7lVKdQC/B1YBZUAa8EWllEtEYoBfAdcB5/nSUkpx//33s3fvXsaNG8e8efO4+OKLOXr0KKmpqTgcDurq6sjNzaW8vBylFHl5eRw/fpz0dG1gsbGxkbFjx1JcXIyIkJOTQ0lJCZmZmXR1ddHc3Mz48eN7Uj6cOHGCsrIyhg4dSnt7O62trT374+PjGTp0KBUVFWRnZ9Pc3ExbW1vP/qSkJFJTU6murmbkyJHU1tbS2dnZsz85OZnExERqa2sZNUoLnlJYWNiz3wybHA4H2dnZPTY5HI5emqHYdPDwETYd7mJsMnxhVDt1tTVUV1fT1dXV6/zFxcVB2XR5bjeFdfDe9v2MTez2aZNnOTmdTvbt22doOfW1ybOcsrKy2L17t+Hl5KvuOZ1OysvLTbWpbzk5nU6OHTvml03bjtWSGidcltPBgf37/LKpbzmNGDGCwsLCU2w6O6OZ1uGdrDvRyJufbGPiiPSgbfIsJ6fTSUNDg6Hl1F/dS0tLo7Cw0PBy8lX3AGpra021qW/dczqdNDU19bJp+7EqOtsVy4crxnSV0dSUaNhzb1xmEucMa2JHcS1btjWQnBhvuE2e5eRwOCgpKTG0nPqre06nk71795pqk2fdy8zMZO/evabadOTIEarKOxmeEMPM+BOkpmZw6NAhw2y66bRu1la4eHXTYWJrYsgdPbpXOTmdTo4cOWL6b667nNzPNaPbEb7qntPppLa21lSbPMspIyODwsJCQ2yqqqpi3bFmUuNiuW6cixNlRTTo5bR27VpeeOEFAB566CGf6wNEZBwwB9jQZ5evdukO4H4R+RWQDJwL7PF1fhsbm+hCrHaL7hEWGQK8BtwJ1AAVQDzwNHBYKfWgiFwJLAG+A5wOvAPMAm4AkpVSvxSRm4D5Sqk7+mq8++67at68eRZYo1FYWMjMmTOjVs9ozb9tq+C5LeVMyU7md5dO8rrmPRS9tw7U8KuCIqaPTOHXl0zy6zPRXobhXGecLsW1L+2irq2b318W+Nppf/Te3F/Drz8qIivZwZ+vPIPk+NBnOaO9DMOhznR0u/jy3/dworWLH5w7jnNPzzRc768lSWwva+abS/P4zJRhhp7fm140l6EVejvKmvj+G4cYkRrP81+cys6dOw3V7HS6+Po/91LW2Mk3Fo3m8unDe+2PxnsaLXrvHqzllx8eJzvFwV++MJWEOO/OmFu3bnWtWLHilB8BEUkFPgQeUkr9q88+r+1SpVSjiPwQ+AJQDVQBm5RSvzXEKD9Zt26dmjJlipWSNjafGrZu3bplxYoV873tG7Qo30qpeuAD4CLdzUbps9LPAGfqh30Z+Je+7xBwFJgCnAXcISLHgEeBG0TkYatt6Et8fHCRRSNFz0jNxvZu/lGoRVH9yoJRPgPIhaJ39rghJMTFsKuihdIG38FljNILhmjXC0RzW1kTdW3d5GYkMHFYkil6F0wayuRsLYrvi9uNCVAW7WUYDnXm37urOdHaxYSsJM45bYgpeu5lIu8EGHchWD0riUa99w5puaKXT8hERAzXjI+N4ZaFWoCy57dWUN/W1Xt/FN7TaNDr7HbxjL405MZ5OT47074QEQfwT+BvfTvTOr7apSilHtLjAJ0PCHAgeEtsbGwiCaujfGfrM9OISBJwPrBPRHL0bQJ8Dtilf6QIWKHvGwFMBo4opb6klBqjlBoHfA94Xil1rxc9U+3pSzRExbRK85UdlbR2uZg3Oo3Zo9JM0UuOjyV//BAA3j5Y49dnor0Mw7nOfHBYayCfe3pmSN/d/vRiRLhjcS4C/HNnlSG5h6O9DAe7zjR1dPPyjpODb6FEce5Pb8m4DJIcMeypaqHY5JzU0V6GZut1drv46Fg9ACv02BtmaC4ak8783DRaOp08s7m8175ou6fRovd/e6qpbunitKGJrJgQ2Dn1Nuifgb1KqV/7OMxru1REYkUkS98+E5hJGMX4sbGxMRerZ6hzgA9EpBDYBLyjlPoP8DcR2QnsBIYBP9OP/ymwWN/3HnCPUuqEv2JWu7NXVBifkiec9IzSPNHSyb/3VAPw5QWjTNW7cJL2g/qOnylxor0Mw7XOdHS7+FhvIC8P0Z13IL3J2SlcNDkLp0EByqK9DAe7zvx9RyXNnU5mj0pl3mjfg2+h6iU5Tg7AmR2cLNrL0Gy9DcWNtHQ6mZCVxJjMRNM0RYRbF+USK9pykYMnTgbOirZ7Gg16je3dvKTnD//amaOJjQl48G0JcD2w3CON68UicquI3Kof46td6gA+EpE9aEsXr1NKdYdslI2NTURgaVAypVQhWpCHvtuX+zi+DLhggHM+CzzrbZ/VM9TZ2cakcQlXPaM0/7qtgk6nIn/8ECYN63+dbKh6M0amkpMWT3lTJ9vKmpif238Wi2gvw3CtMxuKGmjtcjE5O5nRGYmm631lwSjWHqtnW1kTHx9rYKnekTJLz0iiXc9T80RLJ6/t1gbfvtrP0hCj9C6YlMVbB2p592AtN87LCaZBHpCeVUSb3nt67mnPGUizNMcMSeSyadn8a1c1f1hXwq8vmYiIRN09jQa9l7ZX0NLpZM6otKAG35RSa9Fctfs7xmu7VCnVjhbp28bG5lPIoK2htgKrZ6ibm5sHPiiC9YzQLGlo5839NcSItr7JbD0R4fxJ2trItw8M7PYd7WUYrnXmfQ93byv0MhLjuEmvf09uKKG922WqnpFEu56n5gtbtcG3peOGMDk7xXS96SNSyEmL54TJOamjvQzN1Gts72ZTcSMxAss8nhdmal4/N4chiXHsrmxhzZE60/W8Yev1T0VTB6v2aA6MN59p3uCbjY2NjTeiukNtNW0G5sEMRz0jNJ/bUo5LaXmi84YMPBNphI0XTByKAB8fb6Cpo38PrGgvw3CsM00dJxvI55wWeofaXxsvnjKM07OSqGru4uUQApRFexkOVp0prm/nrQPa4NuX5w88+BaqHvQegDPT7Tvay9BMvY+O1dPlUswelUZWssMSzZT42J7lSX/cUEZblzOq7mk06D27uZwul2LFhEwmDOD5ZmNjY2M0Ud6htnaEcvz48VGtF6rmwROtfHikHkescN3ckabruRmeGs/sUWl0ORVr9JlQM/UCIdr1/NFce1RrIM/K6d1ANkvPTWyMFqAM4B+FVX5Hgg9WzyiiXc+t+cxmbfDtwkn+Db6FqufmvAnaoM7Hx+pp6XSarmcF0aR30t279+Cb2TZeOGkoE4clcaK1i5d3VEbVPY10vYMnWnn/cB2OGOGmef3HZbGxsbExgyjvUCtqWroGPswgjh49apnWYOiFqulOZXHpGcMYnupfigyjbHQHJ3t7gFmnaC/DcKwzbnfv5RNCn532R8+TaSNSOX/iULpciqc3lJquZwTRrgewbe9h1h6rJz5WuN7PwbdQ8LRxZFoCs3JS6XQqPjzS/wCcEXpWEC16lU2d7KpoISFWWDJ2iCWabmJEuO0sbQDu1Z1V7Dpw2FS9vkRLGRqtp5Tijxu1Z/dl07IZkWZ9mj8bGxubqO5QK2BjcYNleklJwefOjQS9UDQLy5vYXNJEsiOGq2f730A2ysYl44aQ7Ihhf3Urx+p8u5ZFexmGW52pbumksLwZR6ywdNwQ0/W88bUFo3DECOuLGk7JNWuGXqhEu55Sis0ntDXtl0/LZliK+Q3kvjZe4B6AMykndbSXoVl67x/WyuOssRkkx8daounJtBGprJiQSZdTscP8dOW9iJYyNFpvc0kT28uaSUuI5ZrZIwy+KhsbGxv/iOoONcD6okbLtFJTUy3TGgy9YDWVUvxlk5bD88oZw8lI9D+4vFE2JsTF9ASw6a+RHO1lGG515sPDdShgYV4GKX0ayGboeSMz2cGsUakoYFNJ4M+LaC9Dq/W2lDaxq85FanwsV82ypoHc18al44b05KQuaTA+J3W0l6EZekop3jukeQx4yy9slY1ul+LtJ5x0hhDMMFCioQyN1nO6FH/SZ6evmTWCtARLE9fY2NjY9BDVHWoBtpY20mHRj151dbUlOoOlF6zm+qJG9lS1kJEYxxXTh5uu54sL9WBD7x2qpdtHTupoL8NwqzM97t4GRPf2R88Xi8ZkALAhiAG4aC9DK/VcSvHnTWWcnuLkagsbyH1t7JWT2oRZ6mguQ7P0Dte0UVTfTkZiHPO8pD+0ysYRafFMyEoiL6mbHeXWRcKOhjI0Wu+Dw3UcrWtnRGo8l061Pr2fTXQza9YslixZQn5+Pvn5+axevdrn9m984xvk5+czZcoUpk2bRn5+Pt/5zncG2QIbK4n64bwOp2JHeRNn5mWYrjVypPlr/QZTLxhNp0v1rJ2+dvaIU9z0jNbrjynZyeRlJFDc0MGm4kbOGntqnYj2MgynOlNU186hmjZS4mM5M6///OBG6PWHW39zSSNdTheOWP/HGqO9DK3UW1/UwOGaNuIyEvjeNOsayN5sPH+ilpP6nUO13GBwTupoLkOz9NyDb+ecNoQ4L2VhpY1n5qXzwd5mhhQ3sMDAZ1d/REMZGq3nXgJw9ewRxMdF9fyQzSCxatUqsrKyBty+cuVKAB5++GFSUlK48847LbtGm/DgU/EEWn/cGrfv2lprF1VZrReM5vayJo7VtTM81cFnzhhmul5/iEjPLLWvnNTRXobhVGc+0AM+LR2XYWhjKBgbR6YlMC4zkdYuF7sqW0zXC4Vo1vv4mBbz4pwcIcHCBrI3G6eP1HNSt3Sx3eCc1NFchmboOV2qp/Pkzd3bDM3+WDgmg5wkF+uLGlHKu7eT0UR6GRqt197t6vEQWOxlcNzGxsbGSqJ+hhpgfXEDd6pcRMxNo9XZ2Wnq+QdbLxjNjcXaYMaKCUOJD2DWL1i9gVgxcSh/2VzWE4BqSFLvNE3RXobhUmeUUryvp79Zfrr3BrKRev6wcEwGx+ra2VDUwJxRaabrBUu06rmUYpP+vBiZaE0nxY03G2NEOH/iUJ7fWsHbB2u9uhkbqWcmka63o7yJ2tZuRqXHMyXbe45hK22cnJ1MVrxia30nx+vbGZdpfgCvSC9Do/W2lzXR5VRMzk4mMyn0dIs2/fPYY4/x6quv9tp22WWX4XA4Inr7d7/73X7tvvTSS4mN1TwrX3/9dTIyMvrd7i/Rej+Dvc/RgFg1ujoYvPfee+qX+xzUtnbzxOWTOT3L+w+xUTQ1NZGW5n9DPNL0gtH88t/3UNrYwW8umci0kYEHHTHDxvveOsyG4kZuXTT6lDXd0V6G4VJn9la18M1VBxiaHMffrp5uqDttsDburmjm2/85yKj0BJ75whl+D8BFexlapXegupU7/r2f4akO/nDxGNLTrXGlBd82VjR1cMMre4iPFV750gzDAudFaxmapffoh8d5+2At180ZyQ3zcizRHIhfv3+QN48087UFoywJnhfpZWi03mMfF/OfvSf6rRMDsXXrVteKFSuM+VKHCevWrVNTpkwZ7MuICmbNmsX7779/isu3r+1gu3xHO1u3bt2yYsWK+d72RfUMtVKKhXkZrN5fw7qiRtM71EePHmXmzJmmagymXqCapQ3tlDZ2kJYQy5ThKabr+csFk7LYUNzI2wdquHxadq+OU7SXYbjUmff1aL3LTss0tDPtS88fpgxPIS0hlrLGDkoaOsgbkmiqXrBEq94GPcXhmbkZHDt2LCxsdOek3lHezIdH6rh4SuDLVgLRM4tI1mvvdrH2WD3Qf656q22cltjMm2gecFZ0qCO5DI3WU0r1pERdOMa6gbdPM9E6ozpYM6fRej/D7T5bSVR3qEGL3rt6fw0bihq4bo65QTaSk83tsA+2XqCabnfveaPTgu40mWHjojHppCfEcqRWC4o1cdhJjWgvw3CoM06X4kN9/fRyH+shjdTzl9gY4cy8dN47VMeGoga/O9TRXoZW6bmfF2eOSSe5s8MSTTf92Xj+xKHsKG/mnYO1hnWoo7UMzdBbf7yB1i4Xk7OTyc3w/Z202sa8rFRipZk9lS00tneTHkA6yGCI5DI0Wu94fTtVzV0MSYzr9fttYx533XUXd911l899kbx9MIjm+xlO99lKLA1KJiKJIrJRRHaIyG4R+Ym+fbyIbBCRQyLyiojE69t/IyLb9dcBEanXt88WkXX6OQpF5Is+9JgzOo34WGF/dSu1rV2m2peY6F8DPFL1AtV05/QNJcK6GTY6YmN6OnJ9g5NFexmGQ53ZVtZEfXs3uRkJTMwyfu1hKDYu1OvqhmL/AxlGexlaoVfX1sWB6lYcscKsnNSwsvHs8UNIjIthd2ULpQblpA4n+8Jdzx2MbKDUelbbmJ6SxIycVFwKtpSaH/g0ksvQaD334NuCvHRiDIyNIyJ5IvKBiOzR25ff7OfYBSLSLSJX6v+f69Fe3S4i7SLyOcMuzsbGJqyxOsp3B7BcKTULmA1cJCKLgF8Av1FKTQDqgK8CKKW+rZSarZSaDfwv8C/9PK3ADUqpacBFwG9FZEhfMaUUiXExPQGGAmkkB0O4R8W0UtMzAue83ODXYZll44WTtA71+4fr6HSezFMe7WUYDnXGnf7m3NMzTQkUGIqN83PTiBXYWdFMc0e36XrBEI16W0qaUMCsnFSSHLFhZaNnTuq3DxpzXeFkXzjrNbR3s6m4kRjRlodYoekvtbW1PQNw64PIXx+MnpWEs97GIvdgveHu3t3Ad5VSU4FFwO0iMrXvQSISi9Zufdu9TSn1gUd7dTlaO/Xtvp+1iRx27NjhdZ20r+0A9957r71++lOKpR1qpdGs/+vQXwrt4eN2un8O+JyXj18DvKSf54BS6qD+vgyoAk5JWupurC8c4/7RazDGEB+MGjXK1PMPtl4gmjsMisBplo2nZyVz2tAkmjqcvepFtJfhYNeZjm4XH7vXQw4w42SEXqCkJsQxfaQ267S5xL9USdFehlbouddDLtAjaYebjRfoA3DvHKzF6Qo9kGe42Reueh8eqcOpYN7odDKT+/8dGQwbF405mb/eiHoxkJ6VhKteS6eTXZXNxIi2nMxIlFLlSqmt+vsmYC8w2suhdwL/RGt7euNKYLVSqtXQC7SxsQlbLF9DrY/sbQEmAI8Dh4F6pZR7OqiEPg8wERkLjAfe93K+M4F4/Ty9cLlc3H///ew9UsyCz91KQnMltfVZlBQdJzU1FYfDQV1dHbm5uZSXl6OUIi8vj+PHj/dEmG1sbGTs2LEUFxcjIuTk5FBSUkJmZiZdXV00Nzczfvx4jh49SltbGwBlZWUMHTqU9vZ2Wltbe/bHx8czdOhQKioqyM7Oprm5mba2tp79SUlJpKamUl1dzciRI6mtraWzs7Nnf3JyMomJidTW1jJq1CgOHz5MWVlZz34zbHI4HGRnZ/fYVF5e3kvTl02b61M4Z1gnp2XGUl5e7rdN1dXVdHV19ezv7Oykra3NFJsuym7lv+0utu4/xpCmYsaPH8+hQ4c4ceKEoeXU1ybPclJKUVlZaXg5+ap7R44c6fmsWTb1LadDhw7R3KyNo+0rqyUexXmjXNSXHCbJGbpNfctJRCgrKwvapjNHDmFIVy17jxRzenzzgHWvoqICh8NhaDn1V/eampooKyszvJx81b2WlhZiYmJMsykhIZHSqmbOGdbF5NQu9u3bR319PQkJCabZ1LecKisrez3X+tqU1NbGypFdfHTCxZqN2xk9JCmkZ0RHRwft7e2m2uRZTocOHaK6ujrkuufv90kpZYhNx4rayYoXlqQ1UFxc3G/d6+7upr6+3tTfXE+bDh06xPDhw1mQpUiWNrYcLiOls960Z7n7uWamTZ7lVFpaSkxMjCntCG91r729nbKysgFtqpR0Zmd0MS5VUJ1tFO4P7Bmxdu1aXnjhBQAeeughny5SIjIOmANs6LN9NHA5cC6wwMfHrwZ+7evcNjY20cegpc3SXbRfA+4DntXdvRGRPLSRvekex94D5Cql7uxzjhxgDXCjUmp9X413331XzZs3D4DbXtvHoZo2fnbhaSGt6e2PwsJCS6NiWq3nr6ZSihte2UNlcyePXTop6Ajf/uoFS0N7N9e8uAuXUvzt6ulkpTiivgwHu87c/84R1h1v8JqyzAy9YChpaOcr/9hLWkIsf//SjAED6kV7GZqtt6uime/85yCj0xN45qqplmj2xR+9F7aW88LWCpafnsm9544zXc9IIlGvvLGDG/++h8S4GF750nSSHP1nNxosG59cX8K/dlXzxZnD+eqZ3iYzjdWzinDVc6dQ++qCUXwxxOjqvtJmiUgq8CHwkFLqX332/QP4lVJqvYg8C/xHKfWqx/4coBAYpZQyN3CPF8xMmzVs2DCmTp1KV1cXU6dO5fe//z1JSf3HQVm9ejX79+/nW9/6ll8aTzzxBDfeeOOgBFD9tPDYY4/x8ssv43K5uPzyy7nnnnsAuO+++/j73/9OVlYWn3zySc/xP/vZz3jjjTeIj4/n+9//Pp/5zGcoKyvjq1/9as/g9/3338+55547WCZZRn9ps6xeQ92DUqoe+AA4CxgiIu7Z8lygtM/hV6O7e7sRkXTgv8APvXWm9WN63i8aY/5ap/Hjx5t27nDQ81ezuKGDyuZOMhLjmJQd2kPRTBszEuNYNCYdl4J3D9WarueNaNfz1GzqOLke8pwB1kMaoRcsuRmJjE5PoKnDyd6qFtP1AiXa9Dyje1ul2Rd/9M6bqLl9f3ysnpZOp+l6RhKJeu/psRaWjMsYsDNtlGYguPV6lpSZHKMlEsvQaD2XUh7BTs1JlyUiDjR37r/17UzrzAdeFpFjaK7df+gTfOwq4LXB6EybTVJSEgUFBT2drWeeeWbAz6xcudLvzjTAk08+2ePtaWM8paWlPPfcc3z44YcUFBTw8ssvc/z4cQAuueQSXn755V7Hb9u2jQ8++ICCggL++c9/cs8999DU1ERcXByPPPII69at44UXXuCOO+4YDHPCCqujfGe7g4eJSBJwPtoalQ/QHkwANwL/9vjMFCATWOexLR5tdvt5z5HBvnjOvrs71BuKGjBrVv7o0aOmnDdc9PzVdDeQ5+emhRyB02wbL5ikBZZ460ANSqmoL8PBrDMfHa2n26WYlZNG1gDrIY3QCwV3btMNfsRdiPYyNFuvp0Ode7KBHI425ug5qTucigI97ZuZekYSaXpKKd4/5I7u7V9qvcGycfqIFJIdMRyva6eiybx0b5FWhmboHappo66tm+wUB+MyjY9CLtoszJ+BvUopry7bSqnxSqlxSqlxaLF/blNK/Z/HIT3xfqIVEWHJkiU9ZfbUU0+xePFiFi9ezN/+9ree477xjW8wY8YM7r777l6fz8vL45577mHBggV885taIPU1a9aQn59PRUUFl156Kfn5+ZSXlwNaJ3vhwoUsXbqUBx54wBojI4wHH3yQBx980K9ju7u76ejooKOjg/j4+J5lHAsXLjwl2NrRo0eZPn06cXFxZGVlkZOTw7Zt2xg+fDjTp2uOxHl5eXR2dtLRYW26y3DD6hnqHOADESkENgHvKKX+A9wDfEdEDgFZaA80N1cDL6veveCrgHzgJo8UBbP7innOUE8YlsTQpDiqW7o4UmvO6Fdqaqop5w0XPX81N+kBhowYQTbbxgW56QxNiqOkoYO9Va1RX4aDWWc+0GecVkwwb3baUy8UApl1ivYyNFPvREsnR2rbSIiLYUbOSZ1wtfF8fZY61Gjf4WpfuOgdPNFGSUMHQxLjmOtn4KnBstERG8M8fTBoo4mz1JFWhmbobSw62bYwI0MEsAS4Hlju0ba8WERuFZFbB/qwvu46D81dPGrp6urinXfeYerUqRQVFfH000/z9ttv88Ybb/Dwww9TXV0NaO7bP/jBD075fEtLC1dccQWffPIJ77//PuXl5SxbtoyCggJGjhzJqlWrKCgoICcnB4CHH36Yd999l7Vr13L77bdbamukUFlZSWVl5YDHjR49mltuuYWZM2cyffp0brvtNjIzfbfJpkyZwpYtW2htbaWkpIQDBw5QVdU7Ft97773HzJkzSUhICNmOSMbSoGRKqUK0IA99tx8BzvTxmQe8bPsr8NdAtGNEWDgmg9X7a1hf1MjpWcavz3A4zJt1Cwc9fzTbupzsrGjRI3CG3qE228bYGGHFhKH8Y2cVbx2o4cpx0V2Gg1Vnqls6KSxvxhErLBk3xHS9UJkxMrVn1qm8qYOcNN8/FNFehmbqbdI7IHNHpREfe3J8N1xtPHv8EH7/SYmek7qD0RnBNSDC1b5w0XtPn50+9/TMAWMYGKUZKJ56C/PS+ehoPeuLGrh06ikJRwzXs4Jw1OvxZjEpDo5Sai3gd09dKXVTn/+P4T0qeFTQ1tZGfn4+AEuWLOG6667jrbfeYtGiRT0DInPnzmX37t0sW7bM53ni4+NZuHAhAGPHjqWqqqqn8+yNOXPmcOedd3LBBRdwySWXGGdQFPH444/7dVx9fT3vvvsu27dvp6uri5UrV3LhhRcycuRIr8dPnTqVa665hosuuoicnBzOPvvsXh3nyspK7rvvvl6eCZ9WBm0NtRX0de1eZHL6rLq60NwAw13PH81tZU10uxRTslNITwx9vMYKGy/U3b4/PFJHdY21uTc/LXVmzeE6FLAwL4OU+IHXQ4aqFypxMdKTwmnjAHEXor0MzdTboDeQF/TxZglXG5McsZyt56R+52CN6XpGEUl6Tpdije5SvzwAb5bBtHFBXjoC7Chvpq0rtPX1/uhZQbjp1bd1sb+6FUeMMHuU9Z5WNifXUBcUFPDzn/886EEXz8+JCC6Xq9/jX331VW6++Wa2bNnCZZddFpSmjcaHH35Ibm4u6enpZGVlMWPGDHbu3NnvZ26//XYKCgp45ZVXqKysJDc3F4D29nZuuukmHnzwwUGJzxNuRHWHuq9L0OxRqThihf3VrdS1Gh8vwl3JrMJqPX80N/poIJulZwRjMhOZkp1Ma5eLqhhz3ZH78mmpM25370AayKHoGYHb7XtDcf8DcNFehmbpdTpdbCvTcn33XR4SzjZeMPFkTmpXkPE4wtm+wdbbVtZEXVs3uRkJTBrmvyfZYNqYmeRgcnYyXU7F9rJm0/WsINz0Npc0oYCZOal+BamzsYaZM2eyYcMGWlpaaGhoYNu2bUybNi3o86WlpfUaXFFKUVJSwpIlS/jRj35EcXGxEZcddfi7hnrEiBFs27aNjo4O2traKCwsZMyYMf1+prZWm2j6+OOPaWhoYPbs2SiluOOOO7jyyis577zzDLEh0onqDnXfGeokRyxzRmnrsTaYsNbJHUDBKqzWG0hTKeXhkmVMh9oqG93ByQ6XVQ1wpLF8GurM/mOlHKppIyU+tlfgKbMwysaeWaeyZlr7ieoc7WVolt7uihbaulyMz0xkeGq8JZq+CERvRk4qI1LjqW7pYkeQnadwtm+w9dzu3ssnDA1onexg27jQZA+4wbZvsPU2GhibxcY4xowZw80338z555/PypUrufvuu8nOzqaoqIj8/Hx+/vOf89prr5Gfn88777wz4PluvvlmrrvuOlauXEllZSVKKW699VaWLl3KxRdf7HfgrU8b/q6hXrRoEcuXLyc/P59zzz2X66+/nsmTJwPw/e9/nwsvvJBDhw4xbdo0Vq9eDcAdd9zBokWLuPfee3niiScQETZs2MCqVat47rnnyM/P7xVE7tOKpWuow4FFYzLYWNzI+qIGLpqcNfAHAsDqnN6DkUO8P81jde2caOliaFIcp2f1n5vQCD0jWXbaEJ5YX0JNm5O61i4yTYxC7cmnoc4UNXYBwtJxGcTHmT+GZ5SNGYlxnDE8hT1VLWwta2Kpj7Xf0V6GZun110AOZxtjRDh/4lD+uq2Ctw/WMMfPoFnB6hlBpOi1dTn5+JhWL5afHpg3y2DbuDAvnee2lLOxuBGllOFBswbbvsHUc7oUm0vc3izmrJ+2GRhfs8O33HILt9xyS69tY8aMoaCgYMDzvP7667323Xjjjdx44429trk7dja+8XcNNcBPfvITfvKTn5yy/ZFHHuGRRx45ZfuLL754yrZFixadEpzs005Uz1B7+0FzN962ljbR2d3/uo1AycvLM/R84aY3kOYmD3fvUNNl+aNnJKkJccwcmcrOxrgeN1QriPY6o5Tiw2rNPW/5BP/S34SKkTb6kz4r2svQLL2Ty0NObSCHu43uaN+fHG+g2xV4xyPc7RssvXXHG2jvdjF1eAqj0gML+DbYNp6elURWsoOa1i4O1xifSWSw7RtMvb1VLTR3OhmdnhB0IEAbGxsbM4nqDrW3Ec/hqfGcnpVEe7eLHeXGrnVyJ0e3Cqv1BtLsaSAb6NZrpY1zR6cxO6ObraXWdaijvc7sq25ltKOdocnagIUVGGmjO5DhxuJGn+tlo70MzdArb+yguKGDlPhYpo5IsUSzPwLVy0lPIC8jgbYuF3urWkzXC5VI0XvvUPCxFgbbRhHpGYDzJ91eqHpmE056Ri8ls7GxsTGaqO5Q+3K5Mivatzs5ulVYrdefZkunk12VzcQIfucNDUXPDOaOTqO8PYatpU2WubtFe515/1Ad5e0xnHua/+lvQsVIG8dlJjI81UFdWzcHT7SarucP0aDnbiDPG51GnJd6EQk2unMPBzMAFwn2Wa1X19bFltJGYgXOOS3wDnU42LhQ97bYaMI66nCwb7D07PXTNjY24U5Ud6h9scg9ilzUMChrSqORLaWNuBRMG5FKakJkLs0fPzSJpLgYTrR2UVzfMdiXE/E4XYoP9fQ351rk7m00ItIzALdhgPRZNv4TDTNO7oHDraV2vTCCgiP1uBTMz00nw4CUi4OB2ZlEPo1Ut3RypLadhLgYZuTY6bIGk1mzZrFkyZKeIFTRvLb54MGD5Ofnk5eXx7Zt2/z+3BNPPEFr66mD76tXr+a3v/2tgVcYPMOGDespw3vvvXfA43/2s5+xePFili1bxn//+98Bz+PreG+8+OKL3H333T3/X3311axduzYIqwafyPzV8hNfneWJw5IZmhRHdUsXR2vbOc2gAFqNjdY2rKzW609zk0kNZCttjBFh2hDFjnptgGBMZqLpmtFcZ7aVNVHf3s3iHMVEg75j/mC0jQvzMli15wTrixq4YV6O6XoDEel62nIbbVbX1/KQSLBx5shUYgX2V7fS3NEd0EBiJNhntZ57kMWd59sKzVDwppfkiGV2ThqbShrZVNLYkz3CLD0zCRc9d9ti7qg04mM/lXNAYcWqVavIyjI2oG84MnHiRAoKCvjsZz8b0OeefPJJrrrqKpKTe6f8W7lyJStXrjTyEoPGnU/cH7Zt28YHH3xAQUEBDQ0NnHPOOeTn55OWlub1PP0dH+1E9dPJl8t3jEhPpEgj3b7Hjh1r2LnCUc+XplLqZEAyg9MiWW3j8OEjgODcOIMhmuvMphKtTgwZOszwiLf9YbSNs3JSSYiL4VBNGydaOk3XG4hI1yssb6LTqZg0LNlnNP1IsDE5PpYzRqTgUrA9wHgckWCflXqdTheFFdo9nDc6uN+QcLGxJ5Chweuow8U+q/Xc9/HMMZHrzRLtrF27lssvv5wbb7yRxYsX84Mf/ACAN998k/POO4+zzz6bH/7whz3HP/bYYyxatIgvf/nLzJs3j6KiIkt0n3zySRYuXMjSpUt54IEHerY/9dRTLF68mMWLF/O3v/1tQF3PAHqf/exn2bZtG2vWrCE/P5+KigouvfTSXmmkvvGNbzBjxoxeM7H96ebl5XHPPfewYMECvvnNb/p1L/zNQx0oR48eZfr06cTFxZGVlUVOTk6/M/aBHt8fV111Vc8M+LBhwwZlEjEQorpD3Z8796KxJ92+jcLqhPODkeDem+bhmjZq27oZluxg/FBjZ3WttjHbpbkoF1Y0BxW9N1Ciuc5s0wclxsZaF+QNjLcxPi6mx73XWyM5msvQDD1/3L0jxca5o4NbRx0p9lmlt6+qhY5uF2MzE8lKCS5lYbjY6K7XW0oa6XIal0kkXOyzUq/T6er5HTF6sH6wEJGNInKbiETkOih3ZzE/P5+GhpPt540bN3LPPffwySefcO+991JdXc2jjz7KqlWr+OijjygtLaWgoICioiL++te/smbNGu69916OHTsW0vX4qwvw8MMP8+6777J27Vpuv/12AIqKinj66ad5++23eeONN3j44Yeprq4O+DqWLVtGQUEBI0eOZNWqVRQUFJCTo3m0PfHEEz2dfTf96ba0tHDFFVfwySef8P777/uV39nfPNQA7e3tLFu2jIsuuohPPvmk32OnTJnCli1baG1tpaSkhAMHDvSky/J2nv6O94U7T3l+fj7r1q3r2f73v/+dgoICbrnlFq688spBiRsVCFHt8t0fc0al9VrrZETeYStn4QZDz5fmRo90WUZfk9U2JjtiGTPEQVF9O3urWphhcmTqaK0zNa1dHKvT1r1lJVv7mDHDxkV56aw73sCGogY+M2WY6Xr9Ecl6SqmetegL+ulQR4qN80an8fyW8oA71JFin1V6W/T7F0pAy3CxcWRaAmMzEzle186uipag8pQHomcW4aC3q6KZ9m4Xpw1NZHhqvKXXYyJ/A74M/FpE3gCeBd5QSnUP6lX5iS+X71mzZjF16lQAMjIyWL16NceOHeOiiy4CtE7isWPHaGhoYMGCBSQmJjJ58uSQ07P5q5ufn8+cOXO48847ueCCC7jkkksAKCwsZNGiRaSmam29uXPnsnv3bpYtWxbSdQ1Ef7rx8fEsXLgQ0Dw3qqqqejrnvggkD/WuXbsYMWIEW7du5frrr2fz5s0kJXlfljd16lSuueYaLrroInJycjj77LNJSEjweZ7+jvfF5Zdfzi9/+UtAW0PtyYEDB3j66acHXIsdDgQ0Qy0aN4vI+yJSqG/LF5GrzLm80OjvB8G91kkBG0uMcSMYqMIbjdV6vjTdrr1mBBgajHt6MtiQ+TOr0Vpn3LMKM0amkDsq8m10LxHZVtpER5/89dFahmboFdd3UNncSUZiHJOGJfs8LlJsnDQsmZT4WMoaO6ho8j+QYaTYZ5We+1k7L4TOZzjZuCjP7fZtnAdcONlnld6GfnLVRypKqd8ppRYAc4F9wP8CZSLymIjMG9yrCx5vs4fLly+noKCAgoICtmzZwg033DCouq+++io333wzW7Zs4bLLLvPr/N76EZ7buruNHwdxOE5O8IkILpdxni4AI0ZoSxvnzp1LTk7OgC73t99+OwUFBbzyyitUVlaSm5vb73l8HR8oHR0d3HbbbTz22GM9Aw/hTKAu3w8CXwWeBsbo20qAe/z5sIjkicgHIrJHRHaLyDf17Q+ISKmIbNdfF3t8ZqaIrNOP3ykiifr2efr/h/QH0Sm1fqAI3j3Rvo8b86NXUlJiyHnCVc+bZmN7N3urWoiLEeaMMj7owGDcUyuj90Zrndla5p5xSo8KG7NSHEwclkSHU/UE1DJTrz8iWc+d/mZ+blq/adQixcbYGGG2Hnk4kAG4SLHPCr2mDi0lXVyMhOQRFE42LjQhM0A42WeVnlnBTn3hq43a5xjR25yHRKRQROZ67BsjIm+LyF79HON8aSml9iil/h8wDrgaSAXeE5GdxltmPfPnz2fdunWUlpYCmkt/ZWUlM2fOZNOmTbS3t3Pw4MFTXP1DXQvsS1cpRUlJCUuWLOFHP/pRj+7MmTPZsGEDLS0tNDQ0sG3bNqZNm9ZzvszMTMrKynpppKWlUVdXR1tbGwcPHvS6byAG0g0Uf++b+7pBczsvLy/v1eH1dp7a2loAPv74YxoaGpg9e3a/5/F2fDDcd999fP7zn2fWrFlBfd5qAvXFvAmYo5Q6ISJP6NuOAqf5+flu4LtKqa0ikgZsEZF39H2/UUo96nmwiMQBfwWuV0rtEJEswJ2L4gngZmAD8AZwEbC6z+f7vZiFYzL4309K2FLaRKfTFXIEyczMwHNnRpKeN80tpU24FMzMSSE5PtZ0PbPJzMxkwojgo/cGo2clVugppXoGI+aNTiOuxdoUZGbZuDAvg4Mn2lhf1NgzY22mni8iWW9jjzdL/zNOkWTjvNx0Pj7ewJbSJi7usxzADL1gCGe97WXNuBRMH5FCkiP435BwsvGM4SmkJcRS2thBSUM7uRmhxxYJJ/us0Ctt6KCkoYPU+FimDk+x6jK8tlGVUns8jlkJTNRfC9Haogv1fc8DDyml3hGRVGDAqUWllBKRZqBN1/ftuhNBZGdn86tf/Yprr72W7u5ukpOTefrppxk/fjzXXnst55xzDpMnTz4lGJ2/64AD1VVKceutt9LU1ITT6ezpNI4ZM4abb76Z888/H4C7776b7OzsnvPddttt3HnnnfziF7/glVdeIScnh29+85t84QtfYPbs2YwePbqX/s0338x1111HZmYmzz77LB0dHVx33XXU1dXR3t7O+vXrue+++zj//PP71Q0Uf+/bgQMHuPPOO4mPjyc2Npbf/va3pKSc/H55O88dd9zBkSNHcDgcPPHEE4hIv+fxdnww/PnPf2bq1Km89NJLAPz3v/8N62jhgfYUYgF3OFP39G+qx7Z+UUqVA+X6+yYR2QuM7ucjFwCFSqkd+mdqAEQkB0hXSq3X/38e+Bx9OtQDMTw1ntOGJnGkto3C8mbmhxj0oqvL2ryTVut509ykzzidaVLAkMG4p+7ovbsqWthe3szScUNM1bMSK/SK6tupbe0mMymOcZmJHK2PDhsXjc3gr9sq2FDUgFqc2/MjEY1laIZeS6eTXRUtxMjArr2RZKPbo2V7WRNOl+p35t0IvWAIZz334Fso66cD1TSC/vRiY4T5uel8cLiODUWN5M4IvUMdTvZZoef2Zpk3gDeLkfTTRvXsUF8GPK80F8j1IjJEb5NmAnFKqXf0z/fbLhaRPOB64AZgJPAqcIVSyr98RoPAjh07vG5funQpS5cuPWX7BRdcwAUXXHDK9m9961t861vfAmDx4sW99gWyFjhQXV95s2+55RZuueUWr/sWLlzIxo0be237+te/zte//nWvx994443ceOONvbb5SlHlS9dz1v7111/3+tm++HvfvNkz0HlefPHFgM7j7XhfXHvttVx77bU9/7/88ss972tqavw+TzgQ6JTsG2iBFBJAc30Bfgr4V+Ie6K4wc9BmmAHu0N1n/iIi7qHKSYASkbdEZKuIuGPOj0ZzNXdTgpeO+UAu3+Dh9m1AtO/m5sBSp0SaXl9Nl1JsKtHcHAeacTJCzwrcesFG7w1Wzyqs0HPfszmj0hCRqLFxQlYSQ5O1/PVHattM1/NFpOptK2ui26U4Y3gK6Yn9j+VGko2j0hMYmRZPU4eTQzWtpusFQzjrbTUgIFmgmkYwkN6iMcauow43+8zWMzM2iz94aaO6GQ14+im725+TgHoR+ZeIbBORR0TkFJcLEblJRN4HDgPL0NrQOUqpr4VzZ9rGxqZ/Ap2h/g7wHNAAONBmpt9GG2HzG90V5p/At5RSjbr7+E/RZr1/CvwK+Ip+fUuBBUAr2vqSLbr+gCiluP/++9m7dy/jxo1j3rx5XHzxxRw9epTU1FQcDgfjXTVkxbtoOVHBzp31jBkzhuPHj/cEOmhsbGTs2LEUFxcjIuTk5FBSUkJmZiZdXV00Nzczfvx4jh49CsCJEycoKytj6NChtLe309ra2rM/Pj6eoUOHUlFRQXZ2Ns3NzbS1tfXsT0pKIjU1lerqakaOHEltbS2dnZ09+5OTk0lMTKS2tpZRo0YBWqRA9363TXV1deTm5lJeXo5Siry8vKBtcjgcZGdn99jkcDh6NLftPczpiZ20J8ZTV7QfR/vwkG2qrq6mq6ur1z0rLi421SbPcnI6nezbt4/JKSmcM6yT4soaDh5sN9Qmz3LKyspi9+7dptrkWfecTifl5eWGl5OnTXvK4lg0tIvpCfU0NDTgdDp7UmOYYVPf79OIESMoLCw01CZ33bt4RCevl8D2XXuJHatFOnU6nTQ0NJhqk2c5paWlUVhYaJhNA9U90NZEhWrT0cNF5CbBWZntvZ5b3srJ6XTS1NRkmk19yyk+Pr7XNQVaTucM66YioZMtx6rpKD88YN1zOByUlJSYapNnOTmdTvbu3Rty3fP3+5SZmcnevXsHtKm5w0lrexfnDe8moaWKY8ck6GdEamoqhw4dMvU317OcnE5nj1ujt3JKayxmUmo37Y31bNm+gwnjx4X0jHA/18y0ybOcnE4ntbW1pv/musspIyODwsJCsrOzqWtoJK2jnrS4OIY0l3DwYK1hz/K1a9fywgsvAPDQQw95nfru20b1p72J1l49G60TXgS8grZM8s99jrsHrR19vVKq1M9zRy0DpW2ysYkUxJ9Z3FM+JDICLShZsVKqIsDPOoD/AG8ppX7tZf844D9KqekicjWwUil1o77vPqAdbV31B0qpKfr2a4BlSqlevhPvvvuumjev/6CJLqW45sVd1LV189QVUxg/1HvoeH8oLCxk5syZQX8+3PX6ar6wtZwXtlZwyRnDuGtJaKkP/NGzAree06W48q87ael08vwXpzIyrf+w/6HqWYXZet0uxedfKKSty8WL10xjWEp8VNn4yfF6HnjnKGcMT+Z3l042Xc8bkainlOKal3ZR29rNE5dP5vSs/pcJRpqNBUfr+Nl7x5iVk8ojn5loul6ghKvef/ae4LGPi1k6bgg/Pm+8JZpG4Y/ed/5zgF0VLfxoxTjyx4e2Jjkc7TNLb93xBu5/5wiTs5P538smm6a5detW14oVK3rNIvvRRn0KWKOUekn/fz/aTPNY4BdKqXP07dcDi5RSt5tmgBfWrVunpkyZYvh5Tz/9dPbu3Ut8vJa+zOVyMXHiRA4fPgxo7tT79+/vceX2l8WLF/Pyyy8zZsyYgQ+2MYS8vDzT88wHWx/Cna1bt25ZsWLFfG/7BnT5FpGYvi+gGtgCVHlsGxDdRfzPwF7PB5W+/sTN5cAu/f1bwAwRSdYDlJ0D7NHXuTSKyCL9nDcA//bnGvoSI9LjUhSq27dnqHsrsFqvr+ZGCyJwDtY9DTZ6b7B6VmG23t6qFtq6XIwZksiwlHhLNPtipp47f/2+qlbq2rpM1/NGJOodqW2jtrWbrGQHp/kxaBlpNs7OSUOA3ZUttHU5TdcLlHDVM8rdOxBNo/BHb1GecdG+w9E+s/Ssju7txlcbtQ+rgBv0aN+LgAa9TboJGCIi7shSy+m99jqiGTduHBUVJ+fPKisrewXkWrlyZdR1nmyC59NYH/zpCHejRdYe6OUPS9CCMCzvkyLrl3oKrELgXODbAEqpOuDXaA+q7cBWpZQ7u/dtwJ+AQ2hrUU6JNuBvZLlFBqW4CCVCXyToeWrWt3VxoLoVR6wwK8e8/HCDeU+tyEcdbXVmm8f6aas0+2KmXpIjllk5qShONvqiyT6z9DwH3/x5LkeajemJcUzKTqbbpdhZMfDa00izzww9p+tkCrpQ8k8Homkk/uidqa+j3ljciCsIb8BA9YxksPSUUj3rzhdan3/aaxtVRG4VkVv1Y94AjqC1Pf+I1hZFKeUEvsfJ1Fei748Kxo0bR1lZGXfddRd33XUXZWVljBs3DoBvfOMbzJgxg7vvvrvXZ/Ly8rjnnntYsGAB3/zmyQxkjz32GAsXLuSmm26io+NkFpCnnnqKxYsXs3jxYv72t78BWo5jz1zPLpeLgTxPP40Emm7MW7lcc801nH322Sxfvpw//vFk1fVVjr62B1sfrr32WubOnTtgXuxwxZ8O9Xi0tFinAXcCH6KlqDpD//sBcIc/YkqptUopUUrNVErN1l9vKKWuV0rN0Ldfqo/2uT/zV6XUNKXUdKXU3R7bN+vbTldK3aG8+K77684+d3Qajhhhb1VLz6xTMPTNVWc2Vut5am4uaUIBs3JSQ0p14q+eVXjquQOTbdOj95qtZwVm63mbcYo2G3sG4PROYrTZZ4aeu0O9wM8Zp0i0ce4o/wfgItE+o/UOnmilqcNJTlo8OemhL6kJRxvHDklkRGo8De3d7K/2L2BdKHpGMlh6x+raqW7pYkhiHBOGBb8ELxj6aaM+qZR6Uj9GKaVu19ueM5RSmz0+/47+2RlKqZuUUp2WGmAi48ePp6ysjNLSUqqrq3t1qJ944gl+8IMfnPKZlpYWrrjiCj755BPef/99ysvLKSoq4vnnn2fNmjXcc889PfFVioqKePrpp3n77bd54403ePjhh6murmb69Ons27eP8vJyysrKOHToEJMmTbLQ8sigsrLS79RZ3soF4NFHH+Wjjz7irbfe4umnn+45n6/jfW0PpD6UlJTw3HPP8f777/PAAw9w/PhxI27HoDBgUDKlVI91IvIdYL5Sql7fdEBENgOb0XLxhRX+zlAnOWKZNSqVzSVNbCpu5IJJWUHpDR06NKjPBYvVep6a7gicC0xKl9VXzyo89UalxzMiNZ7K5k4O17QxKdv49JDRVGdaOp3sq9bSIs308FqIJhtBmzX5PSVsKWmky+mKOvuM1mts72ZvVQtxMdLLc8FMzUAxQm9ebhov7ahkix8d6ki0z2g9I929/dU0En/0RIRFY9L5954TbChq4IwQ8imHo31m6G3yGHyLCTJ/rY3xjBs3jpKSEhITE3E4HBQVFTF+fP9xD+Lj41m4UEvRPXbsWKqqqigqKmLhwoUkJSVxxhlnkJenxd8pLCxk0aJFpKZqbYe5c+eye/du5s2bx44dO9izZ0/P7PTcuXPNNTYCCSTdmLdyycnJ4YUXXmD16tUopaioqKCiooIRI0b4PN7X9kB0i4uLWbRoESkpKUyaNKmnPkQigabNyuDUpPPJ+vawI5CAa+5Zp1DWUbe3twf92UjQc2s6XYrNFqW0GMx7KiI9jb0tpaGvgRtIzwrM1NtR3oRLwRnDU0iJP+m1EE02AoxIi2d8ZiKtXS52VjRHnX1G620pbcSlYPrI3vXCTM1AMULvjOEpJMbFcLyunZqW/j2dItE+o/VOdqiN+Q0JRxvhZEpJt5eG2XpGMVh6bs+fhYOULmswEZGjIvKCiJgXiS1Ixo8fz5o1a5gyZQpTpkxhzZo1jB07tt/PeK6LFxFcLpffE11u5s6dy44dO2hoaKC5uZnt27fbHeoQ8VYua9eu5YMPPmD16tUUFBQwceJEXC6Xz+P72x6IbjQRaIf6OeBdEfm6iKwUka+jBQ57zvhLsxb3Wp0tpU10OoMr5NbW0Fy6wl3PrbmvuoWmDiej0hMYnZFoup6V9NWbZ/I66sG2z0h8zThFk41uFnrEXYhG+4zU61k/HYA3S6TZCOCIjenxzNha1n/nKRLtM1KvrcvJnirNm2X2KGNicISbjW5m5aSSEBfDoZo2TrQE7wEcrvYZqdfc0c3uymZixDjPhQjjAWA/8LtBvo5TGDduHJ988gmzZ89m9uzZrF27dsAZam/MmjWLTZs20d7ezr59+3qiTc+cOZMNGzbQ0tJCQ0MD27ZtY9q0acyePZuPPvqI4cOHM2rUKN599117DbUXAl1D3ZempiaysrJITk5m79697Nq1a+APGcDs2bPZsGEDra2tHDhwwPTo42YSaB7qu9ECMXwRGAWUA78nTAMvBDISNiItntOGJnKktp3C8mbmB+HKHMzDJRSs1nNr/nO/dRE4B/uezh6lRe/dU9lCe7eLxLhAx6AC0zMbM/V6OtR93HqjyUY3C8ek8/KOStYXNfClleNM1/Mkku6n5s2i1YszAwgwFEk2ejJ3dBobixvZWtrE+RN9Lx2KVPuM0ttZ0Uy3SzE5O5m0hECbIcFpGo2/evFxMcwdnca64w1sKG7kM1OGmapnFIOht7VU83KaMTKVVIPqRSShlArbyalRo0YRExPDnDlziI2Npbu7m7y8PIqKirjuuuuoq6ujvb2d9evXc99993H++ed7PU9eXh7XXXcd55xzDpMnT+6Z5R4zZgw333xzz+fuvvvunkB1MTExnH322SQkJPDPf/6TIUOGWGJzJOHv+mlfrFixgueee45FixYxadKkoFPmBVofcnNzueGGGzj33HN76oM7NVukEdATSynlAp7UX2FPoDm2F47J4EhtOxuKGoLqUB89etTSvI1W67k1NxZrld3s9dNuvcG8p+mJcUwclsyBE63sLG/2O6hSsHpmY5ZeVXMnJQ0dJDtimNxnnWC02OjJlOwU0hNiKW/qZOeBIyyZP9tUPU8i6X4eONFKQ3s3I9PiyRvif+CpSLLRE/es2rbSJpRSPgd1I9U+o/S2GLx+2h9NowlEb2FeOuuON7CxKPgOdTjbZ5Tehjpt0O3T4u4tIlOALwAjlVK36//HK6UKB/nSTkFEegWqq66uBrSOcEFBgdfPeM42vv766z3v3ZHC+3LLLbdwyy23nLL9448/7nm/efPmU/bbBLaG2le5vPzyywEd72t7oPXhy1/+MnfddRc1NTWce+65jBgxwh8zwo6Ap9tE5Msi8r6I7Nf/ftmMCxsMTq6jbgy4Mw5YPqoyGKM4zhgHh2raSIiVXoGnzCIc7unJ9FnGr6MOB/uMYFuZ1kCemZNKXEzvTkS02OhJbMzJ/PXl7cZ6LQxEJN3PTQGmyzJCMxiM0hs7JJGsZAe1bd0cq/O9BjVS7TNKz+3NYkS6LH81jSYQPfezYmtZEx3dwS0pC2f7jMARH98rIFm0IyJfAAqA0WipugBS0VLF2th8avjhD3/I0qVLueyyy3j44YcDXmcfLgTUEhSRHwL3Ai8Dd+l/79a3hx2BFsrk7GSGJMZR2dzJ8frAA3JEexROgNIubZZp9qg0Egx2f/ZGONxTM/NRh4N9RtBfgKFosbEv7nXUu+ut7VBH0v1055MNdHlIJNnoiYgwpyeQoe/nRaTaZ4ReTUsXx+vaSYyLCSnqdSCaZhCI3rCUeCZkJdHR7erJvW2mnhFYrdcSm0p9ezfDUx2MyzQ3NkuY8CBwvlLqVsCpb9sBzBq8S7KxsZ7HHnuMtWvXsnbtWi6++OLBvpygCbQl+DXgAqXU00qpt5RST6Plov668ZcWOoHOMseIMD9XbwyVBP6jV1FREfBnQsFqPYCqE7WAdSPI4XBPp45IISEuhqN17dS2Bp+n3F89MzFDz6VUvylwosFGb8zPTSdWwNHdQnNHtyWaEDn3s7a1i4Mn2oiPFWbmBDYTGSk2euNkPmrfHi2RbF+oeu6AbTNzUnHEGjcYFU42esM9ABdstO9wty9UjpZpa0DPzM2I2BmqABkOuF27lcffwN0jbWxsBp1Af81SgOo+22qAJGMux1iCeSi7Z9iCSZPkDqBgFVbrdbsUm2u0KmNVhzoc7ml8bAwzRmozKUbPUoeDfaFytLaNhvZuhiU7yMs4dZ1sNNjojZT4WKaOSOVQSyzby5ot0YTIuZ/u1HqzctICDuYXKTZ6wz2otLO8mU4f7r2RbF+oekbnn/ZH0wwC1XOvC94Q5JKycLcvVHY2aCF9Pg3u3jpbOOnq7eZqYOMgXIuNjU2IBNqhfhP4m4hMFpEkPYDCc2ips8KOYH605vnRGPJFc7N1jerB0NtT2UJKbDd5GQnkpPkfYCgUwuWeugdatpYZ26EOF/tCwbOB7G0QKxps9MW80WlkxbtMy1PujUi5nxs91k9bpRksRuoNTXZw2tBEOpyK3VUtpuv5Q7joKaXYZlKHOlxs9MWk7GTSE2KpbO6ktLHDdL1QsVKvrq2Lto4OHLFiWBq1COAu4Gci8iGQIiJvAT8Fvj24l2VjYxMMgXao7wCa0NxUmoHtQAtwp7GXNXhkJjs4PSuJDqdiV2VgPyhtbW0mXVV46G0qbmCIQ1mSLstNuNzTeR6ByYIZqAlUzyzM0HMHJJvjo4EcDTb6Yl5uGkMcWmooI+tFf0TC/ex2qZ41xME8LyLBxv7oGYDz4dES6fYFq3esrp3atm6ykh2MHWLsOtlwsdEXMSI9gwibg1hSFu72hcLmkkaGOBSzclJJcsRapjuYKKX2AVOAx4EfAc8AM5RSBwf1wmxsbIIioA61UqpRKXUDmot3DpCslLpBKVVvxsWFSrDrcNydp0DXUUd7nshNJY1sqY8LKJ9sqITLPR2XmcjQpDhqW7uDClgXqJ5ZGK3X2e1iZ7k28NQ3/7RZmgNhpd6ErGT2tyRQ2dxJWWOnJZqRcD/3VLbQ0unUvFnSA/dmiQQb+2OgzACRbl+weu5Bljk+vFnM0DSLYPTc6Ti3lATu0RIJ9gXLxmKtbWFFKs5wQinVqpT6u1LqEaXUy0opa90QbGxsDCPQKN83iMhMpZRLKVWllHKJyCwR6bsOJCwIdsZoXs866sA61EePHg1KL1is1Ktu6eRIbTtnZnYzbaRxkVkHIlzuqWf0XiPXUYeLfcGyp6qFDqdifGYimckOSzQHwkq92Bjh3OFaQDKr3L4j4X5u0qN7B7seMhJs7I/pI1NxxAiHTrTR2H5qwLpIty9YPfcAg6/BNzM0zSIYPXfbYnt5M53OwJaURYJ9weB0aUEt5w3p/jStn0ZEPhKRAi+vd0TkGRH57GBfo42Njf8E6vL9U6C4z7Zi4GfGXE54MG1kCgmxwpHatoCiOiclWRubzUq9zfp6yNTEeOINjMw6EOF0T81InxVO9gWDPwGGIt3GgRiWprmuBpMZIBgi4X5u0u9FsDNOkWBjfyTGxTBtZAqKk0sizNQbiHDQ63R6eLMYvH7al6aZBKOXleJgfGYiHd0u9lR6X19vpF4oWKV38EQrTR1OnBLL6CC8WSKYNcA44EPgr/rfscBmoBL4i4jcPVgXZ2NjExiB9ozSgb7TMA3AEH8+LCJ5IvKBiOwRkd0i8k19+1B9VO6g/jezz+cWiEi3iFzpse2X+jn2ishj4sV/LFiXsvjYmJ40L4F0nlJTrQ2mYaWeu4GcOzR6bRxIb+4orXNQWN5MV4CzC8HomYHRev3lnzZLcyCs1ps4YggA28ub6HaZv4463O9nTWsXR2rbSIgVZowM7lrD3UZ/6G8ALhrsC1RvT+VJb5ahPrxZjNY0k2D15gXp9h0p9gWKOxvA8IyUQU+XJSJ/EZEqEdnVzzHLRGS73v780GP7MRHZqe/b7IfcBcCFSqn79FS09wEXAsuVUvcCnwFuCdUmGxsbawi0Q70H+HyfbZcDe/38fDfwXaXUVGARcLuITAXuBd5TSk0E3tP/B0BEYoFfAG97bFsMLAFmAtOBBcA5fcVCCRI0z52POgA3zurqvhnFzMUqPadL9cyyjIgJbFQ9VMLpnmalOBibmUh7t4u9PqL3GqlnBkbqNbZ3c/BEK44YYXo/ywAi2UZ/6GyqZcyQRNq6jKsX/RHu99PdUZiZk0Z8gOmygtUMFTP0PAOT9f0tigb7AtUzK11Wf5pmEqyeO0bL5gA9nSLFvkBxB2g7LcG42CQh8Cxwka+dIjIE+ANwqVJqGvCFPoecq5SarZSa74fWFOBIn23HgckASqmNwAj/LtvGxmawCbS1cw/wJxH5pz5D/C/gz8B3/fmwUqpcKbVVf9+E1hEfDVyGln4L/e/nPD52J/BPoMrzVEAiEA8kAA40F5lehDLaOc9jdsHlZ8d85MiRQesFg1V6+6q0AEO5GQmcnjfKEk034XZP3Y3BQNfXB6tnNEbqbS9vQgFTR6T0G5k1km30V889ALc5iGBDwehZSaB67u/G/NzgO07hbqM/TMhK6kmTVNYnTVI02Beonj/eLEZrmkmwejNGppIQKxyuaaMugCVlkWJfIDR3dLOvuoVYgSljc0zXGwilVAFQ288h1wL/UkoV6cdX9XPsQBQAz4jIBBFJFJEJwB+BtQAiMgMoD+H8NjY2FhIXyMFKqbUiMh3toZKHloD+m0qpvuuqB0RExgFzgA3ACKWU+8FRgT4qJyKj0WbAz0WbhXZfxzoR+QDtYSPA75VSp8ySu1wu7r//fvbu3cu4ceOYN28eF198MUePHiU1NRWHw0FdXR25ubmUl5ejlCIvL4/jx4+TlpbG3EwXabGt7C6qRpqqEBFycnIoKSkhMzOTrq4umpubGT9+PEePHqW9vZ2YmBjKysoYOnQo7e3ttLa29uyPj49n6NChVFRUkJ2dTXNzM21tbT37k5KSSE1Npbq6mpEjR1JbW0tnZ2fP/uTkZBITE6mtrWXUqFEcO3aMioqKnv0D2ZSerjVkGhsbGTt2LMXFxQPa5HA42FIXxznDOhmZmUBRUVEvTaNtqq6upqurq2d/Z2cnHR0dhtuUnZ3ttZyOHDlCbW2tT5smqmpmZXRxtKyawsITQdnkWU6gzQSYaZNnOR05cgSn02lIORWVtZAaJyxKbeTIkSM+696RI0dobW01zaa+5RQTE0NFRUXIdc/f71NFRQUzMsdQndVJQ1UZtbWJhtvkWU4tLS1UVFSYapNnObW2thIXF+eXTZlDh9JUe4JzhjmZNjSWwsLCoJ4R9fX1JCUlmWZT37pXWVnZ67lmRDmlpqbymZGdrKmATbsOUJNGr+daZ2enqTZ5ltORI0eoqakxxCZ/vk9KKWpqanps2n/oCLEdnUxMhdiao9Sm5Bn+LHc6nTQ2Npr6m+tZTkeOHKG5uTmocjpzZDwxHU2s33uUyZlxfj0j3M81s39z3XWvtLSUuLg4U39zTziyOTurk5T4OGqrKqg/UWWqTXV1daxdu5YXXngBgIceeijQWZdJgENE1gBpwO+UUs+7m6bA2yKigKeUUk8PcK4b0Wa79wCxaB6c/wJu0vd3AtcEeH02NjaDhFiVO7WXqEgqWgCGh5RS/xKReqXUEI/9dUqpTBH5B/ArpdR6EXkW+I9S6lV9JO93wBf1j7wD3K2U+shT591331Xz5s0L+jp/VXCctw7U8rUFo7hq1sCeN4WFhcycOTNovUCxSu+O/9vPgROt/OzC00isOx6VNvqr19bl5PMv7MSlFP+4bgZpCQGNSQWsZzRG6t34ym7Kmzp57NJJTBnu2+U7km30V2/iGdO48oWddLu0epGeGFq9GEgvXO/n/uoW7vz3AUakxvP8F6cG7SUUzjYGwur9NfzmoyLOGpvBT84/zXQ9Xwy2XsGROn72/jFm5aTyyGcmWqJpNqHo/XNnFU9tKGXFhEzuWTbOdL1gsELvNx8VsXp/DV+en8O0mCpL7QPYunWra8WKFb3cq/TJnv8opab3PV5Efg/MB1agpY9dB3xGKXVAREYrpUpFZDham/ROfca7X0QkBsgGqpVSIQdnWbdunZoyZUqop7GxsfHC1q1bt6xYscLrkg7rwjXriIgDzYX7b0qpf+mbK0UkR9+fw0n37vnAyyJyDLgS+IOIfA5t1nq9UqpZz9u3GjjLi1ZI13oyfZZ/bpzRmCeyvq1LWycbK8zMSYtKGwPRS3LEMnV4Ci4F28tCTxkZbvb5S3ljB+VNnaTGxzJxWLIlmv4yGHpJjlim61GdjYwC70vPSgLRc6+HnJ8bWp7hcLYxENxLh3aUNeH0CFgXLfb5q7fF5PXT3jTNJhQ993KILSX+LymLJPv8QSnVs0RmXm665fYFSQnwllKqRSl1As1texaAUqpU/1sFvAac6ec5U4BkYJyInCYipw30ARsbm/DD0g61Hon7z8BepdSvPXatQnN/Qf/7bwCl1Hil1Dil1DjgVeA2pdT/AUXAOSISp3fQz8FLYLRQZ9/njE5DgF0VLbR3DzxwGI15IreWautkZ45MJTEuJiptDFTvZPTe0NfLhqN9/rBVD1I3e1QqsTH9d5wi1cZA9QIdgAtVzyoC0fNsIFulaQRm6Q1PjSc3I4HWLhf7qk8GrIsW+/zRU0r1DDLNM2n9dF9NKwhFb8yQRIalOKhv7+ZITZvpesFgtl5xfQfVLV1kJMYxISvJcvuC5N/AUr3tmQwsBPaKSIqIpAGISApaBG+fkcL146aKyDa0TDmH9NdB/WVjMC+++CJ3330yC9nVV1/N2rVrB/GKNFavXs1vf/vbwb4MGwOweoZ6CXA9sFxPLbBdRC4GHgbOF5GDwHn6//3xKnAY2AnsAHYopV43+mIzEuOYOCyZLpfqyZ/ZH8nJ/c/UGY0Ven0byNFoY6B6RuajDkf7/CGQAEORamOgeiczA5wa1dkMPavwV6+5o5u9VVqAoTmjQpuJDFcbg8Hb8yKa7BtIr6yxk8rmTtISYjk9y7zcxpF0T0WE+T0DcP79jkSSff6wWR94nDc6jRgRy+3zhoi8hObGPVlESkTkqyJyq4jcCqDH6nkTKESLIfQnpdQutLg/a0Vkh779v0qpNweQ+wPwATAULR1tJvAUJyeXbD4FrFy5km9961uDfRk2BuDXQj8RSQJO1x8cffdNBw4ppQbMeaCUWosWRMwbKwb47E0e7534kZ/PiJyG83LTOHCilc2ljSzI67/zkJiYGLJeIJit51Kq58d+gd5ZiDYbg9GbOCyZtIRYyps6KW/sICc9wVQ9IzFCz+lSbNdnqP3pOEWijcHojR+axJDEOE60dFFc38GYTHOuI1zv57ayZlwKpo9MISXed9R3IzWNwky9uaPTWLXnBFtLm7h+bo7pet4YTD23J8/sUWkDerMYpWkFoerNy03jzQM1bC5p5It+xGiJNPsGwj1YP18frLfaPm8opQYMAqaUegR4pM+2I+iu3wEwCzhfKdUlIqKUahCR76PNbP81wHPZhMA111xDSUkJDoeDa665hptvvhmAtWvX8qtf/Yr09HQOHjzIOeecQ0ZGBmvXrqW8vJzly5ezZs0aVq9ezbBhw3jqqad47jktYdHtt9/Ol770JQDy8vK49tpref/991m8eDG/+93vAPjGN77B2rVrWblyJb/85S97rqeyspJvf/vbFBcXExcXxx//+EcmTJjAk08+yTPPPIPD4eC8887jgQcesPZG2fSLv5Fz7gaGAN/2su/LQD3wU2MuyTiMmCWaNzqdl7ZXsrVk4FHk2tpacnNzQ9b0F7P1jtS0UdfWTXaKgzFDEi3R7Es46sXGCLNy0lh7rJ4tpU1cEkKHOhztG4jDNW00dTgZkRrPqPR4SzQDYbD0YkSYl5vGe4fq2FzaaFqHOlzvp7uBvCBEd+9ANI3CTL1ZOWnECOzV0w+mxMdGlX0D6Zmdf9qbphWEqjdnlFYvdle20Nbl7Df1oBF6gWKmXke3i0Ld688dZ8Bq+8KAdrSUr13ACREZA9QBWYN6VT547LHHePXVV3ttu+yyy3A4HGG1/bvf9Z3F97XXXmP9+vUAHD9+nDvuuAOARx99lNGjR9PV1cXixYu59NJLGTFCG+TauHEj77zzDlOnTqWhoYEnnniCiy66iJKSEnJzc1mxYgWbNm1i2rRpPP3003z44Yd0d3dz9tlnc8EFF5CdnU1LSwtXXHEFP/vZz5g7dy7l5eXk5OTwxBNP8OKLL7J9+/Ze13nPPfdw3nnn8ZWvfIXGxkY6OrS0iw8//DA7d+4kLS1twDzx4VZe/ZVLtOBvh/qLwPk+9v0aLaJh2HWojZihPmN4MkmOGI7Xt1Pd0kl2iu8OxKhR1uZoNltvk8cIsvteRpuNwerNHa11qLeWNnHJGcNM1zMKI/S2lmn1Yu5o/wJPRaKNwerNG53Oe4fq2FLSxBXTh5uuZwX+6PUNMGSFppGYqZcSH8sZw1PYXdlCYXkzZ43NiCr7+tNzuhTb9Y6T2R3qSLun6YlxTBqWzL7qVnaUN7NoTIapeoFipt7OimY6nYrTs5LITHaYrhemfARcBTyLtoxxNdABvD+I1+STu+66i7vuusvnvnDa7ovLL7+8Zyb46quv7tn+wgsvsHr1apRSVFRUUFFR0dOhnjVrFlOnTgUgI0P7jmZmZtLU1NTzt7GxkcLCQhYtWkRqaioAc+fOZffu3Sxbtoz4+HgWLlwIwNixY6mqqiInx3fe9Y8//pinn9ayrrnT1AHMmTOHO++8kwsuuIBLLrmkX1vDsbyiHX871KPdEQz7oqcJGG3gNRmGETPUjtgYZuWksr6oka2lTVw4yffgYXV1NcOGBd+5ChSz9bb0ROw9+YWONhuD1euJ3luuRe8N1pUxXO3rj0BnnCLRxmD15uj3pLC8iU6ni/hY48NUhOP97BtgyApNIzFbb+7oNHZXtrCltJGzxmZEnX2+9A6caKWl08mo9Hhy0oL35AlE0yqM0Jufm86+6la2lDQN2KGORPt8saWPu7fZeuGIUuoqj3//H5qrdxrw3OBcUf+E24ynUTOha9eu5YMPPmD16tUkJyezfPlyXK6TQYg9O7RuRKTXy+l09qvhcDh6fdbz/IHw6quvsn79ev71r3/xxz/+kQ8++MDnseFWXvYM9UlaRCRPKVXcd4fuptJq7GWFF/NGp7O+qJHNJY39dqi7urosvCpz9Vo6neyubCZGYM6oVEs0vRGuejnpCeSkxVPe1MnBE6395mE2Qs8oQtVr73axu6IFQVsTaYVmoAymXlayg9OGJnKktp3dlS0hB+caSM8K/NFze7O4AwxZoWkkZuvNHZ3GC1sregajos0+X3o96bJGmRfdu6+mVRihN290Gn/dVuFXZoBItM8Xm/V6Md9jUNZq+wYbEfmeUupRAD3/9F/17d9B8/wMK8JxxtOImdCmpiaysrJITk5m79697NrVb3B2n8ycOZMHHniAlpYWuru72bZtG48++mhQ51q6dCkvvvgiN910Ey0tLbS1tZGVlUVJSQlLlixh6tSpLFiwoN9zhGN5RTv+Tp+8AfyPj30/Bf5rzOUYixEu33AyZ+TW0t65RPsSTXkit5c14VRwxvAUUhNOjrtEk42h6hkR7Tuc7fPGropmulyaq15Gon/jcZFmY6h6PemzSsxJnzXY9nnD3SGYb4C7t7+aRmK23pTsFJIdMZQ0dFDV3Bl19vnScwckM9vd21PTKozQmzJcC+BX0tBBRVOH6XqBYJZeVXMnx+vaSXLEMHXEyYHoCMlDbSQ/9rH9R5ZexaecFStW4HK5WLRoET//+c+ZOXNmUOcZM2YMN998M+effz4rV67k7rvvJjs72+fxRUVF5Ofn8/Of/5zXXnuN/Px83nnnHUBbK/32229z9tln89nPfpb6+nqUUtx6660sXbqUiy++mAcffDCo67QxD39nqH8ErNNTAvwLKAdygMuBdGCxOZcXGkalrhmVnsCI1Hgqmzs5XNPGpGzv6R2OHj0a9JcxGMzU8+bubbamN8JZb+7odP67r4atpU1cO2ek6XpGEKreyXyy/jeQI83GUPXm5abxj51VbClt4msW6JnNQHq9AgzlGtNxCjcbQyU2Rpg1Ko11xxvYUtrE6I7SqLLPm96EKdPYW9lCjGj56q3QjLR7GhsjzBmVytpjDWwuaeKSM3y7xUeifd5wey3MyknF4bEkxmr7BgsRWa6/jRWRc+md+eY0IPR8nDancO2113Lttdf2/P/yyy97fe/J0qVLWbp0aa9t9957r0+NW265hVtuOTUBUXHxSefe118/meG3oKDA63lGjBjBiy++eMr21atX+9S2GXz8mqFWSlUAc4HXgYuA7+l/Xwfm6fvDDqNmqEWP3gv065rlDkZgFWbpKaV6XDj7RuyNFhuN0Js9KpUYgT1VWpRWs/WMIFS9bWX+5582SjNQBltv+ohUEmKFwzVt1LUa78Y42Pb1xR1gaEJWEplJjn6PNUrTaKzQm9fj0dIYlfb11SusaMapYNKw5F5eTmZqWolReu4gflsHcPuOVPv64m39tJl6Ycif9Vci8BeP//8EfAW4c/AuzcbGJlj8jpijlKpTSv1IKXWWUmqS/vc+pVSdmRcYLrjdODf3kz7LM/CAFZilV9LQQWVzpxZgaFjvAEPRYqMRemkJcUwclky3S7Gzotl0PSMIRa+urYvDNW3ExwrTRvi/ZjySbDRCLz4uhhk5WuNwSwjLAfzVM5uB9Db5aCCbqWk0Vui53Z63lzUTG2d+B9OTwbifVqXL8tS0EqP03AMt28qa+11SFqn2eeJ0qZ5B2b7PC6vtGyyUUuOVUuOBv7nf66/TlFKLlVKrBvsabWxsAsfvDrWIJInIbSLykoi8pf/9hoiEHtLVJIxy+QaP2cjKZlo7vc9G1tVZO7Zglp47/c1cLwGGosVGo/TcjcVgO07hbp8n28u0QYPpI1OJj/M/enUk2WiUnnsAbqBZJ6P0zGQgPV/LQ8zUNBor9EanJzA81UFDezdFlbWm63kyGPfzZIfa/IBkbk0rMUpvZFoCuRkJtHQ62VfVYrqev5iht7+6laYOLer7qPTe7u1W2zfYKKVuGOxrsLGxMQ6/WsUikg5sRFtL3QlsRUtGfx+wUd8fdhjl8g3abOSU7BScCnaUe5+NzM3NNUzPH8zSc8/C93X3NlPTF+GuNy/EwGThbp8nPQGGAoxcHUk2GqV3colIk6EDe770zKQ/varmTorq20nuE2DITE0zsEJPRHoGWkqVtT+ZVt/PlKyRFNW3kxgXwxnDvcccMZpIrjM9HnD9/I5Esn1uenLVexlksdq+wUBEikWkaKDXYF+nL+677z4mT57M4sX+h0164oknaG01JxHQsGHDyM/PJz8/v9+1zW76u/6mpiamTp3K//7v/wJQVlbGypUrOeuss1i2bFm/KarczJo1i5qaml7bXnzxRe6+++6e/6+++mrWrl074LkGg9dee4358+ezYMEC3nzzzQGPf+yxx1i8eDGLFi3iF7/4BQC1tbUsX76cs88+m/z8fP7738BiVi9evJiioiLWrl3L2LFjyc/PZ/HixfzqV7/qOWbWrFksWbKkp+zda8t/85vfcNZZZ3HWWWdx0003BaRrBP76nd0LVANnKaV6epMikgq8pu//f8ZfXmgY3ZCdOzqNPVUtbNVzifalvLycoUOHGqrZH2boaQGGfAeeigYbjdQ7Y3gKiXExHK9r50RLJ8NS4k3VC5Vg9ZRSQbtwRoqNRuqNHZLIsGQHJ1q7OFrbzmkG5GbuT89M+tNzN5Bnj0ojLshc7IFqmoFVenNHp7F6fw01NbVo8Yeswer7ufd4OXBq4CkzieQ6Mz83jX/vqWZLSSM3zssxXc8fzNDrLxuA1fYNEtcN9gWEwiWXXMIVV1zB7bff7vdnnnzySa666iqSkwceWNu+fTsPPvgglZWVzJ07l1/84hf9fi4pKclnYC9v9Hf9v/71r5k1a1bP/3FxcTzyyCNMnz6d4uJiLrroInbv3u23VqTR2dnJT37yE95++206Ozu59NJLueCCC4iJ8f78Li0t5bnnnmP9+vUopVi4cCFXX301o0aNYtWqVaSmplJTU8PSpUtZuXKlz/P0x1lnncXLL79Md3c3Z511FldddRV5eXkArFq1iqysk2mMt27dyptvvsmHH35IfHw8hYWFwd2IEPDXwkuA73t2pgH0/+8FPmv0hYUjnrNO3jC6Az8QZujtrGimwx1gKPnUNU3RYKOReo7YGOboHcz1RYG794a7fW5KGzuobukiIzEu4M5hpNhopJ5nIMPNBrt9h4N9bjabsH56IE0zsEpvzqg0BKhrd/pcOmQGVt/PqtZuwLr10xDZdWZmTipxMcKBE600tnebrucPRus1tnezv7qVuBjxGvXdavsGA6XUh/68Bvs6fbFw4cJenRg3Tz75JAsXLmTp0qU88MADAKxZs4b8/HwqKiq49NJLyc/Pp7y83Oe5KyoquOOOO7j//vv5+OOPufTSS3nyySctuf6DBw9SXV3dq0M9fPhwpk+fDkBeXh6dnZ10dPSf2s7N0aNHWbZsGYcPH+73uKuuuqpnlnXYsGE0NgbfVnjwwQdDSqW1ZcsWpkyZwvDhw8nNzWX06NEDDiB0d3fT0dFBR0cH8fHxpKen43A4egIMNjY20tHRQXe392eam8cee4yFCxdy0003eb3Hra2tdHZ2Eh/ve8KquLiYYcOG9RwzGBkD/O1QjwV2+ti3U98fdhjp8g1aLtH+cka6R06swgw9XxE4zdTsj0jQW6J7K3x8rN4SvVAIVs89O63FEgjsexUpNhqtN7cnH7WxgcnCxb5u10mvBaPSZQ2kaRZW6aUnxnHG8BR2NMYZPtDSH1beT5dSrD0RC1jboY7kOpPkiGXaiBRc6mQmBTP1/MFovW1lTbgUTBuRQpIj1nS9cEdEHCLyExE5IiLt+t+fiEhgbm5hwMMPP8y7777L2rVre2Z/ly1bRkFBASNHjmTVqlUUFBSQk+Pd+wI01/Af//jHOJ1Ozj//fF555RUOHDjQr257ezvLli3joosu4pNPPgn6+h988EHuuecen/vfe+89Zs6cSUKC77R2bkpLS/nKV77CH/7wB04//XSAnjzT+fn5rFu3rufYv//97xQUFHDLLbdw5ZVXkp4e/MB0ZWUllZWVIX1+xIgRPPPMM7z22msMHz6cigrfCZxGjx7NLbfcwsyZM5k+fTq33XYbmZmZgOY+v2TJEs4++2weeeSRfjvCRUVFPP/886xZs4Z77rmHY8eO9exbt24d+fn5TJs2jS9+8YuMGDGiZ597kCY/P5+GhgaWLVvG/v37WbFiBY8++mi/124WgUT57uxnu19DiyLyFxGpEpFdHtseEJFSEdmuvy7Wt5/psW2HiFzu8ZkhIvKqiOwTkb0icpaPa/PXPL9w54wE77PUx48fN1RvIMzQ29wTYMh7QygabDRab+GYDGIEtpc10dzR/0icEXqhEKxeKAGGIsVGo/XmjtZmI3dVNtPe7TJdzyx86e2raqG1y0VuRgI5aQM3NIzQNAsr9ZaMy2B2RjcfH2uwTNNK+47VtnN6YgdZyQ7GDEm0TDfS64x7ENvt9WG23kAYrTeQN4vV9nnDWxu1z/4viUihiOwUkU9EZFaf/bEisk1E/uOH3C+B84BbgVn63+XAL0I0w3LmzJnDnXfeyYsvvuhXp9MbhYWFrFixggceeIDnn3+e73znOwN2inbt2sWaNWv4n//5H26++Wba2toC1n3zzTc5/fTTfQ7oVFZWct999/Hoo4/6db7rrruOefPmMXXq1J5tl19+OQUFBRQUFHDWWb27KwcOHODpp5/2+/y+ePzxx3n88cdDOgfAl7/8ZS6//PIBj6uvr+fdd99l+/btbN26lccff7ynvNLS0vj444957733+POf/0xXl+/0oTt27GDhwoUkJSVxxhln9CqHs846i4KCAvbs2cP777/fa8bcPUhTUFBARkYGGRkZrF27lu985zscPnyY5cuX09Bg3W8s+N+hThSRB329AH+/Qc+i5a/uy2+UUrP11xv6tl3AfKXUbP0zT4mIe83374A3lVJT0B5Ee72JGT1DDf3POoUyuhQMRutVNXdyXA8wdMZw7wGGIt1GM/QyEuOYMTIVp4KNxYHNOkWCfU6XYrs7/3SAAcmC1QyFcNFzp53rcip2BZlWLRA9s/ClZ5a7d3+aZmGl3uKxQyhvj2FjcSNdTuMGWvrDSvu2ljZS3h6jDSiZ8Bvsi0ivM/MHCGQYyfYppTyyAXj/DbHaPh88i/c2qpujwDlKqRnAT4Gn++z/Jj7ao174AnCpUuptpdR+pdTbwOXAVYFd8uDz6quvcvPNN7NlyxYuu+yyoM7R2dlJbKzmuZCTk8PUqVO9umd74p6xnDt3Ljk5ORQVBR7PbcuWLbz++ussXLiQP/3pT/zv//4v//jHPwBtBvymm27iwQcfZPz48X6d7ze/+Q3r169ny5YtAx7b0dHBbbfdxmOPPWZpHvbNmzf3zO5u2LABgJEjR/aa4a6qqmLkyJE+z/Hhhx+Sm5tLeno6WVlZzJgxg507ezsyT548GYfDwa5dXsenAP/6aWlpaZx99tmsX7++3+MSExP5zGc+wxNPPMGsWbPYtGnTgOc2En871C8Cef28XvLnJEqpAsCvfCFKqVallHu6LxF9FlxEMoB84M/6cZ1KqXo/7QgZt2vj9rKmfnNGRiJbPAIMWRVIJlpYrLt9f3Lc2hExK9hf3Uprl4vR6QmMSIs4b7RBZf7o/medIpmBvFlsvDM6I4FhSXG0dDp9ZoyIZNyxJLwFtbTxzfihSQxJjONESxdF9e2DfTmGcry+nROtXWQmxTF+aNhmWh2wjaqU+kQp5c7vtR7oCU0uIrnAZ4A/+Snnqydh3SiUASilKCkpYcmSJfzoRz+iuLi41/60tDS/UqJ1d3fT2dmJUory8nJ27959SsRsT+rq6npmpIuKiigvL+8VKd7fNcU//OEP2bJlCxs2bOBrX/sad955J1/4whdQSnHHHXdw5ZVXct555w14HjezZ8/m17/+NXfdddeAa67vu+8+Pv/5z/daux0sgayhnj9/fs/s7sKFCwFtUGLfvn1UV1dTUlJCWVkZ06ZN83n+ESNGsG3bNjo6Omhra6OwsJAxY8ZQVlZGba32FaqsrGT//v39uvq7O77t7e3s27fvlPoD4HK52LlzZ7+ZAI4fP96zZr2trY2ioiJGjRrl1/0wCr+ifCulvtzffhEJtfd1h4jcAGwGvut+YInIQuAvaGu0r1dKdYvIeLSI48/o7jZbgG8qpU5J4Ohyubj//vvZu3cv48aNY968eVx88cUcPXqU1NRUHA4HdXV15ObmUl5ejlKKvLw8jh8/3jNa2tjYyNixYykuLkZEyMnJ4eKRXexv6mb9roOk0c748eM5evQora2tpKamUlZWxtChQ2lvb6e1tbVnf3x8PEOHDqWiooLs7Gyam5tpa2vr2Z+UlERqairV1dWMHDmS2tpaOjs7e/YnJyeTmJhIbW0to0aNoqKigsbGxp79odhUUlLC/gphSlo3c5PqaWpq4ujRozgcDrKzs3tsqqys7KVptE3V1dV0dXX17G9vbyc2NjZomzIzM+nq6qK5ubnnnH1t8iynsrIy2tvbA7Ypp6Od1DgXcc1V7DvQTWpykk+bPMupq6uLlpYWU23yLKeysjISEhICKqfdew8wPd3FlGwtcuJANvUtp7Kysp7vpBk29S2n7u5uGhsbQ657/n6fysrKyMzM9GrThPhWzhnWye7SegoLa4O2ybOc6uvraWxsNNUmz3JqamoiPT29VznVNDRRXt/NudndJDWWcuJEl6HPvdraWrKyskyzqW85VVVV9XquGVFO/dW9ORntlLY42HfgAOMSx5lik+f3qaysjLa2NlNtSk5OxhkTT2Z3LSkpiqz2CgoLS0yzqW85uYPfmPmb61lOZWVluFwuQ236zMgODjS42HSonIaE5l7l5H6umf2b6y6nsrIy0tPTDSmng42K4Qkuzh/RQVlpqde619zcTGNjo6k21dXVsXbtWl544QUAHnrooVA6r18FVnv8/1vgbsDfkaR/AK+LyE+AIrR27o+Av4dwTaby/e9/n//85z/U1NQwbdo0Hn30US688EJuvfVWmpqacDqdp3Tqbr75Zq677joyMzN59tlne62D9WTJkiW89tpr3H///Vx//fXk5eUxdqzv8EwHDhzgzjvvJD4+ntjYWH7729+SknLSs9LbemJv179y5Uqv59+wYQOrVq3iwIEDPPfccwC88sor/XYO3Zx55pmcc845/M///A+TJ0/2edyf//xnpk6dyksvaXOS//3vf0lLC24gMpT10wDx8fH8+Mc/7rkfDz30UK/I3H3Pv2jRIpYvX05+fj4iwvXXX8/kyZPZuHEj3/72twFwOp3cf//9/c505+Xlcd1113HOOecwefLkXmXuXkPd3d1Nfn4+F1xwgc/ztLW1cccdd/S0p6+++upebvdWIKGsMxaRGcANwJeUUn4NBYjIOOA/Sqnp+v8jgBNoM9A/BXKUUl/p85kzgOfQZqano40MLlFKbRCR3wGNSqn7+mq99957au7cucGa55P//biY1/ee4Pq5I7l+7skvV0NDAxkZp6bTMgsj9ZwuxZV/3UlLp5PnvjjV55rISLbRbL3bXtvHoZo2fnrBaSwc4985IsG+m1/dy/H6dv7notODcu+NBBvN0utyurjyrztp63Lx4jXTAk6rFqieGXjTe/9QLQ+vOc6cUWn84uIJlmiaidV6hcer+N47pQxNjuPFa6YHHOgvUKyy77/7TvC7tcWcPTqR+1aeYbqeJ9FQZ949WMsvPzzO/Nw0/uei3t+rSLbv3tWH2FraxL3LxrJ8gvfUWFbbB7B161bXihUrekVI69tG9YaInAv8AViqlKoRkUuAi5VSt4nIMuB7SqlLfHw2Rinl0oOP/Qi4FhgFlAIvAz9TSvkXTtoL69atU1OmTAn244PGiRMnuPzyy7nvvvtYsWIFIhJUqiUbGzPZunXrlhUrVsz3ti/g2ioi2SLyTRHZCmwHzkRbNxIUSqlKpZRTKeUC/qifr+8xe4FmtM50CVCilNqg734V8NprNisNg7tT0XcdtTdXBTMxUm9fVQstnc4BAwxFso1m6wXj9h3u9h2va+N4fTtpCbHMDmL9dDCaoRJOeo7YGGbl+A5kaLSeGXjT26zbssAkd+9wsNFMpLGSEanx1LZ2s6+q1XQ9q+z76Gg9AHPSg+4PBE001Bm3m3xheTMdfQIZRqp97d0udlY0I/Qf9d1q+4JFRGaiuXVfppRy+yQvAS4VkWNoneLlIvJXH6coFZFfApOUUj9WSk1QSiUrpSYqpe4LpTMdyQwbNoyXXnqJf//73+Tn53PhhRfS0nKK46mNTdjiV4daD+//eRF5HW0U7RbgNaAe+IJS6h/BXoCIePpPXI4WjAwRGe8OQiYiY4EpwDGlVAVQLCJuP4oVwJ5g9YNhZk4qsQL7qlt6RXW2MgCL0Xqb/AwwFMk2mq23ZNwQQOtQ+7u+PtztczeQF4/NIC4muGsNdxvN1pvXE8jQmHXUg22fS6keW+aZEJDMm6bZWK0XExPjMQBXb7qeFfY1tnezo6yJGIFRaX6tJjOUaKgzmckOTs9KotNLIMNItW9neTNdTsWEYUkMSXKYrmcmIjIG+BfaEsSenE5KqR8opXKVUuOAq4H3lVLX+TjNrcB4YJOIbBWRu0RkmNnXHgnk5uby+OOP8/HHH/POO+/0cuG2sQl3/J2hrgSeAvYDi5RSU5VSPwW8ptLyhYi8BKwDJotIiYh8FfilnoKgEDgX+LZ++FJgh4hsR+u836aUOqHvuxP4m/6Z2cD/+NAL5PL8JiU+ljP0nJHby07+6PmztsJIjNTzN8BQJNtott64zERy0uJpaO9mb5V/I6vhbp+7Q332+CGWaYZKuOm5AxluLW3CZYDXzGDbd7S2jbq2boYlOxiXaU5apMG20Qq9JePc+esbTPOm8tQzm/VFDTgVzMpJZVyutcFgIHrqzPzRJ6N9W6HnC6P03PnW5w+QctFq+7zhrY0qIreKyK36IT8GsoA/6CldNweqoZT6t1LqC0AOWrv6KrRZ61X6xJXvUQcbG5uwxd8OdSEwBFgILBCRzGDElFLXKKVylFIOfTTvz0qp65VSM5RSM5VSlyqlyvVjX1BKTdNTac1VSv2fx3m2K6Xm65/5nEfUxb56wVymX/TMOpWenHUqKSkxTc8bRunVt3Vx8EQrjlhhZk7/HepItdEKPRHpNUtttl4wBKJXXN/O0bp2UuJjmfP/2Tvz8Kiq849/TvaFhCUJEEgIiBAIqywmRDJEggiKUBApUqhoa91Aq1axtYBSpVhxwyL+aGlFKwKiKC7gwmIgbLLvhi1kIQkhQBISkslyfn/cyZiEmckkmTuTxPN5Hh4y9557vufc+86de+55z/vW0927rpqOoLHpdQz0pl0LL/JLyjmVW/c8mXXVczQ19X40z07rlxbJ1X10hl6vdi1o6eNBRn4J53SO6uyM/v388q21088nNB+bGWglH3VT7d8eUyrJQeG2B9SusJmaWHlGfVdK+a5p/++llK2rpHm9bi2llHKLtfXTNcpdkVL+n5RyKNATLSjvG0Cmo/vlCM6fP8/o0aMZMmQI8fHxbN68uU7Hx8bG1iutlS1mz55NZGQksbGx1bavXbuWQYMGMXjwYDZs2GCzDlv9WrRoEbGxscTExPDKK1p68EuXLjF8+HDi4uIwGAx89dVXtbazX79+10UsX7FiBc8++6z58+TJk9m2bVutdenFxo0bzam0DAYD7dq1M6fBeumll4iNjSU+Pt6u/lo6/7bqt4dK+9m2bRsREREYDAZiY2N57bXX6tdhHbA3yne8ye36t8CfgEVCiG8Bf6DRvk3T04VoUFgAy/dmsiddyxkphKB163q9Z6g3jtLbl1GABPq0b4GPh+13LE21j87Si41oyZrDF0hKucKDN3eo1QYbc/8qH5CHRLRsUBq1xtxHZ+gJIRgYFsDXJ3LZm55P92A/XfUcTU29ytgRg3Vy97akqTeu0HN3E8R0CuSb5EskpeTRubV+6YT07l+hsZx9GQUItHtgoQNeHNWV5mIzUe388fFwI+VyMRcLjeZAhk2xfxeuGknLK8HP042ebW277zq7f40FU3CyQWgTVu2A7a5tkWU8PDx49dVX6d27N2lpaYwaNYqjR486VOPAgQPMmzeP7OxsBgwYwCuvvIKfn/XfyzFjxjBhwgQee+wx8zaj0ciLL77It99+i9FoZOzYsYwcOdJqgDNr/crIyGD58uXs3LkTKSXR0dFMnjyZDh06sG7dOlq0aEFubi5Dhw5l9OjRTT6AWkJCAgkJCQBkZWUxZswY+vTpw/79+9m8eTOJiYnk5eUxbNgwDAaD1Wjk1s6/tfrrw5AhQ1i5ciVlZWUMGTKESZMmER4eXr+OOxC7LUBKeU5K+TcpZTe0dcuZQAWaW/Y/9GpgY+XGID8CvN3JvmrkfL7m+V5aWurUNjhKb4+d66cdqWkvTU2vZ1t/Wvp4kFlgJOVy7bNOjbl/W1OuAGBogLt3XTUdQWPU+3kddcMDk7myf0XGco5kXcVNwE065hlujNdQD73YiFaA/uuo9e7f7rQ8Siskvdr708bP0+nnE5qPzXhVCWS4r4rbd1PsX+WzRf8OAbXG4HCFzbgSIcRQIcRStCWVL6Flr+kupbzVtS2zTNu2bendWwt8Hh4ejtFoNOdZDg8PZ9asWQwePJgnnvg5RvGiRYuIjo5m+vTpteZkzsrKYsaMGcydO5ekpCTGjh3Lu+++a/OY6OhogoKCqm3bu3cvPXr0oG3btoSFhdGxY0ebA39b/SorK6OkpISSkhK8vLwIDAzE09OTFi2072d+fr45XZ89nD17lvj4eHO+ZGtMmjTJPJMbHBxMfn7t8Vfqkoe6Nj799FPGjh1rbnPv3r3x8PAgKCiI0NBQ9u/fb/VYe85/1fptUZv9FBUVYTQa8fLSXjpmZ2czZcoU4uLiuPXWWzl16lRdut1g6hU5REq5DdgmhHgcLZDYbx3aKgehp8u3u5tgQIcAfjh7hb0Z+XRsqeVOdCaO0KuQ0rxWy56IvU2xj87Uc3cTxEa0ZP1PuSSlXKFLG9uzTo21fxl5JZzOvYafp5vNyKyO1HQUjVGvf4cWuAk4dqGQImM5fl7utR7TED1HUlXvYOZVyiVEtfUnwFu/wFON8RrqoTegYwA+Hm6cvHiNC1eNtG3R8LRqtvT0YutZbYlLnGnJi7PPpys09dQbGBbIrrR89qTnM7J7kO56lnCE3s+xWWp/We8Km3EFQogXgKloa7E/BsZIKZNc2qg6snHjRvr27Yu3t5YRprCwkAkTJvDSSy8xYMAAMjMzKS0t5f3332fr1q2kpKQwdOhQm3UuWbKEOXPmUF5ezm233UZERAQeHnX/jcnOzqZdu3b897//pVWrVrRt25asrCy7ZkOr9qtjx4489NBD9O3b15xfu9KLoqCggFGjRnHu3Dneeust84DOFhkZGTzxxBO88847dO3alV27drF27Vp27twJwLlz55gxYwYAq1drqcg//PBDtm7das79Xlu/HcWaNWtYtGgRAD169OD111+nqKiIS5cukZyczIULF2y2o7bzX7V+a6Smplq1n8r81GfPnuWRRx4x5zafNWsWI0aM4IEHHjC/7HAmDfJRkFIWSyk/klJazozuYvSOGjmgRvqsLl266KpXE0fonck1BRjy96RTq9oDDDXFPjpbry7psxpr/7amaGEJYjq1xKsB7t510XQUjVEvwNuDyBA/yiokh7Ia9uDoyv5VXT/tLE1n4Co9bw8382AjyeQRoqeeHlwrLefHNO1eVxlDwtnn0xWaeuoNqhLIsDJjRFPrX3mFZP957dnInvuFK2zGRUSj5Z8OlVL+oakNprOzs5k9ezYLFy40b/Py8iI6OhpPT08iIiK4cOECBw8eJDo6Gl9fX3r27FmrS+6hQ4dISEjghRde4P333+epp54iKyur3u28//77GT9+fL37deXKFb7//nsOHDjAvn37WLx4sbk9AQEBJCUlsXHjRpYtW2aXd8XUqVMZOHAgUVFR5m3jx48nMTGRxMREhgwZUq18cnIyS5curXaebbF48WIWL15sb3etcvLkSYqKisyz9lFRUdx7772MGjWKp59+mri4OPOLFFtYO/8167eGLfsZMmQIiYmJHDt2jE2bNplnwJOSkpg6VQuuHxgYSEhIiN39dgRN2+m/FvSOnFqZM/JAZgFlFZKzZ8/qqlcTR+hVPiAPDgu06wVEU+yjs/Vu6hCAr6cbp3KvkVVg+w1ZY+1f5fppww2tnKbpKBqrnqPSZ7mqf1LKOi0PcYSms3ClXmW077rkr2+InqPZk15ASbkkMsTPPMPu7PPpCk099aoHMizSXc8SDdU7caGQQmM5YS29CQ2o/QHcFTbjCqSUo6WUK6WU+kYi1IHi4mKmT5/OvHnzqr0A8fT8OZSSEIKKioo6T2gZjUbc3TXPrdDQUKKioq5z57aH9u3bV5utvXDhAu3bt7d5jKV+/fDDD4SFhREYGEhQUBB9+vS5LohWZGQknp6eHDlypNZ2vfHGG+zcuZO9e/fWWrakpIRHH32URYsWmd3LHcmePXvMLuW7du2qtm/NmjXXDYQfe+wxEhMTWbVqFdnZ2YSFhVmtu7bzb6l+S9hjPwEBAcTFxZln+V1Nsx5Q603bFl50auXDtdIKjl8orHZTcQaO0NtbB5csR2nWhaao5+XhZg7YtKOWh+TG2L/MghJOXryGr6ebeRCot6Yjaax6lbM0NdPh6KXnKCr1zueXkFVgJMDbvcGB1ezVdBau1IsOD8RdwOGsq+QX27cWryF6jmabaWa90t1bbz1rNCebqQxkCD//Rje1/u0x3efs/Q1xhc0o7EdKyYwZM5g4cSIjRoyotXy/fv348ccfKS4u5sSJE6SlpdksX1ZWhtFoREpJZmYmR48evS4ytj0MGDCAEydOkJOTQ3p6OufPn6dXr17m/TXXGlvrV7t27di/fz8lJSVcu3aNQ4cO0alTJ86fP8+lS5cAbVb7p59+sivlW//+/Xn99dd5/PHHa3VFnj17NnfffTf9+vWzu991WUM9aNAg88x4dHR0tX2ffPIJEyZMqLatsr9JSUnk5eXRv39/q7q1nX9L9VvCHvupqKjg8OHD5gH+0KFDWbFiBaAtQ7h48eJ1x+iJfovgGgF6u3yDNkudeqWYven5jOnsXPeChrozFBrLOZptCjDUwb63YM52oWiqerERLUk8e4Xt5/IY37ut7nr2Yo9e5ex0dHgg3rVEfXeUpiNprHo9Qvzx93InPa+ErIIS2tsxa9MQPUdRqVe5HnJAxwDcawkw5ChNZ+FKvRbeHvTvEMDejAJ2puaZ18zqpedIjOUV7ErVXhoOrRK80Nnn0xWaeusN6hjI1ydy2ZORz5Sb2je5/v3szWLf8hBX2IzCfnbt2sW6detITk5m+fLlAKxatcrqYDI8PJypU6cybNgwIiMjiYiIsFn/Lbfcwtq1a5k7dy7Tpk0jPDy81mOeeeYZvvzyS3Jzc+nVqxcLFy5k9OjRzJkzh9GjtZWoL7/8crUI3DXXGlvrV0xMDMOHD8dgMCCEYNq0aURGRrJ7926efPJJAMrLy5k7d26tM+CV3HzzzQwbNoz58+cTGRlptdyyZcuIiorio48+AuCrr76yGlXbWr/qw549e/D396dbt27Vts+YMYMzZ87g6enJkiVLqo2taup6eXlZPf/W6reELfupXENdVlaGwWBg5MiRACxYsIAnn3ySZcuW4enpydKlSwkODq7fyagHQm+3aFfy/fffy4EDB+qqsTstj79+c4bIED8e7FJC3759ddWryqFDhxqkl5RyhRe/P0uvdv68cVd3p2jWlaaqV2gs557/HaZCSlb9pg8tfSy/u2qM/Zv5+U/8lFPEnIQu1R6S9dR0JI1Zb973Z9iWkscTQ8O5s0f9bvSu6t/sb06zKy2fpw2duF2HQZ8lTWfhar0vjuXw9vZ0hnRqyYsjb9Bdz1HsTM1jzrdn6Brky5LxPXTXs4Wrr6GjKTSWc/cHhxDAmml9OX3iaJPpX15xGZP+dxgPN8GaaX3w9aw9CKMrbGbfvn0VCQkJ9Y8Q2QjZsWOH7NGjR+0FGxkXL15k/PjxzJ49m4SEBIQQTT4VlaL5sW/fvr0JCQnX5Z+HZu7y7YwZ6j7tW+DpJkjOKcI3oJXuelVp06ZNg46vq7u3IzTrSlPV8/dyp19oCyok5hkcPfXspTa97AIjP+UUacGSwh2zTrax9dGVegMckD7LFf0zlldwIFMLpjbIAcsA7NF0Jq7Wq0yftTcjn2ul5brrOYptJm+WoVXcvfXUs4Wrr6Gj8fdyp2dbf8olHDhf0KT6ty+jAAn0bu9v12C6oXqKpk9wcDAfffQRn3/+OQaDgdtvv53CwkJXN0uhsJtmPaB2xuy7r6c7vdr7I4HTF52b9qG4uP4xLaSU1QKSOUOzPjRlvcqIt0kp1gfUja1/lesho8MD8XGAu7c9mo6mMetVros8cP7n6L166jmC4uJijmYVUlJWQZfWPgT567/WsTFfQz30gvw96dnWD2O5dEiu8tr0HEFZhWRHavV0WXrq1Yarr6EeVAY+3ZtR0KT6t9ecDaDxPlsoGh9hYWEsXryYpKQkvvvuO/z9/V3dJIXCbpr1gNpZVAbdyMkvcqpuUVH99dLzSsi+aqSljwc3BtvOlewozfrQlPWGdNKi99qadWps/TNH93aAq7e9mo6mMeuFBnjTIdCbq8Zyki/Wr52u6J+zontX1XQmjUGvcpY66dwVp+g1lAPnCygoKadTKx86ta6ectHZ59MVms7QG2hOzZnfZPonpTQHXqyLN4srbEZhP5cuXWL48OHExcVhMBj46quv6nR8bGwsqampDm3T7NmziYyMJDY2ttr24OBgcxTr5557zq66CgoKiIqK4u233wbg/PnzjB49miFDhhAfH8/mzZvrXX+/fv2uC7C2YsUKnn32WfPnyZMns23bNrvaqgcbN24098lgMNCuXTsOHz5sdbst1q5dy6BBgxg8eDAbNmwAHGc/27ZtIyIiAoPBQGxsLK+99lq9++xoVFAyBzCwYwDLfoQfLnoyVUqn6TYkb2PlA/KAjgG41aG9TS0Xpiv1gvw96RHix4mcIvamF1hcj9yY+pdTaOTYhUK83QWDHeTuXZumHjR2vUFhAaw7VsKe9Hx6tq37G3hX9G/xt+mA8wbUjf0a6qF3S+eWLPvxPLtS8ymrkHg4MPCbHv2r9GYZakr7pbdebTSGa+hougf7EeDtTmaBEb8Q2wGaHE19+5dyuZjcolLa+HnQpY1P7Qc0UE/hHAICAli3bh0tWrQgNzeXoUOHMnr0aIeucz5w4ADz5s0jOzubAQMG8Morr+DnZz2jxJgxY5gwYQKPPfZYte2+vr4kJibWSfv111+vFlXbw8ODV199ld69e5OWlsaoUaPM+Y7rU39jJyEhgYSEBACysrIYM2YMffr0Me+ztN0SRqORF198kW+//Raj0cjYsWMZOXKkQ+1nyJAhrFy5krKyMoYMGcKkSZNqzXPuDJr1DLWzAq7dEORLSx8PungXc+6K89yWGpK3sTJib13cvRuqWR+aul6l2/d2K7NOjal/leshB4cH2r3uraGaetDY9QY2cB21s/t3/OQZzl4uxtvDjV7tneOC19ivoR56YS19iGjlw1VjOYcyHev27ej+lVdItpuWssRZeFGo8lA7Bnc3wYAOmtv3sdMpuutVpb79q1xKNqhjYJ0mF34peaibKp6enuacyPn5+ZSUlFBWpqX527ZtG+PHj+e+++4jNjaWP//5zwAsWrSI6Ohopk+fXmuqqKysLGbMmMHcuXNJSkpi7NixvPvuuzaPiY6Orleu6pqcPHmSnJycagPqtm3b0rt3b0CLOG00GmvtQ22cPXuW+Ph4Tp8+bbPcpEmTzDPCwcHB5Ofn11p3XdJm1cann37K2LFj7d5elb1799KjRw/atm1LWFgYHTt25OjRozbtxxq12U9RURFGoxEvLy9Aizg+ZcoU4uLiuPXWWzl16pS9XXYITh1QCyH+I4S4IIQ4UmVbGyHEd0KIk6b/W5u2/0YIcUgIcVgIsV0I0a9GXe5CiP1CiC+d2QdLuAlBTKdACsoE3yZfcppupRHVFWNZhfmBrXKNlt6a9aWp68VGaLM3u9K0WSe99WrDll6lu3dcl9ZO09SDxq7XN7QF7gJO5BTWK++ws/uXXaI9FPcPbYGXu3N+Mhr7NdRLL9Y022sr7oIj9erL0eyrXCkuo0OgFze0uX7JkLPPpys0naU3wPTSO93J8Znq27/6rJ9uiJ6jEUKMEkL8JIQ4JYS4zp9XCNFJCLHZ9Px5SAhxh2n7bUKIvaZn1r1CiOHOb72+FBQUcMsttxAXF8err75a7Zrt3r2bWbNmsX37dp577jlSU1N5//332bJlC7NmzSIlJcVm3UuWLGHOnDmUl5dz2223sWrVKpKTk+vVzuLiYuLj4xk1ahTbt2+vtfy8efOYNWuW1f0bN26kb9++eHt716t+gIyMDB544AHeeecdunbtCmiu0ZUD5x07dpjLrl69msTERB566CEmTpxIYGDt36Xs7GyHpM4CWLNmjcVc0da212xHu3bt+O9//8vatWtp27YtWVlZgG37qYkt+6lMm9WrVy9+/etf065dOwBmzZrFiBEj2Lp1K59//jktW17vPaUnzp6hfg8YVWPbc8BGKWU3YKPpM8BZYJiUsg/wN2BpjeOeAI7bEnOW6zXAmJ7BZF5z45vkXErKKpyiWd+omIezrlJSLrkxyJfWfnULMNSUIo02Br3wVj50auVDQUk5hzOvD1rXWPqXW1jK0exCPN0F0Q5097alqReNXc/fy50BHQOpkPBNcm7tBzRQr6GcvKqtDHKWuzc0/muol94tpnXU28/lUeFADytH92/rWVPu6c6tLP7OqijfjqMyj/P+S5JCo+MjwFujPv27VlrOkaxCBHV/Wd8YonwLIdyBxcBoIAq4VwgRVaPYX4HVUsqbgMnAO6btF4G7TM+s9wEfOKfVziMgIICkpCQ2btzIsmXLKC0tNe/r168fUVHaqWrZsiUHDx4kOjoaX19fevbsWatL7qFDh0hISOCFF17g/fff56mnnjIPxOrKkSNH2LJlC/Pnz+fBBx/k2rVrVstu2LCBrl27Wm1fdnY2s2fPZuHChfWqv5KpU6cycOBA8zkCGD9+PImJiSQmJjJkyJBq5ZOTk1m6dGk1XVssXryYxYsX21XWFidPnqSoqMg8O1/bdmvcf//9jB8/vto2W/ZTE1v2M2TIEBITEzl27BibNm0yu+InJSUxdepUAAIDA52e296pA2opZSJQcwp3HLDc9Pdy4FemstullJdN23cCYZUHCCHCgDuBf9ei1/BG20lkiD+DgysoKCnnhzOXaz/AAdT3ZtOQAEP11awvzUGvcpbaktt3Y+lf0rkrSDSb8PNybFrOxtLHxqR3V5SWg/rL4xfrHO3bmf0rr5CUXatMr1e3B+SG0BSuoR563YJ9CfH3JLeolOQcxwVpcmT/KqQkybx+upXuevbSWK6hownx96JP+xZ09i3j+5PO84CrT/8OZ12ltELSPcSPQJ+6hehxhc1Y4GbglJTyjJTSCKxEe0atigQqH55aAucBpJT7pZTnTduPAr5CCG8ntNnpREZG4unpyZEjZmfT62ZR6zqhZTQacXfXnj1CQ0OJioqqtzt35YzlgAEDCA0NtRkMbe/evXzxxRdER0fz73//m7fffpuPP/4Y0Gaip0+fzrx586qt8a9L/ZW88cYb7Ny5k71799ZatqSkhEcffZRFixaZ3aQdyZ49e8wz47t27aq2b82aNdcNhG1tr0n79u2rzZRfuHCB9u3bVytjyX5qYo/9BAQEEBcXx86dO2st6wwaQ1CydlLKTNPfWUA7C2V+B6yv8vlN4FnA5hOelJK5c+dy/PhxOnfuzMCBA7njjjs4e/YsLVq0wNPTk8uXLxMWFkZmZiZSSsLDwzl37pz55pCfn09ERARpaWkIIQgNDSU9PZ3WrVtTWlrK1atX6dKlC2fPnqVLgBttvSs4efo0UX7XKC4upqioyLzfy8uLNm3akJWVRUhICFevXuXatWvm/b6+vrRo0YKcnBzat2/PpUuXMBqN5v1+fn74+Phw6dIlOnToQHl5OYcOHTLvt7dPxbkXaOnpTheZw9Gjl232ydPTk5CQEM6fP29+g1xV09F9ysnJobS01LxfCEFaWppDr1PNPlW9TkajkRMnTji0T93dLzEs2Mj+tEscPHiJgIAA83Xy8/Pj6NGjuvap6nUyGo1kZmZe16dT6WWE+VYQ7XeFCxcu1Pk62bI9o9FodtfRo081r1NAQACHDh1qsO3Z+30yGo3k5eXVqU++lzPo3wbKyorYtOsAMb1vtPv75OXlxaFDh3TtU+V1OpicggeS7q3cuJjyExVt2jjsOtX2fSooKNClT5aukxCi2n1Nrz5V7gdIT0+32Kc72xWzM0ey+6dzGLPKHHLfMxqNHD9+3CF9Sk7LwrO8nLhgSUnmKQp8b7juOvn6+nL8+HGHXydbtufp6cmpU6d0/c2tep2MRiNnzpzRtU+V12lkm6usS3WjRcpZjrvnEqTjb27ldTIajVy6dKlOfTp18gxd/SUxbUrr/H3y9vbm0KFDuvbp8uXLbNu2jQ8+0CaPX3755ZpP7R2BtCqf04HoGmVeAL4VQswE/IERFh4/7wb2SSkbtui2EXH+/Hl8fHxo06YN2dnZ/PTTT4SGhlot369fP+bNm0dxcTEpKSmkpaVZLQtQVlaG0WhESklmZiaXLl26LjK2PVy+fBkfHx98fX1JTU0lMzOTsDDzfJx5nfGcOXMAeP7553n++ecBWLBgAf7+/txzzz1IKZkxYwYTJ05kxIgRdtdvjf79+/P666/z+OOPs2nTJptlZ8+ezd13311tTXdt1OyXLQYNGmQ1qNonn3zCRx99ZPf2mroDBgzgxIkT5OTkUFJSwvnz5+nVq5cu9lNRUcHhw4eJiYkBYOjQoaxYsYLp06dTWFjItWvXCA4OrvV8OArhzFlcACFEZ+BLKWVv0+crUspWVfZfllK2rvL5VjSXmqFSylwhxBjgDinlo0KIeOBPUsoxlrS+//57OXDgQN36UpPjPyXz193FFJSU8/a47kSG6BvA5+TJk3Tr1q1Ox1y4amTqyqP4ebrx8dQ+eNZxTWR9NBtCc9CrkJKpHx3lYlEp/xwXSfeQn6NWNob+XS4qZfKKI3i4CVZP7YO/g2eoG0MfG6Pe6kPZ/Hv3eQaFBTB/1I2669WH5XszOXImjfAOoTx+i/OiaDaVa6iH3v7zBcz6+hRhLb35zz01vU0dr1dXlu7KYM3hC4zvFcIjQyw/SDr7fLpC05l65RWSv63by/aL7swf1dUpyy/q2r+SsgqmrjxKXnEZb43tXucMBq6wmX379lUkJCSYf/CEEBOBUVLK35s+TwOipZQzqpR5Cu3Z+TUhxBBgGdBbSllh2t8LWAeMlFLajj6lAzt27JA9evRweL27d+/mySefBKC8vJwnnniCe++9F9CCkv3zn/9k5cqV1Y5ZtGgRH374IZGRkRw5coTPPvuMTp06Wax/3rx5REZG0rVrV5577jnCw8MJDAzkrbfestqmZ555hi+//JLc3FxCQkJYuHAhbdq0YebMmXh5eeHu7s5f//pXbrvtNvMxlRHBLblHVw6oZ86cyc6dOxk7dixVz+WqVatITU21Wb8l+vXrx6ZNmwgKCuIvf/kLnp6eREZGcuDAAf7xj38AWtqsGTNmMHToUIKCgoiKijLP0n711VcEBNj2ELPVL3vZs2cPTz/9ND/88INd263pfvrpp8yfPx+Al156iVGjRtm0H2tYsp/U1FR+85vfEBERQVlZGQaDgb///e8IIcjOzubJJ58kLS0NT09Pli5dyo032v9sZQ/79u3bm5CQMMjSvsYwQ50thAiVUmYKIUKBC5U7hBB90dy6R0spK19V3QKMNQWC8AEChRD/k1JOdXrLa1BaUszt3YNYc/gCXxy7SOQwfQfU9qzbqMnOVG3tW/8OAXUeTNdXsyE0Bz03IRgS0ZIvjl8k6dyVagPqxtC/pHN5SLQUao4eTFvT1JOmojeqexDv781kT3oBGXkldGxpn3egs/pnLK9g/YmL9PGX3BLh3OAeTeUa6qHXt30LArzdSc8rIfVy8XU5nh2tVxeklObghZbSADpary40pmvoaNzdBH3aCLZfhM+P5jhlQF3X/m08dYm84jK6BfvSI8R6qiNH6elEBlD1zWGYaVtVfocpFpCUcocQwgcIBi6YliOuBX7risG0ntx8880kJSVZ3Dd06FCGDh163fbHH3+cxx9/3K76H330UcaPH8/s2bP55ptvEELUmlLp1Vdf5dVXX71u++7du60eY2vAWTWndExMDBcuXLiuTGhoqM36LXHw4EHz35UDTYApU6aY/676MqI+M/OOWD89aNAgi4Nma9ut6U6YMOG64GW27McaluynU6dOnDt3zmL5du3asWLFijppOJLGkDZrHVoAB0z/fw5aJEXgU2CalNIc6k9K+WcpZZiUsjNaQIhN1gbTzgxKBloexTE9NfeCLWcu1yuCb1316kJ5hWTtkRwA4m+oXyTn5pjr0xl6t5ii926vEb23MfQv8ay25t9wQyunaepJU9EL9PHg1q7a9/CL4zm669WVTacuc+laGRcq/BlQxwBDDaWpXEM99NzdBDGdTNG+raTbc6ReXTiVe43sq0Za+3oQZWMGUuWhdjxDorri6SbYnZZPZr7+nsR16V+FlHxqera4u3fbej17NZI81D8C3YQQXYQQXmjPmOtqlEkFEgCEED3RJnZyhBCtgK+A56SUdRs5KAgODuajjz7i888/x2AwcPvtt1NY6OTQ9gpFA3B22qyPgB1ApBAiXQjxO2ABcJsQ4iTaWpQFpuJzgCDgHSHEASHEnrrqOdud/ezZs3QI9GZQWADGclmvCL511asLO87lkZFfQvsAL4u5Q/XQbCjNRa9vqDb7e+5KMel5P+cqd3X/rlwr5VDmVTyqPMTrrak3TUlvbJQWhfLb5EtcK7Uvgq8z+lchJWsOa2/nR7YzOv3lZFO6hnro/RzI0DHpsxzVv8pc9bd0boW7m3WbUHmoHc/F86kM69oaCaw7Zv8LuPpSl/7tSc8n9Uoxwf6eGOr5sr4x5KGWUpYBM4Bv0LLIrJZSHhVCzBNCVCbgfRp4UAhxEPgImC61h80ZwI3AHNMz6wEhRFsXdKPJEhYWxuLFi0lKSuK7777D319fL0+FwpE4O8r3vVLKUCmlp2mWeZmUMldKmSCl7CalHCGlvGQq+3spZWspZX/Tv+t81qWUW6ytn3YFvr5aPs67emoPyV8ev+jQ1CfW9OxBSsmqQ1rkvYl92tp8GHKUpiNoLnoebj+no6o6S+3q/mnpeeCmDgEEeOuzAsTVfWzMet2C/ejZ1o+rxnI2n7YvO4Az+vdjmukB2c+TrsGOjzJaG03pGuqhNzAsEG93wU85ReQUGnXXswcpJVtN0b3jrET3dqReXWls11APvV+ZXsB9U4cXcA3Rs5dPTC/fftUrBI8m8mxhDSnl11LK7lLKrlLKl03b5kgp15n+PialvEVK2c/0bPqtaftLUkr/Ks+s/aWU1/sMKxSKZkljcPnWDWfPqlSGt785PJB2LbzILDCyN71Adz17OJx1lZ9yigj0dmdk9/qlIqirpiNoTnq3mB5Cq846ubp/iaYZJ73cvS1p6k1T06ucpV537KJdXjXO6F/l7PSveofQMtC57t7Q9K6ho/V8PNzM62R3OGCW2hH907xrSgj0dqdvqO36nH0+XaHpCr3uIT+/gNt4St/0nPb273RuEfvPX8XX0407IpvOs4WifhQUFBAVFcXbb79dbfuSJUsoKqqe6q+23NMN4fz584wePZohQ4YQHx/P5s2bzfvWrl3LoEGDGDx4MBs2bKi1ruDgYHMaqarrqPfs2cPQoUOJjo7m/vvvB2Djxo3msgaDgXbt2nH48GGb9ffr1++6ddErVqzg2WefNX+ePHky27Zts6vvemCrX4sWLSI2NpaYmBheeeWVWut66aWXiI2NJT4+nq+++sq8ffbs2URGRhIbG1vn9sXGxpKamsq2bduIiIjAYDAQGxvLa6+9Vue69KJZD6id7fKdk6O5Ybm7Ce7sqf2w6OmaValnD6sPaQ/I43qF4ONR/8teF01H0Jz0BoUF4OkuOHahkNyiUt31LFFVL7+4jAPnC3AXMEQnd++ams6gqenFdWlFKx8Pzly6xtHs2teM6d2/5JwiDmZexc/TjTt7BDv9fELTu4Z66FW+gKvM+ay3Xm1UBiMbEtGyVg8nZTP66Y0zvYD7/FiOrs849vavcu30qO5BtGiAl5MrbEZRd15//XWL6ZzefffdBgeWO3DgABMmTOCWW25h5syZ1w3Qq+Lh4cGrr77Kjh07+OCDD5gxQwvEbjQaefHFF/n6669Zu3Ytf/nLX6ioqLCp6+vrS2JiIomJiSxYoK06raio4JFHHmHhwoXs2rXLHPwsISHBXHb16tWEh4fTp0+fBvW7MWCtXxkZGSxfvpwffviBxMREVq5caTUoGMD+/fvZvHkziYmJfPLJJ8yaNYuCAm1iccyYMddFgq8PQ4YMMbd15cqVtaZkcxbNekDt7BnqqsnLb+8eZA4gklWgTwCRmsnSrXH20jV2p+Xj7eFm/jHWW9NRNCc9X093BpqCO1XOOrmyf5Xu3v07BBDoo1/A/+Z0DfXQ83J3Y3QP+1/A6d2/j01LQ+7oEYy/l7vTzyc0vWuoh97N4YG4CTiYebXBAS4d0b/K9dP2xN9QNqOfXlyXVrTx9eDc5WIOZl7VXc8WuYWlbD59GTehuXvrradwLSdPniQnJ6fagHrLli0YDAaysrIYO3YsBoOBzMxM8/5Zs2YxePBgnnjiCZt1Z2VlMWPGDObOnUtSUhJjx47l3XfftVq+bdu29O7dG9Bmwo1GIyUlJezdu5cePXrQtm1bwsLC6NixI0ePHq1zXw8cOEBQUJA5x7GlfMaffvopY8eOvW67Nc6ePUt8fDynT9sOAD9p0iTzTHFwcDD5+fm11j1v3jxzTuiGUrNfZWVllJSUUFJSgpeXlzkXvSXOnj1L79698fDwICgoiNDQUPbv3w9AdHQ0QUH2e7EsWrSI6Ohopk+fTknJ9eOooqIijEYjXl5eAGRnZzNlyhTi4uK49dZbOXXqlN1ajqBZD6idPUN96dIl89+tfT2J69IKCXx1Qp/gZFX1bFH5gDyqe1CDB072ajqK5qYXG9EKgO2m6L2u7J85unc9A9TVR9MZNEW9O3sE4ya0WcBK7wU99ayRWVDC1pQruFd5QHb2+XSFZmPUC/TxoF9oCyok7EprmNt3Q/uXkVfM2cvF+Hm60b9D7UsAlM3op+fp7sYdPbSH+8+P6jera0//1h3LoaxCEhvRitBA+9L+NURP4VrmzZvHrFmzqm2Lj48nMTGR9u3bs27dOhITEwkNDQWgsLCQCRMmsH37djZt2lRtoF2TJUuWMGfOHMrLy7nttttYtWoVycnJVstXZePGjfTt2xdvb2+ys7Np164d//3vf1m7di1t27YlKyvL5vHFxcXEx8czatQotm/fDkB6ejqBgYFMnDiRYcOGsWzZsuuOW7NmzXXpoayRkZHBAw88wDvvvEPXrl0BzTW9cuC8Y8cOc9nVq1eTmJjIQw89xMSJE20OYCvJzs4mOzvbrrbURtV+dezYkYceeoi+ffvSu3dvHn30UVq3th54sEePHuzdu5eioiLS09NJTk62mH6sNlJTU3n//ffZsmULs2bNIiUlxbxvx44dGAwGevXqxa9//WvatWsHaC9vRowYwdatW/n8889p2dK56T6b9YDa2RiN1YPHVK6N3PBTLsYy2y4njtCzxIWrRvMb5Lv7NOwNsr2ajqS56cV00madDpy/SqGx3GX9KygpY39GAW4CYmsJMOQoTWfRFPXatvAiNqIl5RK+PnFRdz1rfHo4hwoJ8V1b07aFl+561miK11APPXPchZSGDagb2r/KYGQxnVri5V77Y4OyGX317uwZjLuAHal5ZBfo047a+nettJwvTfeqiX0aHszaFTajsJ8NGzbQtWvXOq2L9vLyIjo6Gk9PTyIiImwOrA4dOkRCQgIvvPAC77//Pk899VStA2HQBpKzZ89m4cKF1bbff//9jB8/3q52HjlyhC1btjB//nwefPBBrl27RklJCbt27eLNN9/kiy++4N133602qDt58iRFRUXmWfLamDp1KgMHDiQqKsq8bfz48WbX5SFDhlQrn5yczNKlS6/rlzUWL17skFzUNft15coVvv/+ew4cOMC+fftYvHixzesSFRXFvffey6hRo3j66aeJi4vD27vuL9sOHjxIdHQ0vr6+9OzZs5rdVbp8Hzt2jE2bNpk9EJKSkpg6VcuiHBgYSEhIw8c8daFZD6hdkYe6Kj3b+tE1yJe84jJz8Cc99Szx6ZELlEsYdkNr2gc07A2yvZqOpLnptfL1pFe7FpRVSHan5busfzvO5VEuoV9oC1rq6O5dVdNZNFW9yhdwX524SFmFde8avfqXX1zGBlOqv6oPyCqnsOv0hpjSZ+1Jz6e4AS9lG9q/bWe1Ab296RaVzeirF+SnpaeqkPBlHXLY11fPEt+dvERBSTk92/oR1a7h6Y0aSR5qhRX27t3LF198QXR0NP/+9795++23+fjjj20e4+npaf5bCGFzLbPRaMTd3R2A0NBQoqKianUPLi4uZvr06cybN89sP+3bt682U3vhwoValxNUznAOGDCA0NBQUlNTCQkJITIykrCwMAIDA+nXrx8nT540H7NmzRq7B+wAb7zxBjt37mTv3r21li0pKeHRRx9l0aJFugTr27Nnj3lmfNeuXdX21ezXDz/8YD4HQUFB9OnTp9YgbI899hiJiYmsWrWK7OxswsLC6txGe8ZvAQEBxMXFsXPnzjrXrwfNekDtijzUVRFCcFdPzTXry+O2Z50coVeT/OIyvja5m0/q65h0iM0916cz9Mw5ZlOuuKx/W83rIeuXM7Q+ms6iqer1C21BRCsfLhWV2QxEpVf/vjx+kZKyCgZ2DKBrkJ/uerZoqtfQ0Xoh/l5EhvhRUi7Zm177OrqG6lkiu8BI8sWiapHH9dSrL431GuqlVxkP5eufcinRwQPOVv8qpDQHI7u7d9N8tlDUjeeff569e/eya9cufv/73zNz5kzuuece8/6AgAAuX65/5PmysjKMRiNSSjIzMzl69Oh1kbGrIqVkxowZTJw4kREjRpi3DxgwgBMnTpCTk0N6ejrnz5+nV69e5v011xpfvnzZHEwtNTWVzMxMwsLCGDBgABkZGVy+fBmj0cixY8eIiIgwH/fJJ5/Y7e4N0L9/f15//XUef/xxi+uBqzJ79mzuvvtui8HfrFGXNdSDBg0yz4xHR0dX21ezX+3atWP//v2UlJRw7do1Dh06RKdOnWzqVi7fSEpKIi8vj/79+9vdj0r69evHjz/+SHFxMSdOnLAYeKyiooLDhw+bB+xDhw5lxYoVgLbc4OJFx4+7bKHv1NQvDD8/v+u23dq1Nf/afZ5jFwo5dbGIG4OvL+NIvap8efwixRYekPXUdDTNUS+2c0v+b1cGu9PzmRju/P4VGsvZZ3L3viVC/zUmzfEa6qEnhOCuqGD+uT2ddccuMuwGyy879OifsayCz00B0Wq6bzr7fLpCszHrxUa05KecIpLO5ZldwPXUq8k208udm8MD8bYzQ4SyGf31erb1o1uwLycvXmPz6cuMakDKKnv0qrIzNY/z+SW0a+FVb5usi56i8fPggw8ydepUWrduzXvvvWee9bWXW265hbVr1zJ37lymTZtGeHh4tQFsTXbt2sW6detITk5m+fLlAKxatYrQ0FDmzJnD6NGjAXj55Zdxc/v5vlVznXFycjIzZ87Ey8sLd3d33nzzTfz9/c3Hjhs3jtLSUiZOnEj37t0BbYbX39+fbt261amPN998M8OGDWP+/PlERkZaLbds2TKioqL46KOPAPjqq68ICLAdu8IR66ct9SsmJobhw4djMBgQQjBt2rRqbbekO2PGDM6cOYOnpydLliwxzzY/88wzfPnll+Tm5tKrVy8WLlxovk41CQ8PZ+rUqQwbNozIyMhqtlC5hrqsrAyDwcDIkSMBWLBgAU8++STLli3D09OTpUuXWgwmpxfC2bO4zmTjxo1ywIABTtNLT0+36NqwZEc6a4/mMDoyiCfjOlk40rF6ACVlFUxbeZQrxWW8MvpGburomFyytjT1oLnqPfzpCc5cusZfbg4kvm9X3fUqSU9P58Q1P/7xwzn6hbbg1Tvr9oNQX83meA310CsyljPloyMUlVbwfxN60KWNr656law/cZE3tqXRNciXd34VWc3dytnn0xWajVkv9XIxv//kOAHe7qz+TZ9aU1Y1VK8mf1yXzLELhfzl1s7Ed7XPo0XZjHP0vk3OZWFiqsXvrR56lTz95UkOZ13l4ZiOTHDQDLUrbGbfvn0VCQkJ7k4V1ZkdO3bIHj16uLoZdebixYuMHz+e2bNnk5CQgBCi2kBYoWgM7Nu3b29CQsIgS/uatbW6Msp3VcaY3L43nbrE1ZKGpT+xRw+09U1Xisu4MciX/h0ctwbjlxJJVW8q3b7TcurvIlUfLl26ZA4wZO96SEdoOpOmrOfn5c5t3doA1lNoObp/FVLy8WEtWMzEPm2veyhXEZtdq9eptQ9hLb0pKCnnUFb90iTVt3+5haUcu1CIp7vg5nD73L0botcQGvM11Esv/obWtPTx4HSufTnsG6oHWp76w1lanvrbuztuVlxF+f5lExwczEcffcTnn3+OwWDg9ttvp7DQsTatUOhJsx5QOzsoWYcOHSxuD2/lw00dAigpl3x30nE/Gtb0yiskaw5rbhi/7tfOoefBmqZeNFe9WzprA+qkHHfKbQSgcjRt2rZjT3o+AhzmqlcbzfUa6qV3l2lt5PenLlt8AedovV2p+aTnlRDi72nRzdzZ59MVmo1d7+do31ecoldJkim936COgfh52T+Rp2zGOXpeHm7cYXL1dnQKLWv9++SI9vKtMk+93nqKXw5hYWEsXryYpKQkvvvuO7PrtULRFGjWA2pnz1Dn5Fj/QbsrSpul/uL4RSoc1C5reknnrnA+30hogBdDHTxostVHPWiueje08aVdCy+CPEvZcsZ5s9SHU7IpLZf0au9PkJ9n7Qc4gOZ6DfXS69TKh5s6tKCkrIJvLbyAc7Tex6aXb+N7t8XDgjuxs8+nKzQbu15lrIOkc3n1egFX3/5VBi8c2qVusRaUzThPb0yUKYd9yhUuFjou9ZQlvQtXjfxwRkvDWZmnXk89ReMiODjYHB36ueeeq7ZvyZIlFBUVVdtWlxRbdeX8+fOMHj2aIUOGEB8fz+bNmwHN02H48OHExcVhMBj46quvaq1r9uzZREZGEhsbW2372rVrGTRoEIMHD2bDhg3V9hUUFBAVFcXbb79da/39+vW7LsDaihUrePbZZ82fJ0+ezLZt22qtSy82btxovrYGg4F27dqZo3kvWrSI2NhYYmJieOWVV2qty1r5l156idjYWOLj4+26LlWJjY0lNTWVbdu2ERERgcFgIDY2ltdee61uHdURFZTMgZSWllrdN6RTS4L9PUnPK+HA+QIGdLTffa4uelJKPj6kvUG+u0/beq23q6umnjRXPSEEk/u348CJ0yxKSqNHiB8dW/rorptZUAJ4YHBCdO9Kmus11FNvbFQI+89f5YtjF/lVrxDcqniZOFLv+IVCjmQV4ufpxmgrQY2cfT5dodnY9bqH+NGuhRfZV418uD+L3w4M1VUP4Mq1Ug5nXcVdaPmn9dZrKI39GuqlF+KvBQbbevYKX53I5b462kZd9D4/quWpv7VKnnpH4QqbUdQNX19fEhMTLe579913mTRpUoOCyx04cIB58+aRnZ3NgAEDeOWVV6zW5+Hhwauvvkrv3r1JS0tj1KhRHD16lICAANatW0eLFi3Izc1l6NChjB492uZ67DFjxjBhwgQee+wx8zaj0ciLL77It99+i9FoZOzYsYwcOdJcz+uvv16nKNyNnYSEBBISEgDIyspizJgx9OnTh4yMDJYvX87OnTuRUhIdHc3kyZOtBoyzVv7SpUts3ryZxMRE8vLyGDZsGAaDodZga5YYMmQIK1eupKysjCFDhjBp0iRdX97YS6OZoRZCpAghDgshDggh9pi23SOEOCqEqBBCDKpS9jYhxF5T+b1CiOFW6nRW8wHbeRTd3QR39jDNUh9zTCh3S3oHM6/yU04RLX08HLq+yZamnjRnvTsig3Dzb8210gpe3pSCUYfUJ1W5VlrOt5mai97QzvpH966kOV9DvfRiOrUkxN+TjPwS9mUU6Ka3xrR2ekxP6+6bKqew6/XchODJuHAE8OH+LH5Mq1sKrfr0b8e5PCok3NQxgADvur17VzbjXL3KFFpfHb+IsdwxvyM19YqM5Xz9kzbL5qhUWbb0XIUQYpQQ4ichxCkhxHM2yt0thJCVz6ZCiCAhxGYhxFUhxD+d12LXsmXLFgwGA1lZWYwdOxaDwUBmZqZ5/6xZsxg8eDBPPPGEzXqysrKYMWMGc+fOJSkpibFjx/Luu+9aLd+2bVt69+4NaDPhRqORkpISPD09zbmb8/PzKSkpoazMduyi6Ojo63Je7927lx49etC2bVvCwsLo2LEjR48eBeDkyZPk5OTUeUB99uxZ4uPjOX36tM1ykyZNMs8UBwcHk59f+/2+LmmzauPTTz9l7Nix5s9lZWWUlJRQUlKCl5cXgYG2JwQtlT979iy9e/fGw8ODoKAgQkND2b9/v816Fi1aRHR0NNOnT7eYaqyoqAij0YiXl/ZyLzs7mylTphAXF8ett97KqVOn6tH7+tNoBtQmbpVS9pdSVg6ejwATgJqvxC4Cd0kp+wD3AR9YqszVeahrMjoyCHcBO1LzuHC14a5ZlvRWH9LcN8f1CrE7xUlDNfWkOesJIRgZfI3QAC9O5V5j6e4MXfV2pubTJ7CUqLb+BPs7dnbBFs35Guql5+4mzMEMawYnc5Te+fwSklKu4OEmbLpvqpzCjUNvQMdApg0MRQILtqTU6Tekrnr5xWXmQHVx9Vg2pGzGuXp92vtzQxsfrhSXkXjmii563yTnUmgsp3d7f7qHOD7FVWPIQy2EcAcWA6OBKOBeIUSUhXIBwBPAriqbi4HZwJ+c0FSXUFxcTHx8PKNGjWL79u0AxMfHk5iYSPv27Vm3bh2JiYmEhmpeEoWFhUyYMIHt27ezadOmagPtmixZsoQ5c+ZQXl7ObbfdxqpVq0hOTrarXRs3bqRv3754e3sDmjv2LbfcQlxcHK+++qp5wFUXsrOzadeuHf/9739Zu3Ytbdu2JSsrC9AGr7NmzapTfRkZGTzwwAO88847dO2qZXZZu3ateeC8Y8cOc9nVq1eTmJjIQw89xMSJE2sdwFa21xGpswDWrFljzkXdsWNHHnroIfr27Uvv3r159NFHad3auoejtfI9evRg7969FBUVkZ6eTnJyMhcuXLBaT2pqKu+//z5btmxh1qxZpKSkmPdVps3q1asXv/71r80p2mbNmsWIESPYunUrn3/+OS1bOm/iCBrfgLoaUsrjUsqfLGzfL6U8b/p4FPAVQnjXLOfsGerKt2LWaOPnydAuraiQ8PWJhs9S19Q7k3uNPekFeHu4MbanPrnXauuj0qsbrVsG8PzwLni4CdYdu2hes+ho0q4U886OdLJL3OxOfeMomvs11EtvdGQQnm6CXan5Jld9x+p9euSC2X3T1gsWZ59PV2g2Fb0p/dsxOCyQgpJy/rbxLKV2zkbWRc9YVsHc786QnldCl9Y+9bpfKJtxrp4QwjxL/bmV7AAN0SuvkHx6xHKeekfhCpuxwM3AKSnlGSmlEVgJjLNQ7m/AK2iDaACklIVSym1VtzU3jhw5wpYtW5g/fz4PPvgg165ds1ney8uL6OhoPD09iYiIsDmAOnToEAkJCbzwwgu8//77PPXUU+YBrC2ys7OZPXs2CxcuNG8LCAggKSmJjRs3smzZsgYtJ7j//vsZP368+fOGDRvo2rVrnV2Mp06dysCBA4mK+vn9zPjx40lMTCQxMZEhQ4ZUK5+cnMzSpUur9csWixcvZvHixXVqkyVOnjxJUVGRefb/ypUrfP/99xw4cIB9+/axePFim9fFWvmoqCjuvfdeRo0axdNPP01cXJz5BYglDh48SHR0NL6+vvTs2bPa+R4yZAiJiYkcO3aMTZs2mT0HkpKSmDp1KgCBgYGEhDg2zkNtNKY11BL4Vgghgf+TUi6187i7gX1Syuv8ASoqKpg7dy7Hjx+nc+fODBw4kDvuuIOzZ8/SokULPD09uXz5MmFhYWRmZiKlJDw8nHPnzpnfCOXn5xMREUFaWhpCCEJDQ0lPT6d169aUlpZy9epVunTpwtmzZyktLeXixYucP3+eNm3aUFxcTFFRkXm/l5cXCR38Id/IvrNZxARcxVhSbN7v6+tLixYtyMnJoX379ly6dAmj0Wje7+fnh4+PD5cuXaJDhw5cvnyZQ4cOmfdvy4au/mXEtROUFeVz9HTD++Tp6UlISIi5T/n5+dU0vby8aNOmDVlZWYSEhHD16lWuXbtW7z7l5ORQWlpq3i+lJC0tzaHXqWafql6n3NxcjEajrn2qanve3t6UXTjLH7pLPjxdwfbDPxFQEkwrH3eH9enYydN8l1aKnxREtylnYKtSTp48qVufal6n3Nxc87ojR/XJlu35+flx6NAhXftU1fZyc3MJCgrSpU/jOkHOVSNfH85gcIur+Pr6YjQaOXToUIP6lHXxErvPlBPTpozYFnnk5eVZ/T4VFxfTqlUrh18nW7ZXUFBASEiIQ6+TLdsrKCiodl/To09Vr1NFRQXp6en16tP4dlepKKqg4Fo+q3/Yx5iB3Wq1vdzcXEpKSmrtU6vWrfn6UCp5+YLYYBjdyUhZcRGHjtftHuHl5cXx48cdfp1s2Z67uzunTp1y6HWyZXuVQYb07FPV61R5X7PWp8GdIhjR1khOSSm7T5zDx5jXoHtEbm4urVq1IjMzk/T8UopLyrmjfTmhFZdJSbni8Hu5lJJDhw7p/pu7bds2PvhAc2p8+eWXa866dATSqnxOB6KrFhBCDADCpZRfCSGesfM5tVlQORM4YMAAQkNDSU1NJTIy0mp5T8+fA58KIaiosP4C0Gg04u6uLTsKDQ0lNDT0OjfsmhQXFzN9+nTmzZtncclAZGQknp6eHDlyhJtuuslmXTVp3759tRnfCxcumGfhv/jiC9avX29+tmnfvj333HOPzfreeOMN5s6dy969exk4cKDNsiUlJTz66KMsWrRIlxdNe/bs4amnngLg1VdfJTr6ZxNfs2ZNtRcIP/zwA2FhYeZ7WZ8+fTh8+DDt27e3WLet8o899ph5nfptt91mM++8PROiAQEBxMXFsXPnTnr16lVreb0RznaLtoYQoqOUMkMI0Rb4DpgppUw07dsC/ElKuafGMb2AdcBIKeV1ixK+//57WZvhOpJDhw7Rt29fm2WklDz06QlSLhfz51s7c2sDZgur6mUXGLlvtfaWZvmkXrQL0Mel154+Kr2660kpefH7s2w/l0dkiB+vj+mGp3vDHUjyist46otk0vJKiGrrz287XWNAf+cG0vilXEM9OH6hkCfWJRPg7c6Ke3vj7eHmEL3/7c/i/b2ZDAoLYP6oG22Wdfb5dIVmU9M7caGQp748SVmFtOt3xF69d3em8+mRHPw83Xjjru50aeNbr/Ypm3GN3r92ZfDx4Qsk3NiaWfGdHab3x3XJHLtQyIzYMMZG6TPr4wqb2bdvX0VCQoI5eIQQYiIwSkr5e9PnaUC0lHKG6bMbsAmYLqVMsfRsKoSYDgyqPMbZ7NixQ/bo0cPh9V6+fBkfHx98fX1JTU1l9OjR7N6925zaaujQobz33nvceOPPvyfh4eGkpWnvJ+666y7mzZtndWB7++2388UXX3D33XezdOlSLl26xPPPP89nn31msbyUkgcffJAhQ4bwu9/9zrz9/Pnz+Pj40KZNG7Kzsxk2bBhbtmwxDwAr1xnPmTOnWn2pqalMnjzZ7MpuNBq5+eab+e677ygpKWHcuHH8+OOP1YKbLViwAH9/f2bOnGnz3PXr149NmzZx+vRpnnzySTZt2sQnn3zCgQMH+Mc//gFoUb5nzJjB0KFDefbZZ+nSpQuPPPKIzXqrYq1fdWXQoEF89NFHdOvWDYCdO3fyzDPP8P3331NRUYHBYOB///uf+UVKTV1b5S9dukSbNm1ISkriySefZNeuXVYHzmlpadx9990kJiaSkpLCLbfcwv79+0lNTeWf//wnK1eupKKigkmTJvHggw9y++23c//99zNs2DCmT59OYWEh165dIzjYsd66+/bt25uQkDDI0r5GM0Mtpcww/X9BCLEWzfXGcjhBQAgRBqwFfmtpMG0qo0dTrWLrbUslQgju6hnM29vT+eJ4ToMG1FX1Kt03h3dtrdtguqamM/il6AkheNrQidNrf+KnnCKW/Xieh2Ma1pYiYzl//eY0aXkldG7tw99uv4HSwroFM3IEv5RrqAc9QvzoHuxH8sUifjhzmZHdgxqsV1JWYc5Ze0/fdrWWd/b5dIVmU9Pr0dafh2M68s/t6byxNZWubXzp1Np6lgB79NYeucCnR3LwcBPMve2Geg+m7dVzNE3tGuqhd1dUMJ8cucAPZ67wh5tLad2A1IiVeseyCzl2oZAAb3du69am3vXZq+diMoCqvrxhpm2VBAC9gS2m58v2wDohxNiaEz7NjeTkZGbOnImXlxfu7u68+eab1fJEP/jgg0ydOpXWrVvz3nvvmWez7eWWW25h7dq1zJ07l2nTphEeHm41kjTArl27WLduHcnJySxfvhyAVatWkZ6ezpNPPglAeXk5c+fOrTabammd8TPPPMOXX35Jbm4uvXr1YuHChYwePZo5c+YwevRoAF5++WWbkcLt4eabb2bYsGHMnz/f5sz+smXLiIqK4qOPPgLgq6++qjUatiPWT+/Zswd/f3/zYBogJiaG4cOHYzAYEEIwbdq0am2vqWur/IwZMzhz5gyenp4sWbLE5hgtPDycqVOnMmzYMCIjI6vZQuUa6rKyMgwGAyNHjgS0FxxPPvkky5Ytw9PTk6VLlzp8QG2LRjFDLYTwB9yklAWmv78D5kkpN5j2b6HKW0AhRCvgB+BFKeWn1up19gz10aNH7XI7KDKWM+WjIxSVVvB/E3rU+8GlUi+/uIzfrDxKSVkFS8ZH0jXI8QFDamo6i1+a3vELhTz1RTLlEl687QaGRNQvqIKxvILZ35xh//kC2gd48caY7gT5ezq9f+D6c9rU9b5NzmVhYio3Bvmy+FeRHDt2rEF6X524yFvb0sz11fbiUdlM49STUrJgyzk2n75Mp1Y+vD2uO76eliO116a39ewVXtp4FgnMio8g4caGDZyUzbhOb+53Z9hxLo/fDgxl6k2W3TLrove3jWfZevYKk/u144HBHepdn716zsTCDLUHkAwkoA2kfwSmSCmPWjr+lzRDrTcXL15k/PjxzJ49m4SEBIQQDR7AKhSOxtYMdWOx1nbANiHEQWA38JWUcoMQYrwQIh0YAnwlhPjGVH4GcCMwx5Rm64DJVdyl2Ptyws/LnRGmN71fHK9/cLJKvXXHL1JSVsGgsABdB9NVNZ3FL02vZ1t/80PLwsRz9YoGX14heWXLOfafL6C1rwd/H3UjQf6eFvWcgavPaVPXi7+hNYHe7pzKvcaJnKIG6VVIySem6M339G1rlxePspnGqSeE4I9Dw+nUyofUK8W8uS3Nar229I5mXeWVLSlI4P5BoQ0eTNempxdN8RrqoferKim0yirq30YpJZkFP2cCGKeTq3dVPVcjpSxDe778BjgOrJZSHhVCzBNCjLV9tJb+FXgdmC6ESLcUIVxhmeDgYD766CM+//xzDAYDt99+O4WFha5ulkJhN41iQG2KqNjP9K+XlPJl0/a1UsowKaW3lLKdlPJ20/aXpJT+phRblf+uCx/obJfvukT9q0yJs/HUJQqN5fXWq+q+OckO982G4uzk6b9Evbv7tCU6XIvkO39TSp0eiqSULEpKY+vZK/h7uTN/VFc6tvw5kqKz++cKzeam5+XhxuhILTjLumM5DdLbcS6P9LwS2rbwxNDFvuUmymYar56vpztzErrg4+HG5tOX+dLKC1premlXipnz3RmM5ZI7ewQxuZ9jfkOUzbhOr3+HFkS08iG3qJRtDcgaER4ezmdHcqiQEN+1tfmlrF64wmYsIaX8WkrZXUrZtcqz6Bwp5ToLZeOrzk5LKTtLKdtIKVuYnl2PObPtTZ2wsDAWL15MUlIS3333XTWXcoWisdMoBtR64ew3nufOnbO7bOfWvvQLbcG10go2nrpUb71vk3PJKy6je7Af/UL1TztRlz4qvfrpuQnBM8MiCPb35NiFQt7bc97CkZb5755M1v+Ui5e74G8jb7jOY8HZ/XOFZnPUu7NnMAJIPHOF5DMp9a5njWl2ekLvtri72ffCUdlM49br1NqHJ+M6AfDuzgx+yrl+VseS3uWiUp7/5jQFJeVEhwcyIzbcYS+hlc24Tk8Iwdgo7YV9Q1JonTqTwoZkLZL53b31Tz/jCptRKBQKR9GsB9TOnqG2J/l6Ve4yzVJ/cexivQb/LQICzA/Ik+x032wode2j0qufXqCPB3+5tTNuAlYfusDutLxa61pzKJuVB7NxEzA7oQu921//gsXZ/XOFZnPUax/gTUynlpRWSE4X1W+m6Fh2IUezC2nh5W6e8bYHZTONX+/Wrq0ZGxVMaYXkbxvPkl9cZlPvWmk5s789Q1aBke7BfvxleGe7X7DYg7IZ1+qN6NYGfy93jmYXcupiUb30zlzz5FppBf07tNB9KRm4xmYUCoXCUTTrAXVjJ7ZzK9r4enDuSjEPfHycF787w3/3nGfz6Uucyb2Gscx6zj6A5EslZBYY6RDoxS2dWzmn0Qqn0bt9C+4bGArAqz+kcrHQ+nrqb5JzWbpbm8n+kyGC6E71C2amaLzcZZp12p91jXXHcth+7grJOUXkFpZSbseygDWHtWicY3oGWw1epWi6/CG6I5Ehfly4WsorW85RYeUlbXmFZP6mFJIvFtE+wIu/jbxB2UMzw9fTnZHdtbXwqw5lcz6/hKslZXa/uC+rkOzNugbAxD4uD0+jUCgUjZ5GkzZLD5zt8p2fX7eURB5ugt/c1J7FO9LJyC8hI7+EpHM/z0S6CegQ6E2nVj5EtPahc2sfOrXyIbylD57uglPZ+YAnE/u0c+jsgi3q2kel1zC9X/drx+Gsq+xJL2D+5hRevaPbddc6KeUKb2xNBeCRmI7mgHf10dODxnZOm6regI4BhLX0JtC9gH9uT6+2z01AG19Pgvw9CfbT/g/y8yTY35NgPy8QkJSSh6ebYFyvurlvKptpGnpe7m7MTujCI2tP8GN6Ph8dyOY3pijPlXpSSv65PY1dafkEeLvz8u1dG5RayRrKZlyvN7ZnCGuP5PDDmSv8cOYKoN0nArw9CPR2J9DHg0BvDwJ93LVtlf97e5CeV0yAWxnhLQMYFOacmWNX2IxCoVA4imY9oHa2y7etnHnWuCsqhNu7B5GWV8y5y8Wcu6L9n3qlmPP5JaTnaf+21xhot23hxbVid1r6eOiaG7Im9emj0qu/XuV66kfWnuBIViEf7Mtk+qCfU5ccPK8NtCsk/Oam9ozvbXs2wdn9c4Vmc9VzE4IXbruBxJ8yuSPYndzCUi4WlXKxsJS84jLt76JSfrJRx/AbWxNUxwGUspmmo9e2hRfPxXfmr9+c5v29mfRs68eAjoFmvZUHs/nqhBZjYd7IGwhvZT13dUNQNuN6vY4tvbl/UChbz16hoKScgpIyikoryCsuI6+4DPJKbB7f0tOD+6Pb4uak5yhX2IxCoVA4imY9oHb2DHVaWhotW9bd1dbLw42uQX7XrVMyllWQnlfCuSvXSLlcTKppwH0+v4SsAiNDg8rofkNHvD2c57lf3z4qvfrrtfb15M/xnZm1/hQfHcimb2gLBnQM5OTFIuZ+d4bScsmYnsH8dkDtOUed3T9XaDZnvU6tfOjvX0jv3r2rbS8tr+BSURkXi4zmgXbN/90E3Nu/7nlplc00Lb3B4YH85qb2/G9/Fn/ffI4l4yPJSktjT045/92TiQCei+9Mr3b6BbFUNtM49O7t377ad760vIKCknLyS8rIL9b+LyguI7+knPziMm17STkFxWX08slnhANSqNmLK2xGoVAoHEWzHlA7G0fPiHt5uHFDkC83BPlW224sryD9SglnT58kvo/+qbKq4uxZf6Wn0a9DAFNvas/7+7JYsPkcf03ozN82plBUWsGwG1rx2JAwu+pydv9coflL1PN0d6NdgBftArycoqc3jeGcNmW939zUnmMXCtmXUcBLG1O4q30Fr+3WloU8HNORoV1a6aqvbKZx6nm6u9HGz402dnipHD16FC8nvqx3hc0oFAqFo2jWQcmcfYMODQ11io6XuzbQvunGMKetna7EWX1Uetdzb//29O/QgivFZfzpq1PkFZcxsGMAzw6LsNsOnN0/V2gqvaat5wrN5qbn7iZ4Lj6CYD8t9d6yE6WUVUgm9A6pdVmII1A2o/Qau55CoVA4kmY9oHa2y3d6enrthZqwnis0ld7PaA/JnWnlozmW9Gzrx5wRXfB0t/9rrGxG6TV2PVdoNke9Vr6e/DWhC+4CegWWYejSij9Ed9RdF5TNKL3Gr6dQKBSOpFm7fDt7hrp169bNWs8VmkqvOm38PFkw+ka2pVzhV71C6pzuRtmM0mvseq7QbK56Ue38eXHkDSSfy2BSTITTAkwpm1F6jV1PoVAoHEmzHlA7m9LS0mat5wpNpXc9ltbV66nXUJrCOVV6jUfPFZrNWe/m8JYEl+Y6dT2sshml19j1FAqFwpEol28HcvXq1Wat5wpNpde09VyhqfSatp4rNJVe09ZzhabSa9p6CoVC4Uia9YDa2S7fXbp0adZ6rtBUek1bzxWaSq9p67lCU+k1bT1XaCq9pq2naNoYjUYMBgM9evSgV69eDB8+XBedJUuWUFRU1OB61q9fz5tvvtnwBtXg5MmTGAwGwsPD2b9/v8PrV9hPkx5QCyFGCSF+EkKcEkI8V3O/s2eoz54926z1XKGp9Jq2nis0lV7T1nOFptJr2nqu0FR6TVvPGrU9VwohvIUQq0z7dwkhOlfZ92fT9p+EELc7teG/MLy8vEhMTGT69Ok8/PDDbNq0SRedd999l2vXrjW4ntGjR/PHP/6x4Q2qQbdu3UhMTKR///4Or1tRN5rsgFoI4Q4sBkYDUcC9QogoV7bpyJEjzVrPFZpKr2nruUJT6TVtPVdoKr2mrecKTaXXtPUApJTV3BjtfK78HXBZSnkj8AbwiunYKGAy0AsYBbxjqk/hZMLDw5k1axaDBw/miSeeACA1NZWBAwdy//33ExMTw1tvvVWtfCV33XUX+/fvZ8uWLRgMBrKyshg7diwGg4HMzEybuu+++y7R0dEMHTqUF154wbz9kUceoU+fPjz77LPVyi9atIjo6GimTJnCgAEDSE1Ntdp+gHvvvZe4uDiGDx/Ov/71r3qfH4U+NOWgZDcDp6SUZwCEECuBccCxygLOnqH+7LPPmDJlSrPVc4Wm0mvaeq7QVHpNW88Vmkqvaeu5QlPpNW09uH5AjR3PlabPL5j+XgP8U2jrC8cBK6WUJcBZIcQpU3079OuB81i0aBFr1qyptm3cuHF4enrquv3pp5+uc1sLCwuZMGECL730EgMGDDAPhFNSUlixYgWdOnUiLi6OCRMmVBtMVyU+Pp7ExET69evHunXrCAoKqlV3wYIFHD58mICAAHJycszblyxZwooVKzhw4IB5W3p6OsuXLycxMZGMjAyGDBlis/2hoaEsXLiQjh07UlpaSmxsLGPHjqVdu3Z1OjdN6To2NZrygLojkFblczoQ7aK2ANCzZ89mrecKTaXXtPVcoan0mraeKzSVXtPWc4Wm0mvaelaw57nSXEZKWSaEyAOCTNt31jjWOYnfncDjjz/O448/bnWfntvripeXF9HR2mWLiIjgwoULtG7dmvDwcCIjIwGIjo7m4MGDVgfU9eGmm25i5syZjBw5kjFjxtgse+DAAWJiYvD396d79+7V2mGp/aGhoXzwwQesX78eKSVZWVlkZWXVeUDdlK5jU6MpD6hrRQjBnj17qn6WQgjdpq3Hjh0r9u3b57RpcWfruUJT6TVtPVdoKr2mrecKTaXXtPVcoan0mqbelStXRF5engBo37693nLNhqY0s+np6Wn+WwhBRUWFzfJVAxiXlZXVWa+SNWvWsHPnTj799FP+9a9/sXnz5nrVY6n927ZtY/Pmzaxfvx4/Pz+GDx9erV/2BmFuStexqdGUB9QZQNVXS2GmbWZGjBjh3DDfCoVCoVAoFIqmSK3PlVXKpAshPICWQK6dxzZZmsPMZlpaGidPniQ8PJzdu3cza9YsAAICArh8+TI+Pj6cPHmy2jGV+2pz+ZZSkp6ezi233EJUVBSDBw+2Wb5///688MILFBUVkZ6eTlpams3yBQUFBAUF4efnx/Hjx6+LOdC6dWvOnz/PTTfdZLOe5nAdGytNeUD9I9BNCNEF7aY1GXDuAhyFQqFQKBQKRXPAnufKdcB9aGujJwKbpJRSCLEOWCGEeB3oAHQDdjut5b8wjEYjI0aM4MKFC7i7u7N27dpaI31HREQwb948Tp48ybRp0+jUqRMATzzxBPfccw/9+/enY8fqXvoPPvggU6dOpXXr1rz33ntWXayllDz88MMUFBRQXl7OvHnzAC0Y2tSpU7l8+TLFxcXs3LmT2bNnc9ttt/Hb3/6WW2+9lcjISCIiIvDy8rLa9oSEBJYvX05MTAzdu3enb9++1fY/+uijzJw5k1deeYVVq1YRGhpa6zlUOBbh7MBdjkQIcQfwJuAO/EdK+bJrW6RQKBQKhUKhaIpYeq4UQswD9kgp1wkhfIAPgJuAS8DkKkHMngceAMqAP0op1zu7/Tt27JA9evRwtmyjJzU1lcmTJ7N9+3ZXN8VMQUEBAQEB5Obmcuutt3Lw4EG7XbcVrmHfvn17ExISBlna12TTZgFIKb+WUnaXUnatOZiuLZegIxFChAshNgshjgkhjgohnqj9KIfougsh9gshvnSCVishxBohxAkhxHEhxJDaj2qQ3pOmc3lECPGR6UfM0Rr/EUJcEEIcqbKtjRDiOyHESdP/rXXWe9V0Tg8JIdYKIVrpqVdl39OmmALBeusJIWaa+nhUCPEPR+lZ0xRC9BdC7BRCHBBC7BFC3OwgLYvfc51txpqmLnZT273M0XZjS08Pu7FxPvWyGR8hxG4hxEGT3oum7V2ElsP2lNBy2lqfmnCc5oem38Qjpu+NZ211NUSvyv5FQoirjtCypSc0XhZCJAvtN8ohfoc29BKEEPtMNrNNCHGjI/Sq6Fb7fdfTZqzo6WIvtjSrbHeozVjTs2Qzlp4rpZRzpJTrTH8XSynvkVLeKKW8uXIwbdr3sum4SFcMphVNi+eff56hQ4cybtw4FixYoAbTTZwmPaC2hnB+juoy4GkpZRQQAzyms14lTwDHnaAD8BawQUrZA+inp64QoiPwODBIStkb7U3xZB2k3kPLF1mV54CNUspuwEbTZz31vgN6Syn7AsnAn3XWQwgRDowEUh2oZVFPCHErWjqRflLKXsBCvTWBfwAvSin7A3NMnx2Bte+5njZjTVMvu7F6L9PJbizq6Wg31vqnl82UAMOllP2A/sAoIUQMWu7aN0y5bC+j5bZ1FNY0PwR6AH0AX+D3OushhBgEOOwFUy1609HWsPaQUvYEVuqstwT4jclmVgB/dZBeJTV/3/W0GUt6etmLLU29bMaa3nT0sRlFI6NTp06NanYatABh27ZtY9u2bdxxxx2ubo6igTTLATVVcglKKY1oN8lxeolJKTOllPtMfxeg3bB1TZcghAgD7gT+raeOSaslYACWAUgpjVLKKzrLegC+Qgv64Qecd7SAlDIRzWWrKuOA5aa/lwO/0lNPSvmtlLIyrOROtEAmuumZeAN4FnDoeg8reo8AC0y5OZFSXnCCpgQCTX+3xEG2Y+N7rqfNWNTUy25quZc53G5s6OliNzb09LIZKaWsnGnzNP2TwHC0HLbgeJuxqGmaeZNSW+e1G8fZjEU904vtV9FsxmHYOKePAPOklBWmco6yGWt6utgMXP/7LrSpK91sxtLzhF72YktTL5uxpodONtNc6devH7fccgsGgwGDwcD69WoSvikSHBxsvobPPVf7+//Zs2cTGRlJbGzsdfsKCgqIiori7bffBuD8+fOMHj2aIUOGEB8fb1ek8379+pGbm1tt24oVK3j22Z9vA5MnT2bbtm211uVKmnJQMlu4LEe1EKIz2tqaXTpLvYn2oxOgsw5AFyAH+K8Qoh+wF3hCSlmoh5iUMkMIsRBtJuwa8K2U8ls9tCzQTkqZafo7C6hbkr+G8QCwSk8BIcQ4IENKedBJ7kXdgTghxMtAMfAnKeWPOmv+EfjGZENuwPW/Ag2kxvfcKTZj496ii91U1XOG3dTo36vobDc19P6ITjZjGiTsBW5E85w6DVyp8kLE4flqa2pKKXdV2ecJTEObrdNNT2ju9OuklJmOthkrel2BXwshxqP9Xj0upTxpq54G6v0e+FoIcQ3IR/N4cBRvUv33PQh9baamnhk97MWG5gx0shkrerrZTHNl3bp1tUa8VjRufH19SUxMtLv8mDFjmDBhAo899th1+15//XX69etn/uzh4cGrr75K7969SUtLY9SoURw9etQh7W7sNNcZapcghGgBfIIWjCJfR50xwAUp5V69NGrgAQwAlkgpbwIKcaxbazWEtgZ1HNpAvgPgL4SYqpeeNUxv5p0StU9owUzK0Nzs9NLwA/6C5tLqLDyANmgPm88Aq4X+I/lHgCellOHAk5g8KxyFre+5XjZjTVMvu6mqZ6pfV7ux0D9d7caCnm42I6UsN7kFh6F5T+keMaimphCid5Xd7wCJUsqtOuoZgHuAtx2lUYteb8AbKJZSDgL+BfxHZ70ngTuklGHAf4HXHaHl7N93O/Qcbi+WNIUQHdDJZmz0UTeb+SWxbds2xo8fz3333UdsbCx//rO2AmnDhg2MGDGCuLg4nn/+eXP5RYsWERMTw/3338/AgQNJTdVWEYWH/5x17K677mL//v026wkPD2fWrFkMHjyYJ574+X1PdnY2U6ZMIS4ujltvvZVTp06xYcMG/vCHP5jL/P3vf+edd97R54S4gHnz5pkjizua6Ohoiy9RTp48SU5OTrUBddu2bendW/u5CQ8Px2g0UlJSYpfO2bNniY+P5/Tp0zbLTZo0yTzDHhwcTH6+bsOtOtFcB9ROzwdoeov7CfChlPJTPbWAW4CxQogUNHf24UKI/+molw6kV5nlWIM2wNaLEcBZKWWOlLIU+BQdZhmtkC2ECAUw/a+7C5gQYjowBm09np4D+K5oLykOmmwnDNgnhGivo2Y68KnJc3A3UAE4LBCaFe5DsxmAj9EGMQ7ByvdcV5uxdm/Ry24s6OlqN1b6p5vdWNHTzWYqkdoymc3AEKCVaTkL6Pj7VEVzFIAQYi4QAjyls96taLO5p0w24yeEOKWj3ihMNmPatRboa+UwR+iNRlvfX/mbuArH/UZd9/uOFsNEL5ux+jyho71Y6uNR9LMZa33U3WaaG2PHjjUPZvLy8szbK/M6b9++neeee46cnBwWLlzIunXr2Lp1KxkZGSQmJpKamsr//vc/tmzZwnPPPUdKSopNPWv1ABQWFjJhwgS2b9/Opk2byMzUHMVmzZrFiBEj2Lp1K59//jktW7ZkxIgR/PjjjxQWao6Vn332GRMnTtTnJLmA7OxssrOz7SpbXFxMfHw8o0aNatC68nnz5plzeVti48aN9O3bF29v71rrysjI4IEHHuCdd96ha9euAKxdu9Zsazt27DCXXb16NYmJiTz00ENMnDiRwMBAa9U6leY6oDbnEhRaJMzJaLkDdcE0c7IMOC6ldMhbaltIKf8spQyTUnZG69smKaVuM7hSyiwgTQgRadqUABzTSw/N1TtGCOFnOrcJOC/4WmWOSUz/f66nmBBiFJob2lgpZZGeWlLKw1LKtlLKzibbSQcGmK6vXnyG9nCNEKI74AVc1FEPtLWMw0x/Dwcc5fZp7Xuum81Y09TLbizp6Wk3Ns7pZ+hgNzb09LKZEGGKwC6E8AVuQ7uXbUbLYQuOtxlLmidMLsq3A/dWrhnVUW+vlLJ9FZspklowLb30TlDFZtCuZbKOeseBlibbpMq2BmPl9/036GQz1p4n9LIXG5qt9bIZG89Mn6GDzTRn1q1bR2JiIomJibRs2dK8vV+/fkRFabF4W7ZsyZ49e0hJSWHUqFEYDAYOHz5MSkoKBw8eZPDgwfj4+BAZGVltVtoS1uoB8PLyIjo6Gk9PTyIiIrhwQXuXnZSUxNSp2iNxYGAgISEheHh4MHr0aL7++mv27t1L586dadu2rQ5nyDUsXryYxYsX21X2yJEjbNmyhfnz5/Pggw9y7dq1Outt2LCBrl27Wr1+2dnZzJ49m4UL7YsnOnXqVAYOHGi2IYDx48ebbW3IkOqJhZKTk1m6dKnd9TuDZrmGWkpZJoSYAXzDz7kE9XTivwVtjdFhIcQB07a/SCm/1lHT2cwEPjS9oDgD3K+XkGl92hpgH5q76X5gqaN1hBAfAfFAsBAiHZgLLEBzL/0dcA6YpLPen9Hczr4zebTulFI+rJeelNKh7s+16aG50P1HaGmtjMB9Dp5NtaT5IPCWaTanGPiD9RrqhMXvOTrajA3NRehjN86+l1nrn152Y01PL5sJBZYLbQ2uG7BaSvmlEOIYsFII8RLa/c2R30trmmVo9rnDZDOfSikd4SNoUc8B9dZJTwixDe036kngKo6LSm1N70HgEyFEBVrU7QccpGeNWehnM5Z4F33spTGxAH1s5heHpVnC4cOHs3Rp9Ue3L774wmodosqqnrKyMvPfluoB8PT8OZObEIKKCtvvfe69917+9re/ccMNN/DrX//aZtnmTLt2WpiXAQMGEBoaSmpqKpGRkbUcVZ29e/fyxRdfsH79enJzc3Fzc6N9+/bcc889FBcXM336dObNm0eXLl3squ+NN95g7ty57N27l4EDB9osW1JSwqOPPsqiRYto0aJFndqtJ81yQA1ahErAKQNaKeU2wCUJ5KSUW4AtTtA5AFhMZq6T3ly0wZGeGvda2ZXgRD3dHops9K9yf2cn6enpPWFN0/YduX5atr7netmMNU1d7m323MscaTe16DncbmrR08NmDqEFPqu5/Qw6uJXXoqnL7701vRplHPbUY6N/V9CiODsUG3pr0dyEdaPq77ueNmNFzynPh9aeYRxpM9b09LIZBQwaNIhnn32WjIwMOnbsSFpaGl5eXvTt25e//e1vFBcXk5aWRlraz/GDAwICuHz5Mj4+Ppw8edJmPZWDQksMHTqUFStWMH36dAoLC7l27RrBwcH06dOHnJwcTp48ydy5uj5eOp3K9dNz5tgOdVJ5fn19fUlNTSUzM5OwsJ8D+Ntbz/PPP29ez75gwQL8/f255557kFIyY8YMJk6cyIgRI+xuf//+/Xn99dd5/PHH2bRpk82ys2fP5u677662drsx0GwH1AqFQqFQKBQKhcK5hISE8NprrzFlyhTKysrw8/Nj6dKldOnShSlTpjBs2DAiIyOJiIgwH/PEE09wzz330L9/fzp27GizHlssWLCAJ598kmXLluHp6cnSpUsJDtZCcIwZM4ZTp07h6+urX+ddgL3rp5OTk5k5cyZeXl64u7vz5ptv4u/vb7OeZ555hi+//JLc3Fx69erFwoULGT16tMX6d+3axbp160hOTmb5ci2b6KpVqwgNDa21bTfffDPDhg1j/vz5NmfMly1bRlRUFB999BEAX331FQEBzkh4ZBvhQO9LhUKhUCgUCoVC4QJ27Nghe/TQPZGAw4iNjWXlypV06tTJKXqTJk3i0UcfJT4+3il6iubFvn379iYkJFj01m2uQckUCoVCoVAoFArFL5xLly4xePBggoODGTZsWO0HKBR1RLl8KxQKhUKhUCgUCqfSkLRNdaFNmzb8+OOPTtFS/DJRM9QKhUKhUCgUCoVCoVDUAzWgVigUCoVFhBAvCCH+5+p2KBQKhcL1jB8/nrFjx9b7+JMnT2IwGAgPD2f//v3X7V+/fj1vvvnmdduXLFlCUVFRnfViY2NJTU2tT1PNPPDAA5w+fRqAP/3pT/z73/8273vvvfeYOXNmg+qvSb9+/cjNzb1u+8WLF7n77rsbXP/s2bOJjIwkNjbWrvLBwcEYDAYMBgPPPfeczbLOOD+NFTWgVigUikaIEGKoEGK7ECJPCHFJCJEkhBjs6nYpFAqF4pdHUVERZ8+eJTMzk6tXr9arjm7dupGYmEj//v0t7h89ejR//OMfr9v+7rvvcu3atXppNoTjx49TUlJC165dARg2bBjbtm0z709KSnJagLPg4GDat2/fYDf5MWPGsHLlSrvL+/r6kpiYSGJiIgsWLLBZ1pXnx9WoAbVCoVA0MoQQgcCXwNtAG6Aj8CJQ4sp2KRQKheKXSVJSEtHR0dx8881s3boV0FJUjRkzhoEDB/LMM88wePBgLl68SGpqKgMHDuT+++8nJiaGt956q9b6H3nkEfr06cOzzz5r3rZlyxYMBgNZWVmMHTsWg8FAZmYmAOHh4eZyd911l3nGe9GiRURHRzN9+nRKSn7+ydywYQMjRowgLi7OnEO5NtasWcOdd/6cqtxgMLB7927z5x07dmAwGGz215ruvffeS1xcHMOHD+df//rXddpnz54lPj7ePDsOcOedd7J69errys6bN8+cQ7o2oqOjCQoKsqtsXbF2fn4JqAG1QqFQND66A0gpP5JSlkspr0kpv5VSHhJCdBVCbBJC5AohLgohPhRCtKo8UAiRIoR4RghxSAhRKIRYJoRoJ4RYL4QoEEJ8L4RobSrbWQghhRB/EEKcF0JkCiH+ZK1RQogY06z5FSHEQSFEvM7nQaFQKBSNgE2bNpldfzdu3GjePmrUKG677TYiIiJISEgwB/9KSUnhueeeY/PmzXzwwQekpaXZrH/JkiX8+c9/rrYtPj6exMRE2rdvz7p160hMTLSZ0zg1NZX333+fLVu2MGvWLFJSUgDIyclh4cKFrFu3jq1bt5KRkUFiYmKtfd61a1e12fSWLVvSoUMHTpw4wZkzZ2jTpg0hISFW+2tLd+HChWzdupVvvvmGpUuXVssBnZGRwQMPPMA777xjnh0H6N+/f7UBayXZ2dl256KuK8XFxcTHxzNq1KhaZ8dtnZ/mjoryrVAoFI2PZKBcCLEcWAnslFJeNu0TwN+BRCAQ+AR4AfhjlePvBm5Du8fvB24CfgccB74GHkeb8a7kVqAbcAOwSQhxQEr5fdUGCSE6Al8B04ANQALwiRCih5QyxyG9VigUCkWjZNOmTTz22GO4ubnxyiuvmLe3bt2agoIC8//5+fmANoMcGRkJaLOiBw8erDarrAcHDx4kOjoaX19fevbsadbbs2cPKSkpjBo1CoDCwkJSUlJqnT3Nzs6+bjZ32LBhbN++HU9Pz2ruzJb66+7ublX3gw8+YP369UgpycrKIisri3bt2gEwdepURo4cSVRUVDXtkJAQiwPnxYsX1+Es1Y0jR47Qrl079u3bx7Rp09izZw++vr5Wy1s7P80dNaBWKBSKRoaUMl8IMRSYBfwLaC+E+Bp4UEp5CjhlKpojhHgdmFujirellNkAQoitwAUp5X7T57Vog+GqvCilLAQOCyH+C9wLfF+jzFTgaynl16bP3wkh9gB3AMsb2GWFQqFQNFLS09M5d+6cOSjW+fPnza7IQohq/8rLy2utTwjR4DZVraOsrKzWeocPH87SpUvrpOHj41PNbRy0AeN7772Ht7c3EydOrLUOS7rbtm1j8+bNrF+/Hj8/P4YPH05FRYV5/xtvvMHcuXPZu3cvAwcONG8vLi7Gx8enTn1oKJWD/AEDBhAaGkpqaqr5xYEl6np+mgvK5VuhUCgaIVLK41LK6VLKMKA30AF40+S+vVIIkSGEyAf+BwTXOLzqK+xrFj63qFG+qi/eOZNWTSKAe0zu3leEEFeAoYB1/zuFQqFQNHk2btzItGnT2LVrF7t27WL69Ols2rTJ5jFpaWmcPHmS4uJidu/eTd++fc37Wrduzfnz5+3WDwgI4PLlyxa3Xbt2jZMnTwJahOwff/yR4uJiTpw4YXYzHzRoEDt27CAjI8PcNntcpCMjIzlz5ky1bdHR0ezfv589CWIVfwAA8oZJREFUe/ZUi5Rtqb/WdAsKCggKCsLPz4/jx49z5MiRahr9+/fn9ddf5/HHH682oD99+rTFwWxd1lDbomY9lecXNHf6zMxMwsLCbNZh7fw0d9SAWqFQKBo5UsoTwHtoA+v5gAT6SCkD0WaOG/q6v6ofXifA0pNOGvCBlLJVlX/+UkrbYT8VCoVC0aTZtGkTQ4cONX8eNmxYtXXUloiIiGDevHnEx8czbdo0OnXqZN736KOP8uKLL5qDjKWmpmIwGPj73//O2rVrMRgMfPfdd+byDz74IFOnTmX06NHmgfATTzzBPffcw+zZs+nYsSOguV1PnTqVYcOGMX/+fCIiIgDNVfq1115jypQp3HLLLTzwwAN2peG6/fbbq0WtBvD29qZLly506NChmuuzpf5a001ISKCiooKYmBj+/ve/V3vZUMnNN99s7kclW7duZeTIkdeVrcsa6meeeYbbb7+dU6dO0atXL9avX2+1nuTkZIYNG8bQoUOZNm0ab775Jv7+/jbrt3Z+mjtCSunqNigUCoWiCkKIHsCdwCopZboQIhxtLfUxoCWQBzwMtAdWAxGmmWyEECnA7yvXQJvySJ+SUr5g+vx7YLKUcoQQojNwFlgBPAh0ATYDU6WU3wohXgBulFJONbXhR+A+NHdwTyDGVHe6vmdEoVAoFLWxY8cO2aNHD1c3g9TUVCZPntzgFE+u5tq1a4wdO5b169fj4WF9layz+nvHHXfw4Ycf0rp1a111FJbZt2/f3oSEhEGW9qkZaoVCoWh8FADRwC4hRCGwEzgCPI0WTGwA2qD6K+BTB+j9gLYueyOwUEr5bc0CUso0YBzwFyAHbcb6GdTviEKhUCiaIb6+vvzlL3+pk3u6Xly8eJHHHntMDaYbKWqGWqFQKH6hVJmh9pRSlrm4OQqFQqFoAI1lhlqhaI6oGWqFQqFQKBQKhUKhUCgcjBpQKxQKhUKhUCgUCousWLGCbt26YTAYmDx5MufOnTPvO3XqFHfccQcxMTEMGzaM9PT6h9TYsWMHMTExGAwGTpw4Uev2urJkyRK7gpE1Z2bPnk1kZKTdEbj37NnD0KFDiY6O5v777zdvDw4OxmAwYDAYeO6552zW8ac//Yl///vf5s/vvfceM2fOrF8HGilqQK1QKBS/UKSUKVJKody9FQqFQmGL8ePHk5iYyKOPPsqkSZPM+aYffvhh5syZw86dO1m5ciV+fn711vj444956qmnSExMpKrrurXtdeXdd981p4H6pTJmzBhWrlxpV9mKigoeeeQRFi5cyK5du3j11VfN+3x9fUlMTCQxMZEFC2wn+xg2bFi1aOlJSUnEx8fXq/2NFTWgVigUCoVCoVAoFLViMBho06YN+/bt48iRI3h7exMTEwNAaGgobdq0sXn8//3f/xEbG0tsbCwffvghAHl5eRgMBj777DPmz59vnom2th20wXF0dDRDhw7lhRdeMNe/YcMGRowYQVxcHM8//zwAW7ZswWAwkJWVxdixY83pupoLdclDHR0dTVBQkF1lDxw4QFBQkPn6BgcH16t9BoOB3bt3mz/v2LEDg8FQr7oaK9ZjwCsUCoVCoVAoFApFFcLCwkhNTcXb25vOnTvbfVxqaipLly7lhx9+oKysjLi4OEaOHElISAiJiYk89thjjBw5knHjxpmPsbZ9wYIFHD58mICAAHJycgDIyclh4cKFrFu3Dj8/P6ZPn05iYiLx8fEkJibSr18/1q1bZ/eAsqlgbw7qupKenk5gYCATJ04kJyeH3/72t/zud78DoLi4mPj4eHx8fJgzZ45NF/KWLVvSoUMHTpw4gZeXF23atCEkJESXNrsKNaBWKBQKhUKhUCgUdiGEAKCumYIOHTpETEwMLVq0AGDAgAEcPXq0Xu6/N910EzNnzmTkyJGMGTMG0Nb7pqSkMGrUKAAKCwtJSUlpdrOhNVm8eLEu9ZaUlLBr1y6SkpIIDAwkISGBhIQEOnfuzJEjR2jXrh379u1j2rRp7NmzB19fX6t1DRs2jO3bt+Pp6dns3L1BDagVCoVCoVAoFAqFnaSlpdGpUyd8fHxISUlxSRvWrFnDzp07+fTTT/nXv/7F5s2bARg+fDhLly51SZuaGyEhIURGRhIWFgZAv379OHnyJJ07d6Zdu3aA9lIkNDSU1NRUIiMjrdY1bNgw3nvvPby9vZk4caJT2u9M1BpqhUKhUCgUCoVCUSuJiYnk5uYyYMAA+vTpQ2FhITt37gQgKyuLS5cuWT22b9++7Nq1i8LCQvLy8ti/fz+9evWqcxuklKSnp3PLLbfw17/+lbS0NAAGDRrEjh07yMjIALSBf1V36ICAAC5fvlxnvcZOXdZQ16WeAQMGkJGRweXLlzEajRw7doyIiAguX75sDu6WmppKZmamedBtjejoaPbv38+ePXvsjjDelFAz1AqFQqFQKBQKhcIqa9euZefOnbRv355Vq1bh7u4OaMHB/vjHP3L58mU8PT1ZuXKl1cBknTp14sEHH+S2224D4Nlnn63XWlopJQ8//DAFBQWUl5ebB4EhISG89tprTJkyhbKyMvz8/KrNVj/44INMnTqV1q1b895775lnWZs6dVlD/cwzz/Dll1+Sm5tLr169WLhwIaNHj7ZYT2BgIC+//DLjxo2jtLSUiRMn0r17d3bt2sXMmTPx8vLC3d2dN998E39/f5u63t7edOnShfLycpuu4U0VUdf1DwqFQqFQKBQKhaJxsWPHDtmQtFIKhcI6+/bt25uQkDDI0j7l8q1QKBQKhUKhUCgUCkU9UANqhUKhUCgUCoVCoVAo6oEaUCsUCoVCoVAoFAqFQlEP1IBaoVAoFA1GCDFdCLHN1e1QKBQKhUKhcCZqQK1QKBR1RAiRIoS4JoS4WuVfB1e3q7FibbBtOo8jXNEmhUKhUCgUCkegBtQKhUJRP+6SUrao8u981Z1CCJWWUKFQKBQKhaKZowbUCoVC4SCEEFII8ZgQ4iRw0rRtjBDigBDiihBiuxCib5XyNwkh9gkhCoQQq4QQK4UQL5n2XTera6r/RtPf3kKIhUKIVCFEthDiXSGEr2lfvBAiXQjxtBDighAiUwhxf5V6fIUQrwkhzgkh8oQQ20zbvhJCzKyheUgIMb4e5+JVU70t7Sx/sMaMvxRCxNdVV6FQKBQKhcKZqAG1QqFQOJZfAdFAlBDiJuA/wENAEPB/wDrTYNgL+Az4AGgDfAzcXQedBUB3oD9wI9ARmFNlf3ugpWn774DFQojWpn0LgYFArEn7WaACWA5MraxACNHPdPxX9jZKCOEmhPgX0BcYKaXMs+c4KWW/ytl+4CngJ2CfvboKhUKhUCgUrkANqBUKhaJ+fGaadb4ihPisyva/SykvSSmvAX8A/k9KuUtKWS6lXA6UADGmf57Am1LKUinlGuBHe4SFEMJU95MmrQJgPjC5SrFSYJ6p7q+Bq0CkEMINeAB4QkqZYWrXdillCbAO6C6E6GaqYxqwSkpptPOceAIfoQ3S75JSFlXZF1PlfF0RQlwBOlno21DgJWCslDLfTl2FQqFQKBQKl6DW+CkUCkX9+JWU8nsL29Oq/B0B3FfDjdoL6ABIIENKKavsO2endgjgB+zVxtYACMC9SplcKWVZlc9FQAsgGPABTtesVEpZLIRYBUwVQrwI3AtMtLNNoM2U9wNutjAI3ymlHFp1gxAipcbncGA1cJ+UMrkOugqFQqFQKBQuQc1QKxQKhWOpOkBOA16WUraq8s9PSvkRkAl0FFVGxFSfsS1EGzQDIIRoX2XfReAa0KtKvS1N7tK1cREoBrpa2b8c+A2QABRJKXfYUWclx4H7gfVCiMg6HIdp/fdnaDP26+tyrEKhUCgUCoWrUANqhUKh0I9/AQ8LIaKFhr8Q4k4hRACwAygDHhdCeAohJgA3Vzn2INBLCNFfCOEDvFC5Q0pZYar7DSFEWwAhREchxO21Nch07H+A14UQHYQQ7kKIIUIIb9P+HWjrqV9DW99tRgixRQjxQs06a9T/EfAX4HshhLVBuyX+A5yQUv6jDscoFAqFQqFQuBQ1oFYoFAqdkFLuAR4E/glcBk4B0037jMAE0+dLwK+BT6scmwzMA75HixheM4/zLFN9O4UQ+aZy9s4K/wk4jLZm+xLwCtV/D94H+gD/q3FcOJBUW+WmteLzgE1CiM52tmkyML5GpO84O49VKBQKhUKhcAmi+vI9hUKhULgKIcR7QLqU8q8ubsdvgT9UXfMshAgDVkspY13XMoVCoVBYY8eOHbJHjx6uboZC0SzZt2/f3oSEhEGW9qkZaoVCoVCYEUL4AY8CS6tul1Kmq8G0QqFQKH4pjB8/nrFjx5o/r1ixgm7dumEwGJg8eTLnzv0cR/TUqVPccccdxMTEMGzYMNLT013RZIWLUANqhUKhUABgWoOdA2QDK1zcHIVCoVAoXEJRURFnz54lMzOTq1evmrePHz+exMREHn30USZNmkR5eTkADz/8MHPmzGHnzp2sXLkSPz8/a1UrmiEqbZZCoVA0EqSU012s/w3g78o2KBQKhULhapKSkoiOjsbDw4OtW7cyevToavsNBgNt2rRh3759+Pr64u3tTUxMDAChoaGuaLLChTTZAbUQYhTwFlre1X9LKRfU2O+NFlhnIJAL/FpKmWLa92fgd0A58LjpIdLR7fsPMAa4IKXsbWF/PPA5cNa06VMp5TxTNN9EwBvt+qyRUs7VoX216lg7h6YgQ8eBn0xFd0opH3Z0G01tcAf2oOXrHVNj33TgVSDDtOmfUsp/m/b9A7gTzQvjO+AJqUPAACFEK+DfQG+0dEkPVE0zJIToAfwXGAA8L6VcWGWfTRt2QNsigVVVNt0AzJFSvlmjXDzwJuAJXJRSDnOWHZr0n0AL3CWAf1lon61zmAIUoH2Xy6SUFte21KNN131/hRBt0M5nZyAFmCSlvGzh2E5oNhGOZhN3mL43CWj26gZcBaZLKU85sH2vAncBRrQc0/dLKa/UOC4c7TvdztS2pVLKt+rSvwa28W/AOLQo4hfQzsH5GsfdCrxRZVMPYLKU8jMhxDJgEJqtJJuOv0o9sNK+F9BsMcdU7C9Syq9rHGfrHNZ6fEPbaNo+E3gMze6/klI+W+M4q999IUR/4F20XORlwKNSyt2Oap899QshIoC1aN8FT+BtKeW7pn0DgfcAX+BrGnjvttLGfqY2tkCz9d9IKfMtHPsk8Hu063wY7TtV7GA7tGhPQoh70CL790TL677HwrFW79OmdHwvAfeg2ckSKeUiB7ex1nuO6Xhr59Eh90Rb30nT/qeBhUCIlPKilToCgWPAZ1LKGaZtDrXFpsyiRYtYs2ZNtW3jxo3D09OzSW9/+umnrfZ506ZNGAwGPDw82Lhx43UDaoCwsDBSU1Px9vamc+fOVuuqSXM9n/U5z82FJhmUzDTISgZuA9LRItXeK6U8VqXMo0BfKeXDQojJwHgp5a+FEFHAR2jpaTqgRcbtLqUsd3AbDWg/EO/bGFD/ycIgUQD+UsqrQghPtMi+T0gpdzq4fbXq2DiHnYEvLfXL0QghnkJ7cAm0MqAeVPnjV2V7LNqPtMG0aRvwZynlFh3atxzYKqX8txDCC/Cr+kBhSmkUAfwKuFw5GLTHhh3cTne0Fw/RUspzVba3ArYDo6SUqUKItlLKC060w97ASrTvoxHYADxc9aHK2jk07UtBswGLD0kNaNd131/TS5pLUsoFQojngNZSylkWjt2Clnv6OyFEC6BCSlkkhEgGxkkpj5u+WzfXd0baSvtGApuklGVCiFcAarZPCBEKhEop9wktddde4FdSymP29q+BbQysHLgIIR4Homy9jDMN8k8BYaZzWPX419EGSfV6EWWlfS8AV6vamIXjbJ3DWo93QBtvBZ4H7pRSllR+Z23UUe27L4T4FnhDSrleCHEH8KyUMt6B7au1ftO9Upja3wI4AsRKKc8LIXYDjwO70AYxi2QD8pJbaeOPaL+/PwghHgC6SCln1ziuI9p9L0pKeU0IsRr4Wkr5noPt0KI9oQ0MK4D/M7XV0oDa6n1aCHE/cCvaILWiNjupZxvDqP2eY+s8OuSeWMt3MhztBWcPYKCNAfVbQAjaPbByQO1QW3QGKiiZ44iOjuaTTz7Bzc2NMWPGsG/fPlasWMGBAwf4xz+07I5/+MMfuP322/Hy8mLDhg0sXrzYxa1W6ImtoGRNdYb6ZuCUlPIMgBBiJdqsR9XByDh+ztu6Bvin6cdnHLBSSlkCnBVCnDLVtwMHIqVMFPani6l6nET78Qftzb0n2g+rQ7FTx9o5dApCiyp8J/Ay8FQdDpVosyNeaDMInmhrQh3dvpZog/bpYE6DZKzWEO0B5oIQ4s4ah9tjw44kAThddTBtYgqad0RqlfY6zQ7RZl92SSmLAIQQP6ClkjLnIrZxDnXDyvd3HBBv+ns5sAUtdZUZ0ws7Dynld6Z6qs5aSSDQ9HdLoNrMbEPbJ6X8tsrHncBEC8dlApmmvwuEEMeBjmh2V2v/HNDGqrOA/tRuUxOB9ZX2UWUQI9Bmjeptkw24R9s6hw7FShsfARaYfsPM31kb1Pzu62qH9tRvuldW4o0pnotpYBRY+eJOCPE+2sCt3oMYK23sjjazC5oH0zfAbK7HA/AVQpQCfpV9cbAdWrSnynuIrZ/cWu7TjwBTpJZ33h47qU8ba73nmLB4HnGQLdbynXwDeBbNI9AiQpuJbof2QneQaZvDbbEp01xnVK3NnKanp3Pu3DnuvvtuAM6fP8/p06evK5eWlkanTp3w8fEhJSXFYl2WaK7n85c8Q91UB9QdgbQqn9OBaGtlTG9P84Ag0/adNY7tqF9TbTJECHEQ7UfkT1LKo2CeUdgL3AgsllLu0kPcDh1r5xCgixBiP5AP/FVKuVWHJr6J9kMYYKPM3aYZiGTgSSllmpRyhxBiM9oPrEBzBT+uQ/u6oLl2/ldoLoR70WYHCu041h4bdiST0TwzatId8DTNqgYAb0kp3wen2eER4GUhRBBwDbgDzcXfXiTwrRBCAv8npVxa2wENoJ3pwQ0gC+0BrCbdgStCiE/R7ON74DmpecD8HvhaCHEN7XsTo2NbH6C6y+91mAYZN6HNvoB9/WswQoiXgd8CeWgzaLaYDLxe4/j/otnJMUCPX+kZQksbtgd4Wtpwe7dwDut0fD3pDsSZzmMx2m/HjzbK1/zu/xH4RgixEG0g6+jI7XbVb5o5/Art/vKMaXZ6ENq9sBK9fp+Por1A+gzNJTq8ZgEpZYapD6lo96Zvqw4g9bBDK/ZU2zHW7tNdgV8LIcaj/U49LqU8qWMbLd5zajmPDr8nVm2fEGIc2nKxg9ZeTAgh3IDXgKnAiCq7OuIcW2wSPP744zz++ONW9zXl7ZbYuHEj06ZN49VXXwXgueeeY9OmTfj7/xxiJDExkdzcXAYMGIC7uzuFhYXs3LmTmJgYsrKy8PLyok2bNlbb0tjOgyvOc3NCRfl2HfuACCllP+BttB92AKSU5VLK/mjuVDcLzS3W4TRAJxPoJKW8CW3meIXQ1h85DCFE5Zq3vTaKfQF0llL2RZtlWG469ka0mc8wtB/A4UKIOEe2z4QH2rreJaZzUQg8p4NOgzC5V44FPraw2wNtjfydwO3AbCFEd3COHZpedLwCfIs2O3AAbb2fvQyVUg4ARgOPmV6u6I5pZsjSrJQHEAf8CRiMtnZ1umnfk2jrqcPQ1oS/buH4BiOEeB5t7eqHNsq0AD4B/igtrB210b8GI6V8XkoZbmrfDGvlTDNEfdBmD6sefz/acp3jwK8d3LwlaAOR/mj3uddstM/SObT7+AbgAbRBG3w8A6y25jlk5bv/CNrLx3A0m1zm4PbZVb/p5WdftIHgfUIIXV7gWOEB4FEhxF60F4nGmgWEEK3RBt1d0OzNXwgxtXK/o+2wtu+kNWzcp72BYqnFlfgX8B+92mjrnlPLeXToPbFq+0zt+Qswp5bDHkVzQVc5jhRmNm3axNChQ82fhw0bxsaNGwFYu3YtBoOBf/7zn6xatQp3d3cA3n33XV544QWio6OZOHEiRUVFLmm7wjU01QF1BtXfKIfxc2Cq68oIITzQ3Ily7TxWd6SU+ZXuoFILWuMphAiuUeYKsBkYpXNbrOlYPIdSyhIpZa7p2L1owUi6O7hZtwBjhbZGdiXaoPh/NdqdW+n2iLZGaqDp7/FogdKums7xemCIg9sH2hvr9CozAmvQBtj24Ew7HA3sk1JacntPB76RUhZKbW1ZItCvagG97VBKuUxKOVBKaQAuo3kb2Htshun/C2hBjm7Wo40msk2DvMrBniUXynTggJTyjJSyDO1F2QAhRAjQr4qtrMLxM4OVcQXGoAVZsjggFtpay0+AD6WUn1bZZU//HMmHwN029k8C1kopS2vuMM34r6zl+Dojpcw2DVAq0AYhFu3J2jm09/gGko62TENKLdhXBRBspayl7/59QGWbP9ahjXWqX2pB6Y6gvYjKQLsXVqLLfVFKeUJKOVJKORBt9v56X05ttvKslDLHZIOfUuM76yg7tPGdtBsL9+l0fr4Oa4G+erTRjnuOxfPo6HuihfZ1RRvEHzQ9R4QB+4QQ7WscOgTNqyQFLXDZb4UQC3CSLSoaJ8uXL2fcuHHmz6NHj2blypVMmTKFkydPkpiYyOrVq+nSpYu5TI8ePdiwYQO7du1i27ZthIWFWapa0UxpqgPqH4FuQogupjfwk4F1NcqsQ/thB21dzybTzX4dMFkI4S2E6AJ0A+oV4bQhCCHaV84qCCFuRrsWuUKIEKEFikII4YsWtOqEDvr26Fg8h6Zj3U3H3oB2Ds84sn1Syj9LKcOklJ3Rru8mKeXUqmUqH/5NjEWbKQDNtWyYEMLD9CM7rMo+R7YxC0gTWkRd0NYq2ruO0h4bdhT3YtndG7R1ZUNN58oPze38uLPs0FR/W9P/ndDWT9uV/1gI4S+0ADQIIfyBkWgP5npR9ftwH5bX5P0ItDI9LAIMR7OJy0DLytl/tPPpUJsUWtT4Z4Gx0rTm2EIZgTZjeFxKWXM2yJ7+NbSN3ap8HIdtm6pmt0Ljxsq/0b7zDrXJGveU8ViwJ1vn0J7jHcBnmFzlTfbkBVgLymfpu38e7Z4Imn022A24rvULIcJM95XKGcyhwE+mJQf5QogY03n+LfrYYeU9xw34K1rE75qkAjFCCD9TWxLQ7o0OtcNavpO1HWvrPv0ZPy+pGEYdXlTa20Z77jlYOY848J5oqX1SysNSyrZSys6m54h0YIDpd9uMlPI3UspOpjJ/Qgte95yzbFGhUDQPmuQaaqmt552B5groDvxHSnlUCDEP2COlXId2c/1AaEHHLqENWDCVW432kFsGPCYdHOEbQAjxEVqAn2AhRDowFy1gCFJLDzIReEQIUYa2rmiyabAaCiw3DVjdgNVSyi8d3T7Aoo495xAtENc8oQUYqUCLynxJhzZeR432PS6EGIt2HS/xs2vtGrQHucNobqsbpJRf6NSkmcCHpkHxGeB+IcTDoF1n09vwPWiBVyqEEH9Ei3aab8mGHd0400DzNuChKtvM7ZNadNUNwCG0a/lvKeURIURfnGOHAJ8IbQ11Kdr38Yo95xBtVm6t6b2UB7BCSrnBEQ2y8v1dgOZe+zvgHNoMKkJb9/mwlPL3UspyIcSfgI2mh7C9aKnAyoQQD5r6WoH2MPmAg9v3ZzQ3z+9M52Sn1CL0d0C7rnegeX5MAw4LIQ6YqqtM7WSxfw5u4x2mF1AVJo2HTWXN59D0uTOaB8cPVatEs8lA098H0dyLHdm+eKGlfZJo6ZQeMpW19xz+w9LxDm7jf4D/CCGOoLkq32f67ajaRovffRMPAm8JzeuoGPiDg9tnsf4a17gn8JrQYh8IYKGU8rCp2kf5OVXRehoYBMpKG1sIIR4zFfkUzd242nWWUu4SQqxBW55VBuwHluJgO8SKPaF9l99Gizz9lRDigJTy9hrX2dbzwgK036Yn0QKX/V6HNi6ilnuOtfPo4Huire/kddS839jAobaoUCiaL00ybZZCoVAoFAqFQqH4GT3TZr3xxhusXr0agMjISN577z2H1X3y5El+97vfcfbsWdatW8dNN91Ubf/69ev56aef+OMf/+gwzars2LGDJ598Ei8vL5YuXUpzTz1WUFBAdHQ0jzzyCDNnzgS0yOMrV66koqKC8ePHM2uW7SQf1srPnj2b1atXExQUxPbt22ttS79+/di0aRNBQUHmbTXTk02ePJkZM2ZUW9fuCppj2iyFQqFQKBQKhUKhM/v27WPDhg388MMPeHl5cejQIYfW361bNxITE7nrrrss7h89ejSjR492qGZVPv74Y5566ikmTWqQY1aT4fXXX6dfv5/D5WRkZLB8+XJ27tyJlJLo6GgmT55MRESExeNtlR8zZgwTJkzgscces3hsc6WprqFWKBQKhUKhUCgUOpOWlkZwcDBeXl4A9O37c4y7e++9l7i4OIYPH86//vUvABYsWMCYMWMYOHAgzzzzDIMHD+bixYukpqYycOBA7r//fmJiYnjrrbdq1X7kkUfo06cPzz77bLXt4eHhzJo1i8GDB/PEE0+Yty9atIjo6GimTJnCgAEDSE1NtVp3Xl4eBoOBzz77jPnz52MwGDhxQgtDsG3bNsaPH899991HbGwsf/7znwHYsGEDI0aMIC4ujueff76abkxMDPfffz8DBw60qeto5s2bx7x58+wqe/LkSXJycqoNqAHKysooKSmhpKQELy8vAgNtJ++xVj46OrrabLO9nD17lvj4eIv5vqsyadIkDAYDBoOB4OBg8vPtToqgK2qGWqFQKBQKhUKhUFgkPj6ev/3tbyQkJDB69GimTp1K+/ZawPSFCxfSsWNHSktLiY2NZezYsQCMGjWK9PR0wsLCSEhI4Mcff6RXr16kpKSwYsUKOnXqRFxcHBMmTCA8/LpU8GaWLFlidgGuSmFhIRMmTOCll15iwIABZGZmUl5ezvLly0lMTCQjI4MhQ2wneGnZsiWJiYk89thjjBw5slpkb4Ddu3fz3XffERUVRV5eHjk5OSxcuJB169bh5+fH9OnTSUxMpHPnzvzvf/8jMTGRc+fOERvr8CQeNsnOtpTExTLz5s1j/vz5fPjhz1nuOnbsyEMPPUTfvn0pLy9n3rx5tG7d2moddS1fGxkZGTzxxBO88847dO3alV27drF27Vp27twJwLlz55gxQ8uyWbns4MMPP2Tr1q21DvydhRpQKxQKhUKhUCgU/8/eeYdHVeUN+L3phSSEJCRAICLSQkcwBRiQIIIFBFGBRRdXXVcBXSuWtbEWXLGsyKKufoquLCjKigqo1BgIvfeaRnohCWmTydzvj0kmM8nMZNJ/ifM+Dw+ZW859z7ln7tzTHVjEz8+PuLg4Nm/ezI8//sj48eOJj4/Hz8+PL7/8kg0bNqCqKunp6aSnGyZS9/f3p7Cw0Ph/VUti9+7d6dvXsDhKREQEhw8ftlmgtoabmxsREREAhIWFkZmZSXJyMpGRkXh7e9OnT58GhWvKkCFDCA8PN6bBhg0bSEhIYNIkw+p0RUVFJCQkkJ+fz8iRI/Hw8KBv376Nvm59WbZsmV3Hbdy4kV69etXyu3z5Mps2beLQoUOUl5czefJkbrzxRmOlSU3qe3xdzJkzh4kTJxrTGmDatGlmY6hNOXPmDB9//DE//fRTg67XHLTrAvX69etVT0/P1tawSV5eXqNqdZob6X4g31G6H8h3lO4H8h2l+4F8R+l+IN9Ruh/Id5TuB/Id8/Ly8PPzU2NiYhxDH+3Ew8ODm2++mZtvvplZs2axd+9ePDw82Lp1Kxs2bMDLy4vx48ej1+sBUBTF7F9FRd0L6lTOFm8Xrq6uZudVXbcpsdT6OX78eD7++GOzbT/80FwLyTQt+/fv54cffmDDhg3k5OTg5ORESEgIbm5uhIaGGuM7aNAgjh49arWAvH379nodXxfvvvsuL730Evv37+faa6+1eWxZWRkPP/ww77//Ph06dGjQ9ZqDdl2gTk9PZ9q0aa2tYZPIyEhjlwaJSPcD+Y7S/UC+o3Q/kO8o3Q/kO0r3A/mO0v1AvqN0P5DvGBkZyb/+9a+S1vZoKyQmJqLT6ejVqxclJSUkJSXRtWtXEhMTCQgIwMvLi5MnT3Ls2LE6w0pOTubs2bN0796dPXv2mM0m7e/vT2pqaq1Zvu1l6NChvPzyyxQXF5OSkkJycnKDwrHGiBEjePrpp7l06RLdunUjOTkZNzc3Bg8ezN///ndKS0tJTk6udd2q8c0vvvhik/rUN/znn3/eOO578eLFeHt7c8cdd7Br1y4OHjxIWVkZer2eI0eOmI1Zrxl+cHCwzePry9ChQ3nnnXd45JFH2LJli81jX3jhBW6//fZaY8Bbm3ZdoG4LODs7t7aCTaT7gXxH6X4g31G6H8h3lO4H8h2l+4F8R+l+IN9Ruh/Id5TuJ42SkhLmz59PUVERqqoyc+ZMwsPDueaaa1ixYgWRkZH06dPHbLIya4SFhbFo0SLOnj3L3XffTY8ePYz7Hn74YRYsWMCbb77J6tWrKS8vZ86cOeTl5VFaWsquXbt44YUXuOGGGyyGHRoayj333MP1119P3759CQsLM06k1hQEBQXx9ttvM3v2bHQ6HV5eXnz88cf07NmT2bNnM3bsWON1TanPGOeG0NjwIyMjGT9+PBqNBkVRuPvuu43d8i2Fb+v4p556ih9//JGcnBwGDBjAkiVL7Jqh/brrrmPs2LG8/vrrZteuyaeffkp4eDj//e9/Afjpp5/w8fFpSLSblHa9DvX//d//qdJbqEeNGsWOHTtaW8Mq0v1AvqN0P5DvKN0P5DtK9wP5jtL9QL6jdD+Q7yjdD+Q7jho1iqVLlxbHxMR4t7ZLU9Kc61A3BUlJScycOdOu9YkbSmFhIT4+PuTk5HD99ddz+PDhenUlbwqio6NZtWqVWWWBg7bP73Ydaj8/v9ZWqJObbrqptRVsIt0P5DtK9wP5jtL9QL6jdD+Q7yjdD+Q7SvcD+Y7S/UC+o3Q/Bw3n+eef58CBA4ChW3NLF6Yd/D5p1y3UW7ZsURs6DqOlyM/PF13wl+4H8h2l+4F8R+l+IN9Ruh/Id5TuB/IdpfuBfEfpfiDfMT8/n/PnzztaqB04cGA3tlqo2/Xshs0x419T09QTJjQ10v1AvqN0P5DvKN0P5DtK9wP5jtL9QL6jdD+Q7yjdD+Q7Svdz4MBB26JNF6gVRZmkKMppRVHOKYryTGv7NATpXVGk+4F8R+l+IN9Ruh/Id5TuB/IdpfuBfEfpfiDfUbofyHeU7ieRd999l6ioKKKiopg7d26Thn327Fk0Gg3du3fn4MGDtfZv2LCB9957r0mv2Rw01DM6OpqkpKSmF6pBamoqkydPJioqinHjxrF161bjvrVr1zJixAhGjhzJxo0b7QqvsLCQ8PBwli5datz26quvEh0dzbhx40StE93ctNkx1IqiOAPLgBuAFGCvoijrVFU9UXWMk5P8+oIuXbq0toJNpPuBfEfpfiDfUbofyHeU7gfyHaX7gXxH6X4g31G6H8h37NKlCwkJCa2t0WY4cOAAGzduZPv27bi5uXHkyJEmDb93797ExsZy6623Wtw/efJku2aKbm2ke7q4uPDWW28xcOBAkpOTmTRpEsePH0er1fLKK6/wyy+/oNVqmTJlChMnTqyzHPXOO++YLV918OBBtm7dSmxsLPn5+YwdOxaNRiNiFu7mRn6J0zrXAedUVb2gqqoWWAVMNT2gLXT5TklJaW0Fm0j3g8Y7PvPMM/Tt25dOnToxc+bMJrKq5veQhs2NdD+Q7yjdD+Q7SvcD+Y7S/UC+o3Q/kO8o3U8aycnJBAYGGpegMl0ea9asWYwZM4bx48fz73//GzBMBnbLLbdw7bXX8tRTTzFy5Eiys7NJSkri2muv5d577yUyMpJ//vOfdV77oYceYtCgQbXWOe7evTsLFy5k5MiRPProo8bt77//PhEREcyePZvhw4fbbPm15bNx40YmTJjAmDFjjGs3A8TFxTFt2jT++Mc/Eh0dzbPPPmvT86OPPiI6Opro6Gi++uqrWp5z586lrKysznSwxaJFi4xrRduic+fODBw4EDCkn1arpaysjP3799OvXz86d+5MaGgo3bp14/jx4zbDOnv2LFlZWWYF6osXLzJw4EBcXFwICAigS5cuFnscmNK9e3fj37feeqvx+A8//JCIiAhGjx7Nyy+/XGfcWps220INdANMB8GkABGmB7SFLj3+/v6trWAT6X7QNI7Tpk3j448/bgKb2vxe0rA5ke4H8h2l+4F8R+l+IN9Ruh/Id5TuB/Id/f39ycrKam2NNsO4ceP4+9//TkxMDJMnT2bOnDmEhIQAsGTJErp160Z5eTnR0dFMmTIFgEmTJpGSkkJoaCgxMTHs3buXAQMGkJCQwMqVK+nRowdjxoxh+vTpZoWqmixfvpyVK1dy6NAhs+1FRUVMnz6dV199leHDh5OWlkZFRQUrVqwgNjaWS5cuERUVVWfcLPl4eHiwZMkS1q1bh5eXF3PnziU2NhaNRgPAnj17+PXXXwkPDyc/P9+qZ1JSEh9//DHbt29Hp9MxZswYJk6cSElJCV988QW//fYbCQkJjB49uj63oxYNWYd68+bNDB48GHd3dzIyMggODuazzz6jY8eOdO7cmfT0dAYNGmT1/EWLFvH666+bVRL069ePd955h+LiYnJzczlz5gyZmZkNitPixYs5evQoPj4+beK72pYL1HVSUVHBqFGjcHFxoaKigunTpzNv3jzS09Px9vbG2dmZgoICgoKCyM3NRVVVgoKCyMjIoEOHDgBcuXKF4OBgsrKyUBSFTp06kZWVha+vLxUVFRQVFRESEkJ6ejqurq74+fmRnZ2Nn58fWq2WkpIS4343Nzfj2nj+/v6UlJSQk5NjzLgeHh54enqSl5dHQEAAhYWFaLVa4/menp64ubmRn59PYGAg+fn5lJeXG/c3R5zy8/Pp1KlTveJUWlpq3N8ScSosLCQxMbHB9+nxxx/n/PnzfPzxx5SUlJCWltakccrLy0Ov1zfrfWpI3jONU2FhIX5+fqLynmmciouLyczMFJf3TOOUm5vb7PepMXHKycnB09NTXN4zjVNpaSlpaWmi8p5pnLRaLYmJieLynmmccnJy6NChg6i8ZxqnnJwcAgICxOU90zhV3WdJec80TsXFxSQmJorLe6ZxMn23kZL3TOOUm5vb7O+g7Qk/Pz/i4uLYvHkzP/74I+PHjyc+Ph4/Pz++/PJLNmzYgKqqpKenk56eDhgqLQoLC43/FxQUAIYWyb59+wIQERHB4cOHbRaoreHm5kZEhKEdLSwsjMzMTJKTk4mMjMTb25s+ffrYFa4lH2dnZxISEpg0aRJgKLwnJCQYC9RDhgwhPDzcmDbWOHLkCJGRkcbvzfDhwzl+/DiFhYVERETg6elJ//79GxR/U5YtW1av4zMyMnjhhRfMCsMA9957LwA//vijzfM3btxIr169anmHh4cza9YsJk2aRJcuXRgzZgzu7u71cqti2LBhLFiwgIkTJ3LLLbc0KIyWpC0XqC8BpncytHKbEScnJ3bs2FHrxLCwMOPfVbWoXl5eFvcHBAQA5l0STPcHBgbW2ubtXXsVBtP9VV8sX19fMjIycHd3N9vv6+trdlzN8zt27FjrOs0VpyNHjuDt7V2vOFna35xxunTpkvHvht6n0tJSADw9PY1jv5oqTqbbJeU90/1HjhzB19dXVN4zjdORI0fo3LlzveJURUvFSVEUQkND7Y5TTZo7Tk5OTkYXSXnPNE5HjhwxG3spIe+ZcuTIEXr37l2vOJke1xJxcnJyMp4nJe+Z7k9OTsbLy0tc3jM9ruZ9lpD3TPdnZWUZCwCS8p7p/tTU1FrvNq2d90zj5ChQ1x8PDw9uvvlmbr75ZmbNmsXevXvx8PBg69atbNiwAS8vL8aPH28cbqkoitm/ioqKOq9Rn56lrq6uZuc19TDP8ePHW+25aJpHG0Jr9qAtLS1l7ty5LFq0iJ49ewIQEhJi1sqdmZlp7IFgif379/PDDz+wYcMGcnJycHJyIiQkhDvuuIN58+Yxb948AG644Qbje5E1TNNCp9MZ/16zZg27du3iu+++49///rfZBGoSactjqPcCvRVF6akoihswE1hnekBbmJSsKjNLRbofyHeU7gfyHaX7gXxH6X4g31G6H8h3lO4H8h2l+4F8R+l+0khMTOT8+fMAlJSUkJSURNeuXSksLCQgIAAvLy9OnjzJsWPH6gwrOTmZs2fPUlpayp49e8zGY/v7+5Oamtpgz6FDh7J7926Ki4s5c+aMXcujWfIZMWIE8fHxXLp0yXhMQ7pVDx48mN27d1NUVER+fj4HDx5kwIABDBkyhL1791JaWsqpU6cavYybvWOoVVVl/vz5zJgxgwkTJhi3Dx8+nFOnTpGVlUVKSgqpqakMGDDAavjPP/88+/fvZ/fu3dx///0sWLCAO+64A8BYWbVjxw7y8/MZOnSoTScfHx/y8vIoKSnh7NmzRs+UlBRGjRrF3/72tzaxzF2bbaFWVVWnKMp84GfAGfg/VVXNRtC3hUnJLl68aPYwkYZ0P5DvKN0P5DtK9wP5jtL9QL6jdD+Q7yjdD+Q7SvcD+Y4XL15sbYU2RUlJCfPnz6eoqAhVVZk5cybh4eFcc801rFixgsjISPr06WPXPQ8LC2PRokWcPXuWu+++mx49ehj3PfzwwyxYsIA333yT1atXU15ezpw5c4xDgnbt2sULL7zADTfcYDHs0NBQ7rnnHq6//nr69u1LWFiYcSK1+vq8/fbbzJ49G51Oh5eXl815dpKSkqx6PvDAA0bfp59+mqCgIADmzJnD2LFjjZ6Nwd7C/u7du1m3bh1nzpxhxYoVAKxevZouXbrw4osvGmcof+2118waJetTmTB//nwuXLiAq6sry5cvr7M1/tFHH+WOO+5g6NChdOvWDTAUqP/yl79QWFhIRUWFXZUFrY2iqmprOzQbmzZtUq+99trW1rDJyZMn6d+/f2trWEW6HzTe8ZdffuHkyZO88sorDBgwgAceeIBRo0bRq1cvEX4tgXRH6X4g31G6H8h3lO4H8h2l+4F8R+l+IN/x5MmTlJSUFMfExNTuh96GiY+PV/v169faGlZJSkpi5syZ7Ny5s9muUVhYaByTf/3113P48GGrhbqW8HHQfjhw4MD+mJiYEZb2tdkWantoC7N8V9VUSUW6HzTecenSpcax9sePH+evf/0rH3zwQZMVqH8PadjcSPcD+Y7S/UC+o3Q/kO8o3Q/kO0r3A/mOQUFBNpdTctB2ef755zlw4ABgmCm6LZQFHLR92nWBui20vqemphonJJGIdD9omGNpSRF7P11IUMR0fvjhh2YyM9Be07Alke4H8h2l+4F8R+l+IN9Ruh/Id5TuB/IdGzNO10HD6dGjR7O3Br///vt2H9sSPg5+H8iftasRtIVaqU6dOrW2gk2k+0HDHPeveYdrzq3E76sZzWBkTntNw5ZEuh/Id5TuB/IdpfuBfEfpfiDfUbofyHeU7ufAgYO2RbsuULeFFuqq5ZqkIt0PGuao5rdc7XR7TcOWRLofyHeU7gfyHaX7gXxH6X4g31G6H8h3lO4njbi4OMLCwtBoNERERPDZZ5/ZdV58fDyRkZFoNBpOnTrVzJatx9mzZ9FoNHTv3p2DBw/W2r98+XKKi4tbwcyc3Nxcxo8fz5gxY9BoNPz0009NevyTTz7JJ598Yvz8+eefs2DBgiZxl067LlC3BSR8wWwh3Q8a5qgqzs1gYpn2moYtiXQ/kO8o3Q/kO0r3A/mO0v1AvqN0P5DvKN1PIlFRUcTGxvLTTz/x2muvkZaWVuc533zzDY8//jixsbFIniytsfTu3ZvY2FirS0R9+OGHlJSUtKyUBXx8fFi3bh2//fYba9eu5cknn7S5IlJ9jx87dixxcXHGzzt27GDcuHFNGQWxtOsCtWMd6sYj3Q8a5qg4tdz0Ae01DVsS6X4g31G6H8h3lO4H8h2l+4F8R+l+IN9Rup9kAgMD6dmzp7FAvXHjRiZMmMCYMWN4/vnnAcjPz0ej0fC///2P119/3ayF2tLxYGgFnzZtGn/84x+Jjo7m2WeftXl89+7dWbhwISNHjuTRRx81bs/IyGD27NmMGTOG66+/nnPnztkMxxJr1qzh6aefNn5+9tlnWbVqFQAfffQR0dHRREdH89VXX9kMZ9u2bWg0GtLT05kyZQoajcauioj6Yu861K6urnTo0AGAgoICysrK0Ol0TXa8RqNhz549xs/x8fFoNBp7o9GmkV/ibARtZR1qyUj3gwY6tmALdbtNwxZEuh/Id5TuB/IdpfuBfEfpfiDfUbofyHeU7ieZlJQUAAYMGEBWVhZLliwxtmJeunSJ2NhY/Pz8iI2NZfLkybzyyivGFmprx1exZ88eFi5cyM6dO3nmmWdsHl9UVMT06dPZuXMnW7ZsMRZUFy5cyIQJE/jtt9/4/vvv8fPzq/O6NZk4cSKbNm0yDh3dtGkTkydPJikpiY8//phffvmF9evXs3jxYrKysqyGM27cOGJjYwkJCWHdunXExsbSpUuXRt+DmmRkZNi9VnRhYSGjRo1izJgxvPXWW3Wu012f4/38/OjatSunTp3iwoULdOrUSfyM/01Fu57luy1QV0ZubaT7QQMdW3C+unabhi2IdD+Q7yjdD+Q7SvcD+Y7S/UC+o3Q/kO/o5uZms6XNQW3i4+OJiooiJSWFL774And3d/bt20dCQgKTJk0CDIXchIQEq62SdR0/ZMgQwsPDAUPhbMOGDVaPd3NzIyIiAoCwsDAyMzPp0qULO3bs4OOPPwbA19cXwGY4lvD19aVPnz4cOHAAV1dXevTogZ+fH7/99huRkZHGVtvhw4dz/PjxVu/WvGzZMruP9fHxYceOHZw+fZrHHnuMKVOm4Orq2mTHjx07lp07d+Lq6trq6dKStOsCtWOW78Yj3Q8a6Ki2XO+FdpuGLYh0P5DvKN0P5DtK9wP5jtL9QL6jdD+Q79ipUyfHOOp6EhUVxapVq1i/fj2PPPKIca3n8ePHGwuw9mDr+KoCsD3HmxbqFEWps1dqfT2nTJnCTz/9hKurK7feeqtd57SFckcVffv2xdXVlWPHjjFs2LAmO37s2LF8/vnnuLu7M2NG86+kI4V23eW7LczynZ6e3toKNpHuBw1zVPUVzWBimfaahi2JdD+Q7yjdD+Q7SvcD+Y7S/UC+o3Q/kO8o3U8yN910E+Hh4axZs4YRI0YQHx/PpUuXAEhOTrbZ9bi5jwcYPXo0K1euBAwt0dnZ2Q0KZ/Lkyfz8889s3LiRm2++GYDBgweze/duioqKyM/P5+DBgwwYMMB4jr+/v8U1zn18fMjLy6u13d6xz3Vhbzipqank5uYChm7ip0+fNuuCXjOcuo63REREBAcPHmTfvn1ER0c3JDptEkcLdSsjfWyBdD9omKPSggXq9pqGLYl0P5DvKN0P5DtK9wP5jtL9QL6jdD+Q7xgUFNQsk0P9Xnj88cd5/PHHmTlzJm+//TazZ89Gp9Ph5eVlsxU4KCioWY8HWLx4MY899hiffvoprq6ufPzxx1xzzTX1Dsff35/g4GDKy8uN+blHjx488MAD3HDDDQA8/fTTZnn94YcfZsGCBbz55pusXr3aWPh84IEHmDNnDv7+/nz++ecEBwcD2D3uuS7sDSclJYXHHnsMgIqKCl566SVCQkKshlPX8ZZwd3enZ8+eVFRU4OnpWZ9otGmUttCK21A2bdqkXnvtta2tYZOzZ8/Su3fv1tawinQ/aJhj3AcP0+ucYcbGLu/lNoeWkfaahi2JdD+Q7yjdD+Q7SvcD+Y7S/UC+o3Q/kO949uxZCgsLi2NiYrxb26UpiY+PV9vz8lQOHLQmBw4c2B8TEzPC0r523eW7LSBhXTpbSPeDhjq2XO+F9puGLYd0P5DvKN0P5DtK9wP5jtL9QL6jdD+Q7yjdz4EDB22Ldl2gdqxD3Xik+0ED16Gm5XpmtNc0bEmk+4F8R+l+IN9Ruh/Id5TuB/IdpfuBfEfpfg4cOGhbiC5xKorylqIopxRFOaIoylpFUTqa7HtWUZRziqKcVhTlRkvnO9ahbjzS/UC+o3Q/kO8o3Q/kO0r3A/mO0v1AvqN0P5DvKN0P5DtK95NGXFwcYWFhaDQaoqOjefvtt832b9iwgffee6/WecuXL3fMpi6MF154gb59+5pNGJaamsrkyZOJiopi3LhxbN26tc5wunfvbnXf7zE/iC5QA78CA1VVHQycAZ4FUBQlHJgJDAAmAf9SFMW51SwbgfQB+9L9oKGOLdflu/2mYcsh3Q/kO0r3A/mO0v1AvqN0P5DvKN0P5DtK95NIVFQUsbGxxMbGsmrVKpKTk437Jk+ezF//+tda53z44YeO7vXCuOWWW1i1apXZNhcXF9566y3i4+P58ssvmT9/fqOu8XvMD6IL1Kqq/qKqqq7y4y4gtPLvqcAqVVXLVFW9CJwDrqt5fluY5btqcXipSPeDBjq2YNZot2nYgkj3A/mO0v1AvqN0P5DvKN0P5DtK9wP5jtL9JFNcXIxWq8XNzQ2Ahx56iEGDBvH0008bj9m2bRsajYb09HSmTJmCRqMxzqr+4YcfEhERwejRo3n55ZdbIwrtjvosvxUREUFAQIDZts6dOzNw4EDA0PKs1WopKyuzGY6qqjz66KNER0fzzDPPGLf/XvNDW1o260/A6sq/u2EoYFeRUrnNjIqKCkaNGoWLiwsVFRVMnz6defPmkZ6ejre3N87OzhQUFBAUFERubi6qqhIUFERGRobxYXvlyhWCg4PJyspCURQ6depEVlYWvr6+VFRUUFRUREhICOnp6bi6uuLn50d2djZ+fn5otVpKSkqM+93c3PDx8SEnJwd/f39KSkpITk6mU6dOpKen4+HhgaenJ3l5eQQEBFBYWIhWqzWe7+npiZubG/n5+QQGBpKfn095eblxf3PEKTMzE19f33rFqbS01Li/JeKUmpqKVqut131yVquXzcrMzGzWOKWkpJjtl5L3TOOUlZWFt7e3qLxnGqecnBycnZ3F5T3TOKWkpFBRUdGs96kxcUpOTjbkfWF5zzROVetdSsp7pnHKy8szvkhKynumcUpOTsbDw0NU3jONU3JyMn5+fuLynmmcqu6zpLxnGqf09HS0Wq24vGcaJ9N3Gyl5zzROaWlpODu3yY6NrUZ8fDwajYaLFy/y0EMPGZd+Wr58OStXruTQoUPGY8eNG0dsbCxDhgxh3bp1ZgW4xYsXc/ToUXx8fMjKymrpaLRLmmr5LYDNmzczePBg3N3dbR5XXFzMlClTePfdd7n55puJj48nKirqd5sfWn3ZLEVRNgGWFjV7XlXV7yuPeR4YAUxXVVVVFOUDYJeqqv+p3P8psEFV1TWmAWzevFkdPnx480agkWRmZtK5c+fW1rCKdD9omOOOZfO4+ux/geZfNqu9pmFLIt0P5DtK9wP5jtL9QL6jdD+Q7yjdD+Q7ZmZmkpKS4lg2y07i4uL44IMPWLVqFYWFhUybNo1//vOfDBgwAMBYgPrHP/5hdt6QIUPYsmWLWQFq2rRp+Pn5MXHiRG655RZ8fX2b3NeBbZKSkpg5cyY7d+40256RkcG0adP46quv6py4r6qSzcnJiTfffBMfHx8efvhhoP3mB9HLZqmqOkFV1YEW/lUVpucCtwB/UKtL/5cA09HwoZXbaobdzPaNp6pFRirS/UC+o3Q/kO8o3Q/kO0r3A/mO0v1AvqN0P5DvKN0P5DtK95OMj48PY8aMYdeuXXUfbIE1a9bwwAMPsH//fqZOndrEdg4aSmlpKXPnzmXRokUNWz2ngcNs20t+aPUCtS0URZkEPA1MUVXVdFq4dcBMRVHcFUXpCfQG9rSGY2PRarWtrWAT6X4g31G6H8h3lO4H8h2l+4F8R+l+IN9Ruh/Id5TuB/IdpftJRq/Xc/ToUUJDQ+s81sfHh7y8PONnVVVJSUlh1KhR/O1vfzOb2MxBw6nPGGpLqKrK/PnzmTFjBhMmTLDrnIqKCrZv345er2f79u0MGzasznPac36QPob6A8Ad+LWy5mOXqqp/UVX1uKIoXwMnAB0wT1VNBsVW4liHuvFI94OGrkPdcrTXNGxJpPuBfEfpfiDfUbofyHeU7gfyHaX7gXzHnj17cvbs2dbWaFNUjaHW6XRoNBomTpxIUlISc+bMIS8vj9LSUnbt2sULL7zADTfcAMADDzzAnDlz8Pf35/PPPycoKIi//OUvFBYWUlFR0ahCoINq6jOG+qmnnuLHH38kJyeHAQMGsGTJEvz9/Vm3bh1nzpxhxYoVAKxevZouXbpYDcfLy4tvv/2W559/Ho1GQ2Rk5O86P7T6GOrmZNOmTeq1117b2ho2OXLkCIMHD25tDatI94OGOe5cNo+eLTSGur2mYUsi3Q/kO0r3A/mO0v1AvqN0P5DvKN0P5DseOXIEnU7nGEPtwIEDuxE9hvr3jpeXV2sr2ES6H8h3lO4H8h2l+4F8R+l+IN9Ruh/Id5TuB/IdpfuBfEfpfg4cOGhbtOsCdVtYh9rDw6O1FWwi3Q/kO0r3A/mO0v1AvqN0P5DvKN0P5DtK9wP5jtL9QL6jdD8HDhy0Ldp1gbotdGeXPtOkdD+Q7yjdD+Q7SvcD+Y7S/UC+o3Q/kO8o3Q/kO0r3A/mO0v0cOHDQtmjXBeq20ELdtWvX1lawiXQ/kO8o3Q/kO0r3A/mO0v1AvqN0P5DvKN0P5DtK9wP5jtL9JLJ+/XrGjBnD6NGj+frrr5vlGsuXL6e4uLjuAx00isLCQsLDw1m6dKlx29q1axkxYgQjR45k48aNxu2vvvoq0dHRjBs3jp9++sm4fd++fYwePZqIiAjuvffeFvWXSLsuULeFFuqsrKzWVrCJdD9ooKNJZUtz55N2m4YtiHQ/kO8o3Q/kO0r3A/mO0v1AvqN0P5DvKN1PGleuXOHpp5/mu+++Y/369bzxxhtkZmY2+XU+/PBDSkpKmjxcB+a88847DBkyxPhZq9XyyiuvsH79etauXctzzz2HXq/n4MGDbN26ldjYWL799lsWLlxIYWEher2ehx56iCVLlrB7927eeuutVoyNDNp1gbotUF5e3toKNpHuBw10NClE65u53qXdpmELIt0P5DtK9wP5jtL9QL6jdD+Q7yjdD+Q7SveTxv79+xk8eDBBQUH4+voyatQodu7cCUD37t2Nx916660cPHgQgFmzZjFmzBjGjx/Pv//9b+Mx3bt3Z+HChYwcOZJHH30UgG3btqHRaEhPT2fKlCloNBrS0tIAQyE7IiKC0aNH8/LLL7dQjNsW9VmH+uzZs2RlZZkVqPfv30+/fv3o3LkzoaGhdOvWjePHj3Px4kUGDhyIi4sLAQEBdOnShYMHD3Lo0CECAgKIjIwEIDAwsFni1ZaQvg51o3CsQ914pPtBwxxVK383B+01DVsS6X4g31G6H8h3lO4H8h2l+4F8R+l+IN/RsQ51/cjMzCQoKMj4OSgoqM61j5csWUK3bt0oLy8nOjqaKVOmEBwcTFFREdOnT+fVV19l+PDhpKWlMW7cOGJjYxkyZAjr1q0jICDAGM7ixYs5evQoPj4+jp4FVqjPOtSLFi3i9ddf56uvvjI7Pzg4mM8++4yOHTvSuXNn0tPT6devH++88w7FxcXk5uZy5swZMjMzuXz5Mr6+vsyYMYOsrCzuuece7rvvvuaIWptBfomzEej1+tZWqJOLFy+2toJNpPtBQx1brst3+03DlkO6H8h3lO4H8h2l+4F8R+l+IN9Ruh/Id5TuJx1FUepstPryyy8ZO3YsMTExpKenk56eDoCbmxsRERG4uroSFhZWZ9fxYcOGsWDBAlauXIm7u3uTxaE9sWzZMpYtW1bncRs3bqRXr15mvQpMuffee5k2bZrxc3h4OLNmzWLSpEk88cQTjBkzBnd3d8rKyti9ezfvvfceP/zwAx9++CEJCQlNFZ02SbtuoW4Lk5J16NChtRVsIt0PGuZo1kLdzE3U7TUNWxLpfiDfUbofyHeU7gfyHaX7gXxH6X4g37FDhw5cvny5tTXaDMHBwWRnZxs/m3YZNn3X1ul0AMTFxbF161Y2bNiAl5cX48ePNzZyubq6Go9XFKXOxq81a9awa9cuvvvuO/7973+zdevWJovX7439+/fzww8/sGHDBnJycnByciIkJITu3bubtXJnZmYSEhICwLx585g3bx4AN9xwA6GhoeTn59O3b19CQ0MBGDJkCGfPnuWqq65q8ThJoV0XqNsCpg8WiUj3g8Y7Nnc/ht9DGjY30v1AvqN0P5DvKN0P5DtK9wP5jtL9QL6jdD9pDB8+nCNHjpCdnY27uztxcXE8//zzAPj4+JCXl4eHh4exG31hYSEBAQF4eXlx8uRJjh07Ztd1qsKq6vKtqiopKSmMGjWK8PBwRo4c2TwRbONUjZ9+8cUXbR73/PPPG+/b4sWL8fb25o477kCr1XLq1CmysrIoKysjNTWVAQMGAIYl5jp16sSOHTvIz89n6NChFBYWcunSJfLy8vD29ubEiROEhYU1bySF064L1G1hlu+8vDyrXS8kIN0PGuZomjWaO5+01zRsSaT7gXxH6X4g31G6H8h3lO4H8h2l+4F8x7y8vNZWaFN06NCBN998k9tuu43U1FQefPBBYwvmo48+yh133MHQoUPp1q0bADExMaxYsYLIyEj69OnD4MGD7brOAw88wJw5c/D39+fzzz8nKCiIv/zlLxQWFlJRUWH3xFu/N+ozhtoSbm5uvPjii0yePBmA1157zdilf/78+Vy4cAFXV1eWL1+Ooij4+vry2muvMXXqVMrLy5kxYwZ9+vRpdDzaMkpbKHQ2lC1btqjDhg1rbQ2bVNX8SEW6HzTMMe6Dh+l1bhUAPm9m0sG9+eqW2msatiTS/UC+o3Q/kO8o3Q/kO0r3A/mO0v1AvmNubi4JCQnFMTEx3q3t0pTEx8er/fr1a9Zr/PjjjyxdupQNGza0icl/HThoKg4cOLA/JiZmhKV97fqb0BYmJataFkAq0v2goY5mTdRN5mKJ9puGLYd0P5DvKN0P5DtK9wP5jtL9QL6jdD+Q7yjdTzK33HIL//nPfxyFaQcOTGgT3wZFUZ5QFEVVFCWw8rOiKMr7iqKcUxTliKIow1vbsaFI7yEg3Q8a5mh6jl5f0ZQ6Nq8lFemO0v1AvqN0P5DvKN0P5DtK9wP5jtL9QL6jdD/pmC6h5cCBgzZQoFYUpTswEUgy2TwZ6F3578/AckvntoXaM8ljjEC+HzTMUTH5MVWbuSdDe03DlkS6H8h3lO4H8h2l+4F8R+l+IN9Ruh/Id5Tu58CBg7aF/BInvAs8jflKR1OBL1QDu4COiqJ0qXliW+jynZiY2NoKNpHuBw11NGmhVps3n7TfNGw5pPuBfEfpfiDfUbofyHeU7gfyHaX7gXxH6X4SWb9+PWPGjGH06NF8/fXXzXKN5cuXU1xc3CxhOzCwdu1aRowYwciRI9m4cWOdx7///vtER0cTGRnJm2++WWc4gYGBaDQaNBoNzzzzDACbN282btNoNAQHB3P06NF6uz/55JN88sknxs+ff/45CxYsqHc4zYHoWb4VRZkKXFJV9XCNNaW7Ackmn1Mqt5kNitHr9YwaNQoXFxcqKiqYPn068+bNIz09HW9vb5ydnSkoKCAoKIjc3FxUVSUoKIiMjAzjGopXrlwhODiYrKwsFEWhU6dOZGVl4evrS0VFBUVFRYSEhJCeno6rqyt+fn5kZ2fj5+eHVqulpKTEuN/NzQ0fHx9ycnLw9/enpKQEVVUpKysjPT0dDw8PPD09jUsGFBYWotVqjed7enri5uZGfn4+gYGB5OfnU15ebtzfHHFycnKiqKioXnEqLS017m+JOLm6upKYmFiv++SsVnfzvpydSUFuTrPFycnJicTExGa9Tw3Je6ZxqvKRlPdM4+Tm5kZmZqa4vGcaJ4CUlJRmvU+NiZOqqmRnZ4vLe6Zx8vDwIC0tTVTeM42Tt7c3iYmJ4vKeaZxUVSUvL09U3jONk6qqFBcXi8t7pnGqus+S8p5pnDw8PEhMTBSX90zjZPpuIyXvmcbJQf24cuUKTz/9NFu3bsXd3Z2xY8cybtw4Onfu3KTX+fDDD7nzzjvx8vJq0nAdGNBqtbzyyiv88ssvaLVapkyZwsSJE6326L106RIrVqxg165dqKpKREQEM2fOpEuXLlbD8fT0JDY21iycmJgYYmJiAEhPT+eWW25h0KBB9fYfO3Ys3377Lffffz8AO3bsYNKkSfUOpzlo9Vm+FUXZBIRY2PU88BwwUVXVfEVREoARqqpmK4ryI7BYVdW4yjA2AwtVVd1nGsDmzZvV4cNlD69OSEgQvRC6dD9omGPce/fRK2EtAG4vnSfA378ZzAy01zRsSaT7gXxH6X4g31G6H8h3lO4H8h2l+4F8x4SEBHJzcx2zfNvJ9u3b+eijj1i5ciVgWEppwoQJ3HbbbXTv3p3kZEMb16233sqiRYsYNmwYs2bNIiUlBVdXV2bNmsUDDzwAGLrbz549my1bthAdHc0///lPtm3bxosvvsjp06e55pprcHZ2ZvXq1XTpUqvzqQML2LsOdXx8PP/85z9Ztcqwys2tt97K66+/brVwe+nSJW666SZ27NiBqqpMmDCBjRs3curUKavhmOYHS/zrX/8iOzvbpuvixYuJi4sjLS2N8ePHs23bNjZs2ICrqytRUVGcOHECgIEDB7J169YWG9Nva5bvVm+hVlV1gqXtiqIMAnoCVa3TocABRVGuAy4BpgNgQiu31Qy7yX2bmoKCgtZWsIl0P2igo+kk3xXNOylZu03DFkS6H8h3lO4H8h2l+4F8R+l+IN9Ruh/Id5TuJ43MzEyzQktVjwVbLFmyhG7dulFeXk50dDRTpkwhODiYoqIipk+fzquvvsrw4cNJS0tj3LhxxMbGMmTIENatW0dAQEBzR6ldYe861BkZGQQHB/PZZ5/RsWNHOnfuTHp6utUCdbdu3XjwwQcZPHiwcR1wf39/m+GUlpYybtw4PDw8ePHFF4mOjjYLc82aNbz//vt1uk6aNImUlBRCQ0OJiYlh7969TJ48ma5du3Lq1Cnc3Nzo1KmTmAnyWr1AbQ1VVY8Cxr4kNVqo1wHzFUVZBUQA+aqq1loDoS1MShYWFtbaCjaR7gcNdaweN61XdU0nY4H2m4Yth3Q/kO8o3Q/kO0r3A/mO0v1AvqN0P5DvGBYWxvnz51tbo82iKEqd79hffvklGzZsQFVV0tPTSU9PJzg4GDc3NyIiIgDDfcjMzHS0RDeSZcuW1ev4e++9FzCsKW6Ly5cvs2nTJg4dOkR5eTmTJ0/mxhtvtBnOsWPHCA4O5sCBA9x9993s27cPT09PAM6ePUtxcTEDBw6s09Hf35/CwkLj/1WVYGPHjmXnzp24uroybty4esW7OZFf4rTMeuACcA74N/CwpYPawqRktrpFSEC6HzTQ0WSprOae5bvdpmELIt0P5DtK9wP5jtL9QL6jdD+Q7yjdD+Q7SveTRnBwMNnZ2cbPWVlZxvHTpnMc6XSGBoq4uDi2bt3Khg0biI2NpXfv3sZ3cldXV+PxiqK0iXf19kJISIhZa3ZmZiYhIZZG3RrYvn07oaGh+Pr6EhAQwKBBgzh69KjNcKrmlBk+fDhdunQhKal6kaY1a9Ywbdo0u1wVRTH7V1HZm3Ts2LHExcWxc+dOxo4da3/km5k2U6BWVfUqVVWzK/9WVVWdp6pqL1VVB9UcO92WqDHZmjik+0EDHU0mJdM3c5fvdpuGLYh0P5DvKN0P5DtK9wP5jtL9QL6jdD+Q7yjdTxrDhw/nyJEjZGdnU1hYSFxcnLGV2cfHh7y8PEpKSjh79iwAhYWFBAQE4OXlxcmTJzl27Jhd16kKy0H9WLRokXEctS2GDx/OqVOnyMrKIiUlhdTUVAYMGGA1nODgYA4ePEhZWRklJSUcOXKEHj16WA2nKh8AJCUlkZaWRmhoqDG8b7/9lunTpzcqrhERERw8eJB9+/bV6k7emojt8t0UtIUu39K7uUj3g4Y5KqY1omrzFqjbaxq2JNL9QL6jdD+Q7yjdD+Q7SvcD+Y7S/UC+Y5cuXUhISGhtjTZDhw4dePPNN7nttttITU3lwQcfNLZIPvroo9xxxx0MHTqUbt26AYZZnVesWEFkZCR9+vRh8ODBdl3ngQceYM6cOfj7+/P5558bWzsd2MbeMdRubm68+OKLTJ48GYDXXnvNrKxUM5zIyEjGjx+PRqNBURTuvvtu+vbtC2AxnDNnzrBgwQLc3Nxwdnbmvffew9vbMO/fvn378Pb2pnfv3o2Kq7u7Oz179qSiosLYlVwCrT7Ld3OyadMm9dprr21tDZscOXLE7gdNayDdDxrmuOPNO7g6bTMA6uN76dqjV3OoAe03DVsS6X4g31G6H8h3lO4H8h2l+4F8R+l+IN/xyJEj6HQ6xyzfDeDHH39k6dKlbNiwoU00XDlw0FSInuW7OWkLXXr8m3G5pqZAuh800NGkhbq5x1C32zRsQaT7gXxH6X4g31G6H8h3lO4H8h2l+4F8R39/f7Kyslpbo01yyy23EBER4ShMO3BgguPb0MqUl5e3toJNpPtBwxwV0zHU+ubt8t1e07Alke4H8h2l+4F8R+l+IN9Ruh/Id5TuB/IdpftJR8pSRQ4cSKFdF6jbQnf2K1eutLaCTaT7QQMdVdNZvpu3QN1u07AFke4H8h2l+4F8R+l+IN9Ruh/Id5TuB/IdpftJ5N133yUqKoqoqCjmzp0LwMqVKwkODiYnJweAmTNnEhcXR1xcHGFhYWg0GiIiIvjss89a0dyBKfv27WP06NFEREQYl71KTU1l8uTJREVFMW7cOLZu3WpXWIWFhYSHh7N06dJGhVNFdHQ0SUlJZvknOjqat99+u36RbAXadZfvttAdpWfPnq2tYBPpftAwR0XfcgXq9pqGLYl0P5DvKN0P5DtK9wP5jtL9QL6jdD+Q79izZ0/jjNQO6ubAgQNs3LiR7du34+bmxpEjR4z7PD09+fbbb/nzn/9sdk5UVBSrVq0iOzubyMhIJk2aJH6yuvaOXq/noYceYunSpURGRhqXQnNxceGtt95i4MCBJCcnM2nSJI4fP15neO+88w5Dhgwxfm5oOJaoyj86nY6oqCjuvPNOunfv3qCwWgL5Jc5G0BbWtrt48WJrK9hEuh80zFFRTcdQN2+Bur2mYUsi3Q/kO0r3A/mO0v1AvqN0P5DvKN0P5DtK95NGcnIygYGBuLm5AZhNODdp0iS+//57q+cGBgbSs2dP0tLSmt3z94q9y2YdOnSIgIAAIiMjAcO9AejcuTMDBw4EoHv37mi1WsrKymyGdfbsWbKysswK1A0J5/333yciIoK5c+daPLa4uBitVmvMe1Jp1wXqtoDpAvcSke4HDXRswXWo220atiDS/UC+o3Q/kO8o3Q/kO0r3A/mO0v1AvqN0P2mMGzeO06dPExMTw5IlS0hPTzfu8/X1JSQkhNOnT1s8NyUlBcBsvWMHTUtGRoZdS2elpKTg6+vLjBkzGDt2LJ9++mmtYzZv3szgwYNxd3e3GdaiRYtYuHCh1f32hJOUlMQXX3zBtm3bWLhwodlSdvHx8Wg0GgYMGMBdd90lfgm1dt3luy3M8i19YgfpftAwR9Mu3xUVzTs5SXtNw5ZEuh/Id5TuB/IdpfuBfEfpfiDfUbofyHcMCgoiKSmptTXaDH5+fsTFxbF582Z+/PFHxo8fT3x8vHH/zJkzWbVqldk58fHxREVFkZKSwhdffFFnAc1Bw1m2bJldx5WVlbF792527NiBr68vMTExxMTEcNVVVwGGgvkLL7zAV199ZTOcjRs30qtXL6tdsO0N5/Dhw0RERODp6Un//v3Nwqvq8l1YWMi0adOYOnWq6EqZdt1C3RYmJUtNTW1tBZtI94OGOZrO8l2ha94CdXtNw5ZEuh/Id5TuB/IdpfuBfEfpfiDfUbofyHeU7icRDw8Pbr75ZpYvX86QIUPYu3evcd/48eOJjY01G2oZFRVFfHw8H330EY888ohjZnUBBAUF0bdvX0JDQ/H19WXIkCHGuQRKS0uZO3cuixYtqnMOhP379/PDDz8QERHBJ598wtKlS/nmm2/qHY49DZ8+Pj6MGTOGXbt22RnL1qFdF6jbQgt1p06dWlvBJtL9oGGOTqZdvnW6ptSpRXtNw5ZEuh/Id5TuB/IdpfuBfEfpfiDfUbofyHeU7ieNxMREzp8/D0BJSQlJSUl07drVuN/Z2ZnIyEj27NlT69ybbrqJ8PBw1qxZ02K+vzfsHUM9fPhwLl26RF5eHlqtlhMnThAWFoaqqsyfP58ZM2YwYcKEOsN//vnn2b9/P7t37+b+++9nwYIF3HHHHXWGU5OqipnS0lJOnTpFcnJyrWP0ej1Hjx4lNDS0zvBak3bd5bsttFCXlpa2toJNpPtBwxwVfXUhWtfMLdTtNQ1bEul+IN9Ruh/Id5TuB/IdpfuBfEfpfiDfUbqfNEpKSpg/fz5FRUWoqsrMmTMJDw/n0KFDxmNmzZrF8uXLLZ7/+OOP8/jjjzNz5sw20djV1rBn/DQYxru/9tprTJ06lfLycmbMmEGfPn3YtWsX69at48yZM6xYsQKA1atXG2dltzf83bt32wynJt27d2fOnDmMHTuWvn37EhYWZtxXNYZap9Oh0WiYOHGiXQ6tRbsuULcFiouLW1vBJtL9oGGOpi3UajOPoW6vadiSSPcD+Y7S/UC+o3Q/kO8o3Q/kO0r3A/mO0v2k0a9fPzZt2lRr++zZs5k9ezYAAwcOJDc317hv9OjRxr8jIiLYsWNH84v+TrF3DDXAbbfdxm233Wa2LTIykszMzAaF/8wzz9gdjiUeeeQRHnnkEbNtPXr0IDExsV7htDbiu3wrirJAUZRTiqIcVxTlHybbn1UU5ZyiKKcVRbnR0rmOdagbj3Q/aJijk1rdQl3RzF2+22satiTS/UC+o3Q/kO8o3Q/kO0r3A/mO0v1AvqN0PwcOHLQtRJc4FUW5HpgKDFFVdQCwpHJ7ODATGABMAv6lKIpzzfMd61A3Hul+0DBHpxaclKy9pmFLIt0P5DtK9wP5jtL9QL6jdD+Q7yjdD+Q7Svdz4MBB20J0gRp4CFisqmoZgKqqVf0IpgKrVFUtU1X1InAOuK6VHBuF9IXKpftBwxydTMZQ6yuat4W6vaZhSyLdD+Q7SvcD+Y7S/UC+o3Q/kO8o3Q/kO0r3c+DAQdtC+hjqPsAYRVFeA0qBJ1VV3Qt0A0znT0+p3GaGXq9n1KhRuLi4UFFRwfTp05k3bx7p6el4e3vj7OxMQUEBQUFB5ObmoqoqQUFBZGRk0KFDBwCuXLlCcHAwWVlZKIpCp06dyMrKwtfXl4qKCoqKiggJCSE9PR1XV1f8/PzIzs7Gz88PrVZLSUmJcb+bmxs+Pj7k5OTg7+9PSUkJer2esrIy0tPT8fDwwNPTk7y8PAICAigsLESr1RrP9/T0xM3Njfz8fAIDA8nPz6e8vNy4vznipCgKRUVF9YpTaWmpcX9LxMnNzY3ExMR63ScXqlullZJ8EhMTmy1OiqKYhS8l75nGqcpHUt4zjZOHhweZmZni8p5pnABSUlKa9T41Jk56vZ7s7Gxxec80Tl5eXqSlpYnKe6Zx8vX1JTExUVzeM42TXq8nLy9PVN4zjZNer6e4uFhc3jONU9V9lpT3TOPk5eVFYmKiuLxnGifTdxspec80Tg7qz7vvvsvXX38NQN++ffn888/RarVMmDCBzMxMnJ2dCQ4OZsuWLaxcuZLHHnuMEydOEBAQwMyZM5k/f75xXPW0adOoqKhg3bp1AKxcuZKXXnqJLl260LVrV958802zCaocNB379u3jr3/9K+Xl5YSHh/PZZ5+RmprKfffdx+XLl3F3d+ell17i+uuvtxqGreMthW8v0dHRrFq1iqSkJP7whz8QFhaGTqfj9ttv54knnmh03JsTpbVnwlYUZRMQYmHX88BrwFbgEWAksBq4GlgK7FJV9T+VYXwKbFBV1WxO/k2bNqnXXnttM9o3niNHjjB48ODW1rCKdD9omOPpJ3vhq8sD4OL1bxE99b7mUAPabxq2JNL9QL6jdD+Q7yjdD+Q7SvcD+Y7S/UC+45EjR9DpdMUxMTHere3SlMTHx6v9+vVr8nAPHDjAs88+yw8//ICbm1ut+7t48WK8vb1ZsGABYCggP/fcczz33HP8+c9/NitQFxcXEx0djaurK1u3bqVDhw6sXLmSQ4cO8Y9//IPY2Fieeuopdu7cibNzrdGcDhqBXq8nIiKCpUuXEhkZSXZ2NoGBgWRmZpKZmcnAgQNJTk5m0qRJHD9+3Go41o63Fr69mBaoP/jgA1atWoVOpyMqKorvvvuO7t27N0UyNJgDBw7sj4mJGWFpX6t3+VZVdYKqqgMt/PseQ8vzd6qBPYAeCAQuAaapGlq5zYy2MDV/UFBQayvYRLofNMzR2WRSMrVC25Q6tWivadiSSPcD+Y7S/UC+o3Q/kO8o3Q/kO0r3A/mO0v2kkZycTGBgoLGrvD2VJZMmTeL777+vtX3Hjh1ERERw3XXX8dtvv9Xar9Fo6NSpEwcOHGi8+O8Ee9ehPnToEAEBAURGRgIYC7udO3dm4MCBgGEpK61WS1lZmdVwrB1vLXxbvP/++0RERDB37lyL1ywuLkar1YofptHqBeo6+B9wPYCiKH0ANyAbWAfMVBTFXVGUnkBvoNZq8q3d+m4PV65caW0Fm0j3g4Y5uqjVXb5VXfMWqNtrGrYk0v1AvqN0P5DvKN0P5DtK9wP5jtL9QL6jdD9pjBs3jtOnTxMTE8OSJUtIT0+v8xxfX19CQkI4ffq02fYtW7ag0WjQaDRs3rzZ4rmhoaEkJSU1ifvvgYyMDLvWik5JScHX15cZM2YwduxYPv3001rHbN68mcGDB+Pu7m7XtU2Ptyd8U5KSkvjiiy/Ytm0bCxcuJCEhwbivah3qAQMGcNdddxmH1klF+hjq/wP+T1GUY4AW+KNqKCUfVxTla+AEoAPmqarJtM1tiJKSktZWsIl0P6i/o6qquOirC9H6Zi5Qt8c0bGmk+4F8R+l+IN9Ruh/Id5TuB/IdpfuBfEfpftLw8/MjLi6OzZs38+OPPzJ+/Hji4+Px8/Ozed7MmTNZtWqV2bYtW7Ywb948nJycePPNNy2e1xZ6mErC3nWoy8rK2L17Nzt27MDX15eYmBhiYmK46qqrAEPB/IUXXuCrr76yK7yax9cVfk0OHz5MREQEnp6e9O/f36xLd1RUFKtWraKwsJBp06YxdepUBgwYYJdXayC6hVpVVa2qqnMqu4APV1V1i8m+11RV7aWqal9VVTdYOt+xDnXjke4H9XfUlutwxmRJtYrmXTarPaZhSyPdD+Q7SvcD+Y7S/UC+o3Q/kO8o3Q/kO0r3k4iHhwc333wzy5cvZ8iQIezdu7fOc8aPH09sbKxxGduUlBQSExO5/fbbmTZtGqmpqZw/f77WecnJyfTo0aPJ4/B7JygoiL59+xIaGoqvry9Dhgzh7NmzAJSWljJ37lwWLVpk1/fD0vG2wreEPRUnPj4+jBkzhl27dtV5bGsiv8TZCBzrUDce6X5Qf0etttTss9rMBer2mIYtjXQ/kO8o3Q/kO0r3A/mO0v1AvqN0P5DvKN1PGomJicaCb0lJCUlJSXTt2rXO85ydnYmMjGTPHsOozM2bN3P33Xeze/dudu/ezdy5c9myZYvZObGxseTk5DB8+PCmj0g7xd4x1MOHD+fSpUvk5eWh1Wo5ceIEYWFhqKrK/PnzmTFjBhMmTKgzfGvHWwvfGlUVM6WlpZw6dYrk5ORax+j1eo4ePUpoaGid8WtN7OryrSjKFCAciAd2AF8AtwDHgDmqql5oNsN2jqenZ2sr2ES6H9TfsdakB83c5bs9pmFLI90P5DtK9wP5jtL9QL6jdD+Q7yjdD+Q7enp6UlhY2NoabYaSkhLmz59PUVERqqoyc+ZMwsPDay2btXbt2loF5FmzZrF8+XLA0N17+vTpxn1jx45lxYoVTJkyhbVr17Jr1y5CQkJYvXq1Y4bvemDP+GkwjGt/7bXXmDp1KuXl5cyYMYM+ffqwa9cu1q1bx5kzZ1ixYgUAq1evpkuXLhbD3717t9XjLYVvje7duzNnzhzGjh1L3759zQrfVWOodTodGo2GiRMn1itNWpo6l81SFOVl4D5gJzAKw/rPpcBKYBbQUVXVW5tXs2Fs3rxZlV7DlZaWZsywEpHuB/V3TEu7BG8OMn4+0/8+xj74VnOoVV6v/aVhSyPdD+Q7SvcD+Y7S/UC+o3Q/kO8o3Q/kO6alpZGWluZYNsuBAwd209hls+4DRquqeheGGbenAQ+pqroeeAiIbDLTJqYtzPKdlZXV2go2ke4H9XfUlplPRqLorC8N0BS0xzRsaaT7gXxH6X4g31G6H8h3lO4H8h2l+4F8R+l+Dhw4aFvYU6D2U1U1EUBV1bPAFVVVCys/XwHsm1e9FWgLswSGhIS0toJNpPtB/R3LtTUK0BXNW6Buj2nY0kj3A/mO0v1AvqN0P5DvKN0P5DtK9wP5jtL9HDhw0LZoyKRkbWZ5qrbQQp2bm9vaCjaR7gf1d9SVmU9KpjTzGOr2mIYtjXQ/kO8o3Q/kO0r3A/mO0v1AvqN0P5DvKN1PGg899BAajYZ+/foxYMAANBoNjz/+OCtXruTpp582Hjdz5kzi4uJYuXIlvXv3RqPRMHPmTBITE1vR3kEVmzdvNq4BrtFoCA4O5ujRo6SmpjJ58mSioqIYN24cW7dutRlObm4u48ePZ8yYMWg0Gn766Seb4dtLdHQ0SUlJxMXFERYWhkajITo6mrfffrtR8W4J7JmUzFtRFNPV1f1MPiuAV9Nr/X7Qapu3MNdYpPtB/R1rtlArFaVWjmwa2mMatjTS/UC+o3Q/kO8o3Q/kO0r3A/mO0v1AvqN0P2lUTSq2ePFivL29WbBgAQArV660es60adP4xz/+QWxsLHfeeSc7d+50TDTWylStCw2Qnp7OLbfcwqBBg8jMzOStt95i4MCBJCcnM2nSJI4fP241HB8fH9atW0eHDh3Iyclh9OjRTJ482Wr4DaFqHWqdTkdUVBR33nmn2TrV0rCnQD2+2S2aCcc61I1Huh/U31FXbl6AdmrmMdTtMQ1bGul+IN9Ruh/Id5TuB/IdpfuBfEfpfiDfsWfPnjbXx3XQdGg0Gjp16sSBAwcYOXJka+u0S6qWtHrxxRftPue7775jypQpAHTu3JnOnTsDhpm3tVotZWVluLtbHtXr6uqKq6srAAUFBZSVlaHT6XBzc7MYvi3ef/99vvrqK/r37197FR6guLgYrVZrFrZEbJY4FUVZBMTY8U8kjnWoG490P6i/o05bs0BdYuXIpqE9pmFLI90P5DtK9wP5jtL9QL6jdD+Q7yjdD+Q7SvdrS6xdu9bYxTc+Pt7iMaGhoSQlJVnc56DxZGRk2L10VhVr1qwxW8Ksis2bNzN48GCrhekqCgsLGTVqFGPGjOGtt96qVeC1Fr4pSUlJfPHFF2zbto2FCxeSkJBg3Fe1bNaAAQO46667CA4Otj9yrUBdTbjdTf71Bp7BUIC+BkPL9TOV2x00EC8v2T3mpftB/R0rKrt8a508AHDSNW+X7/aYhi2NdD+Q7yjdD+Q7SvcD+Y7S/UC+o3Q/kO8o3a8tMW3aNGJjY4mNjSUqKsriMW1hkuC2zLJly1i2bJndx589e5bi4mIGDhxotj0jI4MXXniBJUuW1BmGj48PO3bsYPPmzXz66aeUl5fXGX5NDh8+TEREBJ6envTv39+sS3dUVBSxsbGcOHGCLVu22OyCLgGbBWpVVe+t+odhvPQsVVVHqao6W1XV0cDMFrFsIG3hC+zh4dHaCjaR7gf1d6woN7RIl7r6AODczGOo22MatjTS/UC+o3Q/kO8o3Q/kO0r3A/mO0v1AvqN0v/ZGcnIyPXr0aG0NB5WsWbOGadOmmW0rLS1l7ty5LFq0qF5DNvr27YurqyvHjh2zGb4l7Cmn+fj4MGbMGHbt2mW3U2tQn0HGk4H/1di2DripyWyaGMcs341Huh/U37Gissu3zrUDAE4Vjlm+pTtK9wP5jtL9QL6jdD+Q7yjdD+Q7SvcD+Y7S/doTsbGx5OTkMHz48NZWabcsWrTIOI7aHr799luz7tiqqjJ//nxmzJjBhAkT6gw/NTXV+B3KyMjg9OnTdOnSxWr41hgyZAh79+6ltLSUU6dOkZycXOsYvV7P0aNHCQ0NtTt+rYE9k5JVcQ6YB7xvsu0h4HyTGjUhbaGFumvXrq2tYBPpflB/R7Xc0OVb52ZooXbSl9s6vNG0xzRsaaT7gXxH6X4g31G6H8h3lO4H8h2l+4F8x65duzrG9DYza9euZdeuXYSEhLB69WrHDN/NSH3GT+/btw9vb296964esbt7927WrVvHmTNnWLFiBQCrV682FpJrhp+SksJjjz0GQEVFBS+99JJxbXdL4Vuje/fuzJkzh7Fjx9K3b1/CwsKM+6rGUOt0OjQaDRMnTrQ7jq2BYm8rrqIow4C1GArhl4BugA6YrqrqgWaRU5ShwIeAR+W1HlZVdY9iKCn/E0PreDEw15LDpk2b1GuvvbY51JqMkydP0r9//9bWsIp0P6i/49aVb9Nvz2tkdBlFcNoOclw7M/CtU2L8WgPpjtL9QL6jdD+Q7yjdD+Q7SvcD+Y7S/UC+48mTJykpKSmOiYnxbm2XpiQ+Pl7t169fa2s4cNAuOXDgwP6YmJgRlvbZ3UKtqupBRVF6A5FAVyANiFdVtTmb9/4BvKKq6gZFUW6q/DwOQ/fz3pX/IoDllf+3OUwH8UtEuh/U31EpKwBA7xUIgLOqo0Kv4uzUPD0a2mMatjTS/UC+o3Q/kO8o3Q/kO0r3A/mO0v1AvqN0PwcOHLQt6tPlm8rC82/N5GLxkoBv5d9+QGrl31OBL1RD8/ouRVE6KorSRVXVNNOTHetQNx7pflB/R6dS8wK1i1pOmU6Pl1vzdEdqj2nY0kj3A/mO0v1AvqN0P5DvKN0P5DtK9wP5jo51qB04cNCUSC9x/hV4S1GUZGAJ8Gzl9m6A6cj1lMptZlRUVFChlz0xmfS1EKX7Qf0dlfJiAFQvf8BQoC7VNd+a5e0xDVsa6X4g31G6H8h3lO4H8h2l+4F8R+l+IN9Rup8DBw7aFvVqoW4OFEXZBIRY2PU8hjWvH1NV9VtFUe4EPgVqTz9nhQq9njFjRuPq4kJFRQXTp09n3rx5pKen4+3tjbOzMwUFBQQFBZGbm4uqqgQFBZGRkUGHDoYZoK9cuUJwcDBZWVkoikKnTp3IysrC19eXiooKioqKCAkJIT09HVdXV/z8/MjOzsbPzw+tVktJSYlxv5ubGz4+PuTk5ODv709JSQl6vZ6ysjLS09Px8PDA09OTvLw8AgICKCwsRKvVGs/39PTEzc2N/Px8AgMDyc/Pp7y83Li/OeIEUFRUVK84lZaWGve3RJxcXFxITEy0O05eukIAnBVDi7SbXktqUgLePXs0S5wAEhMTm/U+NSTvmcbJycmJgoICUXnPNE6urq5kZmaKy3umcVJVlZSUlGa9T42Jk16vJzs7W1zeM42Tu7s7aWlpovKeaZw8PT1JTEwUl/dM46TX68nLyxOV90zjpNfrKS4uFpf3TONUdZ8l5T3TOLm7u5OYmCgu75nGyfTdRkreqxknB/UjMDCQ8PBw4+c333yTixcv8thjj3HixAkCAgKYOXMm8+fPZ/To0axfv5433njDOIP0zJkziYuL4w9/+ANhYWHodDpuv/12nnjiiVaM1e+PF154ga+//pqAgAB27txp3L527Vpee+01FEXh73//O5MmTWpQOK+++irr16/Hzc2Np556iptvvtlmON27d7c4uzfAhg0bOH36NH/961/Nti9fvpw//vGPotaTt3tSstZAUZR8oKOqqmrlRGT5qqr6KoryEbBNVdX/Vh53GhhXs8v3z79uUnsPGIy/p2vLy9tJcnKy2ULm0pDuB/V33PGPu7g69VdSb3wPv80v4627TPFf99PrqubpotYe07Clke4H8h2l+4F8R+l+IN9Ruh/Id5TuB/Idk5OTycrKckxKVg8sFXxWrlzJc889x3PPPcef//xnY4F66NChREZGsnXrVtzd3dFoNPz888+cPXuWDz74gFWrVqHT6YiKiuK7774TnVfaG7t378bNzY158+YZC8JarZbrrruOX375Ba1Wy5QpU9i3b5/NobOWwjl48CBPPvkkP//8M/n5+YwdO5b4+Hh8fHyshmOrQG2NIUOGsGXLFgICAup1XmOxNSmZ9C7fqcDYyr/HA1UDXtYB9ygGIjEUtNNqnqygiu/ynZeX19oKNpHuB/V3dNIZ1qF2dvPgikdnAMrzUm2d0ijaYxq2NNL9QL6jdD+Q7yjdD+Q7SvcD+Y7S/UC+o3S/tsSkSZP4/vvvzbbt37+fwYMHExQUhK+vL6NHjzZrxQQoLi5Gq9Xi5ubWkrrtkvqsQx0REVGrILp//3769etH586dCQ0NpVu3bhw/frze4Vy8eJGBAwfi4uJCQEAAXbp04eDBgzbDUVWVRx99lOjoaJ555hnj9oceeohBgwbx9NNPG7dt27YNjUZDeno6U6ZMQaPRkJZmKP59+OGHREREMHr0aF5++WV7kqJJafUu33XwAPBPRVFcgFLgz5Xb12NYMuschmWz7rV0sl5V0AkvUEtfqFy6H9Tf0alyDLWLRwcKPILgyhl0Bfav4Vdf2mMatjTS/UC+o3Q/kO8o3Q/kO0r3A/mO0v1AvmNoaCgJCQmtrdGmKCkpQaPRGD+vXLkSAF9fX0JCQjh9+rRxX2ZmJkFBQcbPQUFBxm1V6wtfvHiRhx56iODg4JaLRDulPutQWzs/ODiYzz77jI4dO9K5c2fS09MZNGhQvcLp168f77zzjnFYz5kzZ8jMzLR5TnFxMVOmTOHdd9/l5ptvJj4+nqioKJYvX87KlSs5dOiQ8dhx48YRGxvLkCFDWLdunVmBfvHixRw9ehQfHx+ysrLq5d0UiG6hVlU1TlXVa1VVHaKqaoSqqvsrt6uqqs5TVbWXqqqDVFXdZ+l8J0V+C3VVzYpUpPtB/R09Sw1fNJ/AruhdPQEoLy1pcq8q2mMatjTS/UC+o3Q/kO8o3Q/kO0r3A/mO0v1AvqN0P4l4enoSGxtr/GdaaTJz5kxWrVpl9VzDqE0DUVFRxMbGcuLECbZs2VJnS6iDulm2bBnLli1rdDj33nsv06ZNa/D54eHhzJo1i0mTJvHEE08wZswY3N3dbZ7j7OzM9ddfj5OTE+PGjauzRdsaw4YNY8GCBaxcubLOazYHogvUTYH0FmrJY9hBvh/U39FNVwSAl48/qouhQF1RVtzkXlW0xzRsaaT7gXxH6X4g31G6H8h3lO4H8h2l+4F8R+l+bY3x48cTGxuLXm9YMaVz585kZ2cb92dlZdVqifbx8WHMmDHs2rWrRV0d1CYkJMSslTszM5OQEEvzRdfNvHnziI2NZfXq1WRkZNS7t4pp5Ut9WLNmDQ888AD79+9n6tSpDQqjMbTrAnVb6PItfSIG6X5Qf0cXfTkAbu6e4OoBgK6sqMm9qmiPadjSSPcD+Y7S/UC+o3Q/kO8o3Q/kO0r3A/mO0v3aGs7OzkRGRrJnzx4Arr32Wo4cOUJ2djaFhYXExcURFRVldo5er+fo0aPihwe0BeozhtoSw4cP59SpU2RlZZGSkkJqaioDBgxoUPi5ubkA7Nixg/z8fIYOHWrz+IqKCrZv345er2f79u0MGzaszmv4+PiYzYNQtcrKqFGj+Nvf/lbvSc6agnZdoDZ0+W5tC9skJia2toJNpPtB/R29KwoAcHV3R3EzTLnfnC3U7TENWxrpfiDfUbofyHeU7gfyHaX7gXxH6X4g31G6n0SqxlBX/fvxxx/N9s+aNYuCAsP7VYcOHXjzzTe57bbbmDx5MgsXLjS2UFeNoR49ejTXXHMNEydObPG4tDcyMjLsHkf91FNPceONN3Lu3DkGDBjAhg0bcHNz48UXX2Ty5MncdtttvPbaa2YzfFsK31I4APPnzycyMpJnnnmG5cuX19ni7OXlxbfffsvo0aMZPHgwkZGRJCUlodFoeOONN1i7di0ajYZff/3VeM4DDzzAnDlzmDx5MhkZGaiqyl/+8hdGjx7NTTfd1KjKhYYietmsxvLzr5vUDt37ER4sd1WEhIQErrrqqtbWsIp0P6ifY1ZqIrp/GGq/gt7KYPeXr3D1kX9xbtBfGHPf663u11pId5TuB/IdpfuBfEfpfiDfUbofyHeU7gfyHRMSEsjNzXUsm+XAgQO7acvLZjWainZcYeCg/pz+8QPj3y6urjh5dACg64n/tJaSAwcOWpCt53N56qezXCnTtbaKAwcOHDhw4KAd0K4L1Aqq+DHUVd1j6kPmFS0f7Uohu0jbDEbmNMSvpamPY68Tn5p91l8xTJrhVXHF4vFNMUt8ffxKyitadGZ6VVXRq6r4+yzdD+Q7SveDlnF8Y2sih9Ou8M3RTPYk53Pgkv3XbGq/7Rfy+NvP5ynWVjRZmNLvs3Q/kO/YnH6ZV7QUlDa+sun3nIYOHDj4/dGuC9R6VRG9bJaqqpR5BXG5pNzmcUfTrzD7v8fYm2z4AXjh5/N8eyyLxVsbPwZoT3I+iXnWl4wKCwtr9DVMSSso44+rj7PxdE6ThdkoxwrrlRI/n8nhls8OcTTdcmHbXuz1yyjUcud/jvLCL+cbdb368OqWBO5fc5JuobInaGnqfNgcdAruxuf7Uslq4oqu+g7LKSzTWXzuWUvD/SkF/HDC/jUbS8or6hXHzCtajqQV2jxGq9Pzf3tTcfZrufVIc4vL+dvPF3hmw3n0qkpJed2FWktpqC0rJe7jpxgTHUmPHj3o1q0b48ePZ+fOnXWG99qWBPYkF7DmqO11OutDY78rqqqy7kQWZ7KaZ16JtvBdrnLUq2qDZ4M+vXcLce/ex5WCy01oZqC50rBYW8GcVceZ8Z+jjQ6rKR0bU+H06Z5L/OW7U5TqzCfUaQv5UBrvvvsuUVFRREVFMXfuXOP2IUOGMGrUKOPY6g0bNrBy5Up69+6NRqNh5syZxjHrcXFxhIWFodFoiIiI4LPPPmul2Dioyfvvv090dDSRkZG8+eabAGzevNls3HxwcDBHj1p/PqSmpjJ58mSioqIYN24cW7duNdtfWFhIeHg4S5curZdbdHQ0SUlJZvknOjqat99+u/4RbSbadYHaSZHdQr3maCYnzl/kw12XbB738q8XyC4q5/mfDQWti3mlAJzPbdzayQl5Jfzt5ws88O0pq8c09Ux57/yWRFqhlnd+S6q1T6+q5BbbrlywhKljqU7PT6ey66ykqEJ1cjX+nZZwxmzf27FJVKjwngVXSxy4VMAxC4Vve9PwRGYRZRUq+1IKOZNdTFzCZYvH5Zfq+GTPJVILyuwK1xa/XbxMSn4Z5xIMcfzmSAaf7k2t87zTWUU88v3pZnvprom9adiac0LsO3melYcyeH5j01WILN6awH1rTlJk5wtlWkEZt395lGc2nKu1r2YaFmkruFxSzrMbz7N0Z4rNijVT7l9zkj/89zg5RfZ9x+asOs6TP53jfI71vPL10UxWHc5g3ynztNt0NrdWC/Lmc7nEXsyjJqqq8suZHC7a+Vw8m13t88LPF5i64gg5dTx/LOXDvav/Qa8TnzJcOcMbb7zBk08+ydGjR3n00UethvPTqWyzfFLYhN3P7fmurD2WyX8PpVvcd+BSIR/sTGH+96ebzMmUY2cv8sHOZLvzdFOhrccMpcnJyehVlYfXnuaJn84at5/NLubNbQlkFWlZuiOZ+MR8q2H4fjWDXolrObiyenKc0tJSrrvuOjp16sTTTz9dp0dhmY6t5/PQ1igMNtXv8jdHMli4/pwxbTKuNF1lYF2OQ4YMoVOnTsZ/Go3G4nGbzuZy2xdH2HAq2+J+W2gr9Kw+ksmF3BJe23yR8znFVOhVLuaWkJRk3++6AwMHDhxg48aNbN++nfj4eB5//HGz/evWrTOuTz158mQApk2bRmxsLA8//DB33nknFRWG73zVOtQ//fQTr732mmNNcAFcunSJFStWsH37dmJjY1m1ahWJiYnExMQY7+vXX39N9+7dGTRokNVwXFxceOutt4iPj+fLL79k/vz5ZvvfeecdhgwZ0ijXqvxT5dkaM3pbol0XqKF6HeoNp3NYe8xyK0CFXuXfuy8ZW4BtYc8Le05xuVmXqSJtBa9tvmgWfkp+Kf/ek4pOr7DlfO2Xw/fjklm06QKqqtaqWa3C1ckwc16pTl/rB9capi1XKfmWC2QVepW1xzJJyitt8HpwlkjMK+FwmvXW3je2JjBz5TGLhVJbmDr+a2cK/4xL5h/ba7feJ52pXavWfdwc498Xv3rSYvjairrv+ZUyHc9sOM/jP56t1TpoKQ1VVeVIWqHZOE69Sd6a/7/TLNp0kdgLefznQBpbzuUy9+vjHEwt5JM9l/j6SCaP/3CmVrg1sbeHhorB8d97Ull9OKPOio0F35/hVFYxT/x0lsOphZSZ5L/EvBK+PpLRpJVZ9uTDY+lXmLnyGDsTLxu3ZRdpm9Rjy7lcvj5seSbNQq0hDRIqK7wskXS5tF6tu1vO55GSX8aeZMsv7lvP5/HLmRy2nMslKa+UXUmG46q+ZxdzS3g/Lpl1J7I4mVVsVtF0+5dHuPOrY8bP78Ulc9dXR0m+bN0fIKuyIP3R7hTjNnuei2eyrRd0qwq3Or3hPucWl/Pub0n8Y3siz2w4bxzeoq3Q8+a2RF7dnFDrmvtSClkSm8SD351i4+kc437TvGl6zoXc6njuTTE8m3cnWS8ggXk+1JWXc+BvUVx94D0AFo6ASZMmodFocHd3N5shtSb/jEs2XhOguFzP+ZziWnHSVujZl1Jg9/P9s72pXMgtrfN+LN91ic/2pVmsFMky2bbuRJbx2l8fzuA/Bxr/4puQV8q6E9l8W6NVPq+4nMOptnsyFJbpyGxAoW/b+TymfH6Y2Au1f2stoSgKC74/zYXcEo6lFxmfzQu+P83mc3n84b/H+eFkNi/9eqHuwAqrKy7eeustUlPrrrCs4sVfLvDG1gS+qlH5Ye15WKFXbT7zy2rko3/vSeVgaiH3rDrOvpQCs9+gxqLTw92rjvN/Nipoo6Ojee3dZbz/r4946aWXjNsr9Cpnsw2F3/fiDAXfd+OSmfjJQdbVozdNosmzeHdyAQ+tPc2ynSk8+N0pMosccyjUh+TkZAIDA3FzcwNg8ODBdp+r0Wjo1KkTBw4cMNseGBhIz549HQXqJqCxy2YB6HQ6ysrKKCsrw83NDV9fX7P93333HVOmTLEZRufOnRk4cCBgWJpOq9VSVmYoa5w9e5asrCy7C9Tvv/8+ERERzJ071xiGKcXFxWi1WmOezMjIYPbs2YwZM4brr7+ec+dqNyw0J+26QF3V5Tshr4R3f0ti+a5LtX5QAD7clcI3RzONLcA1qfqB+uZIBjd+eoib/u8QSVZeOrU6PbNWHjPrMvX14Qy2X7xsFv6fvjkJwL7LLoDhh8f0RfvHU9nEJeSTW6xDb+UH8nKpjl1J+Uz5/DC3fH7YEF5KAQcvWX4pKSjVMffrE/x988XK9LEc7i9ncli+6xL3f3uSLl261NqvqioHLxXa1Zp8JquYf2xPJK+k3GZLOMD2C5cBQ+VHFdoKPfGJ+Ta7Y5ouPr/xjOHcfSnmaVBSXkHm+UO1z+3R1/i3YqX7d7kdLRtvbqsuwGfWKDCVunWs1eV1+4XLPPnTOaZ/eZQH1pzkt4uXLeapV7ck8MWBdBZvSyS1QMuS7YnG43JLdHy6N5UXfzlvvJemrT7/ik/hti+OkFtcTlphGa9vucjPZyx3tXfq0MnsRcxWi5npy3qZTs9T68/xXWVlVU6x4T5/sieVJ388a/H8tccy7WoF35WUz7u/JfHzmRycfALMuv2dyS5m09lcs+Pf+S2JvBIdL/9qyN/7UgqY/d/jfLG/7h/r/FIdG0/nWK28AkPl3OJtiXyyN9VYcDXlbKmnxfMKSnVsO5/H0h3Jxtbd+lJYZp7/y3R6DqYW8sbWBJbEJrF4WyL3f3sSV2fzR/pjP5zhx1PZfLAzhS3pCl8fySS/VEdBqY6aj5XjGUXkleiIS7hMTlE5u5Ly+fZoplmLr+m933bhMk/8eJYNp3OY/uVRjmeYV4Spqso5k1ZgSwXcKjxcDN5Vz8NXt1w0ew7M/u9xKvQqugrT6+eZhWXq+c5vSfx28TIXc0u49fPDxpf693fYrsmuWfkSd/EyP5zIMhbiTJ+HhzetosuV6lbcwnLo3bs3N9xwA66urjz76j9qVQ5ezC3h1crnrym/ns3lobWn+e3iZeO2c9nF3PLZYZ7beJ5l8Sm1zqmJqqr893AGGy6p/Frju1HzuCostci7OlcX1j7YmcLKQ+noVZVP9qbyxYF0s8J9zVbfuuaAKK/QE5ftDMCRGpWr93x9gqfWn+OQjUL17V8eZc6q4yzbmcyj605zpUxntfKgsExn9Ht9awJ61fA81elVvjuWyUEb1+nSpQtnTSqASsr1HEu/Uus7YxeKIb7Hjx9n+fLlLFy40ObhB1MLeXTdaZIul3I8owgw9Bqo6VdVKfteXBJF2gpUVeXuVcf50zcnOJp+pVYDwZqjmdz6+WGLDQe5JTqe23jerPK45n38v72pvPTLBeNvzS9ncpj4yUGz73gVOr3KyWI3Mq5oWWWlAhLAP7gbawp78J22LzExMcbtqw9nMO9/p/l8Xyod3J3NzvlgZwr/jEti7tfHjb1qMq9oLc6FkGehp9qPlS3d2zPb9etvkzNu3DhOnz5NTEwMS5YsIT3dvJJnypQpxm7B+fm1fx9DQ0Nr9QpISTE810zXO3bQMOqzbJYlunXrxoMPPsjgwYMZOHAgDz/8MP7+/mbHrFmzhunTp9sd5ubNmxk8eDDu7u6AodBf1/OviqSkJL744gu2bdvGwoULSUhIMO6rWnZtwIAB3HXXXcbl2BYuXMiECRP47bff+P777/Hz87PbtSlwadGrtTBOisq7vyVRXF79o6/Tq7gDe5MLSMwr4boefnx/wnpXohX70/j2aCbLp/Xj33tSjWF8ezSTx8b0qHV8voWCiOm2tIIys5ejUQHlnC9yIeOKls/2pfH0WPNxPdsu5GGrgfTFX6pryIu0FTxX2Y3wrZuuYUhXH7Njdyfnk3FFS8YVLT+ezMbT1fIPimnL9b6T5xkxzIc3tiYwbWAQ0WEd2XYhjze2JtLV153P7wxnb3IBwT5u+Lg5owKdvKq7UVd1G9TZKJSezynmtS0Jxs/OJrXvn+5JZe1xQ4306j8MRK/CP7YlMn1gEBE9/Cgo1bH50BmK/cKYO6KrWbibzuZyfS9/Cst0zP7vca7LTePBGtd2cqn+CuRVuHM+p5iuvu58b1ILXm7HW9Ruk5eUP64+wYY/DcXZSeFibgknLybyRZInz15/FdFhfri7OLHbpMUx8XKpsZKjLgrKKujq6278vLryZeVcTgmHLhXyyd5UXpzQk9FXdeR/len2y9kctpzLIyGvlG0XLtMvyIswf/PCnzY/k5Ly6oqJqu/Mmaxi/r3nEg9FhnJFa3hZHhhSe5WR9adymDU0hJ9OVn+XTmQWkVpQxgs/n+fGvgHcOdjw0FteOcRhangge5ILCPByJaKH4cFXoVfZdiGPPckFbK3subHhdA739Cjh6c3p/HDvUMDQgg/Qs5MHvQIMa4nXbLNZUVmQXnU4g+LyCnp09CCnuBwfd8M9HxjsjbbCMCnbiv1pHM8o4kx2MY+Msjye/CWT79qLv1xg431DuZBTwlWdPHFxUhjkXcwuPMzTtULPK5su1hqHX16hr1X4rYq/c2XPE9OCwgc7Uygoq2DOMMM9WhKbaKyAMiW/xmRCps++UQHlbKscr+tso8G/TKdn1n+PmW17emwYMdf4G7+LVRxNv2KM22M/nOXW/oFEhfkxrKsPt395xOz678Uls/JQOplXDC+5Vd8RAG9XZ6MjwLH0olpeT/10lpduuNr4+Y2tifQNymLp1L5czC3hkxqVNK9uSWBUmCFfrTqcwbQBQfx0yvbcDaaFiPxSHYsqv5dLd6bw1awBpF04Tcovm/E89BVdS81fXrxc4Iv/fk1q4gVefvllHn3uFfo++DarZg80PhNf25JgtTIWDC2GfYO8CfZxM6uk23A6x+LvzcFLhexMvMyfRnY1FvZGBZSzJDaJiX0Cah1/LP0Kbi7V+a5cX/u57Fojc5zILCLBpDVfW6HHzcWJ9aeyeS8umdcn9WJEqC/F2gpu++IIV3fy4MPp/auvUZnX84rLuWvlMe7pYfjNO5J+hdSCMracy2XawM7GypHdSfkM7epDTmUvhZv7BZJbUs6gkA7GMKt+s6d/eZRb+gfW+s4WlOqY8Z+jhPq58393hJvte3NbgvG788v9w2rFHyA5xbwC4+G1p0grtFzh+tRPZzmbXUxxuZ4hXToQHebHgJAOVP366lGIXf44Cz/ZxITJN1PoXv2SWlUB0cHdhStlOnKKy1m43tCqsmhT9W/C6axiPtlzifuv6wYYCiL/PlLA5nOGZ6SHixN/GtGV7MoKkicqKzPXzR2Cs2KokPt4t+G5+/GeS4zsbt7yZOpThbZCj6dTdWG2qmB8MbeEXgFeLIk1FI4e/t9phnbtwN3Du5BeWMbVnTx597dkIr1yAMuVjJdzMtDmpfHT2m9g7Te4eHfk37qXiJh8O98dy2RnZVf61UcyCe7gVuv8qu/x10cyeWpsGHNWGSopnRRYcecAgn0M59iqIB3kXQy4W93vwBw/Pz/i4uLYvHkzP/74I+PHjyc+Pt5YaFm3bh0BAbWfOVWY9qqIj48nKiqKlJQUvvjiC2OBy0HDWbZsWaPOv3z5Mps2beLQoUOUl5czefJkbrzxRmOD1dmzZykuLja2PtdFRkYGL7zwAl999RUAGzdupFevXnTvbt98PYcPHyYiIgJPT0/69+9vdl5UVBSrVq2isLCQadOmMXXqVAYMGMCOHTv4+OOPAWq1rrcE7bpAraKYvdABfLTrEveO7GJsLa5rzNBXBw21cP85aN7KlW2hq1zNMa1lOj3uLk44mTxI/vj1CbNjLhRV/2AVlOooKa/ggklLy0e7zcdXT/zkoFVX0+s/tf4cG+8banZt03KhrZYaD5OC9q5MPUtWGl6uD6dd4Zf7h/HzmVzj9Y5nXKnVsr/xvqGoqvmPWZaF9Jr4yUG+/sNAXt2cwCUTdycnQ+WAt5uzWYvqXV8dY0SoDwdTCzmYWsgv9w9j6/k8ThU4EXcxo1aB+h/bE/nnjmSuCfBEp1fxqKjd5dTJ5IWhFFceWlt73OCVGq2D2go9i7cmcJW/J3cPD7HYpTizSEtRWQXv/JZECIZrvLE1AV93Z9bcbX9XKUs4WSgMfXUw3Tieb9GmizwU2c247//2mufdmvEBOJCt4p1TnT5ZV7T0CfQyVoi88Mt54z28yt+j1vkZV7QcS7/Cfw6a11rPrczvn+xJNRaoq0jOL+O9OEM+rHqxXX8qm6U7a7fGXShypsxCzVJVXFRVJdmkIuifcUmcNhnfvc5GpZkpsedzGH7sPXz7axismWq2z7SLrpMCa49l8dHuS9zUL4D50d05WVD9vbmQU0KAtyt3WJnc5z8H0vFxd2ZnUj439A5gct8A1hzJ4OM9qSyd2oe+Qd61WqW+2J/GnGEhVOhVi4VpAHeTwtDrW8wraS4UORsLc7Yq6Sx1J/3yQBqXCsqMz0Nr/HAymx9OZuPl6lTr2QsYC9Ng6IGwN6WA8M7exmfOhSJnqy2cxzKKarVCnc4q5seT2VafZ6YVGVvt6O774a5LHLhUyO7kAlxqfNFOZxXjVVpEl13vWDzXxQneTw5g4fjhDF+3jp07d1JelE9qQRmXCsp4buN5i63zpmRc0XL36uN09XWv9Xui0xsGZpSUV7D2eBYTewfw7MZz6FVwdlK4Y5Dh+2X6m1JF7MU8fj2Ta1bxB1BuISM41bj/zorCX9ZW9y6qasWs+u4+t/E8fxrZhQHBhgKvaVf6X87ksCQ2CU3PjnSuLBiZ+j3101myisr54kB1vvr2WBYPRHTj75suciKziD11DMX68WR2rQJ1VcuupWFNOxKqKzPPZRez5XweXX3dyS0u555rDT0QXD19gMvG46wVpgGzYUyH064YP6+o3NYx+zC/bU0mKw3eGJjCb7/EA3DmUhY3LYvFtUNHhnfzqfV9r1nx8vWRTP4wLARPV2f8/f3ZvKf6mfbdsSxCfGoXSkq0FTy78ZzZPfGsrFCx1LJvWolzuUSHm7MTa49l0r1j9TP/s31p3DfS/Lf2UOoVDqWa90jqHFB9n8/nFBsrPgFObviEu67RcZUfLO3yDCkbPuGZp59kYHYQ7p3Me8XZekf79Wwugd7VFfh61dDj8KUbrkZVVU5lWp+34WSBE738re52YAEPDw9uvvlmbr75ZmbNmsXevXuZMGGCXecmJyfTo0cPysrKjAWi9evX88gjj3DgwAFcXV3rDsRBk7Bv3z7jGPi33nqLiIgItm/fTmhoqLEgOmjQII4ePWosUK9Zs4Zp06bZFX5paSlz585l0aJF9OzZE4D9+/fzww8/sGHDBnJycnByciIkJIQ77rjDYhj2DPPz8fFhzJgx7Nq1S0Qvh3ZdoLbExjM55Jp0A0q6bP6Dq1dV0goMk2b9YVh1AaCkxsthVWExPjGfUl0Fnb3deOzHs/h7Vifp2uOZOCkK+1KsvxC4O1X/qO1JLmDqiiMNixjUmuTl++NZTBvYudK/grdjrU/CUarT4+HihF41H4Nl6ge1C/SP/VC7W+9XB9P57eJls7GkNV/Sqnh6/blaY0rXn8ph/akcJvTuVOvl2rQr9+WScg6kFuJV6fishYmYynR648uVV0XtLn7OztU/+lH5W/iw+/O1jlExvHwoisLOxMt8tjeNxMulxCXkcyqrqFb3cjC0UlcRFlQdhwJjAbDWKXbjbKFEXXNynOU2Jror1FbwXlwSY682aSnRVreMgKF1zxTTChFrY4RrFqYtkVZY/X27XFK7N8fJzNotk2CeD01fBKta22q+fNbVEmmNXtlx9Er6DE5+Bppcjv72A57/W0DFDX9jYKGeSx5XkecaxI19Avi2spv7+lM53NIv0Mxx3cksBgTXbsmv4r8m3SCPpReBqvJxZQ+YT/em8o+behtbaUyZ+MlBhnTpUGt7FaaVCttqFLprfpetYWmIyRVthbFbvz1YKkzX5NujmRzLKGL9qRymDQwyOv5kY/Kh3OLaecZW5WCBSeVRXZM/guG7XlXotFRRll+uUHsQDMRdgp8TIat4PY/8kkXG7j24dPDHxcuXfSkFrDxUv654liYcvOM/RynSVuCkGAoOX5oUQi/llxnTreo+/3Aii1vDDen66uYEi9epKlCn5Jfyws8X0PTsaJY3ofbzpqxCX2uCqJqVdmD4nla1YsaadGU3zYeWKloBlu1M4YSVZ4ElqiqvC0p1nMoqsjnhmel9ffh/5hWoo67yo1eAFz+cyKCpWi+9yy+TXgS5pTD9BwDD9zx2w/cEZmu56o4naxWmrfHzmVxC/dzpWFY73f5lYVhAqU5vVpgGQ8+LzCtas55gVeSZPJNrVv5XsSe5oM5KDjC/z2u/+hdRvlcYNHU+vv6BOLu48WBlvfLKgTdQfOkcGb+toTQrpVaBui7+W+O7tSMxn++OZdb5fbf3eejAQGJiIjqdjl69elFSYpjUrWvXrnWfCMTGxpKTk8Pw4cOJj483br/ppptYsWIFa9asYdasWc2l/rugavz0iy++WOexI0aMIDY21mxbcHAwBw8epKysDL1ez5EjR8wmTvz222/573//W+d1VVVl/vz5zJgxw6yy5fnnn+f55w3v14sXL8bb29tqYRoMkxYuWrSI0tJSEhISLE48ptfrOXr0KJGRkQCMHj2alStXMnfuXIqKiigpKSEwMLDO9Ggq2nWBWsHyA/O8SUtczXFUS7YnsqmyG9UzG6prnmuWYapaPqomJZnYuxNg/oP0nwPpdU5o1c3T/plH66Jmd891J7KNBeptFiY+M2XK54e5e3iI2UtaQ/1qhgFYXXrK1gRONcfI1mRJbBJ7kgu4p4fBcX8dLyX7/DR46ku4Jfu/pN/8L4svxtYo0lbQwd3FOD7XGKaFwnRNaqbh7qT8Rk2UZa1ywl6qhgmsNyl0NkU+TLNj1nHTigbT8ZdvbU/k17O5Zt06TTH1M026f8WnsHRqX5tjRuuDn676e5KWcIbAb/9o+LDxaZ4Cfgq8k69DHqw1VvTh/5025kOorhSyl3fjqn8stLrKAtFJywVLWxP7bbCxHJ2999jSEIeaY7ibgmMZ1QWmqrTs5qnnAws9FKqo2WOnJVm06SILe1keJuPnDkey4dL/3kN18cA7bAChN/8ZRVHqXZi2RlUh0dKjI6e4nN2VFVpV93npzhTGXu1v1vunJl8dTGdgiDfL4y9xqaCsVmEaag+l0Or0dY5FB6zOSWJPPrSW961x6+eHeTgq1FioNB2WUp+Jtl769QJzr+3apL/LLmo5N14F11TWX/5W3J21e5Px7TuSoCjbE/zUpCp+D1+jBWp3ha6JpeUp0wq1xi7SzUlVGvYuOsYfLr4OQNGh98n803oS0rJ4YwuM7goZl78j58CvOLm64xnSs0mubU/lWVPe498DJSUlzJ8/n6KiIlRVZebMmYSHh9s8Z+3atezatYuQkBBWr15t1oBRxeOPP87jjz/OzJkzm3QS3N8bjRk/DRAZGcn48ePRaDQoisLdd99N376GOYb27duHt7c3vXv3rvO6u3fvZt26dZw5c4YVKwz9dFavXm1xPiZbdO/enTlz5jB27Fj69u1rtsxd1RhqnU6HRqNh4sSJgKGg/thjj/Hpp5/i6urKxx9/3KIFaqU1l5kBUBTlDuBloD9wnaqq+0z2PQvcB1QAj6iq+nPl9knAPwFn4BNVVRdbCnvDL5vUFw83zcQTo6/qWGsZo5lDgm1OuGEPwe4VZJTVfsg0FR/c1pc+gV42u0Xaorn9moL6OgZ6ubJydvU4kLS/djL+/ceBmy2e89WsAQR5u9nsct9UfrZwd3FiaJcOtbpuNpaWuM/TBgax9lj1GNwb+3QyDh+oiyq/X+4fhrZCzy2fHTbu++yOcO79xnJrSn25MXsNs9OXm21LLICX4uFMHhTjikfYIMKmP4ZHgHntfFOlYaifOxP7dLLY6tcYJH+XI7r7sju5QLQjwED3PJ7aP8PmMU/2+ZIsN/tabpoKPw8XY4VqfdMwxMeNdBtdmmuyfFpfi0NjTLm1f6DVQnFL3+PBIR04Us+VIxrr6F5Rwscnb7G477PCYSxZe5Cg6KmE3fZIg8KX/j2BasdlJ2+jQ43eYYeCJvPhqg0czYYCvTsencPoNulP+PUd2aJ+jw1wKo6JibHelagNEh8fr/br16+1NRw4aJccOHBgf0xMzAhL+yRMc3gMmA6Y9T9QFCUcmAkMACYB/1IUxVlRFGdgGTAZCAdmVR5bC2el6SoLcoprv3A0tjANcGNw0637aIn5/zvNxE8ONqgwDc3v1xTU19HPs/4dM/7w3+MNKkxDE6dhM1WAtcR9Ni1MA3YXpsHcr+YstZcKbC/zZC+u+jLuSv+o1vaMYkNX4HlD4eqhkRSePUDiN0tsOjaGlPyyJi9Mg+zvclUFkWRHgOuC6v7JrGiFjl+mM+DXNw3rU5gGWGVHi7utFuaWvsf1LUxD4xxH5f1stTANcHWPEEb8Y3ODC9Mg/3sCBkevisJahWmAoVkb+DAGdtwFEX9fS/ijy1u0MF3l58CBAwdNRasXqFVVPamqqqXq7qnAKlVVy1RVvQicA66r/HdOVdULqqpqgVWVx9YOuwk9T9qY3KIxFOtkd3GR7gf1d3xSU3u23OakKdOwrEJtdJdvS0i/z1V+F3JKanVjtDQWuyGUO7nzm/+kWtuHBsGKG+EP/aDfLX/E2cuHkoza65y3lTSUjHTHAn3d42orlJYvUJt202/uNNxuMh66IUi/x9A4x6tKLS8XWEW/osM299tDW0nDDrq6h0QNKdzdAja1aQtp6MCBg7aD5DHU3YBdJp9TKrcBJNfYHmEpAFWvJ3nZPEr04O4EQ8dOonzoFK7tqCOjzIlyPYR66jlW4ELvDhW4KCpHC1wY6qcjrdRQ19DFQ8+hfBcG+erQqQpnrzgz0FdHSokTrk4Q7K5n/2UXru2oo7hCIbHYmf4+OhKKnfFxUQlwq95fqFNIK3Gij08F54ucCXDTo6rQwUXPtR11XC5XyNE60cu7gjOFznTx1OPjohrPz9E6UahTuMqrgpOFLoR5VeDlXL2/OeJUqlfo7K6vV5w6ulY7tUSccrQKYwO1dsfJozSPoiKV7OzsWuvUjQ3UNnmcSvUGvya7Tzk59PNpfN4zjdMVnUKoZ4WovGcap4wyhYG+Og6cPMfxNC1jA6vjtPfEOUI9mybvXez0ENfsOUVoafUSWW4mPSs7F16goriQ3teOok8HnVmcdCpEdipv8mdEU32fVBX6+ehEPPesxSmlxInhHctF5T3TOJ2zMIN2TSIC9WRQ3mrPclWFXt46UXnPNE6qCgFuenF5zzRO54qcGRuobdB9Cij0AhvTJwTosglw0zcqTiklTowN1Lbab64990lVQe/hYz0hKvG9aijD1fIWf4/QOeYkc+DAQRPSImOoFUXZBIRY2PW8qqrfVx6zDXiyagy1oigfALtUVf1P5edPgQ2V501SVfX+yu13AxGqqs6vGfgvv/6qPn9I9jije3qU8EWS5bUaJSDdD+rvWHPtUXvGUDeG9piGLU1L+q04FmNx+4V8mLGlI6qLB/3mvY+br/mam440bDzSHe/pUULMeuvdeQEe7L+OUufWG5bZFtJQsh80znFi9rf8If1fVvcXOHdkQf9vG6oGtKE0TPRgxXHryypddunEo/2+aUGrau7pUUJ4oIdjDLWdrFy5kscee4wTJ04QEBDAzJkzmT9/PqNHj7Z53oYNGzh9+jR//etfm9wJDBNUPfbYY7i5ufHxxx/j7OzMfffdx8WLF1m3bh3Dhllea95BbV599VXWr1+Pm5sbTz31FDfffDMA77//PqtWrUKv1zNt2jQWLlxoM5zAwEDjhHXR0dEsXrzY5nZ7iI6OZtWqVSQlJfGHP/yBsLAwdDodt99+O0888QRgmBm8Q4cOxsnvnn32WSZPnsy7777L119/DUDfvn35/PPP7U+UGtgaQ90iLdSqqtq3UJ05lwDTxSVDK7dhY3uN68rv0nOqUHaBX7ofyHeU7gfyHVvb79xl+NMvoHi40OfBJbUK09D6jnUh3Q/kO54qdMZydUs1rdHl25S2kIam1HdStJagMWlY5uRhc3+5U92zc9eF9HsMlY51DE9qze/KqUJnwltuAuB2gaenJ99++y1//vOf7T5n8uTJTJ48udmcvvnmGx5//HHuvPNO47bY2FhuvfXWZrtme+TgwYNs3bqV2NhY8vPzGTt2LBqNhoKCAlasWMGuXbtQVZWIiAhmzpxpNut2TTw9PWsty2Vre32pWsdcp9MRFRXFnXfeSffuhmLhunXrCAiofj87cOAAGzduZPv27bi5uXHkSMOXJq6LVh9DbYN1wExFUdwVRekJ9Ab2AHuB3oqi9FQUxQ3DxGXrLIbQhJOSNRed3GQ7SveDxjtmel7VNCJW+D2kYXPTkn5pbqHmn4sMhenLZdB95ASKkk6Se2hLrfN+r2l4fS//ug+yk7aQht8E32fzmNYuULeFNDTlnuH1W06lJWhMGuoUV5v7m+LuSLvH946ofQ/tcayg9SoGpKVhW2DSpEl8//33tbZ/9NFHREdHEx0dzVdffWXc/tBDDzFo0CCz9YwBPvzwQyIiIhg9ejQvv/yycfvGjRuZMGECY8aMMa5ZbI38/Hw0Gg3/+9//eP3119FoNJw6dcrmOdY8rW2Pi4tj2rRp/PGPfyQ6Oppnn33WZvityaJFi4xrQjeEixcvMnDgQFxcXAgICKBLly4cPGiYiFen01FWVkZZWRlubm74+vo2lbZN3n//fSIiIpg7dy5lZbWXfywuLkar1eLmZr2SMjk5mcDAQOMxgwcPbjbfVh9DrSjKNGApEAT8pCjKIVVVb1RV9biiKF8DJwAdME9V1YrKc+YDP2NYNuv/VFW1uKii/PZp6Owuey1E6X7QeEeF5o3j7yENm5uW9Dt/1TS6nFlq/JxcCDmVE4mf/XWVcXunoePNzrPk+OfruvLxntRa292dFcoq16gP7uBGxpXmb6GzlYbDunbgYGr9Z0MO8nald4AnW+tY595e2kI+3NZhJHdkfGr1GL2d9dQeLk6U6po+vm0hDU1xc5H3S20pDXt09CDpct0rClQotguJTRFbaff4uu6+fLbPfGUCexz1Suu16UhLw7aAr68vISEhnD5dPY9wUlISH3/8Mdu3b0en0zFmzBgmTpxIUFAQy5cvZ+XKlRw6dMgsnMWLF3P06FF8fHzIyjKs/pGVlcWSJUtYt24dXl5ezJ07l9jYWDQajUUXPz8/YmNjmTdvHhMnTmTqVItzE9fpWVJSYtUfYM+ePfz666+Eh4eTn5/fiNRrXhq7DnW/fv145513KC4uJjc3lzNnzpCZmYlGo+HBBx9k8ODBVFRUsGjRIvz9bVeil5aWMm7cODw8PHjxxReJjo62ud0SSUlJfPHFF/z2228kJCSYDS2oWof64sWLPPTQQwQHBxv3TZkyxdjl+4cffmDcuHH8/e9/JyYmhsmTJzNnzhxCQiyNQG48rV6gVlV1LbDWyr7XgNcsbF8PrK8r7AqBXb7vv64rn5i8YP+c0fjuX82JdD+on+OC6NBa2xS1eX9Y21satgYt6Rca2BHOVH++LgSO32P4e36/NRS6WP4xseQYGeZnuUDt4kRZhWGpI6cWekzZSkMPl/q3FM0aEsyNfQPYndR0LxktnQ+7+bpzqaB2zbc1fs5wA6c6xq7aOQv/5L4BrD2eVfeB9aStfJc/u6M/zk4Kp5ppBY3GYCkNfdyd6RXgyfmcEpvnqo0sMv9y/7A6l2iUdo8trTxhj2NdlQ+v3HA13Tu686dvTjbYzRpZzgFAUZOH296ZOXMmq1ZVVywfOXKEyMhIOnToAMDw4cM5fvw448aNsxrGsGHDWLBgARMnTuSWWwxzUuzbt4+EhAQmTTKstFFUVERCQoLVAnV9seZ55coVm/5DhgwxjvutOYmtJJYtW9ao88PDw5k1axaTJk2iS5cujBkzBnd3dy5fvsymTZs4dOgQ5eXlTJ48mRtvvNFmofTYsWMEBwdz4MAB7r77bvbt24enp6fV7ZY4fPgwEREReHp60r9/f2OXbqju8l1YWMi0adOYOnUqAwYMAGp3+QZDT4PNmzfz448/Mn78eOLj45vlXkru8t1omnId6qaiVyfzzNMcayEO69qhXscHelvvotYW1mqsj+PAkNppozTpAmu1kZqGj4yqfkA1teOrN15t/PuVG662caR9tGQaKs7Wvw9e7m78LeYqs/hVYcnR3cXyI9bDtXp7cyyDZglbaejcgF+Ce0d2pauve5P6t/R35bM7w3nzpmvsPv7GYC0Z7rUr5awxY1Bni9vfuaU3dwy2vK+xSH3eVFHl183PgxAf92Z++jYMS2moqrDstr48Uceyi2oDvg9+Hi4M6dKBp8daH5dYl19Duf+6ro0Ow9W5dpztcVTreAUN7uBGqJ/tMekNJcJPXkVOW2D8+PHExsai1ze8IWLNmjU88MAD7N+/36xluSrs2NhY9u/fzz333NPgayhN9LvUUt2bW5J9+/ah0WjQaDTs3l29bN28efOIjY1l9erVZGRkEBoayvbt2wkNDcXX15eAgAAGDRrE0aNHbYZf1WI8fPhwunTpQlJSks3tlrDn/vn4+DBmzBh27dpl8zgPDw9uvvlmli9fzpAhQ9i7d2+dYTeEdl2glvhDXfOHp6C86V+mO3raHsNVE62NboeW/AaHdODVG68mwKt+12ku6pOGPTvVrg1r7hZqe/1aen1sb5P1oBqaD2/qF0BX39pr8wZ3qG6dCPFpfGtKc3xPrKE4VT8Wz4feZLZv+fQBaHr6M8hCxUx9HN1NSrDNWZ6O6F79MmDL70JuCc9eb9/LfE26+Jrf335BXg0KB5ruPlsryFpiaJcOdo8Dr/I7fPNXNo97cUJPRoT6MGtosMX9A0M64OVquXVu8eRedrnU5dgQPpre9LMD16S2n/Vf6rCOzVOYssTSqX149vqrgGrHudeajw12UhTc6qh9KlfqWKvcwsoqq2YP5K2bezOhdycLJ9Smrnt830j7C8l3DracR+uDaZrMGhrMnGEhduXDuiqzXSq773w6o3/jBC3gZKPi1IF1nJ2diYyMZM+ePYBhTOru3bspKioiPz+fgwcPGlsLLaGqKikpKYwaNYq//e1vJCcbVsEdMWIE8fHxXLpkmGM4OTm5Ud2Y/f39SU2t7h1mzbO+/lKpzxjqESNGGCsuIiKqVx3Ozc0FYMeOHeTn5zN06FCCg4M5ePAgZWVllJSUcOTIEXr0qH5XrXndvLw8SkoMvXiSkpJIS0sjNDTU6nZrVBV8S0tLOXXqlDGfmKLX6zl69KjNcBITEzl//jwAJSUlJCUl0bVr4ysRLdG+C9SVXb5v6ld7Rt7WwrlG/87zV6x3eZo9NJi7arRimBZU7L2GLXp09KCgrMJsm497tZMlv/Bgb67r7se/b2/+ly9bVFVO2EpDUzystBY2dwu1vX4T+7RsPjXNJtYc+9ZROPrr6B6Ed659jGkedGmCPs3ZFXW8pDYhism4vpELPjHb51TZNdrVwku1pTS0tiqhact1sbbC8kFNjK18mFqg5fpe9r3M12RkqC+Pj6n+gTXNM0Pr0VvmrsGd7f6uWOLGPtX+13W33Kpw1+DOfDitH3++rivLbusLGGrCaxac/u8Oyy/wVX69ho216TL6qo68PukafNxd+PzOcIvPbS83Zx4b3b3WdidFMXsGQ/0qCBqahqtmD7RY4dgYxluoqOjdrTM/zB1i/Gxr5c7lzVDA7x3oydKpfRh9VUez7T39PY0VK1VpOKZn9TFq5e9EZA9fm726TnnXf9Kb+vxmm/pZ464htgvJ1wQ07X02/W11dVII6uBmdz60VYHkUvkb372jB8O61r2mtTXcLbSgO3s1PLzfO7NmzaKgoACAHj168MADD3DDDTcwefJknn76aYKCgkhKSkKj0fDGG2+wdu1aNBoNv/76K6qq8pe//IXRo0dz0003GQtjQUFBvP3228yePZtRo0bxpz/9ieLihvciePjhh3nllVfQaDSkpaVZ9bS2va2RkZHR6HHU8+fPJzIykmeeeYbly5ejKAqRkZGMHz8ejUbD9ddfz913303fvn2tXvfMmTOMHTuW0aNHc/fdd/Pee+/h7e1tdbs1unfvzpw5cxg7diyvv/662aziVWOoR48ezTXXXMPEiROthlNSUsKDDz5IVFQU119/PXfccYexC39T0+pjqJsTp8ou383VZaghuDqZv4gP89dxtNDyj/PcEV05nn6F1UcyjdsWT+5FuV7lz99ans0w0NuV8M7ebDqba5dPRHffWhOtmHbhtORXtbeputRYYkF0KEt3pljd/+VdAyjT6bn/25M209CUbn5WCmUWWqjDOnqQaMcENDXxcnWiuNw8PHv8LP3gNzd13WeAa7v5sGBUd+b/73StfVVYeh92VqwXqB8Z1Z3JfQNIzCvliZ/OUmSlQPn1HwZyuVRHj44erP9tL3GZDW9RiOrhR7wdY30XRIfCmeouUO7uHqR26EfXK4bvm5OT4ZFp6XZZSkNvN2femNSLZzcaaki7+rqRWqBl6oAg3o41dHfKLdEZj79rcGez73tTYu/3pL4oisKkvgH8dvEye1MKGHe1P9+fyAbgmXFXkXFFy6PrztQRCqAotRzvGNSZYxlXOGnHONs7BgXz8xnDc89aK+Kc4V1wd3Hi6hoFCtMCzb9u62v1N6PKz8VJISXmH2gLMnHz7YzrzmUElyRaPKerrztfzhxgcVzs5H6BXMwr5X8mY6kVak9cFR3mx5qj9uWLht7nTpU9jm7qF8D6Uzn1OtfPw4X8Ul2t7Za6And2KjKrULJVndkcj8VltxkK6S9O6Gl2T1ycaz8Pu1toIfd0dearmQO48dNDFsMvce5AXMcbiLy8BRdqP9s+6m6YKTjAy5Wc4nKLYdQ1UWFjv8tPaHrwws8X+HNEtzpdwjt7cyLT9lhjNxcnnh9/Fd8fz2Jy30D2phTY5VhylYboLtYLto2pjJ01NJj/HjK86L97ax8eNvkN6xXgiVvpZQt3x4E1Zs+ezezZswEYOHCgsTUT4MEHH+TBBx80O75Hjx5Wl0jasGGDxe0TJ060WTiyhLWxwxEREcZWdFuetraPHj26znW2pdDYMdRgWGvcEq+88gqvvPKKXde1lO62ttvikUce4ZFHHjHb1qNHDxITLf/WHj58uNa2fv36sWnTpnpdt6G06xZqfWUL9dTwQLxcmy6q86LsH0NXk5rveccKXPDzsFGvUeP3xNlJobvJy96GPw01/j01PJAv7xrA5L7WWzpNW3Hs4ViBdbfmnEzp1vAgXprQ0+K+VbMHEuzjZuwqe6zAhekD665RfDHGcniKhSaSZdP6smr2QKaG16+mcuG4q7ixTyezccO20rCKL+6qfxejl2+wHB8AT5P8PttKt1PT23eswAV/T4PnqDDzyRr6BHox7uqOVq9lqYXJtIBSs/XF09UJZyeFqwM8eSHmKoth3jm4Mx09XbnK3xMnRSGzouEtKmvvGcxLNtLKlDD/2te55rH/kRA0iouRz+HhaWh9tVSZdKzAhRGh5i+H3m7ODDVpWflwen8+ub0/E6107bzvum52edaHqpfSYwUudLPQPd9eQq1VSFXy8g09+WbOILqYXMPFSeEqf/sqNBVqf1ceiOjGP6f0tTisoCZOTtCz8lo9O1Vfc2BIdS24pQIemOfRqoqmNyb14pb+5gvVVvm5OSuMvPV+Rv3hOUbeej8uevvHtNZsGVUtfIHG1WjZNfXr6utWKwxLjg2lIb9v1npBKyZPmf+7oz8r7gqnc43WH2st1J07uDa40rZqSMaLVn5Dqngosht+Hi4su62vWQVjXWlYl9dXPZ+jy5I0yh40f5ErcfLktPeQyjCsn2+pZ8c9Jr0oGnuPewV4sXL2QGM+U21Ua5h+l6zh5qww9mp/3rm1DwHeriiKZcd810AyPatbmkbOfR1nJ8Vqwdm1gS8Zb9/Sm3tHVHfr9DV5x+oX5MXyaf3o3Ll55jBw4MDB75N2XaBWKluoXZ2d+FM9xhQN7+bDtAHWC1K2untVcUPvTnTyqv2DUrOFuquH5TrSqB5+Fo93cVJwdlL4Ye4Qfrp3iNmLlqIY9jk7KYw16ar2/PirjH9benmxVQts0a/ycFuTEdXssgiGrnb1wdpLdFVLStX1u3pUMH1gZ569/iqbY8e6WAlPN2UJAP/rXb3GoKuTQicv13pXxHTu4MoTmjCu6+5rjK+1e2yKv5Xx6GN7duSHuUO4wUIBLKJ77VkKHx/Tg/tHdiXQJDx7uhN29ahg5pBg3r6lN89UjiOE6tYjWy+QNbPU2J4dzboA2spfw7v5Wvye3F+jYOmj1G8SHtNxvN5uzo2aOMsvoDNRz/9A9MwnrR4T4OXKiM4uPDGm+mWxqgDq7KTwp5FduHt4CB4uTvTw92iW3h3W8mrVlbp6VPDZneH0amB3zw+n9TM+lyzh6uyEn4eL2f2umfc+uyOc0VdZDiOihy+3XG15iIE979UKCv+a1o91c4fgaTI+2bQSwVo+MHWueuReG+prNnEfVH+Xa3b59yq3f6bzIV3MC0t6C8/kmr8/pul4+8DOvBBzFdFhltPRnueNLSwNZ6gLa+lqurmLjztdfNy5csV8ebaRld3zI7qbp/eH0xre3fvtW3rzy/3D6OpjuyJm2sDOfDNnEL0DzfNdV48KHowwfwbZ6ppuCRcXF67qP9z4OfnG93miT/XYe1vhWUrPySZDgupzj+0qk5q41OwObuvZ+e6tvflwWj+Lx1hyLJ/yNiUj/gRAUqcReHgaKrusXcLab1dQHe9gVTl4bM+O9AvyMntnq3KtmQ8dOHDgoDG07wI1GGfNrPnAXzq1j9XzhnTpwEM2aukjbbxUVjHqKj9WzR5Ua3vNH4hObua/qh9N78f3fxxsbH28JtDTbDxg1fnuLk42X3xMQ/W3MUmZomA2/vHft/cza7ms6WeKrR/qL+4aQGQPX+43KeDauzTPnytnHe3oabsWvur6ndxUPFycuL6XPzMGdTa7pj0MGnMrQW9lcOucBcZtVQUefY23nvdutZ5voPpl1NlJ4YOpfY1+VfT097CrQgYMs2M/NS4MdxcnnhobRlSNF2hnJ4X+NcYvT+obwJ1DgnGyYwyz3iSXdHJTcXZSGBTSwbw7po2XvqoXr5otbE+NDTOb8KyuF7prAuqexMrTyfYL5M/3DWWdybjM6QMb1vrQ0HLu1Z086dPRhQAr93bmkBDuHm4+TnfZbX15Y1LjJqACw5jOPoFevHZj7bBUMJaoq/LhwxaebbNsjLn8cFo/PpnRHzcrcxDUxKySD8P4yqs7edC/sxfd/NyZOcR8uY0b+3Tikxn9GRDcAV8X+ycIrPniryiGa9ecK8HX3YVru/nYnHjMrEBtIxNUpWHN75RTIyY2tKeg5mLipCgKiqJYHVNq65kN8Nz1V9nuFWWBmoXLmowMrXsm3Kokq5qYpgo/Dxd+nDuERROvNpuUy8PKpG11YfpMbMj3+ePb+zEowI3balRqWEvVqzt5MCLUp87vcnDvYRS5VD/Dra0AALV/d6C6ogfqvsem2NPKG1JZ8eDp6sSAYPMKH1un9wrwqjV8Agzf+ZqOOe5dGTTmVkbe9jAFc75l0BNrqq9hJXxrv13/mWm7R1fV7/fzMT3555Q+OCkKT43tQUcPFxaMMjz/auZDBw4cOGgM7bpA7eLsbPyBrtnTr2+Qt93dH50VmDOs+iXQnhY/a2P4av5A1FyrsWcnTzxdnY0/CE6KYtb1uSFjigaFeHPfyK68MamXxZeCHibjxGp2ebW0lmSVQc0Xz1dvvJpnrw9j7T2D8XZzZtHEXtwaXt1lMrhD3QVJPw8XZlTOOmo6DtdStKt2/5zhZtzv7KRw55Bgs9mN517bpc7Za11cLbvVbD0KD7Y+iQKAj0lBUlEUPrm9P6fLql0+ur0/nnYWTPp19jLLR84W3g7/PtHyS1zVZEAjQn24tX8gPf09jOPljKhwz3BDvq5rzVDTKz8U2Y2Ppvfj3crKhZp5ys3Fyew7UvPFsWYs7MnR53S2K7EU5f/bO/P4qKq7/7+/M8lk30gCCRAgEPZdUBEQRFygdQFxQUXr1uf3qHWrVkV9fPRpba3F5Wn1aWtdam3dW6u1KoqKtlatGyIWERTCDgECIUC2yfn9ce9M7kxmTWYmJ+l5v155ZebOufd+znrvOed7vsfqSD159hh+v3B0wHrISMwJcgQXT+1yLiGYN7qUykrru69zet5h4fdpBBhaks2kCB2RaE54rplewcS+eSyeNYj75w0P+WLrxJfHoUy3ff4F7gqxhVR5vqetjYghgQKtZqy8+b/5I/yDUcHF+KrpA/zX96VhMKE6uQuDljKEMp328ZO5VX4PztE0eyKUHV8aBpuOC7F3qIOj0hqiVfYGHcpIC0zTcJTkpEety5P751m+AiKw5NtVAcuDirLS+OX8Nkc0Yxzt4LFDirj8qP5cM72C/z6uMiCcE98zLVQee9Jc1kCB45gviSMtYQrmsqP6c5tjuY3zuXH5Uf2jDogCDCrKYvKYYTE7CuuVnc6P51QF1OVQJdHlcHZoWYnE1im+fuZA/t+R/QIGxoPz+PwQbY3vGRiLs8sbZg1kRmUh95w0tN1v4Sy7IPwa92mDCttp3J9v5Yvb7Wb45Flk57Sll9Ni59Ipbc+pcHkQzcLH+bMv7PFDi3n63DEMsQdww7U1BoPB0BF6dIfauU9ePCaWwUFFhPMnlfOTOUN47KzYvMP5XoaDZ4OCO8Sx7NXofJmMtUPtfFSLCGeN78Ok/vkhH+Ht4xubvmAp1ixxr4DZSWe6nzW+T9SZjAsmt83ihVrXGHh/8WuMlL/nTCzrsPfaUDMFkcgLmvkZUJTJSX0tZy+9wsy4zw+z/js4zv3y278o52emhfRefua4Pvx0bhX/NbuS3Iw0fr1gZDtPwQrLSRPYaRhCQ6jYzx/Tm8peWW0d5TBJ9OgZo/j1aSPCelf34VzrFo6qtNhMaotz0umd64nJzPHSKf04YkBgeRSIeVpremUhSy+ewDPnjuHwinzWr18PWPszP7tobMxes0O9DEP0/WHnjijhp9+q8ps3Z6S5EMIPYPjrcoj88kV5QohOvLNuxZIyoWZ7XfasqvU5fPj169f7Z5Kd+/2Gum9BRmB9Cu6ExoNzFi/SdoC+NAy2DurMTgHB66FFLDN155ZRnjQXZ43vQ998D7MGh55pL8vz8MTZY6I+U0Siqx1Xnse1M9qWL4gIQ4qzeWjBSOYOL+YmxzKiE4cV40lzMXdECdMGFfo7LBB69t1XT0KR7hY8biE73eUvL9ccPYDZVeGtCwDunzecv1wwnnmjSwM6ns6ye9LIkqgDopE0hnsUhDLZDxXW538h0nmhfjtuaC8WBLXdwXm86LBy/xIp33PmtuMH87uzRjGxX3Rv1uV5Gdwyu5IhxdntdnboHWFnkXAd3jSXcObAwEGmlsLw20I6LzN/TG/mDCtmdlVRQFsW3Cz7lgoF+60AwlpgOMtDpHJoMBgM8dKjO9ROQrX74Z5nEua1cVL/fMqjrMny4XvQzBtdygvfGec4HhhuT1P0V1TngyTWUXNf5ynYbG1wiI5lpEuG0ud7KIkINx4Tee9aZ3SzPW5ucTihirbfqlNXqJFw3+97miRpDtIivfQE88TZo0MOePTKz+XXp43g4TOswZjgS4YzUQ++0jkTy/yd0yPDbAvkw+0SJvbLC1hLCtYabx/OuO1pkoCXDZ+Tt2/bW851xHSyX0EGlb2y2g12BF9rcHFWgHO9UBxS4c0/QzmairZm+qULxzM/lFm4gPK291YcDhHx7/ueldVWt+IxqfWtIQ0+J5RFQiRcIrx4wXj+uKhtqYnTD0GktiZcmwfxPySc2RHqqpHulZWVxY3HDOSlC8dzomNmLTgpjh1SxLjyXC46vG0ALt7BLydul3DdjAEsnjUw4lIaXxoGm9G6VMfXLU/un89DCwK36XK7hF85rGoy3C4uPrwvj54ximx7wNIZ2yXfruL/7G3ABhbnc9qY0rBlMNoAlxPf82Kcve57QFEm1xw9gJKctk5WJIdWrhC3ctaTduFF+NN543h2UfvlUpHISXeFNKF2lsV4nhFOjb4tz0aH6YxHK3abjv0p30y6htK+jgGKKOctOqyMwsw0/nNKaFP7UHX5f04YzFEDC/jJXMvKxO0Svyl3PBxbVcT1MwcyvDSb7HRXREuZSO3s8LJCnls0loMXv8K6oecw8bwfhQ17y+xKPG7xvx98f8YAbjhmUESd9586nO8fPYAzxrZZqvxkzhCumV4RkxPDSOXQYDAY4qVHb5sVMLMSx8PUF/bEYb1Y+tUe5sRhcga0My8OMNsNeqpvbYi+TizQDC62iIzsncML3xnXrkN16qgSHvxgS8CxisJMstJdIb3xRtN3bFUv7lxeHT5AwAtNYKdtfITtMiBohtol7aagfA/zrQ3udp22RO0sHekl/fbjB3PX29X+bZ+cL5lOcnNzKQ8zQ37UwIKwVgfBWZ2V7uaF74xj7a5DMXtODubnpwxn4ROrAGj2ts0gbG1wM9gR7j+n9Oe7R/Tz50GkUpeItHa7hMWzBvGTtzaE/H2/8gCBHd15o0s5aUQJFYXtX54ivTznZ7hDLsnIy3BTVZzNJ00dW1uXmxv7nstOhpfm8MC84ZTlWeXnwsnlbNzbENa77pg+OZwcxvu8r1Pxy/nDeW3tHs4/rJxXvrS2sPLV5VBroSM1KxKlg9w+fOQTIt0rNzcXEWlndh2cn1dNr0BEWDi+jEc+3AbE7zQqmFhMY3c2urnsqP7t2vHO7mU/IER9dt7DN2gUzhJnnKMtrepbzNHl5Xy9+xCfbWtzvHTb8ZVM7JsX157HD8wbzqFmL7kZ4V8VQtWlCyeX85fVu/jOYeVkp7sDOvfR6kmsa/UDCRcn5ztA7PF2arzn5KG8u2Ff2PeAUAMKziNHnPLdkOfNqCzk2c93hpxhLc/L4Olzx4TVvLXBTUaai8aWtjZ8QGFmwO4SPoKXGB0XZbbfJcJxQ3sxu6qIVhX/Htk+8vLyyM9MI3/skQwZe2TEsJP75/PiBePjch5ZkuNhzvBiPt/eVsYjLaEJJjc3l/3798cc3mAwGCLRozvUzjV1oRxzXXJ4X/7njfVcMKmc3368zX/c16RfMbWCmYOL/KPz4bhmegX3/n2T/3vwzIAEdSqdjMlv4eso2x2LCOdOLEMpFfHhFmzWHNyZhtAeXD1uF388b5z/pbU0x0OtvTfumPwWPtkb636XkWcKXRIYIqTVgONNJHANdaiZcvwag2PV2ZdrH6FmqF1iHR/dJ4eirLSw+yj7qKmpoby8PORvwS9Av184mkVPfWHfJ7R1wLDS6E68wtHLYc7q0+0WKw2DHZwFlLU4vHx3FJ/zvWBnUwC9XYeAwHIYyrmWj1hfzJyDGc+cOxa3S2htir7ncSgi5XM0nF6Gz54Qee31PTGsAx1SnM2ltunt0ZWFLFtXy9RSK6dyPG6umzGArHQ3P3yjvdnjgwtG8MHGOh7+cCvQsYHJK6b2p8mrQna2Ir2fh0tDp4Yrp1UEtG2njiplQ+0hBoYZZEqUQ/XMNBdnDs1kXIgdILyShks10yIdf6T69nIe5PBjcdX0ChqaW0O25eHwpeENxwzkiU938JI9oOJxu+K6DlhtQLjO9JXTKlhTcyDkzO3ZE8pYOL4PItLOd0Nn6kmqcGoszWnvoMxJawf90X1ncjmjy3KYEGZgOdIAwJj8Fv5VH9vs88R+ecwdXszoPjnMHFwU0UdA8P07sw94vPkcrc1eNLGMz7fVR8yLeKipqYkeyGAwGGKkR3eonQ+kSf3yyHALjY5ZzumVhfz5/HFke9yBHWr7PE+ai8lRRjxnDSli7oiSgA518IxjpE7kp7VpjC/P5Z31e8OusQX4zqTwD6ZHzhjJiq31Yfe2jQWn5puPHcTd72xk5fZ6Pq1trymeZ2yk2fVoMwbOtAr1Eu57AH9am8ZZQb9HMkOMB2fH3OfF9Y/njeNQs5f8zLSYOm5lZZE7SE4K4/S+C5bzshVb6+Oete5v72f+5DljqN6yI2DtYzARZ6jjTurQV8vxuHnxgvEhX/i2ebOB5pjvEOv+pZP753NYvzzGl+f6BxAGTD0NPrmP6uIjiee1P558jpWxZbkBMzAd4YppFUzqn8+w7LZ1l8Gzsc7kGlSURUl2eluHOiBkbOkabgbdulf4a4RLwxGl2Xy927Ic8C1D8HF5FAdbiRpcg/D6Dpz9BI3PXcXD/X7Q4Wv/YeFoGlpaA/bM/faIkghnRNZYkuPhyukV/g51opfFnDSypN0+3U7Cte/JqCeJ3oUuHo1Op3KVRZmsr21gWEn0QU+P28XUgYUdkcentWmM7pPDN3sOtfPKHYxLhGuODr9+uSMIMLos8nr0ROfzmLJcnl00lqw4t7IMR1lZGZs3b07ItQwGg6HL11CLyBki8oWItIrIZMfx40XkYxH53P5/rOO3SfbxdSLycwnz5HbOUItIu21rAP96tABNcegPtRVLfrsZ6rYrukX403ljec5eIzYk18vQkmx+Nb9tjW289C/I5KSRJTGbZgXvrRpMeX4GS04ays9PGcaQ3NjXBobKheBOcTxeyp3pFuql2HepIbneTu0z7L9fiGNex4195mQ5HrffvDuW2+7Zsyd2DR1Y87f4mEGcPb4PPwqxbVIoHj1jFItnDfKbGhZmpZPR0vFO2wWOwZ5YZz/CkZnmCpmXvVyNcV1nTFkuR1bkc36EgSiwyuOdc6sCZoUrqsaQ/V9fcvhNL8V1z3jyOVZut7fP6wxZ6W5mV/XiQN3eCKHCD3YluiMW0WdDmDT87hH9uHByOb87a1RS9vCOBZHw+kYeMZuvz3uTNTnjQv4eC540V7tnRyRmDSkiO93VrlMbTmOkteupJBn1JBwdLSrxaHQ+m3544hDOGtc7wGlbInX5GJLrxZPm4slzxnDrcZ1vI+Ll4TNGcve323sEd5KMfM72tF/e1VFSWQ4NBkPPR4cZ6lXAacCvg47vAk5WSm0VkTHAUsBnO/ZL4LvAB8DLwBzglWg3mtgvDz6EkgheXCG+h53v5fD+U4fz7Mod/EcYJyLOaztN6PLTradxtC1vEslJI0v4+bubooYTadN3zdEDuPdvGyOHD3mNwDVsbpfw3KKx/jR++PSR7Khv4qZXv45Zvw9fxys/XSVkhiLURFY0R0ex3LapKdAj68DCTDbvayQ3xGBORwYGirLTuTCOvbf7FWT4t0kKpzGYSKqc6z8jOXSK5VrhyBAvzvG/nBBp58TtEn4YNMBwzOBCln+zN6a1sgXF8e9jHS0NO0KktavxEkrf8NJs1tQcZELQshZnHnXUF0U4Ir0Qh0vDbI87qil8KoiUx98aUcw/qvdF3O86kRRkpvGn88e1azPCanQES+Ssfbwko56Eo6PxjEej8x69cz1cfETkdwDo/OBGfrpiJx17XiSCYH8ooUhVPnc0BVJZDg0GQ8+nyzvUSqnV0P4lSyn1qePrF0CWiGQAvYB8pdT79nm/A+YRokPtCnIxOrQkm98sGEFpGOdRPjrSQA8rzebm2eFHiv9zSj9aWlW7DsfSHR6+3acL324iIIh/L8m5w4ujdqijX8/COQtTUZhJRWHHHGz5rrd0h4dzO6UsPNG8fMcyexe83+VV0yvonefhpBDmnJHW2yeTaHtyRpMyf0wpz6+qYeH4PiF/ryrOYt3ujjn7AvjGWwgcAOA/juzHKRFMTcNx7YyBzBleHODAKZHovq9pKH33nTyMhpbWdgMU4fI7ESUyPyP8YEh3TEMfWelu7g6xj28yCdVGhNNYEWL/8a6gs3l8/7zh5HrcHGr2cunzaxKkKpB4NMazvGh0nxy+2HGAqQMLOiLLz9IdHqq6cHwplnagO9TltWvXdrUMg8HQQ+jyDnWMLAA+UUo1ikg/wLnwZTNtM9cBtLS0MG3aNNLS0vB6vZx22mlcfvnlbN+2mZycHNxuN3V1dZSWljKlVzNpovi8Lo0ytZfdu62Xvvr6evr06UNNTQ0iQq9evaipqWFEfiuoVvIb99DYmMn27dtJT0+noKCAXbt2UVBQQFNTE4cOHaKsrIxJeYfweDzU19eze/duioqKGF/QzMySJg54W6iuriYzM5OsrCxqa2spLi5m//79NDU1UVZWxvbt28nKysLj8bBv3z5KSkrYt28fzc3N/t+D47Rnzx6UUpSWlrJjxw6/59L6+noK0lsZm99CL+8+Dh4soqamhvz8fLxeLwcOHKCsrIwDu7Zyer8Gnt2SRXV1NacMzuKbXfs5LO8gjY2NbN++HY/HQ3mGl2F5XloOHWDHjgM0NDT4NWVmZtI/y8uQHC8HD9azb/fBkHGaWdLE6v1peA7tobr6gP/3EXktNLfCkNxmPq51MzTXy6ZNmygtLWXbtu0My23h2NImNm7cGJBP2bQws6SJzYdc7Nq1yx+nSPmkcoqYWdLE/hbx51OuamB8QTOF6cofZ2c+nTUqn6Wr9jO5LMv/e3A+ffnll/Tu3TsgnxYOz6Fu3w4Oetrn07BcyyHclk0b6Vte1q7sBedTtLLny6e8vDx/2Tt06FBAPtXU1DBs2LCwZa+YAwzM9jIo27pvcNk7fUg2s/qVk9XawMGDB9vF6X9mlHLb699QntkKLU1s2rQprjgNc+9hTL6bYk8rZdnCti2bosYpVH0qbmnC25zBlgTXpz59+vDll19SXl6e8HyaWdLEx3vTmFTYwt5moa6urkNtxOrVqxk8eHDIOLmD4rS3br+/jdi8ebM/Tr2kgRF5LfTJaPWX987GaceOHf582rNnD2VlZQlp9wrSW5lQ0EKeOsju3bvDtuXR8mlgtpe8NEWfTMXXX39NUVFRh8qeL85ZB3exc6dKaNlzxmn16tUMHTrUH6fHTx/G9u3badq3iwNYcZJGN2PyWyj2tPrzYdu2bXHHqSP5tHbtWsaMGRNXnCpc+xiS00K6CzIO1FCcV8b22hoOL2qm+qCb2u1byG7t1a7sHfS6/M+nurq6mONUW1tLUVFRxDjNLGliR6OL3mlNVFdXx5RP3xubwY5KF+Mq86iuro67jTixrIWaBsVhBc00ptfFFafO1KczK4Wlm71MKGhhW4OLA3V7qa5tiFifvvnmG8aPH5+Q51OkOB3avY0x+S3sbxGqq6tjjtO2bdtwu+Nz0mcwGAzhEJUC2y8RWQaEGk+9WSn1gh1mOXCdUuqjoHNHAy8CJyilvrbXWd+plDrO/v1o4Aal1EnBF1+2bJmaNGlSTBpX7zzAh5vqKM1JZ87w4qjmTAebvNQ3eemdG3m2OxInPPQpc/o0Ul4xKOXmjCc8ZBkAnDmuN5eEMVFbt+sgL763kld3ZPDaJRNRStHQ0t7jrO9a9540lNFl7R2kPPjBFhpbWrkiwtpt3zWunFYRsCbw8U+2setAM1/tOuh3SvTaJRMBONTs5dTHVjKnTyPfP3lKwPVufGUdn2zZHxA+Gpv3NXDRs6sDzvnl+5t5flVNxOvsPtBMr+y0sGVm3bp1VFVVxaQB2tLiLxeMD7m3ajKIpvHud6pZ+pW15izW9AzGF6+bjx3EzMHxmcU+8/anPGRPJrx80YS41uKninjzOVbm/25lgCf5jqZ/PPqava18+9HP2t3vjjfW8/b6vZ3SAXD9y2tZsbUel8CrF7ddJ5Fp6CtvZ4ztzXePjG6GG46rX/yKf+08wJQB+Zw/WHVYn0/PFVP7R3Ta1lliScPlX9fy46At6jqTn/HQkTz+6fINvLGuFgjU6UvTx84cRXmIvYe37Gvkwmf/1e68RGj03XtoSRYPzBsRMWyi2LG/ifOe/oI5fRqpz+rNrce13yYrGdQ3tvBu9T7ufseyUnv8rNH0yYv87pOs9jCYL7bXc81L1sMh3jyuq6s7OHv27Mje1boZ7733nhoxIjXl0WD4d+OTTz75ePbs2ZND/ZaSGWpf5zdeRKQ/8DxwvlLKt8h2C+B069rfPhbq/JjvNbJ3DiN7x96uZnvcIR2axUP/ggz2NDVxShx7J6YSEdjTFLgGOuK2K2GSO3jblHjwOZK75i9ftfvN16lyavTRkXGiUPLPnVBGTX0T34rgbbc4J/Ka/MzM+Ezae+em09ii/HvPpoJoGrPj3G4nEh2J1SHcgNWp1LEzDfHnc6z837zhfOeZf3X6OvHoS3e7uHPuENKCls0kyq/VdTMG8tA/t3DmuMAlAslKw87w38dX8sa6Wk4c1ot9Nds7fJ1RvXP4184DHF6R3PZexzR0kkp9hRF2zohEPBpTuR7d14nd0yR4slLXDuZmpHFcVS9/hzqWV6vuUA7r6uq6WobBYOghdLmX73CISCHwV+BGpdS7vuNKqW1AnYhMsb17nw+8EOoaqZh97wy/nD+CeZUZVMWwxUZXMSIvdi/fyeTaGQMYWpLFj05sG5FPd7v44QmDmTsg1n2yI1OWl0HffA+H9WtbY5ufmcatxw2Oun1aJOL1JvrYmaN56pwxKV1DHU3juRPLGFeWy02zBqVGUBDFEmWzdg1IltfY8vwMFk20LFjyIqw/jka8+g7rl8+4CM7KOkPvXA83HVvZru1LRhp2thoVZaVz+tje5GWkdUrf3ScN5Y/njaUsL7lrmePVOLAokzti3CEgEaTSu3KOx80vTh3GQ6ePjOu8uLx8xyuqk3z3iL6MzPNy/qTUWrXFW49096Ktuz6DwdC96PI11CIyH/gFUAr8VURWKKVOBL4HVAG3isitdvATlFI7gcuA3wJZWM7IQnr47qrtVWIlI83FoAGR91DtSlwi/HNPYjqrnaV/QWZIs7ojBxSwKzvUHpvxv+a4XcIjZ4xK+OYyffvG7oHbpyPVRNOYn5nGkhQ7XHIyoH8/+Gon88ckz1S2s8Sbz/GwcEIfCrPSmDKg486MkqkvUeiusTP63C4hL4Fe28MRi0Zn6/ibBfF1NjtLMvLYE2F3geGl8Vv0xqMx1QP3Z4zrw85yF72LUrczCAR7/o8evjvU5Y0bO+do1WAwGHx0+Qy1Uup5pVR/pVSGUqqP3ZlGKfUjpVSOUmqC42+n/dtHSqkxSqkhSqnvqTBPNN1nqAFqamq6WkJExuS3xBy2q/Y5TWQaxrIdSLzonseQYo0dSN70xjr+csF4Lp2i7wBUMtPQ43ZxyqjSTvlsSIS+ZA9S6l5XdNcH+mvsiL5wj/Irp1WwaGJZ1GU38RKLxlH2ErEjKjrnsbsj7N61K+X3DNg+L4bwKSuHHWySdK8nBoOhe9HlM9T/7jQ3N3fp/SONOYhAdlrsgxJdZRAQKg0H98ri0631KV2HHI6uzuNY0F1jc3Nzyhy0dZTukIadpaNb3MVKItNwWEk2X+06yNSBhQm7pu55DPprTKS+kzqwfV4sxKLxRycO5pOt+ztlNdJRdM9j0F+j7voMBkP3okd3qIP3odYRnfdqFPDvQ50qOmJVECoNz59UTl5GGjMHFyZAVefQOY99pFJjvxDeeKNh0rDzJELfmWN709qqmD6osPOCQpDINLz35KHsPtic0DXLuucx6K+xI/pSPVgbi8bcjDRmVMa3W0Gi6Oo8jsUaLVUaMyKY+0fC7ENtMBgSif49zk7Q2tra1RKisn79+q6WEBZBOLFPU8zhu8r7cqg0zEp3c87EMvoVdL2nUZ3z2EcqND60YCS3Hz+YIcXxO+Ezadh5EqHPk+bi/EnlDC5OzvrNRKZhutuVcAdguucx6K9Rd32gv0bd9UHqNA4pzuLkkSVcMTW+5UDdIQ0NBkP3oUfPUOvulAwgN7f9vs26kO1xseVQ9DGXS47oy4baBqo68ZJdludh+/4mxvfNix44CJ3TEPTXB6nROKAokwFFHRvgMGnYeXTXB/pr1F0f6K9Rd32gv0bd9UHqNIoIV0yriPu83Nxc9u7dm3hBBoPh35Ie3aHuDqSn6+FFOxQlOR4m9itk6rjI23ME7yXbEX6zYCT7Glo65HRJ5zQE/fWB/hp11wf6a9RdH+ivUXd9EL9GpRT19fUpc+Lpcrni3v/31KochuVZO2OkYu/gjmhMJV2l79KJlol7a+MB6ryRB9t1SkMRITc3N2CSpTvUZYPB0H3o0R3q7uDlu7a2loqK+EdXE0W0SfwyTxPjKguTriMjzdVhD8ZdnYbR0F0f6K9Rd32gv0bd9YH+GnXXB7FqbHs21tfXk5GRgceTGn8Zu3btIj8/P65z8vIUFb2LyEhzp2RpUUc0ppKu0jd6gPXKWFSQSVqUtcs6pWFTUxP19fXk5bVZwNXW1nahIoPB0NPo0Wuou4NTsv799d0GCPTXB/pr1F0f6K9Rd32gv0bd9YH+GnXXB/FrVEqlrDMN0Lt377jPERFyPGkp89PREY2pRHd9oJdGj8fTboKlO9Rlg8HQfdC/x9kJuoNTsm3btnXp/TPT3RF/72p9saC7Rt31gf4addcH+mvUXR/or1F3fRCbxmEllmPArvAjuXv37tTfNE5016i7PtBfY3eoywaDofvQo02+uwNdZZa+eNYgXl+7m9NGl0YM1x3M5nXXqLs+0F+j7vpAf4266wP9NequD2LT2K8gkwcXjKBXVjo0HUyBqjZ6Shp2JbrrA/016q7PYDB0L3r0DHV3MPnuqvV4s4YU8eM5VWR7Is9Q675eEPTXqLs+0F+j7vpAf4266wP9NequD2LXOKgoi/zM1I+phzMFvvvuuznqqKOYPn06M2bM4KOPPkrYPe+55564wutkrhyKROsLLjNPPPEE119/faeumSiNr7zyCvfdd19CruWkO9Rlg8HQfdC/x9kJuoPJd3V1dVdLiIju+kB/jbrrA/016q4P9Neouz7QX6Pu+kB/jdu3b2937J///CdLly5l+fLl/P3vf+f555+nX79+CbvnvffeG/K4Uirke0IojTqhm76WlpZ2xxKlce7cuVx99dUJuZYT3euJwWDoXvRok+/usA+1Ll4ww6G7PtBfo+76QH+NuusD/TXqrg/016i7PtBfo9PTso8dO3ZQXFxMRkYGAMXFxQCMHz+eefPmsWzZMrKysnjwwQcZPHgwu3bt4vvf/z5btmwB4I477mDKlCnU19dzww03sGLFCkSE66+/nk8//ZRDhw4xY8YMRowYwS233MLpp5/OpEmTWLFiBc888wxTp05l06ZNALzwwgt8/vnn3HLLLVx++eVkZmaycuVKdu3axS9+8QueeuopPvzwQyZPnswDDzyQolQLJFQaJotXX32VJUuW0NzcTEZuAbcv+QVVJQO488472bBhAxs2bKB///5UVVWxceNGNmzYwObNm7nzzjt57LHHWLZsGeXl5Tz55JOkp6fz9ttvc+utt9LS0sLEiRO5++67ycjIYPz48SxcuJClS5fS3NzMo48+yrBhw3jiiSdYsWIFd911Fzt37uTaa69lw4YNACxZsoQxY8Zw0UUXsXXrVrxeL9dddx2nnXZa1Hjl5+ezZ8+eJKeewWD4d6FHd6gNBoPBYDDExgkPfZqU6752ycSIv8+aNYuf/exnHH744cycOZP58+czbdo0wOr4vPvuuzz11FPcdNNNPPXUUyxevJjLLruMKVOmsHnzZhYsWMAHH3zAkiVL/OEB9u7dyymnnMJDDz3EO++8A8DGjRv5+uuveeCBBzj88MOjat+7dy+vvfYar7zyCueccw6vvvoqI0aMYPbs2Xz++eeMHTu2k6nTxrare8UU7kD54bRs+zDm65bfF7nj6Btw8FFbW8vcuXMBmDJlCq+//joiwmOP/Y6Xfv8bjrrjRwCsWbOGl19+maysLO68807Wr1/Piy++yJo1a1i8eDFXXnklt99+O+eddx6vvfYas2fP5vLLL+fPf/4zVVVVXHrppTzyyCNceumlgDWQsnz5ch5++GHuv/9+fv7znwfovPHGG5k6dSqPP/44Xq+XAwcO8MYbb1BWVsbTTz8NoM3e1waD4d+LLjf5FpEzROQLEWkVkckhfh8gIvUicp3j2BwRWSMi60TkxnDX7g5OJ3Rv/HXXB/pr1F0f6K9Rd32gv0bd9YH+GnXXB/pr3L9/f7tjubm5vPXWW9x7770UFxdz8cUX88QTTwCwYMEC//8PP7Q6kW+//TbXX389M2bM4JxzzqG+vp76+nrefvttLrnkEv91CwsLQ2qoqKiI2Jnu1autYztnzhxEhFGjRtG7d29GjRqFy+VixIgRbNy4Me74J4LGoqqEXi8rK4t33nnH/7d48WL/b1u3bmXBggVMmzaNBx64nzVrvvT/NmfOHLKysvzfjzvuONLT0xk1ahSVlZUcd9xxAIwcOZKNGzeybt06Bg4cSFWVpX/hwoW89957/vNPOukkwLJM8FkMOPnb3/7GRRddBIDb7SY/P59Ro0axfPlybrvtNt57772YLTR0rycGg6F7ocMM9SrgNODXYX6/B3jF90VE3MADwPHAZuBDEXlRKfWv4BO7g1OygQMHdrWEiOiuD/TXqLs+0F+j7vpAf4266wP9NequDzqnMdpMciIoKysLedztdjN9+nSmT5/OqFGjeOqpp4DApVu+z62trbz22mtkZmZ2SEN2dnbAd+c9GhsbWb9+vf+7b49ul8sVsF+3y+UKuXa4M0SbSfZRcPAg2dmpMTe/4YYbuOyyy5g7dy5///vf+elPf+r/LTgdnWn1t7/9zZ+usaaVz+Tf7XbHnLZVVVUsX76c119/nTvuuIMZM2bE5FBt4MCBfP311zHdw2AwGKLR5T1OpdRqpdSaUL+JyDxgPfCF4/ARwDql1DdKqSbgKeDUUOd3B6dkoUZhdUJ3faC/Rt31gf4addcH+mvUXR/or1F3faC/xp07d7Y7tnbt2oDOzapVq/xemJ9//nn/f9+s8qxZs3jwwQf94T///HMAjjnmGB566CH/8b179wKQlpZGc3NzWE2lpaWsWbOG1tZWXnrpJQYMGNDB2KWGUGmYLOrq6igvLwfgySefjPk8n8m+E98662+++QbAv349VmbMmMEjjzwCgNfrpa6ujm3btpGVlcWZZ57JFVdcwcqVK2O6lu71xGAwdC90mKEOiYjkAjdgzURf5/ipH+BsCTcDR4a6RmtrK9OmTSMtLQ2v18tpp53G5Zdfzvbt28nJycHtdlNXV0dpaSl79uxBKUVpaSk7duwgNzcXgPr6evr06UNNTQ0iQq9evaipqSE/P9+/hqesrIzt27eTnp5OQUEBu3btoqCggKamJg4dOuT/3ePxkJeXx+7duykqKuLQoUM0NDTQ2NjI9u3byczMJCsri9raWoqLi9m/fz9NTU3+87OysvB4POzbt4+SkhL27dtHc3Oz//dkxKmxsZEDBw7EHSff76mIU0tLC9XV1UnPp47GqbGxkerq6qTmU2fj1NTURF1dnVZlzxmnlpYWdu7cqV3Zc8apoaGBzZs3a1X2nHFqaGhg165d2pU9Z5y8Xi/btm3Tquw546SUorq6Wruy54xTQ0ODPy1jiVN+fj6NjY2IiH9mMC0tjdbWVlpbW0lPT6e5uRmXy+WfafQ9U5VSAb+LCF6vN+LvSim8Xi9erxewOru1tbXccsst1NXV4Xa7GTx4MHfddRevvvoqtbW1TJs2jYyMDH71q1/R2NjIj3/8Y37wgx8wbdo0vF4vRx55JHfffTdXXXUVN9xwA1OnTsXlcnHttddyyimnsGjRIqZPn87YsWO58UZrlVhjY6M/TjfddBNnn302vXr1Yvz48bS2ttLY2OhPg8bGRn98GhsbSU9P98ehpaUlIM6+ODU3N+N2W9tSer1e0tPT/bOuvnR2u91+T+O+dHLmQ7jfffoTmU+tra3+31tbW/3xu/baa7ngggsoLCxk2rRpVFdX++OslKKpqQnAn68tLS0opWhubvZf0xdWRPjf//1fLrjgAlpaWjjssMM455xz/NfwpXNLS4s/Xr7PXq+X22+/neuvv57HH38ct9vNkiVLqK2t5Yc//CEul4u0tDSWLFlCU1NTuzj7nsO++tTQ0NAtrBgNBkP3QFKxzlhElgGh7LxuVkq9YIdZDlynlPrI/r4E+KdS6hkRuQ2oV0otEZHTgTlKqUvscOcBRyqlvhd88TfffFNNnJh8E7bOsGfPnoD1Wrqhuz7QX6Pu+kB/jbrrA/016q4P9Neouz6IX2NdXV1KPYPX19f7BwSiMX78eN58802/1+9UEY/GrkB3faCfxuByvmfPHjZs2HBw9uzZOV0oK+G89957asSIEV0tw2DokXzyyScfz549u52/L0iRybdS6jil1JgQfy9EOO1I4C4R2QBcDdwkIt8DtgAVjnD97WPt6A4m35s3b+5qCRHRXR/or1F3faC/Rt31gf4addcH+mvUXR/orzGV5sodRXeNuusD/TXqXk8MBkP3QluTb6XU0b7Pjhnq+0UkDRgqIpVYHemFwDmhrtEd9qEuKirqagkR0V0f6K9Rd32gv0bd9YH+GnXXB/pr1F0f6K8xntnwzz77LIlKwqP7Xt666wP9NRYVFVFTU9PVMgwGQw+hyxeQiMh8EdkMHAX8VUSWRgqvlGoBvgcsBVYDzyilvoh0js5EcpSiA7rrA/016q4P9Neouz7QX6Pu+kB/jbrrA/01+tYZ64zuGnXXB/pr1L2eGAyG7kWXz1ArpZ4Hno8S5rag7y8DL8dw7U5pSwX19fVdLSEiuusD/TXqrg/016i7PtBfo+76QH+NuuuD+DWKCE1NTQFbQiWTAwcOpOQ+nUF3jbrrA700NjU1tbNY7A512WAwdB+6vEOdTLqDB8fKysqulhAR3fWB/hp11wf6a9RdH+ivUXd9oL9G3fVB/Bpzc3Opr6+noaEhSYra36+uri4l9+ooumvUXR/opVFE2jlIq6ysZO3atV2kyGAw9DR6dIe6OzglW79+PePGjetqGWHRXR/or1F3faC/Rt31gf4addcH+mvUXR/Er1FEyMvLS6KiQDZs2KB9GuquUXd9oL/G9evXd7UEg8HQg9B/CrcTdIcO9apVq7paQkR01wf6a9RdH+ivUXd9oL9G3fWB/hp11wf6a9RdH+ivUXd9oL9G3fUZDIbuRY/uUOvuFAPgz3/+c1dLiIju+kB/jbrrA/016q4P9Neouz7QX6Pu+kB/jbrrA/016q4P9Neouz6DwdC96NEd6u6wbdbIkSO7WkJEdNcH+mvUXR/or1F3faC/Rt31gf4addcH+mvUXR/or1F3faC/Rt31GQyG7oV0B0/YHWXZsmWtInKoq3VEoqWlJS0tLa2lq3WEQ3d9oL9G3fWB/hp11wf6a9RdH+ivUXd9oL9G3fWB/hp11wf6a7T1pc+ePbtHTSy98cYbNUB1V+swGHooA2fPnl0a6oce3aE2GAwGg8FgMBgMBoMhWfSokTmDwWAwGAwGg8FgMBhShelQGwwGg8FgMBgMBoPB0AFMh9pgMBgMBoPBYDAYDIYO0GM71CIyR0TWiMg6EbmxizRUiMhbIvIvEflCRK6yj98mIltEZIX99y3HOeNE5D07/OcikplkjRvs+6wQkY/sY2fY928VkcmOsMeLyMd2+I9F5NhkarPvOdyRTitEpE5ErrZ/u0JEvrS13mUfSxeRx2yNq0VkcZJ0PSIiO0VkleNYLxF5XUTW2v+L7OPnishKW9M/RGR80LXcIvKpiLyUZH0/s9NrpYg8LyKF9vGwaZbMehRGY8i6ISJHOI59JiLzHecUishzdtxWi8hRSdT3tEPHBhFZYR/3iMijdhp+JiLH2MezReSvjnJ6ZyK0OfSEa2NClkXHeYeLSIuInO44dpd9jdUi8nORzm+TEEHfD+1yuEJEXhORvvZxse+9zv79sKDr5YvIZhG5v7PaouiLu40WkUn293WJSr8oGieIyPu2vo9E5Aj7+AhbX6OIXBd0rWTVlUwR+add9r8Qkdvt45Ui8oGdJk+LiMc+fq8jbb8Skb2OOPnSdqWInJVkfQ/bx1ba6ZJrH/++nd4rReQNERnouFbC60kUjb8VkfWO9JpgHy8Qkb84wl8YdL1E15Vw+maLyCe2tr+LSFXQeQtEREngu8Riu0ysEZETE6HPce2A52mEMjjQztuVIrJcRPo7ruF1pPeLidRnMBh6KEqpHvcHuIGvgcGAB/gMGNUFOsqBw+zPecBXwCjgNuC6EOHTgJXAePt7MeBOssYNQEnQsZHAcGA5MNlxfCLQ1/48BtjSBfm6HRgIzAKWARn2b73t/+cAT9mfs+34DUqClhnAYcAqx7G7gBvtzzcCP7U/TwWK7M9zgQ+CrvV94AngpSTrOwFIsz//1KEvZJolux6F0RiubmQ7tJcDOx3fHwMusT97gMJk6Qv6/W7gVvvz5cCjvrIIfIw1YJkNzHJo+xswN4FpGK6NCVkWVVs9ehN4GTjdUUbftX9zA+8BxyRRX74jzJXAr+zP3wJeAQSYEqKu/K9dV+5PcvqFK4dh22jgn7ZmseOQkHyOoPE13z3sdFvuKH+HA3cExyGJdUWAXPtzOvCBnRbPAAvt478CLg1x7hXAI/bnYcBQ+3NfYFsiNEbQ5yyH9zjqzCwg2/58KfB0MutJFI2/xa6nQeFvoq0NLwX2AJ4k1pVw+r4CRtrHLwN+6zgnD3gHeB/7XcIuu58BGUAl1jMmYe85BD1Pw5VB4FngO/bnY4HHHdeoT5Qe82f+zN+/x19PnaE+AlinlPpGKdUEPAWcmmoRSqltSqlP7M/7gdVAvwinnACsVEp9Zp+zWynlTb7SQJRSq5VSa0Ic/1QptdX++gWQJSIZKZQ2G/haKVWN9ZJzp1Kq0da20ycTyBGRNCALaALqEi1EKfUO1guMk1OxXlix/8+zw/5DKVVrH38fcI6E9we+DTyUbH1KqdeUUr5tTJw6wqVZUutRmDQMF/agQ3umrRkRKcDq+D5sh2tSSu1Ntj57VupM4En70CisTqqvLO7FeoE8qJR6y6cN+ARH/idAY7g2JmRZtLkC+CPWoIT/Uljp6sF60U0HdiRLn1LKWSdz7Ptj6/6dsngfKBSRcrBmgIE+WB3JhJCoNtrWmK+Uel8ppYDfEZjmydCogHw7WAGw1Q6zUyn1IdDsvE6S64pSStXbX9PtP4XVUXnOPh5cDn2cjV2PlFJfKaXW2p+3YpXRkFuUJEKfrxza9TnL1oxS6i2l1EE7fHBbmfB6EkljpFOAPFt7LlZb1WLHJxl1JZy+kOXQ5odYg7cNjmOnYg3gNiql1gPrsJ41nSb4eWqnTbgy6G+zgbfogndEg8HQc+ipHep+wCbH981EfklKOiIyCGuG9wP70PdsU6NHpM0ccxigRGSpbUJ1fQqkKeA1sUy4/yOO8xYAn/g6tCliIW0dmGHA0bYp19sicrh9/DngANbMxkZgiVIqpk5bAuijlNpmf96O9UITzMVYs1c+7gOuB1qTK60dFzl0hEuzrqpHoeoGInKkiHwBfA78p93BrgRqgEdtM7+HRCQnBRqPBnb4Xv6xZlxOEZE0EakEJgEVzhPEMrE/GXgjGYKC2piQZVFE+gHzgV86z1VKvYf1UrnN/luqlFqdRH2IyB0isgk4F7jVDhayzImIC8siIMCEOZn6iK+N7mdrDdCdZI1XAz+z03AJEG15S1Lrim1quwKrE/w61szjXsdAWLs0sU2pK2nr2Dh/OwKr4/p1MvQppXzl8FGsOjIC+EWIU/1tdrLrSTiNwB12WbzXMYh9P5Y12VasNvEqpVRrMutKGH2XAC+LyGbgPOBOO+xhQIVS6q9Bl0nmc+U+Ap+nxYQvg58Bp9mf52MNThTb3zPFWkbxvojMS5A2g8HQg+mpHWqtEGtd1h+Bq+0R8V8CQ4AJWA/lu+2gacB0rBfM6cB8EZmdZHnTlVKHYZkiXy4iM6KdICKjsUad/1+StTnv6QFOwTLTAiutemGZnP0AeMYejT4C8GKZC1YC14rI4FTp9GHPUgXMLojILKyXsxvs7ycBO5VSH6dSm4jcjDWT8Qf7kBZpZhOubqCU+kApNRrLnHWxWGtX07DMsn+plJqINTCQCp8J/lk1m0ewXtY+wnqp+wdWmgJgz/4/CfxcKfVNosWEaGP8BJXF+4AblFKtQedXYb2c98d64TxWRI5Opj6l1M1KqQqscvi9KJe4DHhZKbU5SrhE6dOpjQ6n8VLgGjsNr8GeeY5AUuuKUsqrlJqAVYaOwOqgRmMh8FywJZY94/84cGFwWU2UPhEZYx+/EKvtWw0ErNkWkUXAZOBn9vek1pMwGhdjpeXhWM+8G+zgJwIrbO0TgPtFJJ8k1pUw+q4BvqWU6g88Ctxjd+rvAa5NtIZwdOB5eh0wU0Q+BWYCW2hrswcqpSZjLYe6T0SGJFywwWDoUfTUDvUWAmeH+tvHUo6IpGO9BP1BKfUnAKXUDvvB1Ar8hjZzp83AO0qpXba52ctYL0BJQym1xf6/E3ieKKZXtknV88D5SqmEzBzEyFysGXGfed1m4E+2Gdo/sUakS7AegK8qpZrtOL2L9UKUCnY4zFN963yxv4/DMkM7VSm12z48DWtWcwOWOfWxIvL7ZAoUkQuAk4Bz7Y4WhE+zlNejCHXDGWY1UI+1jn8zsNkxk/McSa4zduf4NOBph6YWpdQ1SqkJSqlTgUKstYU+HgTWKqXuS4Kedm0M4cviZOApu8ydDvyfPQMzH3hfKVVvm3W+AiTKYVUofU7+gGXxAuHL3FFYM8YbsGZjz5cEOXhLUBu9hUBT/oTWlTBp+B3A9/lZopvNpqSuKMuM/C2sPCu06wuEThOn1RFgOdMC/grcrCyz/2Tpm+M45sVqg33lEBE5DrgZOMVhiZW0ehJOo7JM/pWt4VHa8vlC2p6B64D1WB3vpNWVEPrmYvkT8JWpp7HWmedhtc/LbR1TgBfFckyWrOdKu+cp1jrykGVQKbVVKXWaPbh0syNezveib7B8yUxMgD6DwdCD6akd6g+BoWJ5d/RgPbRT7qnRnjF9GFitlLrHcbzcEWw+4PMivBQYK5Zn4DSsUdN/JVFfjojk+T5jrQ9cFSF8IdaLzo1KqXeTpSsMwTOCf8ZyHIOIDMMyDdyFZbJ8rH08B+tB/mWKNL6I9ZKL/f8FW8cArBff85RS/k6WUmqxUqq/UmoQVhl9Uym1KFniRGQOljncKaptfSCET7OU16NwdcPWkGZ/Hoj14rhBKbUd2CQiw+1zZpPEOmNzHPClcwbIrrM59ufjgRal1L/s7z/CWlt4daKFhGtjCFMWlVKVSqlBdpl7DrhMKfVnrDIwUyyT9XSstqfTpqwR2sChjmCn0lZHX8TqAIiITAH22R2Kc5VSA2zd12Gts+707Gqi2mhlmdfXicgU+5rnY6d5sjRimfrOtD8fC6wNPtdJMuuKiJRK264BWcDxWOXnLayBG3CUQzvcCKAIy7GX75gHa8D2d0op37rXZOlbY884+9L4FOxyKCITgV9jtZVOXwNJqScRNH7pGBgTrPW/vrK4ESsPEZE+WI5Ev0liXQmXxwX2MxjfMaXUPqVUiaOteR8rLT/CquMLRSRDrOUxQ7Ec+nWKMM/TcwlTBkWkxJ5JB8sK4BH7eJHYZvUiUoLVUU/2M8VgMHR3lAae0ZLxh+X19Cus9Vc3d5GG6VimliuxTLNW2Loex1rztBLr4VLuOGcRlsOvVcBdSdY3GGsd0Wf2PW+2j8/Hms1oxHK4stQ+fguWmeAKx1/vFKRjDrAbKHAc8wC/t9PpE+BY+3gu1mzNF1gPwR8kSdOTWKagzXZaXYy1XusNrBfbZUAvO+xDQK0jzT4Kcb1jSKyX71D61mGtXfPp8HlWDptmyaxHYTSGrBtYa/O+sHV/AsxzXGcClqn1SqyBlqJk6bOP/xZrDbcz7CBgDdYL5jIsk0GwZkSUfdyX7pckMA3DtTEhy2LQub+lzcu3G6sDsdouA/ckWd8fseruSuAvWI7KwPIk/IBd3j7HscuA45oXkDjPxQlro7Fm/1fZ2u8HJMkap2N5k/8Ma031JDt8mV1e67Cc423G9mZN8urKOOBT+7qraPN+Pxirs7QOq43JcJxzG5ZjSed1FmHVtxWOvwnJ0Ic1ofCunc+rsCwlfOm0DOvZ59PwYjLrSZQ0fNOh8fe0edrui+V0zPfboiTXlXD65tsaPsOazR0c4tzlBO4YcrNdT9aQwF0PHNc/hjYv3yHLIFYney3W8+0hx/Gpjvh8jt3umz/zZ/7MX6Q/USqSE0mDwWAwGAwGg8FgMBgMoeipJt8Gg8FgMBgMBoPBYDAkFdOhNhgMBoPBYDAYDAaDoQOYDrXBYDAYDAaDwWAwGAwdwHSoDQaDwWAwGAwGg8Fg6ACmQ20wGAwGg8FgMBgMBkMHMB1qg8FgMIRERG4Tkd93tQ6DwWAwGAwGXTEdaoPBYNAQEZkuIv8QkX0iskdE3hWRw7tal8FgMBgMBoOhjbSuFmAwGAyGQEQkH3gJuBR4BvAARwONXanLYDAYDAaDwRCImaE2GAwG/RgGoJR6UinlVUodUkq9ppRaKSJDRORNEdktIrtE5A8iUug7UUQ2iMgPRGSliBwQkYdFpI+IvCIi+0VkmYgU2WEHiYgSkf8Qka0isk1ErgsnSkSm2LPme0XkMxE5JsnpYDAYDAaDwaA1pkNtMBgM+vEV4BWRx0Rkrq8DbCPAT4C+wEigArgt6PwFwPFYHfOTgVeAm4BSrHb/yqDws4ChwAnADSJyXLAgEekH/BX4EdALuA74o4iUdjyaBoPBYDAYDN0b06E2GAwGzVBK1QHTAQX8BqgRkRdFpI9Sap1S6nWlVKNSqga4B5gZdIlfKKV2KKW2AH8DPlBKfaqUagCeByYGhb9dKXVAKfU58ChwdghZi4CXlVIvK6ValVKvAx8B30pUvA0Gg8FgMBi6G6ZDbTAYDBqilFqtlLpAKdUfGIM1I32fbb79lIhsEZE64PdASdDpOxyfD4X4nhsUfpPjc7V9r2AGAmfY5t57RWQvVqe/PN64GQwGg8FgMPQUTIfaYDAYNEcp9SXwW6yO9Y+xZq7HKqXysWaOpZO3qHB8HgBsDRFmE/C4UqrQ8ZejlLqzk/c2GAwGg8Fg6LaYDrXBYDBohoiMEJFrRaS//b0Cywz7fSAPqAf22euaf5CAW/6XiGSLyGjgQuDpEGF+D5wsIieKiFtEMkXkGJ9Gg8FgMBgMhn9HTIfaYDAY9GM/cCTwgYgcwOpIrwKuBW4HDgP2YTkJ+1MC7vc2sA54A1iilHotOIBSahNwKpZzsxqsGesfYJ4jBoPBYDAY/o0RpVRXazAYDAZDFyAig4D1QLpSqqWL5RgMBoPBYDB0O8zMgsFgMBgMBoPBYDAYDB3AdKgNBoPBYDAYDAaDwWDoAMbk22AwGAwGg8FgMBgMhg5gZqgNBoPBYDAYDAaDwWDoAKZDbTAYDAaDwWAwGAwGQwcwHWqDwWAwGAwGg8FgMBg6gOlQGwwGg8FgMBgMBoPB0AFMh9pgMBgMBoPBYDAYDIYO8P8BcvFfGZ4TJxkAAAAASUVORK5CYII=\n" - }, - "metadata": { - "needs_background": "light" - } - } - ], - "source": [ - "# ADC parameters\n", - "adc_freq = 48.813e3\n", - "adc_buff_n = 8192\n", - "adc_bits = 12\n", - "adc_quants = 2 ** adc_bits\n", - "adc_vref = 3.3\n", - "adc_quant_v = adc_vref / adc_quants\n", - "\n", - "# input signal parameters\n", - "sig_points = adc_buff_n\n", - "sig_vpeak_max = adc_vref / 2\n", - "sig_vpeak = 1.5\n", - "assert sig_vpeak <= sig_vpeak_max \n", - "sig_voffset = adc_vref / 2\n", - "sig_freq = 5.143e3\n", - "np.random.seed(42) # for reproducible results\n", - "sig_ph0 = np.random.uniform(0, 2 * np.pi)\n", - "sig_f = lambda t: signals.sin(t, peak=sig_vpeak, offset=sig_voffset, freq=sig_freq, ph0=sig_ph0)\n", - "\n", - "# Analog to digital conversion\n", - "sig_sampled = converters.analog2digital(sig_f=sig_f,\n", - " sample_freq=adc_freq,\n", - " sample_n=sig_points,\n", - " sample_bits=adc_bits,\n", - " vref=adc_vref,\n", - " noisy_lsb=2)\n", - "\n", - "# Analyze spectrum and show plots\n", - "spectrum.analyze(sig_sampled, adc_bits, adc_vref, adc_freq, window='hanning')" - ] - } - ] -} \ No newline at end of file diff --git a/pylintrc b/pylintrc new file mode 100644 index 0000000..e937446 --- /dev/null +++ b/pylintrc @@ -0,0 +1,25 @@ +[MASTER] +reports=no + +disable= + format, + invalid-name, + locally-disabled, + unused-argument, + duplicate-code, + implicit-str-concat, + too-many-arguments, + too-many-branches, + too-many-instance-attributes, + too-many-locals, + too-many-public-methods, + too-many-return-statements, + too-many-statements, + too-many-lines, + too-few-public-methods, + no-else-return, + unexpected-keyword-arg, + unnecessary-pass, + consider-using-f-string, + unused-variable, + consider-using-join, diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000..c90c227 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,88 @@ +[build-system] +requires = ["setuptools~=68.0", "wheel~=0.40.0"] +build-backend = "setuptools.build_meta" + +[project] +name = "python-adc-eval" +version = "0.1.0" +license = {text = "MIT"} +description = "ADC Evaluation Library" +readme = "README.rst" +authors = [{name = "Kevin Fronczak", email = "kfronczak@gmail.com"}] +keywords = ["adc", "analog-to-digital", "evaluation", "eval", "spectrum"] +classifiers = [ + "License :: OSI Approved :: MIT License", + "Operating System :: OS Independent", + "Programming Language :: Python :: 3.8", + "Programming Language :: Python :: 3.9", + "Programming Language :: Python :: 3.10", + "Programming Language :: Python :: 3.11", + "Topic :: Scientific/Engineering", +] +requires-python = ">=3.8.0" +dependencies = [ + "matplotlib==3.7.2", +] + +[project.urls] +"Source Code" = "https://github.com/fronzbot/python-adc-eval" +"Bug Reports" = "https://github.com/fronzbot/python-adc-eval/issues" + +[tool.setuptools] +platforms = ["any"] +include-package-data = true + +[tool.setuptools.packages.find] +include = ["adc_eval*"] + +[tool.ruff] +select = [ + "C", # complexity + "D", # docstrings + "E", # pydocstyle + "F", # pyflakes/autoflake + "G", # flake8-logging-format + "I", # isort + "N815", # Varible {name} in class scope should not be mixedCase + "PGH004", # Use specific rule codes when using noqa + "PLC", # pylint + "PLE", # pylint + "PLR", # pylint + "PLW", # pylint + "Q000", # Double quotes found but single quotes preferred + "SIM118", # Use {key} in {dict} instead of {key} in {dict}.keys() + "T20", # flake8-print + "TRY004", # Prefer TypeError exception for invalid type + "TRY200", # Use raise from to specify exception cause + "UP", # pyupgrade + "W", # pycodestyle +] +ignore = [ + "D202", # No blank lines allowed after function docstring + "D203", # 1 blank line required before class docstring + "D213", # Multi-line docstring summary should start at the second line + "D406", # Section name should end with a newline + "D407", # Section name underlining + "E501", # line too long + "E731", # do not assign a lambda expression, use a def + "PLC1901", # Lots of false positives + # False positives https://github.com/astral-sh/ruff/issues/5386 + "PLC0208", # Use a sequence type instead of a `set` when iterating over values + "PLR0911", # Too many return statements ({returns} > {max_returns}) + "PLR0912", # Too many branches ({branches} > {max_branches}) + "PLR0913", # Too many arguments to function call ({c_args} > {max_args}) + "PLR0915", # Too many statements ({statements} > {max_statements}) + "PLR2004", # Magic value used in comparison, consider replacing {value} with a constant variable + "PLW2901", # Outer {outer_kind} variable {name} overwritten by inner {inner_kind} target + "UP006", # keep type annotation style as is + "UP007", # keep type annotation style as is + # Ignored due to performance: https://github.com/charliermarsh/ruff/issues/2923 + "UP038", # Use `X | Y` in `isinstance` call instead of `(X, Y)` +] + +line-length = 88 + +target-version = "py39" + +[tool.ruff.mccabe] +max-complexity = 10 diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000..3e0dfc5 --- /dev/null +++ b/requirements.txt @@ -0,0 +1 @@ +matplotlib==3.7.2 diff --git a/requirements_test.txt b/requirements_test.txt new file mode 100644 index 0000000..de6f92f --- /dev/null +++ b/requirements_test.txt @@ -0,0 +1,7 @@ +black==23.7.0 +coverage==7.2.7 +pylint==2.17.4 +ruff==0.0.278 +tox==4.6.4 +restructuredtext-lint==1.4.0 +pygments==2.15.1 diff --git a/spectrum.py b/spectrum.py deleted file mode 100644 index 9df223e..0000000 --- a/spectrum.py +++ /dev/null @@ -1,263 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- - -""" -Some basic spectral analysis. - -References: - - Analog Devices MT-003 TUTORIAL - "Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so You Don't Get Lost in the Noise Floor" - - National Instruments Application Note 041 - "The Fundamentals of FFT-Based Signal Analysis and Measurement" -""" - -import numpy as np -import matplotlib -import matplotlib.pyplot as plt - - -def db2amp(db): - """Decibels to amplitutde ratio""" - return 10 ** (0.05 * db) - - -def amp2db(a): - """Amplitutde ratio to decibels""" - return 20 * np.log10(a) - - -def db2pow(db): - """Decibels to power ratio""" - return 10 ** (0.1 * db) - - -def pow2db(p): - """Power ratio to decibels""" - return 10 * np.log10(p) - - -def enob(sinad): - """Calculate ENOB from SINAD""" - return (sinad - 1.76) / 6.02 - - -def snr_theor(n): - """Theoretical SNR of an ideal n-bit ADC in dB""" - return 6.02 * n + 1.76 - - -def noise_floor(snr, m): - """Noise floor of the m-point FFT in dB""" - return -snr - 10 * np.log10(m / 2) - - -def harmonics(psp, fft_n, ref_pow, sample_freq, leak=20, n=5, window='hanning'): - """Obtain first n harmonics properties from power spectrum""" - # Coherence Gain and Noise Power Bandwidth for different windows - win_params = {'uniform': {'cg': 1.0, 'npb': 1.0}, - 'hanning': {'cg': 0.5, 'npb': 1.5}, - 'hamming': {'cg': 0.54, 'npb': 1.36}, - 'blackman': {'cg': 0.42, 'npb': 1.73}}[window] - fft_n = len(psp) * 2 # one side spectrum provided - df = sample_freq / fft_n - # calculate fundamental frequency - fund_bin = np.argmax(psp) - fund_freq = (np.sum([psp[i] * i * df for i in range(fund_bin - leak, fund_bin + leak + 1)]) / - np.sum(psp[fund_bin - leak: fund_bin + leak + 1])) - # calculate harmonics info - h = [] - for i in range(1, n + 1): - h_i = {'num': i} - zone_freq = (fund_freq * i) % sample_freq - h_i['freq'] = sample_freq - zone_freq if zone_freq >= (sample_freq / 2) else zone_freq - h_i['central_bin'] = int(h_i['freq'] / df) - h_i['bins'] = np.array(range(h_i['central_bin'] - leak, h_i['central_bin'] + leak + 1)) - h_i['pow'] = ((1 / win_params['cg']) ** 2) * np.sum(psp[h_i['bins']]) / win_params['npb'] - h_i['vrms'] = np.sqrt(h_i['pow']) - if i == 1: - h_i['db'] = '%.2f dBFS' % pow2db(h_i['pow'] / ref_pow) - else: - h_i['db'] = '%.2f dBc' % pow2db(h_i['pow'] / h[0]['pow']) - h += [h_i] - return h - - -def signal_noise(psp, harmonics): - """Obtain different signal+noise characteristics from spectrum""" - # noise + distortion power - nd_psp = np.copy(psp) - nd_psp[harmonics[0]['bins']] = 0 # remove main harmonic - nd_psp[0] = 0 # remove dc - nd_pow = sum(nd_psp) - # noise power - n_psp = np.copy(psp) - for h in harmonics: - n_psp[h['bins']] = 0 # remove all harmonics - n_psp[0] = 0 # remove dc - n_pow = sum(n_psp) - # distortion power - d_pow = np.sum([h['pow'] for h in harmonics]) - harmonics[0]['pow'] - # calculate results - sinad = pow2db(harmonics[0]['pow'] / nd_pow) - thd = pow2db(harmonics[0]['pow'] / d_pow) - snr = pow2db(harmonics[0]['pow'] / n_pow) - sfdr = pow2db(max(nd_psp) / harmonics[0]['pow']) - return sinad, thd, snr, sfdr - - -def analyze(sig, adc_bits, adc_vref, adc_freq, window='hanning'): - """Do spectral analysis for ADC samples""" - # Calculate some useful parameters - sig_vpeak_max = adc_vref / 2 - sig_vrms_max = sig_vpeak_max / np.sqrt(2) - sig_pow_max = sig_vrms_max ** 2 - ref_pow = sig_pow_max - adc_prd = 1 / adc_freq - adc_quants = 2 ** adc_bits - dv = adc_vref / adc_quants - sig_n = len(sig) - dt = 1 / adc_freq - fft_n = sig_n - df = adc_freq / fft_n - win_coef = {'uniform': np.ones(sig_n), - 'hanning': np.hanning(sig_n)}[window] - sp_leak = 20 # spectru leak bins - h_n = 5 # harmonics number - - # Convert samples to voltage - sig_v = sig * dv - - # Remove DC and apply window - sig_dc = np.mean(sig_v) - sig_windowed = (sig_v - sig_dc) * win_coef - - # Calculate one-side amplitude spectrum (Vrms) - asp = np.sqrt(2) * np.abs(np.fft.rfft(sig_windowed)) / sig_n - - # Calculate one-side power spectrum (Vrms^2) - psp = np.power(asp, 2) - psp_db = pow2db(psp / ref_pow) - - # Calculate harmonics - h = harmonics(psp=psp, fft_n=fft_n, ref_pow=ref_pow, sample_freq=adc_freq, leak=sp_leak, n=h_n, window=window) - - # Input signal parameters (based on 1st harmonic) - sig_pow = h[0]['pow'] - sig_vrms = h[0]['vrms'] - sig_vpeak = sig_vrms * np.sqrt(2) - sig_freq = h[0]['freq'] - sig_prd = 1 / sig_freq - - # Calculate SINAD, THD, SNR, SFDR - adc_sinad, adc_thd, adc_snr, adc_sfdr = signal_noise(psp, h) - - # Calculate ENOB - # sinad correction to normalize ENOB to full-scale regardless of input signal amplitude - adc_enob = enob(adc_sinad + pow2db(ref_pow / sig_pow)) - - # Calculate Noise Floor - adc_noise_floor = noise_floor(adc_snr, fft_n) - - # Create plots - fig = plt.figure(figsize=(14, 7)) - gs = matplotlib.gridspec.GridSpec(2, 2, width_ratios=[3, 1]) - - # Time plot - ax_time = plt.subplot(gs[0, 0]) - ax_time_xlim = min(sig_n, int(5 * sig_prd / dt)) - ax_time.plot(np.arange(0, ax_time_xlim), sig[:ax_time_xlim], color='C0') - ax_time.set(ylabel='ADC code', ylim=[0, adc_quants]) - ax_time.set(yticks=list(range(0, adc_quants, adc_quants // 8)) + [adc_quants - 1]) - ax_time.set(xlabel='Sample', xlim=[0, ax_time_xlim - 1]) - ax_time.set(xticks=range(0, ax_time_xlim, max(1, ax_time_xlim // 20))) - ax_time.grid(True) - ax_time_xsec = ax_time.twiny() - ax_time_xsec.set(xticks=ax_time.get_xticks()) - ax_time_xsec.set(xbound=ax_time.get_xbound()) - ax_time_xsec.set_xticklabels(['%.02f' % (x * dt * 1e3) for x in ax_time.get_xticks()]) - ax_time_xsec.set_xlabel('Time, ms') - ax_time_ysec = ax_time.twinx() - ax_time_ysec.set(yticks=ax_time.get_yticks()) - ax_time_ysec.set(ybound=ax_time.get_ybound()) - ax_time_ysec.set_yticklabels(['%.02f' % (x * dv) for x in ax_time.get_yticks()]) - ax_time_ysec.set_ylabel('Voltage, V') - - # Frequency plot - ax_freq = plt.subplot(gs[1, 0]) - ax_freq.plot(np.arange(0, len(psp_db)), psp_db, color='C0', zorder=0, label="Spectrum") - for h_i in h: - ax_freq.text(h_i['central_bin'] + 2, psp_db[h_i['central_bin']], str(h_i['num']), - va='bottom', ha='left', weight='bold') - ax_freq.plot(h_i['bins'], psp_db[h_i['bins']], color='C4') - ax_freq.plot(0, 0, color='C4', label="Harmonics") - ax_freq.set(ylabel='dB', ylim=[-150, 10]) - ax_freq.set(xlabel='Sample', xlim=[0, fft_n / 2]) - ax_freq.set(xticks=list(range(0, fft_n // 2, fft_n // 32)) + [fft_n // 2 - 1]) - ax_freq.grid(True) - ax_freq.legend(loc="lower right", ncol=3) - ax_freq_sec = ax_freq.twiny() - ax_freq_sec.set_xticks(ax_freq.get_xticks()) - ax_freq_sec.set_xbound(ax_freq.get_xbound()) - ax_freq_sec.set_xticklabels(['%.02f' % (x * df * 1e-3) for x in ax_freq.get_xticks()]) - ax_freq_sec.set_xlabel('Frequency, kHz') - - # Information plot - ax_info = plt.subplot(gs[:, 1]) - ax_info.set(xlim=[0, 10], xticks=[], ylim=[0, 10], yticks=[]) - harmonics_str = '\n'.join(['%d%s @ %-10s : %s' % (h_i['num'], ['st', 'nd', 'rd', 'th', 'th'][h_i['num'] - 1], - '%0.3f kHz' % (h_i['freq'] * 1e-3), - h_i['db']) for h_i in h]) - ax_info_str = """ -========= FFT ========== -Points : {fft_n} -Freq. resolution : {fft_res:.4} Hz -Window : {fft_window} - -======= Harmonics ====== -{harmonics_str} - -===== Input signal ===== -Frequency : {sig_freq:.4} kHz -Amplitude (Vpeak): {sig_vpeak:.4} V -DC offset : {sig_dc:.4} V - -========= ADC ========== -Sampling freq. : {adc_freq:.4} kHz -Sampling period : {adc_prd:.4} us -Reference volt. : {adc_vref:.4} V -Bits : {adc_bits} bits -Quants : {adc_quants} -Quant : {adc_quant:.4} mV -SNR : {adc_snr:.4} dB -SINAD : {adc_sinad:.4} dB -THD : {adc_thd:.4} dB -ENOB : {adc_enob:.4} bits -SFDR : {adc_sfdr:.4} dBc -Noise floor : {adc_nfloor:.4} dBFS -""".format(fft_n=fft_n, - fft_res=df, - fft_window=window, - harmonics_str=harmonics_str, - sig_freq=sig_freq * 1e-3, - sig_vpeak=sig_vpeak, - sig_dc=sig_dc, - adc_freq=adc_freq * 1e-3, - adc_prd=adc_prd * 1e6, - adc_vref=adc_vref, - adc_bits=adc_bits, - adc_quants=adc_quants, - adc_quant=dv * 1e3, - adc_snr=adc_snr, - adc_thd=adc_thd, - adc_sinad=adc_sinad, - adc_enob=adc_enob, - adc_sfdr=adc_sfdr, - adc_nfloor=adc_noise_floor) - ax_info.text(1, 9.5, ax_info_str, va='top', ha='left', family='monospace') - - # General plotting settings - plt.tight_layout() - plt.style.use('bmh') - - # Show the result - plt.show() diff --git a/tox.ini b/tox.ini new file mode 100644 index 0000000..3e99ad3 --- /dev/null +++ b/tox.ini @@ -0,0 +1,28 @@ +[tox] +envlist = lint,build + +[testenv] +setenv = + LANG=en_US.UTF-8 + PYTHONPATH = {toxinidir} +deps = + -r{toxinidir}/requirements.txt + -r{toxinidir}/requirements_test.txt + +[testenv:lint] +deps = + -r{toxinidir}/requirements.txt + -r{toxinidir}/requirements_test.txt +basepython = python3 +ignore_errors = True +commands = + pylint --rcfile={toxinidir}/pylintrc adc_eval + ruff check adc_eval + black --check --diff adc_eval + rst-lint README.rst + +[testenv:build] +basepython = python3 +ignore_errors = True +commands = + pip install .