GAMA v1.8.2 documentation
by GAMA team
http://gama-platform.org

http://gama-platform.org

 http://gama-platform.org

GAMA v1.8.2 documentation

v 1.8.2

Contents

I Home

1 GAMA
Multiple application domains
Training sessionso o
High-level and intuitive agent-based language
GIS and Data-Driven models oL
Declarative user interface. L oL
Development Team
Citing GAMA

Acknowledgement oL Lo

2 Introduction
Documentation
Source Code
Copyright Information o
Developers
Citing GAMA

Contact Us

13

15
15
16
16
17
17
19
19
20

GAMA v1.8.2 documentation

Contents

II Platform

3 Platform

4 Installation and Launching

5 Workspace, Projects and Models

6 Editing models

7 Running Experiments

8 Preferences

Table of contents
Opening Preferences

Interface

Executiono oo
Displays o
Data and Operators
Manage preferences in GAML

Advanced Preferences

9 Troubleshooting

Table of contents
On Ubuntu (& Linux Systems)
OnmacOS.
Memory problems

Submitting an Issue

v 1.8.2

27

29

31

33

35

37

39

GAMA v1.8.2 documentation Contents

IIT Learn GAML step by step 65
10 Learn GAML Step by Step 67
How to proceed to learn better? 67
11 Introduction 69
Table of contents 70
Lexical semantics of GAML 70
Translation into a concrete syntax 72
Vocabulary correspondence with the object-oriented paradigm as in Java . 74

Vocabulary correspondence with the agent-based paradigm as in NetLogo . 74

12 Manipulate basic species 77
13 The global species 79
Index 79
Declaration 79
Environment size 81
Built-in attributeso 81
Built-in Actions 84
The init statemento 85
14 Defining advanced species 87
15 Defining GUI Experiment 89
Types of experiments 89
Experiment attributeso 90
Experiment facets 90
Defining displays layout oo 91
Defining elements of the GUI experiment 91

v 1.8.2)

GAMA v1.8.2 documentation

Contents

16 Exploring Models
17 Optimizing Models

18 Multi-Paradigm Modeling

IV Recipes

19 Recipes
20 Manipulate OSM Datas

21 Implementing diffusion

Index
Diffuse statement
Diffusion with matrix
Diffusion with parameters
Computation methods
Usingamask

Pseudo-code

22 Using Database Access

Description
Supported DBMS
SQLSKILL
MDXSKILLo
AgentDB o

Using database features to define environment or create species

v 1.8.2

93

95

97

101

103

GAMA v1.8.2 documentation Contents

23 Calling R 163
Introduction 163
Table of contents 163
Configuration in GAMA 164
Calling R from GAML 164

24 Using FIPA ACL 171
Table of Contents 171
Main steps to create a conversation using FIPA Communication Acts and

Interaction Protocols oL 172
Attach the fipa skill to a species L. 172
Initiate a conversation L 173
Receive messages L e 173
Reply to a received message L. 174
End a conversation 175
The message type e 175
The conversation data type 175

25 Using GAMAnalyzer 177
Imstall 177
Built-in Variable 177
Example 178

26 Using BEN (simple__bdi) 181
Introduction to BEN oo o 181
The BEN architecture, 181
Predicates, knowledge and personality 183
Perception 191
Managing knowledge bases L 194
Making Decision 201

v 1.8.2 7

GAMA v1.8.2 documentation

Contents

27 Known issues
Crash when using openGL on Windows
Grid not displayed right using openGL

V GAML References

28 GAML References

Index of keywords

29 Built-in Species

Table of Contents
agent Lo
AgentDBo
base edgeo
experimento
graph edgeo
graph nodeo
physical _world

30 Built-in Skills

Introduction,

Table of Contents

v 1.8.2

275

GAMA v1.8.2 documentation Contents

MOVING v vttt e 319
moving3D 322
network 323
public_transport 327
public_transport_scheduler 330
skill road 331
skill road node 333
SQLSKILL o o e e e e e 333
static_body 337
31 Built-in Architectures 339
INTRODUCTION e 339
Table of Contents 339
fsm . .o 340
parallel bdi 340
probabilistic_tasks 340
reflex 341
rules . ..o 341
simple_bdi 341
sorted _tasks e 370
user first 370
user last e e 371
user_only 371
weighted tasks oo 371
32 Statements 373
Table of Contents 373
Statements by kinds 374

v 1.8.2 9

GAMA v1.8.2 documentation Contents
Statements by embedmento 377
General syntaxo L 380

33 Types 523
Table of contents 523
Primitive built-in types o 925
Complex built-in types 527
How to change the processor 593

34 General workflow of file generation 595

VI Projects using GAMA 597

35 Projects 599
Publications 599
Projects 599

36 Scientific References 611
Table of Contents 611
Papers about GAMA 612
HDR theses 613
PhD theses 613
PhD theses that use GAMA as modeling/simulation support 614
Master theses that use GAMA as modeling /simulation support 615
Research papers that use GAMA as modeling/simulation support 616

37 Training Session 635
SEARCA Phillippines 2021 (Online) 635
AWP 2021(Online) 635

v 1.8.2 10

GAMA v1.8.2 documentation Contents

USTH Training session 2020 635
SMAC Toulouse 2020 635
Application to disaster management and evacuation 636
Training session TLU 2019 636
AWP Phnom Penh 2019 636
Formation Toulouse 2019 636
Training session Brasilia 2019 L. 636
Application to disaster management and evacuation 637
AWP Can Tho 2018 637
SCEMSITE 2018 637
Formation Toulouse 2018 637
GAMA 1.7RC1 training session - Pays-Bas 637
Analysis of land use dynamics (JTD 2017) 637
Master TRIAD 2017 638
EDSS USTH Master 2016 638
Design urban energy transition policies (JTD 2016) 638
Modeling for supporting decisions in urban management issues 638

Epidemiological risks and the integration of regional health policies (JTD

2015) . o o o e 641
MAPS 82015 o 641
Nex Days 2015 (GAMA 1.6.1) . . . o o oo 641
MISS ABMS 2014 641
MAPS epidemic city tutorial 2014 641
GAMA training session Phillippines 641
A Glance at Sustainable Urban Development (JTD) 642
AUF 2013 . . . o o o 642
MISS ABM 2013 642
The perception and Management of Risk (JTD) 642

v 1.8.2 11

GAMA v1.8.2 documentation Contents

Can Tho training session 2012 643
ESSA Tutorial 2012 643
Water and its many Issues (JTD)o L. 643
Introduction of GAMA 1.4 643
Formation a IRD Bondy 644
Introduction to the GAMA and PAMS platforms (IFI 2009) 644
38 Events 645
Events linked to GAMA 645

v 1.8.2 12

Part 1

Home

13

Chapter 1

GAMA

GAMA is a modeling and simulation development environment for building spatially
explicit agent-based simulations.

o Multiple application domains: Use GAMA for whatever application domain
you want.

o High-level and Intuitive Agent-based language: Write your models easily
using GAML, a high-level and intuitive agent-based language.

o GIS and Data-Driven models: Instantiate agents from any dataset, includ-
ing GIS data, and execute large-scale simulations (up to millions of agents).

o Declarative user interface: Declare interfaces supporting deep inspections
on agents, user-controlled action panels, multi-layer 2D /3D displays & agent
aspects.

Its latest version, 1.8.2, can be freely downloaded or built from source, and comes
pre-loaded with several models, tutorials and a complete on-line documentation.

Multiple application domains

GAMA has been developed with a very general approach and can be used for many
application domains. Some additional plugins had been developed to fit particular
needs. The source code is available from the dedicated Github repository.

Example of application domains where GAMA is mostly present:

15

https://gama-platform.github.io/download
https://github.com/gama-platform/gama/
https://github.com/gama-platform/gama.experimental

GAMA v1.8.2 documentation Chapter 1. GAMA

20/3/2003 | e s
¢ —— | S

20/3/2003 __ ——
velo : 70

IS kbl

Figure 1.1: Multiple application domains

Transport
Urban planning
Epidemiology

o Environment

Training sessions

Some training sessions about topics such as “urban management”, “epidemiology”,
“risk management” are also provided by the team. Since GAMA is an open-source
software that continues to grow, if you have any particular needs for improvement,
feel free to share it to its active community!

High-level and intuitive agent-based language

Thanks to its high-level and intuitive language, GAMA has been developed to be used
by non-computer scientists. You can declare your species, giving them some special
behaviors, create them in your world, and display them in less than 10 minutes.

GAML is the language used in GAMA, coded in Java. It is an agent-based language,
that provides you the possibility to build your model with several paradigms of
modeling. Once your model is ready, some features allow you to explore and calibrate
it, using the parameters you defined as input of your simulation.

v 1.8.2 16

https://groups.google.com/forum/#!forum/gama-platform
https://www.youtube.com/watch?v=YGHw1LSzd-E

GAMA v1.8.2 documentation Chapter 1. GAMA

— Q Learn GAML Step by Step

L

How to process to learn be

Figure 1.2: High level language

We provide you a continual support through the active mailing list where the team
will answer your questions. Besides, you can learn GAML on your own, following
the step by step tutorial, or personal learning path in order reach the point you are
interested in.

GIS and Data-Driven models

GAMA (GIS Agent-based Modeling Architecture) provides you, since its creation,
the possibility to load easily GIS (Geographic Information System).

You can import a large number of data types, such as text, files, CSV, shapefile, OSM
(open street map data), grid, images, SVG, but also 3D files, such as 3DS or OBJ,
with their texture.

Some advanced features provide you the possibility to connect GAMA to databases,
and also to use powerful statistical tools such as RR.

GAMA has been used in large-scale projects, using a great number of agents (up to
millions of agents).

Declarative user interface

GAMA provides you the possibility to have multiple displays for the same model.
You can add as many visual representations as you want for the same model, in order

v 1.8.2 17

https://groups.google.com/forum/#!forum/gama-platform

GAMA v1.8.2 documentation Chapter 1. GAMA

LT —

i

i
]

Figure 1.4: Declarative User Interface

to highlight a certain aspect of your simulation. Add easily new visual aspects to
your agents.

Advanced 3D displays are provided: you can control lights, cameras, and also adding
textures to your 3D objects. On the other hand, dedicated statements allow you to
define easily charts, such as series, histogram, or pies.

During the simulations, some advanced features are available to inspect the population
of your agents. To make your model more interactive, you can add easily some user-
controlled action panels, or mouse events.

v 1.8.2 18

GAMA v1.8.2 documentation Chapter 1. GAMA

Development Team

GAMA is developed by several teams under the umbrella of the IRD/SU international
research unit UMMISCO:

o UMI 209 UMMISCO, IRD/SU, 32 Avenue Henri Varagnat, 93143 Bondy Cedex,
France.

« ACROSS International Joint Lab, Thuyloi University, Hanoi, Vietnam (since
2021)

o« DREAM Research Team, University of Can Tho, Vietnam (since 2011).

o UMR 5505 IRIT, CNRS/University of Toulouse 1, France (since 2010).

o UR MIAT, INRAE, 24 Chemin de Borde Rouge, 31326 Castanet Tolosan Cedex,
France (since 2016).

« UMR 6228 IDEES, CNRS/University of Rouen, France (2010 - 2019).

« UMR 8623 LRI, CNRS/University Paris-Sud, France (2011 - 2019).

o MSI Research Team, Vietnam National University, Hanoi, Vietnam (2007 -
2015).

Citing GAMA

If you use GAMA in your research and want to cite it (in a paper, presentation,
whatever), please use this reference:

Taillandier, P., Gaudou, B., Grignard, A.,Huynh, Q.-N., Marilleau, N., P.
Caillou, P., Philippon, D., & Drogoul, A. (2019). Building, composing
and experimenting complex spatial models with the GAMA platform.
Geoinformatica, (2019), 23 (2), pp. 299-322, [d0i:10.1007/s10707-018-
00339-6]

or you can choose to cite the website instead:
GAMA Platform website, http://gama-platform.org

A complete list of references (papers and PhD theses on or using GAMA) is available
on the references page.

v 1.8.2 19

http://www.ummisco.fr/
https://www.ummisco.fr/
https://across-lab.org
http://www.cit.ctu.edu.vn
http://www.irit.fr
https://mia.toulouse.inra.fr
http://www.umr-idees.fr
http://www.lri.fr
https://ifi.vnu.edu.vn/en/news/Research/Modeling-and-Simulation-Lab-MSI-LAB-346.html

GAMA v1.8.2 documentation Chapter 1. GAMA

& YourKit

Figure 1.5: YourKit logo

Acknowledgement

YourKit supports open source projects with its full-featured Java Profiler. YourKit,
LLC is the creator of YourKit Java Profiler and YourKit .NET Profiler, innovative
and intelligent tools for profiling Java and .NET applications.

This page is licensed under a Creative Commons Attribution 4.0 International License.

v 1.8.2 20

Chapter 2

Introduction

GAMA is a simulation platform, which aims at providing field experts, modellers,
and computer scientists with a complete modelling and simulation development

21

http://www.youtube.com/watch?v=6m_-UY8UBuk

GAMA v1.8.2 documentation Chapter 2. Introduction

environment for building spatially explicit multi-agent simulations. It has been first
developed by the Vietnamese-French research team MSI (located at IFI, Hanoi, and
part of the IRD/SU International Research Unit UMMISCO) from 2007 to 2010,
and is now developed by a consortium of academic and industrial partners led by
UMMISCO, among which the University of Rouen, France, the University of Toulouse
1, France, the University of Orsay, France, the University of Can Tho, Vietnam, the
National University of Hanoi, EDF R&D, France, and CEA LISC, France.

Some of the features of GAMA are illustrated in the videos above (more can be found
in our Youtube channel).

Beyond these features, GAMA also offers:

o A complete modeling language, GAML, for modeling agents and environments
o A large and extensible library of primitives (agent’s movement, communication,
mathematical functions, graphical features, ...)

v 1.8.2 22

http://www.youtube.com/watch?v=ycbeYxV2B7M
http://www.youtube.com/channel/UCWJ1kWGDDI-9u2f2uD0gcaQ

GAMA v1.8.2 documentation Chapter 2. Introduction

o A cross-platform reproducibility of experiments and simulations

A powerful declarative drawing and plotting subsystem

A flexible user interface based on the Eclipse platform

o A complete set of batch tools, allowing for a systematic or “intelligent” explo-
ration of models parameters spaces

Documentation

The documentation of GAMA is available online on the wiki of the project. It is
organized around a few central activities (installing GAMA, writing models, running
experiments, developing new extensions to the platform) and provides complete
references on both the GAMIL language, the platform itself, and the scientific aspects
of our work (with a complete bibliography). Several tutorials are also provided in the
documentation in order to minimize the learning curve, allowing users to build, step
by step, the models corresponding to these tutorials, which are of course shipped
with the platform.

The documentation can be accessed from the sidebar of this page. A good starting
point for new users is the installation page.

A standalone version of the documentation, in PDF format, can be directly downloaded
here

Source Code

GAMA can be downloaded as a regular application or built from source, which is
necessary if you want to contribute to the platform. The source code is available
from this GITHub repository:

[https://github.com/gama—platform/gama J

Which you can also browse from the web here. It is, in any case, recommended to
follow the instructions on this page in order to build GAMA from source.

v 1.8.2 23

https://github.com/gama-platform/gama/wiki/resources/pdf/docGAMAv17.pdf
https://github.com/gama-platform/gama
https://github.com/gama-platform/gama

GAMA v1.8.2 documentation Chapter 2. Introduction

Copyright Information

This is a free software (distributed under the GNU GPL v3 license), so you can have
access to the code, edit it and redistribute it under the same terms. Independently
of the licensing issues, if you plan on reusing part of our code, we would be glad to
know it !

Developers

GAMA is being designed, developed and maintained by an active group of researchers
coming from different institutions in France and Vietnam. Please find below a short
introduction to each of them and a summary of their contributions to the platform:

o Alexis Drogoul, Senior Researcher at the IRD, member of the UMMISCO
International Research Unit. Mostly working on agent-based modeling and
simulation. Has contributed and still contributes to the original design of the
platform, including the GAML language (from the meta-model to the editor)
and simulation facilities like Java2D displays.

o Patrick Taillandier, Researcher at INRA, member of the MIAT Research
Unit. Contributes since 2008 to the spatial and graph features (GIS integration,
spatial operators). Currently working on new features related to graphical
modeling, BDI agent architecture, and traffic simulation.

« Benoit Gaudou, Associate Professor at the University Toulouse 1 Capitole,
member of the IRIT CNRS Mixed Research Unit. Contributes since 2010 to
documentation and unit test generation and coupling mathematical (ODE and
PDE) and agent paradigms.

e Arnaud Grignard, Research Scientist at MIT Medial.ab, member of the
CityScience Group, software engineer and PhD fellow (PDI-MSC) at SU. Con-
tributes since 2011 to the development of new features related to visualization,
interaction, online analysis and tangible interfaces.

o« Huynh Quang Nghi, software engineering lecturer at CTU and PhD fellow
(PDI-MSC) at SU. Contributes since 2012 to the development of new features
related to GAML parser, coupling formalisms in EBM-ABM and ABM-ABM.

e Truong Minh Thai, software engineering lecturer at CTU and PhD fellow
(PRJ322-MOET) at IRIT-UT1. Contributes since 2012 to the development of
new features related to data management and analysis.

v 1.8.2 24

https://www.researchgate.net/profile/Alexis_Drogoul
http://www.ird.fr
http://www.ummisco.ird.fr
https://www.researchgate.net/profile/Patrick_Taillandier
http://www.inra.fr/en/
https://mia.toulouse.inra.fr
http://www.researchgate.net/profile/Benoit_Gaudou
http://www.ut-capitole.fr/
http://www.irit.fr/
https://www.media.mit.edu/people/agrignar/overview/
https://www.media.mit.edu/
https://www.media.mit.edu/groups/city-science/overview/
http://www.ummisco.ird.fr/pdi/
http://www.upmc.fr/
https://www.researchgate.net/profile/Huynh_Quang_Nghi2
http://www.ctu.edu.vn
http://www.ummisco.ird.fr/pdi/
http://www.upmc.fr/
https://www.researchgate.net/profile/Thai_Truong_Minh
http://www.ctu.edu.vn/
http://www.irit.fr/
http://www.ut-capitole.fr/

GAMA v1.8.2 documentation Chapter 2. Introduction

» Nicolas Marilleau, Researcher at the IRD, member of the UMMISCO Inter-
national Research Unit and associate researcher at DISC team of FEMTO-ST
institute. Contributes since 2010 to the development of headless mode and the
high performance computing module.

o Philippe Caillou, Associate professor at the University Paris Sud 11, member
of the LRI and INRIA project-team TAO. Contributes since 2012 and actually
working on charts, simulation analysis and BDI agents.

e Vo Duc An, Post-doctoral Researcher, working on synthetic population gener-
ation in agent-based modelling, at the UMMISCO International Research Unit
of the IRD. Has contributed to bringing the platform to the Eclipse RCP envi-
ronment and to the development of several features (e.g., the FIPA-compliant
agent communication capability, the multi-level architecture).

o Truong Xuan Viet, software engineering lecturer at CTU and PhD fellow
(PDI-MSC) at SU. Contributes since 2011 to the development of new features
related to R caller, online GIS (OPENGIS: Web Map Service - WMS, Web
Feature Services - WMS, Google map, etc).

o Samuel Thiriot

o Jean-Daniel.Zucker, Senior Researcher at the IRD, member and director
of the UMMISCO International Research Unit. Mostly working on Machine
Learning and also optimization using agent-based modeling and simulation.
Has contributed to different models and advised different students on GAMA
since its beginning.

Citing GAMA

If you use GAMA in your research and want to cite it (in a paper, presentation,
whatever), please use this reference:

Taillandier, P., Gaudou, B., Grignard, A., Huynh, Q.N., Marilleau, N.,
Caillou, P., Philippon, D., Drogoul, A. (2018), Building, composing and
experimenting complex spatial models with the GAMA platform. In
Geoinformatica, Springer, https://doi.org/10.1007/s10707-018-00339-6.

or you can choose to cite the website instead:

GAMA Platform website, http://gama-platform.org

v 1.8.2 25

http://www.ummisco.ird.fr/index.php?option=com_members&view=member&uid=62&Itemid=70
http://www.ird.fr
http://www.ummisco.ird.fr
http://disc.univ-fcomte.fr
http://www.femto-st.fr
https://www.lri.fr/~caillou
http://www.u-psud.fr
http://www.lri.fr
http://www.inria.fr
https://tao.lri.fr/tiki-index.php
https://www.researchgate.net/profile/Duc-An_Vo
http://www.ummisco.ird.fr
http://www.ird.fr
https://www.researchgate.net/profile/Viet_Truong_Xuan
http://www.ctu.edu.vn
http://www.ummisco.ird.fr/pdi/
http://www.upmc.fr/
https://www.researchgate.net/profile/Jean-daniel_Zucker
http://www.ird.fr
http://www.ummisco.ird.fr

GAMA v1.8.2 documentation Chapter 2. Introduction

A complete list of references (papers and PhD theses on or using GAMA) is available
on the references page.

Contact Us

To get in touch with the GAMA developers team, please sign in for the gama-
platform@googlegroups.com mailing list. If you wish to contribute to the platform,
you might want, instead or in addition, to sign in for the gama-dev@googlegroups.com
mailing list. On both lists, we generally answer quite quickly to requests.

Finally, to report bugs in GAMA or ask for a new feature, please refer to these
instructions to do so.

This page is licensed under a Creative Commons Attribution 4.0 International License.

v 1.8.2 26

http://groups.google.com/group/gama-platform
http://groups.google.com/group/gama-platform
http://groups.google.com/group/gama-dev
http://groups.google.com/group/gama-dev

Part 11

Platform

27

Chapter 3

Platform

GAMA consists of a single application that is based on the RCP architecture provided
by Eclipse. Within this single application software, often referred to as a platform,
users can undertake, without the need of additional third-parties softwares, most
of the activities related to modeling and simulation, namely editing models and
simulating, visualizing and exploring them using dedicated tools.

First-time users may however be intimidated by the apparent complexity of the
platform, so this part of the documentation has been designed to ease their first
contact with it, by clearly identifying tasks of interest to modelers and how they can
be accomplished within GAMA.

It is accomplished by firstly providing some background about important notions
found throughout the platform, especially those of workspace and projects and
explaining how to organize and navigate through models. Then we take a look at the
edition of models and its various tools and components (dedicated editors and related
tools, of course, but also validators). Finally, we show how to run experiments on
these models and what support the user interface can provide to users in this task.

29

http://www.eclipse.org

GAMA v1.8.2 documentation Chapter 3. Platform

v 1.8.2 30

Chapter 4

Installation and Launching

The GAMA platform can be easily installed in your machine, either if you are using
Windows, Mac OS or Ubuntu. GAMA can then be extended by using a number of
additional plugins.

This part is dedicated to explain how to install GAMA, launching GAMA and
extend the platform by installing additional plugins. All the known issues concerning
installation are also explain. The GAMA team provides you a continuous support by
proposing corrections to some serious issues through updating patchs. In this part,
we will also present you briefly an other way to launch GAMA without any GUI :
the headless mode.

 Installation

e Launching GAMA
o Headless Mode

e Updating GAMA

o Installing Plugins

31

Installation

GAMA v1.8.2 documentation Chapter 4. Installation and Launching

v 1.8.2 32

Chapter 5

Workspace, Projects and Models

The workspace is a directory in which GAMA stores all the current projects on
which the user is working, links to other projects, as well as some meta-data like
preference settings, the current status of the different projects, error markers; and so
on.

Except when running in headless mode, GAMA cannot function without a valid
workspace.

The workspace is organized in 4 categories, which are themselves organized into
projects.

The projects present in the workspace can be either directly stored within it (as
sub-directories), which is usually the case when the user creates a new project, or
linked from it (so the workspace will only contain a link to the directory of the project,
supposed to be somewhere in the filesystem or on the network). A same project can
be linked from different workspaces.

GAMA models files are stored in these projects, which may contain also other
files (called resources) necessary for the models to function. A project may, of
course, contain several model files, especially if they are importing each other, if
they represent different views on the same topic, or if they share the same resources.

Learning how to navigate in the workspace, how to switch workspace or how to
import, export is a necessity to use GAMA correctly. It is the purpose of the following
sections.

1. Navigating in the Workspace

33

GAMA v1.8.2 documentation Chapter 5. Workspace, Projects and Models

2. Changing Workspace
3. Importing Models

v 1.8.2 34

Chapter 6

Editing models

Editing models in GAMA is very similar to editing programs in a modern IDE like
Eclipse. After having successfully launched the program, the user has two fundamental
concepts at its disposal: a workspace, which contains models or links to models
organized like a hierarchy of files in a filesystem, and the workbench (aka, the main
window), which contains the tools to create, modify and experiment these models.

Understanding how to navigate in the workspace is covered in another section and,
for the purpose of this section, we just need to understand that it is organized in
projects, which contain models and their associated data. Projects are further
categorized, in GAMA, into four categories: Models Library, Plugin models, Test
models (built-in models shipped with GAMA and automatically linked from the
workspace), and User Models.

This section covers the following sub-sections:

. GAML Editor Generalities
. GAML Editor Toolbar
Validation of Models

. Graphical Editor

B~ W N

35

http://www.eclipse.org

GAMA v1.8.2 documentation Chapter 6. Editing models

v 1.8.2 36

Chapter 7

Running Experiments

Running an experiment is the only way, in GAMA, to execute simulations on a model.
Experiments can be run in different ways.

1. The first, and most common way, consists in launching an experiment from
the Modeling perspective, using the user interface proposed by the simulation
perspective to run simulations.

2. The second way, detailed on this page, allows to automatically launch an
experiment when opening GAMA, subsequently using the same user interface.

3. The last way, known as running headless experiments, does not make use of
the user interface and allows to manipulate GAMA entirely from the command
line.

All three ways are strictly equivalent in terms of computations (with the exception of
the last one omitting all the computations necessary to render simulations on displays
or in the UI). They simply differ by their usage:

1. The first one is heavily used when designing models or demonstrating several
models.

2. The second is intended to be used when demonstrating or experimenting a
single model.

3. The last one is useful when running large sets of simulations, especially over
networks or grids of computers.

37

GAMA v1.8.2 documentation Chapter 7. Running Ezrperiments

v 1.8.2 38

Chapter 8

Preferences

Various preferences are accessible in GAMA to allow users and modelers to personalize
their working environment. This section reviews the different preference tabs available

in the current version of GAMA, as well as how to access the preferences and settings
inherited by GAMA from Eclipse.

Please note that the preferences specific to GAMA will be shared, on the same
machine, and for the same user, among all the workspaces managed by GAMA.
Changing workspace will not alter them. If you happen to run several instances of
GAMA, they will also share these preferences.

Table of contents

o Preferences

— Opening Preferences

— Interface

— Editors

— Execution

— Displays

— Data and Operators

— Manage preferences in GAML
— Advanced Preferences

39

GAMA v1.8.2 documentation Chapter 8. Preferences

@ GamaPlatform File Edit Search Views

Search | Toy Models/#

9 GAMA documentation

Show Active Keybindings...

1% Library models (g iscts) ﬁ» Check for updates {°dTP13CEd
V¥ o) GAML Syntax (35 mo
V 4 | DataTypes And Structures ™

ﬂ- Install new plugins...

P 4G Units And Constants.gaml (1 exX> ﬁ Installation details

\ 4 Modeling (45 models)
.
Welcome page
¥ o | Model Coupling (11 models) pag will be pla
v N Co-AntPreyPredator (2 models) - B Preferences per with: (1

//Reflex to diffuse the pheromon among the
742 reflex diffuse {

75 diffuse var: road on: ant_grid proporti
76 T

> 5 Ants Adapter.gaml (1 experiment)
V¥ o) Toy Models (80 models)

¥ L | Ants (Foraaina and Sortina) (2 models)

Figure 8.1: Open the Preferences from the “Help” menu of the interface.

Opening Preferences

To open the preferences dialog of GAMA, either click on the small “form” button on
the top-left corner of the window or select “Preferences...” from the Gama, “Help”
or “Views” menu depending on your OS.

Interface

The Interface pane gathers all the preferences related to the appearance and behavior
of the elements of the Graphical User Interface of GAMA.

o Startup

— Display welcome page: if true, and if no editors are opened, the welcome
page is displayed when opening GAMA.

— Maximize GAMA window: if true, the GAMA window is open with
the maximal dimensions at startup.

— Maintain the state of the navigator across sessions: if true, the
context of the navigator (project opened, file selected...) will be saved
when GAMA is closed and reloaded next start.

v 1.8.2 40

GAMA v1.8.2 documentation

Chapter 8. Preferences

(]
B Interfac@ Edi itorsw Execution B Displays} D Data and Operatorsw
Startup
pisplay welcome page Maintain the state of the navigator True
Maximize GAMA window across sessions
Menus
Break down agents in menus every ——j Reverse order - e
Sort operators menu by ~Category
Sort colors menu by RGB value Group colors
Console

Max. number of characters to display (-1
= unlimited)
Max. number of characters to keep when
paused (-1 = unlimited)

Simulations
Append the name of simulations to
their outputs

Appearance

Highlight in yellow the title of value editors
when they change

Shapefile viewer fill color 192, 192, 192

Image viewer background color 255, 255, 255

Color of Simulation 0 in the Ul (console, 74,97, 144 v
view tabs)

Color of Simulation 1 in the Ul (console, 66, 119, 42 v
view tabs)

shapefit viewer fine color (CEXHNNED

Wrap long lines (can slow down output)

Color of Simulation 2 in the Ul (console, 83, 95, 107 =

view tabs)

Color of Simulation 3 in the Ul (console, 195, 98, 43 v

view tabs)

Color of Simulation 4 in the Ul (console, m

view tabs)

Font of buttons and dialogs

Display metadata in navigator
Reduce the height of views' toolbars

@ Revert to defaults Advanced... Import...

cacel | (TN

Figure 8.2:

v 1.8.2

Interface pane in Preferences.

41

GAMA v1.8.2 documentation Chapter 8. Preferences

e Menus

— Break down agents in menu every: when inspecting a large number
of agents, this preference sets how many should be displayed before the
decision is made to separate the population in sub-menus.

— Sort operators menu by: among [category, name]|, this preference sets
how the operators should be displayed in the menu >
(available only in Modeling perspective, when a model editor is active).

— Sort colors menu by: among [RGB value, Name, Brightness, Lumines-
cence], this sets how are sorted the colors in the menu >
(available only in Modeling perspective, when a model editor is active).

— Reverse order: if true, reverse the sort order of colors sets above.

— Group colors: if true, the colors in the previous menu are displays in
several sub-menus.

« Console

— Max. number of characters to display in the console (-1 means
no limit)

— Max. number of characters to keep when paused (-1 means no
limit)

— Wrap long lines (can slow down output)

e Simulations

— Append the name of simulations to their outputs: if true, the
name of the simulation is added after the name of the display or monitor
(interesting in case of multi-simulations).

— Color of Simulation X in the UI (console, view tabs): each sim-
ulation has a specific color. This is particularly interesting in case of a
multi-simulations experiment to identify the displays of each simulation
and its console messages.

o Appearance

Highlight in yellow the title of value editors when they change

Shapefile viewer fill color

Shapefile viewer line color

— Image viewer background color: Background color for the image
viewer (when you select an image from the model explorer for example)

Font of buttons and dialogs

v 1.8.2 42

GAMA v1.8.2 documentation Chapter 8. Preferences

Display metadata in navigator: if true, GAMA provides some meta-
data (orange, in parenthesis) after the name of files in the navigator: for a
GAML model, it is the number of experiments; for data files, it depends on
the kind of data: (for shapefiles) number of objects, CRS and dimensions
of the bounding box, (for csv) the dimensions of the table, the delimiter,
the data type ...

Editors

Most of the settings and preferences regarding editors can also be found in the
advanced preferences.

e Options

Show warning markers in the editor: if false, the warning will only
be available from the Validation View.

Show information markers in the editor: if false, the information
will only be available from the Validation View.

Save all editors when switching perspectives

Hide editors when switching to simulation perspectives (can be
overridden in the ‘layout’ statement)

Applying formatting on save: if true, every time a model file is saved,
its code is formatted.

Save all model files before launching an experiment

Drag files and resources as references in GAML files: a GAML
model file is dropped in another file as an import and other resources as
the definition of a variable accessing to this resource.

Ask before saving each file

« Edition

v 1.8.2

Close curly brackets ({)

Close square brackets (])

Close parentheses

Turn on colorization of code sections: if true, it activates the col-
orization of code blocks in order to improve the visual understanding of
the code structure.

Font of editors

43

GAMA v1.8.2 documentation Chapter 8. Preferences

(]
interface E Edi itorR@ Execution} B Displays} D Data and Operatorsw
Options
Show warning markers in the editor Apply formatting on save
Show information markers in the editor Save all editors before lauching an experiment
Save all editors when switching perspectives Drag files and resources as references in
Hide editors when switching to simulation GAML files
perspectives (can be overriden in the ‘layout’ Ask before saving each file
statement)
Edition
Close curly brackets ({) Font of editors
Close square brackets ([)
Background color of editors 255, 255, 255
Close parentheses
Turn on colorization of code sections Mark occurrences of symbols
Syntax coloring
Statement keywords font [l S o] v Statement keywords color
Punctuation characters font =R EROAEIET RS v Punctuation characters color _
Operators action calls font =l ERCEEETEE] v Operators action calls color
Reserved symbols font Reserved symbols color _
Literal constants font Literal constants color
Defauit font vetaut color (XKD
Variables used in expressions font Variables used in expressions color
Variables definitions font Variables definitions color
PRI .- NS Text-plain-11 v Type color
Assignment sgns font Assignment sgns color
Tasks font Tasks color (RN
Dranma fane NTEEAVENRTE T2 PO 122 122 122 v |
@ Revert to defaults Advanced... ‘ Import... H Export... ‘ Cancel [save]

Figure 8.3: Editors pane in Preferences.

v 1.8.2 44

GAMA v1.8.2 documentation Chapter 8. Preferences

B Interface g Editors E Execution B Displays Data and Operators

Experiments

Auto-run experiments when they are launched Ask to go to fullscreen mode
Ask to close the previous experiment when
P P Synchronize outputs with the simulation

launching a new one

Tests
Sorts the results of tests by severity Include user-defined tests in the tests suite
Only display (in the Ul and in headless runs]
Run tests at each start of the platform v display (:)
failed and aborted tests
Memory
Monitor memory and emit a warning if it is low If true, when running out of memory, GAMA
will try to close the experiment, otherwise it
Trigger warnings when the percentage of "
20 exits
available memory is below
Interval (in seconds) at which memory should |, 12048
be monitored
Runtime errors
Show execution errors Treat warnings as errors
Show errors thrown in displays and outputs Automatically open an editor and point at the
faulty part of the model if an error or a warning
Number of errors to display 10 is thrown
Display most recent first Text color of errors
Stop simulation at first error Text color of warnings 255, 201, 162
Parallelism
Make experiments run simulations in parallel Number under which agents are executed o
sequentially
Make grids schedule their agents in parallel
Max. number of threads to use (available 8
Make species schedule their agents in parallel processors: 8)

= o
(@) Revert to defaults Advanced... Import... Export.. Cancel [save |

Figure 8.4: Execution pane in Preferences.

— Background color of editors
— Mark occurrences of symbols: if true, when a symbol is selected, all
its other occurrences are also highlighted.

o Syntax coloring: this section allows the modeler to set the font and color of
each GAML keyword kind in the syntax coloring (in any GAMA editor).

Execution

This pane gathers all the preferences related to the execution of experiments, memory
management, the errors management, and the parallelism.

v 1.8.2 45

GAMA v1.8.2 documentation Chapter 8. Preferences

« Experiments: various settings regarding the execution of experiments.

— Auto-run experiments when they are launched: see this page.

— Ask to close the previous simulation before launching a new one:
if false, previous simulations (if any) will be closed without warning.

— Ask to go to fullscreen mode: if true, ask the modeler before switching
to the fullscreen mode.

— Synchronize outputs with the simulation: if true, simulation cycles
will wait for the displays to have finished their rendering before passing
to the next cycle (this setting can be changed on an individual basis
dynamically here).

o Tests

Sorts the results of tests by severity

— Run tests at each start of the platform

Include user-defined tests in the tests suite

Only display (in the UI and in headless runs) failed and aborted
tests

e Memory: a given amount of memory (RAM) is allocated to the execution of
GAMA (it has to be set in the Gama.ini file). The allocated memory size should
be chosen in accordance with the requirements of the model that is developed
and the other applications running in your OS.

— Monitor memory and emit a warning if it is low: a warning will
appear during an experiment run when the memory is low.

— Trigger warnings when the percentage of available memory is
below

— Interval (in seconds) at which memory should be monitored

— If true, when running out of memory, GAMA will try to close
the experiment, otherwise it exits

 Runtime errors: how to manage and consider simulation errors.

— Show execution errors: whether errors should be displayed or not.

— Show errors thrown in displays and outputs: the code defined inside
the aspect block of a species will be executed each time the agents are
repainted in a display. In particular, when the displays are not synchronized,
some errors can occur due to some inconsistency between the model and
the display (e.g. drawing a dead agent). As a consequence, the code
executed inside an aspect should be limited as much as possible.

v 1.8.2 46

GAMA

v1.8.2 documentation Chapter 8. Preferences

Number of errors to display: how many errors should be displayed at
once

Display most recent first: errors will be sorted in the inverse chrono-
logical order if true.

Stop simulation at first error: if false, the simulations will display the
errors and continue (or try to).

Treat warnings as errors: if true, no more distinction is made be-
tween warnings (which do not stop the simulation) and errors (which can
potentially stop it).

Automatically open an editor and point at the faulty part of the
model if an error or a warning is thrown

Text color of errors

Text color of warnings

o Parallelism: various settings regarding the parallel execution of experiments.

Make experiments run simulations in parallel: if true, in the case of
a multi-simulations experiment, the simulation will be executed in parallel
(note that the number of simulations that can be executed in parallel will
depend on the number of threads to use).

Make grids schedule their agents in parallel: the agents of grid
species will be executed in parallel. Depending on the model, this could
increase the simulation speed, but the modeler cannot have any control
over the execution order of the agents.

Make species schedule their agents in parallel

Number under which agents are executed sequentially

Max. number of threads to use (available processors: 8)

Displays

« Presentation and Behavior of Graphical Display Views

v 1.8.2

— Default layout of display views: among [None, stacked, Split, Hori-

zontal, Vertical]. When an experiment defines several displays, they are
by default (layout None) opened in the same View. This preference can
set automatically this layout. A layout statement can also be used in
experiment to redefine programmatically the layout of display views.

— Display a border around display views

47

GAMA v1.8.2 documentation

Chapter 8. Preferences

Interface (Editors (E i (Displaym Data and Opera!orsw

Presentation and Behavior of Graphical Display Views

Default layout of display views None .Enable_ fast snapshots (uncomplete when the
display is obscured by others but much faster)

Display a border around display views Show the display top toolbar

Continue to draw displays when:'e::::'!'i:: B Show the display bottom overlay

Charts Preferences

Display 'flat' histograms [JUC)

Display grid lines

Keep values in memory (to save them as CSV) 'L

Default Rendering Properties

Default rendering method (Java2D for 2D,

Java2D - shape
OpenGL for 3D) Defaut shape of agents

Default size of agents | 1.0

Apply antialiasing SULE

Default background color (*background: facet
of 'display’)

Default color of agents 255, 255, 0

N
o
o
N
o
o
N
o
@

Default highlight color Default font to use in ‘draw' |20

Advanced

Only display visible agents (faster, may create - Eiia Disable acceleration for Java2D (necessary on
visual oddities) ‘some configurations)

OpenGL Rendering Properties
Draw 3D axes L) Max. number of frames per second 20

Forces textures dimensions to a power of 2

(e.g. 16x16. Necessary on some

8
UL s

Draw rotation axes {SULCLS

Default line width (facet ‘width' of ‘draw’) 2.0 configurations)
Use OpenGL tesselator (false is more precise, [e I
. . . True
Number of slices of circular geometries 16 but more CPU intensive) -
Use Numeric Keypad (2,4,6,8) for camera
Set the zoom factor (0 for slow, 1 fast) ey [7rue]
interaction u
@ Revert to defaults Advanced... Import... Export... Cancel m

Figure 8.5: Displays pane in Preferences.

v 1.8.2

48

GAMA v1.8.2 documentation Chapter 8. Preferences

— Continue to draw displays when in Modeling perspective: if true,

when the simulation is running and the modeler chooses to switch to the
Modeling perspective the displays are still updated. This is particularly
relevant for displays showing plots of data over time.

— Enable fast snapshots (uncomplete when the display is obscured

but much faster)

Show the display top toolbar: this could also be configured manually
for each display (cf displays related page).

Show the display bottom overlay: this could also be configured man-
ually for each display (cf displays related page).

e Charts Preferences

Display ‘flat’ histograms: if false, the histograms are displayed in a 3D
style.

Keep values in memory (to save them as csv)

Display grid lines: in charts (and in particular series), if true, a grid
is displayed in background.

o Default Rendering Properties: various properties of displays

Default rendering method (JavaED fro 2D, OpenGL for 3D): use
either ‘Java2D’ or ‘OpenGL’ if nothing is specified in the declaration of a
display.

Apply antialiasing: if true, displays are drawn using antialiasing, which
is slower but renders a better quality of image and text (this setting can
be changed on an individual basis dynamically here).

Default background color: indicates which color to use when none is
specified in the declaration of a display.

Default highlight color: indicates which color to use for highlighting
agents in the displays.

Default shape of agents: a choice between shape (which represents the
actual geometrical shape of the agent) and geometrical operators (circle,
square, triangle, point, cube, sphere etc.) as default shape to display
agents when no aspect is defined.

Default size of agents: what size to use. This expression must be
constant.

Default color of agents: what color to use.

Default font to use in ‘draw’

e Advanced:

v 1.8.2

49

GAMA v1.8.2 documentation Chapter 8. Preferences

— Only display visible agents (faster, may create visual oddities)
— Disable acceleration for Java2D (necessary on some configura-
tions)

o« OpenGL Rendering Properties: various properties specific to OpenGL-
based displays

— Draw 3D axes: if true, the shape of the world and the 3 axes are drawn

— Draw rotation axes: if true, a sphere appears when rotating the scene
to illustrate the rotations.

— Default line width (facet width of draw): the value is used in draw
statement that draws a line without specifying the width facet.

— Number of slices of circular geometries: when a circular geometry
(circle, sphere, cylinder) is displayed, it needs to be discretized in a given
number of slices.

— Set the zoom factor (0 for slow, 1 fast): this determines the speed
of the zoom (in and out), and thus its precision.

— Max. number of frames per second

— Forces textures dimension to a power of 2 (e.g. 16x16. Necessary
on some configurations)

— Use OpenGL tesselator (false is more precise, but more CPU

intensive)
— Use Numeric Keypad (2,4,6,8) for camera interaction: use these
numeric keys to make quick rotations.

Data and Operators

These preferences pertain to the use of external libraries or data with GAMA.

« Http connections

— Connection timeout (in ms): set the connection timeout when the
model tries to access a resource on the web. This value is used to decide
when to give up the connection try to an HTTP server in case of response
absence.

— Read timeout (in ms): similar to connection timeout, but related to
the time GAMA will wait for a response in case of reading demand.

— Number of times to retry if connection cannot be established

v 1.8.2 50

GAMA v1.8.2 documentation Chapter 8. Preferences

®

B Interface ‘ g Editors Execution ‘B Displays ‘D Data and 0perator’s

Http connections

Number of times to retry if connection cannot
be established

Read timeout (in ms) 20000 Empty the local cache of files downloaded
from the web

w

Connection timeout (in ms) 20000

Random number generation

©

Default random number generator ~_Mmersenne 1.0

Define a default seed Include in the parameters

Optimizations

experimental)

Optimize agents memory Forces the spatial index to synchronize its
operations. Useful for interactive models

Optimize the 'at_distance' operator . w.here the user may interfere.
Use object pooling to reduce memory usage
(still experimental)

- .) Optimize spatial queries: add agents only
Optimize constant expressions (experimental) when necessary in the quadtree (still

Optimize the path computation operators and
goto action (but with possible jump issues)

Tolerance for the comparison of points 0.0
External libraries support

Path to Spatialite library (http://www.gaia- Path to JRI library (SR_HOME/library/rJava/jri/

L N /Users/ben/Download...t/models/Enter patt A 3 [Library/Frameworks;
gis.it/gaia libjri.jnilib) (http://www.r-project.org)
GIs i Systems i for EPSG codes)
Let GAMA find which CRS to use to project ...or use the following EPSG code (the one that
GIS data will also be used if no projection information is 32648
‘When no .prj file or CRS is supplied, consider found)
GIS data to be already projected in this CRS 4326
When no CRS is provided, save the GIS data _
True [
with the current CRS 4326
Management of dates
Custom date pattern (https:// . — ~
docs.oracle. i it i yyyy-MM-dd HH:mm:ss Default starting date of models 01/01/1970", 07:00:00 T

Default date pattern for writing dates (i.e. CUSTOM

Default time step of models 1.0
string(date1))

@ Revert to defaults Advanced... Import... Export... Cancel [save |

Figure 8.6: The Data and Operators pane in Preferences.

v 1.8.2 o1

GAMA v1.8.2 documentation Chapter 8. Preferences

— Empty the local cache of files downloaded from the web: if true,

after having downloaded the files and used them in the model, the files
will be deleted.

« Random Number Generation: all the options pertaining to generating
random numbers in simulations

— Default random number generator: the name of the generator to use

by default (if none is specified in the model).

— Define a default seed: whether or not a default seed should be used if

none is specified in the model (otherwise it is chosen randomly by GAMA)

— Default seed value (0 is undefined): the value of this default seed
— Include in the parameter: whether the choice of generator and seed is

included by default in the parameters views of experiments or not.

« Optimizations

v 1.8.2

— Optimize constant expressions (experimental): whether expressions

considered as constants should be computed and replaced by their value
when compiling models. Allows to save memory and speed, but may cause
some problems with complex expressions.

Optimize agents memory: whether the memory used by agents is
reduced (or not) when their structure appears to be simple: no sub-agents,
for instance, because no sub-species is defined.

Optimize the ‘at_ distance’ operator: an optimisation that considers
the number of elements on each side and changes the loop to consider the
fastest case.

Optimize the path computation operators and goto action (but
with possible ‘jump’ issues): when an agent is not already on a path,
simplifies its choice of the closest segment to choose and makes it jump
directly on it rather than letting it move towards the segment.
Optimize spatial queries: add agents only when necessary in the
quadtree (still experimental): if no queries is conducted against a
species of agents, then it is not necessary to maintain them in the global
quad tree.

Forces the spatial index to synchronize its operations. Useful
for interactive models where the user may interfere.: when true,
forces the quadtree to use concurrent data structures and to synchronize
reads and writes, allowing users to interact with the simulation without
raising concurrent modification errors.

52

GAMA v1.8.2 documentation Chapter 8. Preferences

— Use object pooling to reduce memory usage (still experimental):
when true, tries to reuse the same common objects (lists, maps, etc.) over
and over rather than creating new ones.

— Tolerance for the comparison of points: depending on the way they
are computed, 2 points who should be the same, could not be equal. This
preference allows to be more tolerant in the way points are compared.

« External libraries support

— Path to Spatialite (http://www.gaia-gis.it/gaia-sins/): the path
toward the spatial extension for the SQLite database.

— Path to JRI library ($R_HOME/library/rJava/jri/libjri.jnilib)
(http://www.r-project.org): when we need to couple GAMA and R,
we need to set properly the path toward this file.

« GIS Coordinate Reference Systems (http://spatialreference.org/ref/epsg/
for EPSG codes): settings about CRS to use when loading or saving GIS
files

— Let GAMA decide which CRS to use to project GIS data: if true,
GAMA will decide which CRS, based on input, should be used to project
GIS data. Default is true (i.e. GAMA will always try to find the relevant
CRS, and, if none can be found, will fall back one the one provided below)

— ...or use the following CRS (EPSG code): choose a CRS that will
be applied to all GIS data when projected in the models. Please refer
to http://spatialreference.org/ref/epsg/ for a list of EPSG codes. If the
option above is false, then the use of this CRS will be enforced in all
models.Otherwise, GAMA will first try to find the most relevant CRS and
then fall back on this one.

— When no .prj file or CRS is supplied, consider GIS data to be
already projected in the CRS: if true, GIS data that is not accompa-
nied by a CRS information will be considered as projected using the above
code.

— ...or use the following CRS (EPSG code): choose a CRS that will
represent the default code for loading uninformed GIS data.

— When no CRS is provided, save the GIS data with the current
CRS: if true, saving GIS data will use the projected CRS unless a CRS is
provided.

— ...or use the following CRS (EPSG code): otherwise, you might
enter a CRS to use to save files.

v 1.8.2 93

GAMA v1.8.2 documentation Chapter 8. Preferences

Draw 3D axes Max. number of frames per second 20
Draw rotation axes Forces textures dimensions to a power of 2

(e.g. 16x16. Necessary on some

Default line width (facet 'width' of 'draw') 2.0 configurations]

Use OpenGL tesselator (false is more p!
Number of slices of circular geometries 16 but more CP!

Use NumericKeypad (2, r camera

Set the zoom factor (O for slow, 1 fast) _|
interaction

{:ﬂ,\ Revert to defaults Advanced... Import... Export... Cancel m

Figure 8.7: Import or export the preferences from/in a GAML model.

o« Management of dates: some preferences for default values related to the
dates in GAMA.

— Custom date pattern (https://docs.oracle.com/javase/8 /docs/api/java/time,
— Default date pattern for writing dates (i.e. string(datel))
— Default starting date of models: set the default value of the global
variable starting_date.
— Default time step of models: define the default duration of a simulation
step, i.e. the value of the variable step (by default, it is set to 1s).

Manage preferences in GAML

All these preferences can be accessed (set or read) directly in a GAML model. To
share your preferences with others (e.g. when you report an issue), you can simply
export your preferences in a GAML model. Importing preferences will set your
preferences from an external GAML file.

When you export your preferences, the GAML file will look like the following code.
It contains 2 experiments: one to display all the preferences in the console and the
other one to set your preferences will the values written in the model.

model preferences

experiment 'Display Preferences' type: gui {

init {
//Append the name of simulations to their outputs
write sample(gama.pref_append_simulation_name);

//Display grid lines

v 1.8.2 54

GAMA v1.8.2 documentation Chapter 8. Preferences

write sample(gama.pref_chart_display_gridlines);

//Monitor memory and emit a warning if it is low
write sample(gama.pref_check_memory);

//Max. number of characters to keep when paused (-1 =
unlimited)
write sample(gama.pref_console_buffer);

//Max. number of characters to display (-1 = unlimited)
write sample (gama.pref_console_size);

//Wrap long lines (can slow down output)
write sample(gama.pref_console_wrap);

//Custom date pattern (https://docs.oracle.com/javase/8/
docs/api/java/time/format/DateTimeFormatter.html#patterns)
write sample(gama.pref_date_custom_formatter);

//

Advanced Preferences

The set of preferences described above are specific to GAMA. But there are other
preferences or settings that are inherited from the Eclipse underpinnings of GAMA,
which concern either the “core” of the platform (workspace, editors, updates, etc.) or
plugins (like SVN, for instance) that are part of the distribution of GAMA.

These “advanced” preferences are accessible by clicking on the “Advanced...” button
in the Preferences view.

Depending on what is installed, the second view that appears will contain a tree
of options on the left and preference pages on the right. Contrary to the first
set of preferences, please note that these preferences will be saved in the
current workspace, which means that changing workspace will revert them to their
default values. It is, however, possible to import them in the new workspace using of
the wizards provided in the standard “Import...” command (see here).

v 1.8.2 95

GAMA v1.8.2 documentation

Chapter 8.

Preferences

Default line width (facet 'width' of 'draw’) 2.0
Number of slices of circular geometries 16

Set the zoom factor (O for slow, 1 fast)

7%
l@ Revert to defaults

&

Advanced...

Draw 3D axes
Draw rotation axes

Max. number of frames per second 20

Forces textures dimensions to a power of 2

(e.g. 16x16. Necessary on some Cm

configurations)

Use OpenGL tesselator (false is more precise,

but more CPU intensive)
True [

Use Numeric Keypad (2,4,6,8) for camera
interaction

Import...

Export... Cancel

Figure 8.8: Open the advanced preferences.

L BON)

| type filter text

¥ General
P Appearance
Content Types
P Editors
Globalization
Keys
Link Handlers
Network Connections
Perspectives
Search
P Security
» Startup and Shutdown
Web Browser
» Workspace
vV Gaml
Compiler
EditBox
Refactoring
Refactoring
Syntax Coloring
Templates
Vinstall/Update
Automatic Updates
Available Software Sites

[*d

Preferences

General

Always run in background
| Keep next/previous editor, view and perspectives dialog open
Show heap status

Workbench save interval (in minutes): 5

Open mode

o Double click
) Single click

Note: This preference may not take effect on all views

Restore Defaults Apply

Cancel

Apply and Close

Figure 8.9: The advanced preferences available from the Preferences window.

v 1.8.2

o6

Chapter 9

Troubleshooting

This page exposes some of the most common problems a user may encounter when
running GAMA — and offers advices and workarounds for them. It will be regularly
enriched with new contents. Note also that the Issues section of the website might
contain precious information on crashes and bugs encountered by other users. If
neither the workarounds described here nor the solutions provided by other users allow
to solve your particular problem, please submit a new issue report to the developers.

Table of contents

e Troubleshooting

Table of contents
— On Ubuntu (& Linux Systems)

x Workaround if OpenGL display crash GAMA
— On macOS
* First launch of GAMA should be in GUI mode

— Memory problems
Submitting an Issue

57

https://github.com/gama-platform/gama/issues

GAMA v1.8.2 documentation Chapter 9. Troubleshooting

On Ubuntu (& Linux Systems)

Workaround if OpenGL display crash GAMA

In case GAMA crashes whenever trying to display an OpenGL display or a Java2D,
and you are running Ubuntu 21.10 (or earlier), it probably means that you're using
Wayland as Display backend. You can fix it by running in a terminal export
GDK_BACKEND=x11 and launch GAMA from this same terminal. This workaround is
described here: https://bugs.eclipse.org/bugs/show_bug.cgi?id=577515 and in Issue
3373.

On macOS

First launch of GAMA should be in GUI mode

When GAMA has just been downloaded and installed, it needs to be first launched
in its GUI version before using it in the headless mode. If it is first launched in
the headless mode, GAMA will be damaged and the installed version needs to be
removed and re-installed.

Memory problems

The most common causes of problems when running GAMA are memory problems.
Depending on your activities, on the size of the models you are editing, on the size of
the experiments you are running, etc., you have a chance to require more memory
than what is currently allocated to GAMA. A typical GAMA installation will need
between 2 and 4GB of memory to run “normally” and launch small models. Memory
problems are easy to detect: in the bottom-right corner of its window, GAMA will
always display the status of the current memory. The first number represents the
memory currently used (in MB), the second (always larger) the memory currently
allocated by the JVM. And the little trash icon allows to “garbage collect” the memory
still used by agents that are not used anymore (if any). If GAMA appears to hang
or crash and if you can see that the two numbers are very close, it means that the
memory required by GAMA exceeds the memory allocated.

v 1.8.2 o8

https://github.com/gama-platform/gama/issues/3373
https://github.com/gama-platform/gama/issues/3373

GAMA v1.8.2 documentation Chapter 9. Troubleshooting

212M of 2048M [[J]

Figure 9.1: Memory bar status in GAMA.

There are two ways to circumvent this problem: the first one is to increase the memory
allocated to GAMA by the Java Virtual Machine. The second, detailed on this page
is to try to optimize your models to reduce their memory footprint at runtime. To
increase the memory allocated, first locate the file called Gama.ini. On Windows and
Ubuntu, it is located next to the executable. On Mac OS X, you have to right-click
on Gama.app, choose “Display Package Contents...”, and you will find Gama.ini in
Contents/Eclipse. This file typically looks like the following (some options/keywords
may vary depending on the system), and we are interested in two JVM arguments:

-Xms supplies the minimal amount of memory the JVM should allocate to GAMA,
-Xmx the maximal amount. By changing these values (esp. the second one, of course,
for example to 4096M, or 4g, or more!), saving the file and relaunching GAMA, you
can probably solve your problem. Note that 32 bits versions of GAMA will not accept
to run with a value of -Xmx greater than 1500M. See here for additional information
on these two options.

Submitting an Issue

If you think you have found a new bug/issue in GAMA, it is time to create an issue
report here! Alternatively, you can click the Issues tab on the project site, search if a
similar problem has already been reported (and, maybe, solved) and, if not, enter a
new issue with as much information as possible:

o A complete description of the problem and how it occurred.

e The GAMA model or code you are having trouble with. If possible, attach a
complete model.

» Screenshots or other files that help describe the issue.

Two files may be particularly interesting to attach to your issue: the configuration
details and the error log. Both can be obtained quite easily from within GAMA
itself in a few steps. First, click the “About GAMA...” menu item (under the “Gama
Platform” menu on Mac OS X, “Help” menu on Linux & Windows)

v 1.8.2 99

http://stackoverflow.com/questions/14763079/what-are-the-xms-and-xmx-parameters-when-starting-jvms
https://github.com/gama-platform/gama/issues/new
https://github.com/gama-platform/gama/issues

GAMA v1.8.2 documentation Chapter 9. Troubleshooting

Dl 2

Gama.ini

-vm
../jdk/Contents/Home/bin/java

-startup

../Eclipse/plugins/org.eclipse.equinox. launcher_1.5.300.v20190213-1655. jar
——launcher. library

../Eclipse/plugins/org.eclipse.equinox. launcher.cocoa.macosx.x86_64_1.1.1000.v20190125-2016
-nl

${target.nl}

-data

@noDefault

——launcher.defaultAction

openFile

-vmargs

-server

-Dosgi. locking=none

-noverify

-Xmn128m

-Xss2m

-XX:+UseParallelGC

-XX:+UseAdaptiveSizePolicy

=XX:+0ptimizeStringConcat

-Dorg.eclipse.ecf.provider.filetransfer. reig Z. retryAttempts=10
-Dorg.eclipse.ecf.provider.filetransfeg ¥ieve.closeTimeout=6000
-Dorg.eclipse.ecf.prgvider.filetzs Pretrieve. readTimeout=6000

-Dorg.eclipse. % L.carbon.smallFonts
-Xms256m
-Xmx2048m

Figure 9.2: Gama.ini file: the place to allocate more memory to GAMA to deal with
big projects.

& | GamaPlatform File Edit Search Views Help

About Gama Platform
Preferences...

Services

Hide Gama Platform $8H |
Hide Others
Show All

Quit Gama Platform ¥Q |

Figure 9.3: Open information about GAMA windows.

v 1.8.2 60

GAMA v1.8.2 documentation Chapter 9. Troubleshooting

@ [) About Gama

[GAMA Platform - V1.8.0 http://gama-platform.org
(c) 2007-2008 IRD-UR GEODES (France) & IFI-MSI (Vietnam)
(c) 2009-2011 UMI 209 UMMISCO IRD/UPMC - MSI (Vietnam)

(c) 2012-2017 UMI 209 UMMISCO IRD/UPMC & Partners
(c) 2018-2019 UMI 209 UMMISCO IRD/SU & Partners

S

@ Installation Details m

Figure 9.4: images/dialog about gama.png

In the dialog that appears, you will find a button called “Installation Details”.
Click this button and a new dialog appears with several tabs.

To provide complete information about the status of your system at the time of the
error, you can

(1) copy and paste the text found in the tab “Configuration” into your issue.
Although, it is preferable to attach it as a text file (using TextEdit, Notepad or
Emacs e.g.) as it may be too long for the comment section of the issue form.

(2) click the “View error log” button, which will bring you to the location, in your
file system, of a file called “log”, which you can then attach to your issue as
well.

v 1.8.2 61

GAMA v1.8.2 documentation Chapter 9. Troubleshooting

Installed Software | Installation History | Features | Plug-in

##% Date: Friday, Wovember &, 2015 at 10:09:20 AM Inc
##% Platform Details:

*%#% Bystem properties:
application¥MI=org.eclipse.ui.workbench/LegacyIDE.ed4xmi
awt.toolkit=sun.awt.windows.Wloolkit

eclipse.commands=-launcher

F:\Eclipse\eclipse\eclipse.exs

—name

Eclipse

—-showsplash

600

-product

m=si.gama.application.product

-data

F:\Gama‘\Workspace\WorkspaceFull/. ./runtime-gamal.7.Eclipse3 8 2.product
—configuration
file:F:/Gama,/Workspace/WorkspaceFull/.metadata/.plugins/org.eclipse.pde.core/g
-dev
file:F:/Gama,/Workspace/WorkspaceFull/.metadata/.plugins/org.eclipse.pde.core/qg
-as

win32

]

win32

—arch

x86_64

-nl

en U5

—consoalelog

—-data

EnoDefaultc

——launcher.defanltiction

openFile

<

©)

Figure 9.5: images/dialog configuration.png

v 1.8.2

62

GAMA v1.8.2 documentation

Chapter 9. Troubleshooting

nieEnN=-
File Hame Share View
E m |:| Extra large icons [i=| Large icons - I [D]'
m s Medium icons = Small icons - m]v
Mavigation . == - _ Sort
roes B List 22 Details - by~ [
Panes Layout Current view
@ = 1 | « .metadata » .plugins » org.eclipse.uiworkbench
-~
* Name
I!I woerkingsets.xml
v
4 iterns

Figure 9.6: images/log_file.png

v 1.8.2

] item check boxes

E File name extensions

Search org.eclipse.uiworkben... 2@

[# Hidden items

Show/hide

v G
Date modified Type
06/11/2015 10:03 XML File
06/11/2015 10:13 File
30/10/2015 13:05 XML File
06/11/2015 10:06 XML File

Hide selected
items

Options

Size

2KB
200 KB
13KB
1KB

63

GAMA v1.8.2 documentation Chapter 9. Troubleshooting

v 1.8.2 64

Part 111

Learn GAML step by step

65

Chapter 10

Learn GAML Step by Step

This large progressive tutorial has been designed to help you to learn GAML (GAma
Modeling Language). It will cover the main part of the possibilities provided by
GAML, and guide you to learn some more.

How to proceed to learn better?

As you will progress in the tutorial, you will see several links (written in blue to
makes you jump to another part. You can click on them if you want to learn directly
about a specific topic, but we do not encourage to do this, because you can get easily
lost by reading this tutorial this way. As it is named, we encourage you to follow this
tutorial “step by step”. For each chapter, some links are available in the “search” tab,
if you want to learn more about this subject.

Although, if you really want to learn about a specific topic, our advice is to use the
“learning graph” interface, in the website, so that you can choose your area of interest,
and a learning path will be automatically designed for you to assimilate the specific
concept better.

Good luck with your reading, and please do not hesitate to contact us through the
mailing list if you have a question/suggestion!

67

https://en.wikipedia.org/wiki/Hyperlink
https://groups.google.com/forum/#!forum/gama-platform

GAMA v1.8.2 documentation Chapter 10. Learn GAML Step by Step

v 1.8.2 68

Chapter 11

Introduction

GAML is an agent-oriented language dedicated to the definition of agent-based
simulations. It takes its roots in object-oriented languages like Java or Smalltalk,
but extends the object-oriented programming approach with powerful concepts (like
skills, declarative definitions or agent migration) to allow for a better expressivity in
models.

It is of course very close to agent based modeling languages like, e.g., NetLogo,
but, in addition to enriching the traditional representation of agents with modern
computing notions like inheritance, type safety or multi-level agency, and providing
the possibility to use different behavioral architectures for programming agents,
GAML extends the agent-based paradigm to eliminate the boundaries between the
domain of a model (which, in ABM, is represented with agents) and the experimental
processes surrounding its simulations (which are usually not represented with agents),
including, for example, visualization processes. This paper (Drogoul A., Vanbergue
D., Meurisse T., Multi-Agent Based Simulation: Where are the Agents ¢, Multi-
Agent Based Simulation 3, pp. 1-15, LNCS, Springer-Verlag. 2003) was in particular
foundational in the definition of the concepts on which GAMA (and GAML) are
based today.

This orientation has several conceptual consequences among which at least two are of
immediate practical interest for modelers:

» Since simulations, or experiments, are represented by agents, GAMA is bound to
support high-level model compositionality, i.e. the definition of models that can
use other models as inner agents, leveraging multi-modeling or multi-paradigm
modeling as particular cases of composition.

69

http://ccl.northwestern.edu/netlogo/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.7241&rep=rep1&type=pdf

GAMA v1.8.2 documentation Chapter 11. Introduction

o The visualization of models can be expressed by models of visualization, com-
posed of agents entirely dedicated to visually represent other agents, allowing
for a clear separation of concerns between a simulation and its representation
and, hence, the possibility to play with multiple representations of the same
model at once.

Table of contents

« Key Concepts (Under construction)

— Lexical semantics of GAML

— Translation into a concrete syntax

— Vocabulary correspondance with the object-oriented paradigm as in Java
— Vocabulary correspondance with the agent-based paradigm as in NetLogo

Lexical semantics of GAML

The vocabulary of GAML is described in the following sentences, in which the
meaning and relationships of the important words of the language (in bold face) are
summarized.

1. The role of GAML is to support modelers in writing models, which are
specifications of simulations that can be executed and controlled during
experiments, themselves specified by experiment plans.

2. The agent-oriented modeling paradigm means that everything “active” (enti-
ties of a model, systems, processes, activities, like simulations and experiments)
can be represented in GAML as an agent (which can be thought of as a compu-
tational component owning its own data and executing its own behavior, alone
or in interaction with other agents).

3. Like in the object-oriented paradigm, where the notion of class is used to supply
a specification for objects, agents in GAML are specified by their species, which
provide them with a set of attributes (what they know), actions (what they
can do), behaviors (what they actually do) and also specifies properties of their
population, for instance its topology (how they are connected) or schedule
(in which order and when they should execute).

v 1.8.2 70

GAMA v1.8.2 documentation Chapter 11. Introduction

agent

«abstracts
world model simulation ,,L experiment
1 «gbstract» 1.0 1“f «abstract»

Figure 11.1: GAML meta-model.

4. Any species can be nested in another species (called its macro-species), in
which case the populations of its instances will imperatively be hosted by
an instance of this macro-species. A species can also inherit its properties
from another species (called its parent species), creating a relationship similar
to specialization in object-oriented design. In addition to this, species can
be constructed in a compositional way with the notion of skills, bundles of
attributes and actions that can be shared between different species and
inherited by their children.

5. Given that all agents are specified by a species, simulations and experi-
ments are then instances of two species which are, respectively, called model
and experiment plan. Think of them as “specialized” categories of species.

6. The relationships between species, models and experiment plans are cod-
ified in the meta-model of GAML in the form of a framework composed of
three abstract species respectively called agent (direct or indirect parent of all
species), model (parent of all species that define a model) and experiment
(parent of all species that define an experiment plan). In this meta-model,
instances of the children of agent know the instance of the child of model in
which they are hosted as their world, while the instance of experiment plan
identifies the same agent as one of the simulations it is in charge of. The
following diagram summarizes this framework:

Putting this all together, writing a model in GAML then consists in defining a species

v 1.8.2 71

GAMA v1.8.2 documentation Chapter 11. Introduction

which inherits from model, in which other species, inheriting (directly or not) from
agent and representing the entities that populate this model, will be nested, and
which is itself nested in one or several experiment plans among which a user will
be able to choose which experiment he/she wants to execute.

At the operational level, i.e. when running an experiment in GAMA, an experiment
agent is created. Its behavior, specified by its ezperiment plan, will create simulations
agents (instance of the user model) and execute them. Recursively, the initialization
of a simulation agent will create the agent population of the species defined in the
model. Each of these agents, when they are created, can create the population of
their micro-species. . .

Translation into a concrete syntax

The concepts presented above are expressed in GAML using a syntax which bears
resemblances with mainstream programming languages like Java, while reusing some
structures from Smalltalk (namely, the syntax of facets or the infix notation of
operators). While this syntax is fully described in the subsequent sections of the
documentation, we summarize here the meaning of its most prominent structures and
their correspondence (when it exists) with the ones used in Java and NetLogo.

1. A model is composed of a header, in which it can refer to other models, and
a sequence of species and experiments declarations, in the form of special
declarative statements of the language.

2. A statement can be either a declaration or a command. It is always
composed of a keyword followed by an optional expression, followed by a
sequence of facets, each of them composed of a keyword (terminated by a ")
and an expression.

3. facets allow to pass arguments to statements. Their value is an expression
of a given type. An expression can be a literary constant, the name of an
attribute, variable or pseudo-variable, the name of a unit or constant of
the language, or the application of an operator.

4. A type can be a primitive type, a species type or a parametric type
(i.e. a composition of types).

5. Some statements can include sub-statements in a block (sequence of state-
ments enclosed in curly brackets).

6. declarative statements support the definition of special constructs of the
language: for instance, species (including global and experiment species),

v 1.8.2 72

Chapter 11. Introduction

GAMA v1.8.2 documentation

GAML meta-model)

world model simlll.llaticlin ,rL experiment
1| «abstracts [1.4 | ™ «abstract»
:."" I|I I|I @L
f I| |I |I |
|I I' | |I |
I'r II| II II| |
User model I,-') ."I I". .'II lI
Species A [B | [
| | [
I|I T Spgﬂﬂﬂg B II ||
/ Species C / |
IIII |II |
[
| |
| ' | Experiment
' B ,'I Plan 1
UserModel ,"
Experiment
Plan 2

Figure 11.2: Instanciation of the GAML meta-model in a User model.

v 1.8.2

GAMA v1.8.2 documentation Chapter 11. Introduction

attributes, actions, behaviors, aspects, variables, parameters and out-
puts of experiments.

7. imperative statements that execute something or control the flow of execu-
tion of actions, behaviors and aspects are called commands.

8. A species declaration (global, species or grid keywords) can only include 6
types of declarative statements : attributes, actions, behaviors, aspects,
equations and (nested) species. In addition, experiment species allow to
declare parameters, outputs and batch methods.

Vocabulary correspondence with the object-
oriented paradigm as in Java

GAML Java

species class

micro-species nested class

parent species superclass

child species subclass

model program

experiment (main) class

agent object

attribute member

action method

behavior collection of methods
aspect collection of methods, mixed with the behavior
skill interface (on steroids)
statement statement

type type

parametric type generics

Vocabulary correspondence with the agent-based
paradigm as in NetLogo

v 1.8.2 74

GAMA v1.8.2 documentation Chapter 11. Introduction

v 1.8.2

GAML

NetLogo

species
micro-species
parent species
child species
model
experiment
agent
attribute
action
behavior
aspect

skill
statement
type
parametric type

breed

- (only from ‘turtle’)

model

observer

turtle/observer

‘breed’-own

global function applied only to one breed
collection of global functions applied to one breed
only one, mixed with the behavior

primitive

type

75

GAMA v1.8.2 documentation Chapter 11. Introduction

v 1.8.2 76

Chapter 12

Manipulate basic species

In this chapter, we will learn how to manipulate some basic species. As you already
know, a species can be seen as the definition of a type of agent (we call agent the
instance of a species). In OOP (Object-Oriented Programming), a species can be
seen as the class. Each species is then defined by some attributes (“member” in
OOP), actions (“method” in OOP) and behavior (“method” in OOP).

In this section, we will first learn how to declare the world agent, using the global
species. We will then learn how to declare regular species which will populate
our world. The following lesson will be dedicated to learn how to define actions
and behaviors for all those species. We will then learn how agents can interact
between each other, especially with the statement ask. In the next chapter then,
we will see how to attach skills to our species, giving them new attributes and
actions. This section will be closed with a last lesson dealing with how inheritance

works in GAML.

7

GAMA v1.8.2 documentation Chapter 12. Manipulate basic species

v 1.8.2 78

Chapter 13

The global species

We will start this chapter by studying a special species: the global species. In the
global species, you can define the attributes, actions, and behaviors that describe the
world agent. There is one unique world agent per simulation: it is this agent that is
created when a user runs an experiment and that initializes the simulation through its
init scope. The global species is a species like others and can be manipulated as them.
In addition, the global species automatically inherits from several built-in variables
and actions. Note that a specificity of the global species is that all its attributes can
be referred by all agents of the simulation.

Index

e Declaration

e Environment Size
e Built-in Attributes
e Built-in Actions

e The init statement

Declaration

A GAMA model contains a unique global section that defines the global species.

(global {

79

GAMA v1.8.2 documentation Chapter 13. The global species

torus:true torus:false

Init situation

Final situation| |© O

Figure 13.1: images/torus.png

// definition of global attributes, actions, behaviours

global can use facets, such as the torus facet, to make the environment a torus or
not (if it is a torus, all the agents going out of the environment will appear on the
other side. If it’s not, the agents won’t be able to go out of the environment). By
default, the environment is not a torus.

global torus:true {
// definition of global attributes, actions, behaviours

}

Other facets such as control or schedules are also available, but we will explain
them later.

Directly in the global scope, you have to declare all your global attributes (can be
seen as “static members” in Java or C++). To declare them, proceed exactly as for

v 1.8.2 80

GAMA v1.8.2 documentation Chapter 13. The global species

declaring basic variables. Those attributes are accessible wherever you want inside
the species scope.

Environment size

In the global context, you have to define a size and a shape for your environment. In
fact, an attribute already exists for the global species: it’s called shape, and its type
is a geometry. By default, shape is equal to a 100m*100m square. You can change
the geometry of the shape by affecting another value:

geometry shape <- circle (50#mm) ;

geometry shape <- rectangle (10#m,20#m) ;

geometry shape <- polygon([{1'm,2°m},{3°'m,50 cm},{3.4°m,60 dm
1)

nb: there are just examples. Try to avoid mixing dimensions! If no dimensions are
specified, it will be meter by default.

Built-in attributes

Some attributes exist by default for the global species. The attribute shape is one of
them (refers to the shape of the environment). Here is the list of the other built-in
attributes:

Like the other attributes of the global species, global built-in attributes can be
accessed (and sometimes modified) by the world agent and every other agent in the
model.

world

 represents the sole instance of the model species (i.e. the one defined in the
global section). It is accessible from everywhere (including experiments) and
gives access to built-in or user-defined global attributes and actions.

v 1.8.2 81

GAMA v1.8.2 documentation Chapter 13. The global species

experiment

o contains the experiment agent that has created this simulation agent.

cycle

« integer, read-only, designates the (integer) number of executions of the simula-
tion cycles. Note that the first cycle is the cycle with number 0.

To learn more about time, please read the recipe about dates.

step

 float, is the length, in model time, of an interval between two cycles, in seconds.
Its default value is 1 (second). Each turn, the value of time is incremented
by the value of step. The definition of step must be coherent with that of the
agents’ variables like speed. The use of time units is particularly relevant for
its definition.

To learn more about time, please read the recipe about dates.

global {

float step <- 10 #h;

time

« float, read-only, represents the current simulated time in seconds (the default
unit). It is the time in the model time. Begins at zero. Basically, we have:
time = cycle * step .

v 1.8.2 82

GAMA v1.8.2 documentation Chapter 13. The global species

global {

int nb_minutes function: { int(time / 60)};

To learn more about time, please read the recipe about dates.

starting_date and current_date
o date, represent the starting date (resp. the current date) of the simulation. The

current_date is updated from the starting_date by the value step at each
simulation step.

To learn more about time, please read the recipe about dates.

duration

o string, read-only, represents the value that is equal to the duration in real
machine time of the last cycle.

total_duration

o string, read-only, represents the sum of duration since the beginning of the
simulation.

average_duration

« string, read-only, represents the average of duration since the beginning of the
simulation.

machine_time

 float, read-only, represents the current machine time in milliseconds.

v 1.8.2 83

GAMA v1.8.2 documentation Chapter 13. The global species

seed

o float, the seed of the random number generator. It will influence the set of
random numbers that will be generated all over the simulation. 2 simulations
of a model with the same parameters’ values should behave identically when
the seed is set to the same value. If it is not redefined by the modeler, it will
be chosen randomly.

agents

o list, read-only, returns a list of all the agents of the model that are considered
as “active” (i.e. all the agents with behaviors, excluding the places). Note that
obtaining this list can be quite time consuming, as the world has to go through
all the species and get their agents before assembling the result. For instance,
instead of writing something like:

ask agents of_species my_species {

¥

one would prefer to write (which is much faster):

ask my_species {

3

Note that any agent has the agents attribute, representing the agents it contains.
So to get all the agents of the simulation, we need to access the agents of the world
using: world.agents.

Built-in Actions

The global species is provided with two specific actions.

v 1.8.2 84

GAMA v1.8.2 documentation Chapter 13. The global species

pause

o pauses the simulation, which can then be continued by the user.

global {

reflex toto when: time = 100 {
do pause;

die

« stops the simulation (in fact it kills the simulation).

global {

reflex halting when: empty (agents) {
do die;

¥

Other built-in actions are defined for the model species, just as in any other regular
species.

The init statement

After declaring all the global attributes and defining your environment size, you can
define an initial state (before launching the simulation). Here, you normally initialize
your global variables, and you instantiate your species. We will see in the next session
how to initialize a regular species.

v 1.8.2 85

GAMA v1.8.2 documentation Chapter 13. The global species

v 1.8.2 86

Chapter 14

Defining advanced species

In the previous chapter, we saw how to declare and manipulate regular species and
the global species (as a reminder, the instance of the global species is the world
agent).

We will now see that GAMA provides you the possibility to declare some special
species, such as grids or graphs, with their own built-in attributes and their own
built-in actions. We will also see how to declare mirror species, which is a “copy’
of a regular species, in order to give it an other representation. Finally, we will
learn how to represent several agents through one unique agent, with multi-level
architecture.

)

87

GAMA v1.8.2 documentation Chapter 14. Defining advanced species

v 1.8.2 88

Chapter 15

Defining GUI Experiment

When you execute your simulation, you will often need to display some information.
For each simulation, you can define some inputs, outputs and behaviors:

e The inputs will be composed of parameters manipulated by the user for each
simulation.

o The behaviors will be used to define behavior executed at each step of the
experiment.

o The outputs will be composed of displays, monitors. They will be defined inside
the scope output. The definition of their layout can also be set with the layout
statement.

experiment exp_name type: gui {
[input]
[beahaviors]
output {
layout [layout_option]
[display statements]
[monitor statements]

Types of experiments
You can define fours types of experiments (through the facet type):

89

GAMA v1.8.2 documentation Chapter 15. Defining GUI Experiment

 gui experiments (the default type) are used to play an experiment and displays
its outputs. It is also used when the user wants to interact with the simulations.

e batch experiments are used to play an experiment several times (usually with
other input values), used for model exploration. We will come back to this
notion a bit further in the tutorial.

o test experiments are used to write unit tests on a model (used to ensure its
quality).

o memorize experiments are GUI experiments in which the simulation state is
kept in memory and the user can backtrack to any previous step.

Experiment attributes

Inside experiment scope, you can access to some built-in attributes which can be
useful, such as minimum_cycle_duration, to force the duration of one cycle.

experiment my_experiment type: gui {
float minimum_cycle_duration <- 2.0#minute;

}

In addition, the attributes simulations (resp. ‘simulation) contain the list of all
the simulation agents that are running in the current experiment (resp. a single
simulation, the last element of the simulation list).

Experiment facets

Finally, in the case of a GUI experiment, the facet autorun and benchmark can be
used such as:

(experiment name type: gui autorun: true benchmark: true { } }

When autorun is set to true the launch of the experiment will be followed automatically
by its run. When benchmark is set to true, GAMA records the number of invocations
and running time of the statements and operators of the simulations launched in
this experiment. The results are automatically saved in a csv file in a folder called
‘benchmarks’ when the experiment is closed.

Other built-ins are available, to learn more about, go to the page experiment
built-in.

v 1.8.2 90

GAMA v1.8.2 documentation Chapter 15. Defining GUI Experiment

Defining displays layout

The layout can be added to output to specify the layout of the various displays
defined below (e.g. #nonce, #split, #stack, #vertical or #horizontal). It will also
define which elements of the interface are displayed: parameters, navigator, editors,
consoles, toolbars, tray, or tabs facets (expecting a boolean value).

Defining elements of the GUI experiment

In this part, we will focus on the gui experiments. We will start with learning how
to define input parameters, then we will study the outputs, such as displays,
monitors and inspectors, and export files. We will finish this part with how to
define user commands.

v 1.8.2 91

GAMA v1.8.2 documentation Chapter 15. Defining GUI Experiment

v 1.8.2 92

Chapter 16

Exploring Models

We just learnt how to launch GUI Experiments from GAMA. A GUI Experiment will
start with a particular set of input, compute several outputs, and will stop at the
end (if asked).

In order to explore models (by automatically running the Experiment using several
configurations to analyze the outputs), a first approach is to run several simulations
from the same experiment, considering each simulation as an agent. A second
approach, much more efficient for larger explorations, is to run an other type of
experiment : the Batch Experiment.

We will start this part by learning how to run several simulations from the same
experiment. Then, we will see how batch experiments work, and we will focus
on how to use those batch experiments to explore models by using exploration
methods.

93

GAMA v1.8.2 documentation Chapter 16. Fxploring Models

v 1.8.2 94

Chapter 17
Optimizing Models

Now you are becoming more comfortable with GAML, it is time to think about how
the runtime works, to be able to run some more optimized models. Indeed, if you
already tried to write some models by yourself using GAML, you could have noticed
that the execution time depends a lot of how you implemented your model!

We will first present you in this part some runtime concepts (and present you the
species facet scheduler), and we will then show you some tips to optimize your
models (how to increase performances using scheduler, grids, displays and how to
choose your operators).

95

GAMA v1.8.2 documentation Chapter 17. Optimizing Models

v 1.8.2 96

97

GAMA v1.8.2 documentation Chapter 18. Multi- Paradigm Modeling

Chapter 18

Multi-Paradigm Modeling

o 20 40 B0 20 100 120 140 160 180 200 220 240 260 280 300
time

-5 E-k | =% R

State B

GAMA v1.8.2 documentation Chapter 18. Multi- Paradigm Modeling

Multi-paradigm modeling is a research field focused on how to define a model seman-
tically. From the beginning of this step by step tutorial, our approach is based on
behavior (or reflex), for each agents. In this part, we will see that GAMA provides
other ways to implement your model, using several control architectures. Sometime,
it will be easier to implement your models choosing other paradigms.

In a first part, we will see how to use some control architectures which already
exist in GAML, such as finite state machine architecture, task based architecture or
user control architecture. In a second part, we will see another approach, a math
based approach, through use of equations.

v 1.8.2 99

GAMA v1.8.2 documentation Chapter 18. Multi- Paradigm Modeling

v 1.8.2 100

Part 1V

Recipes

101

Chapter 19

Recipes

Understanding the structure of models in GAML and gaining some insight of the
language is required, but is usually not sufficient to build correct models or models that
need to deal with specific approaches (like equation-based modeling). This section
is intended to provide readers with practical “how to”s on various subjects, ranging
from the use of database access to the design of agent communication languages. It
is by no means exhaustive, and will progressively be extended with more “recipes” in
the future, depending on the concrete questions asked by users.

103

GAMA v1.8.2 documentation Chapter 19. Recipes

v 1.8.2 104

Chapter 20

Manipulate OSM Datas

This section will be presented as a quick tutorial, showing how to proceed to manipu-
late OSM (Open street map) data, clean them and load them into GAMA. We will
use the software QGIS to change the attributes of the OSM file.

Note that GAMA can read and import OpenStreetMap data natively and create
agents from them. An example model is provided in the Model Library (Data
Importation / OSM File Import.gaml). In this case, you will have to write a model
to import, select data from OpenStreetMap before creating agents and then could
export them into shapefiles, much easier to use in GAMA.

From the website openstreetmap.org, we will choose a place (in this example, we will
take a neighborhood in New York City). Directly from the website, you can export
the chosen area in the osm format.

We have now to manipulate the attributes for the exported osm file. Several softwares
can be used, but we will focus on QGIS, which is totally free and provides a lot of
possibilities in term of manipulation of data.

Once you have installed correctly QGIS, launch QGIS Desktop, and start to import
the topology from the osm file.

A message indicates that the import was successful. An output file .osm.db is created.
You have now to export the topology to Spatialite.

Specify the path for your DataBase file, then choose the export type (in your case,
we will choose the type “Polygons (closed ways)”), choose an output layer name. If
you want to use the open street maps attributes values, click on “Load from DB”,
and select the attributes you want to keep. Click OK then.

105

http://www.qgis.org/en/site/
https://www.openstreetmap.org/
http://www.qgis.org/en/site/

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

€ > C | 8 http: p=16/40.7328/-74.0060

P %00 =
. OpensStreetMap ‘ Edt | +| History m GPS Traces User Diaries Copyright Help About | Login | SignUp
Search Where ami? u

Export

407372
-74.0157 -74.0059

40.7281

OpenStresthap data s licensed under the Open Data
Commons Open Database License (ODbL).

Export

Ifthe above export fals,
sources listed below:

Planet OSM

Regularly-updated copies of the complete
Openstreetiap database

Geofabiik Downloads

Regularly-updated extracts of continents, countries
and selected cities

Figure 20.1: OpenStreetMap website to select a place.

A message indicates that the export was successful, and you have now a new layer
created.

We will now manipulate the attributes of your datafile. Right-click on the layer, and
select “Open Attribute Table”.

The table of attribute appears. Select the little pencil on the top-left corner of the
window to modify the table.

We will add an attribute manually. Click on the button “new column”, choose a
name and a type (we will choose the type “text”).

A new column appears at the end of the table. Let’s fill some values (for instance
blue/red). Once you finish, click on the “save edit” button.

Our file is now ready to be exported. Right-click on the layer, and click on “Save As”.
Choose “shapefile” as format, choose a save path and click ok.

Copy passed all the .shp created in the include folder of your GAMA project. You
are now ready to write the model.

model HowToUseOpenStreetMap

v 1.8.2 106

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

£ QGIS 2.10.1-Pisa - ul X
Project Edit View Layer Settings Plugins |Vector | Raster Database Web Help
— dinate Capture L 3 ~ B
= B Coor £ "2pe () A ?
DEBRBLR (4 ooew 2P L R R
GPS L
o0 [= csw
-'g. 4 & E‘ /& M treetf Download Data.. e
— Road graph b
V‘ Spatial Query D Export Topalogy to Spatialite...
&]
| Q L Y Er o Topology Checker 4
'ﬂ : Home A Analysis Tools 4
' Favourites & Research Tools 4
[#] Ej @ Geoprocessing Tools 4
‘fn = F:lf @ Geometry Tools 3
H Edlinca a Data Management Tools ~ *
» o EIES
@ o e THTOL
@ Shortest path

Start

u\'

\," w Stop
]
8| —

Criterion Length -
.L Length
£

Time

Caleulate Export Clear
5
54 Help
¥
Coordinate: -0.264,0,998 Seale | 1:1419219 ¥ | Rotston: 0.0 2 [%Render @D ersciazzs @

Figure 20.2: Import OpenStreetMap data into QGIS.

v 1.8.2 107

GAMA v1.8.2 documentation

Chapter 20. Manipulate OSM Datas

QGIS 2.10.1-Pisa

Project Edit View

Layer Settings Plugins Vector Raster Database Web Help

LReTHO

DEERORFISL2L,AHPLILAR Qe -F - pe BE |-
/B R AT H =@megges - &
Broviser

£ OpenStreetMap Import

~Input XML file {.osm)

~Output Spatialite DE file

[

[%| Create connection (Spatialite) after import

Connection name [

——)

] 0%]

\; l ey
o 7| P
a | £
Criterion Length -
e |]
Zstg Time [] ’
- | caaiete || gt || cer
! 5otep]
Coordinate: | 0.470,0.986 | Scale | 1:1419213 || Romton: |0.0 @ % Render D epsciass @

Figure 20.3: Import OpenStreetMap data into QGIS 2.

v 1.8.2

108

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

QGIS 2.10.1-Pisa — m] X
Project Edit View Layer Settings Plugins | Vector | Raster Datsbase Web Help
—_ =\ = Coordinate Capture > : = ~ - B o P —_—
DEBRLER (4 oew NBPLLRAR @a-N-Ke EHE - B~
7 oo p— == GPS | P lcs
vy /BB &xD treet Download Data... | kel
e — Road graph L Import Topology from XML...
V‘ Spatial Query 4 ti
0o ~ h
=] q L Y E' o Topology Checker +
'B =8 Home A Analysis Tools 4
' > Favourites 3l Research Tools 4
(*] g:: @ Geoprocessing Tools 4
E F:ll # Geometry Tools »
] Felinea a Data Management Toals ~ »
» pleiea B
q} & e T @O
@ Shertest path

Start

o®
[+

\/Z;v Stop

Criterion Length -
.|. Length
4

Time:

Calculate Export Clear
b
::He\p
[
Coordinate: -0.831,-0.966 scale | 1:1419219 || Rotation: 0.0 2 % Render @ epsciaze @

Figure 20.4: Export the data to SpatiaLite (through QGIS).

v 1.8.2 109

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

QGIS 2.10.1-Pisa — 0 x
Project Edit View Layer Settings Plugins Vector Raster Database Web Help

DEBRLR HOSLL 58P0 LR

A /B oRa~a 8 SmEa|@®| -~ &
Erowser | Export OpenStreethap topology to Spatialite ? X
A S g] Input DB file
'g Haome E |C:Nsersﬂ(xxxxx.’map.osm.db\ JD
Favourites

D:f Export type

0-E-E-

Fif @ Points {nodes) Polylines {open ways) @ Polygons {dosed ways)

Layers

Qutput layer name

map_polygons

Ao
»,
e
% Exported tags
@
Q
@

Load from DB Select All Unselect All
Tag Count Mot null
Shortest path - % height 546 Mot null
-~ % building 454 Mot null
Start ~ % nycdoitt:bin 494 Mot null
,ﬂ ~/% addr:housenumber 319 Not null
- 1% addr:street 319 Mot null
v° ~ Stop -[® addr:postcode 315 Not null
] -~ % building:colour 98 Mot null
o % roofishape a8 Not null
! § - % roof:material 29 Not null
Criterion Length hd - 1% highway 7 Mot null @
L Length A -
ok
Time % Load into canvas when finished
Calculate Expart Clear [' 0% Close
b
:'; Help
¥
Coordinate: -0.935,0.986 Scale | 1:1419219 | ¥ | Rotation: 0.0 : % Render @EPSG;q.st .

Figure 20.5: Select the OSM attribute before importation.

v 1.8.2 110

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

/i QGIS 2.10.1-Pisa - - %

Project Edit View Layer Seftings Plugins Vector Raster Database Web Help

DPERLR [O08,Pp RPPRLAR e Ko EE - B-

A/ BRRAOD <D E «@mqgsw -+ &

QRY ?r%ow B— o=
|y %
@ e i M E%
ﬁ: HI_V E‘; EEEEEE @ ‘1 %
» - g ﬂ)
Q@ t-THH0 = @
@ %[e solvaons Cee— &5

&

% Sherest path (1) g @ b

i
s
oE

Gv Stop
=
iz _

Criterion Length -
,L Length 8 }
£
Igh Time
e Calculate Export Clear
b

::HEHJ
¥
Coordinate: -74,01388,40.73750 Scale | 1:4679 ~ | Rotation: |0.0 2 ®Render @epsciazzs @

Figure 20.6: Display of OSM data imported in QGIS.

v 1.8.2 111

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

4 QGIS 2.10.1-Pisa O X

Project Edit View Layer Settings Plugins Vector Raster Database Web Help

NEBABRRR @IS Lr,rAPLRIKRe ac-B-ueE8E - @-

)/ BRRAB~00 =m=s® - 8

>

Browser
JRy®O

B | Home
b Favourites
- [e

D:f
=]

B g
... Erlinea

«ll;' Zoom to Layer
Show in overview
[l Remove
L Duplicate

Shid Set Layer Scale Visibility
Start Set Layer CRS
Set Project CRS from Layer

: T [
To) [

HHIDINNANS
i

:E'N?a‘
.
5

4 Toggle Editing

Criterion S
_db Length Save As Layer Definition File... 8 = 4 %
" Filter...

Time
Show Feature Count

Caleulate Properties

Rename

Toggles the editing state nf Coordinate: -74,01683,40.73332 Scale |1:4679 v | Rotation: |0.0 2 [%/Render D ersciazze @

Figure 20.7: Open attribute table to display all the agents.

v 1.8.2 112

GAMA v1.8.2 documentation

Chapter 20. Manipulate OSM Datas

QGIS2.10.1-Pisa

Project Edit View Layer Settings Plugins Vector Raster Database Web Help

Ne=B8 8

B

DR 0% pe e
v/ BRER R o L ‘

PLARR @a-R-m e BE

=

a (Attribute table - map_polygons : Features total: 380, filtered: 590, selected: 0 O x
= - P —

. /BBt aEeBPo B KL :
id b3 height building nycdaitt:bin addr:housenumber addr:street addr:postcode building:colour [+ |
' N 23529474 | MLLL AL ALLL MNLULL MNULL MULL ML

i 65202644 | VLLL AL ANLLL MNLULL MULL MULL ML
B 65202645 | MLLL AL ANLLL MNLLL MNULL MNULL MAL
R 3 65223814 | MLLL ML ANLLL MNLLL ML MULL AL
% 86256760 | AMLLL AAL ALLL MNLLL MNULL MNULL MAL
q 197063185 | ALLL ML ANLLL MNLLL ML MNULL ML
@ 5 197063186 | ALLL AAL ALLL MNLLL MNULL MNULL MAL
@ 7 197064614 | ALLL MAL MNLLL MNLLL ML MNULL MAL

E Sln a 197065067 | ALLL MAL MLLL MNLLL MNULL MNULL MAL
Start a 197066132 | MLLL MAL NLLL MLULL MULL MULL ML
, : 10 197066133 | ALLL MAL NLLL MNLULL MULL ML MAL
\" w Stop
=] 1 213909916 |44 yes 1010379 375 Hudson Street ML #9E9784
e
¥ 12 213909917 |83 AL ML AL ML ML #6D786A
Criterion
213909918 | 72 AL ML NLLL ML NULL #9E9784
iy Length 13
& [
213909919 | 76 AL ML NLLL ML NULL #9E9784
Time 14 —
213909920 | 60 AL ML NLLL NULL NULL #9E9784 B
calate | | i
PREETNR oD
[[& Show Al Feamres']
¥
Toggles the editing stzheof Coordinate: | -74,01703,40.73410 | scale [n4679 v/ Rotation: [u.u l%] [% Render &0 EPsGia326 @

v 1.8.2

Figure 20.8: Attribute tables.

113

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

0GIS 2.10.1-Pisa -~ o .

Project Edit View Layer Settings Plugins Vector Raster Datasbase Web Help

NpEBLOR (OS2 NPOD AN @&&-[f-ot o 2
— x v

i Attribute table - map_polygons i Features total: 590, filtered: 590, selected: 0
’ @ ¥ Attribute tabl p_polyg F I: 590, filtered lected m]

. Eﬂ&%z&%@&ﬁhﬁ%h o
A —r N) () st
- id) height building nycdoitt:bin addr:housenumber addr:strest addr:postcode building:colour [+ |

i 23520474 | NLLL ALLL ML ML ALLL MEL ML
' 1 E |
65202644 | NLLL AL ML ML AL ML ML
Bt
E‘”'# 2 55202645 | /UL AL iz ML ML
—— /4 Add column ? *
R ; 55223814 | NLLL ML Iz MEL ML
q’ i} . 86256760 | /UL AL atirForGamel lez ML MAL
ot []
q’ | 197063185 | ALLL ML Iz MEL ML
s Type Text i
@ . 197063186 | ALLL ALLL P s Iz AL AL
@ 7 197069614 | ALLL ALLL 7 AL ML
s 197065067 | ALiL ALLL m WL AL
% start |5 197066132 | ALLL ALLL E T ML ML
% " 197066133 | ALLL ALLL WL AL ML ML ML
W 7| S a 213509916 | 44 yes 1010378 375 Hudson Strest | ALLL 29E9784
=
213309917 |83 AL MU ML ML ML #ED786A
Criteri
213309918 | 72 ML MU ML ML MEL #9Ea784
,L Length 13 B
! 213309919 |76 ML MU ML ML MEL #oE9784 S
lah Time 4| [ZIE
. ca| b show All Features
x
&P
" e]]
¥
Toagles the editing state of @] Coordinate: | -74,00326,40. 73043 | Scale 14679 | v/ Rofation: 0.0 lz], ® Render @D EPsGiazzs @

Figure 20.9: Add an attribute to the attribute table.

v 1.8.2 114

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

QGIS 2.10.1-Pisa — m] %

Project Edit View Layer Settings Plugins Vector Raster Datsbase Web Help

NEBRDR[HOSH Lo s RAPPLLALR e K5G8 H

’ ? % - & [=L [3 = 2 [<abg <] -<akgl » i fesw] e.
| (Attribute table - map_polygons :: Features total: 590, filtered: 590, selected: 0 - O X f—
5 s 2| -
Ve nevya|[/lB(te nee@dPo0nmE ?
: id =| || [pdate A) Updiate sclected
' operator parking railway segregated shop source:url tiger:name_type_2 attrForGama
0 [MLEL NLLL ML MLEL ALALL ML blue
/ L ML ALLL ML ML AL ML red
A . P ALLL ALLL MLLL ALLL AL AL blue
q s P ML AULL ULL ML ALLL AULL red
q . MAL AL AL MAL AL AL biue
@ [T MULL UL ML MULL ML ML red
% 6 ¢ MLEL AL ML MLEL MAL ML blue
@ shaf , [LL MLEL AL ML MLEL AL ML blue
Start s U WLEL AL ML WLEL AL ML red
: . U MLEL AL ML MLEL AL ML red
\Il' w Stop
(] o P WLEL ALLL MLLL WLEL ALLL ML red
=
(I m ALLL ML ML ALLL ML UL red
Criterion i1
m ALLL ALLL MLLL ALLL AL AL blue
. Length
& (|
- : 5 e ML ALLL AL ML AL AL red -
E m WLLL L ML WLLL L MEL
|:\II:| 4
o
[l b d show all Faamres']
¥ E—
9 -
ﬂfeamrE(S)sﬂHhedmla\ Coordinate: [-74.00221,40. 73700] Scale [1:4679 \v] Rotation: IU.U H [% Render €D EPsGi432s @ p
4

Figure 20.10: Fill the new attribute with values.

v 1.8.2 115

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

. QGI52.10.1-Pisa
Project Edit View Layer Settings
O & LI
v/ BRR %
Browser
DRTHO

B Home
Favourites

Shortest path

Start

\J:;v Stop

fta
gy 4
Criterion L|
_l | Length
i
Time
Calculate Expor
o
b d
& % Hel

ﬁ:‘ Zoom to Layer

[l Remove
L] Duplicate

Open Attribute Table

Plugins Vector Raster Datsbase Web Help

How 2 rAPLRAR @e-F-,eEE - H-
Gl @mue®w -~ A

aF
[

i
3

Show in overview

Set Layer Scale Visibility
Set Layer CRS
Set Project CRS from Layer

2 g
sy » 0

Teggle Editing - D"F‘E
Save As Layer Definition File... il %

Eilter...
Show Feature Count

Properties

Rename

Toaggles the editing state of Coordinate:

-74.01572,40.73181 Scale | 1:4573 ~ | Rotation: 0.0 2 [®Render @Dersciazzs @

v 1.8.2

Figure 20.11: Open the save data window.

116

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

0Gls 2.101-Pisa /i Savevector layer as... ? x B o X
Project Edit View Layer Settings Plugins Vector F

N l:l @ @ ; Format | ESRI Shapefile =
= 7| gl

4 p — ~ = Save as | C:/Users/lulien/Downloads/new_york.shp Browse
’5’. / r,“,] (.a f& m =<

Ill;ﬁ\

=l CRS Selected CRS (EPSG:4326, WGS 84) - . =
Browser [3) .‘%
¥o [~ i

' Q e * o Encoding System -

[+] T Home: [save only selected features
' Ealjoumtes Skip attribute creation

e o:/ X Add saved file to map
lfﬂ i Fif - E Symbology export Mo symboalogy -
A Layers Scale [1:50000 =
% m i, Y TJ ﬁ |1 E‘ Extent (current: layer)
% o [o8] D map polygons 1 w Datasource Options
@ Shortest path

Start ¥ Layer Options

o2
[+

\/:- Stop

Criterion Length

| @ P Custom Options
Leng

= Calculate Export Clear T™T
o
;: Help

¥

T
L .{<.@

Togg\esmeedmngsmneoi Coordinate: -74.01570,40. 73256 Scale | 1:4679 ~ | Rotaton: 0.0 : % Render B epsciazzs @

Figure 20.12: Save the data in a shapefile.

v 1.8.2 117

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

global {
// Global variables related to the Management units
file shapeFile <- file('../includes/new_york.shp');

//definition of the environment size from the shapefile.
//Note that is possible to define it from several files by
using: geometry shape <- envelope(envelope(filel) +
envelope(file2) + ...);

geometry shape <- envelope(shapeFile);

init {
//Creation of elementOfNewYork agents from the shapefile (
and reading some of the shapefile attributes)
create elementOfNewYork from: shapeFile
with: [elementId::int(read('id')), elementHeight::int(
read ('height ')), elementColor::string(read('attrForGama '))]

}

species elementOfNewYork{
int elementId;
int elementHeight;
string elementColor;

aspect basicq

draw shape color: (elementColor =) 7 #blue : ((
elementColor =) 7 #red : #yellow) depth:
elementHeight ;

}

experiment main type: gui {
output {
display HowToUseOpenStreetMap type:opengl {
species elementOfNewYork aspect: basic;
}
}

}

- J

Here is the result, with a special colorization of the different elements regarding the

v 1.8.2 118

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

Figure 20.13: images/manipulate OSM_ file_ 13.png

value of the attribute “attrForGama”, and an elevation regarding the value of the
attribute “height”.

v 1.8.2 119

GAMA v1.8.2 documentation Chapter 20. Manipulate OSM Datas

v 1.8.2 120

Chapter 21

Implementing diffusion

GAMA provides you the possibility to represent and simulate the diffusion of a
variable through a grid topology.

Index
¢ Diffuse statement
o Diffusion with matrix

— Diffusion matrix

— Gradient matrix

— Compute multiple propagations at the same step
— Executing several diffusion matrix

e Diffusion with parameters
o Computation methods

— Convolution
— Dot Product

e Use mask

— Qeneralities
— Tips

e Pseudo code

121

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Diffuse statement

The statement to use for the diffusion is diffuse. It has to be used in a grid species.
The diffuse uses the following facets:

 var (an identifier), (omissible) : the variable to be diffused

« on (any type in [container, species]): the list of agents (in general cells of a
grid), on which the diffusion will occur

e avoid_mask (boolean): if true, the value will not be diffused in the masked cells,
but will be restituted to the neighboring cells, multiplied by the variation value
(no signal loss). If false, the value will be diffused in the masked cells, but
masked cells won’t diffuse the value afterward (loss of signal). (default value :
false)

e cycle_length (int): the number of diffusion operation applied in one simulation
step

 mask (matrix): a matrix masking the diffusion (matrix created from an image
for example). The cells corresponding to the values smaller than “-1” in the
mask matrix will not diffuse, and the other will diffuse.

e matrix (matrix): the diffusion matrix (“kernel” or “filter” in image processing).
Can have any size, as long as dimensions are odd values.

 method (an identifier), takes values in: {convolution, dot_product}: the diffusion
method

e min_value (float): if a value is smaller than this value, it will not be diffused.
By default, this value is equal to 0.0. This value cannot be smaller than 0.

» propagation (a label), takes values in {diffusion, gradient} represents both the
way the signal is propagated and the way to treat multiple propagations of
the same signal occurring at once from different places. If propagation equals
‘diffusion’, the intensity of a signal is shared between its neighbors with respect
to ‘proportion’, ‘variation’ and the number of neighbors of the environment
places (4, 6 or 8). I.e., for a given signal S propagated from place P, the value
transmitted to its N neighbors is S’ = (S / N / proportion) - variation. The
intensity of S is then diminished by S * proportion on P. In diffusion, the
different signals of the same name see their intensities added to each other
on each place. If propagation equals ‘gradient’, the original intensity is not
modified, and each neighbor receives the intensity: S / proportion - variation.
If multiple propagations occur at once, only the maximum intensity is kept
on each place. If ‘propagation’ is not defined, it is assumed that it is equal to

v 1.8.2 122

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

‘diffusion’.
 proportion (float): a diffusion rate
e radius (int): a diffusion radius (in number of cells from the center)
e variation (float): an absolute value to decrease at each neighbor

To write a diffusion, you first have to declare a grid and declare a special attribute
for the diffusion. You will then have to write the diffuse statement in another scope
(such as the global scope for instance), which will permit the values to be diffused at
each step. There, you will specify which variable you want to diffuse (through the
var facet), on which species or list of agents you want the diffusion (through the on
facet), and how you want this value to be diffused (through all the other facets, we
will see how it works with matrix and with special parameters just after).

Here is the template of code we will use for the next following part of this page:

global {
int size <- 64; // the size has to be a power of 2.
cells selected_cells;

// Initialize the emitter cell as the cell at the center
of the word

init {

selected_cells <- location as cells;

}

// Affecting "1" to each step

reflex new_Value {

ask(selected_cells){

phero <- 1.0;
}
}

reflex diff {

// Declare a diffusion on the grid "cells" and on "
quick_cells".

// The diffusion declared on "quick_cells" will make

10 computations at each step to accelerate the process.

// The value of the diffusion will be store in the new
variable "phero" of the cell.

diffuse var: phero on: cells /*HERE WRITE DOWN THE
DIFFUSION PROPERTIES*/;

}

v 1.8.2 123

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

grid cells height: size width: size {
// "phero" is the variable storing the value of the
diffusion
float phero <- 0.0;
// The color of the cell is linked to the value of "phero

rgb color <- hsb(phero,1.0,1.0) update: hsb(phero,1.0,1.0)

experiment diffusion type: gui {
output {
display a type: opengl {
// Display the grid with elevation
grid cells elevation: phero * 10 triangulation: true;

This model will simulate a diffusion through a grid at each step, affecting 1 to the
center cell diffusing variable value. The diffusion will be seen during the simulation
through a color code, and through the elevation of the cell.

Diffusion with matrix

A first way of specifying the behavior of your diffusion is using diffusion matrix. A
diffusion matrix is a 2-dimension matrix [n] [m] with float values, where both n and
m have to be odd values. The most often, diffusion matrices are square matrices,
but you can also declare a rectangular matrix.

Example of matrix:

matrix<float> mat_diff <- matrix ([
(1/9,1/9,1/9],
[1/9,1/9,1/9]1,
[1/9,1/9,1/91]1);

v 1.8.2 124

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

1/9 1/9 1/9
Diffusion matrix : 1/9 19 1/9
1/9 1/9 1/9
Step O Step 1 Step 2
0+1/9 0+2*1/9 | 0+3*1/9 | 0+2*1/9 0+1/9
0 0 0 0 0 0 0 0 0 0 *1/9 *1/9 “1/9 “1/9 “1/9
=1/81 =281 =381 = 2481 =1/81
0*1/9 0*1/9 0%1/9 042%1/9 1/9*1/9 1/9*1/9 1/9*1/9 0+2%1/9
0 0 0 0 0 0 +1%1/9 +1*1/9 +1*1/9 0 *1/9 4] +3*1/9%1/9N5*1/9%1/3h3*1/9*1/9 B *1/9
=1/9 =y9 =1/9 =2/81 =4/81 = /81 =4/81 =2/81
0%1/9 141/ 0%1/9 0+3¥1/9 | 1/9%1/9 | 1/9%1/9 | 1/9%/9 | o+3*1/9
0 0 1 0 0 0 +1*1/9 - =1/0 P +1%1/9 [*1/9 o +5%1/9*1/ 8*1/9%1/¢ 5*1/9*1/9 B *1/9
=1/9 B =1/9 =3/81 =6/81 =3/9 = g/81 =3/81
0%1/9 0Y/9 0%1/9 0+2¢1/9 | 1/9%1/9 T 1/9%1/9 | 1/9%1/9 [o+2*1/9
0 0 0 0 0 0 +1%1/9 +1%1/9 +1*1/9 0 *1/9 4 +3%1/9%1/3MBK5+1/9*1/3mK3*1/9%1/9 B *1/9
=1/9 =1/9 =1/9 =2/81 =4/81 =6/81 =4/81 =2/81
0+1/9 0+2%1/9 0+3%1/9 0+2%1/9 0+1/9
0 0 0 0 0 0 0 0 0 0 *1/9 *1/9 *1/9 *1/9 *1/9
=1/81 =2/81 =3/81 =2/81 =1/81

Figure 21.1: Illustration of the computation under a diffusion propagation.

In the diffuse statement, you then have to specify the matrix of diffusion you want
in the facet matrix.

[diffuse var: phero on: cells matrix:mat_diff;]

Using the facet propagation, you can specify if you want the value to be propagated
as a diffusion or as a gradient.

Diffusion matrix

A diffusion (the default value of the facet propagation) will spread the values to the
neighbors’ cells according to the diffusion matrix, and all those values will be added
together, as it is the case in the following example:

Note that the sum of all the values diffused at the next step is equal to the sum of
the values that will be diffused multiply by the sum of the values of the diffusion
matrix. That means that if the sum of the values of your diffusion matrix is larger
than 1, the values will increase exponentially at each step. The sum of the value of a
diffusion matrix is usually equal to 1.

Here are some matrix examples you can use, played with the template model:

v 1.8.2 125

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Uniform diffusion

matrix<float> math_diff_uniform <- matrix([
[1/9,1/9,1/91,
[1/9,1/9

[1/9,1/9,1/211):

One emiter spot, no torus several emiter spots, with torus

Figure 21.2: Examples of uniform diffusions with one and several sources.

Anisotropic diffusion

matrix<float> math_diff_anisotropic <- matrix([

(2/9,2/9,1/21,
2 01,

normal with torus

Figure 21.3: Examples of anisotropic diffusions (with and with torus environment).

v 1.8.2 126

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

1/8 1/8 1/8
Gradient matrix : 18 1 18
1/8 1/8 1/8
Step O Step 1 Step 2
max(0,1/8 | max(0,1/8 | max(0,1/8 | max(0,1/8 | max(0,1/8
0 0 0 0 0 0 0 0 0 0 *1/8 *1/8 *1/8 *1/8 *1/8
=1/64 = 1464 = 1464 = 1464 =1/64
max(0, 0"1/8 max(0, max(0,1/8 | max(11/8,1 | max(11/81 | max(11/8,1 | max(0,1/8
0 0 0 0 0 0 1*1/8) +1*1/8 1*1/8) 0 *1/8 « /3*1,1/8*1/8 | /8*1,1/8%1/8 | /8*1,1/8*1/8 b *1/8
=1/8 =ys =1/8 =1/64 =1/8 =1/8 =1/8 ~1/68
max(0, max(1, max(0, max(0,1/8 | max(1*1/8,1 fmax(1,1*1,1) max(1*1/8,1 | max(0,1/8
0 0 1 0 0 0 1*1/8) & 1*1/8) [1*1/8) 0 *1/8 o /8*1,1/8*1/8) /8*1/8) |/8*11/8*1/s *1/8
=1/8 =1 =1/8 =1/64 =1/8 =1 =1/8 =1/64
max(0, mﬁlo, max(0, max(0,1/8 | max(1*1/8,1 | max(1*1/8,1 | max(1*1/8,1 | max(0,1/8
0 0 0 0 0 0 1%1/8) 1%1/8) 1*1/8) 0 *1/8 o /8*1,1/8*1/8 | /8*1,1/8*1/8 | /8117818 b *1/8
=1/8 =1/8 =1/8 =1/64 =1/8 =1/8 =1/8 =1/64
max(0,1/8 | max(0,1/8 | max{0,1/8 | max{0,1/8 | max(0,1/8
0 0 0 0 0 0 0 0 0 0 *1/8 *1/8 *1/8 * *
=1/64 =1/64 =1/64 =1/64 =1/64

Figure 21.4: Tllustration of the computation under a gradient propagation.

Gradient matrix

A gradient (use facet : propagation:gradient) is another type of propagation. This
time, only the larger value diffused will be chosen as the new one.

Note that unlike the diffusion propagation, the sum of your matrix can be greater
than 1 (and it is the case, most often !).

Here are some matrix examples with gradient propagation:

Compute multiple propagations at the same step

You can compute several times the propagation you want by using the facet
cycle_length. GAMA will compute for you the corresponding new matrix and
will apply it.

Writing those two things are exactly equivalent (for diffusion):

matrix<float> mat_diff <- matrix ([
(1/81,2/81,3/81,2/81,1/81],
[2/81,4/81,6/81,4/81,2/81],
[3/81,6/81,1/9,6/81,3/81],
[2/81,4/81,6/81,4/81,2/81],
[(1/81,2/81,3/81,2/81,1/8111);

reflex diff A

diffuse var: phero on: cells matrix:mat_diff;

v 1.8.2 127

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Uniform gradient

matrix<float> math_grad <- matr
s/

One emiter spot

2 emiter spots, same emiting value 2 emiter spots, different emiting value

Figure 21.5: Examples of gradient diffusions with one and several sources.

Irregular gradient

matrix<float> math_grad <- matri

2/

2 emiter spots, different emiting value

Figure 21.6: Examples of irregular gradient diffusions.

v 1.8.2 128

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

cycle_length:2 1/81 2/81 3/81 2/81 1/81

1/9 1/9 1/9 2/81 3/81 6/81 3/81 2/81
1/9 1/9 1/9 - 3/81 6/81 1/9 6/81 3/81
1/9 1/9 1/9 2/81 3/81 6/81 3/81 2/81
1/81 2/81 3/81 2/81 1/81

Figure 21.7: Example of computation with a cycle length of 2.

and

matrix<float> mat_diff <- matrix ([
[(1/9,1/9,1/91,
(1/9,1/9,1/91,
[1/9,1/9,1/911);
reflex diff A
diffuse var: phero on: cells matrix:mat_diff cycle_length
123

Executing several diffusion matrix

If you execute several times the statement diffuse with different matrix on the same
variable, their values will be added (and centered if their dimensions are not equal).

Thus, the following 3 matrices will be combined to create one unique matrix:

Diffusion with parameters

Sometimes writing diffusion matrix is not exactly what you want, and you may prefer
to just give some parameters to compute the correct diffusion matrix. You can use
the following facets in order to do that: propagation, variation and radius.

v 1.8.2 129

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

1/9 1/9 0 1/9
1/9 1/9 1/9 + 0 + 1/9 + 0 0 0
1/9 1/9 0 1/9

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Figure 21.8: Example of matrix combinations.

Depending on which propagation you choose, and how many neighbors your grid has,
the propagation matrix will be computed differently. The propagation matrix will
have the size: range*2+1.

Let’s note P for the propagation value, V for the variation, R for the range and N
for the number of neighbors.

« With diffusion propagation
For diffusion propagation, we compute following the following steps:

(1) We determine the “minimale” matrix according to N (if N = 8, the matrix will
be [[P/9,P/9,P/9]1[P/9,1/9,P/9]1[P/9,P/9,P/9]]. if N = 4, the matrix will be
[([0,P/5,0][P/5,1/5,P/51[0,P/5,011).

(2) If R I= 1, we propagate the matrix R times to obtain a [2+R+1] [2¥R+1] matrix
same computation as for cycle_length).
putati for cy g

(3) If V I= 0, we substract each value by V*DistanceFromCenter (DistanceFrom-
Center depends on N).

Ex with the default values (P=1, R=1, V=0, N=8):

v 1.8.2 130

GAMA v1.8.2 documentation

Chapter 21.

Implementing diffusion

size=2*R+1=5

v

A

1/pow(8,2)-0*0
=1/64

1/pow(8,2)-0*0
=1/64

1/pow(8,2)-0*0
=1/64

1/pow(8,2)-0*0
=1/64

1/pow(8,2)-0*0
=1/64

1/pow(8,2)-0*0
=1/64

1/pow(8,1)-0*0
=1/8

1/pow(8,1)-0*0
=1/8

1/pow(8,1)-0*0
=1/8

1/pow(8,2)-0*0
=1/64

1/pow(8,2)-0*0
=1/64

1/pow(8,1)-0*0
=1/8

1/pow(8,0)-0*0
=1

1/pow(8,1)-0*0
=1/8

1/pow(8,2)-0*0
=1/64

1/pow(8,2)-0*0
=1/64

1/pow(8,1)-0*0
=1/8

1/pow(8,1)-0*0
=1/8

1/pow(8,1)-0*0
=1/8

1/pow(8,2)-0*0
=1/64

1/pow(8,2)-0*0
= 1/64

1/pow(8,2)-0*0
=1/64

1/pow(8,2)-0*0
=1/64

1/pow(8,2)-0*0
=1/64

1/pow(8,2)-0*0
=1/64

Figure 21.9: resources/images/recipes/gradient__computation from_ parameters.png

« With gradient propagation

The value of each cell will be equal to **P/POW(N,DistanceFromCenter)-
DistanceFromCenter*V**. (DistanceFromCenter depends on N).

Ex with R=2, other parameters default values (R=2, P=1, V=0, N=8):

Note that if you declared a diffusion matrix, you cannot use those 3 facets (it will
raise a warning). Note also that if you use parameters, you will only have a uniform
matrix.

v 1.8.2 131

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Figure 21.10: Illustration of convolution product computation.
Computation methods

You can compute the output matrix using two computation methods by using the
facet method : the dot product and the convolution. Note that the result of those
two methods is exactly the same (except if you use the avoid_mask facet, the results
can be slightly different between the two computations).

Convolution

convolution is the default computation method for diffusion. For every output cells,
we will multiply the input values and the flipped kernel together, as shown in the
following image :

Pseudo-code (k the kernel, x the input matrix, y the output matrix) :

for (i = 0 ; i < y.nbRows ; i++)
for (j = 0 ; j < y.nbCols ; j++)
for (m = 0 ; m < k.nbRows ; m++)
for (n = 0 ; n < k.nbCols ; n++)

y[i,j] += k[k.nbRows - m - 1, k.nbCols - n - 1]
* x[1i - k.nbRows/2 + m, j - k.nbCols/2 + nl

v 1.8.2 132

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Figure 21.11: Illustration of dat product computation.

Dot Product

dot_product method will compute the matrix using a simple dot product between
the matrix. For every input cells, we multiply the cell by the kernel matrix, as shown
in the following image :

Pseudo-code (k the kernel, x the input matrix, y the output matrix) :

i < y.nbRows ; i++)
j < y.nbCols ; j++)
for (m ; m < k.nbRows ; m++)
for (n 0 ; n < k.nbCols ; n++)
y[i - k.nbRows/2 + m, j - k.nbCols/2 + n] += k[m, n] =*
x[i, j]

for (i = 0
for (j =

N O -
N O -

Using a mask

Generalities

If you want to propagate some values in a heterogeneous grid, you can use some mask
to forbid some cells to propagate their values.

You can pass a matrix to the facet mask. All the values smaller than -1 will not
propagate, and all the values greater or equal to -1 will propagate.

v 1.8.2 133

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

matrix mymask <- file(<.) as_matrix({size,size});

=

Figure 21.12: Use of a mask to constrain the diffusion.

A simple way to use mask is by loading an image :

Note that when you use the on facet for the diffuse statement, you can choose only
some cells, and not every cell. In fact, when you restrain the values to be diffuse, it
is exactly the same process as if you were defining a mask.

When your diffusion is combined with a mask, the default behavior is that the non-
masked cells will diffuse their values in all existing cells (that means, even the masked
cells). To change this behavior, you can use the facet avoid_mask. In that case, the
value which was supposed to be affected to the masked cell will be redistributed to
the neighboring non-masked cells.

Tips

Masks can be used to simulate a lot of environments. Here are some ideas for your
models:

Wall blocking the diffusion

If you want to simulate a wall blocking a uniform diffusion, you can declare a second
diffusion matrix that will be applied only on the cells where your wall will be. This
diffusion matrix will “push” the values outside from himself, but conserving the values
(the sum of the values of the diffusion still have to be equal to 1) :

v 1.8.2 134

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

diffusion var: phero on: (cells where (each.grid x>24 and each.grid _x<58)) mat diffu:mat diff;

Uniform diffusion only applied on
cells where : 24 < grid_x < 58

Figure 21.13: Constraint on the diffusion using filtering on cells.

matrix<float> mat_diff <- matrix ([
[1/9,1/9,1/9],
[1/9,1/9,1/9],
[(1/9,1/9,1/911);

matrix<float> mat_diff_left_wall <- matrix ([
[0.0,0.0,2/9],
[0.0,0.0,4/9],
[0.0,0.0,2/911);

reflex diff {
diffuse var: phero on: (cells where(each.grid_x>30))
matrix:mat_diff;
diffuse var: phero on: (cells where(each.grid_x=30))
matrix:mat_diff_left_wall;

Note that almost the same result can be obtained by using the facet avoid_mask: the
value of all masked cells will remain at 0, and the value which was supposed to be
affected to the masked cell will be distributed to the neighboring cells. Notice that the
results can be slightly different if you are using the convolution or the dot_product
method: the algorithm of redistribution of the value to the neighboring cells is a
bit different. We advise you to use the dot_product with the avoid_mask facet, the
results are more accurate.

v 1.8.2 135

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Figure 21.14: Diffusion limited by a wall, using a mask.

Wind pushing the diffusion

Let’s simulate a uniform diffusion that is pushed by a wind from “north” everywhere
in the grid. A wind from “west” as blowing at the top side of the grid. We will here
have to build 2 matrices: one for the uniform diffusion, one for the “north” wind and
one for the “west” wind. The sum of the values for the 2 matrices meant to simulate
the wind will be equal to 0 (as it will be added to the diffusion matrix).

matrix<float> mat_diff <- matrix ([
(1/9,1/9,1/91,
[1/9,1/9,1/9],
[1/9,1/9,1/9]11);

matrix<float> mat_wind_from_west <- matrix ([
[-1/9,0.0,1/9],
[-1/9,0.0,1/91,
[-1/9,0.0,1/911);

matrix<float> mat_wind from _north <- matrix ([
(-1/9,-1/9,-1/9],
[0.0,0.0,0.0],

v 1.8.2 136

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Figure 21.15: Diffusion impacted with a wind.

(1/9,1/9,1/911);

reflex diff {
diffuse var: phero on: cells matrix:mat_diff;
diffuse var: phero on: cells matrix:mat_wind_from_north;
diffuse var: phero on: (cells where (each.grid_y>=32))
matrix:mat_wind_from_west;

Endless world

Note that when your world is not a torus, it has the same effect as a mask, since all
the values outside from the world cannot diffuse some values back :

You can “fake” the fact that your world is endless by adding a different diffusion for
the cells with grid_x=0 to have almost the same result :

(matrix<float> mat_diff <- matrix ([

v 1.8.2 137

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

Uniform diffusion in a torus world Uniform diffusion in a non-torus
(after 500 cycles) world (after 500 cycles)

Figure 21.16: Comparison of diffusion with and without torus environment.

Uniform diffusion in a torus world Uniform diffusion in a non-torus

(after 500 cycles) world with simulation of endless
world (after 500 cycles)

Figure 21.17: Attempt to fake torus environment with different matrices.

v 1.8.2 138

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

[(1/9,1/9,1/9],
[(1/9,1/9,1/91,
[(1/9,1/9,1/911);

matrix<float> mat_diff_upper_edge <- matrix ([
[0.0,0.0,0.0],
[1/9+7/81,2/9+1/81,1/9+7/81],
(1/9,1/9,1/911);

reflex diff {

diffuse var: phero on: (cells where(each.grid_y>0)) matrix

:mat_diff;

diffuse var: phero on: (cells where(each.grid_y=0)) matrix

:mat_diff_upper_edge;

Pseudo-code

This section is more for a better understanding of the source code.

Here is the pseudo-code for the computation of diffusion :

1) : Execute the statement diffuse, store the diffusions in a map (from class

DiffusionStatement to class GridDiffuser) :

- Get all the facet values

- Compute the mask, from the facet and the
facet
- If no value for and all the grid, the mask
is equal to null.
- Compute the matrix of diffusion
- If no value for , compute with ,
- Then, compute the matrix of diffusion with
- Store the diffusion properties in a map
- Map : [R , R R
1 is value, [, 1 is key.

v 1.8.2

139

GAMA v1.8.2 documentation Chapter 21. Implementing diffusion

- If the key exists in the map, try to the diffusions
- If , and equal for
the 2 diffusions, mix the diffusion matrix.

2) : At the end of the step, execute the diffusions (class GridDiffuser) :

- For each key of the map,

- Load the couple /

- Build the and array with the dimension of
the grid.

- Initialize the array with -Double.MAX_VALUE.

- For each value of the map for that key,
- Load all the properties : R ,
- Compute
- If the cell is not masked, if the value of input is >
min_value, diffuse to the neighbors.
- If the value of the cell is equal to -Double.
MAX_VALUE, remplace it by input[idx] * matDiffuli][j].
- Else, do the computation (gradient or diffusion).
- Finish the diffusion
- If output[idx] > -Double.MAX_VALUE, write the new
value in the cell.

v 1.8.2 140

Chapter 22

Using Database Access

Database features of GAMA provide a set of actions on Database Management
Systems (DBMS) and Multi-Dimensional Database for agents in GAMA. Database
features are implemented in the irit.gaml.extensions.database plug-in with these
features:

o Agents can execute SQL queries (create, Insert, select, update, drop, delete) to
various kinds of DBMS.

o Agents can execute MDX (Multidimensional Expressions) queries to select
multidimensional objects, such as cubes, and return multidimensional cellsets
that contain the cube’s data.

These features are implemented in two kinds of component: skills (SQLSKILL,
MDXSKILL) and agent (AgentDB)

SQLSKILL and AgentDB provide almost the same features (a same set of actions on
DBMS) but with certain slight differences:

o An agent of species AgentDB will maintain a unique connection to the database
during the whole simulation. The connection is thus initialized when the agent
is created.

« In contrast, an agent of a species with the SQLSKILL skill will open a connection
each time he wants to execute a query. This means that each action will be
composed of three running steps:

— Make a database connection.

141

GAMA v1.8.2 documentation Chapter 22. Using Database Access

— Execute SQL statement.
— Close database connection.

An agent with the SQLSKILL spends lot of time to create/close the
connection each time it needs to send a query; it saves the database
connection (DBMS often limit the number of simultaneous connections).
In contrast, an AgentDB agent only needs to establish one database
connection and it can be used for any actions. Because it does not need
to create and close database connection for each action: therefore, actions
of AgentDB agents are executed faster than actions of SQLSKILL ones
but we must pay a connection for each agent.

o With an inheritance agent of species AgentDB or an agent of a species using
SQLSKILL, we can query data from relational database for creating species,
defining environment or analyzing or storing simulation results into RDBMS.
On the other hand, an agent of species with MDXKILL supports the OLAP
technology to query data from data marts (multidimensional database). The
database features help us to have more flexibility in management of simulation
models and analysis of simulation results.

Description

o Plug-in: irit.gaml.extensions.database
e Author: TRUONG Minh Thai, Frederic AMBLARD, Benoit GAUDOU,
Christophe SIBERTIN-BLANC

Supported DBMS

The following DBMS are currently supported:

e SQLite

o MySQL Server

o PostgreSQL Server

o SQL Server

o Mondrian OLAP Server

v 1.8.2 142

GAMA v1.8.2 documentation Chapter 22. Using Database Access

o SQL Server Analysis Services

Note that, other DBMSs require a dedicated server to work while SQLite on only
needs a file to be accessed. All the actions can be used independently from the chosen
DBMS. Only the connection parameters are DBMS-dependent.

SQLSKILL

Define a species that uses the SQLSKILL skill

Example of declaration:

species toto skills: [SQLSKILL] {
//insert your descriptions here

}

Agents with such a skill can use additional actions (defined in the skill)

Map of connection parameters for SQL

In the actions defined in the SQLSKill, a parameter containing the connection param-
eters is required. It is a map with the following key::value pairs:

Key Optional Description

dbtype No DBMS type value. Its value is a string. We must use
“mysql” when we want to connect to a MySQL. That is the

bRENA4

same for “postgres”; “sqlite” or “sqlserver” (ignore case

sensitive)

host Yes Host name or IP address of data server. It is absent when
we work with SQlite.

port Yes Port of connection. It is not required when we work with
SQLite.

database No Name of database. It is the file name including the path
when we work with SQLite.

user Yes Username. It is not required when we work with SQLite.

passwd Yes Password. It is not required when we work with SQLite.

v 1.8.2 143

GAMA v1.8.2 documentation Chapter 22. Using Database Access

Key Optional Description

srid Yes srid (Spatial Reference Identifier) corresponds to a spatial
reference system. This value is specified when GAMA
connects to spatial database. If it is absent then GAMA
uses spatial reference system defined in
Preferences->FEzternal configuration.

Table 1: Connection parameter description

Example: Definitions of connection parameter

// POSTGRES connection parameter
map <string, string> POSTGRES <- [

'host '::'localhost ',
'dbtype ':: 'postgres ',
'database ':: 'BPH',
'port '::'5433",
'user ':: 'postgres',
'passwd':: 'abc'];
//SQLite
map <string, string> SQLITE <- [
'dbtype '::'sqlite',
'database '::'../includes/meteo.db'];

// SQLSERVER connection parameter
map <string, string> SQLSERVER <- [

'"host '::'localhost',
'"dbtype '::'sqlserver',
'database'::'BPH',
'port '::'1433"',
'user'::'sa',
'passwd'::'abc'];

// MySQL connection parameter
map <string, string> MySQL <- [

'"host '::'localhost',

'"dbtype ':: 'MySQL',

'database'::'', // it may be a null string
'port'::'3306"',

v 1.8.2 144

GAMA v1.8.2 documentation Chapter 22. Using Database Access

'user'::'root',
'passwd':: 'abc'];

Test a connection to database

Syntax: > testConnection (params: connection_parameter) The action tests the
connection to a given database.

e Return: boolean. It is:

— true: the agent can connect to the DBMS (to the given Database with
given name and password)
— false: the agent cannot connect

e Arguments:
— params: (type = map) map of connection parameters

o Exceptions: GamaRuntimeFEzception

Example: Check a connection to MySQL

if (self testConnection(params:MySQL)){
write ;

}elseq
write ;

}

Select data from database

Syntax: > select (param: connection_parameter, select: selection_string,values:
value_list) The action creates a connection to a DBMS and executes the select state-
ment. If the connection or selection fails then it throws a GamaRuntimeException.

e Return: list < list >. If the selection succeeds, it returns a list with three
elements:

— The first element is a list of column name.

v 1.8.2 145

GAMA v1.8.2 documentation Chapter 22. Using Database Access

— The second element is a list of column type.
— The third element is a data set.

o Arguments:

— params: (type = map) map containing the connection parameters

— select: (type = string) select string. The selection string can contain
question marks.

— walues: List of values that are used to replace question marks in appropriate.
This is an optional parameter.

o Exceptions: GamaRuntimeFEzception

Example: select data from table points

map <string, string> PARAMS <- ['dbtype'::'sqlite', '
database'::'../includes/meteo.db'];
list<list> t <- list<list> (self select(params:PARAMS,
select:));

Example: select data from table point with question marks from table points

map <string, string> PARAMS <- ['dbtype'::'sqlite', '
database'::'../includes/meteo.db'];
list<list> t <- list<list> (self select(params: PARAMS,
select:
L values: [10,20]));J

Insert data into database

Syntax:

_insert (param: connection_parameter, into: table_name, columns: col-
umn_list, values: value‘_list) The action creates a connection to a DBMS
and executes the insert statement. If the connection or insertion fails then
it throws a__ GamaRuntimeEzception.

e Return: int

v 1.8.2 146

GAMA v1.8.2 documentation Chapter 22. Using Database Access

If the insertion succeeds, it returns a number of records inserted by the
insert.

o Arguments: params: (type = map) map containing the connection parameters.
into: (type = string) table name. columns: (type=list) list of column names
of table. It is an optional argument. If it is not applicable then all columns of
table are selected. values : (type=list) list of values that are used to insert
into table corresponding to columns. Hence the columns and values must have
same size.

o Exceptions: GamaRuntimeException

Example: Insert data into table registration

map<string, string> PARAMS <- ['dbtype'::'sqlite', 'database
'::'../../includes/Student.db'];

do insert (params: PARAMS,
into: s
values: [102, 'Mahnaz', 'Fatma',6 25]);

do insert (params: PARAMS,
into: s
columns: [R R 1,
values: [103, 'Zaid tim', 'Kha'l);

int n <- insert (params: PARAMS,
into: ,
columns: [, , 1,
values: [104, 'Bill', 'Clark']);

Execution update commands

Syntax:

executeUpdate (param: connection_parameter, updateComm: table_
name, values: value_list) The action executeUpdate executes an update
command (create/insert/delete/drop) by using the current database con-
nection of the agent. If the database connection does not exist or the

v 1.8.2 147

GAMA v1.8.2 documentation Chapter 22. Using Database Access

update command fails then it throws a GamaRuntimeException. Other-
wise, it returns an integer value.

o Return: int. If the insertion succeeds, it returns a number of records inserted
by the insert.
e Arguments:

— params: (type = map) map containing the connection parameters

updateComm: (type = string) SQL command string. It may be commands:

create, update, delete and drop with or without question marks.

— columns: (type=list) list of column names of table.

— walues: (type=list) list of values that are used to replace question marks if
appropriate. This is an optional parameter.

o Exceptions: GamaRuntimeFEzception

Examples: Using action executeUpdate do sql commands (create, insert, update,
delete and drop).

map<string, string> PARAMS <- ['dbtype'::'sqlite', 'database
'::'../../includes/Student.db'];

// Create table

do executeUpdate (params: PARAMS,

updateComm:
+
+
+
+
)
// Insert into
do executeUpdate (params: PARAMS ,
updateComm:
+)
do insert (params: PARAMS, into: s
columns: [,) 1,

values: [103, 'Zaid tim', 'Kha'l);

// executeUpdate with question marks

v 1.8.2 148

GAMA v1.8.2 documentation Chapter 22. Using Database Access

do executeUpdate (params: PARAMS,
updateComm:
+

b

values: [101, 'Mr', 'Mme', 45]);

//update
int n <- executeUpdate (params: PARAMS,
updateComm:

)

// delete
int n <- executeUpdate (params: PARAMS,
updateComm:

values: [101]);

// Drop table
do executeUpdate (params: PARAMS, updateComm:

)

N

MDXSKILL

MDXSKILL plays the role of an OLAP tool using select to query data from OLAP
server to GAMA environment and then species can use the queried data for any
analysis purposes.

Define a species that uses the MDXSKILL skill

Example of declaration:

species olap skills: [MDXSKILL]
{

//insert your descriptions here

Agents with such a skill can use additional actions (defined in the skill)

v 1.8.2 149

GAMA v1.8.2 documentation Chapter 22. Using Database Access

Map of connection parameters for MDX

In the actions defined in the SQLSKkill, a parameter containing the connection param-
eters is required. It is a map with following key::value pairs:

Key Optional Description

olaptype No

dbtype No
host No
port No

database No

catalog Yes

user No
passwd — No

OLAP Server type value. Its value is a string. We must use
“SSAS/XMLA” when we want to connect to an SQL Server
Analysis Services by using XML for Analysis. That is the
same for “MONDRIAN/XML” or “MONDRIAN” (ignore
case sensitive)

DBMS type value. Its value is a string. We must use
“mysql” when we want to connect to a MySQL. That is the
same for “postgres” or “sqlserver” (ignore case sensitive)
Host name or IP address of data server.

Port of connection. It is no required when we work with
SQLite.

Name of database. It is file name include path when we
work with SQLite.

Name of catalog. It is an optional parameter. We do not
need to use it when we connect to SSAS via XMLA and its
file name includes the path when we connect a ROLAP
database directly by using Mondrian API (see Example as
below)

Username.

Password.

Table 2: OLAP Connection parameter description

Example: Definitions of OLAP connection parameter

//Connect SQL Server Analysis Services via XMLA
map<string,string> SSAS <- [

v 1.8.2

'olaptype '::'SSAS/XMLA',
'dbtype '::'sqglserver',
'host '::'172.17.88.166 ",
'port'::'80"',
'database'::'olap’',
'user '::'test',

150

GAMA v1.8.2 documentation Chapter 22. Using Database Access

'passwd'::'abc'];

//Connect Mondriam server via XMLA
map<string,string> MONDRIANXMLA <- [

'olaptype ':: ,
'"dbtype ':: 'postgres ',

'host '::'localhost',
'port'::'8080"',
'database'::'MondrianFoodMart',
'catalog'::'FoodMart',
'user ':: 'test',
'passwd'::'abc'];

//Connect a ROLAP server using Mondriam API
map<string,string> MONDRIAN <- [

'olaptype ':: 'MONDRIAN',
'"dbtype ':: 'postgres ',
'host '::'localhost',
'port '::'5433"',
'database'::'foodmart ',
'catalog'::'../includes/FoodMart.xml',
'user ':: 'test',

'passwd ':: 'abc'];

Test a connection to OLAP database

Syntax:

testConnection (params: connection_parameter) The action tests the
connection to a given OLAP database.

e Return: boolean. It is:

— true: the agent can connect to the DBMS (to the given Database with
given name and password)
— false: the agent cannot connect

o Arguments:

v 1.8.2 151

GAMA v1.8.2 documentation Chapter 22. Using Database Access

— params: (type = map) map of connection parameters

o Exceptions: GamaRuntimeFEzception

Example: Check a connection to MySQL

if (self testConnection(params:MONDIRANXMLA)){
write ;

Yelsed{
write ;

}

Select data from OLAP database

Syntax:

select (param: connection_parameter, onColumns: column_string, on-
Rows: row_string from: cube_string, where: condition_string, values:
value_list) The action creates a connection to an OLAP database and
executes the select statement. If the connection or selection fails then it
throws a GamaRuntimeEzception.

o Return: list < list >. If the selection succeeds, it returns a list with three
elements:

— The first element is a list of column name.
— The second element is a list of column type.
— The third element is a data set.

o Arguments:

params: (type = map) map containing the connection parameters

— onColumns: (type = string) declare the select string on columns. The
selection string can contain question marks.

— onRows: (type = string) declare the selection string on rows. The selection

string can contain question marks.

from: (type = string) specify cube where data is selected. The cube_ string

can contain question marks.

v 1.8.2 152

GAMA v1.8.2 documentation Chapter 22. Using Database Access

— where_: (type = string) specify the selection conditions. The condiction_ -
string can contains question marks. This is an optional parameter. *values:
List of values that are used to replace question marks if appropriate. This
is an optional parameter.

« Exceptions: GamaRuntimeException

Example: select data from SQL Server Analysis Service via XMLA

if (self testConnection[params::SSAS]){
list 11 <- list(self select (params: SSAS ,
onColumns:
onRows:
+

from :))
write + 11;
}else {
write 5

Example: select data from Mondrian via XMLA with question marks in selection

if (self testConnection(params:MONDRIANXMLA)){
list<list> 12 <- list<list> (self select(params:
MONDRIANXMLA ,
onColumns:

onRows:

+ + + +

v 1.8.2 153

GAMA v1.8.2 documentation Chapter 22. Using Database Access

+
+
+
from: s
where : s
values: [,19971));
write + 12;

Yelse {
write ;

}

AgentDB

AgentBD is a built-in species, which supports behaviors that look like actions in
SQLSKILL but differs slightly with SQLSKILL in that it uses only one connection
for several actions. It means that AgentDB makes a connection to DBMS and keeps
that connection for its later operations with DBMS.

Define a species that is an inheritance of agentDB

Example of declaration:

species agentDB parent: AgentDB {
//insert your descriptions here

}

Connect to database

Syntax:

Connect (param: connection_parameter) This action makes a connection
to DBMS. If a connection is established then it will assign the connection
object into a built-in attribute of species (conn) otherwise it throws a
GamaRuntimeException.

v 1.8.2 154

GAMA v1.8.2 documentation Chapter 22. Using Database Access

e Return: connection
o Arguments:

— params: (type = map) map containing the connection parameters

« Exceptions: GamaRuntimeException

Example: Connect to PostgreSQL

// POSTGRES connection parameter
map <string, string> POSTGRES <- [

'host '::'localhost ',
'"dbtype ':: 'postgres ',
'database'::'BPH',
'port '::'5433",

'user '::'postgres ',
'passwd ':: 'abc'];

ask agentDB {
do connect (params: POSTGRES);
}

Check agent connected a database or not

Syntax:

isConnected (param: connection_parameter) This action checks if an
agent is connecting to database or not.

o« Return: Boolean. If agent is connecting to a database then isConnected
returns true; otherwise it returns false.
o Arguments:

— params: (type = map) map containing the connection parameters

Example: Using action executeUpdate do sql commands (create, insert, update,
delete and drop).

v 1.8.2 155

GAMA v1.8.2 documentation Chapter 22. Using Database Access

ask agentDB {
if (self isConnected){
write ;
Yelse{
do connect (params: POSTGRES);
}

Close the current connection

Syntax:

close This action closes the current database connection of species. If
species does not has a database connection then it throws a GamaRun-
timeException.

e Return: null

If the current connection of species is close then the action return null value; otherwise
it throws a GamaRuntimeException.

Example:

ask agentDB {
if (self isConnected){
do close;

}

Get connection parameter

Syntax:
getParameter This action returns the connection parameter of species.

e Return: map < string, string >

v 1.8.2 156

GAMA v1.8.2 documentation Chapter 22. Using Database Access

Example:

ask agentDB {
if (self isConnected){
write +(self getParameter

)

Set connection parameter

Syntax:

setParameter (param: connection_parameter) This action sets the new
values for connection parameter and closes the current connection of
species. If it can not close the current connection then it will throw
GamaRuntimeException. If the species wants to make the connection to
database with the new values then action connect must be called.

e Return: null
o Arguments:

— params: (type = map) map containing the connection parameters

o Exceptions: GamaRuntimeEzception

Example:

ask agentDB {
if (self isConnected){
do setParameter (params: MySQL);
do connect(params: (self getParameter));

v 1.8.2 157

GAMA v1.8.2 documentation Chapter 22. Using Database Access

Retrieve data from database by using AgentDB

Because of the connection to database of AgentDB is kept alive then AgentDB can
execute several SQL queries with only one connection. Hence AgentDB can do actions
such as select, insert, executeUpdate with the same parameters of those actions
of SQLSKILL except params parameter is always absent.

Examples:

map<string, string> PARAMS <- ['dbtype'::'sqlite', 'database
'::'../../includes/Student .db'];

ask agentDB {
do connect (params: PARAMS);
// Create table

do executeUpdate (updateComm:
+

+ +
+)

// Insert into

do executeUpdate (updateComm:

+)
do insert (into: s
columns: [s s 1,
values: [103, 'Zaid tim', 'Kha'l);

// executeUpdate with question marks
do executeUpdate (updateComm:
values: [101, 'Mr', 'Mme', 45]);
//select
list<list> t <- list<list> (self select(
select: D)
//update
int n <- executeUpdate (updateComm:
)
// delete
int n <- executeUpdate (updateComm:
, values: [101]);
// Drop table
do executeUpdate (updateComm:)

v 1.8.2 158

GAMA v1.8.2 documentation Chapter 22. Using Database Access

Using database features to define environment or

create species

In Gama, we can use results of select action of SQLSKILL or AgentDB to create
species or define boundary of environment in the same way we do with shape files.
Further more, we can also save simulation data that are generated by simulation
including geometry data to database.

Define the boundary of the environment from database

o Step 1: specify select query by declaration a map object with keys as below:

Key Optional Description

dbtype No

host Yes
port Yes

database No

user Yes
passwd — Yes
srid Yes
select No

DBMS type value. Its value is a string. We must use
“mysql” when we want to connect to a MySQL. That is the
same for “postgres”; “sqlite” or “sqlserver” (ignore case
sensitive)

Host name or IP address of data server. It is absent when
we work with SQlite.

Port of connection. It is not required when we work with
SQLite.

Name of database. It is the file name including the path
when we work with SQLite.

Username. It is not required when we work with SQLite.
Password. It is not required when we work with SQLite.
srid (Spatial Reference Identifier) corresponds to a spatial
reference system. This value is specified when GAMA
connects to spatial database. If it is absent then GAMA
uses spatial reference system defined in
Preferences->External configuration.

Selection string

Table 3: Select boundary parameter description

Example:

Ve

v 1.8.2

159

GAMA v1.8.2 documentation Chapter 22. Using Database Access

map<string,string> BOUNDS <- [
//'srid'::'32648"',
'host '::'localhost',
'"dbtype ':: 'postgres ',
'database '::'spatial_DB',
'port '::'5433"',
'user ':: 'postgres ',
'passwd '::'tmt',
'select'::'SELECT ST_AsBinary(geom) as geom FROM bounds;'
15

o Step 2: define boundary of environment by using the map object in first step.

[geometry shape <- envelope (BOUNDS) ; J

Note: We can do the same way if we work with MySQL, SQLite, or SQLServer and
we must convert Geometry format in GIS database to binary format.

Create agents from the result of a select action

If we are familiar with how to create agents from a shapefile then it becomes very
simple to create agents from select result. We can do as below:

o Step 1: Define a species with SQLSKILL or AgentDB

species toto skills: SQLSKILL {
//insert your descriptions here

}

e Step 2: Define a connection and selection parameters

global {
map<string,string> PARAMS <- ['dbtype'::'sqlite',"'
database'::'../includes/bph.sqlite'];
string location <- 'select ID_4, Name_4, ST_AsBinary(
geometry) as geom from vnm_admé

v 1.8.2 160

GAMA v1.8.2 documentation Chapter 22. Using Database Access

where id_2=38253 or id_2
=38254; ';

» Step 3: Create species by using selected results

init {
create toto {
create locations from: list(self select (params: PARAMS,

select: LOCATIONS))
with:[id:: s
custom_name: : , shape:: 1;

¥

Save Geometry data to database

If we are familiar with how to create agents from a shapefile then it becomes very
simple to create agents from select result. We can do as below:

o Step 1: Define a species with SQLSKILL or AgentDB

species toto skills: SQLSKILL {
//insert your descriptions here

}

o Step 2: Define a connection and create GIS database and tables

global {
map<string,string> PARAMS <- ['host'::'localhost', '
dbtype '::'Postgres', 'database'::'"',
port '::'5433', 'user'::'postgres', 'passwd'::'tmt'];

v 1.8.2 161

GAMA v1.8.2 documentation Chapter 22. Using Database Access

init {
create toto ;
ask toto {
if (self testConnection[params::PARAMS]){
// create GIS database
do executeUpdate (params:PARAMS,
updateComm: "CREATE DATABASE
spatial_db with TEMPLATE = template_postgis;");
remove key: "database" from: PARAMS;
put "spatial_db" key:"database" in: PARAMS;
//create table
do executeUpdate params: PARAMS

updateComm : "CREATE TABLE buildings "+
||(n +
" name character varying
(255), " +
" type character
varying (255), " +
" geom GEOMETRY " +
"
}else {
write "Connection to MySQL can not be
established ";
}
}
}

o Step 3: Insert geometry data to GIS database

ask building {
ask DB _Accessor {
do insert(params: PARAMS,
into: "buildings",
columns: "name", "type","geom"],
values: [myself.name,myself.type,myself.shapel;

v 1.8.2 162

Chapter 23

Calling R

Introduction

R language is one of powerful data mining tools, and its community is very large in
the world (See the website: http://www.r-project.org/). Adding the R language into
GAMA is our strong endeavors to accelerate many statistical, data mining tools into
GAMA.

RCaller 2.0 package (Website: http://code.google.com/p/rcaller/) is used for GAMA
1.6.1.

Table of contents

e Introduction
— Configuration in GAMA
— Calling R from GAML
x Calling the built-in operators
Example 1
% Calling R codes from a text file (.txt) WITHOUT the parameters

Example 2
Correlation.R file

x Output

163

GAMA v1.8.2 documentation Chapter 23. Calling R

Example 3
RandomForest.R file

e Load the package:

e Read data from iris:

e Build the decision tree:

e Build the random forest of 50 decision trees:
e Predict the acceptance of test set:

o Calculate the accuracy:

— QOutput
— Calling R codes from a text file (.R, .txt) WITH the parameters

x Example 4
x Mean.R file

— Output

* Example 5
* AddParam.R file
x Output

Configuration in GAMA

1) Install R language into your computer.
2) In GAMA, select menu option: Edit/Preferences.

3) In “Config RScript’s path”, browse to your “Rscript” file (R language
installed in your system).

Notes: Ensure that install.packages(“Runiversal”) is already applied in R environ-
ment.

Calling R from GAML

Calling the built-in operators

Example 1

v 1.8.2 164

GAMA v1.8.2 documentation Chapter 23. Calling R

model CallingR

global {
list X <- [2, 3, 1];
list Y <- [2, 12, 4];

list result;
init{

write corR(X, Y); // -> 0.755928946018454
write meanR(X); // -> 2.0

Calling R codes from a text file (.R,.txt) WITHOUT the pa-
rameters

Using R__compute(String RFile) operator. This operator DOESN’T ALLOW to
add any parameters form the GAML code. All inputs is directly added into the R
codes. Remarks: Don’t let any white lines at the end of R codes. R__compute
will return the last variable of R file, this parameter can be a basic type or a list.
Please ensure that the called packages must be installed before using.

Example 2

model CallingR

global
{
list result;
init{
result <- R_compute()

write result at O;

v 1.8.2 165

GAMA v1.8.2 documentation Chapter 23. Calling R

Above syntax is deprecated, use following syntax with R_ file instead of R__compute:

model CallingR

global
{
file result;
init{
result <- R_file()

write result.contents;

Correlation.R file

x <- c(1, 2, 3)
y <= c(1, 2, 4)

result <- cor(x, y, method =)

Output

result::[0.981980506061966]

Example 3

model CallingR

global
{
list result;
init{
result <- R_compute ();

v 1.8.2 166

GAMA v1.8.2 documentation Chapter 23. Calling R

write result at O0;

RandomPForest.R file

Load the package:

library (randomForest)

Read data from iris:

data(iris)

nrow<-length(iris[,1])
ncol<-length(iris[1,])

idx<-sample (nrow,replace=FALSE)
trainrow<-round (2*nrow/3)
trainset<-iris[idx[1:trainrow],]

Build the decision tree:
trainset<-iris[idx[1:trainrow],]
testset<-iris[idx[(trainrow+1) :nrow],]
Build the random forest of 50 decision trees:

model<-randomForest (x= trainset[,-ncol], y= trainset[,ncoll],
mtry=3, ntree=50)

Predict the acceptance of test set:

pred<-predict (model, testset[,-ncoll], type=)

v 1.8.2 167

GAMA v1.8.2 documentation Chapter 23. Calling R

Calculate the accuracy:

acc<-sum(pred==testset[, ncoll])/(nrow-trainrow)

Output

acc::[0.98]

Calling R codes from a text file (.R, .txt) WITH the param-
eters

Using R__compute__param(String RFile, List vectorParam) operator. This
operator ALLOWS to add the parameters from the GAML code.

Remarks: Don’t let any white lines at the end of R codes. R__ compute__param
will return the last variable of R file, this parameter can be a basic type or a list.
Please ensure that the called packages must be installed before using.

Example 4

model CallingR

global

{
list X <- [2, 3, 1]1;
list result;

init{
result <- R_compute_param/(, X);
write result at O0;
}
}
Mean.R file

result <- mean(vectorParam)

v 1.8.2 168

GAMA v1.8.2 documentation

Chapter 23. Calling R

Output

result::[3.33333333333333]

Example 5

model CallingR
global {
list X <- [2, 3, 1]1;

list result;

init{
result <- R_compute_param(

write result at O;

AddParam.R file

vl <- vectorParam[1]
v2<-vectorParam[2]
v3<-vectorParam[3]
result<-v1+v2+v3

Output

result::[10]

v 1.8.2

169

GAMA v1.8.2 documentation Chapter 23. Calling R

v 1.8.2 170

Chapter 24

Using FIPA ACL

GAMA allows modelers to provide agents the capability to communicate with other
agents using FIPA Communication Acts (such as inform, request, call for proposal. ..)
and Interaction Protocols (such Contract Net Interaction Protocol, Request Interaction
Protocol).

To add these capabilities to the chosen species, the modeler needs to attach the
fipa skill: it adds to agents of the species some additional attributes (e.g. the list of
messages received) and available actions (e.g. the possibility to send messages given
the chosen Communication Act).

The exhaustive list of available Communication Acts and Interaction Protocols is
available from the technical description of the fipa skill page. Examples can be found
in the model library bundled with GAMA (Plugin models / FIPA Skill).

Table of Contents

e Main steps to create a conversation using FIPA Communication Acts and
Interaction Protocols

o Attach the fipa skill to a species

o Initiate a conversation

e Receive messages

e Reply to a received message

e The message data type

e The conversation data type

171

http://www.fipa.org/
http://www.fipa.org/repository/ips.php3
http://www.fipa.org/specs/fipa00029/index.html
http://www.fipa.org/specs/fipa00026/index.html
http://www.fipa.org/specs/fipa00026/index.html

GAMA v1.8.2 documentation Chapter 24. Using FIPA ACL

Main steps to create a conversation using FIPA
Communication Acts and Interaction Protocols

1. Attach the skill fipa to the agents’ species that need to use Communication
Acts

2. An initiator agent starts a conversation with some agents: it chooses the
Interaction Protocol and starts it by sending the first Communication Acts of
the protocol

3. Each agent involved in the conversation needs to check its received messages
and respond to them by choosing the appropriate Communication Act.

Attach the fipa skill to a species

To attach the fipa skill to a species, the modeler has to add it in the skills facet of
the species statement (in a way similar to any other skill).

species any_species skills: [fipal] {

3

Agents of any species can communicate in the same conversation. The only constraint
is that they need to have the capabilities to receive and send messages, i.e. to have
the skill fipa.

Species can have several attached skills: a single species can be provided with both
the moving and fipa skills (and any other ones).

This skill adds to every agent of the species: * some additional attributes: *

conversations is the list of the agent’s current conversations, * mailbox is the

list of messages of all types of performatives, * requests, informs, proposes... are

respectively the list of the ‘request’, ‘inform’, ‘propose’ performative messages. *
some additional actions, such as: * inform, accept_proposal... that replies a
message with an ‘inform’ (respectively ‘accept_ proposal’ performative message). *

*

start_conversation that starts a conversation with a chosen interaction protocol.
end_conversation that replies a message with an ‘end_conversation’ performative
message. This message marks the end of a conversation. In a ‘no-protocol’ conversa-
tion, it is the responsibility of the modeler to explicitly send this message to mark
the end of a conversation/interaction protocol. * reply that replies a message. This

v 1.8.2 172

GAMA v1.8.2 documentation Chapter 24. Using FIPA ACL

action should be only used to reply a message in a ‘no-protocol’ conversation and
with a ‘user-defined performative’. For performatives supported by GAMA, please
use the ‘action’ with the same name as the ‘performative’. For example, to reply a
message with a ‘request’ performative message, the modeler should use the ‘request’
action.

Initiate a conversation

An interaction using an Interaction Protocol starts with the creation of a conversation
by an agent, using the start_conversation action.

The modeler specifies the chosen protocol (facet protocol), list of participants
(facet to), communication act (facet performative) and message (facet contents).

species Imnitiator skills: [fipal {

reflex send_propose_message when: (time = 1) {

do start_conversation to: [p] protocol: 'fipa-propose'
performative: 'propose' contents: ['Go swimming?'] ;
}

Receive messages

Each agent (with the fipa skill) is provided with several “mailbox” attributes filtering
the various received messages by communication act: e.g. proposes contains the list
of the received messages with the “Propose” communication act.

Receiving a message consists thus in looking at each message from the mailbox, and
acting in accordance with its contents, participants. ..

Important remark: once the contents field of a received message has been read, it is
removed from all the lists it appears in.

species Initiator skills: [fipa] {
reflex read_accept_proposals when: !(empty(
accept_proposals)) A
write name + ' receives accept_proposal messages';
loop i over: accept_proposals {
write 'accept_proposal message with content: ' +
string(i.contents);

v 1.8.2 173

GAMA v1.8.2 documentation Chapter 24. Using FIPA ACL

species Participant skills: [fipal {
reflex accept_proposal when: !(empty(proposes)) {
message proposalFromInitiator <- proposes at O;

do accept_proposal message: proposalFromInitiator
contents: ['OK! It \'s hot today!']
b

Remark: * To test that the agent has received a new message is simply done by
testing whether the dedicated mailing box contains messages. * To get a message,
the modeler can either loop over the message list to get all the messages or get a
message by its index in the message box.

Reply to a received message

Given the message it has received, an agent can reply using the appropriate Commu-
nication Act (using the appropriate action). It simply has to specify the message to
which it replies and the content of the reply.

Note that it does not need to specify the receiver as it is contained in the message.

species Participant skills: [fipa] {
reflex accept_proposal when: !(empty(proposes)) {
message proposalFromInitiator <- proposes at O;

do accept_proposal message: proposalFromInitiator
contents: ['OK! It \'s hot today!']
X

v 1.8.2 174

GAMA v1.8.2 documentation Chapter 24. Using FIPA ACL

End a conversation

When a conversation is made in the scope of an Interaction Protocol, it is ended
automatically when the last Communicative Act has been sent.

In the case of a ‘no-protocol conversation’, it is the responsibility of the modeler to
explicitly send the end_conversation message to mark the end of a conversation/in-
teraction protocol.

When a conversation ends, it is automatically removed from the list conversations.

The message type

The agents’ mailbox is defined as a list of messages. Each message is a GAML object
of type message. An exhaustive description of this type is provided in the dedicated
GAML Data Types page.

A message object is defined by a set of several fields, such as: * contents (type unknown
): the content of the message * sender (type unknown): the sender of the message.
In the case where the sender is an agent, it is possible to get the corresponding
agent with agent(m.sender) (where m is the considered message). * unread (type
bool): specify whether the message has been read. * emission_timestamp (type int)

* recention_timestamp (type int)

The conversation data type

The agents’ conversations contain the list of the conversations in which the agent
takes part. Each conversation is a GAML object of type conversation that contains
the list of messages exchanged, the protocol, initiator... An exhaustive description
of this type is provided in the dedicated GAMI Data Types page.

* messages (type

A conversation object is defined by a set of several fields, such as:
= list of messages): the list of messages that compose this conversation * protocol
(type = string): the name of the protocol followed by the conversation * initiator
(type = agent): the agent that has initiated this conversation * participants (type
= list of agents): the list of agents that participate in this conversation * ended (type

= bool): whether this conversation has ended or not

v 1.8.2 175

GAMA v1.8.2 documentation Chapter 24. Using FIPA ACL

v 1.8.2 176

Chapter 25

Using GAMAnalyzer

Install

Go to Git View -> Click on Import Projects Add the dependencies in um-
misco.gama.feature.dependencies

GamAnalyzer is a tool to monitor several multi-agents simulation

The “agent_ group_ follower” goal is to monitor and analyze a group of agent during
several simulation. This group of agent can be chosen by the user according to criteria
chosen by the user. The monitoring process and analysis of these agents involves the
extraction, processing and visualization of their data at every step of the simulation.
The data for each simulation are pooled and treated commonly for their graphic
representation or clusters.

Built-in Variable

o varmap: All variable that can be analyzed or displayed in a graph.

o numvarmap: Numerical variable (on this variable all the aggregator numeric
are computed).

o qualivarmap: All non numerical variable. Could be used for BDI to analyze
beliefs.

177

GAMA v1.8.2 documentation Chapter 25. Using GAMAnalyzer

metadatahistory: See updateMetaDataHistory. This matrice store
all the metadata like getSimulationScope(), getClock().getCycle(),
getUniqueSimName(scope), rule, scope.get AgentScope().getName(),
this.getName(), this.agentsCourants.copy(scope), this.agentsCourants.size(),
this.getGeometry/().

lastdetailedvarvalues: store all the value (in varmap) for all the followed
agent for the last iteration.

averagehistory: Average value for each of the numvar
stdevhistory: Std deviation value for each of the numvar
minhistory: Min deviation value for each of the numvar
maxhistory: Max deviation value for each of the numvar

distribhistoryparams: Gives the interval of the distribution described in
distribhistory

distribhistory: Distribution of numvarmap

multi__metadatahistory: Aggregate each metadatahistory for each experi-
ment

Example

This example is based on a toy model which is only composed of wandering people.
In this example we will use GamAnalyzer to follow the agent people.

[agent_group_follower peoplefollower;

create agentfollower

{

}

do analyse_cluster species_to_analyse: 5
peoplefollower <-self;

v 1.8.2 178

GAMA v1.8.2 documentation Chapter 25. Using GAMAnalyzer

expGlobalNone

No clustering only the current agent follower is displayed

aspect base {
display_mode <- ;
clustering_mode <- ;
draw shape color: #red;

3

expSimGlobalNone

The agent_ group_ follower corresponding to the current iteration and all the already
launch experiments are displayed.

aspect simglobald{
display_mode <- ;
clustering_mode <- ;
draw shape color: #red;
int curColor <-0;
loop geom over: allSimShape{
draw geom color:SequentialColors[curColor] at:{location.x,
location.y,curColor*10};
curColor <- curColor+i;

expCluster

The agent group follower is divided in cluster computed thanks to a dbscan algorithm.
Only the current agent_ group_ follower is displayed

aspect cluster {
display_mode <- ;
clustering_mode <- s
draw shape color: #red;

}

v 1.8.2 179

GAMA v1.8.2 documentation Chapter 25. Using GAMAnalyzer

expClusterSimGlobal

The agent__group_ follower (made of different cluster) corresponding to the current
iteration and all the already launch experiments are displayed.

aspect clusterSimGlobal {
display_mode <- ;
clustering_mode <- ;
draw shape color: #red;
int curColor <-0;
loop geom over: allSimShape{
draw geom color:SequentialColors[curColor] at:{location.x,
location.y,curColor*10};
curColor <- curColor+i1;

v 1.8.2 180

Chapter 26

Using BEN (simple__bdi)

Introduction to BEN

BEN (Behavior with Emotions and Norms) is an agent architecture providing social
agents with cognition, emotions, emotional contagion, personality, social relations,
and norms. This work has been done during the Ph.D. of Mathieu Bourgais, funded
by the ANR ACTEUR.

The BEN architecture is accessible in GAMA through the use of the simple_bdi
architecture when defining agents. This page indicates the theoretical running of
BEN as well as the practical way it has been implemented in GAMA.

This page features all the descriptions for the running of the BEN architecture. This
page is updated with the version of BEN implemented in GAMA. To get more details
on its implementation in GAMA, see operators related to BDI, BDI tutorial or BDI
built-in architecture reference.

The BEN architecture

The BEN Architecture used by agents to make a decision at each time step is
represented by the image right below:

Each social agent has its own instance of the BEN architecture to make a decision.
The architecture is composed of 4 main parts connected to the agent’s knowledge
bases, seated on the agent’s personnality. Each part is made up of processes that

181

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

A:mmry the
smironment

Coping

Normative engine

Cognitive engine

Execute plan/norm
Making

decision
N influence

information from| amTTTTTITToom s oo T (O e

. - e — -" ==
— I\\ T i
i i i ognitive Bases C T
Creating beliefs : g [Inference rules v
| h

other agents'

. T X X i
other agents' influence i Emotional engine i

resence

Emotional Contagion i

Creating Social

| N .]
enfercement on Relations modify i Social engine i
— Applying sanctions
i : .
% pplying , | - |
Perception @ . Managing Knowledge @
:’:‘: ::'-'-'_'_'_'_'_I ''''''''''''''''''' g modi _
! Sanctions e S fy _____ [automatic
T o ! I Degrading Mental |\ _—
I i
b States Ly
E ! D di E ti] E E____,' optional
i Degrading Emotions | :
E ! : E :] mandatory
i Updating Norm status i (T parametrize
'x,__tﬁ'iczv_v_'??gi?y?_ﬂm_ic___.x®
L s TS
P P
OCEAN Personality

Figure 26.1: Architecture of the BEN architecture.

v 1.8.2 182

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

are automatically computed (in blue) or which need to be manually defined by the
modeler (in pink). Some of these processes are mandatory (in solid line) and some
others are optional (in dotted line). This modularity enables each modeler to only
use components that seem pertinent to the studied situation without creating heavy
and useless computations.

The Activity diagram bellow shows the order in which each module and each process
is activated. The rest of this page explains in details how each process from each
module works and what is the difference between the theoretical architecture and its
implementation.

Predicates, knowledge and personality

In BEN, an agent represents its environment through the concept of predicates.

A predicate represents information about the world. This means it may represent a
situation, an event or an action, depending on the context. As the goal is to create
behaviors for agents in a social environment, that is to say taking actions performed
by other agents into account with facts from the environment in the decision making
process, an information P caused by an agent j with an associated list of value V
is represented by Pj(V). A predicate P represents an information caused by any or

none agent, with no particular value associated. The opposite of a predicate P is
defined as not P.

In GAML, the simple_bdi architecture adds a new type called predicate which is
made of a name (mandatory), a map of values (optional) an agent causing it (optional)
and a truth value (optional, by default at true). To manipulate these predicates,
there are operators like set_agent_cause, set_truth, with_values and add_values
to modify the corresponding attribute of a given predicate (with_values changes all
the map of values while add_values enables to add a new value without changing
the rest of the map). These values can be accessed with operators get_agent_cause,
get_truth, get_values. An operator not is also defined for predicates.

Below is an example of how to define predicates in GAML:

predicate a <- new_predicate();

predicate b <- new_predicate(, L ::101)
predicate c¢ <- new_predicate(,agentBob) ;
predicate d <- new_predicate(,false);
predicate e <- new_predicate(,agenBob ,false);

v 1.8.2 183

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

B —— . — —————

e) o o

Pmmmmmmmmmm e e
Lo Coprg _____ :
| Nomatve engine |
| Cagnitive anging |
| Exmcuting Flan |
._________1 _________ :I aulomahs
. 5
Knowledge dynamic \ wal
e e e ;o [e
, | _ Dwgmding menisi siates | | - == oplional
| ommmm— s — P ---
e i e |] mandatary

o o ———— —_— e —————

Figure 26.2: Activity diagram illustrating the activation order of the BEN architecture.

v 1.8.2 184

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Cognitive mental states

Through the architecture, an agent manipulates cognitive mental states to make a
decision; they constitute the agent’s mind. A cognitive mental state possessed by the
agent i is represented by Mi(PMEm,Val,Li) with the following meaning:

o M: the modality indicating the type of the cognitive mental state (e.g. a belief).

« PMEm: the object with which the cognitive mental state relates. It can be a
predicate, another cognitive mental state, or an emotion.

e Val: a real value which meaning depends on the modality.

o Li: a lifetime value indicating the time before the cognitive mental state is
forgotten.

A cognitive mental state with no particular value and no particular lifetime is writ-
ten Mi(PMEm). Val[Mi(PMEm)] represents the value attached to a particular
cognitive mental state and Li[Mi(PMEm)]| represents its lifetime.

The cognitive part of BEN is based on the BDI paradigm (Bratman, 1987) in which
agents have a belief base, a desire base and an intention base to store the cognitive
mental states about the world. In order to connect cognition with other social features,
the architecture outlines a total of 6 different modalities which are defined as follows:

o Belief: represents what the agent knows about the world. The value attached
to this mental state indicates the strength of the belief.

o Uncertainty: represents an uncertain information about the world. The value
attached to this mental state indicates the importance of the uncertainty.

o Desire: represents a state of the world the agent wants to achieve. The value
attached to this mental state indicates the priority of the desire.

o Intention: represents a state of the world the agent is committed to achieve.
The value attached to this mental state indicates the priority of the intention.

o Ideal: represents an information socially judged by the agent. The value
attached to this mental state indicates the praiseworthiness value of the ideal
about P. It can be positive (the ideal about P is praiseworthy) or negative (the
ideal about P is blameworthy).

e Obligation: represents a state of the world the agent has to achieve. The
value attached to this mental state indicates the priority of the obligation.

In GAML, mental states are manipulated thanks to add, remove and get ac-
tions related to each modality: add_belief, remove_belief, get_belief, add_desire,

v 1.8.2 185

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

remove_desire ... Then, operators enables to acces or modify each attribute of
a given mental state: get_predicate, set_predicate, get_strength, set_strength,
get_lifetime, set_lifetime, etc.

Below is an exemple of code in GAML concerning cognitive mental states:

reflex testCognition{
predicate a <- new_predicate()
do add_belief(a,strengthl ,lifetimel);
mental_state b <- get_uncertainty(a);
int ¢ <- get_lifetime(b);

Emotions

In BEN, the definition of emotions is based on the OCC theory of emotions (Ortony,
90). According to this theory, an emotion is a valued answer to the appraisal of a
situation. Once again, as the agents are taken into consideration in the context of a
society and should act depending on it, the definition of an emotion needs to contain
the agent causing it. Thus, an emotion is represented by Emi(P,Ag,I,De) with the
following elements :

o Emi: the name of the emotion felt by agent 1.

o P: the predicate representing the fact about which the emotion is expressed.
o Ag: the agent causing the emotion.

o I: the intensity of the emotion.

e De: the decay withdrawal from the emotion’s intensity at each time step.

An emotion with any intensity and any decay is represented by Emi(P,Ag) and
an emotion caused by any agent is written Emi(P). I[Emi(P,Ag)] stands for the
intensity of a particular emotion and De[Emi(P,Ag)] stands for its decay value.

In GAML, emotions are manipulated thanks to add_emotion, remove_emotion and
get_emotion actions and attributes of an emotion are manipulated with set and get
operators (set_intensity, set_about, set_decay, set_agent_cause, get_intensity,
get_about, get_decay, get_agent_cause).

Below is an exemple of code in GAML concerning emotions:

v 1.8.2 186

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

reflex testEmotion{

predicate a <- new_predicate()

do add_emotion(new_emotion (,a));

do add_emotion(new_emotion (,intesityl,a, decayl));
float ¢ <- get_intensity(get_emotion(new_emotion (,a))
);

Social relations

As people create social relations when living with other people and change their
behavior based on these relationships, BEN architecture makes it possible to describe
social relations in order to use them in agents’ behavior. Based on the research
carried out by (Svennevig, 2000), a social relation is described by using a finite set
of variables. Svennevig identifies a minimal set of four variables: liking, dominance,
solidarity, and familiarity. A trust variable is added to interact with the enforcement
of social norms. Therefore, in BEN, a social relation between agent ¢ and agent j is
expressed as Ri,j(L,D,S,F,T) with the following elements:

« R: the identifier of the social relation.

L: a real value between -1 and 1 representing the degree of liking with the agent

concerned by the link. A value of -1 indicates that agent j is hated, a value of 1

indicates that agent j is liked.

o D: areal value between -1 and 1 representing the degree of power exerted on the
agent concerned by the link. A value of -1 indicates that agent j is dominating,
a value of 1 indicates that agent j is dominated.

o S: areal value between 0 and 1 representing the degree of solidarity with the
agent concerned by the link. A value of 0 indicates that there is no solidarity
with agent j, a value of 1 indicates a complete solidarity with agent j.

o F: a real value between 0 and 1 representing the degree of familiarity with the
agent concerned by the link. A value of 0 indicates that there is no familiarity
with agent j, a value of 1 indicates a complete familiarity with agent j.

o T: a real value between -1 and 1 representing the degree of trust with the agent
j. A value of -1 indicates doubts about agent j while a value of 1 indicates
complete trust with agent j. The trust value does not evolve automatically in
accordance with emotions.

v 1.8.2 187

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple__bdi)

With this definition, a social relation is not necessarily symmetric, which means
Ri,j(L,D,S,F,T) is not equal by definition to Ri,j(L,D,S,F,T). L[Ri,j] stands for the
liking value of the social relation between agent 7 and agent j, D[i,j] stands for its
dominance value, S[Ri,j] for its solidarity value, F[Ri,j] represents its familiarity
value and T[Ri,j] its trust value.

In GAML, social relations are manipulated with add social link, remove social link
and get_social link actions. Each feature of a social link is accessible with set and
gt operators (set_agent, get_agent, set_ liking, get_ liking, set_ dominance, etc.)

Below is an exemple of code to manipulates social relations in GAML:

reflex testSocialRelations{
do add_social_link(new_social_link(agentAlice));
do add_social_link(new_social_link (agentBob
,0.5,-0.3,0.2,0.1));
float val <- get_liking(get_social_link(new_social_link(
agentBob)));
social_link sl <- set_dominance(get_social_1link(
new_social_link (agentBob)) ,0.3);

Personality and additional variables

In order to define personality traits, BEN relies on the OCEAN model (McCrae,
1992), also known as the big five factors model. In the BEN architecture, this model
is represented through a vector of five values between 0 and 1, with 0.5 as the neutral
value. The five personality traits are:

o O: represents the openness of someone. A value of 0 stands for someone
narrow-minded, a value of 1 stands for someone open-minded.

o C: represents the consciousness of someone. A value of 0 stands for someone
impulsive, a value of 1 stands for someone who acts with preparations.

o E: represents the extroversion of someone. A value of 0 stands for someone shy,
a value of 1 stands for someone extrovert.

o A: represents the agreeableness of someone. A value of 0 stands for someone
hostile, a value of 1 stands for someone friendly.

o N: represents the degree of control someone has on his/her emotions, called
neurotism. A value of 0 stands for someones neurotic, a value of 1 stands for
someone calm.

v 1.8.2 188

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

In GAML, these variables are build-in attributes of agents using the simple_bdi control
architecture. They are called openness, conscientiousness, extroversion, agreeableness
and neurotism. To use this personality to automaticaly parametrize the other modules,
a modeler needs to indicate it as shown in the GAML example below:

species miner control:simple_bdi {

bool use_personality <- true;
float openness <- 0.1;

float conscientiousness <- 0.2;
float extroversion <- 0.3;
float agreeableness <- 0.4;
float neurotism <- 0.5;

With BEN, the agent has variables related to some of the social features. The idea
behind the BEN architecture is to connect these variables to the personality module
and in particular to the five dimensions of the OCEAN model in order to reduce
the number of parameters which need to be entered by the user. These additional
variables are:

e The probability to keep the current plan.

o The probability to keep the current intention.

o A charisma value linked to the emotional contagion process.

e An emotional receptivity value linked to the emotional contagion.
e An obedience value used by the normative engine.

With the cognition, the agent has two parameters representing the probability to
randomly remove the current plan or the current intention in order to check whether
there could be a better plan or a better intention in the current context. These two
values are connected to the consciousness components of the OCEAN model as it
describes the tendency of the agent to prepare its actions (with a high value) or act
impulsively (with a low value).

 Probability Keeping Plans = C1/2
 Probability Keeping Intentions = C1/2

v 1.8.2 189

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

For the emotional contagion, the process (presented later) requires charisma (Ch) and
emotional receptivity (R) to be defined for each agent. In BEN, charisma is related to
the capacity of expression, which is related to the extroversion of the OCEAN model,
while the emotional receptivity is related to the capacity to control the emotions,
which is expressed with the neurotism value of OCEAN.

With the concept of norms, the agent has a value of obedience between 0 and 1,
which indicates its tendency to follow laws, obligations, and norms. According to
research in psychology, which tried to explain the behavior of people participating in
a recreation of the Milgram’s experiment (Begue, 2015), obedience is linked with the
notions of consciousness and agreeableness which gives the following equation:

 obedience = ((C+A)/2)1/2

With the same idea, all the parameters required by each process are linked to the
OCEAN model.

If a modeler wants to put a different value to one of these variables, he/she just need
to indicate a new value manualy. For the probability to keep the current plan and
the probability to keep the current intention, he/she also has to indicates it with a
particular boolean value, as shown in the GAML example below:

species miner control: simple_bdi {

bool use_personality <- true;

bool use_persistence <- true;

float plan_persistence <- 0.3;
float intention_persistence <- 0.4;
float obedience <- 0.2;

float charisma <- 0.3;

float receptivity <- 0.6;

v 1.8.2 190

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Perception

The first step of BEN is the perception of the environment. This module is used to
connect the environment to the knowledge of the agent, transforming information
from the world into cognitive mental states, emotions or social links but also used to
apply sanctions during the enforcement of norms from other agents.

Below is an example of code to define a perception in GAML:

perceive target: fireArea in: 10{

}

The first process in this perception consists of adding beliefs about the world.
During this phase, information from the environment is transformed into predicates
which are included in beliefs or uncertainties and then added to the agent’s knowledge
bases. This process enables the agent to update its knowledge about the world.
From the modeler’s point of view, it is only necessary to specify which information
is transformed into which predicate. The addition of a belief BeliefA(X) triggers
multiple processes :

e it removes BeliefA (not X).

e it removes IntentionA(X).

o it removes DesireA(X) if IntentionA(X) has just been removed.
o it removes UncertaintyA(X) or UncertaintyA (not X).

o it removes ObligationA(X). \end{itemize}

In GAML, the focus statement eases the use of this process. Below is an example
that adds a belief and an uncertainty with the focus statement during a perception:

perceive target: fireArea in: 10{

focus id: var:location strength:10.0;
//is equivalent to ask myself {do add_belief (new_predicate
("fireLocation",["location_value"::myself.location] ,10.0);}
focus id: var:location strength:1.0

is_uncertain:true;

//is equivalent to ask myself {do add_uncertainty(
new_predicate ("hazardLocation",["location_value"::myself.
location] ,1.0) ;}

v 1.8.2 191

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

The emotional contagion enables the agent to update its emotions according to
the emotions of other agents perceived. The modeler has to indicate the emotion
triggering the contagion, the emotion created in the perceiving agent and the threshold
of this contagion; the charisma (Ch) and receptivity (R) values are automatically
computed as explained previously. The contagion from agent i to agent j occurs
only if Chi x Rj is superior or equal to the threshold, which value is 0.25 by default.
Then, the presence of the trigger emotion in the perceived agent is checked in order
to create the emotion indicated.

The intensity and decay value of the emotion acquired by contagion are automatically
computed.

o If Emj(P) already exists:

— I[Emj(P)] = I[Emj(P)] + I[Emi(P)] z Chi © Rj
— if pEmi(P)] > I[Emj(P)]:
x De[Emj(P)] = De[Emi(P)]

— if I[Emj(P)] > I[Emi(P)]:
x De[Emj(P)] = De[Emj(P)]
o If Emj(P) does not already exist:
— I[Emj(P)] = I[Emi(P)] x Chi x Rj
— De[Emj(P)] = De[Emi(P)].

In GAML, emotional _contagion statement helps to define an emotional contagion
during a perception, as shown below:

perceive target: otherHumanAgents in: 10{

emotional_contagion emotion_detected:fearFire threshold:
contagionThreshold;

//creates the detected emotion, if detected, in the agent
doing the perception.

emotional_contagion emotion_detected: joyDance
emotion_created: joyPartying;

//creates the emotion "joyPartying", if emotion "joyDance"
is detected in the perceived agent.

v 1.8.2 192

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

During the perception, the agent has the possibility of creating social relations with
other perceived agents. The modeler indicates the initial value for each component of
the social link, as explained previously. By default, a neutral relation is created, with
each value of the link at 0.0. Social relations can also be defined before the start of
the simulation, to indicate that an agent has links with other agents at the start of
the simulation, like links with friends or family members.

In GAML, the socialize statement help creating dynamicaly new social relations, as
shown below:

perceive target:otherHumanAgents in: 10
socialize;
//creates a neutral relation
socialize dominance: -0.8 familiarity:0.2 when: isBoss;
//example of a social link with precise values for some of
its dimensions in a certain context

Finally, the agent may apply sanctions through the norm enforcement of other
agents perceived. The modeler needs to indicate which modality is enforced and the
sanction and reward used in the process. Then, the agent checks if the norm, the
obligation, or the law, is violated, applied or not activated by the perceived agent.
Notions of norms laws and obligations and how they work are explained later in this
ocument.

A norm is considered violated when its context is verified, and yet the agent chose
another norm or another plan to execute because it decided to disobey. A law is
considered violated when its context is verified, but the agent disobeyed it, not
creating the corresponding obligation. Finally, an obligation is considered violated if
the agent did not execute the corresponding norm because it chose to disobey.

Below is an example of how to define an enforcement in GAML:

species miner skills: [moving] control:simple_bdi {

perceive target: miner in: viewdist {

myself.agent_perceived<-self;

enforcement norm: sanction:
reward: ;

}

sanction sanctionToNormd{

v 1.8.2 193

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

do change_liking(agent_perceived,-0.1);
}

sanction rewardToNorm{
do change_liking(agent_perceived ,0.1);
}

Managing knowledge bases

The second step of the architecture, corresponding to the module number 2, consists of
managing the agent’s knowledge. This means updating the knowledge bases according
to the latest perceptions, adding new desires, new obligations, new emotions or
updating social relations, for example.

Modelers have to use inference rules for this purpose. Theses rules are triggered
by a new belief, a new uncertainty or a new emotion, in a certain context, and may
add or remove any cognitive mental state or emotion indicated by the user. Using
multiple inference rules helps the agent to adapt its mind to the situation perceived
without removing all its older cognitive mental states or emotions, thus enabling the
creation of a cognitive behavior. These inference rules enable to link manually the
various dimensions of an agent, for example creating desires depending on emotions,
social relations and personality.

In GAML, the rule statement enables to define inference rules:

species miner skills: [movingl] control: simple_bdi {

perceive target: miner in: viewdist {

¥

rule belief: new_predicate() new_desire:
new_predicate ()

Using the same idea, modelers can define laws. These laws enable the creation
of obligations in a given context based on the newest beliefs created by the agent
through its perception or its inference rules. The modeler also needs to indicate an

v 1.8.2 194

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

obedience threshold and if the agent’s obedience value is below that threshold, the
law is violated. If the law is activated, the obligation is added to the agent’s cognitive
mental state bases. The definition of laws makes it possible to create a behavior
based on obligations imposed upon the agent.

Below is an example of the definition of a law statement in GAML:

law belief: new_predicate() new_obligation:
new_predicate () threshold:thresholdLaw;

Emotional engine

BEN enables the agent to get emotions about its cognitive mental states. This
addition of emotions is based on the OCC model (Ortony, 1990) and its logical
formalism (Adam, 2007), which has been proposed to integrate the OCC model in a
BDI formalism.

According to the OCC theory, emotions can be split into three groups: emotions
linked to events, emotions linked to people and actions performed by people, and
emotions linked to objects. In BEN, as the focus is on relations between social agents,
only the first two groups of emotions (emotions linked to events and people) are
considered.

The twenty emotions defined in this paper can be divided into seven groups depend-
ing on their relations with mental states: emotions about beliefs, emotions about
uncertainties, combined emotions about uncertainties, emotions about other agents
with a positive liking value, emotions about other agents with a negative liking value,
emotions about ideals and combined emotions about ideals. All the initial intensities
and decay value are computed using the OCEAN model and the value attached to
the concerned mental states.

The emotions about beliefs are joy and sadness and are expressed this way:

« Joyi(Pj,j) = Beliefi(Pj) & Desirei(P)

« Sadnessi(Pj,j) = Beliefi(Pj) & Desirei(not P)

Their initial intensity is computed according to the following equation with N the
neurotism component from the OCEAN model:

v 1.8.2 195

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple__bdi)

[[Emi(P)] = V[Beliefi(P)] x V[Desirei(P)] x (1+(0,5-N))

The emotions about uncertainties are fear and hope and are defined this way:

Hopei(Pj,j) = Uncertaintyi(Pj) & Desirei(P)
Feari(Pj,j) = Uncertaintyi(Pj) & Desirei(not P)

Their initial intensity is computed according to the following equation:

[[Emi(P)] = V[Uncertaintyi(P)] x V[Desirei(P)] x (14(0,5-N))

Combined emotions about uncertainties are emotions built upon fear and hope. They
appear when an uncertainty is replaced by a belief, transforming fear and hope into
satisfaction, disappointment, relief or fear confirmed and they are defined this way:

Satisfactioni(Pj,j) = Hopei(Pj,j) & Beliefi(Pj)
Disappointmenti(Pj,j) = Hopei(Pj,j) & Beliefi(not Pj)
Reliefi(Pj,j) = Feari(Pj,j) & Beliefi(not Pj)

Fear confirmedi(Pj,j) = Feari(Pj,j) & Beliefi(Pj)

Their initial intensity is computed according to the following equation with Em’i(P)
the emotion of fear/hope.

I[Emi(P)] = V[Beliefi(P)] x I[Em’i(P)]

On top of that, according to the logical formalism (Adam, 2007), four inference rules
are triggered by these emotions:

The creation of fear confirmed or the creation of relief will replace the
emotion of fear.

The creation of satisfaction or the creation of disappointment will replace
a hope emotion.

The creation of satisfaction or relief leads to the creation of joy.

The creation of disappointment or fear confirmed leads to the creation of
sadness.

v 1.8.2 196

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

The emotions about other agents with a positive liking value are emotions related to
emotions of other agents which are in a the social relation base with a positive liking
value on that link. They are the emotions called “happy for” and “sorry for” which
are defined this way :

« Happy fori(P,j) = L[Ri,j]>0 & Joyj(P)
» Sorry fori(P,j) = L[Ri,j]|>0 & Sadnessj(P)

Their initial intensity is computed according to the following equation with A the
agreeableness value from the OCEAN model.

e I[Emi(P)] = I[Emj(P)] x L[Ri,j] x (1-(0,5-A))

Emotions about other agents with a negative liking value are close to the previous
definitions, however, they are related to the emotions of other agents which are in
the social relation base with a negative liking value. These emotions are resentment
and gloating and have the following definition:

« Resentmenti(P,j) = L[Ri,j]<0 & Joyj(P)
« Gloatingi(P,j) = L[Ri,j]<0 & Sadnessj(P)

Their initial intensity is computed according to the following equation. This equation
can be seen as the inverse of Equation (?77), and means that the intensity of resentment
or gloating is greater if the agent has a low level of agreeableness contrary to the
intensity of “happy for” and “sorry for”.

e I[Emi(P)] = I[Emj(P)] x |L[Rij]| x (1+(0,5-A))

Emotions about ideals are related to the agent’s ideal base which contains, at the start
of the simulation, all the actions about which the agent has a praiseworthiness value
to give. These ideals can be praiseworthy (their praiseworthiness value is positive)
or blameworthy (their praiseworthiness value is negative). The emotions coming
from these ideals are pride, shame, admiration and reproach and have the following
definition:

« Pridei(Pi,i) = Beliefi(Pi) & Ideali(Pi) & V[Ideali(Pi)]>0

v 1.8.2 197

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple__bdi)

o Shamei(Pi,i) = Beliefi(Pi) & Ideali(Pi) & V[Ideali(Pi)]<0
o Admirationi(Pj,j) = Beliefi(Pj) & Ideali(Pj) & V[Ideali(Pj)]>0
« Reproachi(Pj,j) = Beliefi(Pj) & Ideali(Pj) & V[Ideali(Pj)]<0

Their initial intensity is computed according to the following equation with O the
openness value from the OCEAN model:

o I[Emi(P)] = V[Beliefi(P)] x [V[Ideali(P)]| x (1+(0,5-0))

Finally, combined emotions about ideals are emotions built upon pride, shame,
admiration and reproach. They appear when joy or sadness appear with an emotion
about ideals. They are gratification, remorse, gratitude and anger which are defined
as follows:

 Gratificationi(Pi,i) = Pridei(Pi,i) & Joyi(Pi)
« Remorsei(Pi,i) = Shamei(Pi,i) & Sadnessi(Pi)
Gratitudei(Pj,j) = Admirationi(Pj,j) & Joyi(Pj)
« Angeri(Pj,j) = Reproachi(Pj,j) & Sadnessi(Pj)

Their initial intensity is computed according to the following equation with Em’i(P)
the emotion about ideals and Em'"i(P) the emotion about beliefs.

e I[Emi(P)] = I[Em’i(P)] x I[Em"i(P)]

In order to keep the initial intensity of each emotion between 0 and 1, each equation
is truncated between 0 an 1 if necessary.

The initial decay value for each of these twenty emotions is computed according to
the same equation with Deltat a time step which enables to define that an emotion
does not last more than a given time:

e De[Emi(P)] = N x I[Emi(P)] x Deltat

To use this automatic computation of emotion, a modeler need to activate it as shown
in the GAML example below :

species miner control:simple_bdi {

bool use_emotions_architecture <- true;

v 1.8.2 198

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Social Engine

When an agent already known is perceived (i.e. there is already a social link with
it), the social relationship with this agent is updated automatically by BEN. This
update is based on the work of (Ochs, 2009) and takes the agent’s cognitive mental
states and emotions into account. In this section, the automatic update of each
variable of a social link Ri,j(L,D,S,;F,T) by the architecture is described in details;
the trust variable of the link is however not updated automatically.

« Liking: according to (Ortony, 1991), the degree of liking between two agents
depends on the valence (positive or negative) of the emotions induced by the
corresponding agent. In the emotional model of the architecture, joy and hope
are considered as positive emotions (satisfaction and relief automatically raise
joy with the emotional engine) while sadness and fear are considered as negative
emotions (fear confirmed and disappointment automatically raise sadness with
the emotional engine). So, if an agent ¢ has a positive (resp. negative) emotion
caused by an agent 7, this will increase (resp. decrease) the value of appreciation
in the social link from ¢ concerning j.

Moreover, research has shown that the degree of liking is influenced by the solidarity
value [?]. This may be explained by the fact that people tend to appreciate people
similar to them.

The computation formula is described with the following equation with mPos the mean
value of all positive emotions caused by agent j, mNeg the mean value of all negative
emotions caused by agent j and alL a coefficient depending of the agent’s personality,
indicating the importance of emotions in the process, and which is described below.

« L[Ri,j]=L[Ri,j]+|L[Ri,j]|(1-|L[Ri,j]|)S[Ri,j] + aL (1-|L[Ri,j]|)(mPos-mNeg)
e alL = 1-N

« Dominance : (Keltner, 2001) and (Shiota, 2004) explain that an emotion
of fear or sadness caused by another agent represent an inferior status. But
(Knutson, 1996) explains that perceiving fear and sadness in others increases
the sensation of power over those persons.

The computation formula is described by the following equation with mSE the mean
value of all negative emotions caused by agent i to agent j, mOE the mean value of

v 1.8.2 199

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

all negative emotions caused by agent j to agent 7 and aD a coefficient depending on
the agent’s personality, indicating the importance of emotions in the process.

« D|[Ri,j]=DIRi,j] + aD (1-|D[Ri,j]|)(mSE-mOE)
e aD =1-N

» Solidarity: The solidarity represents the degree of similarity of desires, beliefs,
and uncertainties between two agents. In BEN, the evolution of the solidar-
ity value depends on the ratio of similarity between the desires, beliefs, and
uncertainties of agent ¢ and those of agent j. To compute the similarities and
oppositions between agent ¢ and agent j, agent ¢ needs to have beliefs about
agent j’s cognitive mental states. Then it compares these cognitive mental
states with its own to detect similar or opposite knowledge.

On top of that, negative emotions tend to decrease the value of solidarity between
two people. The computation formula is described by the following equation with sim
the number of cognitive mental states similar between agent 7 and agent j, opp the
number of opposite cognitive mental states between agent ¢ and agent j, NbKnow the
number of cognitive mental states in common between agent ¢ and agent j, mNeg the
mean value of all negative emotions caused by agent j, aS1 a coefficient depending of
the agent’s personality, indicating the importance of similarities and oppositions in
the process, and aS2 a coefficient depending of the agent’s personality, indicating the
importance of emotions in the process.

« S[Ri,j]=S[Ri,j] + S[Ri,j] x (1-S[Ri,j]) x (aS1 (sim-opp)/(NbKnow) - aS2 mNeg))
e a5l =1-0
e aS2 = 1-N

e Familiarity: In psychology, emotions and cognition do not seem to impact
the familiarity. However, (Collins, 1994) explains that people tend to be more
familiar with people whom they appreciate. This notion is modeled by basing
the evolution of the familiarity value on the liking value between two agents.
The computation formula is defined by the following equation.

. F[Ri,j]=F[Rij] x (1+L[Rij))

v 1.8.2 200

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

The trust value is not evolving automatically in BEN, as there is no clear and
automatic link with cognition or emotions. However, this value can evolve manually,
especially with sanctions and rewards to social norms where the modeler can indicate
a modification of the trust value during the enforcement process.

To use this automatic update of social relations, a modeler need to activate it as
shown in the GAML example below:

species miner control: simple_bdi {

bool use_social_architecture <- true;

Making Decision

The third part of the architecture is the only one mandatory as it is where the agent
makes a decision. A cognitive engine can be coupled with a normative engine to chose
an intention and a plan to execute. The complete engine is summed up in the figure
below:

The decision-making process can be divided into seven steps:

e Step 1: the engine checks the current intention. If it is still valid, the intention
is kept so the agent may continue to carry out its current plan.

o Step 2: the engine checks if the current plan/norm is still usable or not,
depending on its context.

o Step 3: the engine checks if the agent obeys an obligation taken from the
obligations corresponding to a norm with a valid context in the current situation
and with a threshold level lower than the agent’s obedience value as computed
in Section 4.1.

o Step 4: the obligation with the highest priority is taken as the current intention.

o Step 5: the desire with the highest priority is taken as the current intention.

o Step 6: the plan or norm with the highest priority is selected as the current
plan/norm, among the plans or norms corresponding to the current intention
with a valid context.

« Step 7: the behavior associated with the current plan/norm is executed.

v 1.8.2 201

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

v
@ keep the current

Mo intention 7

@ . obey to

Yes obligations @1
No ? keap the same

Mo planinorm 7
® ®

select an obligation select a desire as
as an intention an intention

©)]

[choose a new]

plan/norm

©

execute the
plan/norm

1

®

Figure 26.3: Diagram activity of cognitive engine (decision-making process) of the
BEN architecture.

v 1.8.2 202

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Steps 4, 5 and 6 do not have to be deterministic; they may be probabilistic. In this
case, the priority value associated with obligations, desires, plans, and norms serves
as a probability.

In GAML, a modeler may indicate the use of a probabilistic or deterministic cognitive
engine with the variable probabilistic_ choice, as shown in the example code below:

species miner control: simple_bdi {

bool probabilistic_choice <- true;

Defining plans

The modeler needs to define action plans which are used by the cognitive engine, as
explained earlier. These plans are a set of behaviors executed in a certain context
in response to an intention. In BEN, a plan owned by agent 7 is represented by
Pli(Int,Cont,Pr,B) with:

o PIl: the name of the plan.

o Int: the intention triggering this plan.

o Cont: the context in which this plan may be applied.

o Pr: a priority value used to choose between multiple plans relevant at the same
time. If two plans are relevant to the same priority, one is chosen at random.

« B: the behavior, as a sequence of instructions, to execute if the plan is chosen
by the agent.

The context of a plan is a particular state of the world in which this plan should be
considered by the agent making a decision. This feature enables to define multiple
plans answering the same intention but activated in various contexts.

Below is an example for the definition of two plans answering the same intention in
different contexts in GAML:

species miner control: simple_bdi skills: [moving]{

plan evacuationFast intention: in_shelter emotion:
fearConfirmed priority:2 {

v 1.8.2 203

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

color <- #yellow;
speed <- 60 #km/#h;
if (target = nil or noTarget) {
target <- (shelter with_min_of (each.location
distance_to location)).location;
noTarget <- false;
} else {
do goto target: target on: road_network move_weights:
current_weights recompute_path: false;

if (target = location) {
do die;
b

}

b

plan evacuation intention: in_shelter finished_when:
has_emotion(fearConfirmed){
color <-#darkred;
if (target = nil or noTarget) {
target <- (shelter with_min_of (each.location
distance_to location)).location;
noTarget <- false;
} else |
do goto target: target on: road_network move_weights:
current_weights recompute_path: false;
if (target = location) {
do die;

}

Defining norms

A normative engine may be used within the cognitive engine, as it has been explained
above. This normative engine means choosing an obligation as the current in ...
species miner control: simple_bdi { plan evacuationFast intention: in_ shelter emo-
tion: fearConfirmed priority:2 { color <- #yellow; speed <- 60 #km/#h; if (target

v 1.8.2 204

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

= nil or noTarget) { target <- (shelter with_min_ of (each.location distance_to loca-
tion)).location; noTarget <- false; } else { do goto target: target on: road network
move_ weights: current_ weights recompute_path: false; if (target = location) { do
die; }

I

plan evacuation intention: in_shelter finished_when:
has_emotion(fearConfirmed){
color <-#darkred;
if (target = nil or noTarget) {
target <- (shelter with_min_of (each.location distance_to
location)).location;
noTarget <- false;
} else |
do goto target: target on: road_network move_weights:
current_weights recompute_path: false;

if (target = location) {
do die;
+

}

}

}

Defining norms

A normative engine may be used within the cognitive engine, as
it has been explained above. This normative engine means

choosing an obligation as the current intention and
selecting a set of actions to answer this intention. Also,
the concept of social norms is modeled as a set of action
answering an intention, which an agent could disobey.

tention and selecting a set of actions to answer this
intention. Also, the concept of social norms is modeled as
a set of action answering an intention, which an agent
could disobey.

In BEN, this concept of behavior which may be disobeyed is

formally represented by a norm possessed by agent _i_ **No
_i(Int,Cont ,0b,Pr,B,Vi)** with:

v 1.8.2 205

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

No: the name of the norm.

*x*Int**x: the intention which triggers this norm.

*x*Cont**: the context in which this norm can be applied.

0b: an obedience value that serves as a threshold to

determine whether or not the norm is applied depending on

the agent's obedience value (if the agent's value is above

the threshold, the norm may be executed).

¥ **xPr**x: a priority value used to choose between multiple
norms applicable at the same time.

* **xBx*x: the behavior, as a sequence of instructions, to
execute if the norm is followed by the agent.

¥ **xVi*x*x: a violation time indicating how long the norm is

considered violated once it has been violated.

* % ¥ *

In GAML, a norm is defined as follows:

species miner control: simple bdi { ... //this first norm answer an intention
coming from an obligation norm doingJob obligation:has_gold finished when: has_ -
belief(has gold) threshold:thresholdObligation{ if (target = nil) { do add subin-
tention(has_ gold,choose_ goldmine, true); do current_intention_on_ hold(); } else {
do goto target: target ; if (target = location) { goldmine current_ mine<- goldmine
first_ with (target = each.location); if current_ mine.quantity > 0 { gold_ transported
<- gold_transported+1; do add_ belief(has_gold); ask current_mine {quantity <-
quantity - 1;}

} else { do add_belief(new_predicate(empty mine_location, [“location_ -
value”::target|)); do remove_ belief(new_ predicate(mine_at_ location, [“location_ -
value”::target])); } target <- nil; } }

}

//this norm may be seen as a “social norm” as it answers an intention not coming from
an obligation but may be disobeyed norm share information intention:share informa-
tion threshold:thresholdNorm instantaneous: true{ list my friends <- list((social -
link base where (each.liking > 0)) collect each.agent); loop known_ goldmine
over: get_beliefs with name(mine at_location) { ask my friends { do add_ -
belief(known_ goldmine); } } loop known_empty goldmine over: get beliefs_ with_ -
name(empty__mine_location) { ask my_ friends { do add_ belief(known__empty_ -
goldmine); } }

(do remove_intention(share_information, true); 1

v 1.8.2 206

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

}

Dynamic knowledge

The final part of the architecture is used to create a
temporal dynamic to the agent's behavior, useful in a
simulation context. To do so, this module automatically
degrades mental states and emotions and updates the status
of each norm.

The **degradation of mental states** consists of reducing
their lifetime. When the lifetime is null, the mental state
is removed from its base. The **xdegradation of emotionsx*x*
consists of reducing the intensity of each emotion stored
by its decay value. When the intensity of an emotion is
null, the emotion is removed from the emotional base.

In GAML, if a mental state has a lifetime value or if an
emotion has an intensity and a decay value, this
degradation process is done automatically.

Finally, **the status of each norm is updated** to indicate if
the norm was activated or not (if the context was right or
wrong) and if it was violated or not (the norm was

activated but the agent disobeyed it). Also, a norm can be
violated for a certain time which is updated and if it
becomes null, the norm is not violated anymore.

These last steps enable the agent's behavior's components to
automatically evolve through time, leading the agents to
forget a piece of knowledge after a certain amount of time,

creating dynamics in their behavior.

Conclusion

The BEN architecture is already implemented in GAMA and may be
accessed by adding the simple_bdi control architecture to

v 1.8.2 207

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

the definition of a species.

A tutorial may be found with the [BDI Tutorial] (BDIAgents).

Advanced Driving Skill

[//]: # (keyword|concept_transport)
[//]: # (keyword|concept_skill)
[//]: # (keyword|skill_ driving)

This page aims at presenting how to use the advanced driving
skill in models.

The use of the advanced driving skill requires to use 3 skills

* *xxAdvanced driving skillx**: dedicated to the definition of
the driver species. It provides the driver agents with
variables and actions allowing to move an agent on a graph
network and to tumne its behavior.

* **Road skill**: dedicated to the definition of roads. It
provides the road agents with variables and actions
allowing to registers agents on the road.

* **Road node skillx**: dedicated to the definition of nodes.
It provides the node agents with variables allowing to take

into account the intersection of roads and the traffic
signals.

Table of contents

* [Advanced Driving Skill] (#advanced-driving-skill)
* [Structure of the network: road and road node skills] (#
structure-of -the-network-road-and-road-node-skills)

* [Advanced driving skill] (#advanced-driving-skill)
* [Application example] (#application-example)

Structure of the network: road and road_node skills

v 1.8.2 208

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

The advanced driving skill is versatile enough to be usable
with most of classic road GIS data, in particular, 0SM data
We use a classic format for the roads and nodes. Each
road is a polyline composed of road sections (segments).
Each road has a target node and a source node. Each node
knows all its input and output roads. A road is considered
as directed. For bidirectional roads, 2 roads have to be
defined corresponding to both directions. Each road will be
the ** linked_road "** of the other. Note that for some GIS
data, only one road is defined for bidirectional roads,
and the nodes are not explicitly defined. In this case, it
is very easy, using the GAML language, to create the
reverse roads and the corresponding nodes (it only requires
a few lines of GAML).

I[Road structure in the Driving Skill](resources/images/
recipes/roads_structure.PNG)

A lane can be composed of several lanes and the vehicles will
be able to change at any time its lane. Another property of
the road that will be taken into account is the maximal
authorized speed on it. Note that even if the user of the
plug-in has no information about these values for some of
the roads (the 0SM data are often incomplete), it is very
easy using the GAML language to fill the missing value by a
default value. It is also possible to change these values
dynamically during the simulation (for example, to take
into account that after an accident, a lane of a road is
closed or that the speed of a road is decreased by the
authorities).

![Roads representation in the driving skill.](resources/images
/recipes/roads.PNG)
The **road skill#**x (skill_road”) provides the road agents

with several variables that will define the road properties

* **” Janes " **: integer , number of lanes.

v 1.8.2 209

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

x "maxspeed “x: float; maximal authorized speed on the road.
%~linked_road “: road agent; reverse road (if there is one
).

**~ source_node " **: node agent; source node of the road.

~ target_node ": node agent; target node of the road.

It provides as well the road agents with read-only variables:

* *x”agents_on “**x: list of list (of driver agents); for each
lane, the list of driver agents on the road.

* *x~all_agents “**: list (of driver agents): the list of
agents on the road.

The **road node skill*x (~skill_road_node”) provides the road
node agents with several variables that will define the
road node properties:

* ** roads_in “**: list of road agents; the list of road agents

that have this node for target node.

* ** roads_out "**x: list of road agents; the list of road
agents that have this node for source node.

* **x"gstop "**: list of list of road agents; list of stop
signals, and for each stop signal, the list of concerned
roads.

¥ **"priority_roads "**: list of road agents: the list of
priority roads.

It provides as well the road agents with one read-only
variable:
¥ **x"block “**x: map: key: driver agent, value: 1list of road

agents; the list of driver agents blocking the node, and
for each agent, the list of concerned roads.

Advanced driving skill
Each driver agent has a planned trajectory that consists of a

v 1.8.2 210

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

succession of edges. When the driver agent enters a new
edge, it first chooses its lane according to the traffic
density, with a bias for the rightmost lane. The movement
on an edge is inspired by the Intelligent Driver Model. The
drivers have the possibility to change their lane at any
time (and not only when entering a new edge).

The **advanced driving skill** ("~ advanced_driving) provides
the driver agents with several variables that will define
the car properties and the personality of the driver:

* **x~final_target "**: point; final location that the agent
wants to reach (its goal).
x~vehicle_length "x: float; length of the vehicle.
** " max_acceleration "**: float; maximal acceleration of the
vehicle.
** "max_speed “**: float; maximal speed of the vehicle.
¥ right_side_driving “**: boolean; do drivers drive on the
right side of the road?

* %%~ speed_coef "x*: float; coefficient that defines if the
driver will try to drive above or below the speed limits.

* **" security_distance_coeff "x*: float; coefficient for the
security distance. The security distance will depend on the

driver speed and on this coefficient.

* xx proba_lane_change_up "**: float; probability to change
lane to an upper lane if necessary (and if possible).

* %%~ proba_lane_change_down "**x: float; probability to change
lane to a lower lane if necessary (and if possible).

* %% proba_use_linked_road "**: float; probability to take the
reverse road if necessary (if there is a reverse road).

* %%~ proba_respect_priorities “**: float; probability to
respect left/right (according to the driving side) priority

at intersections.

* xx proba_respect_stops “**: list of float; probabilities to

respect each type of stop signals (traffic light, stop sign
DI

* ** proba_block_node "**x: float; probability to accept to

block the intersecting roads to enter a new road.

It provides as well the driver agents with several read-only

v 1.8.2 211

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

variables:

* xx~speed "**x: float; speed expected according to the road *x*~
max_value "**, the car properties, the personality of the
driver and its ** real_speed ~*x.

* x* real_speed “**: float; real speed of the car (that takes
into account the other drivers and the traffic signals).

* x*~current_path “**: path (list of roads to follow); the path

that the agent is currently following.

* x*” current_target “**: point; the next target to reach (sub-
goal). It corresponds to a node.

* *xx”targets “**: list of points; list of locations (sub-goals)

to reach the final target.

* x*x” current_index “**: integer; the index of the current goal
the agent has to reach.

¥ %%~ on_linked_road “**: boolean; is the agent on the linked
road?

0f course, the values of these variables can be modified at
any time during the simulation. For example, the
probability to take a reverse road (**probal_use_linked\
_road**) can be increased if the driver is stuck for
several minutes behind a slow vehicle.

In addition, the advanced driving skill provides driver agents
with several actions:

* %% compute_path "**: arguments: a graph and a target node.
This action computes from a graph the shortest path to
reach a given node.

* **x“drive "**: no argument. This action moves the driver on
its current path according to the traffic condition and the

driver properties (vehicle properties and driver
personality).

The “drive” action works as follow: while the agent has the
time to move (" remaining_time > 07), it first defines the
speed expected. This speed is computed from the "max_speed’

of the road, the current “real_speed” , the "max_speed’,

v 1.8.2 212

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

the "max_acceleration™ and the “speed_coef ™ of the driver (
see equation below).

speed_ driver = Min(max_ speed_ driver, Min(real speed_ driver + max_ accelera-
tion_ driver,max_ speed_road * speed_ coef driver))

Then, the agent moves toward the current target and compute
the remaining time. During the movement, the agents can
change lanes (see below). If the agent reaches its final
target, it stops; if it reaches its current target (that is

not the final target), it tests if it can cross the
intersection to reach the next road of the current path. If
it is possible, it defines its new target (target node of
the next road) and continues to move.

I[Activity diagram describing the driver behavior.](resources/
images/recipes/drive_action.png)

The function that defines if the agent crosses or not the
intersection to continue to move works as follow: first, it
tests if the road is blocked by a driver at the
intersection (if the road is blocked, the agent does not
cross the intersection). Then, if there is at least one
stop signal at the intersection (traffic signal, stop sign
.), for each of these signals, the agent tests its
probability to respect or not the signal (note that the
agent has a specific probability to respect each type of
signals). If there is no stopping signal or if the agent
does not respect it, the agent checks if there is at least
one vehicle coming from a right (or left if the agent
drives on the left side) road at a distance lower than its
security distance. If there is one, it tests its
probability to respect this priority. If there is no
vehicle from the right roads or if it chooses to do not
respect the right priority, it tests if it is possible to
cross the intersection to its target road without blocking
the intersection (i.e. if there is enough space in the
target road). If it can cross the intersection, it crosses
it; otherwise, it tests its probability to block the node:
if the agent decides nevertheless to cross the intersection

v 1.8.2 213

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

, then the perpendicular roads will be blocked at the
intersection level (these roads will be unblocked when the
agent is going to move).

I[Activity diagram of driver behavior when stopped at an
intersection.] (resources/images/recipes/
stop_at_intersection.png)

Concerning the movement of the driver agents on the current
road, the agent moves from a section of the road (i.e.
segment composing the polyline) to another section
according to the maximal distance that the agent can moves
(that will depend on the remaining time). For each road
section, the agent first computes the maximal distance it
can travel according to the remaining time and its speed.
Then, the agent computes its security distance according to

its speed and its “security_distance_coeff . While its
remaining distance is not null, the agent computes the
maximal distance it can travel (and the corresponding lane)
, then it moves according to this distance (and update its
current lane if necessary). If the agent is not blocked by
another vehicle and can reach the end of the road section,
it updates its current road section and continues to move.

I[Activity diagram of the following action of the advanced
driving skill.](resources/images/recipes/follow_driving.png

)

The computation of the maximal distance an agent can move on a
road section consists of computing for each possible lane
the maximal distance the agent can move. First, if there is
a lower lane, the agent tests the probability to change
its lane to a lower one. If it decides to test the lower
lane, the agent computes the distance to the next vehicle
on this lane and memorizes it. If this distance corresponds
to the maximal distance it can travel, it chooses this
lane; otherwise, it computes the distance to the next

v 1.8.2 214

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

vehicle on its current lane and memorizes it if it is
higher than the current memorized maximal distance. Then if
the memorized distance is lower than the maximal distance
the agent can travel and if there is an upper lane, the
agents test the probability to change its lane to an upper
one. If it decides to test the upper lane, the agent
computes the distance to the next vehicle on this lane and
memorizes it if it is higher than the current memorized
maximal distance. At last, if the memorized distance is
still lower than the maximal distance it can travel if the
agent is on the highest lane and if there is a reverse road
, the agent tests the probability to use the reverse road (
linked road). If it decides to use the reverse road, the
agent computes the distance to the next vehicle on the lane
0 of this road and memorizes the distance if it is higher
than the current memorized maximal distance.

I[Activity diagram of the driver behavior to define its
maximum distance to others.](resources/images/recipes/
define_max_dist.png)

Application example

We propose a simple model to illustrate the driving skill. We
define a driver species. When a driver agent reaches 1its
destination, it just chooses a new random final target. In
the same way, we did not define any specific behavior to
avoid traffic jam for the driver agents: once they compute
their path (all the driver agents use for that the same
road graph with the same weights), they never re-compute it

even if they are stucked in a traffic jam. Concerning the
traffic signals, we just consider the traffic lights (
without any pre-processing: we consider the raw 0SM data).
One step of the simulation represents 1 second. At last, in
order to clarify the explanation of the model, we chose to
do not present the parts of the GAML code that concern the
simulation visualization.

v 1.8.2 215

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

I [Simple example of the driving skill.](resources/images/
recipes/sim_snapshot.png)

The following code shows the definition of species to
represent the road infrastructure:

species road skills: [skill road] { string oneway; }

species road_node skills: [skill road_node| { bool is_ traffic_signal; int time_ to_ -
change <- 100; int counter <- rnd (time_to_change) ;

reflex dynamic when: is_traffic_signal {
counter <- counter + 1;
if (counter >= time_to_change) {
counter <- 0;
stop [0] <- empty(stop[0])? roads_in : [];

In order to use our driving skill, we just have to add the
skill_road_node ™ to the “road_node ™ species and the °
skill_road™ to the "road”™ species. In addition, we added to

the road species a variable called “oneway~ that will be
initialized from the 0SM data and that represents the
traffic direction (see the 0SM map features for more
details). Concerning the node, we defined 3 new attributes:

* xx~is_traffic_signal “**: boolean; is the node a traffic
light?

* xx~time_to_change “**: integer; represents for the traffic
lights the time to pass from the red light to the green
light (and vice versa).

¥ **” counter “**: integer; number of simulation steps since the

last change of light color (used by the traffic light
nodes) .

In addition, we defined for the “road_node” species a reflex (

behavior) called ** dynamic ** that will be activated only
for traffic light nodes and that will increment the °

v 1.8.2 216

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

counter ™ value. If this counter is higher than
time_to_change , this variable is set to 0, and the node
change the value of the “stop” variable: if the traffic
light was green (i.e. there are no road concerns by this
stop sign), the list of block roads is set by all the roads
that enter the node; if the traffic light was red (i.e.
there is at least one road concerned by this stop sign),
the list of block roads is set to an empty list.

The following code shows the definition of driver species:

species driver skills: [advanced driving] { reflex time_to go when: final target = nil
{ current_ path <- compute_path(graph: road_network, target: one_of(road_node));
} reflex move when: final_target != nil { do drive; } }

In order to use our driving plug-in, we just have to add the
advanced_driving~ skill to the “driver ~ species. For this
species, we defined two reflexes:

* **x"time_to_go "**: activated when the agent has no final
target. In this reflex, the agent will randomly choose one
of the nodes as its final target, and computed the path to
reach this target using the ** road_network "** graph. Note
that it will have been possible to take into account the
knowledge that each agent has concerning the road network
by defining a new variable of type map (dictionary)
containing for each road a given weight that will reflect
the driver knowledge concerning the network (for example,
the known traffic jams, its favorite roads....) and to use
this map for the path computation.

* **x "move " **: activated when the agent has a final target. In
this reflex, the agent will drive in direction of its final

target.

We describe in the following code how we initialize the

simulation:

init {

create node from: file(“nodes.shp”) with:[is_traffic_signal::read(“type”)="“traffic_ -
signals”];

r N

v 1.8.2 217

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

create road from: file(

with:[lanes::int (read/()),
maxspeed::float (read()),
oneway::string(read())]
{
switch oneway {
match {
create road {
lanes <- myself.lanes;
shape <- polyline(reverse(myself.shape.points)
)
maxspeed <- myself.maxspeed;
linked_road <- myself;
myself.linked_road <- self;
}
}
match {
shape <- polyline(reverse(shape.points));
}
}
}
map general_speed_map <- road as_map(each::(each.shape.
perimeter / (each.maxspeed)));
road_network <- (as_driving graph(road, road_node))

with_weights general_speed_map;

create driver number: 10000 {
location <- one_of (node).location;
vehicle_length <- 3.0;
max_acceleration <- 0.5 + rnd(500) / 1000;
speed_coeff <- 1.2 - (rnd(400) / 1000);
right_side_driving <- true;
proba_lane_change_up <- rnd(500) / 500;
proba_lane_change_down <- 0.5+ (rnd(250) / 500);
security_distance_coeff <- 3 - rnd(2000) / 1000);
proba_respect_priorities <- 1.0 - rnd(200/1000);
proba_respect_stops <- [1.0 - rnd(2) / 1000];
proba_block_node <- rnd(3) / 1000;
proba_use_linked_road <- rnd(10) / 1000;

v 1.8.2 218

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

L}

}

In this code, we create the node agents from the node

shapefile (while reading the attributes contained in the
shapefile), then we create in the same way the road agents.
However , for the road agents, we use the “oneway variable
to define if we should or not reverse their geometry (°
oneway ~ =) or create a reverse road (" oneway =).
Then, from the road and node agents, we create a graph (
while taking into account the “maxspeed™ of the road for
the weights of the edges). This graph is the one that will
be used by all agents to compute their path to their final
target. Finally, we create 1000 driver agents. At
initialization:

they are randomly placed on the nodes;

their vehicle has a length of 3m;

the maximal acceleration of their vehicle is randomly drawn
between 0.5 and 1;

the speed coefficient of the driver is randomly drawn
between 0.8 and 1.2;

they are driving on the right side of the road;

their probability of changing lane for an upper lane is
randomly drawn between O and 1.0;

their probability of changing lane for a lower lane is
randomly drawn between 0.5 and 1.0;

the security distance coefficient is randomly drawn between
1 and 3;

their probability to respect priorities is randomly drawn
between 0.8 and 1;

their probability to respect light signal is randomly drawn
between 0.998 and 1;

their probability to block a node is randomly drawn between
0 and 0.003;

[The complete code of the model with the data can be found

here] (resources/images/recipes/Rouentrafffic.zip).

v 1.8.2 219

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

[//]1: # (keyword|concept_date)
Manipulate Dates

[//1: # (keyword|type_date)
[//1: # (keyword|concept_time)
Managing Time in Models

If some models are based on an abstract time - only the number
of cycles is important - others are based on a real time.
To this purpose, GAMA provides some tools to manage time.

First, GAMA allows the modeler to define the duration of a
simulation step. It provides access to different time
variables. At last, since GAMA 1.7, it provides a date
variable type and some global variables allowing to use a
real calendar to manage time.

Definition of the step and use of temporal unity values

GAMA provides three important [global variables to manage time
1(GlobalSpecies#cycle):

* “cycle” (int - not modifiable): the current simulation step
- this variable is incremented by 1 at each simulation step
* “step” (float - can be modified): the duration of a

simulation step (in seconds). By default, the duration is
one second.

* “time”~ (float - not modifiable): the current time spent
since the beginning of the simulation - this variable is
computed at each simulation step by: time = cycle * step.

The value of the cycle and time variables are shown in the top
left (green rectangle) of the simulation interface.
Clicking on the green rectangle allows to display either
the number cycles or the time variable. Concerning this
variable, it is presented following a years - months - days
- hours - minutes - seconds format. In this presentation,
every month is considered as being composed of 30 days (the
different number of days of months are not taken into
account) .

v 1.8.2 220

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Concerning step global variable, the variable can be modified
by the modeler. A classic way of doing it consists of
reediting the variable in the global section:

global { float step <- 1 #hour; }

In this example, each simulation step will represent 1 hour.
This time will be taken into account for all actions based
on time (e.g. moving actions).

Note that the value of the “step” variable should be given in
seconds. To facilitate the definition of the step value and
of all expressions based on time, GAMA provides [different
built-in constant variables accessible with the
symbol] (UnitsAndConstants#time-units):

* "#s° : second - 1 second

* “#mn~ : minute - 60 seconds

* “#hour”~ : hour - 60 minutes - 3600 seconds

* “#day~ : day - 24 hours - 86400 seconds

* “#week™: week - 7 days - 604800 seconds

* “#month” : month - 30 days - 2592000 seconds
* “#year” : year - 12 month - 3.1104E7 seconds

The date variable type and the use of a real calendar

Since GAMA 1.7, it is possible to use a real calendar to
manage the time. For that, the modeler has only to define
the starting date of the simulation. This variable is of
type “date” which allows him/her to represent a date and
time.

A date variable has several attributes:

“year™ (int): the year component of the date
"month”~ (int): the month component of the date
“day~ (int): the day component of the date
“hour™ (int): the hour component of the date
"minute” (int): the minute component of the date
“second” (int): the second component of the date
“day_of_week ™ (int): the day of the week

¥ ¥ ¥ ¥ ¥ ¥ *

v 1.8.2 221

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple__bdi)

* “week_of_year” (int): the week of the year

Several ways can be used to define a date. The simplest one
consists in using a list of int values: [year,month of the
year ,day of the month, hour of the day, minute of the hour,

second of the minute]

date my_date <- date([2010,3,23,17,30,10]); // the 23th of March 2010, at 17:30:10

Another way consists in using a string with the good format.
The following one is perhaps the most complete, with year,
month, day, hour, minute, second and also the time zone.

date my_ date <- date(“2010-3-23T17:30:104+07:007);

LBut the following ones can also be used: j

// without time zone: my_date3 <- date(“2010-03-23 17:30:10”); //Dates (without
time) my_date3 <- date(“20100323”); my_date3 <- date(“2010-03-23”); // Dates
using some patterns: my_date3 <- date(“03 23 2010”,“MM dd yyyy”); my_ date3 <-
date(“01 23 207, “HH mm ss”);

Note that the current (real) date can be accessed through the
“#now” built-in variable (variable of type date).

In addition, GAMA provides different useful operators working
on dates. For instance, it is possible to compute the
duration in seconds between 2 dates using the
operator. The result is given in seconds:

float d <- starting date - my_ date;

It is also possible to add or subtract a duration (in seconds)
to a date:

write “my_date + 10:” 4+ (my_ date 4+ 10); write “my_ date - 10:” + (my_ date -
10);

At last, it is possible to add or subtract a duration (in
years, months, weeks, days, hours, minutes, seconds) to a
date:

v 1.8.2 222

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

write “my_ date add__years 1:” 4 (my_ date add__years 1); write “my_ date add_ -
months 1:” 4+ (my_ date add__months 1); write “my_date add__weeks 1:” + (my_ date
add_weeks 1); write “my_ date add_days 1:” + (my_ date add_days 1); write “my_ -
date add_hours 1:” + (my_date add hours 1); write “my date add minutes
1:” + (my_date add minutes 1); write “my_ date add_seconds 1:” + (my_ date
add__seconds 1);

write “my_ date subtract_years 1:” + (my_ date subtract_years 1); write “my_ date
subtract_months 1:” + (my_ date subtract_months 1); write “my_ date subtract_ -
weeks 1:7 4+ (my_ date subtract_weeks 1); write “my_ date subtract_days 1:” +
(my_date subtract_days 1); write “my_ date subtract_hours 1:” + (my_ date sub-
tract_ hours 1); write “my_ date subtract_minutes 1:” + (my_ date subtract_minutes
1); write “my_ date subtract_seconds 1:” + (my_ date subtract_seconds 1);

Date variables in the model

For the modelers, two global date variables are available:

* “starting_date : date considered as the beginning of the
simulation (by default the starting date is ~1970-01-01
07:00:00".

* “current_date " : current date of the simulation.

Defining a value of the starting_date allows to change the
normal time management of the simulation by a more
realistic one (using a calendar):

global { date starting date <- date([1979,12,17,19,45,10]); }

When a value is set to this variable, the “current_date’
variable is automatically initialized with the same value.
However , at each simulation step, the “current_date”
variable is incremented by the “step ™ variable. The value
of the “current_date”™ will replace the value of the time
variable in the top left green panel.

Note that you have to be careful when a real calendar is used,
the built-in constants “#month ™ and “#year should not be
used as there are not consistent with the calendar (where
month can be composed of 28, 29, 30 or 31 days).

v 1.8.2 223

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

[//]1: # (startConcept|light)
[//]: # (keyword|concept_3d)
[//1: # (keyword|concept_light)
Implementing light

When using OpenGL display, GAMA provides you the possibility
to manipulate one or several lights, making your display
more realistic.

Most of the following screenshots will be taken with the
following short example gaml:

model test_ light
grid cells { aspect base { draw square(1) at:{grid_x,grid_y} color:#white; } }

experiment my__experiment type:gui{ output { display my_ display type: opengl
background: #darkblue { species cells aspect: base; graphics “my_layer” { draw
square(100) color:#white at:{50,50}; draw cube(5) color:#lightgrey at:{50,30};
draw cube(5) color:#lightgrey at:{30,35}; draw cube(5) color:#lightgrey at:{60,35};
draw sphere(5) color:#lightgrey at:{10,10,2.5}; draw sphere(5) color:#lightgrey
at:{20,30,2.5}; draw sphere(5) color:#lightgrey at:{40,30,2.5}; draw sphere(5)
color:#lightgrey at:{40,60,2.5}; draw cone3D(5,5) color:#lightgrey at:{55,10,0}; draw
cylinder(5,5) color:#lightgrey at:{10,60,0}; } } } }

Index

* [Light generalities] (#light-generalities)
* [Default light] (#default-1light)
* [Custom lights](#custom-lights)

Light gemneralities

Before going deep into the code, here is a quick explanation
about how light works in OpenGL.

First of all, you need to know that there are 3 types of
lights you can manipulate: the **ambient light**, the x*x*
diffuse light** and the **specular light**. Each in

OpenGL is in fact composed of those 3 types of lights.

Ambient light

v 1.8.2 224

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

The **ambient light** is the light of your world without any
lighting. If a face of a cube is not stricken by the light
rays, for instance, this face will appear totally black if
there is no ambient light. To make your world more
realistic, it is better to have ambient light.

Ambient light has then no position or direction. It is equally

distributed to all the objects of your scene.

Here is an example of our GAML scene using only ambient light
(color red) (see below [how to define ambient light in GAML
] (ManipulateLight#ambient-1light-1)):

! [Example of a scene with a red ambient light.](resources/
images/lightRecipes/ambient_light .png)

Diffuse light

The **xdiffuse light** can be seen as the light rays: if a face
of a cube is stricken by the diffuse light, it will take
the color of this diffuse light. You have to know that the
more perpendicular the face of your object will be to the
light ray, the more lightened the face will be.

A diffuse light has then a direction. It can have also a
position.

You have 2 categories of diffuse light: the **positional
lights**x, and the **directional lightsx*x*.

Positional lights

Those lights have a position in your world. It is the case of
point lights and **xspot lightsx*x*.

* **xPoint lightsx*x*

Points lights can be seen as a candle in your world, diffusing
the light equally in all the direction.

Here is an example of our GAML scene using only diffuse light,

with a point light (color red, the light source is
displayed as a red sphere)

v 1.8.2 225

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

I[Scene with only a red point light.](resources/images/

lightRecipes/point_light.png)

* *x*xSpot lights*x*

Spot lights can be seen as a torch light in your world. It

needs a position, and also a direction and an angle.
Here is an example of our GAML scene using only diffusion
light, with a spot light (color red, the light source is

displayed as a red cone)

I[Scene with only a red spot light.](resources/images/

lightRecipes/spot_light.png)

Positional lights, as they have a position, can also have an

attenuation according to the distance between the light

source and the object. The value of positional lights are

computed with the following formula:

diffuse_light = diffuse_light * (1 / (1 + constante_attenuation + linear_attenuation
* d + quadratic_ attenuation * d))

By changing those 3 values (constante_attenuation,
linear_attenuation and quadratic_attenuation),
control the way light is diffused over your world (if your
for instance, you may turn your linear and
Note that by default, all those

you can

world 1is
quadratic attenuation on).

attenuations are equal to O.

Here is an example of our GAML scene using only diffusion
light, with a point light with linear attenuation (color
red, the light source is displayed as a red sphere):

![Scene with only diffusion light and red point light with
linear attenuation.](resources/images/lightRecipes/

point_light_with_attenuation.png)

Directional lights

v 1.8.2 226

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Directional lights have no real : they only have a
direction. A directional light will strike all the objects
of your world in the same direction. An example of
directional light you have in the real world would be the
light of the sun: the sun is so far away from us that you
can consider that the rays have the same direction and the
same intensity wherever they strike.

Since there is no position for directional lights, there is no

attenuation either.

Here is an example of our GAML scene using only diffusion
light, with a directional light (color red)

I[Scene with a red directional light.](resources/images/
lightRecipes/direction_light.png)

Specular light

This is a more advanced concept, giving an aspect a little bit
to the objects stricken by the specular light. It
is used to simulate the interaction between the light and
a special material (ex: wood, steel, rubber...).
This specular light is not implemented yet in GAMA, only the
two others are.

Default light

In your OpenGL display, without specifying any light, you will
have only one light, with those following properties

Those values have been chosen in order to have the same visual
effect in both OpenGL and java2D displays, when you
display 2D objects, and also to have a nice
when using the OpenGL displays. We chose the following
setting by default:

The ambient light value: rgb (127,127,127 ,255)
diffuse light value: rgb(127,127,127,255)
type of light: direction

direction of the light: (0.5,0.5,-1);

* X ¥ *

v 1.8.2 227

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Here is an example of our GAML scene using the default light:

![Scene with the default light.](resources/images/lightRecipes
/default_light.png)

Custom lights

In your OpenGL display, you can create several lights, giving
them the properties you want.

[//]: # (keyword|statement_light)

In order to add lights, or modifying the existing lights, you
have to use the statement “light ™ inside your ~“display’
scope:

experiment my_experiment type:gui { output { display “my_ display” type:opengl {
light “my_light”; } } }

A name has to be declared for the light. Through this facet,
you can specify which light you want.

Once you are manipulating a light through the “light~
statement , the light is turned on. To switch off the light,
you have to add the facet “active”™, and turn it to ~false

The light you are declaring through the “light”~ statement is,
in fact, a light. You can specify the color of
the diffuse light through the facet “intemnsity”~ (by default
, the color will be turmned to white).

Another very important facet is the “type” facet. This facet
accepts a value among “#direction >, “#point~ and “#spot .

Ambient light

The ambient light can be set when declaring a light, using the
#ambient constant, through the facet “intensity :

experiment my_experiment type: gui { output { display “my_ display” type: opengl
{ light #ambient intensity: 100; } } }

r N

v 1.8.2 228

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Note for developers: Note that this ambient light is set to
the GL_LIGHTO. This GL_LIGHTO only contains an ambient
light, and no either diffuse nor specular light.

Declaring direction light
A direction 1light, as explained in the first part, is a light
without any position. Instead of the facet “position”, you

will use the facet “direction”, giving a 3D vector.

Example of implementation:

light “my_ direction_ light” type: #direction direction: {1,1,1} intensity: #red;

Declaring point light

A point light will need a facet “position”, in order to give
the position of the light source.

Example of implementation of a basic point light:

light “my_point_light” type: #point location: {10,20,10} intensity: #red;

You can add, if you want, a custom attenuation of the light,

through the facets “linear_attenuation” or
quadratic_attenuation .

Example of implementation of a point light with attenuation

light “my_ point_ light” type: #point location: {10,20,10} intensity: #red linear -
attenuation: 0.1;

Declaring spot light

A spot light will need the facet “position” (a spot light is a
positional light) and the facet ~“direction™. A spot light
will also need a special facet “spot_angle”™ to determine
the angle of the spot (by default, this value is set to 45
degree) .

Example of implementation of a basic spot light:

v 1.8.2 229

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

light “my_spot_light” type: #spot location: {0,0,100}direction:{0.5,0.5,-1} intensity:
#red angle: 20;

Same as for point light, you can specify an attenuation for a
spot light.

Example of implementation of a spot light with attenuation:

light “my_spot_light” type:#spot location:{0,0,100} direction:{0.5,0.5,-1} inten-
sity:#red angle:30 linear_attenuation: 0.1;

Note that when you are working with lights, you can display
your lights through the facet “show™ (of “light”) to help
you to implement your model. The three types of lights are
displayed differently:

* The **pointx** light is represented by a sphere with the
color of the diffuse light you specified, in the position
of your light source.

The **spot** light is represented by a cone with the color
of the diffuse light you specified, in the position of your

light source, the orientation of your light source. The
size of the base of the cone will depend on the angle you
specified.

*

* The **direction** light, as it has no real position, 1is
represented with arrows a bit above the world, with the
direction of your direction light, and the color of the
diffuse light you specified.

I[Scene with direction, spot and point lights.](resources/
images/lightRecipes/draw_light.png)

Note for developers: Note that, since the GL_LIGHTO is
already reserved for the ambient light (only !), all the
other lights (from 1 to 7) are the lights from GL_LIGHT1 to

GL_LIGHT7.

[//]: # (endConcept|light)

Using Comodel

v 1.8.2 230

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Introduction
In the trend of developing a complex system of multi-
disciplinary, composing and coupling models are days by
days becoming the most attractive research objectives.
GAMA is supporting the co-modeling and co-simulation which are
supposed to be a common coupling infrastructure.

Example of a Comodel

A Comodel is a model, especially an agent-based model,
composed of several sub-models, called **micro-models**. A
comodel itself could be also a micro-model of another
comodel. From the point of view of a micro-model, the
comodel is called a **macro-model**.

A micro-model must be imported, instantiated, and life-
controlled by a macro-model.

! [GAMA co-modeling architecture.](resources/images/comodel/
concepts.png)

Why and when can we use Comodel?

Co-models ca definitely be very useful when the whole model
can be decomposed in several sub-models, each of them
representing, in general, a dynamics of the whole model,
and that interact through some entities of the model. In
particular, it allows several modelers to develop the part
of the model dedicated to their expertise field, to test it

extensively, before integrating it inside the whole model
(where integration tests should not be omitted!).

Use of Comodel in a GAML model
The GAML language has evolved by extending the import section.

The old importation told the compiler to merge all
imported elements into as one model, but the new one allows

v 1.8.2 231

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

modelers to keep the elements coming from imported models
separately from the caller model.
Definition of a micro-model

Defining a micro-model of comodel is to import an existing
model with an alias name. The syntax is:

import as

The identifier is then become the new name of the micro-model.

As an example taken from the model library, we can write:

import “Prey Predator Adapter.gaml” as Organism

Instantiation of a micro-model

After the importation and giving an identifier, micro-model
must be explicitly instantiated. It could be done by the
create” statement.

~

create . [optional parameter];

The “<exeperiment name>" 1is an experiment inside micro-model.
This syntax will generate some experiment agents and attach
an implicit simulation.

Note: The creation of several instances is not multi-
simulation, but multi-experiment. Modelers could create an
experiment with multi-simulation by explicitly do the init
inside the experiment scope.

As an example taken from the model library, we can write:

global { init { //instantiate three instant of micro-model PreyPredator create Or-
ganism.Simple number: 3 with: [shape::square(100), preyinit::10, predatorinit::1] ; }

}

Control micro-model life-cycle

v 1.8.2 232

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

A micro-model can be controlled as any normal agent by asking
the corresponding identifier, and also be destroyed by the
“do die;” statement. And it can be recreated any time we
need.

ask (. at) . simulation { ... }

More generally, to schedule all the created simulations, we
can do:

reflex simulate_micro_models { // ask all simulation do their job ask (Organ-
ism.Simple collect each.simulation) { do step; } }

Visualization of the micro-model

The micro-model species could display in comodel with the
support of agent layer

agents “name of layer” value: (. at).;

(As an example: J

display “Comodel display” { agents “agentprey” value: (Organism.Simple accumu-
late each.get_prey()); agents “agentpredator” value: (Organism.Simple accumulate
each.get_ predator()); }

More details

Example of the comodel

The following illustrations are taken from the model library
provided with the GAMA platform.

Urbanization model with a Traffic model

I [Co-modeling example: urbanization model with a Traffic model
.1 (resources/images/comodel/comodel_urban_traffic.png)

Flood model with Evacuation model

v 1.8.2 233

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

The aim of this model is to couple the two existing models:
Flood Simulation and Evacuation.

Toy Models/Evacuation/models/continuous_move.gaml

I[Co-modeling example: the evacuation model.](resources/images
/comodel/continuous_move_model_display.png)

Toy Models/Flood Simulation/models/Hydrological Model.gaml

![Co-modeling example: the flood model.](resources/images/
comodel/hydro_model_display.png)

The comodel explores the effect of a flood on an evacuation
plan:

I[Co-modeling example: coupling of the flood and evacuation
models.] (resources/images/comodel/
comodel_disp_Flood_Evacuation.png)

Simulation results:

I[Co-modeling example: some simulation results.](resources/
images/comodel/comodel_Flood_Evacuation.png)

[//]: # (startConcept|use_saveSimulation)
[//]: # (keyword|concept_save)

[//1: # (keyword|concept_simulation)

Save and Restore simulations

Last version of GAMA has introduced new features to save the
state of a simulation at a given simulation cycle. This has
two main applications:

* The possibility to step forward and backward in a simulation

3

* The possibility to save the state of a simulation in a file
and to restore a simulation from this file.

v 1.8.2 234

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple__bdi)

Save a simulation

experiment saveSimu type: gui {

reflex store when: cycle = 5 {
write +
cycle ;

gsim');
write +

output {
display main_display {
species road aspect: geom;
species people aspect: base;

write + saveSimulation('saveSimu.

+ cycle

}

[## Restore a simulation

experiment reloadSavedSimuOnly type: gui {

action _imnit_ {
create simulation from: saved_simulation_file(
)
}
output {
display main_display {
species road aspect: geom;
species people aspect: base;
+
}
}
v 1.8.2 235

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Saved simulation file type: gsim

Other serialization operators

[//1: # (keyword|concept_network)
[//]: # (startConcept|network)

Using mnetwork
Introduction

GAMA provides features to allow agents to communicate with
other agents (and other applications) through network and
to exchange messages of various types (from simple number
to agents). To this purpose, the “network”™ skill should be
used on agents intending to use these capabilities.

Notice that in this communication, roles are asymetric: the
simulations should contain a server and some clients to
communicate. Message exchanges are made between agents
through this server. 3 protocols are supported (TCP, UDP
and MQTT):

* xxyhen TCP or UDP protocols are used:** one agent of the
simulation is the server and the other ones are the clients

* *xxyhen the MQTT protocol is used:** all the agents are
clients and the server is an external software. A free
solution (ActiveMQ) can be freely downloaded from: http://
activemq.apache.org.

Which protocol to use 7

In the GAMA network, 3 kinds of protocol can be used. Each of
them has a particular purpose.

* **xkMQTT**: this is the default protocol that should be used
to make agents of various GAMA instances to communicate

v 1.8.2 236

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

through a MQTT server (that should be run as an external
application, e.g. ActiveMQ that can be downloaded from:
http://activemq.apache.org/),

* x*xUDP*x*: this protocol should be limited to fast (and
unsecured) exchanges of small pieces of data from GAMA to
an external application (for example, mouse location from a
Processing application to GAMA, c.f. model library),

* **xTCP**: this protocol can be used both to communicate
between GAMA applications or between GAMA and an external
application.

Disclaimer

**In all the models using any network communication, the
server should be launched before the clients.*x*

As a consequence, when TCP or UDP protocols are used, a model
creating a server agent should always be run first. Using
MQTT protocol, the external software server should be
launched before running any model using it.

Declaring a network species

To create agents able to communicate through a network, their
species should have the skill "network ":

species Networking Client skills: [network] { ... }

A list exhaustive of the additional attributes and available
actions provided by this skill are described here:

[network skill preference page] (https://github.com/gama-
platform/gama/wiki/BuiltInSkills#network).

Creation of a network agent
The network agents are created as any other agents, but (in

general) at the creation of the agents, the connection is
also created, using the “connect”™ built-in action:

create Networking_Client { do connect to: “localhost” protocol: “tcp_ client” port:

v 1.8.2 237

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple__bdi)

3001 with_name: “Client”; }

Each protocol has its specificities regarding the connection:

* *kTCP**:

* x*%x protocol “**x: the 2 possibles keywords are ~tcp_server’
or “tcp_client ™, depending on the wanted role of the agent
in the communication.

* *x% port **: traditionally the port ~3001° is used.

* xkxUDP**:

* x%x protocol “**: the 2 possibles keywords are ~udp_server’
or “udp_emitter , depending on the wanted role of the agent

in the communication.

* % port **: traditionally the port ~9876° is used.

* kk MQTT *%*:

* **x protocol “*x: MQTT is the default protocol value (if no
value is given, MQTT will be used)

* **x port **: traditionally the port ~1883° is used (when
ActiveMQ is used as the server application)

* %% admin " ** and ** password **: traditionally the default
login and password are (when ActiveMQ is used as
the server application)

Note: if no connection information is provided with the MQTT
protocol (no “port~), then GAMA connects to an MQTT server

provided by the GAMA community (for test purpose only!).

Sending messages

To send any message, the agent has to use the “send” action:

do send to: “server” contents: name + " " 4 cycle + " sent to server";

The network skill in GAMA allows the modeler to send simple
string messages between agents but also to send more
complex objects (and in particular agents). In this case,
the use of the MQTT protocol is highly recommended.

do send to: “receiver” contents: (9 among NetworkingAgent);

Receiving messages

v 1.8.2 238

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

The messages sent by other agents are received in the "mailbox
° attribute of each agent. So to get its new message, the
agent has simply to check whether it has a new message (
with action “has_more_message()~) and fetch it (that gets
it and remove it from the mailing box) with the action °
fetch_message () .

reflex fetch when: has_more message() { message mess <- fetch__message(); write
name + " fecth this message: " + mess.contents;

}

Note that when an agent is received, the fetch of the message
will recreate the agent in the current simulation.

Alternatively, the "mailbox”~ attribute can be directly
accessed (notice that the "mailbox”™ is a list of messages):

reflex receive {
if (length(mailbox) > 0) { write mailbox; } }

Broadcasting a message to all the agents' members of a
given group

Each time an agent creates a connection to another agent as a
client, a way to communicate with it is stored in the °
network_groups ~ attribute.

So an agent can use this attribute to broadcast messages to
all the agents with whose it can communicate:

reflex broad { loop id over: network groups { do send to: id contents: “I am Server”
+ name + " I give order to " + id; } }

To go further:

* [network skill reference page] (BuiltInSkills#network).
* example models can be found in the GAMA model library, in: °
Plugin models > Network ™.

v 1.8.2 239

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Editing Headless mode for dummies

Overview

This tutorial presents the headless mode usage of GAMA. We
will execute the Predator-Prey model, already presented in
[this tutorial] (PredatorPrey_stepl).

Headless mode is documented [here](Headless), with the same
model as an example. Here, we focus on the definition of an

experiment plan, where the model is run several times. We
only consider the shell script execution, not the java
command execution.

In headless-mode, GAMA can be seen as any shell command, whose
behavior is controlled by passing arguments to it.
You must provide 2 arguments

* an **xinput experiment file **, used to describe the
execution plan of your model, its inputs and the expected
outputs.

* an ** output directory **, where the results of the
execution are stored

Headless-mode is a little bit more technical to handle than
the general GAMA use-case, and the following commands and
code have been solely tested on a Linux Ubuntu 15.04
machine, x86_64 architecture, with kernel 3.19.0-82-generic

Java version is 1.8.0_121 (java version)

You may have to perform some adjustments (such as paths

definition) according to your machine, 0S, java and GAMA
versions and so on.

Setup

GAMA version

v 1.8.2 240

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Headless mode is frequently updated by GAMA developers, so you
have to get the very latest build version of GAMA. You can
download it here [https://github.com/gama-platform/gama/

releases] (https://github.com/gama-platform/gama/releases)
Be sure to pick the ** Continuous build ** version (The
name looks like “GAMA1l.7_Linux_64_02.26.17_da33f5b.zip~)
and ** not ** the major release, e.g. ~GAMA1l.7_Linux_64.zip

Big note on Windows 0S (maybe on others), GAMA must be placed

outside of several sensible folders (Program Files, Program
Filesx64, Windows). RECOMMENED: Place GAMA in Users
Folder of windows O0S.

gama-headless.sh script setup

The “gama-headless.sh™ script can be found under the “headless
directory, in GAMA installation directory e.g. : ~~/GAMA/
headless/

Modifying the script (a little bit)
The original script looks like this

#! /bin/bash
memory=2048m
declare -i i

i=0
echo ${'i}

for ((i=1;i<=8%#;i=$i+1))
do
if test ${!i} =
then
i=$i+1
memory=${!i}
else
PARAM=$PARAM\ ${'i}

v 1.8.2 241

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple__bdi)

i=$i+1
PARAM=$PARAM\ ${'i}
fi
done

echo

echo
echo
echo

echo

passWork=.work$RANDOM

java -cp ../plugins/org.eclipse.equinox.launcherx*. jar -
Xms512m -Xmx$memory -Djava.awt.headless=true org.eclipse.
core.launcher.Main -application msi.gama.headless.id4 -

data $passWork $PARAM $mfull $outputFile
rm -rf $passWork

Notice the final command of the script “rm -rf $passWork ™. It
is intended to remove the temporary file used during the
execution of the script. For now, we should comment this
commmand , in order to check the logs if an error appears:
“#rm -rf $passWork™

Setting the experiment file
Headless mode uses a XML file to describe the execution plan
of a model. An example is given in the [headless mode

documentation page] (Headless).

The script looks like this
** N.B. this version of the script, given as an example, is

v 1.8.2 242

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

deprecatedx*x*

<?7xml version= encoding= 7>
<Experiment_plan>
<Simulation id= sourcePath=
finalStep= experiment= >
<Parameters >
<Parameter name= type=
value= />
<Parameter name= type= value=
/>
</Parameters>
<Outputs>
<Output id= name= framerate=
/>
<Output id= name= framerate=
/>
<Output id= name=
framerate= />
<Qutput id= name= framerate= />

</QOutputs>
</Simulation>
</Experiment_plan>

As you can see, you need to define 3 things in this minimal
example:

* Simulation: its id, path to the model, finalStep (or stop
condition), and name of the experiment

* Parameters name, of the model for *this* simulation (i.e.
Simulation of id= 2)

* Qutputs of the model: their id, name, type, and the rate (
expressed in cycles) at which they are logged in the
results file during the simulation

We now describe how to constitute your experiment file.

Experiment File: Simulation

v 1.8.2 243

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple__bdi)

id

For now, we only consider one single execution of the model,
so the simulation “id~ is not critical, let it unchanged.

Later example will include different simulations in the same
experiment file.

Simulation “id"~ is a string. Don't introduce weird symbols
into it.

sourcePath

“sourcePath”™ is the relative (or absolute) path to the model
file you want to execute headlessly.

Here we want to execute the [fourth model of the Predator Prey
tutorial suite] (PredatorPrey_step4), located in ~~/GAMA/
plugins/msi.gama.models_1.7.0.XXXXXXXXXXXX/models/Tutorials
/Predator Prey/models”™ (with XXXXXXXXXXXX replaced by the
number of the release you downloaded)

So we set sourcePath=

(Remember that the headless script is
located in ~~/GAMA/headless/")

Depending on the directory you want to run the “gama-headless.
sh™ script, sourcePath must me modified accordingly.

Another workaround for shell more advanced users is to defime
a “$GAMA_PATH", ~$MODEL_PATH" and ~$0UPUT_PATH in ~gama-
headless.sh™ script.

Don't forget the quotes

v 1.8.2 244

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

experiment prey_predator type: gui {

parameter var: nb_preys_init
min: 1 max: 1000 category: ;

parameter var: prey_max_energy
category: ;

parameter var: prey_max_transfert
category: ;

parameter var:

prey_energy_consum category: ;
output {
display main_display A{
grid vegetation_cell lines: #black ;
species prey aspect: base ;
X

monitor value: nb_preys ;

So we are now able to constitute the entire Simulation tag:
“<Simulation id= sourcePath=

finalStep= experiment=

N.B. the numbers after “msi.gama.models”™ (the number of your
GAMA release actually) have to be adapted to your own
release of GAMA number.

The path to the GAMA installation directory has also to be
adapted of course.

Experiment File: Parameters

The parameters section of the experiment file describes the
parameters names, types and values to be passed to the

v 1.8.2 245

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

model for its execution.

Let's say we want to fix the number of preys and their max
energy for this simulation.

We look at the experiment section of the model code and use
their ** title *x.

The title of a parameter is the name that comes right after
the "“parameter ™ statement. In our case, the strings

and (Mind

the spaces, quotes and colon)

The parameters section of the file would look 1like

<Parameters>
<Parameter name= type=
value= />
<Parameter name= type= value
= />

</Parameters >

Any declared parameter can be set this way, yet you don't have
to set all of them, provided they are initialized with a
default value in the model (see the global statement part
of the model code).

Experiment File: Outputs

Output section of the experiment file is pretty similar to the
previous one, except for the "id” that have to be set for
each of the outputs

We can log some of the declared outputs : "main_display ~ and
“number_of_preys .

The outputs section would look like the following:

v 1.8.2 246

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

<Outputs>
<Qutput id= name= framerate= />
<Qutput id= name= framerate= />

</0Outputs>
Outputs must have an id, a name, and a framerate.

* “id" is a number that identifies the output
* framerate is the rate at which the output is written in the
result file. It's a number of cycle of simulation (integer)
In this example the display is saved every 10 cycle

* “name” 1is either the of the corresponding monitor.
In our case, the second output's is the title of the
monitor ° T, i.e.

We also save a **xdisplay ** output, that is an image of the
simulation graphical display named "main_display ™ in the
code of the model. Theses images is what you would have
seen if you had run the model in the traditional GUI mode.

Execution and results

Our new version of the experiment file is ready

<?7xml version= encoding= 7>
<Experiment_plan>
<Simulation id= sourcePath=
finalStep= experiment=
>
<Parameters>
<Parameter name= type=
value= />
<Parameter name= type=
value= />
</Parameters >
<Outputs>
<Qutput id= name= framerate=

v 1.8.2 247

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

/>
<Output id= name= framerate=
/>
</0Outputs>
</Simulation>
</Experiment_plan>

Execution

We have to launch the “gama-headless.sh”™ script and provide
two arguments : the experiment file we just completed and
the path of a directory where the results will be written.

**% Warning ** In this example ,we are lazy and define the
source path as the absolute path to the model we want to
execute. If you want to use a relative path, note that it
has to be defime relatively to the location of your =*x*
ExperimentFile.xml location ** (and the location where you
launched the script)

In a terminal, position yourself in the headless directory
“~/GAMA/headless/"'.

Then type the following command

bash gama-headless.sh -v ~/a/path/to/MyExperimentFile.zxml
/path/to/the/desired/output/directory

And replace paths by the location of your ExperimentFile and
output directory

You should obtain the following output in the terminal

v 1.8.2 248

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple__bdi)

%k 3k 3k 3k %k 5k 3k 5k 5k %k %k %k %k %k %k >k >k 5k 3k 5k %k %k %k %k >k %k %k %k >k 3k 5% 3% %k %k %k >k >k >k %k %k >k > 3% 3% %k %k %k >k %k %k % % % % % % %k %k % %

* GAMA version 1.7.0 V7
*

* http://gama-platform.org
*

* (c) 2007-2016 UMI 209 UMMISCO IRD/UPMC & Partners
*

>k 3k 3k 3k 5k 5k 3k 5k 5k %k %k %k >k %k %k 5k >k 3k 3k 5k %k %k %k %k %k %k %k 3%k >k 3k 3 3%k %k %k %k >k %k >k %k %k >k >k 3% 3% % %k %k %k %k %k % % % % % % %k %k % %

>GAMA plugin loaded in 2927 ms: msi.gama.core

>GAMA plugin loaded in 67 ms: ummisco.gama.network

>GAMA plugin loaded in 56 ms: simtools.gaml.extensions.
traffic

>GAMA plugin loaded in 75 ms: simtools.gaml.extensions.
physics

>GAMA plugin loaded in 1 ms: irit.gaml.extensions.test

>GAMA plugin loaded in 75 ms: ummisco.gaml.extensions.
maths

>GAMA plugin loaded in 47 ms: msi.gaml.extensions.fipa

>GAMA plugin loaded in 92 ms: ummisco.gama.serialize

>GAMA plugin loaded in 49 ms: irit.gaml.extensions.
database

>GAMA plugin loaded in 2 ms: msi.gama.lang.gaml

>GAMA plugin loaded in 1 ms: msi.gama.headless

>GAMA plugin loaded in 103 ms: ummisco.gama.java2d

>GAMA plugin loaded in 189 ms: msi.gaml.architecture.
simplebdi

>GAMA plugin loaded in 129 ms: ummisco.gama.opengl
>GAMA building GAML artefacts>GAMA total load time 4502 ms

in 714 ms

cpus :8
Simulation is running...

Simulation duration: 7089ms

v 1.8.2 249

%k %k >k %k %k %k

%k %k %k 3k %k k

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Results

The results are stored in the output directory you provided as
the second argument of the script.

3 items have appeared:

* A “console_output.txt™ file, containing the output of the
GAMA console of the model execution if any

* a XML file “simulation-outputXX.xml , where XX is the ~id~
number of your simulation. In our case it should be 2.

* the folder "~snapshots”™ containing the screenshots coming
from the second declared output : "main_display . image
name format is “main_displayl[id]_[cycle].png".

The values of the monitor are stored in the
xml file “simulation-outputXX.xml-

Common error messages

"Exception in thread No parameter named
prey_max_energy in experiment prey_predator’

Probably a typo in the name or the title of a parameter. check
spaces, capital letters, symbols and so on.

java.io.IOException: Model file does not exist: /home/ubuntu/
dev/tutoGamaHeadless/../plugins/msi.gama.models_1
This may be a relative path mistake; try with absolute path.

v 1.8.2 250

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple__bdi)

java.lang.NumberFormatException: For input string:
This may be a problem of type declaration in the parameter
section.

Going further
Experiments of several simulation

You can launch several simulation by replicating the
simulation declaration in your ExperimentFile.xml and
varying the values of the parameters.

Since you will have to edit the experiment file by hand, you
should do that only for a reasonable number of simulations
(e.g. <10)

Design of experiments plans

For more systematic parameter values samples, you should turn
towards a more adapted tool such as GAMAR, to generate a °
ExperimentFile.xml" with a huge number of simulations.

The Graphical Editor

The graphical editor that allows defining a GAMA model through
a graphical interface (“gadl”™ files). It is based on the
Graphiti Eclipse plugin. It allows as well to produce a
graphical model (diagram) from a “gaml”~ model. A tutorial
is available [here](G__GraphicalEditorTutorial).

![images/graphical_editor/gm_predator_prey.pngl (resources/
images/graphicalEditor/gm_predator_prey.png)

Table of contents

v 1.8.2 251

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

* [The Graphical Editor](#the-graphical-editor)
* [Installing the graphical editor](#installing-the-
graphical -editor)
* [Creating a first model] (#creating-a-first-model)
* [Status of models in editors](#status-of-models-in-
editors)
* [Diagram definition framework] (#diagram-definition-
framework)
* [Features] (#features)
* [agents] (#agents)
* [species] (#species)
* [grid] (#grid)
* [Inheriting link] (#inheriting-1link)
* [world] (#world)
* [agent features] (#agent-features)
* [action] (#action)
* [reflex] (#reflex)
* [aspect] (#aspect)
* [experiment] (#experiment)
* [GUI experiment] (#gui-experiment)
* [display] (#display)
* [batch experiment] (#batch-experiment)
* [BDI Architecture] (#BDI-Architecture)
* [plan] (#plan)
* [rule] (#rule)
* [perception] (#perception)
* [Finite State Machine] (#Finite-State-Machine-
Architecture)
* [state] (#state)
* [Tasked-based Architecture] (#Task-based-Architecture

x [task] (#task)
* [Pictogram color modification] (#pictogram-color-
modification)
* [GAML Model generation] (#gaml-model-generation)

Installing the graphical editor
Using the graphical editor requires to install the graphical
modeling plug-in. See [here](InstallingPlugins) for

v 1.8.2 252

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

information about plug-ins and their installation.

The graphical editor plug-in is called **Graphicall_modelingx*x*
and is directly available from the GAMA update site **http
://updates.gama-platform.org/graphical_modeling/1.8.2%x

![install] (resources/images/graphicalEditor/
installing_graphical_editor.JPG)

Note that the graphical editor is still under development.
Updates of the plug-in will be added to the GAMA website.
After installing the plug-in (and periodically), check for
updates for this plug-in: in the menu, choose

and install the proposed updates for the
graphical modeling plug-in.

Creating a first model

A new diagram can be created in a new GAMA project. First,

right-click on a project, then select on the
contextual menu.
In the New Wizard, select then

b

![images/graphical_editor/newDiagram.png] (resources/images/
graphicalEditor/newDiagram.png)

In the next Wizard dialog, select the type of diagram (Empty,
Skeleton or Example) then the name of the file and the
author.

![images/graphical_editor/modeldiagramNew.png] (resources/
images/graphicalEditor/modeldiagramNew.png)

Skeleton and Example diagram types allow to add to the diagram
some basic features.

v 1.8.2 253

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Status of models in editors

Similarly to GAML editor, the graphical editor proposes a live
display of errors and model statuses. A graphical model
can actually be in three different states, which are
visually accessible above the editing area: **Functional=x*x*
(orange color), **Experimentablex*x (green color) and **
InError** (red color). See [the section on model validation
l](ValidationOfModels) for more precise information about
these statuses.

In its initial state, a model is always in the **Functional*x*
state, which means it compiles without problems, but cannot
be used to launch experiments. The **xInError**x state
occurs when the file contains errors (syntactic or semantic
ones) .

Reaching the **xExperimentable** state requires that all errors
are eliminated and that at least one experiment is defined
in the model. The experiment is immediately displayed as a
button in the toolbar, and clicking on it will allow the
modeler to launch this experiment on your model.

Experiment buttons are updated in real-time to reflect what's
in your code. If more than one experiment is defined,

corresponding buttons will be displayed in addition to the
first one.

Diagram definition framework
The following figure presents the editing framework:

![images/graphical_editor/framework.png] (resources/images/
graphicalEditor/framework.png)

v 1.8.2 254

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Features

agents
species

![images/graphical_editor/species.pngl(resources/images/
graphicalEditor/species.png)

The species feature allows the modeler to define a species
with a continuous topology. A species is always a micro-
species of another species. The top-level (macro-species of

all species) is the world species.

* x*sourcex*: a species (macro-species)
¥ ¥x*ktarget*x*x: -

| [images/graphical_editor/Frame_Speciesdefl.png] (resources/
images/graphicalEditor/Frame_Speciesdefl.png)
grid

I [images/graphical_editor/grid.pngl (resources/images/
graphicalEditor/grid.png)

The grid feature allows the modeler to define a [species](
ManipulateBasicSpecies) with a [grid topology] (GridSpecies)

A grid is always a micro-species of another species.

* x*sourcex*: a species (macro-species)
* kktarget*k*: -

! [images/graphical_editor/Frame_grid.png] (resources/images/
graphicalEditor/Frame_grid.png)

Inheriting link
The inheriting link feature allows the modeler to define an

v 1.8.2 255

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

inheriting link between two species.

* *xxsource**: a species (parent)
* x*targetx*: a species (child)

I [images/graphical_editor/inhereting_link.png] (resources/
images/graphicalEditor/inhereting_link.png)

world

![images/graphical_editor/world.pngl (resources/images/
graphicalEditor/world.png)

When a model is created, a world species is always defined. It
represents the global part of the model. The world species
, which is unique, is the top-level species. All other
species are micro-species of the world species.

! [images/graphical_editor/Frame_world.pngl] (resources/images/
graphicalEditor/Frame_world.png)

agent features

action

I[images/graphical_editor/action.pngl (resources/images/
graphicalEditor/action.png)

The action feature allows the modeler to define an action for

a species.

* k*ksourcex**: a species (owner of the action)
¥ *xxtarget*x*: -

I[images/graphical_editor/Frame_action.pngl (resources/images/
graphicalEditor/Frame_action.png)

reflex

I [images/graphical_editor/reflex.pngl] (resources/images/

v 1.8.2 256

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

graphicalEditor/reflex.png)

The reflex feature allows the modeler to define a reflex for a

species.

* *xsource**: a species (owner of the reflex)
* xktargetkx: -

| [images/graphical_editor/Frame_reflex.pngl] (resources/images/
graphicalEditor/Frame_reflex.png)

aspect

I[images/graphical_editor/aspect.pngl (resources/images/
graphicalEditor/aspect.png)

The aspect feature allows the modeler to define an aspect for

a species.

* x*sourcex*: a species (owner of the aspect)
¥ *xxtarget*x*: -

![images/graphical_editor/Frame_aspect.pngl (resources/images/
graphicalEditor/Frame_aspect.png)

! [images/graphical_editor/Frame_Aspect_layer.png](resources/
images/graphicalEditor/Frame_Aspect_layer.png)

equation
! [images/graphical_editor/equation.png] (resources/images/

graphicalEditor/equation.png)

The equation feature allows the modeler to define an equation

for a species.

* x*sourcex*: a species (owner of the equation)
* kxtarget*kx: -

experiment
GUI experiment

v 1.8.2 257

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

![images/graphical_editor/guiXP.png] (resources/images/
graphicalEditor/guiXP.png)

The GUI Experiment feature allows the modeler to define a GUI

experiment.

*¥ **ksourcex*: world species
* kxxtargetx¥: -

![images/graphical_editor/Frame_Experiment.png] (resources/
images/graphicalEditor/Frame_Experiment.png)

display

I[images/graphical_editor/display.pngl (resources/images/
graphicalEditor/display.png)

The display feature allows the modeler to define a display.

* xxsourcex*x*x: GUI experiment

* kktargetkx: -
! [images/graphical_editor/Frame_display.png](resources/images/
graphicalEditor/Frame_display.png)
![images/graphical_editor/Frame_layer_display.pngl(resources/
images/graphicalEditor/Frame_layer_display.png)
batch experiment

I [images/graphical_editor/batchxp.pngl (resources/images/
graphicalEditor/batchxp.png)

The Batch Experiment feature allows the modeler to define a

Batch experiment.

*¥ **ksourcex*: world species
* kxtarget*kx: -

v 1.8.2 258

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

BDI Architecture
Plan

| [images/graphical_editor/plan.pngl (resources/images/
graphicalEditor/plan.png)

The Plan feature allows the modeler to define a plan for a BDI
species, i.e. a sequence of statements that will be
executed in order to fulfill a particular intention.

* **ksourcex**: a species with a BDI architecture
* kx*xtargetx*: -

s

Rule

| [images/graphical_editor/rule.png](resources/images/
graphicalEditor/rule.png)

The Rule feature allows the modeler to define a rule for a BDI
species, i.e. a function executed at each iteration to
infer new desires or beliefs from the agent's current
beliefs and desires.

* **ksourcex**: a species with a BDI architecture
* *kktargetx*x: -

Perception

![images/graphical_editor/perception.png] (resources/images/
graphicalEditor/perception.png)

The Perception feature allows the modeler to define a
perception for a BDI species, i.e. a function executed at
each iteration that updates the agent's Belief base
according to the agent perception.

* **sourcex**: a species with a BDI architecture
¥ *x*ktarget*x*x: -

v 1.8.2 259

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Finite State Machine Architecture
State

| [images/graphical_editor/state.pngl (resources/images/
graphicalEditor/state.png)

The State feature allows the modeler to define a state for a
FSM species, i.e. sequence of statements that will be
executed if the agent is in this state (an agent has a
unique state at a time).

* **ksource**: a species with a finite state machine
architecture
* kx*xtargetx*: -

Task-based Architecture
Task

![images/graphical_editor/task.pngl (resources/images/
graphicalEditor/task.png)

The Task feature allows the modeler to define a task for a
Tasked -based species, i.e. sequence of statements that can
be executed, at each time step, by the agent. If an agent
owns several tasks, the scheduler chooses a task to execute

based on its current priority weight value.

*¥ **ksource**: a species with a task-based architecture
* x*xtargetx*: -

Pictogram color modification
It is possible to change the color of a pictogram.

* Right-click on a pictogram, then select the

v 1.8.2 260

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

GAML Model generation
It is possible to automatically generate a Gaml model from a
diagram.

* Right-click on the graphical framework (where the diagram
is defined), then select the
A new GAML model with the same name as the diagram is created
(and open) .

Using Git from GAMA to version and share models
Install the Git client [Tested on the GAMA 1.8.2]

The Git client for GAMA needs to be installed as an external
plugin.

1. Help > Install new plugins...
Add the following address in the text field 7
https://download.eclipse.org/egit/updates . (press Enter
key)

3. In the available plugins to imnstall, choose "Git
integration for Eclipse”™ > “Git integration for Eclipse”

4. Click on the Next button and follow the instructions (GAMA
will be relaunched).

Open the Git view

To use Git in GAMA select Views -> Other... -> Show View ->
Other...

In the Show view window that appears select Git -> Git
Repositories and click on *0Openx*.

! [Show View Window] (resources/images/recipes/gitWithGama/
ShowViewWindow.png)

Create a Local Repository

v 1.8.2 261

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

With Git you can easily create local repositories to version
your work locally. First, you have to create a GAMA project
(e.g ***xGitNewProject*=**) that you want to share via your
local repository.

After you have created your GAMA project, go to the Git
Repository view and click on *Create a new local Git
repositoryx*.

I[Create New Local Git Repository](resources/images/recipes/
gitWithGama/CreatelLocalGitRepository.png)

In the following window specify the directory for the new
repository (select the folder of the created GAMA project -
x*xGitNewProject***x -), throught the button Browse...

I[Select folder new local Repository](resources/images/recipes
/gitWithGama/SelectRepositoryFolder.png)

then hit the Create button.

I[Create Button](resources/images/recipes/gitWithGama/
CreateRepositoryButton.png)

Now your local repository is created, you can add models and
files into your GAMA project. As you selected the folder
of the new created GAMA Project, the repository will not be

empty. So, it will be initialized with all the folders and

files of the GAMA project. Note the changed icons: the
project node will have a repository icon, the child nodes
will have an icon with a question mark.

I [Changed icons](resources/images/recipes/gitWithGama/
ChangedIcons.png)

Before you can commit the files to your repository, you need
to add them. Simply right click the shared project's node

and navigate to Team -> Add to Index.

I[Add Ignore Commit from Menul](resources/images/recipes/

v 1.8.2 262

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

gitWithGama/AddIgnoreCommit .png)

After this operation, the question mark should change to a
plus symbol.

![Icons Changed after add](resources/images/recipes/
gitWithGama/ChangeIconsAfterAddGit.png)

To set certain folders or files to be ignored by Git, right
click them and select Team -> Ignore. The ignored items
will be stored in a file called .gitignore, which you
should add to the repository.

Commit

Now you can modify files in your project, save changes made in
your workspace to your repository and commit them. You can
do commit the project by right clicking the project node

and selecting Team -> Commit... from the context menu. In
the Commit wizard, all files should be selected
automatically. Enter a commit message and hit the Commit
button.

I[Icons Changed after add](resources/images/recipes/
gitWithGama/FirstCommitLocalRepo.png)

If the commit was successful, the plus symbols will have
turned into repository icons.

I[Icons Changed after commit](resources/images/recipes/
gitWithGama/ChangedIconsAfterCommit .png)

After changing files in your project, a sign will appear
right after the icon, telling you the status of these files
is dirty. Any parent folder of this file will be marked as
dirty as well.

![Changes to commit] (resources/images/recipes/gitWithGama/
gitChangesToCommit .png)

v 1.8.2 263

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

If you want to commit the changes to your repository, right
click the project (or the files you want to commit) and
select Team -> Commit... . Enter a commit message and click

Commit to commit the selected files to your repository.

Add Files

To add a new file to the repository, you need to create it in
your shared GAMA project first. Then, the new file will
appear with a question mark.

![New file added to project](resources/images/recipes/
gitWithGama/AddNewFileGit .png)

Right click it and navigate to Team -> Add to Index. The
question mark will turn into a plus symbol and the file
will be tracked by Git, but it is not yet committed. In the

next commit, the file will be added to the repository and
the plus symbol will turn into a repository icon.

![Commit new added file](resources/images/recipes/gitWithGama/
AddedFileCommitGit .png)

Revert Changes

If you want to revert any changes, there are two options. You
can compare each file you want to revert with the HEAD
revision (or the index, or the previous version) and undo
some or all changes done. Second, you can hard reset your
project, causing any changes to be reverted.

Revert via Compare

Right click the file you want to revert and select Compare
With -> HEAD Revision. This will open a comparison with the
HEAD Revision, highlighting any changes done. You can
revert several lines. select the line you want to revert
and hit the Copy Current Change from Right to Left button (
in the toolbar).

![Revert by Compare] (resources/images/recipes/gitWithGama/

v 1.8.2 264

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

RevertFilByCompareWith.png)
Revert via Reset

To reset all changes made to your project, right click the
project node and navigate to Team -> Reset... . Select the
branch you want to reset to (if you haven't created any
other branches, there will be just one). Click the reset
button. All changes will be reset to this branch's last
commit. Be careful with this option as all last changes in
your Gama Project will be 1lost.

![Revert by Reset](resources/images/recipes/gitWithGama/
ResetGit.png)

Clone Repositories
To checkout a remote project, you will have to clone its
repository first. Open the GAMA Import wizard: right click

the User models node -> Import... -> Other...

![Import git project](resources/images/recipes/gitWithGama/
ImportFromGit .png)

Select Git -> Projects from Git and click Next.

! [Import git project - Next](resources/images/recipes/
gitWithGama/nextImportGitProject .png)

Select and click Next.

I [Repository URI](resources/images/recipes/gitWithGama/
cloneURIGitProject.png)

Now you will have to enter the repository's location. Entering
the URI will automatically fill some fields. Complete any
other required fields and hit Next (e.g, Authentification
fields). If you use GitHub, you can copy the URI from the
web page.

![Repository location](resources/images/recipes/gitWithGama/

v 1.8.2 265

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

SourceGitRepositoryImport.png)
Select all branches you wish to clone and hit Next again.

I [Branch Selection](resources/images/recipes/gitWithGama/
ImportGitProjetBranchSelection.png)

Hit next, then choose a local storage location to save the
repository in.

I[Set local location](resources/images/recipes/gitWithGama/
ImportProjectLocationNext .png)

To import the projects, select the cloned repository and hit
Next.

Select Import Existing Projects and hit Next.

I[Select a wizard to use](resources/images/recipes/gitWithGama
/ImportProjectSelectWizardToUse.png)

In the following window, select all projects you want to
import and click Finish.

I[Select projects to import](resources/images/recipes/
gitWithGama/ImportGitSelectProjects.png)

The projects should now appear in the Models Explorer. (Note
the repository symbol in the icons indicating that the
projects are already shared.)

! [Imported projects](resources/images/recipes/gitWithGama/
ImportedProjectsGit.png)

Create Branches

To create a new branch in your repository, right click your
project and navigate to Team -> Switch to -> New Branch...

from the context menu. Select the branch you want to create
a new branch from, hit New branch and enter a name for the

v 1.8.2 266

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple__bdi)

new branch.

![Create new branch](resources/images/recipes/gitWithGama/
CreateNewBranch.png)

The new branch (NewBranch) should appear in the branch
selection window.

I[Created new branch](resources/images/recipes/gitWithGama/
GamaProjectNewBranch.png)

You can see all the branches in the Git Repositories view.

! [New branches view](resources/images/recipes/gitWithGama/
BranchesView.png)

If you would like to checkout the a branch, select it and
click Checkout.

I [Check out a branch](resources/images/recipes/gitWithGama/
CheckOutBranch.png)

Merge

To merge one branch into another, right click the project node
and navigate to Team -> Merge...

I [Merge a branch](resources/images/recipes/gitWithGama/
GitMerge.png)

The merge will execute and a window will pop-up with the
results. The possible results are Already-up-to-date, Fast-
forward, Merged, Conflicting, Failed.

I[Merge a branch](resources/images/recipes/gitWithGama/
MergePopUp.png)

Note that a conflicting result will leave the merge process
incomplete. You will have to resolve the conflicts and try
again. When there are conflicting changes in the working

v 1.8.2 267

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

project, the merge will fail.

Fetch and Pull

To update the remote branches when cloning remote repositories
(Git creates copies of the branches as local branches and
as remote branches) you will have to use Fetch. To perform
a Fetch, select Team -> Fetch From... from the project's
context menu.

To update your local branches, you will have to perform a
Merge operation after fetching.

Pull
Pull combines Fetch and Merge. Select Team -> Pull.
Push

Local changes made to your local branches can be pushed to
remote repositories causing a merge from your branches into
the branches of the remote repository (X pulls from Y is
the same as Y pushes to X). The Push wizard is pretty much
the same as the Fetch wizard.

I [Git Push](resources/images/recipes/gitWithGama/GitPush.png)
History View
To show the repository history, right click it and select Team
-> Show in History. This will open the History View,
giving an overview of the commits and allowing you to
perform several actions (creating branches/tags, revert,

reset...).

![Git Push](resources/images/recipes/gitWithGama/HisrtoryView.
png)

v 1.8.2 268

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

Writing Unit Tests in GAML

[Unit testing] (https://en.wikipedia.org/wiki/Unit_testing) is
an essential instrument to ensure the quality of any
software and it has been implemented in GAMA: this allows
in particular that parts of the model are behaving as
expected and that evolutions in the model do not introduce
unexpected changes. To these purposes, the modeler can
define a set of assertions that will be tested. Before the
execution of the embedded set of instructions, if a setup
is defined in the species, model or experiment, it is
executed. In a test, if one assertion fails, the evaluation

of other assertions continue.

Writing tests in GAML involves the use of 4 keywords:

[assert”™ statement](Statements#assert),

[Ttest”™ statement] (Statements#test),

[*setup ™ statement](Statements#setup),

[Ttype: test”™ facet of ~experiment](ModelOrganization#
experiment-declarations) .

* X ¥ x

In this unit testing tutorial, we intend to show how to write
unit tests in GAML using the statement “test’™.

What is “test™ in GAML?

In GAML, the statement “test” allows the modeler to write a
part of code lines to verify if portions of our GAML model
are doing exactly what they are expected to do: this is
done through the use of several assertions (using ~assert’
statements). This is done independently from other parts of

the model.

To write a typical GAML unit test, we can follow three steps:
1. Define a set of attributes to use within the test,

Write initialization instructions,
3. Write assertions.

v 1.8.2 269

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

The aim of using unit testing is to observe the resulting
behavior of some parts of our model. If the observed
behavior is consistent with the expectations, the unit test

passes, otherwise, it fails, indicating that there is a
problem concerning the tested part of the model.

Introduction to assertions

The basis of Unit tests is to check that given pieces of codes
provide expected results. To this purpose, the modeler can
write some basic tests that should be true: s/he thus

asserts that such expression can be evaluated to true using
the “assert”™ statement. Here are some examples of “assert”
uses:

assert 1 + 1 = 2; assert isGreater(5, 6) = false; assert rnd(1.0) <= 1.0;

With the above statements, the modeler states the “1+1° is
equal to "2°, “isGreater(5,6) is false (given the fact
that “isGreater ™ is an action defined in a species) and
rnd (1.0) " always returns a value below 1.0.

“assert” can be used in any behavior statement (as an example
in a "reflex”, a “state” or in a “test” . Note that, if they
are written outside of a “test”™ and that the test is not
fulfilled, then an exception is thrown during their
execution.

As an example, the following model throws the exception:
Assert failed 3>4° (as obviously 3 is not greater than 4
and that the GAML °“>° operator is properly implemented on
this case).

model NewModel
global { init { assert 3 > 4; } }
experiment NewModel type: gui {}

To be able to have a dashboard of the state of your model w.r.
t. the unit tests, they need to be written in a “test ™ and
the model launched with an experiment of type “test™.

v 1.8.2 270

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

How to write a GAML “test ™7

A “test” statement can be used in any species (regular species
, global or experiment species) everywhere a “reflex” can
be used. Its aim is to gather several asserts in one block.

If the tests are executed with any kind of experiment but
“test”, they will be executed, but nothing is reported.
With a “test”™ experiment, a kind of dashboard will be
displayed.

So we will consider that we start by adding an ~experiment’
with “type”™ set to “test”™. The following code shows an
example.

experiment MyTest type: test autorun: true { ... }

{Let's consider the following GAML code: j

model TestModel
global { init { create test_agent number: 1; } }

species test_agent { bool isGreater (int pl, int p2) { if (pl >= p2) { return true; }
else { return false; } }

test testsO0K {
assert isGreater (5, 6)
assert isGreater (6, 5)

}

false;

true;

test failingTests {
assert ! isGreater (6, 6);

3

}

experiment MyTest type: test autorun: true { }

In this example, the defined action, ~isGreater”, returns
true” 1f a parameter “pl° is greater than a parameter “p2°
and ~“false®™ if not. So to test it, we declare a unit test

v 1.8.2 271

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

using “test” and add inside several "“assert’ statements.
For instance, “assert isGreater (5, 6) = false; will return
“true” if the result of “isGreater (5, 6)° is really false
and ~“false™ if not. So, if the action “~isGreater ™ is well-
defined, it should return “false . Considering that
and should be two different
functions, we add a test to check that ~isGreater”~ does not
return true in case of equality of its 2 operands. In this
case, as the action is not-well implemented the test fails

The following picture illustrates the GUI dashboard for unit
tests, showing for each test and even each assert whether
it passes or fails. Clicking on the button will display in
the GAML editor the code line.

I[Interface for unit tests execution.](resources/images/
recipes/unit_tests_isgreater.png)

Use of the “setup”™ statement

In a species where we want to execute several tests, it 1is
common to want to have the same initial states, in order to
prevent the previous tests to have modified the tested
object and thus altering the unit test results. To this
purpose, we can add the “setup’ statement in the species
and use it to set the expected initial state of the object
to be tested. It will be called before every “test’™.

As an example, in the following model, we want to test the
operator “translated_by~ and “translated_to”~ on a point. As
each of them will modify the point object to be tested,
wed add a “setup” to reinitialize it.

model TestModel

global {
geometry loc <- {0,0};

setup {

v 1.8.2 272

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

loc <- {0,0};
}

test translate_to {

loc <- loc translated_to {10,10};
loc <- loc tramnslated_to {10,10};
assert loc.location = {10,10};

}

test translated_by {

loc <- loc translated_by {10,10};
loc <- loc translated_by {10,10};
assert loc.location = {20,20};

}

experiment MyTest type: test autorun: true { }

The test experiment

It is also possible to write tests in the "~ experiment . The
main idea is here to totally separate the model and its
tests.

As an example let's consider the following GAML code, which
aims to test several GAML operators, related to the graph
datatype:

model TestGraphs
global { graph the_graph;

init {

int i <- 10;

create node_agent number: 7 {
location <- {i, i + ((i / 10) mod 2) * 10};
i <- 1 + 10;

the_graph <- as_distance_graph(node_agent, 30.0);
}

v 1.8.2 273

GAMA v1.8.2 documentation Chapter 26. Using BEN (simple_bdi)

N J

}

species edge agent { aspect default { draw shape color: #black; } }

species node_agent { aspect default { draw circle(1) color: #red; loop neigh over:
the graph neighbors_ of self { draw line([self.location, agent(neigh).location]) color:

#black; } 1}

experiment loadgraph type: gui { output { display map type: opengl { species
edge_agent; species node_agent; } } }

experiment MyTest type: test autorun: true { test “MyFirstTest” { write the graph;
write (node_agent[2]); write (“Degrees”); write (the_graph in_ degree_of (node_ -
agent[2])); write (the_graph out_degree of (node_agent[2])); write (the graph
degree_of (node_agent[2])); assert the graph in_ degree of (node agent[2]) = 4;
write (the graph out_degree of (node agent[2])); assert the graph out_degree of
(node__agent[2]) = 4; assert the graph degree of (node_ agent[2]) = 8; } } “*

v 1.8.2 274

Chapter 27

Known issues

Crash when using openGL on Windows

If you are using GAMA with Windows, and your video card is a Radeon AMD, then
GAMA can crash while running a simulation using OpenGL. To avoid this issue, you
have to disable your video card. This will slow down a bit the performances, but at
least you will be able to run GAMA without those annoying crashes.

To disable your video card, open the control panel, click on Hardware and Sound /
Devices and Printers / Device manager, and then right click on your video card (as
shown in the following image)

Grid not displayed right using openGL

When you try to display a grid with opengl, the cells have not a regular shape (as it
is shown in the following image)

The reason of this problem is that we can only map a grid of 2°n x 2°n cells in the
plan. Here are some solutions for this problem:

e Choose a grid with 2" n*2"n dimension (such as 16x16, or 32x32)

o Display the grid in java2D

« Display the grid as species, and not as grid (note that the difference in term
of performance between displaying a grid as a grid and as a species is not so
important for opengl displays. It has originally been done for java2D displays)

275

GAMA v1.8.2 documentation

Chapter 27. Known issues

% Device Manager

File Action View Help

¢ DB HEIB EX®

-

PC_Julien

| Audic inputs and outputs
3 Batteries

3 Computer

o)

- Disk drives
[E& Display adapters
L& AMD Radeon HD 7600M S¢
2 DVD/CD-ROM drives
==

FEVIRVIEVRY

Human Interface Devices

== |DE ATA/ATAPI| controllers

3% Imaging devices

Keyboards

8 Mice and other pointing devic

Update Driver Software...
Disable
Uninstall

Scan for hardware changes

Properties

[Monitors

F Network adapters
= Print queues

I Processors

[Sensors

i
i

ﬁﬂ Storage controllers
B3 System devices
i Universal Serial Bus controllers

Software devices
Sound, video and game controllers

Disables the selected device.

Figure 27.1: resources/images/recipes/disable_amd_radeon.png

v 1.8.2

276

GAMA v1.8.2 documentation Chapter 27. Known issues

Figure 27.2: resources/images/recipes/grid_ display_problem.png

v 1.8.2 277

GAMA v1.8.2 documentation Chapter 27. Known issues

v 1.8.2 278

Part V

GAML References

279

Chapter 28

GAML References

The GAML references describe in details all the keywords of the GAML language. In
particular, they detail all the expressions (operators, units, literals. ..), statements,
data types, file types, skills, architectures, built-in species. ..

Index of keywords

The Index page contains the exhaustive list of the GAML keywords, with a link to a
detailed description of each of them.

281

expressions
Index

GAMA v1.8.2 documentation Chapter 28. GAML References

v 1.8.2 282

Chapter 29

Built-in Species

This file is automatically generated from java files. Do Not Edit It.

It is possible to use in the models a set of built-in agents. These agents allow to
directly use some advance features like clustering, multi-criteria analysis, etc. The
creation of these agents are similar as for other kinds of agents:

{create species: my_built_in_agent returns: the_agent; }

So, for instance, to be able to use clustering techniques in the model:

Ecreate cluster_builder returns: clusterer; J

Table of Contents

agent, AgentDB, base edge, experiment, graph edge, graph_node, physical world,

283

GAMA v1.8.2 documentation Chapter 29. Built-in Species

agent

Variables

e host (-29): Returns the agent that hosts the population of the receiver agent
e location (point): Returns the location of the agent

 name (string): Returns the name of the agent (not necessarily unique in its
population)

o peers (list): Returns the population of agents of the same species, in the
same host, minus the receiver agent

 shape (geometry): Returns the shape of the receiver agent

Actions

init

Returned type: unknown

step

Returned type: unknown

AgentDB

AgentDB is an abstract species that can be extended to provide agents with capabilities
to access databases

v 1.8.2 284

GAMA v1.8.2 documentation Chapter 29. Built-in Species

Variables

« agents (list): Returns the list of agents for the population(s) of which the
receiver agent is a direct or undirect host

» members (container): Returns the list of agents for the population(s) of which
the receiver agent is a direct host
Actions
close

Close the established database connection.

Returned type: unknown : Returns null if the connection was successfully closed,
otherwise, it returns an error.

connect

Establish a database connection.

Returned type: unknown : Returns null if connection to the server was successfully
established, otherwise, it returns an error.

Additional facets:

 params (map): Connection parameters

executeUpdate

- Make a connection to DBMS - Executes the SQL statement in this
PreparedStatement object, which must be an SQL INSERT, UPDATE or
DELETE statement; or an SQL statement that returns nothing, such as
a DDL statement.

Returned type: int : Returns the number of updated rows.

v 1.8.2 285

GAMA v1.8.2 documentation Chapter 29. Built-in Species

Additional facets:

o updateComm (string): SQL commands such as Create, Update, Delete, Drop
with question mark

 values (list): List of values that are used to replace question mark

getParameter

Returns the list used parameters to make a connection to DBMS (dbtype,
url, port, database, user and passwd).

Returned type: unknown : Returns the list of used parameters to make a connection
to DBMS.

insert

- Make a connection to DBMS - Executes the insert statement.

Returned type: int : Returns the number of updated rows.

Additional facets:

 into (string): Table name
o columns (list): List of column name of table

 values (list): List of values that are used to insert into table. Columns and
values must have same size

isConnected

To check if connection to the server was successfully established or not.

Returned type: bool : Returns true if connection to the server was successfully
established, otherwise, it returns false.

v 1.8.2 286

GAMA v1.8.2 documentation Chapter 29. Built-in Species

select

Make a connection to DBMS and execute the select statement.

Returned type: 1list : Returns the obtained result from executing the select
statement.

Additional facets:

o select (string): select string

o values (list): List of values that are used to replace question marks

setParameter

Sets the parameters to use in order to make a connection to the DBMS
(dbtype, url, port, database, user and passwd).

Returned type: unknown : null.

Additional facets:

 params (map): Connection parameters

testConnection

To test a database connection .

Returned type: bool : Returns true if connection to the server was successfully
established, otherwise, it returns false.

Additional facets:

 params (map): Connection parameters

v 1.8.2 287

GAMA v1.8.2 documentation Chapter 29. Built-in Species

timeStamp

Get the current time of the system.

Returned type: float : Current time of the system in millisecondes

base_edge

A built-in species for agents representing the edges of a graph, from which one can
inherit

Variables

o source (agent): The source agent of this edge

o target (agent): The target agent of this edge

Actions

experiment

An experiment is a declaration of the way to conduct simulations on a model. Any
experiment attached to a model is a species (introduced by the keyword ‘experiment’
which directly or indirectly inherits from an abstract species called ‘experiment’ itself.
This abstract species (sub-species of ‘agent’) defines several attributes and actions
that can then be used in any experiment. ‘experiment’ defines several attributes,
which, in addition to the attributes inherited from agent, form the minimal set of
knowledge any experiment will have access to.

v 1.8.2 288

GAMA v1.8.2 documentation Chapter 29. Built-in Species

Variables

e minimum_cycle_duration (float): The minimum duration (in seconds) a
simulation cycle should last. Default is 0. Units can be used to pass values
smaller than a second (for instance ‘10 “msec’)

e model_path (string): Contains the absolute path to the folder in which the
current model is located

e project_path (string): Contains the absolute path to the project in which the
current model is located

e rng (string): The random number generator to use for this simulation. Three
different ones are at the disposal of the modeler: mersenne represents the
default generator, based on the Mersenne-Twister algorithm. Very reliable;

cellular is a cellular automaton based generator that should be a bit faster, but
less reliable; and java invokes the standard Java generator

» rng_usage (int): Returns the number of times the random number generator
of the experiment has been drawn

o seed (float): The seed of the random number generator. Each time it is set,
the random number generator is reinitialized. WARNING: Setting it to zero

actually means that you let GAMA choose a random seed

« simulation (-27): Contains a reference to the current simulation being run by
this experiment

 simulations (list): Contains the list of currently running simulations
 warnings (boolean): The value of the preference ‘Consider warnings as errors’

 workspace_path (string): Contains the absolute path to the workspace of
GAMA

v 1.8.2 289

GAMA v1.8.2 documentation Chapter 29. Built-in Species

Actions
compact_memory

Forces a ‘garbage collect’ of the unused objects in GAMA

Returned type: unknown

update_outputs

Forces all outputs to refresh, optionally recomputing their values

Returned type: unknown

Additional facets:

 recompute (boolean): Whether or not to force the outputs to make a computa-
tion step

graph_edge

A species that represents an edge of a graph made of agents. The source and the
target of the edge should be agents

Variables
o source (agent): The source agent of this edge

» target (agent): The target agent of this edge

Actions

v 1.8.2 290

GAMA v1.8.2 documentation Chapter 29. Built-in Species

graph_node

A base species to use as a parent for species representing agents that are nodes of a
graph

Variables

e my_graph (graph): A reference to the graph containing the agent

Actions
related_to

This operator should never be called

Returned type: bool

Additional facets:

« other (agent): The other agent

physical_world

The base species for models that act as a 3D physical world. Can register and manage
agents provided with either the ‘static_body’ or ‘dynamic_body’ skill. Inherits from
‘static_ body’, so it can also act as a physical body itself (with a ‘mass’, ‘friction’,
‘gravity’), of course without motion — in this case, it needs to register itself as a
physical agent using the ‘register’ action

v 1.8.2 291

GAMA v1.8.2 documentation Chapter 29. Built-in Species

Variables

e accurate_collision_detection (boolean): Enables or not a better (but slower)
collision detection

» automated_registration (boolean): If set to true (the default), makes the
world automatically register and unregister agents provided with either the
‘static_body’ or ‘dynamic_body’ skill. Otherwise, they must be registered
using the ‘register’ action, which can be useful when only some agents need to
be considered as ‘physical agents’. Note that, in any case, the world needs to
manually register itself if it is supposed to act as a physical body.

e gravity (point): Defines the value of gravity in this world. The default value
is set to -9.80665 on the z-axis, that is 9.80665 m/s2 towards the ‘bottom’ of
the world. Can be set to any direction and intensity and applies to all the
bodies present in the physical world

e library (string): This attribute allows to manually switch between two
physics library, named ‘bullet’” and ‘box2D’. The Bullet library, which comes
in two flavors (see ‘use_native’) and the Box2D libray in its Java version
(https://github.com/jbox2d/jbox2d). Bullet is the default library but models
in 2D should better use Box2D

» max_substeps (int): If equal to 0 (the default), makes the simulation engine be
stepped alongside the simulation (no substeps allowed). Otherwise, sets the
maximum number of physical simulation substeps that may occur within one
GAMA simulation step

e terrain (31): This attribute is a matrix of float that can be used to represent
a 3D terrain. The shape of the world, in that case, should be a box, where
thedimension on the z-axis is used to scale the z-values of the DEM. The world
needs to be register itself as a physical object

o use_native (boolean): This attribute allows to manually switch be-
tween the Java version of the Bullet library (JBullet, a modified ver-
sion of https://github.com /stephengold/jbullet, which corresponds to ver-
sion 2.72 of the original library) and the native Bullet library (Libbulletjme,
https://github.com/stephengold /Libbulletjme, which is kept up-to-date with

v 1.8.2 292

GAMA v1.8.2 documentation Chapter 29. Built-in Species

the 3.x branch of the original library).The native version is the default one
unless the libraries cannot be loaded, making JBullet the default
Actions
register
An action that allows to register agents in this physical world. Unregis-
tered agents will not be governed by the physical laws of this world. If

the world is to play a role in the physical world,then it needs to register
itself (i.e. do register([self]);

Returned type: unknown

Additional facets:

e bodies (container): the list or container of agents to register in this physical
world

v 1.8.2 293

GAMA v1.8.2 documentation Chapter 29. Built-in Species

v 1.8.2 294

Chapter 30

Built-in Skills

This file is automatically generated from java files. Do Not Edit It.

Introduction

Skills are built-in modules, written in Java, that provide a set of related built-in
variables and built-in actions (in addition to those already provided by GAMA) to the
species that declare them. A declaration of skill is done by filling the skills attribute
in the species definition:

species my_species skills: [skilll, skill2] {

3

Skills have been designed to be mutually compatible so that any combination of them
will result in a functional species. An example of skill is the moving skill.

So, for instance, if a species is declared as:

species foo skills: [movingl{

}

295

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Its agents will automatically be provided with the following variables : speed, heading,
destination and the following actions: move, goto, wander, follow in addition to
those built-in in species and declared by the modeller. Most of these variables, except
the ones marked read-only, can be customized and modified like normal variables
by the modeller. For instance, one could want to set a maximum for the speed; this
would be done by redeclaring it like this:

[float speed max:100 min:0; J

Or, to obtain a speed increasing at each simulation step:

{float speed max:100 min:0 <- 1 update: speed * 1.01; }

Or, to change the speed in a behavior:

if speed = 5 {
speed <- 10;
X

Table of Contents

advanced_ driving, driving, dynamic_body, fipa, MDXSKILL, messaging, mov-
ing, moving3D, network, public_ transport, public_transport_scheduler, skill road,
skill road node, SQLSKILL, static_body,

advanced_driving

Variables

e acc_bias (float): the bias term used for asymmetric lane changing, parameter
‘a_bias’ in MOBIL

v 1.8.2 296

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

e acc_gain_threshold (float): the minimum acceleration gain for the vehicle to
switch to another lane, introduced to prevent frantic lane changing. Known as
the parameter ‘a_th’ in the MOBIL lane changing model

e acceleration (float): the current acceleration of the vehicle (in m/s*2)

+ allowed_lanes (list): a list containing possible lane index values for the
attribute lowest lane

o current_index (int): the index of the current edge (road) in the path
o current_lane (int): the current lane on which the agent is

e current_path (path): the path which the agent is currently following
 current_road (agent): the road which the vehicle is currently on

o current_target (agent): the current target of the agent

o delta_idm (float): the exponent used in the computation of free-road
acceleration in the Intelligent Driver Model

o distance_to_current_target (float): euclidean distance to the current target
node

» distance_to_goal (float): euclidean distance to the endpoint of the current
segment

» final_target (agent): the final target of the agent
o follower (agent): the vehicle following this vehicle

o ignore_oneway (boolean): if set to true, the vehicle will be able to violate
one-way traffic rule

 lane_change_cooldown (float): the duration that a vehicle must wait before
changing lanes again

v 1.8.2 297

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

e lane_change_limit (int): the maximum number of lanes that the vehicle can
change during a simulation step

e leading_distance (float): the distance to the leading vehicle

e leading_speed (float): the speed of the leading vehicle

o leading_vehicle (agent): the vehicle which is right ahead of the current
vehicle. If this is set to nil, the leading vehicle does not exist or might be very

far away.

e linked_lane_limit (int): the maximum number of linked lanes that the vehi-
cle can use; the default value is -1, i.e. the vehicle can use all available linked lanes

e lowest_lane (int): the lane with the smallest index that the vehicle is in

e max_acceleration (float): the maximum acceleration of the vehicle. Known
as the parameter ‘a’ in the Intelligent Driver Model

o max_deceleration (float): the maximum deceleration of the vehicle. Known
as the parameter ‘b’ in the Intelligent Driver Model

o max_safe_deceleration (float): the maximum deceleration that the vehicle
is willing to induce on its back vehicle when changing lanes. Known as the

parameter ‘b_save’ in the MOBIL lane changing model

» max_speed (float): the maximum speed that the vehicle can achieve. Known
as the parameter ‘v0’ in the Intelligent Driver Model

e min_safety_distance (float): the minimum distance of the vehicle’s front
bumper to the leading vehicle’s rear bumper, known as the parameter s0 in the
Intelligent Driver Model

e min_security_distance (float): the minimal distance to another vehicle

e next_road (agent): the road which the vehicle will enter next

e num_lanes_occupied (int): the number of lanes that the vehicle occupies

v 1.8.2 298

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

e on_linked_road (boolean): is the agent on the linked road?

o politeness_factor (float): determines the politeness level of the vehicle when
changing lanes. Known as the parameter ‘p’ in the MOBIL lane changing
model

» proba_block_node (float): probability to block a node (do not let other vehicle
cross the crossroad), within one second

o proba_lane_change_down (float): probability to change to a lower lane (right
lane if right side driving) to gain acceleration, within one second

e proba_lane_change_up (float): probability to change to a upper lane (left lane
if right side driving) to gain acceleration, within one second

e proba_respect_priorities (float): probability to respect priority (right or
left) laws, within one second

» proba_respect_stops (list): probability to respect stop laws - one value for
each type of stop, within one second

e proba_use_linked_road (float): probability to change to a linked lane to gain
acceleration, within one second

» real_speed (float): the actual speed of the agent (in meter/second)
o right_side_driving (boolean): are vehicles driving on the right size of the road?

o safety_distance_coeff (float): the coefficient for the computation of the
the min distance between two vehicles (according to the vehicle speed -
security__distance =max(min_ security_ distance, security_distance_coeff *
min(self.real _speed, other.real speed))

e security_distance_coeff (float): the coefficient for the computation of
the the min distance between two vehicles (according to the vehicle speed
- safety distance =max(min_safety distance, safety distance coeff x*
min(self.real speed, other.real speed))

v 1.8.2 299

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

o segment_index_on_road (int): current segment index of the agent on the
current road

 speed (float): the speed of the agent (in meter/second)

» speed_coeff (float): speed coefficient for the speed that the vehicle want to
reach (according to the max speed of the road)

o targets (list): the current list of points that the agent has to reach (path)

o time_headway (float): the time gap that to the leading vehicle that the driver
must maintain. Known as the parameter ‘T’ in the Intelligent Driver Model

e time_since_lane_change (float): the elapsed time since the last lane change

e using_linked_road (boolean): indicates if the vehicle is occupying at least one
lane on the linked road

o vehicle_length (float): the length of the vehicle (in meters)

e violating_omeway (boolean): indicates if the vehicle is moving in the wrong
direction on an one-way (unlinked) road

Actions
advanced_follow_driving

moves the agent towards along the path passed in the arguments while
considering the other agents in the network (only for graph topology)

Returned type: float : the remaining time

Additional facets:

« path (path): a path to be followed.

v 1.8.2 300

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

» target (point): the target to reach
« speed (float): the speed to use for this move (replaces the current value of speed)

o time (float): time to travel

Examples:

[do osm_follow path: the_path on: road_network; J

choose_lane
Override this if you want to manually choose a lane when entering new
road. By default, the vehicle tries to stay in the current lane. If the new

road has fewer lanes than the current one and the current lane index is
too big, it tries to enter the most uppermost lane.

Returned type: int : an integer representing the lane index

Additional facets:

» new_road (agent): the new road that’s the vehicle is going to enter

compute_path

Action to compute the shortest path to the target node, or shortest path
based on the provided list of nodes

Returned type: path : the computed path, or nil if no valid path is found

Additional facets:

o graph (graph): the graph representing the road network

« target (agent): the target node to reach

v 1.8.2 301

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

» source (agent): the source node (optional, if not defined, closest node to the
agent location)

 nodes (list): the nodes forming the resulting path

Examples:

do compute_path graph: road_network target: target_node;
do compute_path graph: road_network nodes: [nodel, node5,
nodel0];

drive

action to drive toward the target

Returned type: bool

Examples:

(do drive;

drive_random

action to drive by chosen randomly the next road

Returned type: bool

Additional facets:
« graph (graph): a graph representing the road network

« proba_roads (map): a map containing for each road (key), the probability to
be selected as next road (value)

Examples:

[do drive_random init_node: some_node;]

v 1.8.2 302

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

external_factor_impact

action that allows to define how the remaining time is impacted by exter-
nal factor

Returned type: float : the remaining time

Additional facets:

e new_road (agent): the road on which to the vehicle wants to go

+ remaining_time (float): the remaining time

Examples:

do extermnal_factor_impact new_road: a_road remaining_time:
0.5;

force_move

action to drive by chosen randomly the next road

Returned type: float

Additional facets:

e lane (int): the lane on which to make the agent move
 acceleration (float): acceleration of the vehicle

« time (float): time of move

Examples:

Ldo drive_random init_node: some_node; j

v 1.8.2 303

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

lane_choice

action to choose a lane

Returned type: int : the chosen lane, return -1 if no lane can be taken

Additional facets:

 new_road (agent): the road on which to choose the lane

Examples:

Ldo lane_choice new_road: a_road; j

on_entering _new_road

override this if you want to do something when the vehicle enters a new
road (e.g. adjust parameters)

Returned type: void

path_from_nodes

action to compute a path from a list of nodes according to a given graph

Returned type: path : the computed path, return nil if no path can be taken

Additional facets:
 graph (graph): the graph representing the road network

 nodes (list): the list of nodes composing the path

Examples:

do compute_path_from_nodes graph: road_network nodes: [nodel,
node5, nodel0];

v 1.8.2 304

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

ready_to_cross

action to test if the vehicle cross a road node to move to a new road

Returned type: bool : true if the vehicle can cross the road node, false otherwise

Additional facets:

» node (agent): the road node to test

« new_road (agent): the road to test

Examples:

(do is_ready_next_road new_road: a_road lane: O; J

speed_choice

action to choose a speed

Returned type: float : the chosen speed

Additional facets:

« new_road (agent): the road on which to choose the speed

Examples:

Ldo speed_choice new_road: the_road; j

test_next_road

action to test if the vehicle can take the given road

Returned type: bool : true (the vehicle can take the road) or false (the vehicle
cannot take the road)

v 1.8.2 305

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Additional facets:

« new_road (agent): the road to test

Examples:

[do test_next_road new_road: a_road;]

unregister

remove the vehicle from its current roads

Returned type: bool

Examples:

[do unregister J

driving

Variables

o lanes_attribute (string): the name of the attribut of the road agent that
determine the number of road lanes

e living_space (float): the min distance between the agent and an obstacle (in
meter)

» obstacle_species (list): the list of species that are considered as obstacles
 speed (float): the speed of the agent (in meter/second)
e tolerance (float): the tolerance distance used for the computation (in meter)

v 1.8.2 306

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Actions
follow_driving

moves the agent along a given path passed in the arguments while con-
sidering the other agents in the network.

Returned type: path : optional: the path followed by the agent.

Additional facets:

« speed (float): the speed to use for this move (replaces the current value of speed)
 path (path): a path to be followed.

e return_path (boolean): if true, return the path followed (by default: false)

e move_weights (map): Weigths used for the moving.

» living_space (float): min distance between the agent and an obstacle (replaces
the current value of living space)

+ tolerance (float): tolerance distance used for the computation (replaces the
current value of tolerance)

o lanes_attribute (string): the name of the attribut of the road agent that

determine the number of road lanes (replaces the current value of lanes_ -
attribute)

Examples:

{do follow speed: speed * 2 path: road_path; }

goto_driving

moves the agent towards the target passed in the arguments while con-
sidering the other agents in the network (only for graph topology)

Returned type: path : optional: the path followed by the agent.

v 1.8.2 307

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Additional facets:
o target (geometry): the location or entity towards which to move.
« speed (float): the speed to use for this move (replaces the current value of speed)

« on (any type): list, agent, graph, geometry that restrains this move (the agent
moves inside this geometry)

 return_path (boolean): if true, return the path followed (by default: false)
» move_weights (map): Weigths used for the moving.

« living_space (float): min distance between the agent and an obstacle (replaces
the current value of living_ space)

e tolerance (float): tolerance distance used for the computation (replaces the
current value of tolerance)

 lanes_attribute (string): the name of the attribut of the road agent that

determine the number of road lanes (replaces the current value of lanes_ -
attribute)

Examples:

do gotoTraffic target: one_of (list (species (self))) speed:
speed * 2 on: road_network living_space: 2.0;

dynamic_body

Variables

o angular_damping (float): Between 0 and 1. an angular decelaration coefficient
that occurs even without contact

v 1.8.2 308

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

o angular_velocity (point): The angular velocity of the agent in the three
directions, expressed as a point.

e contact_damping (float): Between 0 and 1. a decelaration coefficient that
occurs in case of contact. Only available in the native Bullet library (no effect

on the Java implementation)

 damping (float): Between 0 and 1. a linear decelaration coefficient that occurs
even without contact

e velocity (point): The linear velocity of the agent in the three directions,
expressed as a point.

Actions

apply

An action that allows to apply different effects to the object, like forces,
impulses, etc.

Returned type: unknown

Additional facets:

o clearance (boolean): If true clears all forces applied to the agent and clears its
veolicity as well

o impulse (point): An idealised change of momentum. Adds to the velocity of
the object. This is the kind of push that you would use on a pool billiard ball.

« force (point): Move (push) the object once with a certain moment, expressed
as a point (vector). Adds to the existing forces.

» torque (point): Rotate (twist) the object once around its axes, expressed as a
point (vector)

v 1.8.2 309

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

fipa

The fipa skill offers some primitives and built-in variables which enable agent to
communicate with each other using the FIPA interaction protocol.

Variables

o accept_proposals (list): A list of ‘accept proposal’ performative messages in
the agent’s mailbox

o agrees (list): A list of ‘agree’ performative messages.
 cancels (list): A list of ‘cancel’ performative messages.
o cfps (list): A list of ‘cfp’ (call for proposal) performative messages.

e conversations (list): A list containing the current conversations of agent.
Ended conversations are automatically removed from this list.

o failures (list): A list of ‘failure’ performative messages.

o informs (list): A list of ‘inform’ performative messages.

o proposes (list): A list of ‘propose’ performative messages .

e queries (list): A list of ‘query’ performative messages.

o refuses (list): A list of ‘propose’ performative messages.

e reject_proposals (list): A list of ‘reject_proposal’” performative messages.
e requests (list): A list of ‘request’ performative messages.

o requestWhens (list): A list of ‘request-when’ performative messages.

» subscribes (list): A list of ‘subscribe’ performative messages.

v 1.8.2 310

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Actions
accept_proposal

Replies a message with an ‘accept__proposal’ performative message.

Returned type: unknown

Additional facets:

 message (24): The message to be replied

« contents (list): The content of the replying message

agree

Replies a message with an ‘agree’ performative message.

Returned type: unknown

Additional facets:

 message (24): The message to be replied

 contents (list): The content of the replying message

cancel

Replies a message with a ‘cancel’ peformative message.

Returned type: unknown

Additional facets:

 message (24): The message to be replied
 contents (list): The content of the replying message

v 1.8.2 311

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

cfp

Replies a message with a ‘cfp’ performative message.

Returned type: unknown

Additional facets:

 message (24): The message to be replied

« contents (list): The content of the replying message

end_conversation

Reply a message with an ‘end__conversation’ peprformative message. This
message marks the end of a conversation. In a ‘no-protocol’ conversation,
it is the responsible of the modeler to explicitly send this message to
mark the end of a conversation/interaction protocol. Please note that if
the contents of the messages of the conversation are not read, then this
command has no effect (i.e. it must be read by at least one of the agents
in the conversation)

Returned type: unknown

Additional facets:

 message (24): The message to be replied

» contents (list): The content of the replying message

failure

Replies a message with a ‘failure’ performative message.

Returned type: unknown

v 1.8.2 312

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Additional facets:

 message (24): The message to be replied

 contents (list): The content of the replying message

inform

Replies a message with an ‘inform’ performative message.

Returned type: unknown

Additional facets:

 message (24): The message to be replied

 contents (list): The content of the replying message

propose

Replies a message with a ‘propose’ performative message.

Returned type: unknown

Additional facets:

 message (24): The message to be replied

« contents (list): The content of the replying message

query

Replies a message with a ‘query’ performative message.

Returned type: unknown

v 1.8.2 313

GAMA v1.8.2 documentation Chapter 30.

Built-in Skills

Additional facets:

» message (24): The message to be replied

 contents (list): The content of the replying message

refuse

Replies a message with a ‘refuse’ performative message.

Returned type: unknown

Additional facets:

 message (24): The message to be replied

 contents (list): The contents of the replying message

reject_proposal

Replies a message with a ‘reject_ proposal’ performative message.

Returned type: unknown

Additional facets:

 message (24): The message to be replied

« contents (list): The content of the replying message

reply

Replies a message. This action should be only used to reply a message in
a ‘no-protocol’ conversation and with a ‘user defined performative’ For
performatives supported by GAMA (i.e., standard FIPA performatives),
please use the ‘action’ with the same name of ‘performative’. For example,

v 1.8.2

314

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

to reply a message with a ‘request’ performative message, the modeller
should use the ‘request’ action.

Returned type: unknown

Additional facets:

» message (24): The message to be replied
» performative (string): The performative of the replying message

 contents (list): The content of the replying message

request

Replies a message with a ‘request’ performative message.

Returned type: unknown

Additional facets:
 message (24): The message to be replied

« contents (list): The content of the replying message

send

Starts a conversation/interaction protocol.

Returned type: msi.gaml.extensions.fipa.FIPAMessage

Additional facets:

o to (list): A list of receiver agents

 contents (list): The content of the message. A list of any GAML type

v 1.8.2 315

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

o performative (string): A string, representing the message performative

e protocol (string): A string representing the name of interaction protocol

start_conversation

Starts a conversation/interaction protocol.

Returned type: msi.gaml.extensions.fipa.FIPAMessage

Additional facets:

« to (list): A list of receiver agents
 contents (list): The content of the message. A list of any GAML type
o performative (string): A string, representing the message performative

e protocol (string): A string representing the name of interaction protocol

subscribe

Replies a message with a ‘subscribe’ performative message.

Returned type: unknown

Additional facets:

 message (24): The message to be replied

 contents (list): The content of the replying message

v 1.8.2

316

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

MDXSKILL

This skill allows agents to be provided with actions and attributes in order to connect
to MDX databases

Variables

Actions

select

Returned type: list<unknown>

Additional facets:

 params (map): Connection parameters

 onColumns (string): select string with question marks

 onRows (list): List of values that are used to replace question marks
 from (list): List of values that are used to replace question marks

o where (list): List of values that are used to replace question marks

 values (list): List of values that are used to replace question marks

testConnection

Returned type: bool

v 1.8.2 317

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Additional facets:

 params (map): Connection parameters

timeStamp

Returned type: float

messaging

A simple skill that provides agents with a mailbox than can be filled with messages

Variables

e mailbox (list): The list of messages that can be consulted by the agent

Actions

send

Returned type: message

Additional facets:
« to (any type): The agent, or server, to which this message will be sent to

« contents (any type): The contents of the message, an arbitrary object

v 1.8.2 318

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

moving

The moving skill is intended to define the minimal set of behaviours required for
agents that are able to move on different topologies

Variables

o current_edge (geometry): Represents the agent/geometry on which the agent
is located (only used with a graph)

o current_path (path): Represents the path on which the agent is moving on
(goto action on a graph)

 destination (point): Represents the next location of the agent if it keeps its
current speed and heading (read-only). ** Only correct in continuous topologies
and may return nil values if the destination is outside the environment **

» heading (float): Represents the absolute heading of the agent in degrees.

e location (point): Represents the current position of the agent

» real_speed (float): Represents the actual speed of the agent (in meter/second)

» speed (float): Represents the speed of the agent (in meter/second)

Actions
follow

moves the agent along a given path passed in the arguments.

Returned type: path : optional: the path followed by the agent.

Additional facets:

« speed (float): the speed to use for this move (replaces the current value of speed)

v 1.8.2 319

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

 path (path): a path to be followed.
» move_weights (map): Weights used for the moving.

e return_path (boolean): if true, return the path followed (by default: false)

Examples:

[do follow speed: speed * 2 path: road_path; J

goto
moves the agent towards the target passed in the arguments.

Returned type: path : optional: the path followed by the agent.

Additional facets:

o target (geometry): the location or entity towards which to move.
« speed (float): the speed to use for this move (replaces the current value of speed)

« on (any type): graph, topology, list of geometries or map of geometries that
restrain this move

» recompute_path (boolean): if false, the path is not recompute even if the graph
is modified (by default: true)

e return_path (boolean): if true, return the path followed (by default: false)

» move_weights (map): Weights used for the moving.

Examples:

do goto target: (one_of road).location speed: speed * 2 on:
road_network;

v 1.8.2 320

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

move
moves the agent forward, the distance being computed with respect to

its speed and heading. The value of the corresponding variables are used
unless arguments are passed.

Returned type: path

Additional facets:

« speed (float): the speed to use for this move (replaces the current value of speed)
 heading (float): the angle (in degree) of the target direction.

» bounds (geometry): the geometry (the localized entity geometry) that restrains
this move (the agent moves inside this geometry

Examples:

do move speed: speed - 10 heading: heading + rnd (30) bounds:
agentA;

wander
Moves the agent towards a random location at the maximum distance

(with respect to its speed). The heading of the agent is chosen randomly
if no amplitude is specified. This action changes the value of heading.

Returned type: bool

Additional facets:

« speed (float): the speed to use for this move (replaces the current value of speed)

 amplitude (float): a restriction placed on the random heading choice. The new
heading is chosen in the range (heading - amplitude/2, heading+amplitude/2)

v 1.8.2 321

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

 bounds (geometry): the geometry (the localized entity geometry) that restrains
this move (the agent moves inside this geometry)

 on (graph): the graph that restrains this move (the agent moves on the graph
» proba_edges (map): When the agent moves on a graph, the probability to

choose another edge. If not defined, each edge has the same probability to be
chosen

Examples:

{do wander speed: speed - 10 amplitude: 120 bounds: agenth; }

moving3D

The moving skill 3D is intended to define the minimal set of behaviours required for
agents that are able to move on different topologies

Variables

o destination (point): continuously updated destination of the agent with
respect to its speed and heading (read-only)

e heading (float): the absolute heading of the agent in degrees (in the range
0-359)

 pitch (float): the absolute pitch of the agent in degrees (in the range 0-359)
e roll (float): the absolute roll of the agent in degrees (in the range 0-359)
 speed (float): the speed of the agent (in meter/second)

v 1.8.2 322

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Actions
move
moves the agent forward, the distance being computed with respect to

its speed and heading. The value of the corresponding variables are used
unless arguments are passed.

Returned type: path

Additional facets:
 speed (float): the speed to use for this move (replaces the current value of speed)

 heading (int): int, optional, the direction to take for this move (replaces the
current value of heading)

o pitch (int): int, optional, the direction to take for this move (replaces the
current value of pitch)

e roll (int): int, optional, the direction to take for this move (replaces the
current value of roll)

 bounds (geometry): the geometry (the localized entity geometry) that restrains
this move (the agent moves inside this geometry

Examples:

do move speed: speed - 10 heading: heading + rnd (30) bounds:
agenth;

network

The network skill provides new features to let agents exchange message through
network.

v 1.8.2 323

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Variables
» network_groups (1ist): The set of groups the agent belongs to
 network_name (string): Net ID of the agent

 network_server (list): The list of all the servers to which the agent is connected

Actions
connect

Action used by a networking agent to connect to a server or as a server.

Returned type: bool

Additional facets:

e protocol (string): protocol type (MQTT (by default), TCP, UDP): the possible
value ares ‘udp_ server’, ‘udp_emitter’, ‘tcp_server’, ‘tcp_ client’, otherwise
the MQTT protocol is used.

e port (int): Port number

« raw (boolean): message type raw or rich

o with_name (string): ID of the agent (its name) for the simulation

 login (string): login for the connection to the server

« password (string): password associated to the login

o force_network_use (boolean): force the use of the network even interaction
between local agents

 to (string): server URL (localhost or a server URL)

v 1.8.2 324

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

 size_packet (int): For UDP connection, it sets the maximum size of received
packets (default = 1024bits).

Examples:

do connect with_name: ;
do connect to:\ any_name

any_name

‘ localhost udp_server
Server

‘ localhost udp_client
Client

‘ localhost udp_server

execute

Returned type: string

Additional facets:

e command (string): command to execute

Examples:

C

fetch_message

Returned type: message

v 1.8.2 325

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

has_more_message

Returned type: bool

join_group

allow an agent to join a group of agents in order to broadcast messages to
other membersor to receive messages sent by other members. Note that
all members of the group called : “ALL”.

Returned type: bool

Additional facets:

e with_name (string): name of the group

Examples:

do join_group with_name: ;
do join_group with_name: ;do send to:
contents: ;

leave_group

leave a group of agents. The leaving agent will not receive any message
from the group. Overwhise, it can send messages to the left group

Returned type: bool

Additional facets:

 with_name (string): name of the group the agent wants to leave

v 1.8.2 326

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Examples:

[do leave_group with_name: ; J

simulate_step

Simulate a step to test the skill. It must be used for Gama-platform test
only

Returned type: bool : nothing

Examples:

[do simulate_step; j

public_transport

Variables
» is_stopped (boolean): Is the transport waiting for passengers
e next_stop (agent): the next stop for the transport
o stops (1list): The list of stops the bus have and will going through
e transport_line (string): The name of the bus line

e transport_state (string): 7

Actions
define_next_target

set up next target

v 1.8.2 327

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Returned type: bool

Examples:

[do define_next_target; J

define_noria
action to define a bus noria

Returned type: bool

Additional facets:

 pickup_point (agent): The pickup point where passengers are taken
 evacuation_point (agent): The evacuation exit
e return_point (agent): The bus re-entry on the graph

e waiting_time (int): waiting time at pickup point in second (can be ignored if
transport is full)

e return_time (int): time before the re-entry on the graph in second

Examples:

do define_noria pickup_point: bus_pickup evacuation_point:
exit_point return_point: exit_point waiting_time: 300
return_time: 600;

define_route

action to define the route of a bus

Returned type: bool

v 1.8.2 328

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Additional facets:

» stops (list): The stops’ list to go by

« schedule (list): The times’ list for each stop

Examples:

[do define_route stops: bus_stops schedule: bus_schedule; J

init_departure

initialise the vehicle

Returned type: bool

Examples:

Ldo init_departure; j

is_time_to_go

test the departure time

Returned type: bool : returns true if it’s time to go, false otherwise

Examples:

[if(is_time_to_go())... j

v 1.8.2 329

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

public_transport_scheduler

Variables
 next_departure (int): ?
o next_departure_cycle (int): 7
e schedule (matrix): 7
e start_time_hour (int): The name of the bus line
o start_time_minute (int): The name of the bus line
o start_time_second (int): The name of the bus line
o stops (list): 7

 transport_line (string): The name of the bus line

Actions
check_departure
action to check if a transport must depart

Returned type: list<int>

Examples:

(do check_departure; J

check_next_departure

action to check next departure time

Returned type: bool

v 1.8.2 330

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Examples:

(do check_next_departure; J

define_schedule

action to define the schedule of a bus_ line

Returned type: bool

Additional facets:

« schedule (matrix): The stop(x)/time(y) matrix[x,y]

Examples:

[do define_schedule schedule: busline_schedule; J

skill road

Variables
» agents_on (list): for each lane of the road, the list of agents for each segment
e all_agents (list): the list of agents on the road

 linked_road (-199): the linked road: the lanes of this linked road will be
usable by drivers on the road

» maxspeed (float): the maximal speed on the road

e num_lanes (int): the number of lanes

v 1.8.2 331

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

« num_segments (int): the number of road segments

o segment_lengths (list): stores the length of each road segment. The index of
each element corresponds to the segment index.

 source_node (agent): the source node of the road
» target_node (agent): the target node of the road
o vehicle_ordering (1list): provides information about the ordering of vehicle
on any given lane
Actions
register

register the agent on the road at the given lane

Returned type: bool

Additional facets:

» agent (agent): the agent to register on the road.

e lane (int): the lane index on which to register; if lane index >= number of
lanes, then register on the linked road

Examples:

[do register agent: the_driver lane: O]

unregister

unregister the agent on the road

Returned type: bool

v 1.8.2 332

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Additional facets:

» agent (agent): the agent to unregister on the road.

Examples:

[do unregister agent: the_driver]

skill road_node

Variables

e block (map): define the list of agents blocking the node, and for each agent, the
list of concerned roads

 priority_roads (list): the list of priority roads
e roads_in (1list): the list of input roads
 roads_out (list): the list of output roads

e stop (list): define for each type of stop, the list of concerned roads

Actions

SQLSKILL

This skill allows agents to be provided with actions and attributes in order to connect
to SQL databases

v 1.8.2 333

GAMA v1.8.2 documentation

Chapter 30. Built-in Skills

Variables

Actions

executeUpdate

Returned type: int

Additional facets:

o params (map): Connection parameters

» updateComm (string): SQL commands such as Create, Update, Delete, Drop

with question mark

 values (list): List of values that are used to replace question mark

getCurrentDateTime

Returned type: string

Additional facets:

 dateFormat (string): date format examples:

HH:mm:ss’

getDateOffset

‘yyyy-MM-dd” , ‘yyyy-MM-dd

Returned type: string

v 1.8.2

334

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Additional facets:

o dateFormat (string): date format examples: ‘yyyy-MM-dd’ , ‘yyyy-MM-dd
HH:mm:ss’

 dateStr (string): Start date

» offset (string): number on day to increase or decrease

insert

Returned type: int

Additional facets:

o params (map): Connection parameters
e into (string): Table name
e columns (list): List of column name of table

 values (list): List of values that are used to insert into table. Columns and
values must have same size

list2Matrix

Returned type: matrix

v 1.8.2 335

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

Additional facets:

o param (list): Param: a list of records and metadata
 getName (boolean): getType: a boolean value, optional parameter

« getType (boolean): getType: a boolean value, optional parameter

select

Returned type: list

Additional facets:

 params (map): Connection parameters
» select (string): select string with question marks

 values (list): List of values that are used to replace question marks

testConnection

Returned type: bool

Additional facets:

 params (map): Connection parameters

v 1.8.2 336

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

timeStamp

Returned type: float

static_body

Variables

e aabb (geometry): The axis-aligned bounding box. A box used to evaluate the
probability of contacts between objects. Can be displayed as any other GAMA
shapes/geometries in order to verify that the physical representation of the
agent corresponds to its geometry in the model

o friction (float): Between 0 and 1. The coefficient of friction of the agent
(how much it decelerates the agents in contact with him). Default is 0.5

o mass (float): The mass of the agent. Should be equal to 0.0 for static,
motionless agents

e restitution (float): Between 0 and 1. The coefficient of restitution of the
agent (defines the ‘bounciness’ of the agent). Default is 0

e rotation (pair): The rotation of the physical body, expressed as a pair which
key is the angle in degrees and value the axis around which it is measured
Actions
contact_added_with

This action can be redefined in order for the agent to implement a specific
behavior when it comes into contact (collision) with another agent. It is

v 1.8.2 337

GAMA v1.8.2 documentation Chapter 30. Built-in Skills

automatically called by the physics simulation engine on both colliding
agents. The default built-in behavior does nothing.

Returned type: unknown

Additional facets:

» other (agent): represents the other agent with which a collision has been
detected

contact_removed_with

This action can be redefined in order for the agent to implement a specific
behavior when a previous contact with another agent is removed. It is
automatically called by the physics simulation engine on both colliding
agents. The default built-in behavior does nothing.

Returned type: unknown

Additional facets:

« other (agent): represents the other agent with which a collision has been
detected

update_body

This action must be called when the geometry of the agent changes in
the simulation world and this change must be propagated to the physical
world. The change of location (in either worlds) or the rotation due to
physical forces do not count as changes, as they are already taken into
account. However, a rotation in the simulation world need to be handled
by calling this action. As it involves long operations (removing the agent
from the physical world, then reinserting it with its new shape), this
action should not be called too often.

Returned type: unknown

v 1.8.2 338

Chapter 31

Built-in Architectures

This file is automatically generated from java files. Do Not Edit It.

INTRODUCTION

Table of Contents

[fsm] (#fsm), [parallel_bdil] (#parallel_bdi), [
probabilistic_tasks] (#probabilistic_tasks), [reflex] (#
reflex), [rules](#rules), [simple_bdil] (#simple_bdi), [
sorted_tasks] (#sorted_tasks), [user_first] (#user_first),
user_last] (#user_last), [user_only] (#user_only), [
weighted_tasks] (#weighted_tasks),

[

339

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

fsm

Variables

 state (string): Returns the name of the current state of the agent

 states (list): Returns the list of all the states defined in the species

Actions

parallel bdi

compute the bdi architecture in parallel

Variables

Actions

probabilistic__tasks

Variables

Actions

v 1.8.2 340

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

reflex

Variables

Actions

rules

Variables

Actions

simple bdi

this architecture enables to define a behaviour using BDI. It is an implementation of
the BEN architecture (Behaviour with Emotions and Norms)

Variables
 agreeablemness (float): an agreeableness value for the personality
» belief_base (list): the belief base of the agent
e charisma (float): a charisma value. By default, it is computed with personality
» conscientiousness (float): a conscientiousness value for the personality

e current_norm (any type): the current norm of the agent

v 1.8.2 341

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

e current_plan (any type): thecurrent plan of the agent

o desire_base (list): the desire base of the agent

» emotion_base (list): the emotion base of the agent
 extroversion (float): an extraversion value for the personality
o ideal_base (list): the ideal base of the agent

« intention_base (list): the intention base of the agent

» intention_persistence (float): intention persistence

o law_base (list): the law base of the agent

 neurotisnm (float): a neurotism value for the personality
 norm_base (list): the norm base of the agent

o obedience (float): an obedience value. By default, it is computed with
personality

» obligation_base (list): the obligation base of the agent
 openness (float): an openness value for the personality
 plan_base (list): the plan base of the agent

+ plan_persistence (float): plan persistence

e probabilistic_choice (boolean): indicates if the choice is deterministic or
probabilistic

e receptivity (float): a receptivity value. By default, it is computed with
personality

o sanction_base (list): the sanction base of the agent

v 1.8.2 342

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

e social_link_base (list): the social link base of the agent
 thinking (list): the list of the last thoughts of the agent
 uncertainty_base (list): the uncertainty base of the agent

» use_emotions_architecture (boolean): indicates if emotions are automaticaly
computed

 use_norms (boolean): indicates if the normative engine is used

» use_persistence (boolean): indicates if the persistence coefficient is computed
with personality (false) or with the value given by the modeler

 use_personality (boolean): indicates if the personnality is used

» use_social_architecture (boolean): indicates if social relations are automati-
caly computed

Actions
add_belief

add the predicate in the belief base.

e returns: bool
» predicate (predicate): predicate to add as a belief
o strength (float): the stregth of the belief

o lifetime (int): the lifetime of the belief

add_belief_emotion

add the belief about an emotion in the belief base.

v 1.8.2 343

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

returns: bool

e emotion (emotion): emotion to add as a belief

strength (float): the stregth of the belief

o lifetime (int): the lifetime of the belief

add_belief _mental_state

add the predicate in the belief base.

returns: bool

» mental_state (mental state): predicate to add as a belief

strength (float): the stregth of the belief

e lifetime (int): the lifetime of the belief

add_desire

adds the predicates is in the desire base.

returns: bool

» predicate (predicate): predicate to add as a desire
» strength (float): the stregth of the belief
o lifetime (int): the lifetime of the belief

« todo (predicate): add the desire as a subintention of this parameter

add_desire_emotion

adds the emotion in the desire base.

v 1.8.2 344

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

« returns: bool

e emotion (emotion): emotion to add as a desire
 strength (float): the stregth of the desire

o lifetime (int): the lifetime of the desire

e todo (predicate): add the desire as a subintention of this parameter

add_desire_mental_state

adds the mental state is in the desire base.

e returns: bool

» mental_state (mental state): mental state to add as a desire
» strength (float): the stregth of the desire

o lifetime (int): the lifetime of the desire

e todo (predicate): add the desire as a subintention of this parameter

add_directly_belief

add the belief in the belief base.

e returns: bool

« belief (mental state): belief to add in th belief base

add_directly_desire
add the desire in the desire base.

v 1.8.2 345

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

e returns: bool

o desire (mental_state): desire to add in th belief base
add_directly_ideal
add the ideal in the ideal base.

e returns: bool

o ideal (mental state): ideal to add in the ideal base

add_directly_uncertainty

add the uncertainty in the uncertainty base.

e returns: bool

« uncertainty (mental state): uncertainty to add in the uncertainty base

add_emotion

add the emotion to the emotion base.

e returns: bool

 emotion (emotion): emotion to add to the base

add_ideal

add a predicate in the ideal base.

e returns: bool

 predicate (predicate): predicate to add as an ideal

v 1.8.2 346

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

 praiseworthiness (float): the praiseworthiness value of the ideal

e lifetime (int): the lifetime of the ideal

add_ideal_emotion

add a predicate in the ideal base.

« returns: bool
 emotion (emotion): emotion to add as an ideal
 praiseworthiness (float): the praiseworthiness value of the ideal

e lifetime (int): the lifetime of the ideal

add_ideal_mental_state

add a predicate in the ideal base.

e returns: bool
« mental_state (mental state): mental state to add as an ideal
 praiseworthiness (float): the praiseworthiness value of the ideal

e lifetime (int): the lifetime of the ideal

add_intention

check if the predicates is in the desire base.

e returns: bool

» predicate (predicate): predicate to check

v 1.8.2 347

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

« strength (float): the stregth of the belief

e lifetime (int): the lifetime of the belief

add_intention_emotion

check if the predicates is in the desire base.

« returns: bool
 emotion (emotion): emotion to add as an intention
« strength (float): the stregth of the belief

o lifetime (int): the lifetime of the belief

add_intention_mental_state

check if the predicates is in the desire base.

« returns: bool
« mental_state (mental state): predicate to add as an intention
 strength (float): the stregth of the belief

o lifetime (int): the lifetime of the belief

add_obligation

add a predicate in the ideal base.

e returns: bool

« predicate (predicate): predicate to add as an obligation

v 1.8.2 348

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

 strength (float): the strength value of the obligation

e lifetime (int): the lifetime of the obligation

add_social_link
add the social link to the social link base.
e returns: bool

e social_link (social link): social link to add to the base

add_subintention

adds the predicates is in the desire base.

returns: bool
o predicate (mental state): the intention that receives the sub_intention

» subintentions (predicate): the predicate to add as a subintention to the
intention

e add_as_desire (boolean): add the subintention as a desire as well (by default,
false)

add_uncertainty

add a predicate in the uncertainty base.
e returns: bool
» predicate (predicate): predicate to add
 strength (float): the stregth of the belief
o lifetime (int): the lifetime of the belief

v 1.8.2 349

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

add_uncertainty_emotion

add a predicate in the uncertainty base.

« returns: bool
« emotion (emotion): emotion to add as an uncertainty
« strength (float): the stregth of the belief

o lifetime (int): the lifetime of the belief

add_uncertainty_mental_state

add a predicate in the uncertainty base.

« returns: bool
» mental_state (mental state): mental state to add as an uncertainty
« strength (float): the stregth of the belief

e lifetime (int): the lifetime of the belief

change_dominance

changes the dominance value of the social relation with the agent specified.

e returns: bool
« agent (agent): an agent with who I get a social link
 dominance (float): a value to change the dominance value

v 1.8.2 350

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

change_familiarity

changes the familiarity value of the social relation with the agent specified.
o returns: bool
» agent (agent): an agent with who I get a social link

o familiarity (float): a value to change the familiarity value
change_liking
changes the liking value of the social relation with the agent specified.

e returns: bool
» agent (agent): an agent with who I get a social link

 liking (float): a value to change the liking value
change_solidarity
changes the solidarity value of the social relation with the agent specified.

e returns: bool
» agent (agent): an agent with who I get a social link

» solidarity (float): a value to change the solidarity value

change_trust

changes the trust value of the social relation with the agent specified.

e returns: bool

v 1.8.2 351

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

» agent (agent): an agent with who I get a social link

o trust (float): a value to change the trust value

clear_beliefs

clear the belief base

e returns: bool

clear_desires

clear the desire base

e returns: bool

clear_emotions

clear the emotion base

e returns: bool

clear_ideals

clear the ideal base

e returns: bool

clear_intentions

clear the intention base

e returns: bool

v 1.8.2 352

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

clear_obligations
clear the obligation base

e returns: bool

clear_social_links
clear the intention base

e returns: bool

clear_uncertainties
clear the uncertainty base

e returns: bool

current_intention_on_hold

puts the current intention on hold until the specified condition is reached or all
subintentions are reached (not in desire base anymore).

e returns: bool

e until (any type): the current intention is put on hold (fited plan are not
considered) until specific condition is reached. Can be an expression (which
will be tested), a list (of subintentions), or nil (by default the condition will be
the current list of subintentions of the intention)

get_belief

return the belief about the predicate in the belief base (if several, returns the first
one).

e returns: mental state

» predicate (predicate): predicate to get

v 1.8.2 353

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

get_belief_emotion

return the belief about the emotion in the belief base (if several, returns the first
one).

e returns: mental state

 emotion (emotion): emotion about which the belief to get is

get_belief_mental_state

return the belief about the mental state in the belief base (if several, returns the first
one).

e returns: mental state

» mental_state (mental state): mental state to get

get_belief_with_name

get the predicates is in the belief base (if several, returns the first one).

e returns: mental state

+ name (string): name of the predicate to check

get_beliefs

get the list of predicates in the belief base

o returns: list
» predicate (predicate): predicate to check

v 1.8.2 354

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

get_beliefs_metal_state

get the list of bliefs in the belief base containing the mental state
e returns: list
» mental_state (mental state): mental state to check
get_beliefs_with_name
get the list of predicates is in the belief base with the given name.
o returns: list
e name (string): name of the predicates to check
get_current_intention
returns the current intention (last entry of intention base).
e returns: mental state
get_current_plan
get the current plan.
o returns: BDIPlan
get_desire
get the predicates is in the desire base (if several, returns the first one).

e returns: mental state
» predicate (predicate): predicate to check

v 1.8.2 355

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

get_desire_mental_state

get the mental state is in the desire base (if several, returns the first one).

e returns: mental state

» mental_state (mental state): mental state to check

get_desire_with_name

get the predicates is in the belief base (if several, returns the first one).

e returns: mental state

e name (string): name of the predicate to check

get_desires

get the list of predicates is in the desire base

e returns: list

 predicate (predicate): name of the predicates to check

get_desires_mental_state

get the list of mental states is in the desire base

e returns: list
» mental_state (mental state): name of the mental states to check

v 1.8.2 356

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

get_desires_with_name

get the list of predicates is in the belief base with the given name.

e returns: list

« name (string): name of the predicates to check

get_emotion

get the emotion in the emotion base (if several, returns the first one).

e returns: emotion

e emotion (emotion): emotion to get

get_emotion_with_name

get the emotion is in the emotion base (if several, returns the first one).

e returns: emotion

e name (string): name of the emotion to check

get_ideal

get the ideal about the predicate in the ideal base (if several, returns the first one).

e returns: mental state
» predicate (predicate): predicate to check ad an ideal

v 1.8.2 357

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

get_ideal_mental_state

get the mental state in the ideal base (if several, returns the first one).

e returns: mental state

» mental_state (mental state): mental state to return

get_intention

get the predicates in the intention base (if several, returns the first one).

e returns: mental state

« predicate (predicate): predicate to check

get_intention_mental_state

get the mental state is in the intention base (if several, returns the first one).

e returns: mental state

» mental_state (mental state): mental state to check

get_intention_with_name

get the predicates is in the belief base (if several, returns the first one).

e returns: mental state
« name (string): name of the predicate to check

v 1.8.2 358

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

get_intentions

get the list of predicates is in the intention base

e returns: list

 predicate (predicate): name of the predicates to check

get_intentions_mental_state

get the list of mental state is in the intention base

e returns: list

» mental_state (mental state): mental state to check

get_intentions_with_name

get the list of predicates is in the belief base with the given name.

e returns: list

 name (string): name of the predicates to check

get_obligation

get the predicates in the obligation base (if several, returns the first one).

e returns: mental state
» predicate (predicate): predicate to return

v 1.8.2 359

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

get_plan
get the first plan with the given name

e returns: BDIPlan

 name (string): the name of the planto get

get_plans
get the list of plans.

e returns: list

get_social_link
get the social link (if several, returns the first one).
e returns: social link

e social_link (social link): social link to check

get_social_link_with_agent
get the social link with the agent concerned (if several, returns the first one).
e returns: social link

o agent (agent): an agent with who I get a social link

get_uncertainty
get the predicates is in the uncertainty base (if several, returns the first one).
e returns: mental state

« predicate (predicate): predicate to return

v 1.8.2 360

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

get_uncertainty_mental_state

get the mental state is in the uncertainty base (if several, returns the first one).

e returns: mental state

» mental_state (mental state): mental state to return

has_belief

check if the predicates is in the belief base.

e returns: bool

« predicate (predicate): predicate to check

has_belief_mental_state

check if the mental state is in the belief base.

e returns: bool

» mental_state (mental state): mental state to check

has_belief with_name

check if the predicate is in the belief base.

« returns: bool
« name (string): name of the predicate to check

v 1.8.2 361

GAMA v1.8.2 documentation Chapter 31.

Bualt-in Architectures

has_desire

check if the predicates is in the desire base.

e returns: bool

» predicate (predicate): predicate to check

has_desire_mental_state

check if the mental state is in the desire base.

e returns: bool

» mental_state (mental state): mental state to check

has_desire_with_name

check if the prediate is in the desire base.

e returns: bool

 name (string): name of the predicate to check

has_emotion

check if the emotion is in the belief base.

« returns: bool
e emotion (emotion): emotion to check

v 1.8.2

362

GAMA v1.8.2 documentation Chapter 31.

Bualt-in Architectures

has_emotion_with_name

check if the emotion is in the emotion base.

e returns: bool

 name (string): name of the emotion to check

has_ideal

check if the predicates is in the ideal base.

e returns: bool

« predicate (predicate): predicate to check

has_ideal_mental_state

check if the mental state is in the ideal base.

e returns: bool

» mental_state (mental state): mental state to check

has_ideal_with_name

check if the predicate is in the ideal base.

e returns: bool

« name (string): name of the predicate to check

v 1.8.2

363

GAMA v1.8.2 documentation Chapter 31.

Bualt-in Architectures

has_obligation

check if the predicates is in the obligation base.

e returns: bool

» predicate (predicate): predicate to check

has_social_link

check if the social link base.

e returns: bool

 social_link (social link): social link to check

has_social_link_with_agent

check if the social link base.

e returns: bool

« agent (agent): an agent with who I want to check if I have a social link

has_uncertainty

check if the predicates is in the uncertainty base.

e returns: bool
» predicate (predicate): predicate to check

v 1.8.2

364

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

has_uncertainty_mental_state

check if the mental state is in the uncertainty base.

e returns: bool

» mental_state (mental state): mental state to check

has_uncertainty_with_name

check if the predicate is in the uncertainty base.

e returns: bool

e name (string): name of the uncertainty to check

is_current_intention

check if the predicates is the current intention (last entry of intention base).

e returns: bool

« predicate (predicate): predicate to check

is_current_intention_mental_state

check if the mental state is the current intention (last entry of intention base).

e returns: bool
» mental_state (mental state): mental state to check

v 1.8.2 365

GAMA v1.8.2 documentation Chapter 31.

Bualt-in Architectures

is_current_plan

tell if the current plan has the same name as tested

e returns: bool

 name (string): the name of the plan to test

remove_all_beliefs

removes the predicates from the belief base.

e returns: bool

 predicate (predicate): predicate to remove

remove_belief

removes the predicate from the belief base.

e returns: bool

 predicate (predicate): predicate to remove

remove_belief mental_state

removes the mental state from the belief base.

« returns: bool
» mental_state (mental state): mental state to remove

v 1.8.2

366

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

remove_desire

removes the predicates from the desire base.

e returns: bool

 predicate (predicate): predicate to remove from desire base

remove_desire_mental_state

removes the mental state from the desire base.

e returns: bool

» mental_state (mental state): mental state to remove from desire base

remove_emotion

removes the emotion from the emotion base.

e returns: bool

e emotion (emotion): emotion to remove

remove_ideal

removes the predicates from the ideal base.

o returns: bool
 predicate (predicate): predicate to remove

v 1.8.2 367

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

remove_ideal mental_state

removes the mental state from the ideal base.

e returns: bool

e mental_state (mentalistate): metal state to remove

remove_intention

removes the predicates from the intention base.

e returns: bool
» predicate (predicate): intention’s predicate to remove

 desire_also (boolean): removes also desire

remove_intention_mental_state

removes the mental state from the intention base.

e returns: bool
» mental_state (mental state): intention’s mental state to remove

 desire_also (boolean): removes also desire

remove_obligation

removes the predicates from the obligation base.

o returns: bool
» predicate (predicate): predicate to remove

v 1.8.2

368

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

remove_social_link

removes the social link from the social relation base.

e returns: bool

e social_link (social link): social link to remove

remove_social_link_with_agent

removes the social link from the social relation base.

e returns: bool

e agent (agent): an agent with who I get the social link to remove

remove_uncertainty

removes the predicates from the uncertainty base.

e returns: bool

 predicate (predicate): predicate to remove

remove_uncertainty_mental_state

removes the mental state from the uncertainty base.

« returns: bool
» mental_state (mental state): mental state to remove

v 1.8.2

369

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

replace_belief

replace the old predicate by the new one.

e returns: bool
» old_predicate (predicate): predicate to remove

» predicate (predicate): predicate to add

sorted_ tasks

Variables

Actions

user_first

Variables

Actions

v 1.8.2 370

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

user__last

Variables

Actions

user__only

Variables

Actions

weighted_ tasks

Variables

Actions

v 1.8.2 371

GAMA v1.8.2 documentation Chapter 31. Built-in Architectures

v 1.8.2 372

Chapter 32

Statements

This file is automatically generated from java files. Do Not Edit It.

Table of Contents

=, action, add, agents, annealing, ask, aspect, assert, benchmark, break, camera,
capture, catch, chart, conscious_contagion, coping, create, data, datalist, default, dif-
fuse, display, display grid, display population, do, draw, else, emotional contagion,
enforcement, enter, equation, error, event, exhaustive, exit, experiment, explicit, focus,
focus on, generate, genetic, graphics, highlight, hill climbing, if, image, inspect, law,
layout, let, light, loop, match, mesh, migrate, monitor, norm, output, output_ file,
overlay, parameter, perceive, permanent, plan, pso, put, reactive_tabu, reflex, release,
remove, return, rotation, rule, rule, run, sanction, save, set, setup, simulate, sobol,
socialize, solve, species, start simulation, state, status, switch, tabu, task, test,
trace, transition, try, unconscious contagion, user command, user_init, user_input,
user__panel, using, Variable container, Variable number, Variable regular, warn,
write,

373

GAMA v1.8.2 documentation Chapter 32. Statements

Statements by kinds

« Batch method
— annealing, exhaustive, explicit, genetic, hill climbing, pso, reactive tabu,
sobol, tabu,
« Behavior
— aspect, coping, norm, plan, reflex, rule, sanction, state, task, test,
user__init, user_panel,
« Behavior
— aspect, coping, norm, plan, reflex, rule, sanction, state, task, test,
user__init, user panel,
 Experiment

— experiment,

o Layer

— agents, camera, chart, display grid, display population, event, graphics,
image, light, mesh, overlay, rotation,

e Output

— display, inspect, layout, monitor, output, output_ file, permanent,

« Parameter

— parameter,

« Sequence of statements or action

v 1.8.2 374

GAMA v1.8.2 documentation Chapter 32. Statements

— action, ask, benchmark, capture, catch, create, default, else, enter,
equation, exit, generate, if, loop, match, migrate, perceive, release, run,
setup, start_ simulation, switch, trace, transition, try, user command,
using,

« Sequence of statements or action

— action, ask, benchmark, capture, catch, create, default, else, enter,
equation, exit, generate, if, loop, match, migrate, perceive, release, run,
setup, start_simulation, switch, trace, transition, try, user command,
using,

« Sequence of statements or action

— action, ask, benchmark, capture, catch, create, default, else, enter,
equation, exit, generate, if, loop, match, migrate, perceive, release, run,
setup, start_ simulation, switch, trace, transition, try, user command,
using,

« Sequence of statements or action

— action, ask, benchmark, capture, catch, create, default, else, enter,
equation, exit, generate, if, loop, match, migrate, perceive, release, run,
setup, start_ simulation, switch, trace, transition, try, user_command,
using,

« Sequence of statements or action

— action, ask, benchmark, capture, catch, create, default, else, enter,
equation, exit, generate, if, loop, match, migrate, perceive, release, run,
setup, start_ simulation, switch, trace, transition, try, user command,
using,

» Single statement

— =, add, assert, break, conscious_contagion, data, datalist, diffuse, do,
draw, emotional contagion, enforcement, error, focus, focus_on, highlight,
law, let, put, remove, return, rule, save, set, simulate, socialize, solve,

v 1.8.2 375

GAMA v1.8.2 documentation Chapter 32. Statements

status, unconscious__contagion, user__input, warn, write,

» Single statement

— =, add, assert, break, conscious_contagion, data, datalist, diffuse, do,
draw, emotional contagion, enforcement, error, focus, focus_on, highlight,
law, let, put, remove, return, rule, save, set, simulate, socialize, solve,
status, unconscious__contagion, user__input, warn, write,

» Single statement

— =, add, assert, break, conscious_contagion, data, datalist, diffuse, do,
draw, emotional contagion, enforcement, error, focus, focus_on, highlight,
law, let, put, remove, return, rule, save, set, simulate, socialize, solve,
status, unconscious_ contagion, user__input, warn, write,

« Single statement

— =, add, assert, break, conscious_contagion, data, datalist, diffuse, do,
draw, emotional contagion, enforcement, error, focus, focus on, highlight,
law, let, put, remove, return, rule, save, set, simulate, socialize, solve,
status, unconscious_ contagion, user input, warn, write,

« Species

— species,

e Variable (container)

— Variable container,

e Variable (number)

— Variable number,

e Variable (regular)

— Variable regular,

v 1.8.2 376

GAMA v1.8.2 documentation Chapter 32. Statements

Statements by embedment

« Behavior

— add, ask, assert, benchmark, capture, conscious_ contagion, create, diffuse,
do, emotional contagion, enforcement, error, focus, focus_on, generate,
highlight, if, inspect, let, loop, migrate, put, release, remove, return, run,
save, set, simulate, socialize, solve, start simulation, status, switch, trace,
transition, try, unconscious_ contagion, using, warn, write,

e Environment
— species,
 Experiment

— action, annealing, exhaustive, explicit, genetic, hill climbing, output, pa-
rameter, permanent, pso, reactive tabu, reflex, rule, setup, simulate, sobol,
state, tabu, task, test, user command, user init, user panel, Variable -
container, Variable number, Variable regular,

o Layer

— add, ask, benchmark, draw, error, focus_ on, highlight, if, let, loop, put,
remove, set, status, switch, trace, try, using, warn, write,

e Model

— action, aspect, coping, equation, experiment, law, norm, output, perceive,
plan, reflex, rule, rule, run, sanction, setup, species, start_simulation, state,
task, test, user command, user init, user panel, Variable container,
Variable number, Variable regular,

e Output
— ask, if,
« Sequence of statements or action

— add, ask, assert, assert, benchmark, break, capture, conscious_ contagion,
create, data, datalist, diffuse, do, draw, emotional contagion, enforcement,
error, focus, focus_ on, generate, highlight, if, inspect, let, loop, migrate,
put, release, remove, return, save, set, simulate, socialize, solve, status,
switch, trace, transition, try, unconscious_ contagion, using, warn, write,

v 1.8.2 377

GAMA v1.8.2 documentation Chapter 32. Statements

Single statement
— run, start simulation,
e Species

— action, aspect, coping, equation, law, norm, perceive, plan, reflex, rule, rule,
run, sanction, setup, simulate, species, start simulation, state, task, test,
user command, user init, user panel, Variable container, Variable -
number, Variable regular,

e action
— assert, return,
+ aspect
— draw,
e chart
— add, ask, data, datalist, do, put, remove, set, simulate, using,
o display

— agents, camera, chart, display grid, display population, event, graphics,
image, light, mesh, overlay, rotation,

« display_ population
— display_population,

e equation

b

o fsm
— state, user_panel,
o if
— else,
e output
— display, inspect, layout, monitor, output_ file,

o parallel__bdi

v 1.8.2 378

GAMA v1.8.2 documentation Chapter 32. Statements

— coping, rule,
e permanent
— display, inspect, monitor, output_ file,
o probabilistic_ tasks
— task,
o rules
— rule,
» simple_ bdi
— coping, rule,
e sorted_ tasks
— task,
o state
— enter, exit,
o switch
— default, match,
o test
— assert,
o try
— catch,
e user__command
— user__input,
e user_first
— user__panel,
e user__init

— user__panel,

v 1.8.2 379

GAMA v1.8.2 documentation Chapter 32. Statements

e user_last
— user_ panel,
e user__only
— user__panel,
e user__panel
— user__command,
o weighted_ tasks

— task,

General syntax

A statement represents either a declaration or an imperative command. It consists in
a keyword, followed by specific facets, some of them mandatory (in bold), some of
them optional. One of the facet names can be omitted (the one denoted as omissible).
It has to be the first one.

statement_keyword expressionl facet2: expression2 ... ;
or
statement_keyword facetl: expressionl facet2: expression2 ...;

If the statement encloses other statements, it is called a sequence statement, and
its sub-statements (either sequence statements or single statements) are declared
between curly brackets, as in:

statement_keywordl expressionl facet2: expression2... { // a
sequence statement
statement_keyword2 expressionl facet2: expression2...;
// a single statement
statement_keyword3 expressionl facet2: expression2...;

v 1.8.2 380

GAMA v1.8.2 documentation Chapter 32. Statements

Facets

« right (float), (omissible) : the right part of the equation (it is mandatory that
it can be evaluated as a float

o left (any type): the left part of the equation (it should be a variable or a call
to the diff() or diff2() operators)

Definition
Allows to implement an equation in the form function(n, t) = expression. The left

function is only here as a placeholder for enabling a simpler syntax and grabbing the
variable as its left member.

Usages

o The syntax of the = statement is a bit different from the other statements. It
has to be used as follows (in an equation):

float t;
float S;
float I;
equation SI {
diff (S,t)
diff (I,t)

(- 0.3 xS x I / 100);
(0.3 *x S x I / 100);

e See also: equation, solve,

Embedments

e The = statement is of type: Single statement
e The = statement can be embedded into: equation,
o The = statement embeds statements:

v 1.8.2 381

GAMA v1.8.2 documentation Chapter 32. Statements

action
Facets

 name (an identifier), (omissible) : identifier of the action

o index (a datatype identifier): if the action returns a map, the type of its keys

« of (a datatype identifier): if the action returns a container, the type of its
elements

« type (a datatype identifier): the action returned type

o virtual (boolean): whether the action is virtual (defined without a set of
instructions) (false by default)

Definition

Allows to define in a species, model or experiment a new action that can be called
elsewhere.

Usages

o The simplest syntax to define an action that does not take any parameter and
does not return anything is:

action simple_action {
// [set of statements]

3

o If the action needs some parameters, they can be specified betwee, braquets
after the identifier of the action:

action action_parameters(int i, string s){
// [set of statements using i and s]

}

o If the action returns any value, the returned type should be used instead of the
“action” keyword. A return statement inside the body of the action statement
is mandatory.

v 1.8.2 382

GAMA v1.8.2 documentation Chapter 32. Statements

int action_return_val(int i, string s){
// [set of statements using i and s]
return i + ij;

o If virtual: is true, then the action is abstract, which means that the action
is defined without body. A species containing at least one abstract action is
abstract. Agents of this species cannot be created. The common use of an
abstract action is to define an action that can be used by all its sub-species,
which should redefine all abstract actions and implements its body.

species parent_species {
int virtual_action(int i, string s);

}

species children parent: parent_species {
int virtual_action(int i, string s) {
return i + 1i;

}

e See also: do,

Embedments

o The action statement is of type: Sequence of statements or action
o The action statement can be embedded into: Species, Experiment, Model,
e The action statement embeds statements: assert, return,

add

Facets

e to (any type in [container, species, agent, geometry|): an expression that
evaluates to a container

v 1.8.2 383

GAMA v1.8.2 documentation Chapter 32. Statements

 item (any type), (omissible) : any expression to add in the container

« all (any type): Allows to either pass a container so as to add all its element,
or ‘true’, if the item to add is already a container.

« at (any type): position in the container of added element

Definition

Allows to add, i.e. to insert, a new element in a container (a list, matrix, map,
...).Incorrect use: The addition of a new element at a position out of the bounds
of the container will produce a warning and let the container unmodified. If all: is
specified, it has no effect if its argument is not a container, or if its argument is ‘true’
and the item to add is not a container. In that latter case

Usages

e The new element can be added either at the end of the container or at a
particular position.

add expr to: expr_container; // Add at the end
add expr at: expr to: expr_container; // Add at position
expr

o Case of a list, the expression in the facet at: should be an integer.

list<int> workingList <- [];add 0 at: O to: workingList ;//
workinglList equals [0]ladd 10 at: O to: workingList ;//
workinglList equals [10,0]add 20 at: 2 to: workingList ;//
workinglList equals [10,0,20]add 50 to: workinglList;//
workingList equals [10,0,20,50]add [60,70] all: true to:
workinglList;//workinglist equals [10,0,20,50,60,70]

o Case of a map: As a map is basically a list of pairs key::value, we can also
use the add statement on it. It is important to note that the behavior of the
statement is slightly different, in particular in the use of the at facet, which
denotes the key of the pair.

v 1.8.2 384

GAMA v1.8.2 documentation Chapter 32. Statements

map<string,string> workingMap <- [];add "vall" at: "x" to:
workingMap;//workingMap equals ["x"::"vall"]

o If the at facet is omitted, a pair expr_item::expr_item will be added to the
map. An important exception is the case where the expr_item is a pair: in this
case the pair is added.

add "val2" to: workingMap;//workingMap equals ["x"::"vall", "val2"::"val2
"ladd "5"::"val4" to: workingMap; //workingMap equals ["x"::"vall", "val2
ll: I“V&]_Q", II5||: :"Va14"]

« Notice that, as the key should be unique, the addition of an item at an existing
position (i.e. existing key) will only modify the value associated with the given
key.

add "val3" at: "x" to: workingMap;//workingMap equals ["x"::"val3", '"val2
ll: :llvalzll, ||5||: :Ilva14||]

e On a map, the all facet will add all value of a container in the map (so as pair
val__cont::val__cont)

add ["vald","valb5"] all: true at: "x" to: workingMap;//workingMap equals
["x"::"val3", "val2"::"val2", "5"::"vald","vald"::"vald","valb"::"val5"]

o In case of a graph, we can use the facets node, edge and weight to add a node,
an edge or weights to the graph. However, these facets are now considered as
deprecated, and it is advised to use the various edge(), node(), edges(), nodes()
operators, which can build the correct objects to add to the graph

graph g <- as_edge_graph ([{1,5}::{12,45}1);

add edge: {1,5}::{2,3} to: g;

list var <- g.vertices; // var equals [{1,5},{12,45},{2,3}]

list var <- g.edges; // var equals [polyline
({1.0,5.0}::{12.0,45.0}) ,polyline({1.0,5.0}::{2.0,3.0})]

add node: {5,5} to: g;

list var <- g.vertices; // var equals
({1.0,5.0},{12.0,45.0},{2.0,3.0},{56.0,5.0}]

list var <- g.edges; // var equals [polyline
({1.0,5.0}::{12.0,45.0}) ,polyline({1.0,5.0}::{2.0,3.0})]

v 1.8.2 385

GAMA v1.8.2 documentation Chapter 32. Statements

e Case of a matrix: this statement can not be used on matrix. Please refer to the
statement put.

e See also: put, remove,

Embedments

o The add statement is of type: Single statement

o The add statement can be embedded into: chart, Behavior, Sequence of state-
ments or action, Layer,

e The add statement embeds statements:

agents
Facets

« value (container): the set of agents to display

« name (a label), (omissible) : Human readable title of the layer

o aspect (an identifier): the name of the aspect that should be used to display
the species

e fading (boolean): Used in conjunction with ‘trace:’, allows to apply a fading
effect to the previous traces. Default is false

e position (point): position of the upper-left corner of the layer. Note that if
coordinates are in [0,1[, the position is relative to the size of the environment
(e.g. {0.5,0.5} refers to the middle of the display) whereas it is absolute when
coordinates are greater than 1 for x and y. The z-ordinate can only be defined
between 0 and 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the
last coordinate specifying the elevation of the layer. In case of negative value
OpenGl will position the layer out of the environment.

» refresh (boolean): (openGL only) specify whether the display of the species is
refreshed. (true by default, useful in case of agents that do not move)

» rotate (float): Defines the angle of rotation of this layer, in degrees, around
the z-axis.

» selectable (boolean): Indicates whether the agents present on this layer are
selectable by the user. Default is true

v 1.8.2 386

GAMA v1.8.2 documentation Chapter 32. Statements

 size (point): extent of the layer in the screen from its position. Coordinates
in [0,1] are treated as percentages of the total surface, while coordinates > 1
are treated as absolute sizes in model units (i.e. considering the model occupies
the entire view). Like in ‘position’, an elevation can be provided with the z
coordinate, allowing to scale the layer in the 3 directions

« trace (any type in [boolean, int]): Allows to aggregate the visualization of
agents at each timestep on the display. Default is false. If set to an int value,
only the last n-th steps will be visualized. If set to true, no limit of timesteps is
applied.

 transparency (float): the transparency level of the layer (between 0 — opaque —
and 1 — fully transparent)

» visible (boolean): Defines whether this layer is visible or not

Definition

agents allows the modeler to display only the agents that fulfill a given condition.

Usages

o The general syntax is:

display my_display {
agents layer_name value: expression [additional options];

}

« For instance, in a segregation model, agents will only display unhappy agents:

display Segregation {
agents agentDisappear value: people as list where (each.
is_happy = false) aspect: with_group_color;

« See also: display, chart, event, graphics, display_ grid, image, overlay, display_ -
population,

v 1.8.2 387

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

o The agents statement is of type: Layer
o The agents statement can be embedded into: display,
e The agents statement embeds statements:

annealing
Facets

 name (an identifier), (omissible) : The name of the method. For internal use
only

« aggregation (a label), takes values in: {min, max}: the agregation method

e init_solution (map): init solution: key: name of the variable, value: value of
the variable

e maximize (float): the value the algorithm tries to maximize

e minimize (float): the value the algorithm tries to minimize

e nb_iter_cst_temp (int): number of iterations per level of temperature

o temp_decrease (float): temperature decrease coefficient

o temp_end (float): final temperature

o temp_init (float): initial temperature

Definition

This algorithm is an implementation of the Simulated Annealing algorithm. See the
wikipedia article and [batch161 the batch dedicated page].

Usages

o As other batch methods, the basic syntax of the annealing statement uses
method annealing instead of the expected annealing name: id :

[method annealing [facet: valuel; J

v 1.8.2 388

GAMA v1.8.2 documentation Chapter 32. Statements

o For example:

method annealing temp_init: 100 temp_end: 1 temp_decrease:
0.5 nb_iter_cst_temp: 5 maximize: food_gathered;

Embedments

o The annealing statement is of type: Batch method
e The annealing statement can be embedded into: Experiment,
e The annealing statement embeds statements:

ask
Facets

« target (any type in [container, agent|), (omissible) : an expression that evaluates
to an agent or a list of agents

 as (species): an expression that evaluates to a species

 parallel (any type in [boolean, int]): (experimental) setting this facet to ‘true’
will allow ‘ask’ to use concurrency when traversing the targets; setting it to an
integer will set the threshold under which they will be run sequentially (the
default is initially 20, but can be fixed in the preferences). This facet is false by
default.

Definition

Allows an agent, the sender agent (that can be the [Sections161#global world agent]),
to ask another (or other) agent(s) to perform a set of statements. If the value of the
target facet is nil or empty, the statement is ignored.

v 1.8.2 389

GAMA v1.8.2 documentation Chapter 32. Statements

Usages

o Ask a set of receiver agents, stored in a container, to perform a block of
statements. The block is evaluated in the context of the agents’ species

ask ${receiver_agents} {
${cursor}

» Ask one agent to perform a block of statements. The block is evaluated in the
context of the agent’s species

ask ${one_agent} {
${cursor’}

o If the species of the receiver agent(s) cannot be determined, it is possible to
force it using the as facet. An error is thrown if an agent is not a direct or
undirect instance of this species

ask${receiver_agent(s)} as: ${a_species_expression} {
${cursor}

¥

« To ask a set of agents to do something only if they belong to a given species, the
of _species operator can be used. If none of the agents belong to the species,
nothing happens

ask ${receiver_agents} of_species ${species_namel} {
${cursor}

}

v 1.8.2 390

GAMA v1.8.2 documentation Chapter 32. Statements

o Any statement can be declared in the block statements. All the statements
will be evaluated in the context of the receiver agent(s), as if they were defined
in their species, which means that an expression like self will represent the
receiver agent and not the sender. If the sender needs to refer to itself, some of
its own attributes (or temporary variables) within the block statements, it has
to use the keyword myself.

species animal A
float energy <- rnd (1000) min: 0.0;
reflex when: energy > 500 { // executed when the energy is
above the given threshold
list<animal> others <- (animal at_distance 5); //
find all the neighboring animals in a radius of 5 meters
float shared_energy <- (energy - 500) / length (
others); // compute the amount of energy to share with each
of them
ask others { // no need to cast, since others has
already been filtered to only include animals
if (energy < 500) { // refers to the energy of
each animal in others
energy <- energy + myself.shared_energy; //
increases the energy of each animal
myself .energy <- myself.energy - myself.
shared_energy; // decreases the energy of the sender

}
}
}
}

o If the species of the receiver agent cannot be determined, it is possible to force
it by casting the agent. Nothing happens if the agent cannot be casted to this
species

Embedments

o The ask statement is of type: Sequence of statements or action
o The ask statement can be embedded into: chart, Behavior, Sequence of state-
ments or action, Layer, Output,

v 1.8.2 391

GAMA v1.8.2 documentation Chapter 32. Statements

e The ask statement embeds statements:

aspect
Facets

 name (an identifier), (omissible) : identifier of the aspect (it can be used in a
display to identify which aspect should be used for the given species). Two
special names can also be used: ‘default’ will allow this aspect to be used as
a replacement for the default aspect defined in preferences; ‘highlighted’ will
allow the aspect to be used when the agent is highlighted as a replacement for
the default (application of a color)

Definition

Aspect statement is used to define a way to draw the current agent. Several aspects
can be defined in one species. It can use attributes to customize each agent’s aspect.
The aspect is evaluate for each agent each time it has to be displayed.

Usages

o An example of use of the aspect statement:

species one_species {
int a <- rnd(10);
aspect aspectl {
if(a mod 2 = 0) { draw circle(a);}
else {draw square(a);}
draw text: + a color: #black size: 5;

v 1.8.2 392

GAMA v1.8.2 documentation Chapter 32. Statements

Embedments

o The aspect statement is of type: Behavior
e The aspect statement can be embedded into: Species, Model,
o The aspect statement embeds statements: draw,

assert
Facets
« value (boolean), (omissible) : a boolean expression. If its evaluation is true,
the assertion is successful. Otherwise, an error (or a warning) is raised.

« warning (boolean): if set to true, makes the assertion emit a warning instead of
an error

Definition
Allows to check if the evaluation of a given expression returns true. If not, an error
(or a warning) is raised. If the statement is used inside a test, the error is not

propagagated but invalidates the test (in case of a warning, it partially invalidates
it). Otherwise, it is normally propagated

Usages

e Any boolean expression can be used

assert (2+2) = 4;

assert self != nil;

int t <- 0; assert is_error (3/t);
(1 / 2) is float

o if the ‘warn:’ facet is set to true, the statement emits a warning (instead of an
error) in case the expression is false

v 1.8.2 393

GAMA v1.8.2 documentation Chapter 32. Statements

[assert 'abc' is string warning: true J

e See also: test, setup, is_error, is_warning,

Embedments

o The assert statement is of type: Single statement

o The assert statement can be embedded into: test, action, Sequence of state-
ments or action, Behavior, Sequence of statements or action,

o The assert statement embeds statements:

benchmark
Facets
» message (any type), (omissible) : A message to display alongside the results.
Should concisely describe the contents of the benchmark
e repeat (int): An int expression describing how many executions of the block

must be handled. The output in this case will return the min, max and average
durations

Definition
Displays in the console the duration in ms of the execution of the statements included

in the block. It is possible to indicate, with the ‘repeat’ facet, how many times the
sequence should be run

Usages
Embedments
o The benchmark statement is of type: Sequence of statements or action

v 1.8.2 394

GAMA v1.8.2 documentation Chapter 32. Statements

o The benchmark statement can be embedded into: Behavior, Sequence of state-
ments or action, Layer,
e The benchmark statement embeds statements:

break
Facets
Definition

break allows to interrupt the current sequence of statements.

Usages
Embedments
o The break statement is of type: Single statement

o The break statement can be embedded into: Sequence of statements or action,
e The break statement embeds statements:

calnlera
Facets

 name (string), (omissible) : The name of the camera. Will be used to populate a
menu with the other camera presets. Can provide a value to the ‘camera:” facet
of the display, which specifies which camera to use.Using the special constant
#default will make it the default of the surrounding display

 distance (float): If the ‘location:’ facet is not defined, defines the distance (in
world units) that separates the camera from its target. If ‘location:” is defined,
especially if it is using a symbolic position, allows to specify the distance to
keep from the target. If neither ‘location:” or ‘distance:’ is defined, the default
distance is the maximum between the width and the height of the world

v 1.8.2 395

GAMA v1.8.2 documentation Chapter 32. Statements

e dynamic (boolean): If true, the location, distance and target are automatically
recomputed every step. Default is false. When true, will also set ‘locked’ to
true, to avoid interferences from users

e lens (any type in [float, int]): Allows to define the lens — field of view in degrees
— of the camera. Between 0 and 360. Defaults to 45°

e location (any type in [point, string]): Allows to define the location of the
camera in the world, i.e. from where it looks at its target. If ‘distance:’ is
specified, the final location is translated on the target-camera axis to respect
the distance. Can be a (possibly dynamically computed) point or a symbolic
position (#from_above, #from_ left, #from_ right, #from up right, #from -
up_left, #from_ front, #from up_front) that will be dynamically recomputed
if the target moveslf ‘location:” is not defined, it will be that of the default
camera (F#from_ top, #from_ left...) defined in the preferences.

e locked (boolean): If true, the user cannot modify the camera location and
target by interacting with the display. It is automatically set when the camera
is dynamic, so that the display can ‘follow’ the coordinates; but it can also be
used with fixed coordinates to ‘focus’ the display on a specific scene

» target (any type in [point, agent, geometryl): Allows to define the target of
the camera (what does it look at). It can be a point (in world coordinates), a
geometry or an agent, in which case its (possibly dynamic) location it used as
the target. This facet can be complemented by ‘distance:” and/or ‘location:’
to specify from where the target is looked at. If ‘target:’ is not defined, the
default target is the centroid of the world shape.

Definition

camera allows the modeler to define a camera. The display will then be able to choose
among the camera defined (either within this statement or globally in GAMA) in a
dynamic way. Several preset cameras are provided and accessible in the preferences
(to choose the default) or in GAML using the keywords #from_ above, #from__ left,
#from_ right, #from_up_right, #from_up_ left, #from_ front, #from_ up_ front,
#isometric. These cameras are unlocked (so that they can be manipulated by the
user), look at the center of the world from a symbolic position, and the distance
between this position and the target is equal to the maximum of the width and height
of the world’s shape. These preset cameras can be reused when defining new cameras,
since their names can become symbolic positions for them. For instance: camera
‘my__camera’ location: #from_ top distance: 10; will lower (or extend) the distance
between the camera and the center of the world to 10. camera ‘my_ camera’ locked:

v 1.8.2 396

GAMA v1.8.2 documentation Chapter 32. Statements

true location: #from_ up_ front target: people(0); will continuously follow the first
agent of the people species from the up-front position.

Usages

o See also: display, agents, chart, event, graphics, display grid, image, display -
population,

Embedments

e The camera statement is of type: Layer
e The camera statement can be embedded into: display,
o The camera statement embeds statements:

capture
Facets
« target (any type in [agent, container|), (omissible) : an expression that is
evaluated as an agent or a list of the agent to be captured
o as (species): the species that the captured agent(s) will become, this is a

micro-species of the calling agent’s species
o returns (a new identifier): a list of the newly captured agent(s)

Definition

Allows an agent to capture other agent(s) as its micro-agent(s).

Usages
o The preliminary for an agent A to capture an agent B as its micro-agent is
that the A’s species must defined a micro-species which is a sub-species of B’s

species (cf. [Species161#Nesting_species Nesting species]).

v 1.8.2 397

GAMA v1.8.2 documentation Chapter 32. Statements

species A {

}

species B {

species C parent: A {

3

}
o To capture all “A” agents as “C” agents, we can ask an “B” agent to execute
the following statement:
[capture list(B) as: C; J
e Deprecated writing:
[capture target: list (B) as: C; J

» See also: release,

Embedments

o The capture statement is of type: Sequence of statements or action

e The capture statement can be embedded into: Behavior, Sequence of statements
or action,

o The capture statement embeds statements:

v 1.8.2 398

GAMA v1.8.2 documentation Chapter 32. Statements

catch
Facets
Definition

This statement cannot be used alone

Usages

e See also: try,

Embedments

o The catch statement is of type: Sequence of statements or action
e The catch statement can be embedded into: try,
e The catch statement embeds statements:

chart
Facets

 name (string), (omissible) : the identifier of the chart layer

e axes (rgh): the axis color

e background (rgh): the background color

e color (rgb): Text color

« gap (float): minimum gap between bars (in proportion)

 label_background_color (rgh): Color of the label background (for Pie chart)

e label_font (any type in [string, font]): Label font face. Either the name of a
font face or a font

« label_text_color (rgh): Color of the label text (for Pie chart)

e legend_font (any type in [string, font]): Legend font face. Either the name of
a font face or a font

v 1.8.2 399

GAMA v1.8.2 documentation Chapter 32. Statements

 memorize (boolean): Whether or not to keep the values in memory (in order to
produce a csv file, for instance). The default value, true, can also be changed
in the preferences

e position (point): position of the upper-left corner of the layer. Note that if
coordinates are in [0,1[, the position is relative to the size of the environment
(e.g. {0.5,0.5} refers to the middle of the display) whereas it is absolute when
coordinates are greater than 1 for x and y. The z-ordinate can only be defined
between 0 and 1. The position can only be a 3D point {0.5, 0.5, 0.5}, the last
coordinate specifying the elevation of the layer.

o reverse_axes (boolean): reverse X and Y axis (for example to get horizental
bar charts

o series_label_position (an identifier), takes values in: {default, none, legend,
onchart, yaxis, xaxis}: Position of the Series names: default (best guess), none,
legend, onchart, xaxis (for category plots) or yaxis (uses the first serie name).

o size (point): the layer resize factor: {1,1} refers to the original size whereas
{0.5,0.5} divides by 2 the height and the width of the layer. In case of a 3D layer,
a 3D point can be used (note that {1,1} is equivalent to {1,1,0}, so a resize of
a layer containing 3D objects with a 2D points will remove the elevation)

o style (an identifier), takes values in: {line, whisker, area, bar, dot, step, spline,
stack, 3d, ring, exploded, default}: The sub-style style, also default style for
the series.

e tick_font (any type in [string, font]): Tick font face. Either the name of a font
face or a font. When used for a series chart, it will set the font of values on the
axes, but When used with a pie, it will modify the font of messages associated
to each pie section.

e tick_line_color (rgb): the tick lines color

e title_font (any type in [s