forked from python/peps
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pep-0204.txt
308 lines (230 loc) · 10.1 KB
/
pep-0204.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
PEP: 204
Title: Range Literals
Version: $Revision$
Last-Modified: $Date$
Author: thomas@python.org (Thomas Wouters)
Status: Rejected
Type: Standards Track
Content-Type: text/x-rst
Created: 14-Jul-2000
Python-Version: 2.0
Post-History:
Introduction
============
This PEP describes the "range literal" proposal for Python 2.0.
This PEP tracks the status and ownership of this feature, slated
for introduction in Python 2.0. It contains a description of the
feature and outlines changes necessary to support the feature.
This PEP summarizes discussions held in mailing list forums, and
provides URLs for further information, where appropriate. The CVS
revision history of this file contains the definitive historical
record.
List ranges
===========
Ranges are sequences of numbers of a fixed stepping, often used in
for-loops. The Python for-loop is designed to iterate over a
sequence directly::
>>> l = ['a', 'b', 'c', 'd']
>>> for item in l:
... print item
a
b
c
d
However, this solution is not always prudent. Firstly, problems
arise when altering the sequence in the body of the for-loop,
resulting in the for-loop skipping items. Secondly, it is not
possible to iterate over, say, every second element of the
sequence. And thirdly, it is sometimes necessary to process an
element based on its index, which is not readily available in the
above construct.
For these instances, and others where a range of numbers is
desired, Python provides the ``range`` builtin function, which
creates a list of numbers. The ``range`` function takes three
arguments, *start*, *end* and *step*. *start* and *step* are
optional, and default to 0 and 1, respectively.
The ``range`` function creates a list of numbers, starting at
*start*, with a step of *step*, up to, but not including *end*, so
that ``range(10)`` produces a list that has exactly 10 items, the
numbers 0 through 9.
Using the ``range`` function, the above example would look like
this::
>>> for i in range(len(l)):
... print l[i]
a
b
c
d
Or, to start at the second element of ``l`` and processing only
every second element from then on::
>>> for i in range(1, len(l), 2):
... print l[i]
b
d
There are several disadvantages with this approach:
- Clarity of purpose: Adding another function call, possibly with
extra arithmetic to determine the desired length and step of the
list, does not improve readability of the code. Also, it is
possible to "shadow" the builtin ``range`` function by supplying a
local or global variable with the same name, effectively
replacing it. This may or may not be a desired effect.
- Efficiency: because the ``range`` function can be overridden, the
Python compiler cannot make assumptions about the for-loop, and
has to maintain a separate loop counter.
- Consistency: There already is a syntax that is used to denote
ranges, as shown below. This syntax uses the exact same
arguments, though all optional, in the exact same way. It seems
logical to extend this syntax to ranges, to form "range
literals".
Slice Indices
=============
In Python, a sequence can be indexed in one of two ways:
retrieving a single item, or retrieving a range of items.
Retrieving a range of items results in a new object of the same
type as the original sequence, containing zero or more items from
the original sequence. This is done using a "range notation"::
>>> l[2:4]
['c', 'd']
This range notation consists of zero, one or two indices separated
by a colon. The first index is the *start* index, the second the
*end*. When either is left out, they default to respectively the
start and the end of the sequence.
There is also an extended range notation, which incorporates
*step* as well. Though this notation is not currently supported
by most builtin types, if it were, it would work as follows::
>>> l[1:4:2]
['b', 'd']
The third "argument" to the slice syntax is exactly the same as
the *step* argument to ``range()``. The underlying mechanisms of the
standard, and these extended slices, are sufficiently different
and inconsistent that many classes and extensions outside of
mathematical packages do not implement support for the extended
variant. While this should be resolved, it is beyond the scope of
this PEP.
Extended slices do show, however, that there is already a
perfectly valid and applicable syntax to denote ranges in a way
that solve all of the earlier stated disadvantages of the use of
the ``range()`` function:
- It is clearer, more concise syntax, which has already proven to
be both intuitive and easy to learn.
- It is consistent with the other use of ranges in Python
(e.g. slices).
- Because it is built-in syntax, instead of a builtin function, it
cannot be overridden. This means both that a viewer can be
certain about what the code does, and that an optimizer will not
have to worry about ``range()`` being "shadowed".
The Proposed Solution
=====================
The proposed implementation of range-literals combines the syntax
for list literals with the syntax for (extended) slices, to form
range literals::
>>> [1:10]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> [:5]
[0, 1, 2, 3, 4]
>>> [5:1:-1]
[5, 4, 3, 2]
There is one minor difference between range literals and the slice
syntax: though it is possible to omit all of *start*, *end* and
*step* in slices, it does not make sense to omit *end* in range
literals. In slices, *end* would default to the end of the list,
but this has no meaning in range literals.
Reference Implementation
========================
The proposed implementation can be found on SourceForge [1]_. It
adds a new bytecode, ``BUILD_RANGE``, that takes three arguments from
the stack and builds a list on the bases of those. The list is
pushed back on the stack.
The use of a new bytecode is necessary to be able to build ranges
based on other calculations, whose outcome is not known at compile
time.
The code introduces two new functions to ``listobject.c``, which are
currently hovering between private functions and full-fledged API
calls.
``PyList_FromRange()`` builds a list from start, end and step,
returning NULL if an error occurs. Its prototype is::
PyObject * PyList_FromRange(long start, long end, long step)
``PyList_GetLenOfRange()`` is a helper function used to determine the
length of a range. Previously, it was a static function in
``bltinmodule.c``, but is now necessary in both ``listobject.c`` and
``bltinmodule.c`` (for ``xrange``). It is made non-static solely to avoid
code duplication. Its prototype is::
long PyList_GetLenOfRange(long start, long end, long step)
Open issues
===========
- One possible solution to the discrepancy of requiring the *end*
argument in range literals is to allow the range syntax to
create a "generator", rather than a list, such as the ``xrange``
builtin function does. However, a generator would not be a
list, and it would be impossible, for instance, to assign to
items in the generator, or append to it.
The range syntax could conceivably be extended to include tuples
(i.e. immutable lists), which could then be safely implemented
as generators. This may be a desirable solution, especially for
large number arrays: generators require very little in the way
of storage and initialization, and there is only a small
performance impact in calculating and creating the appropriate
number on request. (TBD: is there any at all? Cursory testing
suggests equal performance even in the case of ranges of length
1)
However, even if idea was adopted, would it be wise to "special
case" the second argument, making it optional in one instance of
the syntax, and non-optional in other cases ?
- Should it be possible to mix range syntax with normal list
literals, creating a single list? E.g.::
>>> [5, 6, 1:6, 7, 9]
to create::
[5, 6, 1, 2, 3, 4, 5, 7, 9]
- How should range literals interact with another proposed new
feature, "list comprehensions" [2]_? Specifically, should it be
possible to create lists in list comprehensions? E.g.::
>>> [x:y for x in (1, 2) y in (3, 4)]
Should this example return a single list with multiple ranges::
[1, 2, 1, 2, 3, 2, 2, 3]
Or a list of lists, like so::
[[1, 2], [1, 2, 3], [2]_, [2, 3]]
However, as the syntax and semantics of list comprehensions are
still subject of hot debate, these issues are probably best
addressed by the "list comprehensions" PEP.
- Range literals accept objects other than integers: it performs
``PyInt_AsLong()`` on the objects passed in, so as long as the
objects can be coerced into integers, they will be accepted.
The resulting list, however, is always composed of standard
integers.
Should range literals create a list of the passed-in type? It
might be desirable in the cases of other builtin types, such as
longs and strings::
>>> [ 1L : 2L<<64 : 2<<32L ]
>>> ["a":"z":"b"]
>>> ["a":"z":2]
However, this might be too much "magic" to be obvious. It might
also present problems with user-defined classes: even if the
base class can be found and a new instance created, the instance
may require additional arguments to ``__init__``, causing the
creation to fail.
- The ``PyList_FromRange()`` and ``PyList_GetLenOfRange()`` functions need
to be classified: are they part of the API, or should they be
made private functions?
Rejection
=========
After careful consideration, and a period of meditation, this
proposal has been rejected. The open issues, as well as some
confusion between ranges and slice syntax, raised enough questions
for Guido not to accept it for Python 2.0, and later to reject the
proposal altogether. The new syntax and its intentions were deemed
not obvious enough.
[ TBD: Guido, amend/confirm this, please. Preferably both; this
is a PEP, it should contain *all* the reasons for rejection
and/or reconsideration, for future reference. ]
Copyright
=========
This document has been placed in the Public Domain.
References
==========
.. [1] http://sourceforge.net/patch/?func=detailpatch&patch_id=100902&group_id=5470
.. [2] PEP 202, List Comprehensions
..
Local Variables:
mode: indented-text
indent-tabs-mode: nil
End: