diff --git a/shamir/shamir.go b/shamir/shamir.go index b3f4f1d50..150063131 100644 --- a/shamir/shamir.go +++ b/shamir/shamir.go @@ -12,9 +12,7 @@ package shamir import ( "crypto/rand" - "crypto/subtle" "fmt" - mathrand "math/rand" ) const ( @@ -101,63 +99,90 @@ func div(a, b uint8) uint8 { panic("divide by zero") } - var goodVal, zero uint8 - logA := logTable[a] - logB := logTable[b] - diff := (int(logA) - int(logB)) % 255 - if diff < 0 { - diff += 255 - } - - ret := expTable[diff] - - // Ensure we return zero if a is zero but aren't subject to timing attacks - goodVal = ret - - if subtle.ConstantTimeByteEq(a, 0) == 1 { - ret = zero - } else { - ret = goodVal - } + // a divided by b is the same as a multiplied by the inverse of b: + return mult(a, inverse(b)) +} - return ret +// inverse calculates the inverse of a number in GF(2^8) +// Note that a must be non-zero; otherwise 0 is returned +func inverse(a uint8) uint8 { + // This makes use of Fermat's Little Theorem for finite groups: + // If G is a finite group with n elements, and a any element of G, + // then a raised to the power of n equals the neutral element of G. + // (See https://en.wikipedia.org/wiki/Fermat%27s_little_theorem; + // the generalization to finite groups follows from Lagrange's theorem: + // https://en.wikipedia.org/wiki/Lagrange%27s_theorem_(group_theory)) + // + // Here we use the multiplicative group of GF(2^8), which has + // n = 2^8 - 1 elements (every element but zero). Thus raising a to + // the (n - 1)th = 254th power gives a number x so that a*x = 1. + // + // If a happens to be 0, which is not part of the multiplicative group, + // then a raised to the power of 254 is still 0. + + // (See also https://github.com/openbao/openbao/commit/a209a052024b70bc563d9674cde21a20b5106570) + + // In the comments, we use ^ to denote raising to the power: + b := mult(a, a) // b is now a^2 + c := mult(a, b) // c is now a^3 + b = mult(c, c) // b is now a^6 + b = mult(b, b) // b is now a^12 + c = mult(b, c) // c is now a^15 + b = mult(b, b) // b is now a^24 + b = mult(b, b) // b is now a^48 + b = mult(b, c) // b is now a^63 + b = mult(b, b) // b is now a^126 + b = mult(a, b) // b is now a^127 + return mult(b, b) // result is a^254 } // mult multiplies two numbers in GF(2^8) // GF(2^8) multiplication using log/exp tables func mult(a, b uint8) (out uint8) { - var goodVal, zero uint8 - log_a := logTable[a] - log_b := logTable[b] - sum := (int(log_a) + int(log_b)) % 255 - - ret := expTable[sum] - - // Ensure we return zero if either a or b are zero but aren't subject to - // timing attacks - goodVal = ret - - if subtle.ConstantTimeByteEq(a, 0) == 1 { - ret = zero - } else { - ret = goodVal - } - - if subtle.ConstantTimeByteEq(b, 0) == 1 { - ret = zero - } else { - // This operation does not do anything logically useful. It - // only ensures a constant number of assignments to thwart - // timing attacks. - goodVal = zero + // This computes a * b in GF(2^8), which is defined as GF(2)[X] / . + // This finite field is known as Rijndael's finite field. (Rijndael is the algorithm that + // was standardized as AES.) + // (See https://en.wikipedia.org/wiki/Finite_field_arithmetic#Rijndael's_(AES)_finite_field) + // + // We identify elements in GF(2^8) with polynomials of degree < 8. The i-th bit of a field + // element is the coefficient of X^i in that polynomial. + // + // To multiply a and b in this finite field, we use something similar to Russian peasant + // multiplication. We iterate over b's bits, starting from the highest to the lowest. + // i denotes the bit we're currently processing (7, 6, 5, 4, 3, 2, 1, 0). + // The accumulator is set to 0; every iteration, we multiply the accumulator + // by X modulo X^8+X^4+X^3+X+1, and then add a to the accumulator in case b's i-th bit is 1. + var accumulator uint8 = 0 + var i uint8 = 8 + + for i > 0 { + i-- + // Get the i-th bit of b; bitOfB is either 0 or 1. + bitOfB := b >> i & 1 + // aOrZero is 0 if the i-th bit of b is 0, and a if the i-th bit of b is 1. This is + // what we later add to the accumulator. + aOrZero := -bitOfB & a + // zeroOr1B is 0 if the 7th bit of the accumulator is 0, and 0x1B = 11011_2 if the + // 7th bit of accumulator is 1 + zeroOr1B := -(accumulator >> 7) & 0x1B + // accumulatorMultipliedByX equals accumulator multiplied by X modulo X^8+X^4+X^3+X+1 + // In the expression, accumulator + accumulator equals accumulator << 1, which would be + // the accumulator multiplied by X modulo X^8. + // By XORing (addition and subtraction in GF(2^8)) with zeroOr1B, we turn this into + // accumulator multiplied by X modulo X^8 + X^4 + X^3 + X + 1. + accumulatorMultipliedByX := zeroOr1B ^ (accumulator + accumulator) + // We can now compute the next value of the accumulator as the sum (in GF(2^8)) of aOrZero + // and accumulatorMultipliedByX. + accumulator = aOrZero ^ accumulatorMultipliedByX } - return ret + return accumulator } // add combines two numbers in GF(2^8) // This can also be used for subtraction since it is symmetric. func add(a, b uint8) uint8 { + // Addition in GF(2^8) equals XOR: return a ^ b } @@ -184,13 +209,6 @@ func Split(secret []byte, parts, threshold int) ([][]byte, error) { return nil, fmt.Errorf("cannot split an empty secret") } - // Generate random x coordinates for computing points. I don't know - // why random x coordinates are used, and I also don't know why - // a non-cryptographically secure source of randomness is used. - // As far as I know the x coordinates do not need to be random. - - xCoordinates := mathrand.Perm(255) - // Allocate the output array, initialize the final byte // of the output with the offset. The representation of each // output is {y1, y2, .., yN, x}. @@ -201,7 +219,7 @@ func Split(secret []byte, parts, threshold int) ([][]byte, error) { // then the result of evaluating the polynomial at that point // will be our secret out[idx] = make([]byte, len(secret)+1) - out[idx][len(secret)] = uint8(xCoordinates[idx]) + 1 + out[idx][len(secret)] = uint8(idx) + 1 } // Construct a random polynomial for each byte of the secret. @@ -222,7 +240,7 @@ func Split(secret []byte, parts, threshold int) ([][]byte, error) { for i := 0; i < parts; i++ { // Add 1 to the xCoordinate because if it's 0, // then the result of p.evaluate(x) will be our secret - x := uint8(xCoordinates[i]) + 1 + x := uint8(i) + 1 // Evaluate the polynomial at x y := p.evaluate(x) out[i][idx] = y diff --git a/shamir/shamir_test.go b/shamir/shamir_test.go index 18727a89d..f2fa1f909 100644 --- a/shamir/shamir_test.go +++ b/shamir/shamir_test.go @@ -115,6 +115,22 @@ func TestCombine(t *testing.T) { } } +func TestField_MulDivSmoke(t *testing.T) { + for a := range 256 { + for b := range 256 { + if b == 0 { + if out := mult(uint8(a), uint8(b)); out != 0 { + t.Fatalf("Bad: %v * %v = %v 0", a, b, out) + } + } else { + if out := div(mult(uint8(a), uint8(b)), uint8(b)); out != uint8(a) { + t.Fatalf("Bad: (%v * %v) / %v = %v %v", a, b, b, out, a) + } + } + } + } +} + func TestField_Add(t *testing.T) { if out := add(16, 16); out != 0 { t.Fatalf("Bad: %v 16", out) diff --git a/shamir/tables.go b/shamir/tables.go deleted file mode 100644 index 76c245e79..000000000 --- a/shamir/tables.go +++ /dev/null @@ -1,77 +0,0 @@ -package shamir - -// Tables taken from http://www.samiam.org/galois.html -// They use 0xe5 (229) as the generator - -var ( - // logTable provides the log(X)/log(g) at each index X - logTable = [256]uint8{ - 0x00, 0xff, 0xc8, 0x08, 0x91, 0x10, 0xd0, 0x36, - 0x5a, 0x3e, 0xd8, 0x43, 0x99, 0x77, 0xfe, 0x18, - 0x23, 0x20, 0x07, 0x70, 0xa1, 0x6c, 0x0c, 0x7f, - 0x62, 0x8b, 0x40, 0x46, 0xc7, 0x4b, 0xe0, 0x0e, - 0xeb, 0x16, 0xe8, 0xad, 0xcf, 0xcd, 0x39, 0x53, - 0x6a, 0x27, 0x35, 0x93, 0xd4, 0x4e, 0x48, 0xc3, - 0x2b, 0x79, 0x54, 0x28, 0x09, 0x78, 0x0f, 0x21, - 0x90, 0x87, 0x14, 0x2a, 0xa9, 0x9c, 0xd6, 0x74, - 0xb4, 0x7c, 0xde, 0xed, 0xb1, 0x86, 0x76, 0xa4, - 0x98, 0xe2, 0x96, 0x8f, 0x02, 0x32, 0x1c, 0xc1, - 0x33, 0xee, 0xef, 0x81, 0xfd, 0x30, 0x5c, 0x13, - 0x9d, 0x29, 0x17, 0xc4, 0x11, 0x44, 0x8c, 0x80, - 0xf3, 0x73, 0x42, 0x1e, 0x1d, 0xb5, 0xf0, 0x12, - 0xd1, 0x5b, 0x41, 0xa2, 0xd7, 0x2c, 0xe9, 0xd5, - 0x59, 0xcb, 0x50, 0xa8, 0xdc, 0xfc, 0xf2, 0x56, - 0x72, 0xa6, 0x65, 0x2f, 0x9f, 0x9b, 0x3d, 0xba, - 0x7d, 0xc2, 0x45, 0x82, 0xa7, 0x57, 0xb6, 0xa3, - 0x7a, 0x75, 0x4f, 0xae, 0x3f, 0x37, 0x6d, 0x47, - 0x61, 0xbe, 0xab, 0xd3, 0x5f, 0xb0, 0x58, 0xaf, - 0xca, 0x5e, 0xfa, 0x85, 0xe4, 0x4d, 0x8a, 0x05, - 0xfb, 0x60, 0xb7, 0x7b, 0xb8, 0x26, 0x4a, 0x67, - 0xc6, 0x1a, 0xf8, 0x69, 0x25, 0xb3, 0xdb, 0xbd, - 0x66, 0xdd, 0xf1, 0xd2, 0xdf, 0x03, 0x8d, 0x34, - 0xd9, 0x92, 0x0d, 0x63, 0x55, 0xaa, 0x49, 0xec, - 0xbc, 0x95, 0x3c, 0x84, 0x0b, 0xf5, 0xe6, 0xe7, - 0xe5, 0xac, 0x7e, 0x6e, 0xb9, 0xf9, 0xda, 0x8e, - 0x9a, 0xc9, 0x24, 0xe1, 0x0a, 0x15, 0x6b, 0x3a, - 0xa0, 0x51, 0xf4, 0xea, 0xb2, 0x97, 0x9e, 0x5d, - 0x22, 0x88, 0x94, 0xce, 0x19, 0x01, 0x71, 0x4c, - 0xa5, 0xe3, 0xc5, 0x31, 0xbb, 0xcc, 0x1f, 0x2d, - 0x3b, 0x52, 0x6f, 0xf6, 0x2e, 0x89, 0xf7, 0xc0, - 0x68, 0x1b, 0x64, 0x04, 0x06, 0xbf, 0x83, 0x38} - - // expTable provides the anti-log or exponentiation value - // for the equivalent index - expTable = [256]uint8{ - 0x01, 0xe5, 0x4c, 0xb5, 0xfb, 0x9f, 0xfc, 0x12, - 0x03, 0x34, 0xd4, 0xc4, 0x16, 0xba, 0x1f, 0x36, - 0x05, 0x5c, 0x67, 0x57, 0x3a, 0xd5, 0x21, 0x5a, - 0x0f, 0xe4, 0xa9, 0xf9, 0x4e, 0x64, 0x63, 0xee, - 0x11, 0x37, 0xe0, 0x10, 0xd2, 0xac, 0xa5, 0x29, - 0x33, 0x59, 0x3b, 0x30, 0x6d, 0xef, 0xf4, 0x7b, - 0x55, 0xeb, 0x4d, 0x50, 0xb7, 0x2a, 0x07, 0x8d, - 0xff, 0x26, 0xd7, 0xf0, 0xc2, 0x7e, 0x09, 0x8c, - 0x1a, 0x6a, 0x62, 0x0b, 0x5d, 0x82, 0x1b, 0x8f, - 0x2e, 0xbe, 0xa6, 0x1d, 0xe7, 0x9d, 0x2d, 0x8a, - 0x72, 0xd9, 0xf1, 0x27, 0x32, 0xbc, 0x77, 0x85, - 0x96, 0x70, 0x08, 0x69, 0x56, 0xdf, 0x99, 0x94, - 0xa1, 0x90, 0x18, 0xbb, 0xfa, 0x7a, 0xb0, 0xa7, - 0xf8, 0xab, 0x28, 0xd6, 0x15, 0x8e, 0xcb, 0xf2, - 0x13, 0xe6, 0x78, 0x61, 0x3f, 0x89, 0x46, 0x0d, - 0x35, 0x31, 0x88, 0xa3, 0x41, 0x80, 0xca, 0x17, - 0x5f, 0x53, 0x83, 0xfe, 0xc3, 0x9b, 0x45, 0x39, - 0xe1, 0xf5, 0x9e, 0x19, 0x5e, 0xb6, 0xcf, 0x4b, - 0x38, 0x04, 0xb9, 0x2b, 0xe2, 0xc1, 0x4a, 0xdd, - 0x48, 0x0c, 0xd0, 0x7d, 0x3d, 0x58, 0xde, 0x7c, - 0xd8, 0x14, 0x6b, 0x87, 0x47, 0xe8, 0x79, 0x84, - 0x73, 0x3c, 0xbd, 0x92, 0xc9, 0x23, 0x8b, 0x97, - 0x95, 0x44, 0xdc, 0xad, 0x40, 0x65, 0x86, 0xa2, - 0xa4, 0xcc, 0x7f, 0xec, 0xc0, 0xaf, 0x91, 0xfd, - 0xf7, 0x4f, 0x81, 0x2f, 0x5b, 0xea, 0xa8, 0x1c, - 0x02, 0xd1, 0x98, 0x71, 0xed, 0x25, 0xe3, 0x24, - 0x06, 0x68, 0xb3, 0x93, 0x2c, 0x6f, 0x3e, 0x6c, - 0x0a, 0xb8, 0xce, 0xae, 0x74, 0xb1, 0x42, 0xb4, - 0x1e, 0xd3, 0x49, 0xe9, 0x9c, 0xc8, 0xc6, 0xc7, - 0x22, 0x6e, 0xdb, 0x20, 0xbf, 0x43, 0x51, 0x52, - 0x66, 0xb2, 0x76, 0x60, 0xda, 0xc5, 0xf3, 0xf6, - 0xaa, 0xcd, 0x9a, 0xa0, 0x75, 0x54, 0x0e, 0x01} -) diff --git a/shamir/tables_test.go b/shamir/tables_test.go deleted file mode 100644 index 81aa983b1..000000000 --- a/shamir/tables_test.go +++ /dev/null @@ -1,13 +0,0 @@ -package shamir - -import "testing" - -func TestTables(t *testing.T) { - for i := 1; i < 256; i++ { - logV := logTable[i] - expV := expTable[logV] - if expV != uint8(i) { - t.Fatalf("bad: %d log: %d exp: %d", i, logV, expV) - } - } -}