diff --git a/code/dropSamples.m b/code/dropSamples.m index 44030bb..8ba7f13 100644 --- a/code/dropSamples.m +++ b/code/dropSamples.m @@ -1,4 +1,4 @@ -function [XR] = dropZeroSamples(varargin) +function [XR] = dropSamples(varargin) probRemove = (varargin{1}); if ~iscell(varargin{2}) infile = varargin{2}; diff --git a/code/iLasso_for_SCINGE.m b/code/iLasso_for_SCINGE.m index 925f33c..cf08759 100644 --- a/code/iLasso_for_SCINGE.m +++ b/code/iLasso_for_SCINGE.m @@ -42,9 +42,11 @@ for i = (B+1):N1 bm(i-B) = Series{1}(1, i); ti = (Series{1}(2, i) - (L)*Dt):Dt:(Series{1}(2, i)-Dt); - ti = repmat(ti, length(Series{j}(2, :)), 1); - tSelect = repmat(Series{j}(2, :)', 1, L0); - ySelect = repmat(Series{j}(1, :)', 1, L0); + % ti = repmat(ti, length(Series{j}(2, :)), 1); + % tSelect = repmat(Series{j}(2, :)', 1, L0); + tSelect = Series{j}(2, :)'; + %ySelect = repmat(Series{j}(1, :)', 1, L0); + ySelect = Series{j}(1, :)'; switch krnl case 'Sinc' % The sinc Kernel Kp = sinc((ti-tSelect)/SIG); @@ -53,7 +55,7 @@ otherwise Kp = exp(-((ti-tSelect).^2)/SIG); % The Gaussian Kernel end - Am(i-B, ((j-1)*L0+1):(j*L0) ) = sum(ySelect.*Kp)./sum(Kp); + Am(i-B, ((j-1)*L0+1):(j*L0)) = (ySelect'*Kp)./sum(Kp); end end % Solving Lasso using a solver; here the 'GLMnet' package