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SUMMARY

In both academia and the pharmaceutical industry,
large-scale assays for drug discovery are expensive
and often impractical, particularly for the increasingly
important physiologically relevant model systems
that require primary cells, organoids, whole organ-
isms, or expensive or rare reagents.We hypothesized
that data from a single high-throughput imaging
assay can be repurposed to predict the biological
activity of compounds in other assays, even those
targeting alternate pathways or biological processes.
Indeed, quantitative information extracted from a
three-channel microscopy-based screen for gluco-
corticoid receptor translocation was able to predict
assay-specific biological activity in two ongoing
drug discovery projects. In these projects, repurpos-
ing increased hit rates by 50- to 250-fold over that of
the initial project assays while increasing the chemi-
cal structure diversity of the hits. Our results suggest
that data from high-content screens are a rich source
of information that can be used to predict and replace
customized biological assays.

INTRODUCTION

High-throughput imaging (HTI), also known as high-content

screening (HCS), captures the morphology of the cell and its

organelles by microscopy and has yielded diverse biological

discoveries (Pepperkok and Ellenberg, 2006; Starkuviene and

Pepperkok, 2007; Walter et al., 2010). HTI is often applied to

screen chemical compounds based on morphological changes

they induce (Held et al., 2010; Yarrow et al., 2003). Currently,

most HTI screens are designed to evaluate one specific biolog-

ical process and exploit only a handful of morphological features
Cell Che
from the image, chosen to best measure that process (Singh

et al., 2014) (Figure 1).

However, any cellular system hosts many more biochemical

processes and thousands of potential drug targets, all of which

are exposed to the screened chemical compounds. Many of

these targets and processes have an impact on cell morphology,

and that morphology can to a large extent be extracted from the

images (Carpenter et al., 2006). The resulting set of features,

which include not just shape and spatial metrics but also the

intensity and patterning of fluorescently labeled markers, can

be used to describe chemical compounds and can be consid-

ered as an image-based compound fingerprint. Such finger-

prints are powerful enough to accomplish a variety of important

biological aims, including optimizing the diversity of compound

libraries, grouping compounds by pharmacological mechanism,

and grouping genes based on functional similarity (Caicedo

et al., 2016).

Motivation
We therefore hypothesized that image-based fingerprints

of compounds derived from a given image-based cellular

assay, might be leveraged to predict compound activity in

seemingly unrelated assays. Effective predictors of biological

activity already exist; virtual screening and quantitative

structure–activity relationship (QSAR) analyses typically rely

on features derived from the chemical structure of compounds

to predict their activity in assays. Structure-based models

are predictively performant (Cumming et al., 2013) but only

for those parts of chemical space for which sufficient

assay activity data are available. Unfortunately, compounds

that are chemically very different from any known active

compound are unlikely to be predicted as active. Because

cell morphology can reflect compound-induced modulation

of diverse targets and biochemical processes regardless

of compound structure, we suspected that image-based

models would avoid this limitation and may complement

chemistry-based models in novel and poorly annotated

chemical space.
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Figure 1. A Typical HTI Screen Approach

Few or single features are extracted from cellular

images; the remainder of information (gray) is

ignored (Ansbro et al., 2013; Evensen et al., 2010).
Decades of HCS experience indicate an ability of image-

based readouts to generalize over multiple unrelated targets.

Yet, most academic and commercial imaging campaigns have

followed a narrowly focused classical setup depicted in Figure 1,

leaving a large volume of biological information untapped. There-

fore, we aimed to repurpose pre-existing imaging screens to

generically predict compound activities in assays that may be

unrelated to the original screening assay.

RESULTS

Overview of Proposed Repurposing Approach
We propose a pipeline (Figure 2) to leverage the rich information

in existing image screens for the prediction of activity in a variety

of orthogonal assays directed at seemingly unrelated proteins

and processes. First, we extract an extensive image-based

fingerprint of morphological features for each compound in a

single, already completed large-scale imaging screen (X in

Figure 2), aiming for maximal and unbiased information capture

(see next section). Second, we introduce existing activity data

for orthogonal assays of interest on these compounds (Y in

Figure 2). Then, we train supervised machine-learning models

to predict Y from X and choose models with high predictive

performance. Finally, we use these high-quality models to

select compounds for in vitro testing. Next we describe each

of these steps in detail.

Extracting Image-Based Fingerprints
The goal of extracting image-based fingerprints is to capture all

available information about the biological state of the cell from

the image. In this work, we use previously developed software

(CellProfiler) and methods (Gustafsdottir et al., 2013) to

produce a feature vector for each cell, capturing general

morphology, shape, and biologically important parameters

(e.g., micronucleus count). For the three-channel glucocorti-

coid receptor (GCR) HTI assay used in the evaluation, this

produced an 842-dimensional feature vector per cell. Then,

for each plate we normalize each feature using the mean and
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the standard deviation of the corre-

sponding feature from the negative con-

trols (cells without treatment). Finally, for

each compound, we compute a vector of

feature medians across all cells in its

image, producing a single image-based

fingerprint.

We note that an attractive alternative

procedure is to use convolutional neural

networks (CNNs) to learn feature repre-

sentation directly from the raw pixels of

cell images. This strategy shows promise

but is still exploratory for image-based

profiling; considering the high computa-
tional cost and hardware requirements, we leave this direction

to future research.

Machine Learning for Image-Based Fingerprints
We next use machine learning to take image-based fingerprints

(X in Figure 2) and the existing bioactivity measurements on

the assays of interest (Y in Figure 2) to learn a model to

predict bioactivity of new compounds given their image-based

fingerprints.

The simplest approach would be to model each column of the

activity data separately (single-task learning). However, we can

take advantage of the existence of multiple related prediction

tasks by modeling them jointly (multitask learning). In the case

of related tasks, multitask learning is known to improve the over-

all performance significantly (Caruana, 1997).

Both regression and classification methods could be used in

the repurposing workflow we propose. Here, we describe two

that yielded good computational and predictive performance.

To document the compatibility of this generic concept with other

machine-learning methods, we also carried out additional

experiments with random forest (Breiman, 2001) and k-nearest

neighbor classifier in our validation setup (see STAR Methods).

Bayesian Matrix Factorization
First, we explored Bayesian matrix factorization, a multitask

method that does not require hyperparameterization (like regu-

larization) and provides uncertainty estimates for predictions.

Specifically, we used the Bayesian matrix factorization method

Macau, which can account for side information (in this case

image features). To factorize the N times M activity matrix Y,

Macau represents each compound and each assay by D-

dimensional latent vectors ui and vj, respectively. The predic-

tion for the element Yij, corresponding to the activity of com-

pound i on assay j, is given by the scalar product uT
i vj. xi is an

F-dimensional features vector (F = 842) corresponding to the

image-based fingerprint (see section on Extracting Image-

Based Fingerprints) and is added to the prior of the latent

vectors of compounds ui. Macau maps all tasks to the same
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Figure 2. Strategy to Repurpose Imaging Screens to Efficiently Predict Biological Activity

Features extracted from images of cells are used bymachine-learningmethods tomodel all available activity data from previously performed assays. Assays with

good predictivity on the test data are then selected for testing a relatively small number of predicted-active compounds, chosen from a large set of compounds

profiled in the imaging assay.
D-dimensional latent space, therefore enabling sharing of parts

of the model.

This results in a probabilistic model of

Yij � N �
uT
i vj; a

�1
�
;

ui � N �
mu + bxi; L

�1
u

�
;

vj � N �
mv; L

�1
v

�
;

where a is the precision of the observations, parameters mu and

Lu model the mean and precision of the compound latent

vectors, similarly mv and Lv model the latent vectors for assays.

The parameter b is a D times F dimensional matrix that maps the

image features to the compound latent space. To learn b we

apply a Gaussian prior on it:

b � Nð0; Lu5lbIFÞ�1
;

where 5 is the Kronecker product, lb is a precision parameter,

and IF is the identity matrix of size F. Figure 3 depicts the plate

diagram for the probabilistic model.
By deriving conditional distributions for all model variables, we

obtain a Gibbs sampler that iterates over all model variables

(Simm et al., 2017). For each variable, it samples a value from

the conditional distribution by fixing all the others. Finally, to

compute the predictions for Yij, we use each sample to compute

the scalar products uT
i vj and then average over the samples. We

observed that the performance of the method does not degrade

with choosing a high latent dimensionality D. In practice, this

implies the choice of a large enough latent space; in our case

D = 150.

The Macau model described here is for the regression setting,

i.e., Yij are real-valued. The model can be easily modified to

handle the classification setting by replacing the normal prior

on Yij with a probit one. We have made the implementations
for both settings available open source. The C++/Python pack-

age is available at https://github.com/jaak-s/macau.

Deep Neural Networks
The matrix factorization model described above is linear and

may lack the flexibility to capture all important biological effects.

Therefore, we additionally tested a multitask deep learning

architecture. We implemented deep neural networks (DNNs),

concretely feedforward artificial neural networks, with many

layers comprising a large number of neurons and rectified linear

units (Mayr et al., 2016). DNNs (Figure 4) consists of intercon-

nected neurons that are arranged hierarchically in layers. In the

first layer of the network (the input layer), the neurons obtain an

input vector that is the image-based fingerprint. The intermedi-

ate layers (the hidden layers) comprise the hidden neurons that

have weighted connections to the neurons of the previous level

layer and can be considered as abstract features, built from

features below. The last layer (the output layer) supplies the pre-

dictions of the model. Typical DNNs comprise several layers,

which consist of thousands of neurons.

We used rectified linear units (ReLUs) as activation functions in

the hidden layers. The output layer has sigmoid activation func-

tions. To avoid overfitting, we employed multiple regularization

techniques, concretely dropout (Srivastava et al., 2014) and early

stopping. Both the dropout rate and the early-stopping param-

eter, i.e., the number of epochs after which learning is stopped,

were determined on a validation dataset.

Deep learning naturally enables multitask learning (Caruana,

1997). In our setting, each assay is a task. Commonalities across

the assays translate to shared representation in the hidden layers

and can yield performance improvements (Mayr et al., 2016). We

modeled each assay by a separate output unit.

We used cross-entropy as a loss function for our DNNs:

X
i;j

mij

�
Yij log ~Yij + ð1� YijÞlog

�
1� ~Yij

��
;
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Figure 3. Diagram for the Probabilistic Model for the Bayesian Ma-

trix Factorization Approach Macau

The shaded circles denote observed variables and the transparent circles are

inferred from the data.

Figure 4. General Architecture of Deep Neural Networks

Variable x denotes the image-based fingerprint, y corresponds to biological

activity. The tested hyperparameters of DNN are shown in Table S1.
where ~Yij is the prediction for compound i and assay j and the

actual label is Yij, which indicates whether the compound

was active ðYij = 1Þ or inactive ðYij = 0Þ in the given assay. The

binary variable mij indicates whether a measurement is present

ðmij = 1Þ or missing ðmij = 1Þ. The implementation details,

optimization of architecture, and hyperparameters are given in

Supplemental Information.

Selection of High-Quality Models
Next, we select only assays yielding a highly reliable model.

To this end, we employ cross-validation, i.e., we split the com-

pounds into k folds (here, k = 3). In cross-validation, the activity

data for each fold are predicted using a model built on the data

from the other folds. The resulting predictions enable the compu-

tation of an AUC-ROC (area under the curve-receiver operating

characteristic) score, or some other performance metric of

choice. We used the average of the k folds as the evaluation

metric for each model, and focused on models with an AUC-

ROC > 0.9. If a machine-learning method required an optimiza-

tion of hyperparameters (e.g., choices of model architecture,

kernel, dropout), we applied nested cross-validation (Mayr

et al., 2016).

The simplest splitting scenario would be the random

assignment of compounds to folds. However, in the case of

chemistry-based modeling of pharmaceutical datasets, where

compounds tend to be concentrated around attractive chemical

backbones, this approach results in overoptimistic performance

estimates (as close structural analogs get spread over test and

validation, and performance metrics are boosted but do not

hold up when applied to new chemistry). One popular mitigation

approach is the use of temporal or roll-back splitting, where a

timestamp is used to separate test and validation folds. In amulti-

task setting, however, temporal splitting is impractical because

the order ofmeasurement of the same compounds in different as-

says is not guaranteed to be aligned. Instead, we clustered the

compounds based on chemical similarity and randomly assigned
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the clusters into folds (see Figure S1). Here, a Tanimoto similarity

cutoff on ECFP6 features was used to ensure close analogs

ended up in the same test or validation fold. A high choice of cutoff

may fall short of addressing the overoptimistic performance

estimation, while a low cutoff may restrict the learning potential

(as machine learning relies on recognizing similarities). In our

experience, a similarity cutoff of 0.7 offers an optimal trade-off.

Image-based fingerprints are insulated from the underlying

chemistry. Thus, performance estimates for the resulting models

are not expected to be skewed by the above-mentioned phar-

maceutical chemistry bias. However, for consistency reasons,

we still followed the clustered cross-validation approach.

Compound Selection for In Vitro Testing
Finally, we select compounds highly ranked by good-quality

models. There are two main selection strategies. The first is to

select all the highest ranked compounds for in vitro testing.

Although simple, the strategy may select sets that are too homo-

geneous or too chemically similar to the original training set. The

second strategy is to apply diversity maximization (e.g., sphere

exclusion clustering) on the highly ranked compounds, and

only test a diverse set. This strategy can result in novel hits,

but only if the model can generalize across scaffolds. As indi-

cated before, we hypothesized that this is the case for models

that use image-based fingerprints.

Experimental Evaluation
In the following, we evaluate our HTI assay repurposing approach

in a large-scale industrial context. To begin, we chose a HTI

screen of 524,371 proprietary compounds originally used for

the detection of GCR nuclear translocation. In this assay, each

compound was applied at a concentration of 10 mM to H4 brain

neuroglioma cells, incubated for 1 hr, then exposed to 1 mM

hydrocortisone for 1 hr to stimulate translocation of the GCR.

Cells were then fixed and imaged in three-channel fluorescence,

with Hoechst to label the nucleus, CellMask deep red to delineate

cell boundaries, and indirect immunofluorescence to detect

GCR. From these images, our pipeline extracted 842 dimensional

vectors for each compound representing the feature matrix X

(see the section on Extracting Image-Based Fingerprints).



Table 1. The Number of Protein Assays above the AUC-ROC

Threshold for Machine Learning Methods Macau and Deep

Neural Networks (DNN)

AUC-ROC Threshold Macau (%) DNN (%) Common (%)

0.9 31 (5.8) 43 (8.0) 26 (4.9)

0.7 218 (40.7) 245 (45.8) 209 (39.1)

The percentage is calculated relative to the total number of 535 assays.

The Common column depicts the number of assays well predicted by

both of the methods. Venn diagrams of the predicted targets are shown

in Figures S2 and S3. The tested hyperparameters are described in

Tables S1 and S2. The mean AUC-ROC values for Macau, DNN, random

forest, and k-nearest neighbor are given in Table S3.
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Figure 5. Image-Based Profiling Strategy Yields More Chemically

Diverse Compounds than Would be Expected for Chemical

Extension

In an oncology project (left) and a CNS project (right), we calculated the ECFP

(radius 4)-based Tanimoto similarity of each hit to the nearest hit identified by

the initial high-throughput screen (red). For reference, the blue distributions

show the similarity of randomly selected compounds to the closest hit

identified by the initial high-throughput screen. Note that in the CNS project,

unlike the oncology project, the selection procedure involved an additional

step to reduce representatives from the same chemical-structural class. The

horizontal dotted lines depict the 0.5 and 0.7 similarity levels.
The bioactivity matrix Y documents the available experimental

activities of 524,371 imaged compounds in about 1,200

biochemical or cellular assays that can all be interpreted as an

activity on a protein target. This also means that a single com-

pound can be measured on multiple targets. The activity is ex-

pressed as the pXC50 of the given compound in the given assay.

The pXC50 is defined as �log10 of the molarity concentration of

the compound yielding a half-maximal effect in the experimen-

tally measured dose-response curve. Typically, a given com-

pound is measured in a handful of assays, such that Y is sparsely

populated, i.e., has many missing values. In total, more than 10

million pXC50 values were available for the roughly 1,200 predic-

tion tasks, corresponding to a fill rate of Y of about 1.6%.

We evaluated all protein assays at four different thresholds of

pXC50 (here activity is defined as a pXC50 value exceeding the

threshold), namely 5.5, 6.5, 7.5, and 8.5. We only used assay-

threshold pairs with at least 25 actives and 25 inactives. For

535 assays, at least one pXC50 threshold resulted in a data sub-

set meeting this criterion. In the step of selecting high-quality

models (see section on Selection of High-Quality Models), we

used AUC-ROC higher than 0.9 as the cutoff. We additionally

report results for a cutoff of 0.7.

Results of In Silico Experiments
Of the 535 assays, the described pipeline yielded 31 assays with

high-quality models using Macau (run for 2,000 iterations, dis-

carding the first 400 as burn-in) and 43 using DNN (for details,

including hyperparameter tuning, see Table S1). An AUC-ROC

threshold of 0.7 yielded 6–7 times as many assays (Table 1).

Both methods can successfully repurpose the original GCR

HTI assay for predicting activity toward more than 30 unrelated

protein targets (AUC-ROC > 0.9), and provide models of suffi-

cient quality to enrich compound sets for (or deplete them of)

activity toward a further 200 targets (AUC-ROC > 0.7). Therefore,

the image-based fingerprinting of HTI assays prove a rich and

hitherto untapped source of information on biological activity

that is compatible with multiple machine-learning methods. If

computational resources are limiting, less expensive methods

such as Macau or random forest yield a predictive performance

comparable with that of deep learning (see Table S3 for mean

AUC-ROC values for Macau and random forest).

Results for In Vitro Validation
As the Macau results were readily available during the early

phase of the research, we proceeded with the in vitro validation
using these models. Among these 31 assays with high-quality

predictions fromMacau, twowere connected to ongoing discov-

ery projects: one oncology project and one central nervous

system (CNS) project. For these two projects, we selected

compounds for testing.

Results for the Oncology Project
For the oncology project, the target was a kinase with no known

direct relation to the glucocorticoid receptor. Using our Macau

model, we ranked about 60,000 compounds tested in the GCR

assay but for which no activity measurement was available in

the oncology screen. We selected the 342 highest ranking

compounds for experimental follow-up (see the section on

Compound Selection for In Vitro Testing). We found that 124 of

them were submicromolar (XC50 < 1 mM) hits (36.3% hit rate),

which corresponds to a 50-fold enrichment over the initial

high-throughput screen (0.725% hit rate).

To evaluate the chemical diversity of the hits, we computed

the Tanimoto similarity (based on extended-connectivity finger-

prints (ECFP); Rogers and Hahn, 2010) of each hit to the nearest

hit identified by the initial high-throughput screen (red distribu-

tion in Figure 5). Seventy percent of the hits are below the 0.7

similarity line, and a significant proportion is even below 0.5.

Per definition, a chemical similarity search based on the initial

hits would rarely yield analogs below the 0.7 line, and extremely
Cell Chemical Biology 25, 611–618, May 17, 2018 615



Table 2. Number of Murcko Scaffolds in the Two Follow-Ups

Project

Name

No. of Murcko of

Initial Screen

No. of Murcko of

New Hits (Novel/All)

No. of

New Hits

Oncology 2,660 108/117 124

CNS 57 34/34 36
rarely below the 0.5 line. We also found 108 novel Murcko

scaffolds among the new hits (Table 2). Together these two facts

imply that our repurposing pipeline can result in a hit set with high

chemical diversity. For reference, the figure also shows the dis-

tribution for randomly selected compounds (blue distribution in

Figure 5). We furthermore compared the top ranked compounds

with those retrieved by chemical fingerprint-based approaches.

Specifically, we used the exact same activity data with chemical

structure-based features (ECFP) to train a Macau model and

then ranked the untested 60,000 compounds. From the above-

mentioned top 342 compounds ranked by the image features,

113 (33%) compounds were retrieved by ECFP model in its top

342. From the 124 actives, 44 (35%) compounds were found in

the top 342 of the ECFP model. Moreover, to identify all 124

active compounds using the ECFP ranking, one would need to

test more than 21% of the 60,000 candidate compounds, i.e.,

at least 13,000 compounds. This shows that the image finger-

prints clearly provided an additional source of information that

is not encoded in the chemical fingerprints.

Results for the CNS Project
For the CNS project, the target was a non-kinase enzyme, again

without obvious relation to the glucocorticoid receptor. Using

our Macau model, activity was predicted for all 500,000 image-

annotated compounds, and we selected all compounds with

submicromolar prediction, resulting in 1,715 compounds. Next,

we kept only compounds without unfavorable properties, such

as PAINS filter (Baell and Holloway, 2010) and low predicted

CNS availability (see STAR Methods). For this project, to maxi-

mize compound diversity, we employed the selection strategy

of grouping the remaining compounds into clusters based on

structure, using sphere exclusion clustering with similarity cutoff

0.7 (see section on Compound Selection for In Vitro Testing). We

then selected a handful of representatives from each cluster

resulting in 141 compounds. We experimentally tested them

and found that 36 of them were submicromolar hits (25.5% hit

rate), which corresponds to a 289-fold enrichment over the hit

rate of the initial high-throughput screen (0.088% rate). These

compounds were highly diverse (Tanimoto similarity <0.3;

Figure 5) while maintaining a relatively high hit rate. The 36 hits

resulted in 34 novel Murcko scaffolds (Table 2).

DISCUSSION

In this work, we have demonstrated that HTI data enable the

identification of diverse hits without the need to test the entire

library in the target assay. By accessing rich morphological

features of the cell, imaging screens capture diverse cellular

processes, resulting in a fingerprint of biological action. Our

results indicate that images from HTI screening projects

that are conducted in many institutions can be repurposed

to dramatically reduce the scale of screens required for other
616 Cell Chemical Biology 25, 611–618, May 17, 2018
projects, even those that seem unrelated to the primary purpose

of the HTI screen.

We emphasize that our approach relies on a supervised ma-

chine-learning method, and hence activity measurements and

imaging data must be acquired for a reasonably sized library of

compounds to train the model. Subsequently, however, it seems

possible to replace many particular assays with the potentially

more cost-efficient imaging technology together with machine-

learning models. Specifically, one would execute one or a few

image screens on the library instead of dozens of target-focused

assays. This raises an interesting question of the breadth of drug

targets that could be accessed by imaging screens if the screen

were optimized for that purpose, or if a combination of screens

was used that explored multiple cell lines or sources, culturing

conditions, staining of organelles, and/or incubation times.

We leave for future work the head-to-head comparison of

chemistry-based and image-based fingerprints, but can specu-

late based on our results. In the case of a well-covered chemical

space, we would not expect image-based fingerprints to outper-

form a well-designed chemical fingerprint like ECFP. For

example, if the compound in question has several close enough

neighbors, we expect chemical fingerprints to prove predictively

performant. In contrast, we expect the performance of image-

based fingerprints that do not depend on chemical closeness

to be superior for scaffold hopping, i.e., identifying active com-

pounds with novel backbones, given it does not depend on the

chemical closeness. Evidence for this idea includes the high

chemical diversity of active compounds and the ability to identify

actives that were not flagged by chemistry-based machine

learning (see section on Results for the Oncology Project).

Moreover, image-based fingerprinting is a feasible approach to

predict the activity of not just small-molecule compounds but

any agent, such as antibodies, RNA interference agents or other

biologics.

We also anticipate that improvements in the computational

pipeline may increase the power of the method. For example,

CNNs could predict activity from raw images directly rather

than from features extracted from each cell using classical image

processing. This would allow the model to learn the best image

features for the specific task at hand and may improve results.

Another future direction is to maintain the native single-cell res-

olution of image-based profiles instead of aggregating values.

Finally, our current results are based on a single HTI screen,

and we envision that data fusion across a collection of multiple

HTI screens could even be more powerful for assay activity pre-

diction, which we aim to explore in follow-up work.

Our results also encourage the creation of sufficiently large

public datasets of compounds annotated with chemical struc-

tures, activity measurements in validated assays, and images.

While a few efforts have publicly documented up to about

30,000 compounds with cellular images (Wawer et al., 2014),

only a 10th of the compounds have been annotated with some

assay activities, yielding a very sparse annotation matrix.

SIGNIFICANCE

High-throughput imaging is an affordable screening tech-

nology most often used to read out a handful of morpholog-

ical features that document a single biological process of



interest. Leveraging access to a large private set of activity

and image-annotated compounds, we here establish proof

of concept that images from one given cellular assay

support activity prediction across a spectrum of seemingly

unrelated biological assays. Hence, images can inform on

biological activity far beyond the intended focus of the

original screen. Once a chemical library is documented

with image-based fingerprints, a medium-scale screening

in an expensive or tedious assay may suffice to train an

image-based model that can predict the outcome for the

rest of the library and enable cost-effective targeted exper-

imental validation. Effective predictive approaches that

rely on the chemical structure of compounds are well

established in the context of the gradual virtualization of

screening and drug discovery. Our study suggests image-

based approaches can complement these structure-based

ones, particularly in those cases where the latter suffer

from chemical biases in training data. Moreover, they can

extend predictive modeling options to agents with (bio)

chemistry that elude standard structure-based approaches,

such as antibodies, RNA interference agents, and other bio-

logics. Importantly, given that the field of structure-based

prediction already exploits decades of optimization and

research, the pace of predictive performance gain has

slowed down. In contrast, advancements like convolutional

neural networks have recently boosted the performance of

generic image-based machine learning. The proof of

concept described in this paper justifies further research

in optimizing the specific application of image-based

machine learning in drug discovery. Future lines of research

may aim to maximize the generic informativity by screen

design or by data fusion over pre-existing screens that cover

a broader range of biological contexts, and to improve

feature extraction and additional learning from microscopy

images.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

RPMI with phenol red (for complete medium) Sigma-Aldrich Cat# D5671

RPMI medium without phenol red (for CSS medium) Sigma-Aldrich Cat# D1145

FCS serum, heat inactivated Hyclone Cat# SV30160.03

charcoal stripped serum (CSS) Sigma-Aldrich Cat# F6765 lot 12H047

10.000 U/ml penicillin

10.000 mg/ml streptomycin

Gibco Cat# 15070-063

L-glutamine 200 mM stock Sigma-Aldrich Cat# G7513

100mM sodium pyruvate Sigma-Aldrich Cat# S8636

0.05% trypsin-EDTA (1x) Gibco Cat# 25300-054

Hydro-cortisone (H-cortisone) Sigma-Aldrich Cat# H4001

Formaldehyde 10% Polysciences Cat# 04018

Triton X-100 Sigma-Aldrich Cat# T-9284

10x PBS wo Ca/Mg Roche Cat# 11666789001

goat serum Sigma-Aldrich Cat# G9023

GR Ab H-300 rabbit Santa Cruz Cat# sc-8992; RRID: AB_2155784

Alexa Fluor 568 goat anti-rabbit Invitrogen Cat# A11011; RRID: AB_143157

Hoechst 33528 Invitrogen Cat# H3569; RRID: AB_2651133

HCS CellMask Deep Red stain Invitrogen Cat# H32721

Experimental Models: Cell Lines

H4 Homo sapiens brain neuroglioma ATCC Cat# HTB-148; RRID: CVCL_1239

Software and Algorithms

scikit-learn 0.18.2 scikit-learn project http://scikit-learn.org/

CellProfiler CellProfiler team http://cellprofiler.org/

Pipeline for extracting imaging features This paper https://github.com/ExaScience/process-plate

Bayesian matrix factorization Macau This paper https://github.com/jaak-s/macau

Deep neural network (DNN) code This paper https://github.com/gklambauer/nnet-gmatrix
CONTACT FOR REAGENT AND RESOURCE SHARING

Requests for information and resources should be directed to the lead contact, Hugo Ceulemans (hceulema@its.jnj.com). Due to

the proprietary nature of the drug development process, we are unable to disclose specific information related to the chemical

compounds and specific protein targets. We gladly share all used software code, and laboratory and imaging methodologies.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
The H4 brain epithelial neuroglioma cell line, originating from a male patient, was used for the cellular imaging assays. Authenticated

cell stocks were obtained from ATCC.

Cells were cultured in Flacon T175 flasks at 37C using DMEM medium with phenol red, with addition of 10% fetal calf serum,

100 U/ml penicillin, 100 mg/ml streptomycin, 2 mM glutamine, and 1 mM sodium pyruvate.

METHOD DETAILS

Experimental Setup of GR Assay
For the assay, the cells were trypsinized and harvested from the T175 flasks, then resuspended in DMEM without phenol red,

5% charcoal-stripped serum (CSS), 100 U/ml penicillin, 100 mg/ml streptomycin, 2 mM glutamine, and 1 mM sodium pyruvate.
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Theywere seeded in PerkinElmer CellCarrier 384-well plates at a density of 2000 cells per well in a 30 ml volume, and incubated at 37C

for 16-18 hours to promote cell attachment. Then 3 ml of compounds dissolved in DMSO and pre-diluted in PBSwere added, to a final

concentration in the well of 10 mMwith 0.2% final DMSO content. After 1 hour of incubation at 37 C, 3 ml of 12 mM hydrocortisone in

PBS was added, to a final concentration of 1 mM to stimulate translocation of the GCR, except in positive control wells where pure

PBS was added. After 1 hour of incubation at 37C, the process was stopped by fixation.

Cells were fixed by addition of 5% formaldehyde for 15 minutes at room temperature (RT), washed, and permeabilized with 0.3%

Triton-X for 10 minutes at RT. The plates were then washed 3 times, and 20 ml of the primary antibody for the GCR (Santa Cruz

sc-8992) was applied at a dilution of 1/200 in PBS with 5% goat serum, and left on for 24 hours at 4 C. Thereafter, plates were

washed again three times, and 20 ml of a reagent mix in PBS with 5% goat serum was added, which contained Hoechst 33258

(Invitrogen H3569, dilution 1/5000) to label the nucleus, CellMask Deep Red (Invitrogen H32721, dissolved in 100 ml DMSO, then

diluted 1/4000) to delineate cell boundaries, and an Alexa-568 labeled goat anti-rabbit secondary antibody (Invitrogen A11011,

1/500) to detect the GCR. This was left on for 1 hour at RT. Plates were then washed two times, filled with 80 ml of PBS, sealed,

and stored at 4C.

Plates were imaged at RT on a Yokogawa CellVoyager 7000, at 10x magnification, acquiring 2 fields per well. For Hoechst,

a 405-nm laser was used and a 445/45 bandpass emission filter; for Alexa 568 a 561-nm excitation and a 600/37 filter, and for

CellMask Deep Red a 635-nm laser and a 676/29 filter.

Autofluorescence Filtering and CNS Availability
Frequent hitters are compounds that are promiscuously active, e.g. based on certain substructure motifs they might contain. Also,

some compounds might be dyes themselves, be reactive species, or interfere with particular assay technologies as Fluorescent or

AlphaScreen readouts. Baell/Holloway (Baell and Holloway, 2010) suggested a Pan Assay Interference Compounds (PAINS) filter for

removing such promiscuous compounds from HTS hits.

The Blood-Brain-Barrier (BBB) is a critical membrane to separate the blood from the brain in the central nervous system (CNS).

Drugs for CNS disease indications should pass the BBB, while drugs for non-CNS indications should not pass the BBB for preventing

unwanted side-effects. The BBB allows the passage of water and lipid-soluble molecules by passive diffusion. Twomajor estimations

for BBB permeability are therefore based on passive diffusion models based on logP and polar surface area (PSA) of compounds

(Egan et al., 2000), or active transport via a P-glycoprotein (P-gp) substrate probability of compounds (Garg and Verma, 2006;

Wang et al., 2015).We filtered out all compounds that do not exhibit BBBpermeability according to standard pharmaceutical practice.

Software Implementation, Training, and Tuning DNN
Weusedminibatch Stochastic Gradient Descent (SGD) to train the DNNs. Hence, we implemented the DNNs using the CUDA parallel

computing platform and employed NVIDIA Tesla K40 GPUs to achieve speed-ups of 20-100x compared to CPU implementations.

We optimized the DNN architecture and hyperparameters, such as learning rate, early-stopping parameter and Dropout rate on a

validation set in a nested cross-validation procedure (Baumann and Baumann, 2014; Hochreiter and Obermayer, 2004). This proced-

ure produces performance estimates that are unbiased by hyperparameter selection since the hyperparameters are optimized on the

inner folds and only the best performing hyperparameters are tested on the outer folds. We considered 1, 2 or 3 layer networks with

1024, 2048, or 4096 units in each layer. The tested learning rateswere 0.01, 0.05, and 0.1. TheDropout rateswere either set to zero, or

to 10% dropout in the input layer and 50% dropout in the hidden layers. Additionally, we tested whether the dropout rate should be

arithmetically increased from 0 by 0.005 after each epoch ("dropout schedule") until the given dropout rate or whether the dropout

rates were constant ("no dropout schedule") during learning. Table S1 summarizes these hyperparameters and architecture design

parameters that were used for the DNNs, together with their search ranges.

The hyperparameters that performed best when averaged across the three cross-validation folds were: 3 layers with 2,048 units,

learning rate 0.05, Dropout: yes, Dropout-schedule: yes. The early stopping-parameter was determined to be 63 epochs.

Random Forests and k-nearest Neighbor
Random forests (RF) work well with different types of descriptors (Breiman, 2001) at a large variety of tasks and their performance is

relatively robust with respect to hyperparameter settings (Polishchuk et al., 2009). We used a high number of trees to obtain a stable

model with high performance (Oshiro et al., 2012). The critical parameter is the number of features considered at each split (Louppe,

2014) which we adjusted in the established nested cross-validation setting. We trained and assessed models for each assay individ-

ually in our established framework using different hyperparameters given in Table S2 and the Random Forest implementation

"ranger" (Wright and Ziegler, 2015).

The k-nearest neighbor (kNN) method is a popular approach for similarity search based predictions. We applied kNN to measure

how well a similarity search ranking would work on images. The number of neighbors k is chosen for each assay-threshold pair using

the nested cross-validation, and the considered values of k were 7, 13, 21 and 33.

Method Performance
We comparedMacau, a regression method based on Bayesian matrix factorization with side information, random forest classification

(Breiman, 2001), kNN and deep neural networks (Mayr et al., 2016) for predictive performance on assay-threshold pairs with at

least 25 actives and 25 inactives, see Data S1 (an external spreadsheet) for the detailed results.
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To summarize the results we count how many assays had at least one threshold (5.5, 6.5, 7.5 or 8.5) with AUC-ROC above 0.9

threshold. We found that the Macau, DNN and RF performed similarly with respect to which assays could be predicted accurately.

Concretely, 10 out of total 535 assays could be predicted with AUC-ROC above 0.9 by all three methods (see Venn diagram in

Figure S2). Similarly, 181 assays had performance of AUC-ROC above 0.7 by all three methods (see Venn diagram in Figure S3).

The numbers of assays where only a single or a pair of methods gave an AUC-ROC above 0.7 are all comparably smaller. Therefore,

we conclude that the performance is mainly driven by imaging features rather than the machine learning method.

However, kNN was not able to predict a single assays with AUC-ROC above 0.9 and predicted only 93 assays with AUC-ROC

above 0.7. A likely reason for the poor performance is that the image-based fingerprints are quite high-dimensional and noisy, which

makes similarity-based ranking inaccurate. In contrast, the other testedmethods (Macau, DNN andRF) learn to focus only on specific

features of the fingerprints and thus pick up the signal.

For summary, Table S3 reports the number of protein targets that are well predicted and the mean AUC-ROC for the four methods

over the 535 protein targets.

QUANTIFICATION AND STATISTICAL ANALYSIS

The details of the clustered cross-validation scheme are presented in Section ‘‘Selection of High Quality Models’’ and depicted in

Figure S1. For the hyperparameter selection of the DNN see STARMethods Section ‘‘Software Implementation, Training, and Tuning

DNN’’ and Table S1. For random forest tuning see STARMethods Section ‘‘Random Forests and k-nearest Neighbor’’ and Table S2.

The AUC-ROC values presented were calculated using scikit-learn.

DATA AND SOFTWARE AVAILABILITY

We offer all developed software and pipelines under open source licences.

d Macau implementation: https://github.com/jaak-s/macau

d DNN implementation: https://github.com/gklambauer/nnet-gmatrix

d CellProfiler pipeline: https://github.com/ExaScience/process-plate

Data S1 describes the AUC-ROC values for the assays-threshold pairs with at least 25 active and 25 inactive compounds.
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Supplemental Information

Hyperparameter Considered values
Number of Hidden Units {1024, 2048, 4096}
Number of Hidden Layers {1, 2, 3}
Learning Rate {0.01, 0.05, 0.1}
Dropout {no , yes (50% Hidden Dropout, 10% Input Dropout)}
Dropout-schedule {no, yes}

Table S1: Related to Figure 4. Hyperparameters considered for Deep
Neural Networks.

Hyperparameter Considered values
criterion {Gini, cross-entropy}
number of trees {250}
number of features considered at each split {1, 2, 3} ×

√
#features

Table S2: Related to Figure 3. Hyperparameters considered for Ran-
dom Forests. The #features corresponds to the total number of features (842
in our experiments).

Method Number of targets AUC-ROC
AUC-ROC > 0.9 AUC-ROC > 0.7 Mean (Stdev)

Macau 31 218 0.65 (0.11)
DNN 43 245 0.67 (0.10)
random forest 13 203 0.63 (0.10)
k-nearest neighbor 0 93 0.57 (0.07)

Table S3: Related to Table 1. Number of protein targets with AUC-
ROC above 0.9 and 0.7, and mean of AUC-ROC across assays. To
compute the mean AUC-ROC we first calculated the average for every assay
(over its thresholds) and then we calculated their mean and standard deviation
(over 535 assays).
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Figure S1: Related to Table 1. Clustered Cross-Validation for
Compound-Protein Activity Prediction. Every block of rows corresponds
to a compound series (of chemical analogs) and every column to an assay.

2



Figure S2: Related to Table 1. Venn diagram: number of protein
targets with high predictivity (AUC-ROC > 0.9) out of total of 535
targets comparing three methods: Macau, Deep Neural Networks
(DNN) and random forest (RF).
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Figure S3: Related to Table 1. Venn diagram: number of protein
targets with high predictivity (AUC-ROC > 0.7) out of total of 535
targets comparing three methods: Macau, Deep Neural Networks
(DNN) and random forest (RF).
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