Skip to content

Latest commit

 

History

History
191 lines (140 loc) · 6.84 KB

README.rst

File metadata and controls

191 lines (140 loc) · 6.84 KB

thermo

Version_status Documentation Build_status license Coverage Supported_versions Join the chat at https://gitter.im/CalebBell/thermo Build_status Zendo

thermo is open-source software for engineers, scientists, technicians and anyone trying to understand the universe in more detail. It facilitates the retrieval of constants of chemicals, the calculation of temperature and pressure dependent chemical properties (both thermodynamic and transport), the calculation of the same for chemical mixtures (including phase equilibria), and assorted information of a regulatory or legal nature about chemicals.

The thermo library depends on the SciPy library to povide numerical constants, interpolation, integration, differentiation, and numerical solving functionality. thermo all operating systems which support Python, is quick to install, and is free of charge. thermo is designed to be easy to use while still providing powerful functionality. If you need to know something about a chemical, give thermo a try.

Get the latest version of thermo from https://pypi.python.org/pypi/thermo/

If you have an installation of Python with pip, simple install it with:

$ pip install thermo

Alternatively, if you are using conda as your package management, you can simply install thermo in your environment from conda-forge channel with:

$ conda install -c conda-forge thermo

To get the git version, run:

$ git clone git://github.com/CalebBell/thermo.git

thermo's documentation is available on the web:

http://thermo.readthedocs.io/

The library is designed around base SI units only for development convenience. All chemicals default to 298.15 K and 101325 Pa on creation, unless specified. All constant-properties are loaded on the creation of a Chemical instance.

>>> from thermo.chemical import Chemical
>>> tol = Chemical('toluene')
>>> tol.Tm, tol.Tb, tol.Tc
(179.2, 383.75, 591.75)
>>> tol.rho, tol.Cp, tol.k, tol.mu
(862.2380125827527, 1706.0746129119084, 0.13034801424538045, 0.0005521951637285534)

For pure species, the phase is easily identified, allowing for properties to be obtained without needing to specify the phase. However, the properties are also available in the hypothetical gas phase (when under the boiling point) and in the hypothetical liquid phase (when above the boiling point) as these properties are needed to evaluate mixture properties. Specify the phase of a property to be retrieved by appending 'l' or 'g' or 's' to the property.

>>> tol.rhog, tol.Cpg, tol.kg, tol.mug
(4.032009635018902, 1126.5533755283168, 0.010736843919054837, 6.973325939594919e-06)

Creating a chemical object involves identifying the appropriate chemical by name through a database, and retrieving all constant and temperature and pressure dependent coefficients from Pandas DataFrames - a ~1 ms process. To obtain properties at different conditions quickly, the method calculate has been implemented.

>>> tol.calculate(T=310, P=101325)
>>> tol.rho, tol.Cp, tol.k, tol.mu
(851.1582219886011, 1743.280497511088, 0.12705495902514785, 0.00048161578053599225)
>>> tol.calculate(310, 2E6)
>>> tol.rho, tol.Cp, tol.k, tol.mu
(852.7643604407997, 1743.280497511088, 0.12773606382684732, 0.0004894942399156052)

Each property is implemented through an independent object-oriented method, based on the classes TDependentProperty and TPDependentProperty to allow for shared methods of plotting, integrating, differentiating, solving, interpolating, sanity checking, and error handling. For example, to solve for the temperature at which the vapor pressure of toluene is 2 bar. For each property, as many methods of calculating or estimating it are included as possible. All methods can be visualized independently:

>>> Chemical('toluene').VaporPressure.solve_prop(2E5)
409.5909115602903
>>> Chemical('toluene').SurfaceTension.plot_T_dependent_property()

Mixtures are supported and many mixing rules have been implemented. However, there is no error handling. Inputs as mole fractions (zs), mass fractions (ws), or volume fractions (Vfls or Vfgs) are supported. Some shortcuts are supported to predefined mixtures.

>>> from thermo.chemical import Mixture
>>> vodka = Mixture(['water', 'ethanol'], Vfls=[.6, .4], T=300, P=1E5)
>>> vodka.Prl,vodka.Prg
(35.13075699606542, 0.9822705235442692)
>>> air = Mixture('air', T=400, P=1e5)
>>> air.Cp
1013.7956176577836

The author's main development item is phase equilibrium, a particularly tricky area.

The latest development version of thermo's sources can be obtained at

https://github.com/CalebBell/thermo

To report bugs, please use the thermo's Bug Tracker at:

https://github.com/CalebBell/thermo/issues

See LICENSE.txt for information on the terms & conditions for usage of this software, and a DISCLAIMER OF ALL WARRANTIES.

Although not required by the thermo license, if it is convenient for you, please cite thermo if used in your work. Please also consider contributing any changes you make back, and benefit the community.

To cite thermo in publications use:

Caleb Bell and Contributors (2016-2020). thermo: Chemical properties component of Chemical Engineering Design Library (ChEDL)
https://github.com/CalebBell/thermo.