-
Notifications
You must be signed in to change notification settings - Fork 2.8k
/
signal.py
702 lines (597 loc) · 26.9 KB
/
signal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
# Copyright 2020 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from collections.abc import Sequence
from functools import partial
import math
import operator
from typing import Callable
import warnings
import numpy as np
import scipy.signal as osp_signal
from scipy.fft import next_fast_len as osp_fft_next_fast_len
import jax
import jax.numpy.fft
import jax.numpy as jnp
from jax import lax
from jax._src.api_util import _ensure_index_tuple
from jax._src import dtypes
from jax._src.lax.lax import PrecisionLike
from jax._src.numpy import linalg
from jax._src.numpy.util import (
check_arraylike, implements, promote_dtypes_inexact, promote_dtypes_complex)
from jax._src.third_party.scipy import signal_helper
from jax._src.typing import Array, ArrayLike
from jax._src.util import canonicalize_axis, tuple_delete, tuple_insert
@implements(osp_signal.fftconvolve)
def fftconvolve(in1: ArrayLike, in2: ArrayLike, mode: str = "full",
axes: Sequence[int] | None = None) -> Array:
check_arraylike('fftconvolve', in1, in2)
in1, in2 = promote_dtypes_inexact(in1, in2)
if in1.ndim != in2.ndim:
raise ValueError("in1 and in2 should have the same dimensionality")
if mode not in ["same", "full", "valid"]:
raise ValueError("mode must be one of ['same', 'full', 'valid']")
_fftconvolve = partial(_fftconvolve_unbatched, mode=mode)
if axes is None:
return _fftconvolve(in1, in2)
axes = _ensure_index_tuple(axes)
axes = tuple(canonicalize_axis(ax, in1.ndim) for ax in axes)
mapped_axes = set(range(in1.ndim)) - set(axes)
if any(in1.shape[i] != in2.shape[i] for i in mapped_axes):
raise ValueError(f"mapped axes must have same shape; got {in1.shape=} {in2.shape=} {axes=}")
for ax in sorted(mapped_axes):
_fftconvolve = jax.vmap(_fftconvolve, in_axes=ax, out_axes=ax)
return _fftconvolve(in1, in2)
def _fftconvolve_unbatched(in1: Array, in2: Array, mode: str) -> Array:
full_shape = tuple(s1 + s2 - 1 for s1, s2 in zip(in1.shape, in2.shape))
fft_shape = tuple(osp_fft_next_fast_len(s) for s in full_shape)
if mode == 'valid':
no_swap = all(s1 >= s2 for s1, s2 in zip(in1.shape, in2.shape))
swap = all(s1 <= s2 for s1, s2 in zip(in1.shape, in2.shape))
if not (no_swap or swap):
raise ValueError("For 'valid' mode, One input must be at least as "
"large as the other in every dimension.")
if swap:
in1, in2 = in2, in1
if jnp.iscomplexobj(in1):
fft, ifft = jnp.fft.fftn, jnp.fft.ifftn
else:
fft, ifft = jnp.fft.rfftn, jnp.fft.irfftn
sp1 = fft(in1, fft_shape)
sp2 = fft(in2, fft_shape)
conv = ifft(sp1 * sp2, fft_shape)
if mode == "full":
out_shape = full_shape
elif mode == "same":
out_shape = in1.shape
elif mode == "valid":
out_shape = tuple(s1 - s2 + 1 for s1, s2 in zip(in1.shape, in2.shape))
else:
raise ValueError(f"Unrecognized {mode=}")
start_indices = tuple((full_size - out_size) // 2
for full_size, out_size in zip(full_shape, out_shape))
return lax.dynamic_slice(conv, start_indices, out_shape)
# Note: we do not re-use the code from jax.numpy.convolve here, because the handling
# of padding differs slightly between the two implementations (particularly for
# mode='same').
def _convolve_nd(in1: Array, in2: Array, mode: str, *, precision: PrecisionLike) -> Array:
if mode not in ["full", "same", "valid"]:
raise ValueError("mode must be one of ['full', 'same', 'valid']")
if in1.ndim != in2.ndim:
raise ValueError("in1 and in2 must have the same number of dimensions")
if in1.size == 0 or in2.size == 0:
raise ValueError(f"zero-size arrays not supported in convolutions, got shapes {in1.shape} and {in2.shape}.")
in1, in2 = promote_dtypes_inexact(in1, in2)
no_swap = all(s1 >= s2 for s1, s2 in zip(in1.shape, in2.shape))
swap = all(s1 <= s2 for s1, s2 in zip(in1.shape, in2.shape))
if not (no_swap or swap):
raise ValueError("One input must be smaller than the other in every dimension.")
shape_o = in2.shape
if swap:
in1, in2 = in2, in1
shape = in2.shape
in2 = jnp.flip(in2)
if mode == 'valid':
padding = [(0, 0) for s in shape]
elif mode == 'same':
padding = [(s - 1 - (s_o - 1) // 2, s - s_o + (s_o - 1) // 2)
for (s, s_o) in zip(shape, shape_o)]
elif mode == 'full':
padding = [(s - 1, s - 1) for s in shape]
strides = tuple(1 for s in shape)
result = lax.conv_general_dilated(in1[None, None], in2[None, None], strides,
padding, precision=precision)
return result[0, 0]
@implements(osp_signal.convolve)
def convolve(in1: Array, in2: Array, mode: str = 'full', method: str = 'auto',
precision: PrecisionLike = None) -> Array:
if method == 'fft':
return fftconvolve(in1, in2, mode=mode)
elif method in ['direct', 'auto']:
return _convolve_nd(in1, in2, mode, precision=precision)
else:
raise ValueError(f"Got {method=}; expected 'auto', 'fft', or 'direct'.")
@implements(osp_signal.convolve2d)
def convolve2d(in1: Array, in2: Array, mode: str = 'full', boundary: str = 'fill',
fillvalue: float = 0, precision: PrecisionLike = None) -> Array:
if boundary != 'fill' or fillvalue != 0:
raise NotImplementedError("convolve2d() only supports boundary='fill', fillvalue=0")
if jnp.ndim(in1) != 2 or jnp.ndim(in2) != 2:
raise ValueError("convolve2d() only supports 2-dimensional inputs.")
return _convolve_nd(in1, in2, mode, precision=precision)
@implements(osp_signal.correlate)
def correlate(in1: Array, in2: Array, mode: str = 'full', method: str = 'auto',
precision: PrecisionLike = None) -> Array:
return convolve(in1, jnp.flip(in2.conj()), mode, precision=precision, method=method)
@implements(osp_signal.correlate2d)
def correlate2d(in1: Array, in2: Array, mode: str = 'full', boundary: str = 'fill',
fillvalue: float = 0, precision: PrecisionLike = None) -> Array:
if boundary != 'fill' or fillvalue != 0:
raise NotImplementedError("correlate2d() only supports boundary='fill', fillvalue=0")
if jnp.ndim(in1) != 2 or jnp.ndim(in2) != 2:
raise ValueError("correlate2d() only supports 2-dimensional inputs.")
swap = all(s1 <= s2 for s1, s2 in zip(in1.shape, in2.shape))
same_shape = all(s1 == s2 for s1, s2 in zip(in1.shape, in2.shape))
if mode == "same":
in1, in2 = jnp.flip(in1), in2.conj()
result = jnp.flip(_convolve_nd(in1, in2, mode, precision=precision))
elif mode == "valid":
if swap and not same_shape:
in1, in2 = jnp.flip(in2), in1.conj()
result = _convolve_nd(in1, in2, mode, precision=precision)
else:
in1, in2 = jnp.flip(in1), in2.conj()
result = jnp.flip(_convolve_nd(in1, in2, mode, precision=precision))
else:
if swap:
in1, in2 = jnp.flip(in2), in1.conj()
result = _convolve_nd(in1, in2, mode, precision=precision).conj()
else:
in1, in2 = jnp.flip(in1), in2.conj()
result = jnp.flip(_convolve_nd(in1, in2, mode, precision=precision))
return result
@implements(osp_signal.detrend)
def detrend(data: ArrayLike, axis: int = -1, type: str = 'linear', bp: int = 0,
overwrite_data: None = None) -> Array:
if overwrite_data is not None:
raise NotImplementedError("overwrite_data argument not implemented.")
if type not in ['constant', 'linear']:
raise ValueError("Trend type must be 'linear' or 'constant'.")
data_arr, = promote_dtypes_inexact(jnp.asarray(data))
if type == 'constant':
return data_arr - data_arr.mean(axis, keepdims=True)
else:
N = data_arr.shape[axis]
# bp is static, so we use np operations to avoid pushing to device.
bp_arr = np.sort(np.unique(np.r_[0, bp, N]))
if bp_arr[0] < 0 or bp_arr[-1] > N:
raise ValueError("Breakpoints must be non-negative and less than length of data along given axis.")
data_arr = jnp.moveaxis(data_arr, axis, 0)
shape = data_arr.shape
data_arr = data_arr.reshape(N, -1)
for m in range(len(bp_arr) - 1):
Npts = bp_arr[m + 1] - bp_arr[m]
A = jnp.vstack([
jnp.ones(Npts, dtype=data_arr.dtype),
jnp.arange(1, Npts + 1, dtype=data_arr.dtype) / Npts.astype(data_arr.dtype)
]).T
sl = slice(bp_arr[m], bp_arr[m + 1])
coef, *_ = linalg.lstsq(A, data_arr[sl])
data_arr = data_arr.at[sl].add(-jnp.matmul(A, coef, precision=lax.Precision.HIGHEST))
return jnp.moveaxis(data_arr.reshape(shape), 0, axis)
def _fft_helper(x: Array, win: Array, detrend_func: Callable[[Array], Array],
nperseg: int, noverlap: int, nfft: int | None, sides: str) -> Array:
"""Calculate windowed FFT in the same way the original SciPy does.
"""
if x.dtype.kind == 'i':
x = x.astype(win.dtype)
*batch_shape, signal_length = x.shape
# Created strided array of data segments
if nperseg == 1 and noverlap == 0:
result = x[..., np.newaxis]
else:
step = nperseg - noverlap
batch_shape = list(batch_shape)
x = x.reshape((math.prod(batch_shape), signal_length, 1))
result = jax.lax.conv_general_dilated_patches(
x, (nperseg,), (step,),
'VALID',
dimension_numbers=('NTC', 'OIT', 'NTC'))
result = result.reshape(*batch_shape, *result.shape[-2:])
# Detrend each data segment individually
result = detrend_func(result)
# Apply window by multiplication
if jnp.iscomplexobj(win):
result, = promote_dtypes_complex(result)
result = win.reshape((1,) * len(batch_shape) + (1, nperseg)) * result
# Perform the fft on last axis. Zero-pads automatically
if sides == 'twosided':
return jax.numpy.fft.fft(result, n=nfft)
else:
return jax.numpy.fft.rfft(result.real, n=nfft)
def odd_ext(x: Array, n: int, axis: int = -1) -> Array:
"""Extends `x` along with `axis` by odd-extension.
This function was previously a part of "scipy.signal.signaltools" but is no
longer exposed.
Args:
x : input array
n : the number of points to be added to the both end
axis: the axis to be extended
"""
if n < 1:
return x
if n > x.shape[axis] - 1:
raise ValueError(
f"The extension length n ({n}) is too big. "
f"It must not exceed x.shape[axis]-1, which is {x.shape[axis] - 1}.")
left_end = lax.slice_in_dim(x, 0, 1, axis=axis)
left_ext = jnp.flip(lax.slice_in_dim(x, 1, n + 1, axis=axis), axis=axis)
right_end = lax.slice_in_dim(x, -1, None, axis=axis)
right_ext = jnp.flip(lax.slice_in_dim(x, -(n + 1), -1, axis=axis), axis=axis)
ext = jnp.concatenate((2 * left_end - left_ext,
x,
2 * right_end - right_ext),
axis=axis)
return ext
def _spectral_helper(x: Array, y: ArrayLike | None, fs: ArrayLike = 1.0,
window: str = 'hann', nperseg: int | None = None,
noverlap: int | None = None, nfft: int | None = None,
detrend_type: bool | str | Callable[[Array], Array] = 'constant',
return_onesided: bool = True, scaling: str = 'density',
axis: int = -1, mode: str = 'psd', boundary: str | None = None,
padded: bool = False) -> tuple[Array, Array, Array]:
"""LAX-backend implementation of `scipy.signal._spectral_helper`.
Unlike the original helper function, `y` can be None for explicitly
indicating auto-spectral (non cross-spectral) computation. In addition to
this, `detrend` argument is renamed to `detrend_type` for avoiding internal
name overlap.
"""
if mode not in ('psd', 'stft'):
raise ValueError(f"Unknown value for mode {mode}, "
"must be one of: ('psd', 'stft')")
def make_pad(mode, **kwargs):
def pad(x, n, axis=-1):
pad_width = [(0, 0) for unused_n in range(x.ndim)]
pad_width[axis] = (n, n)
return jnp.pad(x, pad_width, mode, **kwargs)
return pad
boundary_funcs = {
'even': make_pad('reflect'),
'odd': odd_ext,
'constant': make_pad('edge'),
'zeros': make_pad('constant', constant_values=0.0),
None: lambda x, *args, **kwargs: x
}
# Check/ normalize inputs
if boundary not in boundary_funcs:
raise ValueError(
f"Unknown boundary option '{boundary}', "
f"must be one of: {list(boundary_funcs.keys())}")
axis = jax.core.concrete_or_error(operator.index, axis,
"axis of windowed-FFT")
axis = canonicalize_axis(axis, x.ndim)
if y is None:
check_arraylike('spectral_helper', x)
x, = promote_dtypes_inexact(x)
y_arr = x # place-holder for type checking
outershape = tuple_delete(x.shape, axis)
else:
if mode != 'psd':
raise ValueError("two-argument mode is available only when mode=='psd'")
check_arraylike('spectral_helper', x, y)
x, y_arr = promote_dtypes_inexact(x, y)
if x.ndim != y_arr.ndim:
raise ValueError("two-arguments must have the same rank ({x.ndim} vs {y.ndim}).")
# Check if we can broadcast the outer axes together
try:
outershape = jnp.broadcast_shapes(tuple_delete(x.shape, axis),
tuple_delete(y_arr.shape, axis))
except ValueError as err:
raise ValueError('x and y cannot be broadcast together.') from err
result_dtype = dtypes.to_complex_dtype(x.dtype)
freq_dtype = np.finfo(result_dtype).dtype
nperseg_int: int = 0
nfft_int: int = 0
noverlap_int: int = 0
if nperseg is not None: # if specified by user
nperseg_int = jax.core.concrete_or_error(int, nperseg,
"nperseg of windowed-FFT")
if nperseg_int < 1: # type: ignore[operator]
raise ValueError('nperseg must be a positive integer')
# parse window; if array like, then set nperseg = win.shape
win, nperseg_int = signal_helper._triage_segments(
window, nperseg if nperseg is None else nperseg_int,
input_length=x.shape[axis], dtype=x.dtype)
if noverlap is None:
noverlap_int = nperseg_int // 2 # type: ignore[operator]
else:
noverlap_int = jax.core.concrete_or_error(int, noverlap,
"noverlap of windowed-FFT")
if nfft is None:
nfft_int = nperseg_int
else:
nfft_int = jax.core.concrete_or_error(int, nfft,
"nfft of windowed-FFT")
# Special cases for size == 0
if y is None:
if x.size == 0:
return jnp.zeros(x.shape, freq_dtype), jnp.zeros(x.shape, freq_dtype), jnp.zeros(x.shape, result_dtype)
else:
if x.size == 0 or y_arr.size == 0:
shape = tuple_insert(outershape, min([x.shape[axis], y_arr.shape[axis]]), axis)
return jnp.zeros(shape, freq_dtype), jnp.zeros(shape, freq_dtype), jnp.zeros(shape, result_dtype)
# Move time-axis to the end
x = jnp.moveaxis(x, axis, -1)
if y is not None and y_arr.ndim > 1:
y_arr = jnp.moveaxis(y_arr, axis, -1)
# Check if x and y are the same length, zero-pad if necessary
if y is not None and x.shape[-1] != y_arr.shape[-1]:
if x.shape[-1] < y_arr.shape[-1]:
pad_shape = list(x.shape)
pad_shape[-1] = y_arr.shape[-1] - x.shape[-1]
x = jnp.concatenate((x, jnp.zeros_like(x, shape=pad_shape)), -1)
else:
pad_shape = list(y_arr.shape)
pad_shape[-1] = x.shape[-1] - y_arr.shape[-1]
y_arr = jnp.concatenate((y_arr, jnp.zeros_like(x, shape=pad_shape)), -1)
if nfft_int < nperseg_int:
raise ValueError('nfft must be greater than or equal to nperseg.')
if noverlap_int >= nperseg_int:
raise ValueError('noverlap must be less than nperseg.')
nstep = nperseg_int - noverlap_int
# Apply paddings
if boundary is not None:
ext_func = boundary_funcs[boundary]
x = ext_func(x, nperseg_int // 2, axis=-1)
if y is not None:
y_arr = ext_func(y_arr, nperseg_int // 2, axis=-1)
if padded:
# Pad to integer number of windowed segments
# I.e make x.shape[-1] = nperseg + (nseg-1)*nstep, with integer nseg
nadd = (-(x.shape[-1]-nperseg_int) % nstep) % nperseg_int
x = jnp.concatenate((x, jnp.zeros_like(x, shape=(*x.shape[:-1], nadd))), axis=-1)
if y is not None:
y_arr = jnp.concatenate((y_arr, jnp.zeros_like(x, shape=(*y_arr.shape[:-1], nadd))), axis=-1)
# Handle detrending and window functions
if not detrend_type:
detrend_func = lambda d: d
elif not callable(detrend_type):
detrend_func = partial(detrend, type=detrend_type, axis=-1)
elif axis != -1:
# Wrap this function so that it receives a shape that it could
# reasonably expect to receive.
def detrend_func(d):
d = jnp.moveaxis(d, axis, -1)
d = detrend_type(d)
return jnp.moveaxis(d, -1, axis)
else:
detrend_func = detrend_type
# Determine scale
if scaling == 'density':
scale = 1.0 / (fs * (win * win).sum())
elif scaling == 'spectrum':
scale = 1.0 / win.sum()**2
else:
raise ValueError(f'Unknown scaling: {scaling}')
if mode == 'stft':
scale = jnp.sqrt(scale)
scale, = promote_dtypes_complex(scale)
# Determine onesided/ two-sided
if return_onesided:
sides = 'onesided'
if jnp.iscomplexobj(x) or jnp.iscomplexobj(y):
sides = 'twosided'
warnings.warn('Input data is complex, switching to '
'return_onesided=False')
else:
sides = 'twosided'
if sides == 'twosided':
freqs = jax.numpy.fft.fftfreq(nfft_int, 1/fs, dtype=freq_dtype)
elif sides == 'onesided':
freqs = jax.numpy.fft.rfftfreq(nfft_int, 1/fs, dtype=freq_dtype)
# Perform the windowed FFTs
result = _fft_helper(x, win, detrend_func,
nperseg_int, noverlap_int, nfft_int, sides)
if y is not None:
# All the same operations on the y data
result_y = _fft_helper(y_arr, win, detrend_func,
nperseg_int, noverlap_int, nfft_int, sides)
result = jnp.conjugate(result) * result_y
elif mode == 'psd':
result = jnp.conjugate(result) * result
result *= scale
if sides == 'onesided' and mode == 'psd':
end = None if nfft_int % 2 else -1
result = result.at[..., 1:end].mul(2)
time = jnp.arange(nperseg_int / 2, x.shape[-1] - nperseg_int / 2 + 1,
nperseg_int - noverlap_int, dtype=freq_dtype) / fs
if boundary is not None:
time -= (nperseg_int / 2) / fs
result = result.astype(result_dtype)
# All imaginary parts are zero anyways
if y is None and mode != 'stft':
result = result.real
# Move frequency axis back to axis where the data came from
result = jnp.moveaxis(result, -1, axis)
return freqs, time, result
@implements(osp_signal.stft)
def stft(x: Array, fs: ArrayLike = 1.0, window: str = 'hann', nperseg: int = 256,
noverlap: int | None = None, nfft: int | None = None,
detrend: bool = False, return_onesided: bool = True, boundary: str | None = 'zeros',
padded: bool = True, axis: int = -1) -> tuple[Array, Array, Array]:
return _spectral_helper(x, None, fs, window, nperseg, noverlap,
nfft, detrend, return_onesided,
scaling='spectrum', axis=axis,
mode='stft', boundary=boundary,
padded=padded)
_csd_description = """
The original SciPy function exhibits slightly different behavior between
``csd(x, x)``` and ```csd(x, x.copy())```. The LAX-backend version is designed
to follow the latter behavior. For using the former behavior, call this
function as `csd(x, None)`."""
@implements(osp_signal.csd, lax_description=_csd_description)
def csd(x: Array, y: ArrayLike | None, fs: ArrayLike = 1.0, window: str = 'hann',
nperseg: int | None = None, noverlap: int | None = None,
nfft: int | None = None, detrend: str = 'constant',
return_onesided: bool = True, scaling: str = 'density',
axis: int = -1, average: str = 'mean') -> tuple[Array, Array]:
freqs, _, Pxy = _spectral_helper(x, y, fs, window, nperseg, noverlap, nfft,
detrend, return_onesided, scaling, axis,
mode='psd')
if y is not None:
Pxy = Pxy + 0j # Ensure complex output when x is not y
# Average over windows.
if Pxy.ndim >= 2 and Pxy.size > 0:
if Pxy.shape[-1] > 1:
if average == 'median':
bias = signal_helper._median_bias(Pxy.shape[-1]).astype(Pxy.dtype)
if jnp.iscomplexobj(Pxy):
Pxy = (jnp.median(jnp.real(Pxy), axis=-1)
+ 1j * jnp.median(jnp.imag(Pxy), axis=-1))
else:
Pxy = jnp.median(Pxy, axis=-1)
Pxy /= bias
elif average == 'mean':
Pxy = Pxy.mean(axis=-1)
else:
raise ValueError(f'average must be "median" or "mean", got {average}')
else:
Pxy = jnp.reshape(Pxy, Pxy.shape[:-1])
return freqs, Pxy
@implements(osp_signal.welch)
def welch(x: Array, fs: ArrayLike = 1.0, window: str = 'hann',
nperseg: int | None = None, noverlap: int | None = None,
nfft: int | None = None, detrend: str = 'constant',
return_onesided: bool = True, scaling: str = 'density',
axis: int = -1, average: str = 'mean') -> tuple[Array, Array]:
freqs, Pxx = csd(x, None, fs=fs, window=window, nperseg=nperseg,
noverlap=noverlap, nfft=nfft, detrend=detrend,
return_onesided=return_onesided, scaling=scaling,
axis=axis, average=average)
return freqs, Pxx.real
def _overlap_and_add(x: Array, step_size: int) -> Array:
"""Utility function compatible with tf.signal.overlap_and_add.
Args:
x: An array with `(..., frames, frame_length)`-shape.
step_size: An integer denoting overlap offsets. Must be less than
`frame_length`.
Returns:
An array with `(..., output_size)`-shape containing overlapped signal.
"""
check_arraylike("_overlap_and_add", x)
step_size = jax.core.concrete_or_error(int, step_size,
"step_size for overlap_and_add")
if x.ndim < 2:
raise ValueError('Input must have (..., frames, frame_length) shape.')
*batch_shape, nframes, segment_len = x.shape
flat_batchsize = math.prod(batch_shape)
x = x.reshape((flat_batchsize, nframes, segment_len))
output_size = step_size * (nframes - 1) + segment_len
nstep_per_segment = 1 + (segment_len - 1) // step_size
# Here, we use shorter notation for axes.
# B: batch_size, N: nframes, S: nstep_per_segment,
# T: segment_len divided by S
padded_segment_len = nstep_per_segment * step_size
x = jnp.pad(x, ((0, 0), (0, 0), (0, padded_segment_len - segment_len)))
x = x.reshape((flat_batchsize, nframes, nstep_per_segment, step_size))
# For obtaining shifted signals, this routine reinterprets flattened array
# with a shrinked axis. With appropriate truncation/ padding, this operation
# pushes the last padded elements of the previous row to the head of the
# current row.
# See implementation of `overlap_and_add` in Tensorflow for details.
x = x.transpose((0, 2, 1, 3)) # x: (B, S, N, T)
x = jnp.pad(x, ((0, 0), (0, 0), (0, nframes), (0, 0))) # x: (B, S, N*2, T)
shrinked = x.shape[2] - 1
x = x.reshape((flat_batchsize, -1))
x = x[:, :(nstep_per_segment * shrinked * step_size)]
x = x.reshape((flat_batchsize, nstep_per_segment, shrinked * step_size))
# Finally, sum shifted segments, and truncate results to the output_size.
x = x.sum(axis=1)[:, :output_size]
return x.reshape(tuple(batch_shape) + (-1,))
@implements(osp_signal.istft)
def istft(Zxx: Array, fs: ArrayLike = 1.0, window: str = 'hann',
nperseg: int | None = None, noverlap: int | None = None,
nfft: int | None = None, input_onesided: bool = True,
boundary: bool = True, time_axis: int = -1,
freq_axis: int = -2) -> tuple[Array, Array]:
# Input validation
check_arraylike("istft", Zxx)
if Zxx.ndim < 2:
raise ValueError('Input stft must be at least 2d!')
freq_axis = canonicalize_axis(freq_axis, Zxx.ndim)
time_axis = canonicalize_axis(time_axis, Zxx.ndim)
if freq_axis == time_axis:
raise ValueError('Must specify differing time and frequency axes!')
Zxx = jnp.asarray(Zxx, dtype=jax.dtypes.canonicalize_dtype(
np.result_type(Zxx, np.complex64)))
n_default = (2 * (Zxx.shape[freq_axis] - 1) if input_onesided
else Zxx.shape[freq_axis])
nperseg_int = jax.core.concrete_or_error(int, nperseg or n_default,
"nperseg: segment length of STFT")
if nperseg_int < 1:
raise ValueError('nperseg must be a positive integer')
nfft_int: int = 0
if nfft is None:
nfft_int = n_default
if input_onesided and nperseg_int == n_default + 1:
nfft_int += 1 # Odd nperseg, no FFT padding
else:
nfft_int = jax.core.concrete_or_error(int, nfft, "nfft of STFT")
if nfft_int < nperseg_int:
raise ValueError(
f'FFT length ({nfft_int}) must be longer than nperseg ({nperseg_int}).')
noverlap_int = jax.core.concrete_or_error(int, noverlap or nperseg_int // 2,
"noverlap of STFT")
if noverlap_int >= nperseg_int:
raise ValueError('noverlap must be less than nperseg.')
nstep = nperseg_int - noverlap_int
# Rearrange axes if necessary
if time_axis != Zxx.ndim - 1 or freq_axis != Zxx.ndim - 2:
outer_idxs = tuple(
idx for idx in range(Zxx.ndim) if idx not in {time_axis, freq_axis})
Zxx = jnp.transpose(Zxx, outer_idxs + (freq_axis, time_axis))
# Perform IFFT
ifunc = jax.numpy.fft.irfft if input_onesided else jax.numpy.fft.ifft
# xsubs: [..., T, N], N is the number of frames, T is the frame length.
xsubs = ifunc(Zxx, axis=-2, n=nfft)[..., :nperseg_int, :]
# Get window as array
if isinstance(window, (str, tuple)):
win = osp_signal.get_window(window, nperseg_int)
win = jnp.asarray(win, dtype=xsubs.dtype)
else:
win = jnp.asarray(window)
if len(win.shape) != 1:
raise ValueError('window must be 1-D')
if win.shape[0] != nperseg_int:
raise ValueError(f'window must have length of {nperseg_int}')
xsubs *= win.sum() # This takes care of the 'spectrum' scaling
# make win broadcastable over xsubs
win = lax.expand_dims(win, (*range(xsubs.ndim - 2), -1))
x = _overlap_and_add((xsubs * win).swapaxes(-2, -1), nstep)
win_squared = jnp.repeat((win * win), xsubs.shape[-1], axis=-1)
norm = _overlap_and_add(win_squared.swapaxes(-2, -1), nstep)
# Remove extension points
if boundary:
x = x[..., nperseg_int//2:-(nperseg_int//2)]
norm = norm[..., nperseg_int//2:-(nperseg_int//2)]
x /= jnp.where(norm > 1e-10, norm, 1.0)
# Put axes back
if x.ndim > 1:
if time_axis != Zxx.ndim - 1:
if freq_axis < time_axis:
time_axis -= 1
x = jnp.moveaxis(x, -1, time_axis)
time = jnp.arange(x.shape[0], dtype=np.finfo(x.dtype).dtype) / fs
return time, x