-
Notifications
You must be signed in to change notification settings - Fork 86
/
datasets.py
527 lines (463 loc) · 16.3 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
# Copyright 2019 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Provides data for training and testing."""
import numpy as np
import PIL
import skimage.io
import torch
import json
import torch.utils.data
import torchvision
import warnings
import random
class BaseDataset(torch.utils.data.Dataset):
"""Base class for a dataset."""
def __init__(self):
super(BaseDataset, self).__init__()
self.imgs = []
self.test_queries = []
def get_loader(self,
batch_size,
shuffle=False,
drop_last=False,
num_workers=0):
return torch.utils.data.DataLoader(
self,
batch_size=batch_size,
shuffle=shuffle,
num_workers=num_workers,
drop_last=drop_last,
collate_fn=lambda i: i)
def get_test_queries(self):
return self.test_queries
def get_all_texts(self):
raise NotImplementedError
def __getitem__(self, idx):
return self.generate_random_query_target()
def generate_random_query_target(self):
raise NotImplementedError
def get_img(self, idx, raw_img=False):
raise NotImplementedError
class CSSDataset(BaseDataset):
"""CSS dataset."""
def __init__(self, path, split='train', transform=None):
super(CSSDataset, self).__init__()
self.img_path = path + '/images/'
self.transform = transform
self.split = split
self.data = np.load(path + '/css_toy_dataset_novel2_small.dup.npy').item()
self.mods = self.data[self.split]['mods']
self.imgs = []
for objects in self.data[self.split]['objects_img']:
label = len(self.imgs)
if 'labels' in self.data[self.split]:
label = self.data[self.split]['labels'][label]
self.imgs += [{
'objects': objects,
'label': label,
'captions': [str(label)]
}]
self.imgid2modtarget = {}
for i in range(len(self.imgs)):
self.imgid2modtarget[i] = []
for i, mod in enumerate(self.mods):
for k in range(len(mod['from'])):
f = mod['from'][k]
t = mod['to'][k]
self.imgid2modtarget[f] += [(i, t)]
self.generate_test_queries_()
def generate_test_queries_(self):
test_queries = []
for mod in self.mods:
for i, j in zip(mod['from'], mod['to']):
test_queries += [{
'source_img_id': i,
'target_caption': self.imgs[j]['captions'][0],
'mod': {
'str': mod['to_str']
}
}]
self.test_queries = test_queries
def get_1st_training_query(self):
i = np.random.randint(0, len(self.mods))
mod = self.mods[i]
j = np.random.randint(0, len(mod['from']))
self.last_from = mod['from'][j]
self.last_mod = [i]
return mod['from'][j], i, mod['to'][j]
def get_2nd_training_query(self):
modid, new_to = random.choice(self.imgid2modtarget[self.last_from])
while modid in self.last_mod:
modid, new_to = random.choice(self.imgid2modtarget[self.last_from])
self.last_mod += [modid]
# mod = self.mods[modid]
return self.last_from, modid, new_to
def generate_random_query_target(self):
try:
if len(self.last_mod) < 2:
img1id, modid, img2id = self.get_2nd_training_query()
else:
img1id, modid, img2id = self.get_1st_training_query()
except:
img1id, modid, img2id = self.get_1st_training_query()
out = {}
out['source_img_id'] = img1id
out['source_img_data'] = self.get_img(img1id)
out['target_img_id'] = img2id
out['target_img_data'] = self.get_img(img2id)
out['mod'] = {'id': modid, 'str': self.mods[modid]['to_str']}
return out
def __len__(self):
return len(self.imgs)
def get_all_texts(self):
return [mod['to_str'] for mod in self.mods]
def get_img(self, idx, raw_img=False, get_2d=False):
"""Gets CSS images."""
def generate_2d_image(objects):
img = np.ones((64, 64, 3))
colortext2values = {
'gray': [87, 87, 87],
'red': [244, 35, 35],
'blue': [42, 75, 215],
'green': [29, 205, 20],
'brown': [129, 74, 25],
'purple': [129, 38, 192],
'cyan': [41, 208, 208],
'yellow': [255, 238, 51]
}
for obj in objects:
s = 4.0
if obj['size'] == 'large':
s *= 2
c = [0, 0, 0]
for j in range(3):
c[j] = 1.0 * colortext2values[obj['color']][j] / 255.0
y = obj['pos'][0] * img.shape[0]
x = obj['pos'][1] * img.shape[1]
if obj['shape'] == 'rectangle':
img[int(y - s):int(y + s), int(x - s):int(x + s), :] = c
if obj['shape'] == 'circle':
for y0 in range(int(y - s), int(y + s) + 1):
x0 = x + (abs(y0 - y) - s)
x1 = 2 * x - x0
img[y0, int(x0):int(x1), :] = c
if obj['shape'] == 'triangle':
for y0 in range(int(y - s), int(y + s)):
x0 = x + (y0 - y + s) / 2
x1 = 2 * x - x0
x0, x1 = min(x0, x1), max(x0, x1)
img[y0, int(x0):int(x1), :] = c
return img
if self.img_path is None or get_2d:
img = generate_2d_image(self.imgs[idx]['objects'])
else:
img_path = self.img_path + ('/css_%s_%06d.png' % (self.split, int(idx)))
with open(img_path, 'rb') as f:
img = PIL.Image.open(f)
img = img.convert('RGB')
if raw_img:
return img
if self.transform:
img = self.transform(img)
return img
class Fashion200k(BaseDataset):
"""Fashion200k dataset."""
def __init__(self, path, split='train', transform=None):
super(Fashion200k, self).__init__()
self.split = split
self.transform = transform
self.img_path = path + '/'
# get label files for the split
label_path = path + '/labels/'
from os import listdir
from os.path import isfile
from os.path import join
label_files = [
f for f in listdir(label_path) if isfile(join(label_path, f))
]
label_files = [f for f in label_files if split in f]
# read image info from label files
self.imgs = []
def caption_post_process(s):
return s.strip().replace('.',
'dotmark').replace('?', 'questionmark').replace(
'&', 'andmark').replace('*', 'starmark')
for filename in label_files:
print('read ' + filename)
with open(label_path + '/' + filename) as f:
lines = f.readlines()
for line in lines:
line = line.split(' ')
img = {
'file_path': line[0],
'detection_score': line[1],
'captions': [caption_post_process(line[2])],
'split': split,
'modifiable': False
}
self.imgs += [img]
print('Fashion200k:', len(self.imgs), 'images')
# generate query for training or testing
if split == 'train':
self.caption_index_init_()
else:
self.generate_test_queries_()
def get_different_word(self, source_caption, target_caption):
source_words = source_caption.split()
target_words = target_caption.split()
for source_word in source_words:
if source_word not in target_words:
break
for target_word in target_words:
if target_word not in source_words:
break
mod_str = 'replace ' + source_word + ' with ' + target_word
return source_word, target_word, mod_str
def generate_test_queries_(self):
file2imgid = {}
for i, img in enumerate(self.imgs):
file2imgid[img['file_path']] = i
with open(self.img_path + '/test_queries.txt') as f:
lines = f.readlines()
self.test_queries = []
for line in lines:
source_file, target_file = line.split()
idx = file2imgid[source_file]
target_idx = file2imgid[target_file]
source_caption = self.imgs[idx]['captions'][0]
target_caption = self.imgs[target_idx]['captions'][0]
source_word, target_word, mod_str = self.get_different_word(
source_caption, target_caption)
self.test_queries += [{
'source_img_id': idx,
'source_caption': source_caption,
'target_caption': target_caption,
'mod': {
'str': mod_str
}
}]
def caption_index_init_(self):
""" index caption to generate training query-target example on the fly later"""
# index caption 2 caption_id and caption 2 image_ids
caption2id = {}
id2caption = {}
caption2imgids = {}
for i, img in enumerate(self.imgs):
for c in img['captions']:
if c not in caption2id:
id2caption[len(caption2id)] = c
caption2id[c] = len(caption2id)
caption2imgids[c] = []
caption2imgids[c].append(i)
self.caption2imgids = caption2imgids
print(len(caption2imgids), 'unique cations')
# parent captions are 1-word shorter than their children
parent2children_captions = {}
for c in caption2id.keys():
for w in c.split():
p = c.replace(w, '')
p = p.replace(' ', ' ').strip()
if p not in parent2children_captions:
parent2children_captions[p] = []
if c not in parent2children_captions[p]:
parent2children_captions[p].append(c)
self.parent2children_captions = parent2children_captions
# identify parent captions for each image
for img in self.imgs:
img['modifiable'] = False
img['parent_captions'] = []
for p in parent2children_captions:
if len(parent2children_captions[p]) >= 2:
for c in parent2children_captions[p]:
for imgid in caption2imgids[c]:
self.imgs[imgid]['modifiable'] = True
self.imgs[imgid]['parent_captions'] += [p]
num_modifiable_imgs = 0
for img in self.imgs:
if img['modifiable']:
num_modifiable_imgs += 1
print('Modifiable images', num_modifiable_imgs)
def caption_index_sample_(self, idx):
while not self.imgs[idx]['modifiable']:
idx = np.random.randint(0, len(self.imgs))
# find random target image (same parent)
img = self.imgs[idx]
while True:
p = random.choice(img['parent_captions'])
c = random.choice(self.parent2children_captions[p])
if c not in img['captions']:
break
target_idx = random.choice(self.caption2imgids[c])
# find the word difference between query and target (not in parent caption)
source_caption = self.imgs[idx]['captions'][0]
target_caption = self.imgs[target_idx]['captions'][0]
source_word, target_word, mod_str = self.get_different_word(
source_caption, target_caption)
return idx, target_idx, source_word, target_word, mod_str
def get_all_texts(self):
texts = []
for img in self.imgs:
for c in img['captions']:
texts.append(c)
return texts
def __len__(self):
return len(self.imgs)
def __getitem__(self, idx):
idx, target_idx, source_word, target_word, mod_str = self.caption_index_sample_(
idx)
out = {}
out['source_img_id'] = idx
out['source_img_data'] = self.get_img(idx)
out['source_caption'] = self.imgs[idx]['captions'][0]
out['target_img_id'] = target_idx
out['target_img_data'] = self.get_img(target_idx)
out['target_caption'] = self.imgs[target_idx]['captions'][0]
out['mod'] = {'str': mod_str}
return out
def get_img(self, idx, raw_img=False):
img_path = self.img_path + self.imgs[idx]['file_path']
with open(img_path, 'rb') as f:
img = PIL.Image.open(f)
img = img.convert('RGB')
if raw_img:
return img
if self.transform:
img = self.transform(img)
return img
class MITStates(BaseDataset):
"""MITStates dataset."""
def __init__(self, path, split='train', transform=None):
super(MITStates, self).__init__()
self.path = path
self.transform = transform
self.split = split
self.imgs = []
test_nouns = [
u'armor', u'bracelet', u'bush', u'camera', u'candy', u'castle',
u'ceramic', u'cheese', u'clock', u'clothes', u'coffee', u'fan', u'fig',
u'fish', u'foam', u'forest', u'fruit', u'furniture', u'garden', u'gate',
u'glass', u'horse', u'island', u'laptop', u'lead', u'lightning',
u'mirror', u'orange', u'paint', u'persimmon', u'plastic', u'plate',
u'potato', u'road', u'rubber', u'sand', u'shell', u'sky', u'smoke',
u'steel', u'stream', u'table', u'tea', u'tomato', u'vacuum', u'wax',
u'wheel', u'window', u'wool'
]
from os import listdir
for f in listdir(path + '/images'):
if ' ' not in f:
continue
adj, noun = f.split()
if adj == 'adj':
continue
if split == 'train' and noun in test_nouns:
continue
if split == 'test' and noun not in test_nouns:
continue
for file_path in listdir(path + '/images/' + f):
assert (file_path.endswith('jpg'))
self.imgs += [{
'file_path': path + '/images/' + f + '/' + file_path,
'captions': [f],
'adj': adj,
'noun': noun
}]
self.caption_index_init_()
if split == 'test':
self.generate_test_queries_()
def get_all_texts(self):
texts = []
for img in self.imgs:
texts += img['captions']
return texts
def __getitem__(self, idx):
try:
self.saved_item
except:
self.saved_item = None
if self.saved_item is None:
while True:
idx, target_idx1 = self.caption_index_sample_(idx)
idx, target_idx2 = self.caption_index_sample_(idx)
if self.imgs[target_idx1]['adj'] != self.imgs[target_idx2]['adj']:
break
idx, target_idx = [idx, target_idx1]
self.saved_item = [idx, target_idx2]
else:
idx, target_idx = self.saved_item
self.saved_item = None
mod_str = self.imgs[target_idx]['adj']
return {
'source_img_id': idx,
'source_img_data': self.get_img(idx),
'source_caption': self.imgs[idx]['captions'][0],
'target_img_id': target_idx,
'target_img_data': self.get_img(target_idx),
'target_caption': self.imgs[target_idx]['captions'][0],
'mod': {
'str': mod_str
}
}
def caption_index_init_(self):
self.caption2imgids = {}
self.noun2adjs = {}
for i, img in enumerate(self.imgs):
cap = img['captions'][0]
adj = img['adj']
noun = img['noun']
if cap not in self.caption2imgids.keys():
self.caption2imgids[cap] = []
if noun not in self.noun2adjs.keys():
self.noun2adjs[noun] = []
self.caption2imgids[cap].append(i)
if adj not in self.noun2adjs[noun]:
self.noun2adjs[noun].append(adj)
for noun, adjs in self.noun2adjs.iteritems():
assert len(adjs) >= 2
def caption_index_sample_(self, idx):
noun = self.imgs[idx]['noun']
# adj = self.imgs[idx]['adj']
target_adj = random.choice(self.noun2adjs[noun])
target_caption = target_adj + ' ' + noun
target_idx = random.choice(self.caption2imgids[target_caption])
return idx, target_idx
def generate_test_queries_(self):
self.test_queries = []
for idx, img in enumerate(self.imgs):
adj = img['adj']
noun = img['noun']
for target_adj in self.noun2adjs[noun]:
if target_adj != adj:
mod_str = target_adj
self.test_queries += [{
'source_img_id': idx,
'source_caption': adj + ' ' + noun,
'target_caption': target_adj + ' ' + noun,
'mod': {
'str': mod_str
}
}]
print(len(self.test_queries), 'test queries')
def __len__(self):
return len(self.imgs)
def get_img(self, idx, raw_img=False):
img_path = self.imgs[idx]['file_path']
with open(img_path, 'rb') as f:
img = PIL.Image.open(f)
img = img.convert('RGB')
if raw_img:
return img
if self.transform:
img = self.transform(img)
return img