-
Notifications
You must be signed in to change notification settings - Fork 4
/
asm_test.go
292 lines (231 loc) · 4.92 KB
/
asm_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
// +build sse avx
package vecf32
/*
IMPORTANT NOTE:
Currently Div does not handle division by zero correctly. It returns a NaN instead of +Inf
*/
import (
"testing"
"unsafe"
"github.com/chewxy/math32"
"github.com/stretchr/testify/assert"
)
// this file is mainly added to facilitate testing of the ASM code, and that it matches up correctly with the expected results
func TestDiv(t *testing.T) {
assert := assert.New(t)
a := Range(0, niceprime-1)
correct := Range(0, niceprime-1)
for i := range correct {
correct[i] = correct[i] / correct[i]
}
Div(a, a)
assert.Equal(correct[1:], a[1:])
assert.Equal(true, math32.IsNaN(a[0]), "a[0] is: %v", a[0])
b := Range(niceprime, 2*niceprime-1)
for i := range correct {
correct[i] = a[i] / b[i]
}
Div(a, b)
assert.Equal(correct[1:], a[1:])
assert.Equal(true, math32.IsNaN(a[0]), "a[0] is: %v", a[0])
/* Weird Corner Cases*/
for i := 1; i < 65; i++ {
a = Range(0, i)
var testAlign bool
addr := &a[0]
u := uint(uintptr(unsafe.Pointer(addr)))
if u&uint(32) != 0 {
testAlign = true
}
if testAlign {
b = Range(i, 2*i)
correct = make([]float32, i)
for j := range correct {
correct[j] = a[j] / b[j]
}
Div(a, b)
assert.Equal(correct[1:], a[1:])
}
}
}
func TestSqrt(t *testing.T) {
assert := assert.New(t)
a := Range(0, niceprime-1)
correct := Range(0, niceprime-1)
for i, v := range correct {
correct[i] = math32.Sqrt(v)
}
Sqrt(a)
assert.Equal(correct, a)
// negatives
a = []float32{-1, -2, -3, -4}
Sqrt(a)
for _, v := range a {
if !math32.IsNaN(v) {
t.Error("Expected NaN")
}
}
/* Weird Corner Cases*/
for i := 1; i < 65; i++ {
a = Range(0, i)
var testAlign bool
addr := &a[0]
u := uint(uintptr(unsafe.Pointer(addr)))
if u&uint(32) != 0 {
testAlign = true
}
if testAlign {
correct = make([]float32, i)
for j := range correct {
correct[j] = math32.Sqrt(a[j])
}
Sqrt(a)
assert.Equal(correct, a)
}
}
}
func TestInvSqrt(t *testing.T) {
assert := assert.New(t)
a := Range(0, niceprime-1)
correct := Range(0, niceprime-1)
for i, v := range correct {
correct[i] = 1.0 / math32.Sqrt(v)
}
InvSqrt(a)
assert.Equal(correct[1:], a[1:])
if !math32.IsInf(a[0], 0) {
t.Error("1/0 should be +Inf or -Inf")
}
// Weird Corner Cases
for i := 1; i < 65; i++ {
a = Range(0, i)
var testAlign bool
addr := &a[0]
u := uint(uintptr(unsafe.Pointer(addr)))
if u&uint(32) != 0 {
testAlign = true
}
if testAlign {
correct = make([]float32, i)
for j := range correct {
correct[j] = 1.0 / math32.Sqrt(a[j])
}
InvSqrt(a)
assert.Equal(correct[1:], a[1:], "i = %d, %v", i, Range(0, i))
if !math32.IsInf(a[0], 0) {
t.Error("1/0 should be +Inf or -Inf")
}
}
}
}
/* BENCHMARKS */
func _vanillaVecAdd(a, b []float32) {
for i := range a {
a[i] += b[i]
}
}
func BenchmarkVecAdd(b *testing.B) {
x := Range(0, niceprime)
y := Range(niceprime, 2*niceprime)
for n := 0; n < b.N; n++ {
Add(x, y)
}
}
func BenchmarkVanillaVecAdd(b *testing.B) {
x := Range(0, niceprime)
y := Range(niceprime, 2*niceprime)
for n := 0; n < b.N; n++ {
_vanillaVecAdd(x, y)
}
}
func _vanillaVecSub(a, b []float32) {
for i := range a {
a[i] -= b[i]
}
}
func BenchmarkVecSub(b *testing.B) {
x := Range(0, niceprime)
y := Range(niceprime, 2*niceprime)
for n := 0; n < b.N; n++ {
Sub(x, y)
}
}
func BenchmarkVanillaVecSub(b *testing.B) {
x := Range(0, niceprime)
y := Range(niceprime, 2*niceprime)
for n := 0; n < b.N; n++ {
_vanillaVecSub(x, y)
}
}
func _vanillaVecMul(a, b []float32) {
for i := range a {
a[i] *= b[i]
}
}
func BenchmarkVecMul(b *testing.B) {
x := Range(0, niceprime)
y := Range(niceprime, 2*niceprime)
for n := 0; n < b.N; n++ {
Mul(x, y)
}
}
func BenchmarkVanillaVecMul(b *testing.B) {
x := Range(0, niceprime)
y := Range(niceprime, 2*niceprime)
for n := 0; n < b.N; n++ {
_vanillaVecMul(x, y)
}
}
func _vanillaVecDiv(a, b []float32) {
for i := range a {
a[i] /= b[i]
}
}
func BenchmarkVecDiv(b *testing.B) {
x := Range(0, niceprime)
y := Range(niceprime, 2*niceprime)
for n := 0; n < b.N; n++ {
Div(x, y)
}
}
func BenchmarkVanillaVecDiv(b *testing.B) {
x := Range(0, niceprime)
y := Range(niceprime, 2*niceprime)
for n := 0; n < b.N; n++ {
_vanillaVecDiv(x, y)
}
}
func _vanillaVecSqrt(a []float32) {
for i, v := range a {
a[i] = math32.Sqrt(v)
}
}
func BenchmarkVecSqrt(b *testing.B) {
x := Range(0, niceprime)
for n := 0; n < b.N; n++ {
Sqrt(x)
}
}
func BenchmarkVanillaVecSqrt(b *testing.B) {
x := Range(0, niceprime)
for n := 0; n < b.N; n++ {
_vanillaVecSqrt(x)
}
}
func _vanillaVecInverseSqrt(a []float32) {
for i, v := range a {
a[i] = 1.0 / math32.Sqrt(v)
}
}
func BenchmarkVecInvSqrt(b *testing.B) {
x := Range(0, niceprime)
for n := 0; n < b.N; n++ {
InvSqrt(x)
}
}
func BenchmarkVanillaVecInvSqrt(b *testing.B) {
x := Range(0, niceprime)
for n := 0; n < b.N; n++ {
_vanillaVecInverseSqrt(x)
}
}