From b4d44f89f997e59c84e69ed075341bb6e1371d08 Mon Sep 17 00:00:00 2001 From: Jay Clifford <45856600+Jayclifford345@users.noreply.github.com> Date: Wed, 12 Jun 2024 10:49:45 -0400 Subject: [PATCH] feat: Update Loki monitoring docs to new meta monitoring helm (#13176) Co-authored-by: J Stickler --- .../monitor-and-alert/with-grafana-cloud.md | 298 +++++++++++---- .../with-local-monitoring.md | 341 ++++++++---------- 2 files changed, 382 insertions(+), 257 deletions(-) diff --git a/docs/sources/setup/install/helm/monitor-and-alert/with-grafana-cloud.md b/docs/sources/setup/install/helm/monitor-and-alert/with-grafana-cloud.md index 28aa4922bbd54..73303816db144 100644 --- a/docs/sources/setup/install/helm/monitor-and-alert/with-grafana-cloud.md +++ b/docs/sources/setup/install/helm/monitor-and-alert/with-grafana-cloud.md @@ -1,7 +1,7 @@ --- -title: Configure monitoring and alerting of Loki using Grafana Cloud +title: Monitor Loki with Grafana Cloud menuTitle: Monitor Loki with Grafana Cloud -description: Configuring monitoring and alerts for Loki using Grafana Cloud. +description: Configuring monitoring for Loki using Grafana Cloud. aliases: - ../../../../installation/helm/monitor-and-alert/with-grafana-cloud weight: 200 @@ -12,89 +12,255 @@ keywords: - grafana cloud --- -# Configure monitoring and alerting of Loki using Grafana Cloud +# Monitor Loki with Grafana Cloud -This topic will walk you through using Grafana Cloud to monitor a Loki installation that is installed with the Helm chart. This approach leverages many of the chart's _self monitoring_ features, but instead of sending logs back to Loki itself, it sends them to a Grafana Cloud Logs instance. This approach also does not require the installation of the Prometheus Operator and instead sends metrics to a Grafana Cloud Metrics instance. Using Grafana Cloud to monitor Loki has the added benefit of being able to troubleshoot problems with Loki when the Helm installed Loki is down, as the logs will still be available in the Grafana Cloud Logs instance. +This guide will walk you through using Grafana Cloud to monitor a Loki installation set up with the `meta-monitoring` Helm chart. This method takes advantage of many of the chart's self-monitoring features, sending metrics, logs, and traces from the Loki deployment to Grafana Cloud. Monitoring Loki with Grafana Cloud offers the added benefit of troubleshooting Loki issues even when the Helm-installed Loki is down, as the telemetry data will remain available in the Grafana Cloud instance. -**Before you begin:** +These instructions are based off the [meta-monitoring-chart repository](https://github.com/grafana/meta-monitoring-chart/tree/main). + +## Before you begin - Helm 3 or above. See [Installing Helm](https://helm.sh/docs/intro/install/). - A Grafana Cloud account and stack (including Cloud Grafana, Cloud Metrics, and Cloud Logs). -- [Grafana Kubernetes Monitoring using Agent Flow](/docs/grafana-cloud/monitor-infrastructure/kubernetes-monitoring/configuration/config-k8s-agent-flow/) configured for the Kubernetes cluster. - A running Loki deployment installed in that Kubernetes cluster via the Helm chart. -**Prequisites for Monitoring Loki:** +## Configure the meta namespace + +The meta-monitoring stack will be installed in a separate namespace called `meta`. To create this namespace, run the following command: + + ```bash + kubectl create namespace meta + ``` + +## Grafana Cloud Connection Credentials -You must setup the Grafana Kubernetes Integration following the instructions in [Grafana Kubernetes Monitoring using Agent Flow](/docs/grafana-cloud/monitor-infrastructure/kubernetes-monitoring/configuration/config-k8s-agent-flow/) as this will install necessary components for collecting metrics about your Kubernetes cluster and sending them to Grafana Cloud. Many of the dashboards installed as a part of the Loki integration rely on these metrics. +The meta-monitoring stack sends metrics, logs, and traces to Grafana Cloud. This requires that you know your connection credentials to Grafana Cloud. To obtain connection credentials, follow the steps below: -Walking through this installation will create two Grafana Agent configurations, one for metrics and one for logs, that will add the external label `cluster: cloud`. In order for the Dashboards in the self-hosted Grafana Loki integration to work, the cluster name needs to match your Helm installation name. If you installed Loki using the command `helm install best-loki-cluster grafana/loki`, you would need to change the `cluster` value in both Grafana Agent configurations from `cloud` to `best-loki-cluster` when setting up the Grafana Kubernetes integration. +1. Create a new Cloud Access Policy in Grafana Cloud. + 1. Sign into [Grafana Cloud](https://grafana.com/auth/sign-in/). + 1. In the main menu, select **Security > Access Policies**. + 1. Click **Create access policy**. + 1. Give the policy a **Name** and select the following permissions: + - Metrics: Write + - Logs: Write + - Traces: Write + 1. Click **Create**. -**To set up the Loki integration in Grafana Cloud:** -1. Get valid Push credentials for your Cloud Metrics and Cloud Logs instances. -1. Create a secret in the same namespace as Loki to store your Cloud Logs credentials. +1. Once the policy is created, select the policy and click **Add token**. +1. Name the token, select an expiration date, then click **Create**. +1. Copy the token to a secure location as it will not be displayed again. +1. Navigate to the Grafana Cloud Portal **Overview** page. +1. Click the **Details** button for your Prometheus or Mimir instance. + 1. From the **Using a self-hosted Grafana instance with Grafana Cloud Metrics** section, collect the instance **Name** and **URL**. + 1. Navigate back to the **Overview** page. +1. Click the **Details** button for your Loki instance. + 1. From the **Using Grafana with Logs** section, collect the instance **Name** and **URL**. + 1. Navigate back to the **Overview** page. +1. Click the **Details** button for your Tempo instance. + 1. From the **Using Grafana with Tempo** section, collect the instance **Name** and **URL**. + +3. Finally, generate the secrets to store your credentials for each metric type within your Kubernetes cluster: ```bash - cat <<'EOF' | NAMESPACE=loki /bin/sh -c 'kubectl apply -n $NAMESPACE -f -' - apiVersion: v1 - data: - password: - username: - kind: Secret - metadata: - name: grafana-cloud-logs-credentials - type: Opaque - EOF + kubectl create secret generic logs -n meta \ + --from-literal=username= \ + --from-literal= \ + --from-literal=endpoint='https:///loki/api/v1/push' + + kubectl create secret generic metrics -n meta \ + --from-literal=username= \ + --from-literal=password= \ + --from-literal=endpoint='https:///api/prom/push' + + kubectl create secret generic traces -n meta \ + --from-literal=username= \ + --from-literal=password= \ + --from-literal=endpoint='https:///otlp' ``` -1. Create a secret to store your Cloud Metrics credentials. +## Configuration and Installation + +To install the `meta-monitoring` Helm chart, you must create a `values.yaml` file. At a minimum this file should contain the following: + * The namespace to monitor + * Enablement of cloud monitoring + +This example `values.yaml` file provides the minimum configuration to monitor the `loki` namespace: + +```yaml + namespacesToMonitor: + - default + + cloud: + logs: + enabled: true + secret: "logs" + metrics: + enabled: true + secret: "metrics" + traces: + enabled: true + secret: "traces" +``` +For further configuration options, refer to the [sample values.yaml file](https://github.com/grafana/meta-monitoring-chart/blob/main/charts/meta-monitoring/values.yaml). + +To install the `meta-monitoring` Helm chart, run the following commands: + +```bash +helm repo add grafana https://grafana.github.io/helm-charts +helm repo update +helm install meta-monitoring grafana/meta-monitoring -n meta -f values.yaml +``` +or when upgrading the configuration: +```bash +helm upgrade meta-monitoring grafana/meta-monitoring -n meta -f values.yaml +``` + +To verify the installation, run the following command: + +```bash +kubectl get pods -n meta +``` +It should return the following pods: +```bash +NAME READY STATUS RESTARTS AGE +meta-alloy-0 2/2 Running 0 23h +meta-alloy-1 2/2 Running 0 23h +meta-alloy-2 2/2 Running 0 23h +``` + + +## Enable Loki Tracing + +By default, Loki does not have tracing enabled. To enable tracing, modify the Loki configuration by editing the `values.yaml` file and adding the following configuration: + +Set the `tracing.enabled` configuration to `true`: +```yaml +loki: + tracing: + enabled: true +``` +Next, instrument each of the Loki components to send traces to the meta-monitoring stack. Add the `extraEnv` configuration to each of the Loki components: + +```yaml +ingester: + replicas: 3 + extraEnv: + - name: JAEGER_ENDPOINT + value: "http://mmc-alloy-external.default.svc.cluster.local:14268/api/traces" + # This sets the Jaeger endpoint where traces will be sent. + # The endpoint points to the mmc-alloy service in the default namespace at port 14268. + + - name: JAEGER_AGENT_TAGS + value: 'cluster="prod",namespace="default"' + # This specifies additional tags to attach to each span. + # Here, the cluster is labeled as "prod" and the namespace as "default". + + - name: JAEGER_SAMPLER_TYPE + value: "ratelimiting" + # This sets the sampling strategy for traces. + # "ratelimiting" means that traces will be sampled at a fixed rate. + + - name: JAEGER_SAMPLER_PARAM + value: "1.0" + # This sets the parameter for the sampler. + # For ratelimiting, "1.0" typically means one trace per second. +``` + +Since the meta-monitoring stack is installed in the `meta` namespace, the Loki components will need to be able to communicate with the meta-monitoring stack. To do this, create a new `externalname` service in the `default` namespace that points to the `meta` namespace by running the following command: + +```bash +kubectl create service externalname mmc-alloy-external --external-name meta-alloy.meta.svc.cluster.local -n default +``` + +Finally, upgrade the Loki installation with the new configuration: + +```bash +helm upgrade --values values.yaml loki grafana/loki +``` + +## Import the Loki Dashboards to Grafana Cloud + +The meta-monitoring stack includes a set of dashboards that can be imported into Grafana Cloud. These can be found in the [meta-monitoring repository](https://github.com/grafana/meta-monitoring-chart/tree/main/charts/meta-monitoring/src/dashboards). + + +## Installing Rules + +The meta-monitoring stack includes a set of rules that can be installed to monitor the Loki installation. These rules can be found in the [meta-monitoring repository](https://github.com/grafana/meta-monitoring-chart/). To install the rules: + +1. Clone the repository: + ```bash + git clone https://github.com/grafana/meta-monitoring-chart/ + ``` +1. Install `mimirtool` based on the instructions located [here](https://grafana.com/docs/mimir/latest/manage/tools/mimirtool/) +1. Create a new access policy token in Grafana Cloud with the following permissions: + - Rules: Write + - Rules: Read +1. Create a token for the access policy and copy it to a secure location. +1. Install the rules: ```bash - cat <<'EOF' | NAMESPACE=loki /bin/sh -c 'kubectl apply -n $NAMESPACE -f -' - apiVersion: v1 - data: - password: - username: - kind: Secret - metadata: - name: grafana-cloud-metrics-credentials - type: Opaque - EOF + mimirtool rules load --address= --id= --key= *.yaml ``` +1. Verify that the rules have been installed: + ```bash + mimirtool rules list --address= --id= --key= + ``` + It should return a list of rules that have been installed. + ```bash -1. Enable monitoring metrics and logs for the Loki installation to be sent your cloud database instances by adding the following to your Helm `values.yaml` file: - - ```yaml - --- - monitoring: - dashboards: - enabled: false - rules: - enabled: false - selfMonitoring: - logsInstance: - clients: - - url: - basicAuth: - username: - name: grafana-cloud-logs-credentials - key: username - password: - name: grafana-cloud-logs-credentials - key: password - serviceMonitor: - metricsInstance: - remoteWrite: - - url: - basicAuth: - username: - name: grafana-cloud-metrics-credentials - key: username - password: - name: grafana-cloud-metrics-credentials - key: password + loki-rules: + - name: loki_rules + rules: + - record: cluster_job:loki_request_duration_seconds:99quantile + expr: histogram_quantile(0.99, sum(rate(loki_request_duration_seconds_bucket[5m])) by (le, cluster, job)) + - record: cluster_job:loki_request_duration_seconds:50quantile + expr: histogram_quantile(0.50, sum(rate(loki_request_duration_seconds_bucket[5m])) by (le, cluster, job)) + - record: cluster_job:loki_request_duration_seconds:avg + expr: sum(rate(loki_request_duration_seconds_sum[5m])) by (cluster, job) / sum(rate(loki_request_duration_seconds_count[5m])) by (cluster, job) + - record: cluster_job:loki_request_duration_seconds_bucket:sum_rate + expr: sum(rate(loki_request_duration_seconds_bucket[5m])) by (le, cluster, job) + - record: cluster_job:loki_request_duration_seconds_sum:sum_rate + expr: sum(rate(loki_request_duration_seconds_sum[5m])) by (cluster, job) + - record: cluster_job:loki_request_duration_seconds_count:sum_rate + expr: sum(rate(loki_request_duration_seconds_count[5m])) by (cluster, job) + - record: cluster_job_route:loki_request_duration_seconds:99quantile + expr: histogram_quantile(0.99, sum(rate(loki_request_duration_seconds_bucket[5m])) by (le, cluster, job, route)) + - record: cluster_job_route:loki_request_duration_seconds:50quantile + expr: histogram_quantile(0.50, sum(rate(loki_request_duration_seconds_bucket[5m])) by (le, cluster, job, route)) + - record: cluster_job_route:loki_request_duration_seconds:avg + expr: sum(rate(loki_request_duration_seconds_sum[5m])) by (cluster, job, route) / sum(rate(loki_request_duration_seconds_count[5m])) by (cluster, job, route) + - record: cluster_job_route:loki_request_duration_seconds_bucket:sum_rate + expr: sum(rate(loki_request_duration_seconds_bucket[5m])) by (le, cluster, job, route) + - record: cluster_job_route:loki_request_duration_seconds_sum:sum_rate + expr: sum(rate(loki_request_duration_seconds_sum[5m])) by (cluster, job, route) + - record: cluster_job_route:loki_request_duration_seconds_count:sum_rate + expr: sum(rate(loki_request_duration_seconds_count[5m])) by (cluster, job, route) + - record: cluster_namespace_job_route:loki_request_duration_seconds:99quantile + expr: histogram_quantile(0.99, sum(rate(loki_request_duration_seconds_bucket[5m])) by (le, cluster, namespace, job, route)) + - record: cluster_namespace_job_route:loki_request_duration_seconds:50quantile + expr: histogram_quantile(0.50, sum(rate(loki_request_duration_seconds_bucket[5m])) by (le, cluster, namespace, job, route)) + - record: cluster_namespace_job_route:loki_request_duration_seconds:avg + expr: sum(rate(loki_request_duration_seconds_sum[5m])) by (cluster, namespace, job, route) / sum(rate(loki_request_duration_seconds_count[5m])) by (cluster, namespace, job, route) + - record: cluster_namespace_job_route:loki_request_duration_seconds_bucket:sum_rate + expr: sum(rate(loki_request_duration_seconds_bucket[5m])) by (le, cluster, namespace, job, route) + - record: cluster_namespace_job_route:loki_request_duration_seconds_sum:sum_rate + expr: sum(rate(loki_request_duration_seconds_sum[5m])) by (cluster, namespace, job, route) + - record: cluster_namespace_job_route:loki_request_duration_seconds_count:sum_rate + expr: sum(rate(loki_request_duration_seconds_count[5m])) by (cluster, namespace, job, route) ``` +## Install kube-state-metrics + +Metrics about Kubernetes objects are scraped from [kube-state-metrics](https://github.com/kubernetes/kube-state-metrics). This needs to be installed in the cluster. The `kubeStateMetrics.endpoint` entry in the meta-monitoring `values.yaml` should be set to its address (without the `/metrics` part in the URL): + +```yaml +kubeStateMetrics: + # Scrape https://github.com/kubernetes/kube-state-metrics by default + enabled: true + # This endpoint is created when the helm chart from + # https://artifacthub.io/packages/helm/prometheus-community/kube-state-metrics/ + # is used. Change this if kube-state-metrics is installed somewhere else. + endpoint: kube-state-metrics.kube-state-metrics.svc.cluster.local:8080 +``` -1. Install the self-hosted Grafana Loki integration by going to your hosted Grafana instance, selecting **Connections** from the Home menu, then search for and install the **Self-hosted Grafana Loki** integration. -1. Once the self-hosted Grafana Loki integration is installed, click the **View Dashboards** button to see the installed dashboards. diff --git a/docs/sources/setup/install/helm/monitor-and-alert/with-local-monitoring.md b/docs/sources/setup/install/helm/monitor-and-alert/with-local-monitoring.md index dfa491fe966fa..1c1fb6d244f30 100644 --- a/docs/sources/setup/install/helm/monitor-and-alert/with-local-monitoring.md +++ b/docs/sources/setup/install/helm/monitor-and-alert/with-local-monitoring.md @@ -1,7 +1,7 @@ --- -title: Configure monitoring and alerting -menuTitle: Configure monitoring and alerting -description: Configuring monitoring and alerts using the Helm chart. +title: Monitor Loki using a local LGTM (Loki, Grafana, Tempo and Mimir) stack +menuTitle: Monitor Loki using a local LGTM stack +description: Monitor Loki using a local LGTM (Loki, Grafana, Tempo and Mimir) stack aliases: - ../../../../installation/helm/monitor-and-alert/with-local-monitoring/ weight: 100 @@ -11,203 +11,162 @@ keywords: - alerting --- -# Configure monitoring and alerting +# Monitor Loki using a local LGTM (Loki, Grafana, Tempo and Mimir) stack -By default this Helm Chart configures meta-monitoring of metrics (service monitoring) and logs (self monitoring). This topic will walk you through configuring monitoring using a monitoring solution local to the same cluster where Loki is installed. +This topic will walk you through using the meta-monitoring Helm chart to deploy a local stack to monitor your production Loki installation. This approach leverages many of the chart's _self monitoring_ features, but instead of sending logs back to Loki itself, it sends them to a small Loki, Grafana, Tempo, Mimir (LGTM) stack running within the `meta` namespace. -The `ServiceMonitor` resource works with either the Prometheus Operator or the Grafana Agent Operator, and defines how Loki's metrics should be scraped. Scraping this Loki cluster using the scrape config defined in the `SerivceMonitor` resource is required for the included dashboards to work. A `MetricsInstance` can be configured to write the metrics to a remote Prometheus instance such as Grafana Cloud Metrics. -_Self monitoring_ is enabled by default. This will deploy a `GrafanaAgent`, `LogsInstance`, and `PodLogs` resource which will instruct the Grafana Agent Operator (installed separately) on how to scrape this Loki cluster's logs and send them back to itself. Scraping this Loki cluster using the scrape config defined in the `PodLogs` resource is required for the included dashboards to work. - -Rules and alerts are automatically deployed. - -**Before you begin:** +## Before you begin - Helm 3 or above. See [Installing Helm](https://helm.sh/docs/intro/install/). - A running Kubernetes cluster with a running Loki deployment. -- A running Grafana instance. -- A running Prometheus Operator installed using the `kube-prometheus-stack` Helm chart. -**Prometheus Operator Prequisites** +## Configure the meta namespace + +The meta-monitoring stack will be installed in a separate namespace called `meta`. To create this namespace, run the following command: + + ```bash + kubectl create namespace meta + ``` + -The dashboards require certain metric labels to display Kubernetes metrics. The best way to accomplish this is to install the `kube-prometheus-stack` Helm chart with the following values file, replacing `CLUSTER_NAME` with the name of your cluster. The cluster name is what you specify during the helm installation, so a cluster installed with the command `helm install loki-cluster grafana/loki` would be called `loki-cluster`. +## Configuration and Installation + +The meta-monitoring stack is installed using the `meta-monitoring` Helm chart. The local mode deploys a small LGTM stack that includes Alloy, Grafana, Mimir, Loki, and Tempo. To configure the meta-monitoring stack, create a `values.yaml` file with the following content: ```yaml -kubelet: - serviceMonitor: - cAdvisorRelabelings: - - action: replace - replacement: - targetLabel: cluster - - targetLabel: metrics_path - sourceLabels: - - "__metrics_path__" - - targetLabel: "instance" - sourceLabels: - - "node" - -defaultRules: - additionalRuleLabels: - cluster: - -"kube-state-metrics": - prometheus: - monitor: - relabelings: - - action: replace - replacement: - targetLabel: cluster - - targetLabel: "instance" - sourceLabels: - - "__meta_kubernetes_pod_node_name" - -"prometheus-node-exporter": - prometheus: - monitor: - relabelings: - - action: replace - replacement: - targetLabel: cluster - - targetLabel: "instance" - sourceLabels: - - "__meta_kubernetes_pod_node_name" - -prometheus: - monitor: - relabelings: - - action: replace - replacement: - targetLabel: cluster +namespacesToMonitor: +- default + +cloud: + logs: + enabled: false + metrics: + enabled: false + traces: + enabled: false + +local: + grafana: + enabled: true + logs: + enabled: true + metrics: + enabled: true + traces: + enabled: true + minio: + enabled: true +``` + +For further configuration options, refer to the [sample values.yaml file](https://github.com/grafana/meta-monitoring-chart/blob/main/charts/meta-monitoring/values.yaml). + +Local mode by default will also enable Minio, which will act as the object storage for the LGTM stack. To provide access to Minio, you need to create a generic secret. To create the generic secret, run the following command: + +```bash +kubectl create secret generic minio -n meta \ + --from-literal= \ + --from-literal= +``` +{{< admonition type="note" >}} +Username and password must have a minimum of 8 characters. +{{< /admonition >}} + +To install the meta-monitoring stack, run the following commands: + +```bash +helm repo add grafana https://grafana.github.io/helm-charts +helm repo update +helm install meta-monitoring grafana/meta-monitoring -n meta -f values.yaml +``` + +or when upgrading the configuration: +```bash +helm upgrade meta-monitoring grafana/meta-monitoring -n meta -f values.yaml +``` + +To verify the installation, run the following command: + +```bash +kubectl get pods -n meta +``` +It should return the following pods: +```bash +grafana-59d664f55f-dtfqr 1/1 Running 2 (2m7s ago) 137m +loki-backend-0 2/2 Running 2 (2m7s ago) 137m +loki-backend-1 2/2 Running 4 (2m7s ago) 137m +loki-backend-2 2/2 Running 3 (2m7s ago) 137m +loki-read-6f775d8c5-6t749 1/1 Running 1 (2m7s ago) 137m +loki-read-6f775d8c5-kdd8m 1/1 Running 1 (2m7s ago) 137m +loki-read-6f775d8c5-tsw2r 1/1 Running 1 (2m7s ago) 137m +loki-write-0 1/1 Running 1 (2m7s ago) 137m +loki-write-1 1/1 Running 1 (2m7s ago) 137m +loki-write-2 1/1 Running 1 (2m7s ago) 137m +meta-alloy-0 2/2 Running 2 (2m7s ago) 137m +meta-alloy-1 2/2 Running 2 (2m7s ago) 137m +... ``` +## Enable Loki Tracing + +By default, Loki does not have tracing enabled. To enable tracing, modify the Loki configuration by editing the `values.yaml` file and adding the following configuration: + +Set the `tracing.enabled` configuration to `true`: +```yaml +loki: + tracing: + enabled: true +``` + +Next, instrument each of the Loki components to send traces to the meta-monitoring stack. Add the `extraEnv` configuration to each of the Loki components: + +```yaml +ingester: + replicas: 3 + extraEnv: + - name: JAEGER_ENDPOINT + value: "http://mmc-alloy-external.default.svc.cluster.local:14268/api/traces" + # This sets the Jaeger endpoint where traces will be sent. + # The endpoint points to the mmc-alloy service in the default namespace at port 14268. + + - name: JAEGER_AGENT_TAGS + value: 'cluster="prod",namespace="default"' + # This specifies additional tags to attach to each span. + # Here, the cluster is labeled as "prod" and the namespace as "default". + + - name: JAEGER_SAMPLER_TYPE + value: "ratelimiting" + # This sets the sampling strategy for traces. + # "ratelimiting" means that traces will be sampled at a fixed rate. + + - name: JAEGER_SAMPLER_PARAM + value: "1.0" + # This sets the parameter for the sampler. + # For ratelimiting, "1.0" typically means one trace per second. +``` + +## Install kube-state-metrics + +Metrics about Kubernetes objects are scraped from [kube-state-metrics](https://github.com/kubernetes/kube-state-metrics). This needs to be installed in the cluster. The `kubeStateMetrics.endpoint` entry in the meta-monitoring `values.yaml` should be set to its address (without the `/metrics` part in the URL): + +```yaml +kubeStateMetrics: + # Scrape https://github.com/kubernetes/kube-state-metrics by default + enabled: true + # This endpoint is created when the helm chart from + # https://artifacthub.io/packages/helm/prometheus-community/kube-state-metrics/ + # is used. Change this if kube-state-metrics is installed somewhere else. + endpoint: kube-state-metrics.kube-state-metrics.svc.cluster.local:8080 +``` + +## Accessing the meta-monitoring stack + +To access the meta-monitoring stack, you can use port-forwarding to access the Grafana dashboard. To do this, run the following command: + +```bash +kubectl port-forward -n meta svc/grafana 3000:3000 +``` + +## Dashboards and Rules -The `kube-prometheus-stack` installs `ServiceMonitor` and `PrometheusRule` resources for monitoring Kubernetes, and it depends on the `kube-state-metrics` and `prometheus-node-exporter` helm charts which also install `ServiceMonitor` resources for collecting `kubelet` and `node-exporter` metrics. The above values file adds the necessary additional labels required for these metrics to work with the included dashboards. - -If you are using this helm chart in an environment which does not allow for the installation of `kube-prometheus-stack` or custom CRDs, you should run `helm template` on the `kube-prometheus-stack` helm chart with the above values file, and review all generated `ServiceMonitor` and `PrometheusRule` resources. These resources may have to be modified with the correct ports and selectors to find the various services such as `kubelet` and `node-exporter` in your environment. - -**To install the dashboards:** - -1. Dashboards are enabled by default. Set `monitoring.dashboards.namespace` to the namespace of the Grafana instance if it is in a different namespace than this Loki cluster. -1. Dashbards must be mounted to your Grafana container. The dashboards are in `ConfigMap`s named `loki-dashboards-1` and `loki-dashboards-2` for Loki, and `enterprise-logs-dashboards-1` and `enterprise-logs-dashboards-2` for GEL. Mount them to `/var/lib/grafana/dashboards/loki-1` and `/var/lib/grafana/dashboards/loki-2` in your Grafana container. -1. Create a dashboard provisioning file called `dashboards.yaml` in `/etc/grafana/provisioning/dashboards` of your Grafana container with the following contents (_note_: you may need to edit the `orgId`): - - ```yaml - --- - apiVersion: 1 - providers: - - disableDeletion: true - editable: false - folder: Loki - name: loki-1 - options: - path: /var/lib/grafana/dashboards/loki-1 - orgId: 1 - type: file - - disableDeletion: true - editable: false - folder: Loki - name: loki-2 - options: - path: /var/lib/grafana/dashboards/loki-2 - orgId: 1 - type: file - ``` - -**To add add additional Prometheus rules:** - -1. Modify the configuration file `values.yaml`: - - ```yaml - monitoring: - rules: - additionalGroups: - - name: loki-rules - rules: - - record: job:loki_request_duration_seconds_bucket:sum_rate - expr: sum(rate(loki_request_duration_seconds_bucket[1m])) by (le, job) - - record: job_route:loki_request_duration_seconds_bucket:sum_rate - expr: sum(rate(loki_request_duration_seconds_bucket[1m])) by (le, job, route) - - record: node_namespace_pod_container:container_cpu_usage_seconds_total:sum_rate - expr: sum(rate(container_cpu_usage_seconds_total[1m])) by (node, namespace, pod, container) - ``` - -**To disable monitoring:** - -1. Modify the configuration file `values.yaml`: - - ```yaml - selfMonitoring: - enabled: false - - serviceMonitor: - enabled: false - ``` - -**To use a remote Prometheus and Loki instance such as Grafana Cloud** - -1. Create a `secrets.yaml` file with credentials to access the Grafana Cloud services: - - ```yaml - --- - apiVersion: v1 - kind: Secret - metadata: - name: primary-credentials-metrics - namespace: default - stringData: - username: "" - password: "" - --- - apiVersion: v1 - kind: Secret - metadata: - name: primary-credentials-logs - namespace: default - stringData: - username: "" - password: "" - ``` - -2. Add the secret to Kubernetes with `kubectl create -f secret.yaml`. - -3. Add a `remoteWrite` section to `serviceMonitor` in `values.yaml`: - - ```yaml - monitoring: - ... - serviceMonitor: - enabled: true - ... - metricsInstance: - remoteWrite: - - url: - basicAuth: - username: - name: primary-credentials-metrics - key: username - password: - name: primary-credentials-metrics - key: password - ``` - -4. Add a client to `monitoring.selfMonitoring.logsInstance.clients`: - - ```yaml - monitoring: - --- - selfMonitoring: - enabled: true - logsInstance: - clients: - - url: - basicAuth: - username: - name: primary-credentials-logs - key: username - password: - name: primary-credentials-logs - key: password - lokiCanary: - enabled: false - ``` - -5. Install the `Loki meta-motoring` connection on Grafana Cloud. +The local meta-monitoring stack comes with a set of pre-configured dashboards and alerting rules. These can be accessed via +[http://localhost:3000](http://localhost:3000) using the default credentials `admin` and `admin`. \ No newline at end of file