
Gravwell Training Manual: Reference Material for Gravwell On-Site Training and
Certification

2

Contents

1 Architecture Overview 9
1.1 Terminology . 9
1.2 Gravwell Entries . 10

1.2.1 “Timestamp” field . 10
1.2.2 “Data” field . 10
1.2.3 “Tag” field . 10
1.2.4 “Source” field . 10

1.3 Data Ingest . 11
1.4 Example Gravwell Deployments . 12

1.4.1 Single Node . 12
1.4.2 Cluster Deployment . 12
1.4.3 Distributed Webserver Architecture . 14

1.5 Replication . 15
1.5.1 Online Replication . 15
1.5.2 Offline Replication . 15

1.6 Scheduled Search and Orchestration . 15

2 Lab Setup and Docker Testing 17
2.1 Getting Started With Docker . 17

2.1.1 Host System Requirements . 17
2.1.2 Verifying Docker Installation . 17
2.1.3 Granting User Access to Docker . 18

2.2 Testing Docker Image Imports . 18
2.3 Starting a Container in Docker . 18
2.4 Testing Gravwell in a Container . 19
2.5 Loading the Lab Images . 19
2.6 Creating the Gravwell Test Network . 20
2.7 Helpful Docker Tips . 20

3 Using the GUI 21
3.1 Introduction . 21
3.2 Menus . 21

3.2.1 The Main Menu . 21
3.2.2 Notifications . 24
3.2.3 The Account Menu . 25

3.3 Labels and Filtering . 28
3.3.1 Defining and Managing Labels . 28
3.3.2 Filtering Objects . 29
3.3.3 Special Labels . 32

3.4 Search Interfaces . 33
3.5 Playbooks . 37

3

4 CONTENTS

3.5.1 Playbook Markdown . 37

4 Searching 43
4.1 Search Pipeline Architectural Overview . 43
4.2 Query Entries and Tags . 45
4.3 Chaining Multiple Modules . 46

4.3.1 The grep Module . 46
4.3.2 Hands-on Lab: Basic Filtering . 48

4.4 Entries, Enumerated Values, and Field Extraction . 49
4.4.1 Hands-on Lab: Searching with Enumerated Values and Field Extraction 52

4.5 Inline Filtering . 53
4.5.1 Hands-on Lab: Inline Filtering . 56

4.6 Data Exploration . 57
4.6.1 Word Filtering . 57
4.6.2 Field Extraction . 57

4.7 Search Modules . 62
4.7.1 Extraction Modules . 62
4.7.2 Statistics Modules . 63
4.7.3 Enrichment Modules . 69

4.8 Render Modules . 73
4.8.1 Temporal vs. Non-Temporal Rendering . 73
4.8.2 Hands-on Lab: Temporal vs. Non-Temporal Rendering 74
4.8.3 Downloading Results . 75
4.8.4 Text/Raw Renderers . 75
4.8.5 Table Renderer . 78
4.8.6 Chart Renderer . 80
4.8.7 Mapping Modules . 83
4.8.8 Stackgraph Renderer . 86
4.8.9 Force-Directed Graph Renderer . 88

4.9 Resources . 90
4.9.1 Resource Basics . 90
4.9.2 Resource name resolution . 90
4.9.3 Managing resources with the GUI . 91
4.9.4 Hands-on Lab: Enriching Netflow with GeoIP . 93

4.10 Data Fusion . 95
4.10.1 Hands-on Lab: Data Fusion . 97

4.11 Query Optimization . 100
4.11.1 Parsing modules . 100
4.11.2 Parsing modules and Accelerators . 100
4.11.3 Operator modules . 100
4.11.4 Condenser modules . 100
4.11.5 Hands-on Lab: Optimizing Queries . 102

4.12 Auto-extractors . 104
4.12.1 Auto-Extractor Configuration . 104
4.12.2 Managing Auto-Extractors in the GUI . 104
4.12.3 Auto-Extractor Files . 106
4.12.4 Extractor Examples . 106
4.12.5 Hands-On Lab: Extractors . 112

4.13 Backgrounded and Saved Searches . 115
4.14 Permissions, Groups, and Sharing Results . 118

4.14.1 Hands-On Lab: Groups and Sharing . 120
4.15 Dashboards . 122

4.15.1 Live Update . 122
4.15.2 Hands-on Lab: Network Activity Dashboard . 128

CONTENTS 5

4.16 Templates . 130
4.17 Actionables . 132

4.17.1 Actions . 132
4.18 Compound Queries . 135

5 Indexers and Well Configuration 139
5.1 Indexer Configuration . 139

5.1.1 Hands-on Lab: Misconfigured Indexer . 140
5.2 Well Configuration . 141

5.2.1 Hands-on Lab: Well Definitions . 142
5.3 Well Ageout . 144

5.3.1 Time-based Ageout . 144
5.3.2 Storage-based Ageout . 145
5.3.3 Storage Availability Ageout . 146
5.3.4 Hands-on Lab: Ageout . 147

5.4 Replication . 150
5.4.1 Offline Replication Configuration . 150
5.4.2 Hands-on Lab: Replication . 151

5.5 Query Acceleration and Indexing . 152
5.5.1 Accelerator Well Configuration . 152
5.5.2 Accelerator Overhead and Query Impact . 154
5.5.3 Accelerators and Query Modules . 155
5.5.4 Hands-on Lab: Acceleration . 156

5.6 Indexer Optimization . 159
5.7 Docker Configuration . 160

5.7.1 Hands-on Lab: Docker Configuration . 161

6 Webserver Configuration 163
6.1 Basic Configuration . 163

6.1.1 Configuring Indexers . 163
6.1.2 Hands-on Lab: Adding Indexers to a Webserver . 164

6.2 Configuring Multiple Webservers . 165
6.2.1 Hands-on Lab: Configuring multiple webservers . 165

6.3 Setting Up a Load-Balancer . 167
6.3.1 Using Traefik . 168

7 Ingesters 169
7.1 Dealing with Timestamps . 169

7.1.1 Time Zones . 169
7.1.2 Time Parsing Overrides . 170
7.1.3 Ingester Custom Time Formats . 170

7.2 Configuration . 172
7.2.1 Timestamp Format Overrides (Optional) . 173

7.3 Preprocessors . 174
7.4 Simple Relay Ingester . 175

7.4.1 Listener Types . 176
7.4.2 Non-Listener-Specific Configuration Options . 177
7.4.3 Hands-On Lab: Simple Relay . 178

7.5 File Follower Ingester . 180
7.5.1 Additional Global Parameters . 180
7.5.2 Follower Configuration Parameters . 181
7.5.3 Hands-On Lab: File Follower . 183

7.6 Windows Event Ingester . 185
7.6.1 Hands-on Lab: Windows logs . 187

6 CONTENTS

7.7 Netflow and IPFIX Ingester . 188
7.7.1 Collector Configuration Parameters . 188
7.7.2 Hands-on Lab: Netflow Ingester . 188

7.8 Packet Capture Ingester . 189
7.8.1 Hands-on Lab: Packet Capture Ingester . 190

7.9 Tag Management / Federation . 193
7.9.1 Wildcard Tags . 194
7.9.2 Hands-on Lab: Federation . 194

7.10 Ingester Caching . 196
7.10.1 Hands-on Lab: Ingester Cache . 196

7.11 Ingest API and Source Code . 200
7.11.1 Configuring and Starting the Ingest Muxer . 200
7.11.2 Creating and Uploading Entries . 200
7.11.3 Cleaning Up/Shutting Down . 201

7.12 Permissions and Port Binding . 201
7.12.1 Hands-on Lab: Permissions and Port Binding . 202

7.13 Gravwell and Systemd . 203
7.14 Gravwell and Docker . 203

7.14.1 Hands-on Lab: Gravwell and Docker . 204

8 Automation 205
8.1 Configuring User Email Settings . 205
8.2 The Search Agent . 205

8.2.1 Disabling the Search Agent . 207
8.2.2 Search Agent Configuration . 207
8.2.3 Scheduling Searches . 208
8.2.4 Hands-On Lab . 210

8.3 Flows . 214
8.3.1 Flow Concepts . 214
8.3.2 The Flow Editor . 215
8.3.3 Nodes . 221
8.3.4 Hands-On Lab: Flows . 229

8.4 Search Scripting and Orchestration . 231
8.4.1 The Anko Scripting Language . 232
8.4.2 Available Libraries . 234
8.4.3 Gravwell Anko Functions . 235
8.4.4 Example Scripts . 237
8.4.5 Developing & Testing Scripts . 238
8.4.6 Hands-on Lab: Scripting . 239

8.5 Secrets . 243
8.5.1 Sharing Secrets . 243
8.5.2 Security Considerations . 244

9 Gravwell Kits 245
9.1 What’s in a Kit? . 245

9.1.1 Dependencies . 246
9.2 Browsing and Installing Kits . 246

9.2.1 Exploring a Kit . 250
9.3 Managing Installed Kits . 250

9.3.1 Upgrading Kits . 250
9.3.2 Uninstalling Kits . 251

9.4 Hands-on Lab: Installing Kits . 251
9.5 Building Kits . 252

CONTENTS 7

10 User and Group Management 257
10.1 Managing Users . 257
10.2 Managing Groups . 260
10.3 Hands-on Lab: Managing Users and Groups . 262

11 Migration 263
11.1 The Interactive Migration Tool . 263

11.1.1 Installation . 263
11.1.2 Basic Configuration . 263
11.1.3 Launching the Tool . 264
11.1.4 Migrating Files . 264
11.1.5 Migrating Splunk Data . 269
11.1.6 Quitting the Tool . 274

11.2 Importing One File . 275
11.3 Importing PCAP Files . 276

12 Command Line Interface 279
12.1 Running the Client . 279
12.2 Hands-on Lab: Basic CLI exploration . 280

13 The Gravwell REST API 283
13.1 Introduction . 283
13.2 API Tokens . 283

13.2.1 Token Permissions and Restrictions . 285
13.3 Accessing the Gravwell API . 285
13.4 Direct Search API . 285

13.4.1 Query Endpoints . 286

14 Securing Gravwell 289
14.1 TLS/HTTPS . 289

14.1.1 Installing a properly-signed TLS certificate . 290
14.1.2 Install a self-signed certificate . 290

14.2 Indexer Security . 291
14.2.1 Authentication & Secrets . 291
14.2.2 Indexer-Webserver Communications . 291
14.2.3 Indexer-Ingester Communications . 291

14.3 Webserver Security . 291
14.3.1 Authentication & Secrets . 291
14.3.2 Webserver-Indexer Communication . 291
14.3.3 Webserver-User Communication . 292
14.3.4 Webserver-Search Agent Communication . 292
14.3.5 Webserver-Datastore Communication . 292

14.4 Ingester security . 292
14.5 User Authentication and Lockout . 292

8 CONTENTS

Course Overview
Welcome! We’re very excited about your interest in this course.

Gravwell exists to provide data analytics to organizations at a predictable and reasonable cost that enables
any business unit to gain insights from data. Founded in 2017, Gravwell was created to address some core
deficiencies in the market as experienced by our founders. From the very first line of code they knew people
needed a tool that was much more efficient on computing resources, could handle binary data natively in
order to shrink disk usage and support advanced machine learning, and didn’t charge for every ounce of data
like some kind of analytics butcher shop.

One incredibly important aspect of data analytics is the ability to ask ad-hoc questions and to perform rapid
data exploration. This requires an “ingest first and ask questions later” approach to data ingestion, indexing,
and querying. Additionally, data trends over time are incredibly important for identifying cybersecurity
incidents, user behavior analytics, and to extract business KPIs and insights. Gravwell needed a structure-
on-read time-series database, but a suitable option didn’t really exist. In order to accomplish our mission,
Gravwell engineers had to start from scratch to create a full-stack analytics platform built with Go. The
success of this bold undertaking is what allows Gravwell to scale so incredibly well and to support such a
wide variety of use cases.

This training is a deep dive into the Gravwell platform. We will cover the platform architecture, data
ingestion strategies, user management and permissions, automation capabilities, cluster management and
troubleshooting, and of course, searching. Lots of searching. This document serves as a reference guide and
detailed walkthrough for this course.

We really appreciate your interest in Gravwell. We strive to provide amazing customer service and that
extends into this training material. If you have any questions, comments, or suggestions, please do send them
to us at feedback@gravwell.io. Your opinion is extremely important to us.

Thanks again, and enjoy the training!

Sincerely,

The Gravwell Team

Chapter 1

Architecture Overview

The Architecture Overview chapter is designed to give you a basic understanding of each of the Gravwell
components, how Gravwell models data, how data flows through Gravwell, and the different ways in which
Gravwell can be deployed. We will examine a few basic deployments, gradually increasing in capacity and
complexity. Gravwell is designed to be able to scale to many hundreds of nodes, but it can just as easily run
in a container, with all the services coexisting on a minimal system.

1.1 Terminology
Gravwell is a large system with quite a few moving parts. It is important to start by establishing some
terminology so that everyone can speak the same language.

Indexer
Stores data and manages wells.

Webserver
Serves web interface, controls and coordinates indexers.

Entry
A single tagged record or data item (line from a log file, Windows event, packet, etc.)

Enumerated Value
Named data item that is extracted from the raw entry during a search.

Tag Human-readable name for a data group. The most basic grouping of data.

Well On-disk collection of entries. Every entry ends up in exactly one well, sorted by tag.

Shard
A slice of data within a well. Each shard contains about 1.5 days of entries.

Ingester
Program that accepts raw data and packages it as entries for transport to an indexer.

Renderer
Query component that collects search output and presents results to a human.

Datastore
Central authority of users and user-owned objects for distributed webservers.

Search Agent
Monitors and launches automated queries and scripts on behalf of users.

9

10 CHAPTER 1. ARCHITECTURE OVERVIEW

Cluster Deployment
Multiple Indexers all participating in a single Gravwell instance.

Distributed Webservers
Multiple webservers sharing the load of GUI interactions and queries, but controlling the same set of
indexers.

Load Balancer
An HTTP reverse proxy which transparently balances load across multiple webservers.

1.2 Gravwell Entries
Gravwell stores all data as entries. An entry consists of a piece of data (just an array of bytes), a timestamp,
a tag, and a source address. Each of these components deserves a bit of explanation, so we will cover each
separately. Entries are stored in an efficient binary format on disk, but a user-friendly representation of an
example entry would look something like this:

{
Data: `127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700]

"GET /apache_pb.gif HTTP/1.0" 200 2326 "http://www.example.com/start.html"
"Mozilla/4.08 [en] (Win98; I ;Nav)"`,

Timestamp: 2000-10-10 13:55:36 -0700 MST,
Tag: "apache-logs",
Source: 10.0.2.3,

}

1.2.1 “Timestamp” field
The timestamp is meant to indicate the creation time of the data. This is typically extracted from the data
itself by the ingester, e.g. by parsing out the timestamps on syslog messages. However, some ingesters such
as the packet logger will instead set the timestamp to the current time, since the packet was captured “now”.

1.2.2 “Data” field
The data field contains the actual raw data of the entry. If log files are being ingested, the data field will
typically contain a single line from the log file. When ingesting network packets, the data field will contain a
single binary packet.

1.2.3 “Tag” field
The tag field categorizes the entry. Users refer to tags by strings, e.g. “default” or “pcap” or “windows-logs”,
but under the hood Gravwell assigns each tag string a unique numeric ID for more efficient storage.

1.2.4 “Source” field
The source field indicates where the entry originated. It is an IPv4 or IPv6 address. It is perhaps the most
free-form field of the entry, because it can indicate the machine on which the ingester was located, the machine
from which the ingester read the entry data, or it can be an entirely arbitrary number chosen as a second
layer of categorization beyond the tag. Most ingesters provide configuration options for how the source field
should be set.

1.3. DATA INGEST 11

1.3 Data Ingest
A core function of Gravwell is data ingest; ingesters take raw data, package it as entries, and transmit those
entries to a Gravwell indexer (or indexers) for storage, indexing, and searching. The Gravwell ingest API1 is
open source and so are most of the core ingesters2. Ingesters can often feed from multiple data sources at
once, and each ingester may upload its entries to a single indexer or multiple indexers.

Figure 1.1: Data Ingest

Here are some key concepts for ingesters:

1. Ingesters are separate from indexers.
2. Ingesters may run on remote systems.
3. Ingesters send entries to indexers.
4. Ingesters assign tags to entries.
5. Ingesters can create new tags.
6. Ingesters can cache entries locally if an indexer is not available.
7. Ingesters can multiplex across many indexers.
8. Ingesters can throttle their entry upload rate.
9. Ingesters authenticate with indexers via a secure challenge-response protocol.

10. Authentication is secure over a cleartext connection.
11. Entry transmission is only secure when operating over a validated TLS connection with valid TLS

certificates.

An entry represents an atomic thing in gravwell whether that be a packet, log line, or binary blob. Entries
always contain four fields: timestamp, tag, source, data. The ingesters are responsible for setting those fields.

Entry timestamps are independent of the raw data, although they may be derived from the raw data. For
example, an ingester may detect the timestamp in an Apache log line and apply it to the entry, or it may
apply the current timestamp.

For more information about available Gravwell ingesters, visit the Gravwell documentation site at
https://docs.gravwell.io

1https://github.com/gravwell/gravwell/tree/master/ingest
2https://github.com/gravwell/gravwell/tree/master/ingesters

https://docs.gravwell.io

12 CHAPTER 1. ARCHITECTURE OVERVIEW

1.4 Example Gravwell Deployments
Gravwell can be deployed on a single node, a cluster of indexers and one webserver, a cluster of indexers and
a cluster of webservers, or even as geographically-dispersed subclusters. Users interact with Gravwell using
either a standards-compliant browser (we like Chromium and Firefox) or the provided Gravwell command
line interface. For each deployment example we will show some basic diagrams which will use the icons in
Figure 1.2 to depict each component.

Figure 1.2: Icons used

1.4.1 Single Node
The simplest Gravwell deployment topology is a single node where all components are co-resident on a single
host or container. When operating in a single node deployment, Gravwell optimizes queries to maintain data
locality. This means that webserver participation in the query pipeline is minimal, typically only running the
renderer module. The complete Gravwell deployment contains three core components (Indexer, Webserver,
and Search Agent), plus any number of ingesters (both on and off the node) as shown in Figure 1.3.

1.4.2 Cluster Deployment
Gravwell deployments that need to handle large data volumes may require multiple indexers. A Gravwell
cluster is comprised of multiple indexers which are controlled by a single webserver as shown in Figure 1.4.
The webserver and search agent are typically on a separate node and connect to the indexers via an IPv4 or
IPv6 link. When operating in a cluster topology Gravwell will intelligently break up and distribute a query so
that as much of the query pipeline as possible runs on the indexers, condensing the pipeline to the webserver
only when necessary. Depending on the query, cluster topologies may transmit significant data volumes
between the indexers and webserver, so it is important that the links between the webservers and indexers be
fast, with low latencies and high bandwidth. While it is possible to geographically separate a webserver from
an indexer over a WAN link, the increased latency and decreased bandwidth will affect query performance.

1.4. EXAMPLE GRAVWELL DEPLOYMENTS 13

Figure 1.3: Single-node deployment

Figure 1.4: Cluster Deployment

14 CHAPTER 1. ARCHITECTURE OVERVIEW

1.4.3 Distributed Webserver Architecture
Very large Gravwell deployments with many users may need to also employ multiple webservers to handle the
load. Gravwell supports a distributed webserver topology by coordinating and synchronizing the webservers,
shown in Figure 1.5.

Figure 1.5: Distributed Webserver Architecture

Webservers coordinate and synchronize using a component called the datastore. The datastore acts as a
master storage system for user data, search resources, scheduled queries, scripts, and any other component
that can be uploaded or modified by a user. Webservers and the datastore will attempt to maintain a
complete copy of all resources, which allows webservers to fail and be restored by simply rejoining the cluster.
However, the datastore is treated as the master copy, so while the datastore component requires minimal
CPU resources, robust storage is advised.

1.5. REPLICATION 15

1.5 Replication
Gravwell supports full data replication, so that in the event of hardware failure, data is not lost. Replication
strategies depend on the type of deployment and general tolerance for distributed failures. Replication is
controlled entirely by the indexers and is unaffected by the webserver deployment. Gravwell supports two
forms of replication: online and offline.

1.5.1 Online Replication
Online replication requires that indexers communicate directly with one another and coordinate data
replication. Online replication allows for hot-failover, meaning that if an indexer fails the other indexers in
the replication group will detect the failure and serve the failed node’s data during a query.

Figure 1.6: Online Replication

1.5.2 Offline Replication
Offline replication is achieved using a dedicated replication component which does not participate in queries.
Indexers will replicate their data to the offline replication service and only pull data back in the event of a
failure. A single offline replicator may service many indexers (provided that it has adequate storage). The
offline replicator can be onsite or offsite.

1.6 Scheduled Search and Orchestration
Gravwell includes an automated search and scripting system. Using scheduled searches and scripts you can
keep resources up to date, export data, run multiple queries and alert on the results, or even take action on
remote systems based on the results of a query. The scheduled search and orchestration scripts are executed
by the search agent. The search agent is a standalone component which communicates with one or more
webservers and invokes queries and scripts as needed, as shown in Figure 1.8. There is only ever one search
agent in a deployment, and the default Gravwell deployment colocates the searchagent with the webserver.
However, in a distributed webserver topology the search agent may be located on its own node.

16 CHAPTER 1. ARCHITECTURE OVERVIEW

Figure 1.7: Offline Replication

Figure 1.8: Scheduled Search and Orchestration

Chapter 2

Lab Setup and Docker Testing

We will be making extensive use of the Docker container platform during the hands on exercises. The
purpose of this chapter is to ensure that all training attendees have a Linux system with a functioning Docker
installation. To fully participate in the training each attendee will need the following:

1. Workstation running AMD64 Linux or a virtual machine running 64-bit Linux

(a) At least 4GB of available RAM

(b) At least 10GB disk storage available for Docker instances

2. Ethernet adapter and cable with connectivity to training server

3. Standards-compliant web browser (Firefox, Chrome, Chromium)

2.1 Getting Started With Docker
The hands on training segments make heavy use of Docker1. Docker is a container platform designed to
simplify the deployment and management of microservices. While Gravwell is not a microservice, Docker
provides an easy to use and clean environment to experiment with Gravwell services. This section will ensure
that you have a working Docker environment and can import Gravwell images.

2.1.1 Host System Requirements
The first thing to verify is that the system that will be hosting Docker and our gravwell images is a modern
64bit Linux kernel. We need at least kernel version 3.2 running on an x86 architecture with 64bit extensions.
Any X86 AMD or Intel processor manufactured within the last 10 years should work. Open a command
prompt and run the uname -a command. We want to see x86_64 and a kernel version greater than 3.2.0:

Linux training 4.18.0-16-generic #17-Ubuntu SMP Fri Feb 8 00:06:57 UTC 2019 x86_64 x86_64
x86_64 GNU/Linux

2.1.2 Verifying Docker Installation
Docker is available in most Linux package managers on modern Linux distributions. Most Debian based
distributions can install Docker via the command apt install docker.io and Redhat based distributions
can install docker using yum install docker. Make sure to execute these commands as the super user,
either via sudo or by first becoming root using su.

1https://www.docker.com

17

18 CHAPTER 2. LAB SETUP AND DOCKER TESTING

2.1.3 Granting User Access to Docker
Docker requires elevated privileges to start containers, build networks, and generally manage the Docker
process. If you don’t mind interacting with Docker as the superuser you can skip this section, but if you
would like to be able to run the labs as a non-privileged user (recommended) we will set up the docker group
and add your current user to it. This will allow your current user to drive Docker.

First check if your user can run Docker commands by executing docker ps -q and docker network ls as
a non-root user. If the output is empty or contains a list of running Docker containers, your user already has
access to the Docker API. If errors were displayed, we will need to create the docker group and add your
current user to it. This is done using the groupadd and usermod commands. First run groupadd docker as
the superuser, then run usermod -aG docker <username> where <username> is the user you wish to use
for the training labs. You will need to logout of the current user and then log back in so that the group
permission changes can propagate. You can also just reboot your machine/VM. If all goes well, you should
be able to run the docker commands as a non-root user.

2.2 Testing Docker Image Imports
A core component of the hands-on training labs is importing prebuilt Gravwell images for experimentation.
We need to walk through the basic Docker commands to import and/or load a Docker image and run
it. You should have been provided with a tar.gz archive containing materials for the course. Make sure
it’s unpacked, then look in the dockerimages subdirectory for a file named “test.tar.gz”. Load it into
your local docker image repository using the command docker load -i test.tar.gz, then verify that the
image was imported using the docker images command. You should see a new image tagged (named)
gravwell:test.

Now we can start up the test container using Docker and poke around a little. A container is like a very
lightweight virtual machine. Note that a container is not quite the same as a Type 1 or Type 2 virtual
machine, since it uses the same kernel as the host system.2.

2.3 Starting a Container in Docker
Now that we have imported a Docker image, let’s create a new container and poke around in it a bit. We
are going to start the gravwell:test image and execute the /bin/sh command in interactive mode. This
means that we will immediately drop into the container. To keep things clean we will also pass the --rm flag
which tells Docker to destroy the container when the main process (/bin/sh) exits. Start the container and
poke around a bit, check the IPs, proc filesystem, and running processes. The container almost looks like a
real machine.

user@training:~$ docker run -it --rm gravwell:test /bin/sh
ps
PID USER TIME COMMAND

1 root 0:00 /bin/sh
6 root 0:00 ps

ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc
noqueue qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever
7: eth0@if8:
<BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN qdisc
noqueue

2https://www.backblaze.com/blog/vm-vs-containers/

2.4. TESTING GRAVWELL IN A CONTAINER 19

link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff
inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0

valid_lft forever preferred_lft forever
whoami
root
pwd
/
exit
user@training:~$

Type exit to leave the container, and run docker ps -a to list all active containers. Because we gave the
--rm flag the container should be completely gone.

WARNING: Do not use the --rm flag on containers that you want to keep or that you expect to continue to
work on; one accidental exit command will completely destroy all your work.

2.4 Testing Gravwell in a Container
Let’s fire up a minimal Gravwell instance in a docker container and verify that we can get to the web portal.
A minimal Gravwell instance is available in the images directory at dockerimages/base.tar.gz within the
training directory. Load it into your local images repository, then run it without any arguments. The base
image already has configuration parameters which specify which processes should be started within the
container. We will be naming this container base using the --name parameter and also starting the container
in the background using the -d parameter.

~/gravwell_training$ docker load -i dockerimages/base.tar.gz
Loaded image: gravwell:base
~/gravwell_training$ docker run -d --name test gravwell:base
7c18342e7dcc4e362323797954bd1b1742dd903ded097331f5c92e13853bd628
~/gravwell_training$ docker ps -q
7c18342e7dcc

Verify that the container is running using docker ps, then let’s pull out the IP that Docker assigned our
container so that we can hit the Gravwell webserver.

docker inspect test

Visit the IP address in your browser; you should see the Gravwell web page. Log into Gravwell with the
credentials admin/changeme to make sure everything is OK, then go back to your command prompt and
stop and clean up the base image.

docker stop test
docker rm test

2.5 Loading the Lab Images
Several different Docker container images are used for the lab sections of this training. They are available
in the dockerimages/ subdirectory on the course materials bundle and can be installed with the following
command:

docker load -i imagename.tar.gz

Fetch and load the following images from the dockerimagesimages folder:

• base.tar.gz

• brokenperms.tar.gz

• datastore.tar.gz

20 CHAPTER 2. LAB SETUP AND DOCKER TESTING

• indexer.tar.gz

• ingesters.tar.gz

• offlinereplication.tar.gz

• pcap.tar.gz

• webserver.tar.gz

Once loaded, they should all be in the listing when you run docker image ls.

2.6 Creating the Gravwell Test Network
To help keep our Gravwell experimental containers separate, we put them all on a Docker network called
“gravnet”. This is also what allows containers to connect to each other by name rather than by IP, which is
an important part of our experimental config. Before you use the network, you must create it:

docker network create gravnet

2.7 Helpful Docker Tips
This section has some commands or scripts to help you when doing this training.

To show all IPs and names:

docker ps -q | xargs -n 1 docker inspect --format \
'{{range .NetworkSettings.Networks}}{{.IPAddress}}{{end}} {{ .Name }}' \
| sed 's/ \// /'

To kill all running containers:

docker kill $(docker ps -q)

Chapter 3

Using the GUI

3.1 Introduction
This chapter discusses the basic organization and usage of the Gravwell GUI. It begins with a general overview
of the user interface, then discusses more specialized and advanced options. Feel free to skip ahead to the
next chapter to begin searching with Gravwell immediately, referring back to this chapter when needed.

3.2 Menus
By default, users will end up on the “Welcome” page after logging in. This page, like all pages in the Gravwell
GUI, includes a bar across the top containing the main menu, notifications, the account menu, and more.
These menus are described further below.

Figure 3.1: Default home page

Clicking the Gravwell logo in the upper left will always take you back to your home page (see section 3.2.3
for configuration options).

3.2.1 The Main Menu
Clicking the “hamburger” button in the upper left will open the Main Menu, as shown in Figure 3.2.

This menu is used to access all the primary functionalities of Gravwell, including dashboards, the query
library, and playbooks. Note that several items within the menu are actually sub-menus, which can be
expanded to show additional options as shown in Figure 3.3. Items within these sub-menus will typically be
used less frequently that the top-level items and are therefore collapsed to save space.

21

22 CHAPTER 3. USING THE GUI

Figure 3.2: The main menu

3.2. MENUS 23

Figure 3.3: Expanded submenu

24 CHAPTER 3. USING THE GUI

3.2.2 Notifications
Important notifications are accessible under the bell icon in the upper right corner of the page. Regular
notifications are indicated by a small red circle containing the number of notifications. A critical notification
will change the entire icon to a more attention-catching red icon; see Figure 3.4 for examples.

Figure 3.4: Notification icons, normal (left) and critical (right)

Clicking the notification icon will display the text of the notifications, as seen in Figure 3.5. Clicking the
“snooze” button on a notification will remove that notification from counter shown on the icon; this can be
useful to prevent distractions.

Depending on the type of notification, clicking the “delete” icon may clear the notification entirely. Some
notifications are persistent and cannot be deleted; some are system-wide and can only be deleted by the
administrator, and some are targeted at the current user and can be deleted by that user. Note that there is
no harm in clicking “delete” on a notification the user isn’t allowed to delete.

Figure 3.5: Notifications menu

3.2. MENUS 25

3.2.3 The Account Menu
The round button in the upper-right of the page is the Account Menu button. It will display either the initials
of the current user, or a profile image if set. Clicking it brings up a small drop-down menu (Figure 3.6).

Figure 3.6: The account menu

Selecting “Account” will open your preferences page, shown in Figure 3.7. Here, you can change your email
address, display name, or password; be sure to click “Update Account” after making changes! The “Log out
all sessions” button at the bottom of the screen will kick all active sessions for your account, across all client
machines.

Figure 3.7: Account preferences

The second tab of the Preferences page, “Interface & Appearance”, is shown in Figure 3.8. It has options
for customizing the Gravwell user interface. The “Interface theme” dropdown is of particular interest, as it
selects a GUI-wide color scheme (including the ever-popular dark modes).

The “Chart theme” dropdown selects different color palettes which will be used when drawing charts. The
editor theme & font size options control the appearance of Gravwell’s built-in text editor, which is used to
create automation scripts and in a few other places.

The third tab, “Preferences” (Figure 3.9), allows you to change some default behaviors of Gravwell.

26 CHAPTER 3. USING THE GUI

Figure 3.8: Interface and appearance preferences

Figure 3.9: General preferences

3.2. MENUS 27

The “Home Page” dropdown menu selects which page will be displayed after logging in or clicking the
Gravwell icon next to the main menu. By default, the welcome page is shown, but you can chose to be shown
a list of dashboards, kits, or playbooks instead.

The “Search Group Visibility” option allows you to share the results of all searches with a given group; this
can be a convenient way to collaborate. In the screenshot, the user has selected the group named “foo”; all
members of that group will have access to the searches this user runs in the future.

The “Advanced Preferences” section can be ignored by most users. Selecting “Developer mode” enables
manual editing of JSON preferences.

The final tab, “Email Server” (Figure 3.10, is extremely important for users who intend to do automated
email alerting via scheduled scripts. It must be set up with a valid SMTP configuration before emails can be
sent.

Figure 3.10: Email preferences

The fields are mostly self-explanatory; “Server” is an SMTP server, “Port” is the port to use for SMTP,
“Username” and “Password” authenticate to that server. “Use TLS” should be enabled if the server expects
TLS connections. The “Disable TLS certification validation” option is provided in case the server is using
self-signed certificates; be cautious enabling this!

Once the fields have been populated, click “Update Settings” to save them, then click “Test Configuration”
to send a test email.

28 CHAPTER 3. USING THE GUI

3.3 Labels and Filtering
Objects in Gravwell such as dashboards, resources, macros, etc. can be labeled for organizational purposes.
Some objects distributed in kits may be pre-labeled for convenience. The following object types can be
labeled:

• Extractors
• Dashboards
• Kits
• Playbooks
• Resources
• Scheduled Searches / Automation Scripts
• Macros
• Templates
• Actionables
• Query Library entries
• User files

3.3.1 Defining and Managing Labels
Labels are added or deleted in the edit dialog for a given object. While the exact layout of the dialog varies
for each object type, they will all have a section for Labels. Labels are added by typing the label into the
text bar and hitting enter. Multiple labels can be added in succession in this manner. In Figure 3.11, the
user has added three labels (network, asn, and lookup) to a resource.

Labels may be removed in the edit dialog by clicking the “x” next to the label, or by using the backspace key.

Figure 3.11: Labels applied to a resource

3.3. LABELS AND FILTERING 29

3.3.2 Filtering Objects
The GUI can filter objects based on their labels. At the top of many screens is a bar containing a “Filters”
button, as shown in Figure 3.12. Clicking that button brings up a menu with several options for filtering (Fig
3.13).

Multiple filters can be applied simultaneously. When a filter has been applied to a page, a blue “X” icon will
appear on the Filters button. Clicking this icon will clear all filters.

Figure 3.12: The filters menu

Figure 3.13: Options for filtering

Filtering by Label

The left-most dropdown, “Filter by label or kit”, allows you to select one or more labels or kits. Clicking the
Apply button will then show only those objects with the specified labels or installed by the specified kits.
Figure 3.14 shows the user selecting the “lookup” label, which will hide all resources not labeled “lookup”.

Filtering by Owner

By default, most interfaces will show all objects the user has access to, regardless of owner. Another filter
option can make it show only objects owned by a particular set of users. Figure 3.15 shows the user filtering
macros to show only those macros owned by the user named “Admin User”. Note that the “My data” option

30 CHAPTER 3. USING THE GUI

Figure 3.14: Filtering by label

applies to the current user; selecting this checkbox will show only those items which belong to the current
user, rather than all items the user can access.

Showing Hidden Objects

Objects with the special label hidden are not displayed by default. This is a convenience function which can
keep displays clear of rarely-accessed objects. Click the “Show hidden record” toggle to show hidden objects.
In Figures 3.16 and 3.17, toggling “Show hidden record” reveals an additional hidden macro.

3.3. LABELS AND FILTERING 31

Figure 3.15: Filtering by owner

Figure 3.16: Enabling the “show hidden” toggle

Figure 3.17: Hidden item becomes visible with “show hidden” enabled

32 CHAPTER 3. USING THE GUI

3.3.3 Special Labels
Gravwell defines a handful of special labels and label prefixes for particular operations.

The string hidden is a special label; applying it to an object will prevent the object from being displayed by
default. To see the object, toggle the “Show hidden record” option in the filter menu, as detailed above.

Kit Label Prefixes

Three label prefixes are used to manage Gravwell-internal information about objects which were installed as
part of a kit. You should never manually apply kit labels to objects; these labels are documented to prevent
users from accidentally applying a conflicting label to an object. The following are considered reserved kit
label prefixes:

• kit/
• kit/dependency:
• kit/configuration:

Users should not create labels beginning with these strings, e.g. kit/foo or kit/dependency:bar. These
labels are managed internally by Gravwell.

3.4. SEARCH INTERFACES 33

3.4 Search Interfaces
There are two different user interfaces for running searches in Gravwell: the classic lightweight search interface,
and the multi-tabbed Query Studio. Which should you use? Either is acceptable, both take exactly the same
Gravwell queries, but most users will find the Query Studio most comfortable.

Throughout this text, screenshots may use either interface interchangeably, because they are designed to
be used interchangeably. Every feature available in the classic interface is available in the Query Studio.
The Query Studio provides a few extra conveniences (including more advanced Data Explorer functionality
(Section 4.6), which is why we recommend it to most users.

The classic search interface is accessed via the “New Query” option in the main menu. It presents a very
sparse and straightforward way to enter a Gravwell query, along with a few options such as timeframe
selection (Figure 3.18).

Figure 3.18: The classic search interface

Clicking “Search Now” launches the search, taking the user to the classic results page as seen in Figure 3.19.
From here, the query can be modified and iterated on, re-running the search again and again as you explore
data.

The Query Studio is a newer interface, designed to provide a convenient multi-tabbed environment in which
a user can work with multiple queries at the same time. Figure 3.20 shows what the Query Studio looks like
when first opened. Note how it presents a list of queries from the query library, templates, and selections
from recent query history; clicking any of these will launch the selected query. Clicking “Start a New Query”
begins with a blank query instead.

Figure 3.21 shows the Query Studio with two tabs open. The current tab displays the results of a chart query.
Note the “Pie Chart” text near the upper right; this is a drop-down menu which allows the user to quickly
change between chart types when running a query with the chart renderer. This and other conveniences
make the Query Studio a more comfortable environment for most users.

34 CHAPTER 3. USING THE GUI

Figure 3.19: The classic search results page

3.4. SEARCH INTERFACES 35

Figure 3.20: The Query Studio

36 CHAPTER 3. USING THE GUI

Figure 3.21: Query Studio results display

3.5. PLAYBOOKS 37

3.5 Playbooks
Playbooks are hypertext documents within Gravwell which help guide users through common tasks, describe
functionality, and record information about data in the system. Most Gravwell kits (see Chapter 9) include
a playbook or two to help users get oriented in the kit, but regular users can also create playbooks for
themselves, documenting their data investigations with a mix of text, images, and executable queries.

The Playbooks page (Figure 3.22) lists the playbooks currently in the system and allows the creation of new
ones.

Figure 3.22: Playbooks page

Clicking a playbook will open it. It will look more or less like a regular web page, with section headings,
hyperlinks, and images, but it will also include embedded queries, as seen in Figure 3.23. Clicking the ‘Launch’
button will run that query in a new browser tab.

3.5.1 Playbook Markdown
Playbooks are written in Markdown. You can edit an existing playbook by clicking the edit button, or create
your own new playbook. This will bring up an editor as shown in Figure 3.24

The editor accepts standard Markdown syntax1:

• Designate headings with number signs (#), using one for heading level 1, two for heading level 2, and
so on, e.g. # Heading 1, ### Heading 3.

• Surround text with asterisks to italicize, or with doubled asterisks to bold, e.g. *italic*, **bold**.

• Hyperlinks put the link text in square brackets and the target URL in parentheses: [Example
Site](http://example.com)

1https://www.markdownguide.org/basic-syntax/

38 CHAPTER 3. USING THE GUI

Figure 3.23: Playbook viewer

3.5. PLAYBOOKS 39

Figure 3.24: Playbook editor

• Create numbered lists by numbering each line (1. First item and so on), create bulleted lists with
asterisks (* First item).

Review the full Markdown syntax document for more options. You can also insert plain old HTML if necessary.
Note that there are two essential changes to the syntax which are explained below.

Inserting Runnable Queries

Playbooks can contain Gravwell queries which will be displayed with a “Launch” button for the user to click.
To insert a query, use the Markdown blockquote syntax, as below:

```
tag=netflow netflow Protocol Src SrcPort Dst DstPort | table
```

Inserting Images

Images can be inserted in two ways. The first is the standard Markdown method using a hyperlink:

![This is the image alt text](https://example.com/image.jpg)

The other method involves uploading an image to Gravwell. To do this, click the ‘Add image’ icon in the
playbook editor. The UI will prompt you to upload an image as seen in Figure 3.25. Once you select a file to
upload, the dialog will prompt you for alt text and other information as shown in Figure 3.26. Once you click
‘Add’, the editor will insert Markdown code referring to your newly-uploaded file within Gravwell:

![A cat](/api/files/c39a9541-971f-44b1-97ac-5724d5214f05 =1240x698)

40 CHAPTER 3. USING THE GUI

Figure 3.25: Playbook image upload

Figure 3.26: Playbook image upload

You can also insert a previously-uploaded image by selecting ‘Gallery’ in the dialog’s drop-down menu, as
shown in Figure 3.27.

3.5. PLAYBOOKS 41

Figure 3.27: Playbook image gallery

42 CHAPTER 3. USING THE GUI

Chapter 4

Searching

4.1 Search Pipeline Architectural Overview
Gravwell search is designed to be an asynchronous pipeline that behaves somewhat like a stream processor.
The pipeline is transparently distributed across indexers, enabling distributed search without the user needing
to explicitly define or direct specific search parameters. From a user perspective, a search operating on 1
node looks exactly the same as a search operating on 300 nodes. However, having a better understanding of
how the pipeline operates can help craft queries that can better leverage the power of parallelism available in
Gravwell. We have seen customers reduced query execution times by an order of magnitude with only small
tweaks.

A pipeline is instantiated for every search. It intelligently identifies where data is located, decodes raw
entries, extracts features, condenses, and finally readies the results for display. The pipeline is made up of
the following elements:

• Tags. A tag is a data group which informs the indexers what set of data to feed into a pipeline. Indexers
use tags to transparently bind to the appropriate wells in order to feed data to the pipeline.

• Data, composed of entries. These entries are stored on disk by indexers until a search is run.

• Search modules. These apply structure, extract elements, filter, and condense. Search modules do most
of the “heavy lifting” in the pipeline.

• Render module. Any given pipeline has only one render module which must be the last module. Once
entries have been processed by the search modules, the render module formats them to display to the
user. If no render module is specified in a search, the text module is used.

Figure 4.1 shows an abstracted visualization of how a search pipeline functions. Raw data (marked in red)
is stored as entries on the indexers. When a search begins, the indexers read the entries off the disk and
feed them into a series of search modules (shown in blue). This allows the indexers to take on some of
the computational load, in this case by executing the first three search modules on the indexers. However,
eventually entries will hit a search module that requires all entries in order to perform its task; this is called
a condensing module. Condensing modules perform tasks like counting, calculating means, and sorting;
they condense because they require the complete data stream to do the operation. In order to condense, the
entries must be shipped to the webserver where the condensing module is executing. In this example, once
the webserver gathers entries from each of the indexers and joins them, it feeds the entries through three
additional three search modules. Finally, the fully-processed entries are fed into the renderer which stores the
results so that they can be presented to a human, script, or outside API.

43

44 CHAPTER 4. SEARCHING

Figure 4.1: The Gravwell pipeline

4.2. QUERY ENTRIES AND TAGS 45

4.2 Query Entries and Tags
The first part of any query is the tag set; all queries operate on at least one tag, but a single query can
operate on multiple tags. If no tag is specified, the default tag is assumed. Every entry in Gravwell is
assigned a tag when it is ingested. The tags control which well the entry is stored in and are kept with the
entry throughout the entire query pipeline. To specify a set of tags for a specific query, prepend the query
with tag= and a comma-separated list of tags. For example, if we wanted to examine all entries that have
been assigned the tags “syslog” and “kernel” we would prepend our query with tag=syslog,kernel. Tags
can also be specified using glob wildcards, so if our Gravwell deployment has data tagged “syslog”, “system”,
and “netflow” we can select the tags “syslog” and “system” (excluding “netflow”) by using tag=sys*.

The query tag=* instructs Gravwell to just go get all the entries, from every tag, and push them into the
text renderer (the default renderer). A word of warning: if your system has lots of data and you run this
query over a long period of time, you are basically asking all your indexers to dump their raw data to the
webserver and hand it to your web browser. This will put a lot of traffic on the network and consume a lot of
resources on the indexers and webserver.

We can expand on this query and use the TAG and DATA keywords to draw a table with the raw data and tag
name. You can always access the human readable name of a tag through the TAG keyword.

tag=* table TAG DATA

Figure 4.2 shows an example of the output from this search. The table renderer will attempt to present data
as a text, but since the data tagged as pcap is binary (actual packets) it can’t really be printed as text, thus
the “noise”. Later in this chapter, we will show how to process this binary data.

Figure 4.2: Table showing tags and raw data

46 CHAPTER 4. SEARCHING

4.3 Chaining Multiple Modules
Gravwell search modules are each designed to accomplish a specific task; the power of Gravwell is obtained
by chaining multiple modules together to accomplish something complex. Modules are chained together
using the pipe character “|”. You can chain as many modules together as you want. The Gravwell pipeline is
designed to be asynchronous, with each module runs in its own lightweight thread. This means that if you
build a query with 8 modules chained together, the query can potentially leverage 8 CPU cores for the work.
This asynchronous execution allows Gravwell to leverage modern processors with many CPU cores. It also
makes for faster execution even though each query module does not execute at the exact same speed. If you
are familiar with a Unix command line and chaining multiple programs together to achieve a result, Gravwell
will feel like second nature–the Gravwell pipeline is directly modeled on the Unix command line.

Let’s examine a query that uses successive filtering modules to find syslog data from a specific service
originating from a specific machine. We will use the grep module twice, first filtering for the machine name
and then filtering for the service name. Gravwell’s grep module behaves much like the Unix tool of the same
name: it searches text for patterns the user specifies. See https://docs.gravwell.io/#!search/grep/grep.md for
more information or refer to Section 4.3.1. Our example query is:

tag=syslog grep dunkel | grep sshd

This query tells all indexers that we only want to look at syslog data (tag=syslog). The first grep search
module filters out all entries which do not have the value “dunkel” (a hostname) in their data. The second
grep filters out all entries which do not have the value “sshd” in their data. The output entries are guaranteed
to contain both “dunkel” and “sshd” in their bodies.

Therefore, given the following entries as input, the first one would be returned while the second would be
dropped:

Mar 20 17:41:08 dunkel sshd[26779]: Failed password for root from 218.92.0.192 port 38978
ssh2↪→

Mar 20 17:41:05 porter sshd[21703]: Failed password for root from 218.92.0.192 port 57623
ssh2↪→

However, the query as you see it is not what actually gets executed. Our example query does not specify
a renderer module, so Gravwell transparently appends the default text renderer. The search pipeline also
detected that there were no condensing modules and the renderer did not report that it could condense, so it
also injected “sort by time desc” so that all the entries are shown in the correct temporal order. The actual
executed query is:

tag=syslog grep build | grep sshd | sort by time desc | text

You don’t need to really worry about the injected modules and the default renderer, just know that if you
don’t specify a renderer Gravwell will show you the raw entries and ensure they are in the correct order.

4.3.1 The grep Module
Grep is a very basic pipeline module that searches for a text string (not Unicode). Any record containing
such text will match and be passed through the pipeline. Any record not containing the text is dropped from
the pipeline. For example, grep foo will pass on any records containing the text “foo” and drop any records
that do not contain “foo” anywhere. Grep is case sensitive by default, so grep foo would match “foo” but
drop “Foo”.

Grep supports the standard GNU wildcards as well as fast string and binary matching. For instance to
look for all entries that start that contain “foo” and “bar” separated by 0 or more bytes, you can use grep
foo*bar.

Grep allows multiple patterns to be specified. If any pattern is matched, the entry is passed down the pipeline.
If the -v flag is used to invert the search, the entry will be dropped if any pattern matches.

The module supports the following option flags:

https://docs.gravwell.io/#!search/grep/grep.md

4.3. CHAINING MULTIPLE MODULES 47

• -v: “Inverse” grep. For instance, grep -v bar would drop any records containing the text “bar” and
pass on any records that do not contain “bar”.

• -i: Match case insensitive values. Thus, grep -i foo would match “Foo” and “foo”. Case insensitive
search tends to be one of the slowest operations; put it later in your pipeline if possible to keep things
fast.

• -e <arg>: Operate on an enumerated value instead of on the entire record. For example, to show packets
that contain HTTP text but aren’t destined for port 80, run tag=pcap packet ipv4.DstPort!=80
tcp.Payload | grep -e Payload "GET / HTTP/1.1"

• -s: Strict match. All patterns must match, or in the case of a negated strict match, no pattern may
match.‘

• -simple: Simple match. With this flag, grep will match exactly the characters you specify, with no
wildcard matching. This allows you to find asterisks and other normally-reserved characters: grep -s
*

• -w: Word match. The entire match pattern must be a full word as would be matched by the fulltext
extractors.

48 CHAPTER 4. SEARCHING

4.3.2 Hands-on Lab: Basic Filtering
For this hands-on lab we are going to chain a few modules together to achieve some basic filtering and zero
in on very specific data.

Start by cleaning your environment and starting up a new base Gravwell instance:

docker stop $(docker ps -q)
docker rm $(docker ps -q -a)
docker create --rm --net gravnet -p 8080:80 --name test gravwell:base
docker start test

Next, we’ll use the reimport ingester to ingest a prepared set of logs into the syslog tag:

cd ~/gravwell_training/Search/Lab-Basics
docker run -v $PWD/data:/tmp/data --rm -i --net gravnet \
gravwell:ingesters /opt/gravwell/bin/reimport -rebase-timestamp \
-clear-conns test -i /tmp/data/auth.json.gz -import-format json

Log into your Gravwell GUI (http://localhost:8080, recall that the username/password is “admin”/“changeme”
by default), then try the following tasks:

1. Using the grep module, filter the syslog tag to only include logs from the sshd daemon on the host
porter.

(a) Hint: Refer back to the section above for example queries you can adapt.

2. Filter the syslog tag to include sshd logs from all hosts except porter.

(a) Hint: The grep module has a -v option that inverts the filter logic, meaning any entries which
match the pattern will be dropped.

3. Filter the syslog tag to find successful logins on the host porter.

(a) Hint: sshd will log “Accepted” when a user logs in.

4. Generate a final count of failed ssh password logins for non-root accounts.

(a) Hint: Use the count module without any arguments to count entries.

Do not rm the test container, as we are going to use it again for the next lab.

http://localhost:8080

4.4. ENTRIES, ENUMERATED VALUES, AND FIELD EXTRACTION 49

4.4 Entries, Enumerated Values, and Field Extraction
One of the most common operations any Gravwell user will perform is field extraction. Gravwell is designed
to operate on unstructured data, meaning that you don’t necessarily have to understand the form of your
data until you need to actually query it. Field extraction allows us to isolate and extract the tidbits that we
care about and then operate on them to gain useful insights.

When a field is extracted from an entry, it becomes an Enumerated Value. Enumerated values are composed
of a name, data, and a type. In most cases, you don’t need to worry about the type since Gravwell will
handle the translations and casting for you, but should you run into any ambiguity in a query the type is
there to help Gravwell do the right thing. When an enumerated value is extracted it is attached to an entry
for the remainder of the pipeline. Entries can have many enumerated values attached.

The best way to demonstrate field extraction and enumerated values is to perform a few queries and look at
the results. Let’s look at the same syslog data we used previously. Here’s an example:

Mar 20 23:59:48 porter sshd[35522]: Failed password for root from 218.92.0.151 port 26814
ssh2↪→

A syslog entry consists of a date, the hostname of the system that sent the message, the application that
generated the message, the process ID of that particular application, and the message itself. Sometimes a
message may contain additional information, but these basic fields should always exist.

We can use Gravwell’s syslog module to extract some of these fields as enumerated values and display them
in a table. Figure 4.3 shows the results.

tag=syslog syslog Appname Message | table

Figure 4.3: Fields extracted from syslog entries.

Note that if you specify the table renderer and don’t give it column names, it will automatically use every
enumerated value created in the pipeline. The syslog module extracted features from the log entry named
“Appname” and “Message” and attached them to the entry. The table renderer then created columns using
the enumerated value names and rendered a row for each entry, populating the columns with the enumerated
value contents.

We can expand on these extractions by also extracting the method and URL. Rather than modifying the
original syslog command, we can chain in another one to extract the additional values. This demonstrates
that successive modules can extract additional features and attach them to entries.

tag=syslog syslog Appname Message | syslog ProcID Message | table

50 CHAPTER 4. SEARCHING

Figure 4.4: Chaining multiple extractions

Now that we have the Appname, Hostname, ProcID, and Message, let’s extract a feature from a feature.
This data contains lots of messages about failed login attempts in the Message fields; we can use the regex
module to extract the username and IP address from these failed login attempts with a regular expression.
We specify the -e flag to tell regex that it should look only at the contents of the Message enumerated value,
rather than the entire raw entry.

We’ll simplify the query a little by condensing the two syslog invocations into one, and we’ll also tell the
table module to only display the columns we’re interested in. Figure 4.5 shows the results of the query.

tag=syslog syslog Appname Message ProcID Hostname
| regex -e Message "Failed password for (?P<username>\S+) from (?P<ip>\S+) port"
| table Hostname username ip

Figure 4.5: Extracting from an enumerated value

We were able to chain multiple pipeline modules to extract multiple fields and then operate on those extracted
fields to make a nicely-formatted table showing failed login attempts. We can even invoke the count module

4.4. ENTRIES, ENUMERATED VALUES, AND FIELD EXTRACTION 51

to track how many attempts occurred for each user on each system, as seen in Figure 4.6. Note how we
specify by Hostname username, telling the count module that it should keep a separate count for each
unique combination of Hostname and username.

tag=syslog syslog Appname Message ProcID Hostname
| regex -e Message "Failed password for (?P<username>\S+) from (?P<ip>\S+) port"
| count by Hostname username
| table Hostname username count

Figure 4.6: Doing statistics with enumerated values.

52 CHAPTER 4. SEARCHING

4.4.1 Hands-on Lab: Searching with Enumerated Values and Field Extraction
For this lab we are going to be using the same data set as the previous lab (Section 4.3.2), but instead of just
filtering we will extract data and output statistics to zero in on some bad behavior. If you tore down the
environment from previous lab, go back and stand it back up and reingest the auth data.

We will be using the syslog module to extract data from Linux auth logs as demonstrated in the preceding
section. You’ll use the syslog, grep, and count modules, along with the table renderer.

Lab Tasks

1. Extract the Appname and Hostname fields from the entries and put them in a table.

(a) Add another extraction to pull the Message portion of the logs and add it to the table.

2. Filter to only include sshd messages by matching on the Appname enumerated value. Hint: grep takes
a -e flag to specify an enumerated value!

3. Generate a table with the count of Appname events by each Hostname. Hint: count by host

4. Extract the ip and username for all SSH login events. Hint: refer back to the regex examples given in
this section.

BONUS: generate a table with success and failure counts for each IP.

To clean up after the experiment, simply run:

docker kill $(docker ps -a -q)

4.5. INLINE FILTERING 53

4.5 Inline Filtering
Many search modules support what we call “inline filtering”. Inline filtering allows the module to extract a
value and filter on it using its native type without involving another module. There are some real benefits to
using inline filtering as opposed to extracting in one module and filtering in another, the most important
which may be acceleration. Search modules that support inline filtering know how to communicate the filters
to an indexer’s acceleration engine, which can enable dramatic speedups. Even when not filtering in a manner
that can invoke the acceleration engine, inline filtering allows for fast type-native operations.

Let’s start by examining some modules that support inline filtering and examine a query that would not
invoke the accelerators and then adapt it so that it can invoke the accelerator.

Let’s begin by examining the data:

tag=json

Here is an example of the data we’re looking at:

{
"time":"2022-06-08T19:14:31Z",
"account":{

"user":"miawilson242",
"name":"Michael Moore",
"email":"miawilson242@test.org",
"phone":"+81 43 3387494435",
"address":"15 Lincoln Rd,Newstead, OH, 13188",
"state":"IA",
"country":"Brazil"},

"class":40234,
"groups":["dagger","jester"],
"user_agent":"Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like Gecko",
"ip":"194.50.167.70",
"data":"But what sort of language would we have the world speak, if we were told

the miracle of Babel was presently to be reversed?"↪→

}

The data generated is random. Let’s take a look at the country and groups fields in the example above:

• country

“Brazil”

• groups

“dagger”

“jester”

Let’s say we were looking to perform some analytics and we wanted to see what the “groups” field looked like
for users in Brazil.

Because groups is an array of values, we will extract the array and pass the output name to the -x flag:

json -x groups groups account.country

This will turn the single entry into two entries, one with enumerated values country=Brazil and
groups=dagger, one with country=Brazil and groups=jester.

We might write the following query:

tag=json json -x groups groups account.country | grep -e country Brazil |
count by groups | chart count by groups

54 CHAPTER 4. SEARCHING

This query will show us a plot of activity groups that are registered in Brazil. But what if we have hundreds
of thousands of users making making thousands of requests per day, literally hundreds of millions or billions
of JSON records generated and ingested by Gravwell? Gravwell will handle those numbers, but the above
query will not invoke the accelerators and as a result hundreds of millions of log entries we don’t care about
will be read off the disks. We can make a small adaptation to the query that will:

1. Let the json module inform the indexer about a filter (invokes acceleration).

2. Let the json module filter directly without extracting and passing every value.

tag=json json -x groups groups account.country==Brazil | count by groups |
chart count by groups

The new query doesn’t look much different and the output is identical, but the performance may be
dramatically different. It’s also easier to read. If we have indexed on the country field, the json module can
tell the acceleration system about our filter. As a result, only entries that have a country value of “Brazil”
are ever retrieved from the disk or enter into the pipeline.

Table 4.1 shows the filtering operations supported by Gravwell. Note that the greater than/less than
operations can only operate on numeric enumerated values; Table 4.2 shows which enumerated value types
are compatible with which filters. In this context, “subset” means that the enumerated value contains the
argument, so foo~"well" would match the strings “well”, “wellbeing”, and “Gravwell”.

Operator Name
== Equal
!= Not equal
< Less than
> Greater than
<= Less than or equal
>= Greater than or equal
~ Subset
!~ Not subset

Table 4.1: Filter operations

Enumerated Value Type Compatible Filters
string ==, !=, ~, !~
byte slice ==, !=, ~, !~
MAC address ==, !=
IP address ==, !=, ~, !~
integer ==, !=, <, >, <=, >=
floating point ==, !=, <, >, <=, >=
boolean ==, !=
duration ==, !=, <, >, <=, >=

Table 4.2: Filter compatibility

The subset and not-subset operators have a special meaning when the enumerated value is an IP address:
they check if the IP address is part of a subnet. Thus ip~192.168.0.0/16 evaluates to true if the value in
ip is in the 192.168.0.0/16 subnet.

If we haven’t indexed on the country field, we still get a speedup because the filter allows the json module to
be more efficient. The json module has to walk the data and find each field it is asked to extract, but by
specifying a filter directly in the json module it can stop execution if one of the extractions fails the filter. In
the above query example, let’s say it extracts the country field and gets “Mexico”. With inline filtering, the

4.5. INLINE FILTERING 55

json module knows that this fails the filter, so it stops processing the entry; the group extraction is never
even performed.

Let’s look at another query where inline filtering lets us perform a filter that is more complex than simple
equality, where the processing module can leverage its knowledge about the data to do something more
interesting. Netflow is a network monitoring data format that generates flows (records of network connections)
from raw network traffic. It will passively watch a network and report on connections, saying that IP A sent
X bytes to IP B using the port Z. So instead of capturing potentially trillions of bytes for network statistical
monitoring, we can capture just a few. Many smart switches and routers will natively export netflow. Using
the netflow1 search module, we can parse the binary Netflow format and do some analysis:

tag=netflow netflow Src~192.168.0.0/16 DstPort < 1024 |
count by Src DstPort | table Src DstPort count

For this query we are leveraging the fact that the netflow module knows it is dealing with an IP and port;
this allows us to apply a filter with the context of those types. This query is applying a filter that says
we only want flow records where the source IP address is in the Class B subnet 192.168.0.0 and where the
destination port is a service port (below 1024). These inline filters are not equality filters, so they will not
invoke the accelerators.

Inline filters also have one other trick: some of them can examine two different fields and extract the one that
matches a filter. Assume we are monitoring Netflow on an internal network and we want to see all flows
that use SSH. We don’t care if the flows are inbound or outbound, but in order to filter for SSH we need to
filter on either the SrcPort or the DstPort. The netflow module lets us specify that a filter match either the
SrcPort or the DstPort by just specifying “Port”. We can do the same thing for the Src and Dst IP addresses
by just specifying “IP”. So, if we wanted to adapt the above query to show us any internal private IP that is
using SSH, it would look like this:

tag=netflow netflow IP~PRIVATE Port==22 Bytes |
sum Bytes by IP | chart sum by IP

This query also uses the PRIVATE keyword, which tells netflow we are looking for any non-routable IP2

addresses. Also, even though the Port field might end up referring to either SrcPort or DstPort, because we
are using an equality filter it can still invoke the accelerator (if we are accelerating on the field). If we were
on a large network with many billions of flows per day, the accelerators would dramatically speed up that
query, plus we get a cool chart to show us who is pushing a bunch of data around using SSH.

1https://docs.gravwell.io/#!search/netflow/netflow.md
2https://en.wikipedia.org/wiki/Private_network#Private_IPv4_addresses

56 CHAPTER 4. SEARCHING

4.5.1 Hands-on Lab: Inline Filtering
In this lab we will observe how the inline filtering system can improve query performance and simplify the
query, especially when combined with acceleration (see Section 5.5 for more information on acceleration).

First, we’ll get into the lab subdirectory:

cd gravwell_training/Search/Lab-Filtering/

Create a new container using the gravwell:base image, upload our lab-specific configuration file, and restart
the container.

docker create --rm --net gravnet -p 8080:80 --name test gravwell:base
docker cp config/gravwell.conf test:/opt/gravwell/etc/gravwell.conf
docker restart test

Now we’ll use the generators image to generate some JSON data; if you don’t have the gravwell:generators
image, see Section 2.5 for instructions on how to load it.

docker run --net gravnet --rm -it gravwell:generators \
/jsonGenerator -clear-conns test:4023 -entry-count 500000

Open your Gravwell GUI (http://localhost:8080) and check that there is a new well named “json” with 500k
entries in it.

Let’s start with a query which chains several modules together to filter in order to get a chart of user activity
for all users that are registered in the country Mexico. We will use the json module to extract the country
and email members, then filter it using the grep module to only look at users that are registered in Mexico
and are using an email address from example.com.

Execute the following query:

tag=json json account.country account.email | grep -e country Mexico |
grep -e email "@example.com" | count | chart count

This query requires that the json module process every single entry, extract the country and email fields, and
pass it to the grep module for filtering. We can verify that the pipeline processed 500,000 entries by clicking
on the stats tab of the query results.

Lab Tasks

1. Adapt this query to use the json module’s inline filtering.

(a) Eliminate both greps.

(b) Compare the time required for the query to using grep.

2. Create a new query that generates a list of all users in the group “myth” and from the country Canada.

3. Adapt the query to generate a count of unique users in the group “myth” for each country sorted by
largest count first.

Note: If your queries do not yield results, review the data or your list of pre-selected values. Adapt the query
to search for a different group or country; it is possible that the generated data may not include a particular
combination of country and group.

To clean up after the experiment, simply run:

docker kill $(docker ps -a -q)

http://localhost:8080

4.6. DATA EXPLORATION 57

4.6 Data Exploration
Gravwell provides several tools to help make sense of data with little or no knowledge of the data itself or of
the Gravwell query language. Broadly, we call these capabilities Data Exploration.

4.6.1 Word Filtering
The most basic form of data exploration is word filtering, in which the user clicks a word within the raw entry
and either includes it or excludes it from the search. For example, if we run the query tag=gravwell, we’ll
see a bunch of textual results. If we move the mouse cursor over the results, individual words are highlighted.
We can click on a highlighted word to bring up a context menu which allows us to include or exclude the
selected word from the search, as seen in Figure 4.7.

Figure 4.7: Highlighting words in text results

Note: In Figure 4.7, the string “search.go” is also highlighted by an actionable (explained in Section 4.17);
the menu item “search.go” contains a sub-menu with the actionable’s actions in it.

If we click “Include search.go:189”, the query will be automatically modified to ‘tag=gravwell words
search.go:189‘. We can then re-run the query to see the new results. We can do this multiple times,
including and excluding words, and the query will continue to update (Figure 4.8).

Note that if we have written a query already, we can still click on words and have them properly inserted
into the query. For instance, if we manually run the query tag=gravwell syslog Appname!=webserver
and then click on the word “flow” in the results, the query will be automatically rewritten to tag=gravwell
words flow | syslog Appname!=webserver.

4.6.2 Field Extraction
The Query Studio (see Section 3.4) also has the ability to parse many data formats and split out individual
fields. For example, a user may run the search tag=gravwell just to see what the raw entries look like.
Clicking the Details Pane icon (Figure 4.9) tells Query Studio to attempt to parse the data and split out
individual fields.

If this is the first time the user is looking at this tag, Gravwell must determine the most appropriate format
for parsing the data. A window will appear presenting several options (Figure 4.10).

In this case, Gravwell believes the data to be syslog-formatted and shows a preview of the first result parsed
as syslog. The user examines this result and, deeming it acceptable, clicks “Select” and saves the selected
extraction.

Now the UI shows the Details Pane at the bottom of the window, with individual fields broken out for easier
reading (Figure 4.11). Note the purple bar on the left side of the raw entry; that indicates which entry is
currently being displayed in the Details Pane.

58 CHAPTER 4. SEARCHING

Figure 4.8: Results filtered by selecting a word

Figure 4.9: Selecting the details pane in Query Studio.

4.6. DATA EXPLORATION 59

Figure 4.10: Selection of possible data extraction format.

60 CHAPTER 4. SEARCHING

Figure 4.11: Viewing details for a single entry.

4.6. DATA EXPLORATION 61

Each entry, when pointed to with the mouse cursor, displays the Details Pane icon in a floating button group.
Clicking that icon will switch the Details Pane over to show the fields of that entry.

Within the extracted fields of the Details Pane, you can click the filter icon and add filters on the given field.
In Figure 4.12, we are adding a filter to exclude any messages where the Appname is “webserver”.

Figure 4.12: Adding a filter.

Selecting the menu option will automatically update the query with a filter on the specified field. Re-run the
query to get the updated results (Figure 4.13). You can then continue in this way, selecting fields from the
Details Pane (or clicking on words in the raw entries, see subsection 4.6.1!) to drill down into precisely the
data you care about.

Figure 4.13: Query with filter inserted.

62 CHAPTER 4. SEARCHING

4.7 Search Modules
Gravwell supports a wide variety of search modules that are designed to perform various functions. Many of
the search modules are used to perform feature extraction such as json, syslog, cef, csv, fields, netflow,
etc. Feature extraction modules transform raw data into structured data so that features can be extracted;
they are also designed to be specification tolerant. This means that the modules will often operate on data
that doesn’t quite fit the spec. The cef and syslog modules are great examples, as there are specs for
syslog (RFC5424) and CEF but almost no one follows them completely, so the extraction modules have to be
tolerant to what is actually out in the wild.

Gravwell also has many analytical modules. These modules perform statistical analysis. Examples of
these are count, sum, mean, stddev, variance, and stats. The analytical modules are great for performing
analysis to identify trends, deviences and abnormalities in very large datasets. Many problems have been
identified simply by counting log entries over time. Other search modules allow for plugging in logic which
can allow for very complicated processing. The eval module allows for arbitrarily complex boolean logic,
and the anko module lets you plug a Turing-complete script into the pipeline. If there isn’t a module that
accomplishes exactly what you want to do, Gravwell makes it possible to drop in your own custom logic via
these modules.

Search modules can also perform feature enrichment. Using the lookup module we can add external
context to data as it goes by (such as assigning a hostname to an IP). The langfind module can use statistical
analysis to infer the language of text. Using Gravwell you might be able to classify users by spoken language
using chat logs, messages, or emails. Gravwell also has modules for complex machine learning tasks; we used
Bayesian inference to generate datasets which classified social media posts as positive or negative (turns out
people are pretty angry on the Internet). The Gravwell pipeline is designed to be pluggable and the available
search modules are always expanding and improving. If you can’t find what you want and aren’t ready to
roll your own using anko, Gravwell may be able to implement the module for you.

4.7.1 Extraction Modules
Extraction modules apply structure to raw entries to extract features. For instance, the syslog module will
look at an entry and attempt to parse it as a Syslog message. If successful, it can extract syslog features such
as the hostname, application name, priority, message, and so on. The netflow module can look at binary
data, parse it as Netflow records, and give you back IP addresses, port numbers, etc.

One important thing to note is that you can attempt to apply any extraction module to any data. You can
use the csv module on Syslog messages, and while that does not usually produce much of value, it can for
instance be a convenient way to parse Palo Alto logs that are wrapped in Syslog: the first “column” ends up
including the entire Syslog header and the first field of the Palo Alto logs, which is always marked as ‘reserved
for future use’. Figure 4.14 shows how the CSV module can extract fields from a Palo Alto syslog entry.

Figure 4.14: Parsing Syslog messages with the csv module.

4.7. SEARCH MODULES 63

Extraction Names and Paths

When an extraction module extracts a feature, it stores the contents of that feature in an enumerated value.
If you say tag=syslog syslog Appname Hostname, the syslog module will extract the application name
and hostname field from each entry and attach them as enumerated values named Appname and Hostname,
respectively.

Some modules, like netflow, have a pre-defined set of which fields can be extracted: no Netflow record will
ever contain any other fields. Thus, netflow Src Dst will work on all Netflow data, and netflow foo will
never work. These pre-defined fields are documented in the Gravwell documentation wiki, and will usually be
“hinted” when you are typing a query into the user interface.

Other modules, like json, deal with self-describing data and can therefore extract arbitrary fields. If an entry
contains the following JSON:

{ "foo": { "bar": 3 } }

Then the invocation json foo.bar will extract an enumerated value named bar containing the number 3.

Other modules, like csv, can extract arbitrary fields, but the data is not self-describing. Consider the
following CSV entry:

webserver,157,shutdown

We can extract the individual fields with csv [0] [1] [2], resulting in the enumerated values shown in
Table 4.3.

E.V. Name Value
0 webserver
1 157
2 shutdown

Table 4.3: Enumerated values from csv module.

Gravwell doesn’t know what those columns represent. However, the user can specify names for the columns
using the as keyword, e.g. csv [0] as component [1] as pid [2] as status. Table 4.4 shows the result.

E.V. Name Value
component webserver
pid 157
status shutdown

Table 4.4: Enumerated values from csv module.

Because it is useful to select your own names for fields, it is typically allowed in all extraction modules:

json foo.bar.baz as MyValue
netflow Protocol Bytes as traffic

4.7.2 Statistics Modules
The statistics modules in Gravwell deserve special mention. They are used in perhaps a majority of queries:
one of the most common questions asked in Gravwell is “how many times did X occur?”. The following
statistical operations are available:

• count: count entries

• sum: sum values and return the total

• total: sum values over a period of time and keep a running total.

64 CHAPTER 4. SEARCHING

• mean: calculate the average

• stddev: calculate the standard deviation

• variance: calculate the variance

• min: return the minimum value seen

• max: return the maximum value seen

• unique_count: return the number of unique instances of the source were seen.

The simplest possible invocation of a stats operation is the following query, which counts the number of
entries in the gravwell tag:

tag=gravwell stats count

You can do two operations at the same time; in the following example, we calculate each entry’s length, then
find the mean entry length and the total number of entries and display them in a table. Figure 4.15 shows the
results of running this query, indicating that out of 12,057 entries, the average entry length was 209.73 bytes.

tag=gravwell length | stats mean(length) count | table

Figure 4.15: Multiple stats operations at once.

Note the syntax mean(length). This tells the stats code to calculate the mean of the length enumerated
value.

Stats operations can be keyed; for example, if you wish to calculate the count of log entries from each
Gravwell component, the component names (“webserver”, “indexer”, “searchagent” etc.) are the keys. Keys
are specified using the by keyword, as seen in the query below, which calculates the count of log entries and
the mean Message length, per Gravwell component. Figure 4.16 shows the results for this query.

tag=gravwell syslog Appname Message | length Message
| stats count by Appname mean(length) by Appname | table Appname count

Bucketing and Condensing

When you’ve run a search using a statistics operation, you will frequently be able to zoom in on the results of
a portion of the results (see Section 4.8.1 for a more detailed explanation), and the results will automatically
update. For instance, consider the following query:

tag=gravwell stats count | table

If we run the query over the last hour, we’ll see results as seen in Figure 4.17. We can then use the mouse to
select a sub-portion of the timeframe graph at the top of the results, as seen in Figure 4.18; note how the
count updates to reflect the count in the portion of time we selected, without re-running the query.

This is possible because the stats code uses bucketing and condensing operations. Basically, when the query
runs, it generates a count for each second–we say it has a 1 second bucket size. However, because we want
to display the full hour’s count in our table, the renderer goes through and sums up all the count buckets
to generate a final value. If you select a subset of the results, it is easy to compute the correct count by

4.7. SEARCH MODULES 65

Figure 4.16: Keyed stats operation.

Figure 4.17: Un-zoomed query.

Figure 4.18: Zoomed query.

66 CHAPTER 4. SEARCHING

summing up only the buckets which fall within the selected timeframe. This same strategy is used for all the
stats operations (we store additional data behind the scenes to accomplish this, e.g. in the case of mean).

If a search is executed over a very long period of time, the default bucket size may be adjusted. Consider that
storing counts for each individual second on a query spanning 10 years would require hundreds of megabytes
of storage!

It is also possible to manually specify a bucket size using the over keyword. Figure 4.19 shows an example of
a chart showing hourly connection counts generated by simply counting the number of Zeek conn logs.

tag=zeekconn stats count over 1h | chart count

Figure 4.19: Using the over keyword.

Sum vs. Total

The sum and total operators behave exactly the same in every context except chart. When using the chart
renderer the total module will not “reset” values across time buckets.

The behavior difference is best demonstrated using the following queries:

tag=zeekconn ax duration
| stats sum(duration) total(duration)
| table sum total

4.7. SEARCH MODULES 67

tag=zeekconn ax duration
| stats sum(duration) total(duration)
| chart sum total

When the sum and total values are viewed in the table renderer (Figure 4.20), the values are the same: the
summed-up/totaled-up duration of connections from Zeek connection logs.

Figure 4.20: Sum and total operations in a table.

However, when viewed as a chart (Figure 4.21), we can see the difference. Each line is composed of dots
representing a fraction of the total time frame. On the sum line, each dot represents the sum for that
particular fraction of time. On the total line, each dot represents the total duration of that slice of time and
all preceding slices. The underlying operations are the same, but total does not “reset” the bucket each time
it transitions to a new time span, where sum does.

Statistics Shorthand Syntax

The sum, mean, max, min, count, variance, and stddev statistics operations can be invoked in “shorthand”
syntax:

tag=* count

tag=gravwell length | mean length
\end{verbatim]

\begin{verbatim}
tag=gravwell syslog Appname | length | mean length by Appname | table Appname mean

Note that stats mean(length) becomes mean length. The shorthand syntax varies slightly from the normal
syntax, because “shorthand” syntax is a compatibility mode remaining from old versions of Gravwell.

It is not possible to invoke multiple stats operations simultaneously using the shorthand syntax. In general,
we recommend using the stats syntax, as it is less ambiguous and more flexible.

68 CHAPTER 4. SEARCHING

Figure 4.21: Sum and total operations in a chart.

4.7. SEARCH MODULES 69

4.7.3 Enrichment Modules
Some modules are designed to take existing data on an entry and enrich it with external data sources. For
example, the geoip module can look an IP address (perhaps extracted via the netflow module) and enrich
the entry with a corresponding location for that IP. A short selection of useful enrichment modules includes:

• filetype: detect the MIME file types of data.

• geoip: look up geographical information for IP addresses.

• langfind: identify the language used in a sample of text.

• lookup: extract arbitrary items from a lookup table based on values in the entry.

• maclookup: look up manufacturer information for MAC addresses.

Two of these modules are particularly useful and deserve additional introduction below.

geoip

The geoip module3 uses MaxMind GeoIP databases to extract location information about IP addresses. It
can extract approximate latitude/longitude as well as city, country, and continent names. It can also extract
ASN numbers and the ASN organization associated with the IP.

The MaxMind GeoIP database is distributed in the Network Enrichment kit, which contains many useful
resources for dealing with network traffic logs. It is a dependency of many other kits, so it may already be
installed on your system.

The geoip module’s syntax is a bit unusual; it most closely resembles the packet extraction module. The
following query uses the packet module to extract the destination IP addresses from packet. It then uses the
geoip module to perform two tasks: first, to keep only those entries where the destination IP is in the US,
and second, to extract a city name for the destination IP. This results in the addition of two enumerated
values, Country and City. Next, it counts how many times each city appears and builds a table. Figure 4.22
shows the results.

tag=pcap packet ipv4.DstIP | geoip -s DstIP.Country == US DstIP.City
| count by City | table City count

Note how to extract the City field for DstIP, we specify DstIP.City. This implies the creation of an output
enumerated value named City, but this can be modified using the as option:

tag=pcap packet ipv4.SrcIP ipv4.DstIP
| geoip DstIP.City as dest SrcIP.City as src | fdg -b src dst

By default, the geoip module looks for a resource named “maxmind” containing the GeoIP database. In order
to extract ASN information, use the -r option:

tag=pcap packet ipv4.SrcIP !~ PRIVATE | geoip -r asn SrcIP.ASNOrg | table

lookup

The lookup module4 is used to enrich entries from a lookup table. The lookup table might be stored in a
resource (Section 4.9) or it might be the result of a compound query (Section 4.18). The contents of one or
more enumerated values are compared against values in one or more lookup table columns until a match is
found, then the values from one or more columns in that row are extracted into new enumerated values on
the entry.

Below is a portion of the dns_types lookup table distributed in the Network Enrichment kit; it maps DNS
record type numeric codes to names and descriptions, e.g. type 1 is an A record:

3https://docs.gravwell.io/#!search/geoip/geoip.md
4https://docs.gravwell.io/#!search/lookup/lookup.md

https://docs.gravwell.io/#!search/geoip/geoip.md
https://docs.gravwell.io/#!search/lookup/lookup.md

70 CHAPTER 4. SEARCHING

Figure 4.22: Enriching and filtering with the geoip module.

TYPE,Value,Meaning,Reference,Template,Registration Date
A,1,a host address,[RFC1035],,
NS,2,an authoritative name server,[RFC1035],,
MD,3,a mail destination (OBSOLETE - use MX),[RFC1035],,
MF,4,a mail forwarder (OBSOLETE - use MX),[RFC1035],,
CNAME,5,the canonical name for an alias,[RFC1035],,

CoreDNS response logs contain a numeric “Rrtype” field indicating the record type of the response:

{"TS":"2022-12-06T10:27:33.214442008-08:00","Proto":"udp","Local":"[::]:53",
"Remote":"18.8.17.9:46910","Question":{"Hdr":{"Name":"porter.gravwell.io.",
"Rrtype":1,"Class":1,"Ttl":65,"Rdlength":4},"A":"208.71.141.34"}}

We can convert that into a more user-friendly name with the lookup module:

tag=dns json -s Question.Hdr.Rrtype | stats count by Rrtype
| lookup -r dns_types Rrtype Value TYPE
| table Rrtype TYPE count

In the query above, we extract the Rrtype field, then count how many times each type appeared. We then
invoke the lookup module with the following arguments:

• -r dns_types tells the module to use the dns_types resource.

• Rrtype is the name of the enumerated value to look at.

• Value is the name of the column in the resource to compare against Rrtype.

• TYPE is the name of the column in the resource to extract when a match is found.

Figure 4.23 shows the results of the query. Note the rows with Rrtype 64 and 65; those values are not in the
resource, because they represent draft record types which have not yet been officially adopted. If we added

4.7. SEARCH MODULES 71

the -s flag to the lookup module’s arguments, those rows would be dropped because the lookup failed.

Figure 4.23: Using the lookup module with DNS data.

It is also possible to compare against multiple columns in the lookup table, and to extract multiple columns
when a match is found. The following lookup table is a portion of the network_services resource distributed
in the Network Enrichment kit. It maps IP protocol numbers and protocol ports to service names; e.g. port
22 on IP protocol 6 (TCP) is SSH.

proto_number,proto_name,service_port,service_name,service_desc
6,tcp,22,ssh,The Secure Shell (SSH) Protocol
17,udp,22,ssh,The Secure Shell (SSH) Protocol
132,sctp,22,ssh,SSH
6,tcp,23,telnet,Telnet
17,udp,23,telnet,Telnet
6,tcp,25,smtp,Simple Mail Transfer
17,udp,25,smtp,Simple Mail Transfer

The following query looks up service names for individual TCP packets. Note the use of square brackets;
[Protocol DstPort] indicates that both the Protocol and DstPort enumerated values should be checked,
and [proto_number service_port] specify the columns to compare against. Order matters: the Protocol
enumerated value will be compared against the proto_number column, and DstPort will be compared to
service_port. The names in parentheses are the values to extract: (service_name service_desc).

tag=pcap packet ipv4.Protocol tcp.DstPort<1024 | stats count by Protocol DstPort
| lookup -r network_services [Protocol DstPort] [proto_number service_port] (service_name service_desc)
| table

72 CHAPTER 4. SEARCHING

Figure 4.24: Matching multiple columns with the lookup module.

4.8. RENDER MODULES 73

4.8 Render Modules
Gravwell provides a selection of render modules to help users display their results in the most comprehensible
manner possible. Render modules are in charge of receiving data from the search module pipeline and
organizing it for display to the user. When possible, the renderers provide a second order temporal index,
which allows the user to move around and zoom in on time spans within the original search. Renderers can
optionally save search results, which can be reopened for later viewing or even passed to another instance
of Gravwell. This is useful for archiving a view of data or saving the results even after the original data is
expired or purposefully deleted.

4.8.1 Temporal vs. Non-Temporal Rendering
In discussing renderers, a distinction should be made between temporal and non-temporal mode. Most
searches will operate in temporal mode, where the entries arrive at the renderer in order of their timestamp.
This allows the renderer to display a timeline at the top of the results; the user can select portions of the
timeline to zoom in on a particular subset of the results, as shown in Figure 4.25

Figure 4.25: Renderer in temporal mode

If, however, the entries are sorted by something other than time, the renderer will enter non-temporal mode,
in which subselection is not possible, as shown in Figure 4.26.

Figure 4.26: Renderer in non-temporal mode

74 CHAPTER 4. SEARCHING

4.8.2 Hands-on Lab: Temporal vs. Non-Temporal Rendering
In this hands-on lab we will use netflow records to identify the top communicating hosts both outbound and
inbound from our network. First, launch a Gravwell container:

docker run --rm --net gravnet -p 8080:80 -d --name gravwell gravwell:base

Next, start the ingester container running the netflow ingester:

docker run --rm --net gravnet --name ingesters -it \
-e GRAVWELL_CLEARTEXT_TARGETS=gravwell:4023 \
gravwell:ingesters /opt/gravwell/bin/gravwell_netflow_capture

The netflow ingester is pre-configured to listen on port 2055 for incoming Netflow v5 records.

Now, we use another Docker container to generate Netflow records and send them to the ingester:

docker run -it --net gravnet --rm \
networkstatic/nflow-generator -t ingesters -p 2055

The netflow generator will run indefinitely, generating flow records, until killed.

Log into the web GUI (http://localhost:8080). We can now search the netflow data. Issue the following
netflow search to convert the binary netflow data into a readable table of information. There are more fields
available to netflow, but for this example we are only going to referring to some of them.

tag=netflow netflow Src Dst Bytes | table

Netflow provides records of communication flows to and from a host. The temporal overview chart shows
bars indicating the presence of netflow records over time. Clicking and drag in this chart to zoom in on a
spike or valley will cause Gravwell to display results within that time range (without re-issuing the search).

For this lab we’re trying to answer the question of which hosts are egressing the most data and which are
ingressing the most.

To answer the egress question, we can apply a filter to our netflow module that specifies non-routable private
IP addresses. We want to sum the number of bytes sent by each private host to a public host.

tag=netflow netflow Src~PRIVATE Dst!~PRIVATE Bytes
| stats sum(Bytes) by Src | sort by sum desc | table Src sum

Observe that adding in the sort by sum desc component removes the overview chart from the top of the
search results screen. This is because the search is now in non-temporal mode–we are sorting results by the
sum, rather than by time.

To see which hosts are accumulating the most ingress traffic, we change the query slightly to invert the
filtering of private address space in the netflow module, tell the stats module to sum by Dst instead of Src,
and finally in table we specify Dst and the sum. Notice that the sort module does not change because it is
operating on the enumerated value sum, which is created by stats regardless of the field being operated on.

tag=netflow netflow Src!~PRIVATE Dst~PRIVATE Bytes
| stats sum(Bytes) by Dst | sort by sum desc | table Dst sum

Note: The ‘sort’ module causes a search to “collapse” and may have performance impacts if used early on in
a search pipeline. It should generally be the last module before the render module, which is ‘table’ during
this lab. See the query optimization section (4.11) for more on this topic.

To clean up after the experiment, simply run:

docker kill $(docker ps -a -q)

http://localhost:8080

4.8. RENDER MODULES 75

4.8.3 Downloading Results
All renderers allow the user to download results in at least one format.

• Table: JSON, CSV, Lookup table (Gravwell native format).

• Raw/Text: JSON, CSV, text.

• Chart: JSON, CSV.

• Pointmap/Heatmap: JSON.

• FDG: JSON, CSV.

• Stackgraph: JSON.

The table renderer’s CSV and lookup table options deserve some extra notes. Downloading a “lookup table”
or CSV file from the table renderer results in a file which can be uploaded to Gravwell again as a resource and
used with the lookup module; this is a convenient way to export a lookup table to another Gravwell system.

4.8.4 Text/Raw Renderers
These renderers provide only the most basic functionality but are useful when doing initial explorations on
data. The text renderer is designed to show human readable entries in a text format, as seen in Figure 4.27.
Any non-printable characters will be converted to the ‘.’ character. Text also fully supports Unicode and can
render non-ASCII characters. Text is the default renderer and is applied if no renderer is specified.

The raw renderer is functionally similar to the text renderer, but does not attempt to modify or change any
non-printable characters. This renderer hands back the raw record, for better or worse. This renderer can be
useful when passing data back to other tools which need the raw values, or when you just want to see if your
browser can take a stab at turning packets into emojis.

These renderers have a default limit of approximately 1000 characters per entry, to prevent accidentally
displaying multiple megabytes of raw data. To increase the maximum length of output add the limit argument,
e.g. text limit 2048 to display up to 2048 characters.

Hovering the mouse over an entry in the GUI when using either the text or raw renderer brings up a context
menu with two options, as shown in Figure 4.28.

The right-most icon shows the built-in fields and any enumerated values on the entry, as seen in Figure
4.29. The star icon allows you to highlight particular entries; highlighted entries can be viewed later in the
“Highlights” tab at the bottom of the page, as seen in Figure 4.30.

76 CHAPTER 4. SEARCHING

Figure 4.27: Text renderer entries view

Figure 4.28: Text renderer context menu

4.8. RENDER MODULES 77

Figure 4.29: Text renderer enumerated values view

Figure 4.30: Text renderer highlight view

78 CHAPTER 4. SEARCHING

4.8.5 Table Renderer
The table renderer is used to create tables. The renderer’s arguments specify which columns should be shown
in the table. Arguments must be enumerated values, “DATA”, “TAG”, “TIMESTAMP”, or “SRC”.

Specifying no column arguments causes table to display all enumerated values as columns instead; this is
useful for exploration.

Supported Options

• -save <destination>: save the resulting table as a resource for the lookup module. This is a useful
way to save the results of one search (say, extracting a MAC→IP mapping from DHCP logs) and use it
in later searches.

• -nt: Put the table into non-temporal mode. This causes upstream math modules to condense results
rather than having table do it. This can seriously speed up searches over large quantities of data when
temporal sub-selection is not needed.

Basic table use

Extract a few elements from a Netflow record, then have table automatically display them:

tag=netflow netflow Src Dst SrcPort DstPort | table

Find failed SSH login attempts and count how many attempts were made for each username (Figure 4.31):

tag=syslog grep sshd
| regex "invalid user (?P<username>\S+)"
| stats count by username
| table username count

Figure 4.31: Failed SSH login table

Using the -save option

Use DHCP logs to build a lookup table containing IP to MAC mappings:

4.8. RENDER MODULES 79

tag=syslog regex "DHCPACK on (?P<ip>\S+) to (?P<mac>\S+)"
| unique ip mac | table -save ip2mac ip mac

Then use the lookup table to find the MACs associated with SSH logins (results in Figure 4.32):

tag=syslog grep sshd
| regex "Accepted .* for (?P<user>\S+) from (?P<ip>\S+)"
| lookup -r ip2mac ip ip mac as mac |table user ip mac

Figure 4.32: SSH login MAC addresses

Refer to the Automation chapter for a detailed description of how the -save flag can be used to automatically
maintain lookup tables such as this.

Using the -nt option

In a situation with massive quantities of data, this flag will force table into non-temporal mode, making the
count module condense results instead of table:

tag=jsonlogs json source | count by source | table -nt source count

80 CHAPTER 4. SEARCHING

4.8.6 Chart Renderer
The chart renderer is used display aggregate results such as trends, quantities, counts, and other numerical
data. Charting will plot an enumerated value with an optional “by” parameter. For example, if there are
counts associated with names, chart count by name will chart a line for each name showing the counts over
time. The charting renderer will automatically limit the plotted lines or bar groups to 8 values. If you would
like to see many more lines you can add the limit <n> argument, which tells the charting library to not
introduce the “other” grouping until it exceeds the given limit of n values. The user interface for charting
allows for a rapid transition between line, area, bar, pie, and donut charts.

The following query generates a chart showing the most common invalid usernames seen on incoming SSH
connections–indicators of brute-forcing:

tag=syslog grep sshd
| regex "invalid user (?P<username>\S+)"
| stats count by username
| chart count by username limit 10

The “other” data group is a combined calculation of all remaining data sets that will not fit within the chart
limit. In the example, we have instructed chart to only draw 10 groups by using the limit 10 argument.
This means that the chart module will first survey the data as it comes in to pick the 9 best data sets
to include and then will add all other data sets to the “other” bucket. Chart calculates the value of the
“other” data group using the exact same math as the rendered data sets, often leading to the “other” group
dominating the output of a chart.

The results can be rendered in a variety of ways. By default, the UI will show a line chart (Figure 4.33), but
the gear icon on the right side allows you to select a variety of chart types, including pie charts (Figure 4.34).

Figure 4.33: Line chart

Notice that the “other” group represents the largest slice in the pie chart, indicating that the vast majority

4.8. RENDER MODULES 81

Figure 4.34: Pie chart

of usernames are not in the primary data series. To hide a group in the chart results, click its name in the
legend at the top of the chart; this can be a useful way to amplify the “signal” above the “noise” of the
“other” group.

Connect Null Values Setting

The “Connect null values” setting is used in line charts. By default, only data points which are very close
together will be “connected”, meaning that sparser data may end up looking like a collection of disconnected
dots, as seen in Figure 4.35. Enabling this setting forces the renderer to join up the dots, as shown in Figure
4.36.

82 CHAPTER 4. SEARCHING

Figure 4.35: Line chart with “Connect null values” off.

Figure 4.36: Line chart with “Connect null values” on.

4.8. RENDER MODULES 83

4.8.7 Mapping Modules
The pointmap and heatmap renderer modules translate search results onto a map. Both place entries on the
map based on locations in enumerated values. By default, the modules look for an enumerated value called
’Location’, as set by the geoip search module. Locations can also be specified explicitly using the following:

• -loc <enumerated value> tells the module to look for a location in the specified enumerated value,
rather than the default Location.

• -lat <enumerated value> -long <enumerated value> tells the module to look for the latitude and
longitude values separately. These can be floating point numbers (as delivered by the geoip module) or
strings from another source.

The map will display a maximum of 1000 points. It is geofenced, meaning that zooming in on one portion of
the map will display up to 1000 points within that area.

Pointmap

Pointmap translates entries into distinct markers on the map. If additional enumerated value names are
specified, their contents will be displayed when a point is clicked.

The following search displays a map of all IP addresses which connected to the SSH service, as seen in Figure
4.37.

tag=syslog grep sshd | regex "Connection from (?P<ip>\S+) port"
| geoip ip.Location | pointmap ip

Figure 4.37: Pointmap IP locations

We can also use the geoip module to look up an IP address’s ASN organization. Any enumerated values
passed to the pointmap renderer can be viewed by clicking on a point, as seen in Figure 4.38

tag=syslog grep sshd
| regex "Connection from (?P<ip>\S+) port"
| geoip ip.Location

84 CHAPTER 4. SEARCHING

| geoip -r asn_db ip.ASNOrg
| pointmap ip ASNOrg

Figure 4.38: Pointmap with additional enumerated values

Heatmap

Heatmap operates similarly to pointmap, but it takes 0 or 1 additional enumerated values as arguments. If
no enumerated value argument is given, it generates a heat map using the number of entries for each location
as the ’heat’. In this example using IPFIX records, the ’heat’ represents the number of connections from a
location, as seen in Figure 4.39.

tag=ipfix ipfix ip!~PRIVATE
| geoip ip.Lat ip.Long
| heatmap -lat Lat -long Long

If we add the total number of bytes as an argument, the ’heat’ is derived from the number of bytes sent over
the connection, rather than the number of connections, as shown in Figure 4.40.

tag=ipfix ipfix ip!~PRIVATE bytes
| stats sum(bytes) by ip
| geoip ip.Location
| heatmap sum

4.8. RENDER MODULES 85

Figure 4.39: Basic heatmap use

Figure 4.40: Heatmap using byte count as “heat”

86 CHAPTER 4. SEARCHING

4.8.8 Stackgraph Renderer
The stackgraph renderer is used to display horizontal bar graphs with stacked data points. A stackgraph is
useful in displaying the magnitude of results that are accumulated from multiple components across a set
of tags. The stackgraph renderer is an accumulator, meaning that it can interpret the operation of some
upstream search modules and recalculate the results based on sub selections. In Gravwell terms, stackgraph
supports second order searching and selection.

Stackgraph invocation requires three arguments which must be the names of enumerated values extracted by
upstream search components. Argument one specifies the enumerated value which names each individual
horizontal bar, for example an IP address. Argument two specifies the enumerated value which gives the
individual components of each horizontal bar, for example a TCP port. Argument three is the magnitude
value which represents the magnitude component of each stack value within a horizontal bar. Example
magnitude components are count, sum, stddev, sum, max, and min. The easiest way to understand these
arguments is by examining the examples below.

Note: Sorting data before sending it to stackgraph is unlikely to achieve the desired outcome. If you had a
count of IP→port pairs and were interested in sorting based on that count and then sending to a stackgraph
(e.g. count by SrcIP,DstPort | sort by count desc | table SrcIP DstPort count), then the first
item in the list might be a port that has a very high count but only for one IP. For example, say port IP
10.0.0.1 spoke on port 443 with count 10000 but the next 8 entries are 8 different IPs all using port 80 with
counts in the 9000 range, they will dwarf port 443 on the graph.

Stackgraph Example: Traffic Volumes by IP & Port

The following query will generate a stackgraph in which each bar respresents a single IP address, with
components inside each bar representing the number of bytes sent to different TCP or UDP ports. See Figure
4.41 for a sample of the output.

tag=ipfix ipfix src ~ PRIVATE port < 1024 bytes
| stats sum(bytes) by src port
| stackgraph src port sum

Stackgraph Example: Failed SSH Logins by Country & User

This query will generate a stackgraph in which each bar represents a country and the components of the bars
indicate the number of connections to a given port, based on IPFIX logs. Figure 4.42 shows the results.

tag=ipfix ipfix ip!~PRIVATE port < 1024
| geoip ip.Country
| stats count by port Country
| require Country
| stackgraph Country port count

4.8. RENDER MODULES 87

Figure 4.41: Stackgraph of traffic volumes by IP & Port

Figure 4.42: Stackgraph of connection count by country & port

88 CHAPTER 4. SEARCHING

4.8.9 Force-Directed Graph Renderer
The force-directed graph (fdg) module is used to generate a directed graph using node pairs and optional
grouping. The fdg module accepts source and destination groups as well as a weight value for the resulting
edge.

Supported Options

• -b: Indicates that edges are bidirectional, meaning that the pair [A, B] is equivalent to [B, A].

• -v <enumerated value>: Indicates that edges should be weighted as a sum of the provided enumerated
value. The -v flag is useful in generating directed graphs where edges have weights represented by
something other than a raw count.

• -sg <enumerated value>: Provides a group to apply to a source value which is used for coloring a
graph. For example a source group may be a subnet for an IP which enables nodes in a graph to be
grouped.

• -dg <enumerated value>: Same as -sg, but grouping based on destination parameter.

Examples

Use of the fdg module is easier to demonstrate than to explain. One example where a force directed graph
can prove useful is to identify relationships between addresses on a network. Generating a weighted force
directed graph of IPV4 traffic while grouping nodes into a class C network can be accomplished with the
following query, as shown in Figure 4.43.

tag=pcap packet ipv4.SrcIP ipv4.DstIP ipv4.Length
| sum Length by SrcIP,DstIP
| subnet -t SrcSub SrcIP /24
| subnet -t DstSub DstIP /24
| fdg -v sum -sg SrcSub -dg DstSub SrcIP DstIP

Figure 4.43: FDG of traffic between class C networks

4.8. RENDER MODULES 89

Hovering the mouse over a node shows its label and the labels of its neighbors, as in Figure 4.44.

Figure 4.44: FDG context popup

90 CHAPTER 4. SEARCHING

4.9 Resources
Resources are persistent data objects which can be used in search queries. Resources can be manually
uploaded by a user or automatically created by search modules. Resources are used by the lookup module to
store lookup tables and by the anko module to store scripts.

The format of a resource is not restricted; from the point of view of Gravwell, a resource is simply a stream
of bytes. Deriving meaning from that stream of bytes is up to the search modules: lookup expects data in a
particular binary encoding, while anko simply treats the resource as a text file. Scripts written for the anko
module may themselves create and access resources in a variety of formats, such as JSON-encoded text.

4.9.1 Resource Basics
Every resource is uniquely identified with a GUID, which is assigned when the resource is created. Resources
also have a human-friendly name selected by the user. A resource can be accessed by specifying either the
GUID or the name, but be aware that names can be changed. When building a dashboard or a search query
you intend to share with others, we recommend using the GUID to refer to the resource.

Global resources are resources created by admin-level users for access by all users. Resources can also be
shared with particular groups.

Resource data can be generated by hand or by running a search. For example, a search that results in a table
display can be downloaded in the “lookupdata” format and uploaded into the resource system.

4.9.2 Resource name resolution
The resource system does not enforce unique resource names. Multiple users can have a resource named
“foo”, or indeed one user can own multiple resources named “foo”. It is therefore important to be aware of the
way the resource system resolves resource names into unique GUIDs.

Consider an example invocation of an anko script in a search: anko myscript. The resource manager will
attempt to locate a resource named “myscript” in the following order:

• Check if the invoking user has a resource named “myscript”; if he or she has multiple resources with
that name, it will return the first match.

• Check each group to which the user belongs. If there is a resource named “myscript” shared with one
of the user’s groups, it will return that resource.

• Check if there is a global resource named “myscript”.

Note that the user could be a member of groups A and B, and that there could be one resource named
myscript shared with group A and another unique resource named myscript shared with group B; which
resource is returned is not certain. Similarly, if there are multiple global resources named myscript, any one
of them could be returned.

This ambiguity can be overcome in two ways. The safest choice is to specify the resource as a GUID, which
can be found in the resource management page, but GUIDs are very unwieldy and provide little useful context
to the user. Luckily, it is also possible to select a resource by name with more precision by prefixing the
resource name with a namespace. The following are valid namespace selections:

• GLOBAL:myscript specifies a global resource named myscript. This will ignore any resources owned by
the invoking user and go straight to the global resources.

• user=jfloren:myscript specifies a resource named myscript belonging to the user jfloren. Note that
this will fail if the invoking user does not have access to this resource.

• group=security:myscript specifies a resource named myscript which is shared to the group “security”.
Note that this will fail if the invoking user is not a member of the “security” group.

4.9. RESOURCES 91

4.9.3 Managing resources with the GUI
Resources are managed via a page accessible from the main menu of the user interface. Open the menu and
select "Resources" (Figure 4.45).

Figure 4.45: Resources management page

Resources can be created and deleted from this menu.

Deleting resources

To delete an existing resource, click the trash can icon next to the desired resource in the list.

Creating resources

To create a new resource, select the "Add" button in the upper right. This will open a dialog window, as
shown in Figure 4.46. Set the resource name and description as desired and select any groups which should be
able to read the resource, then select a file to upload. Note that the resource will not be created or uploaded
unless the ’Save’ button is clicked!

Editing resources

To edit an existing resource, click the pencil "Edit" icon below the desired resource in the resource list. This
will open the resource editing screen as shown in Figure 4.47.

The name, description, and group sharing can all be managed from this screen. Admin users can also choose
to make a resource global or non-global.

To change the actual contents of the resource, drag a file into the grey ’File’ region or click to select a new
file, exactly as when creating a new resource. Note that the Version, Hash, Size, and Last Modified fields
change when a different file is uploaded.

92 CHAPTER 4. SEARCHING

Figure 4.46: New resource dialog

Figure 4.47: Resource editing dialog

4.9. RESOURCES 93

4.9.4 Hands-on Lab: Enriching Netflow with GeoIP
This lab will demonstrate how resources can be used to enrich entries in the pipeline. We will use the geoip
module to add location information based on the source IP of each flow, then show those flows on a map.

First, launch a Gravwell webserver+indexer container:

docker run --rm --net gravnet -p 8080:80 -d --name gravwell gravwell:base

Next, start the ingester container running the netflow ingester:

docker run --rm -d --net gravnet --name ingesters \
-e GRAVWELL_CLEARTEXT_TARGETS=gravwell:4023 \
gravwell:ingesters /opt/gravwell/bin/gravwell_netflow_capture

The netflow ingester is pre-configured to listen on port 2055 for incoming Netflow v5 records.

Now, we use another Docker container to generate Netflow records and send them to the ingester:

docker run -it --net gravnet --rm \
networkstatic/nflow-generator -t ingesters -p 2055

The netflow generator will run indefinitely, generating flow records, until killed.

Now, we will install a kit (Chapter 9) which contains the MaxMind GeoIP database. In the main menu,
expand the “Kits” section, then click “Kit Management”. This will open a list of currently-installed kits; if
you see “Network Enrichment” in the list, you may skip on to the next step. If not, click “Available Kits” at
the top of the page, then find the Network Enrichment kit and click the deploy icon, as seen in Figure 4.48.
This will launch a kit deployment wizard; click through and install the kit.

Figure 4.48: Installing the Network Enrichment kit.

With the kit installed, run the following query:

tag=netflow netflow Src | ip Src !~ PRIVATE
| geoip -r maxmind Src.Location | pointmap Src

This search pulls all entries tagged “netflow” and hands them to the netflow module, which extracts the Src
field. The ip module is used to eliminate Src IPs in private subnets. The geoip module then uses the resource
named “maxmind” to look up the Location for each Src IP address. Finally, the pointmap renderer draws
each location on a map, as seen in Figure 4.49.

To clean up after the experiment, simply run:

docker kill $(docker ps -a -q)

94 CHAPTER 4. SEARCHING

Figure 4.49: Netflow source IP pointmap

4.10. DATA FUSION 95

4.10 Data Fusion
The Gravwell query pipeline supports what we call module interleaving, which is basically the ability to
specify that a given module should only process specific tags. This allows Gravwell to operate on multiple
data formats at once and optionally fuse the results into a single cohesive data stream, essentially data fusion.
Data fusion can be used to enrich one data stream from another, provide unified visibility across multiple
data sources, or generate a single view for an operator that fuses many different data sources.

Tags form the basis of data control in the Gravwell pipeline. Previously we have only shown tags being used
to control what data enters the pipeline. However, we can also add tag specifications to individual modules
and to inform them that they should only process entries with those specific tags. Any entries that do not
match the specified tags are passed through untouched. This is what we call data fusion.

Most data fusion queries are broken into three sections. The first section is the extraction phase where we use
the data bypass and additional tag specifications to target modules against specific data types, for example
we might have an unstructured log and JSON data. We use the tags to invoke the json module against the
JSON data and the regex module against the unstructured data. The next section of a fusion query might
use one data source to enrich or pivot on the other, potentially creating a running lookup system that adds
additional enumerated values to one tag but derived from the other. The final section tends to look like
regular search pipelines, using the data fused data without targeting any particular tag.

The following diagram shows what a data fusing query might look like. We have two data sources coming in,
let’s call them tag RED and tag BLUE. There are three modules that have been instructed to only operate
on either RED or BLUE data, then there is a fusing module (orange) that uses the RED and BLUE data to
create a single data stream with both data types fused. The final search module performs some standard
operation on all entries before sending the data on to the renderer.

Figure 4.50: Data fusion notional pipeline

Let’s look at an example query that represents this diagram. We have color coded the search module
statements to help associate them with the diagram:

tag=RED,BLUE tag=BLUE json X Y
| tag=RED regex “(?P\S+)\s(?P<X>\S+)\s”
| tag=BLUE regex -e X “[\̂.]+\.(?P.+)”
| stats sum(X) variance(Y) by B
| sort by sum desc
| table sum variance B

Data fusion queries that perform enrichment can use the fuse module in order to save enumerated values
from one entry and attach them to another. Here is a less abstract query which uses dhcp (blue) logs to
enrich dns (red) logs with MAC addresses:

tag=dns,dhcp tag=dhcp json mac ip
| tag=dns csv [0] as ip [1] as hostname
| fuse ip mac
| require -s hostname ip mac
| table hostname ip mac

96 CHAPTER 4. SEARCHING

This query looks daunting, but it is not terribly complicated. We have the dhcp and dns data streams coming
in; in this case, we assume the DHCP logs are in a JSON format and the DNS records are CSV and use
the appropriate modules to extract the enumerated values ‘mac’ and ‘ip’ from the DHCP logs, and ‘ip’ and
‘hostname’ from the DNS logs.

We then invoke the fuse module. When it receives a dhcp entry, it sees that the ‘mac’ enumerated value
is set, so it stores the MAC address in a lookup table using the ‘ip’ as a key. When it sees a dns entry, it
observes that there is no ‘mac’ enumerated value, so it checks the table to see if there is anything stored
under the given ‘ip’; if so, it sets the ‘mac’ enumerated value on the entry.

Consider these two example entries:

• Entry 1: "mac": "00:11:22:33:44:55", "ip": "192.168.0.1"

TAG = “dhcp”

mac = “00:11:22:33:44:55”

ip = “192.168.0.1”

• Entry 2: 192.168.0.1,gravwell.example.org

TAG = “dns”

ip = “192.168.0.1”

hostname = “gravwell.example.org”

When the fuse module sees Entry 1, it will store a mapping of 192.168.0.1 → 00:11:22:33:44:55. When
it then sees Entry 2, it will observer that there is no ‘mac’ enumerated value set; it will therefore check its
lookup table for anything stored with the key 192.168.0.1. It finds the mapping stored from Entry 1 and
thus creates an enumerated value on Entry 2, ‘mac’ = “00:11:22:33:44:55”.

The require module simply serves to filter out any entries which were not able to be enriched, dropping any
entry which does not have hostname, ip, and mac enumerated values on it.

4.10. DATA FUSION 97

4.10.1 Hands-on Lab: Data Fusion
For this lab we are going to be fusing data from three different sources: dhcp server logs and switch logs.
The end result will be a single table that shows computers with their MAC address, IP address, hostname,
and switch port. An admin can use this query to identify a machine by name and see the switch port is
connected to, all in a single query. Let’s start by ingesting our dataset and building extractions that pull the
appropriate data from each tag. We will be using the tags “dhcp” and “switch”.

Note that this lab is one of the most challenging in this training document. It makes use of the powerful
but complex regex5 and fuse6 modules. We recommend carefully reading the examples shown in the lab
instructions and those in the preceding section; these should demonstrate any necessary invocations of the
modules. We also recommend using https://regex101.com/ to help build and test regular expressions if
needed.

First, we’ll start the Gravwell container:

docker run --rm --net gravnet -p 8080:80 -d --name gravwell gravwell:base

Then we’ll ingest the data, found in the gravwell_training/Search/Lab-Fusion subdirectory:

cd ~/gravwell_training/Search/Lab-Fusion

docker run -v $PWD/data:/tmp/data --rm -i --net gravnet \
gravwell:ingesters /opt/gravwell/bin/reimport -rebase-timestamp \
-clear-conns gravwell:4023 -i /tmp/data/dhcp.json.gz -import-format json

docker run -v $PWD/data:/tmp/data --rm -i --net gravnet \
gravwell:ingesters /opt/gravwell/bin/reimport -rebase-timestamp \
-clear-conns gravwell:4023 -i /tmp/data/switch.json.gz -import-format json

Let’s look at the switch tag first. Here is an example entry:

<135>2019-03-22 20:20:24 192.168.0.100 71565 The switch has learned a new
MAC address 50:2e:5c:e5:46:0b, vid:1024, interface:port 13

We want to extract the MAC address (50:2e:5c:e5:46:0b) and switch port (13). Let’s use the following regular
expression:

(?P<mac>[\da-f:]+),\s\S+\sinterface:port\s(?P<port>\d+)

Test your regular expression by running the query:

tag=switch grep "new MAC address"
| regex "(?P<mac>[\da-f:]+),\s\S+\sinterface:port\s(?P<port>\d+)"
| table mac port

Next let’s extract our hostnames from the DHCP log. Here is an example entry where a client ACKs a DHCP
lease; it contains the hostname, IP, and MAC address:

<30>1 2019-07-08T23:59:22.417203-06:00 router dhcpd 12365 - -
DHCPACK on 10.10.10.10 to e8:94:f6:1a:2b:c5 (keg) via insecure

Let’s use the following regular expression to extract the IP, MAC, and potentially a hostname:

\s(?P<ip>[\d\.]+) to (?P<mac>[\da-f:]+)(\s\((?P<host>\S+)\))?

Test the regular expression with:

tag=dhcp grep "ACK on "
| regex "\s(?P<ip>[\d\.]+) to (?P<mac>[\da-f:]+)(\s\((?P<host>\S+)\))?"
| table mac ip host

5https://docs.gravwell.io/#!search/regex/regex.md
6https://docs.gravwell.io/#!search/fuse/fuse.md

https://regex101.com/
https://docs.gravwell.io/#!search/regex/regex.md
https://docs.gravwell.io/#!search/fuse/fuse.md

98 CHAPTER 4. SEARCHING

We now have the ability to extract all the relevant pieces from our tags, let’s start combining them starting
with the switch and dhcp tags. Let’s look at a query that uses both tags to create a single data stream with
ip, mac address, and switch port:

tag=switch,dhcp
tag=switch grep "new MAC address"
| tag=dhcp grep "ACK on "
| tag=dhcp regex "\s(?P<ip>[\d\.]+) to (?P<mac>[\da-f:]+)(\s\((?P<host>\S+)\))?"
| tag=switch regex "(?P<mac>[\da-f:]+),\s\S+\sinterface:port\s(?P<port>\d+)"
| table mac host port TAG

This should create a table that shows the extracted values for each tag. Now let’s use eval to enrich the dhcp
logs with the switch logs:

tag=switch,dhcp tag=switch grep "new MAC address"
| tag=dhcp grep "ACK on "
| tag=dhcp regex "\s(?P<ip>[\d\.]+) to (?P<mac>[\da-f:]+)(\s\((?P<host>\S+)\))?"
| tag=switch regex "(?P<mac>[\da-f:]+),\s\S+\sinterface:port\s(?P<port>\d+)"
| sort by time asc
| fuse mac port
| require host
| unique mac host port
| table mac host port

The fuse module in this case will store the port values from the switch logs and set them on dhcp logs with
matching MAC addresses. The require module drops all entries which lack the ‘host’ enumerated value,
which means all switch logs will be dropped. We then find all unique combinations of mac, host, and port,
then generate a table.

Make note of the additional sort by time asc search module. Gravwell loosely orders data by time when
executing queries, but correlations like DHCP and switch actions are operating on data where microseconds
matter, so it is important to strictly order the data by time in the pipeline such that the switch logs properly
occur before the DHCP logs. This way a MAC address from the DHCP log can be looked up against a MAC
address from the switch log.

The resulting table (Figure 4.51) is pretty useful for keeping an eye on what devices are on your network.
Note that some MAC addresses don’t have a hostname associated with them; those are devices we may want
to investigate!

Lab Tasks

1. Try adapting the query to also extract the vlan id (vid) from the switch logs and add it to the table.

Hint: Look at the documentation for the fuse module to find out how to fuse multiple things!

2. Generate an FDG with host to vid

3. Can you find any hosts on more than one vlan?

Lab Questions

1. When would data fusion enrichment make more sense than creating a resource and using lookup?

2. When would data fusion not work

3. How would you combine the two methods to get “the best of both worlds”?

To clean up after the experiment, simply run:

docker kill $(docker ps -a -q)

4.10. DATA FUSION 99

Figure 4.51: MAC / Hostname / Switch Port table

100 CHAPTER 4. SEARCHING

4.11 Query Optimization
The Gravwell query pipeline is very powerful. Searches are distributed to all nodes in the cluster, who
intelligently share the load in order to maximize computing resources at top efficiency. It is possible, however,
to issue searches in a way that degrades or hampers this. This section describes module ordering, condensing
modules, and filtering and how to avoid common pitfalls.

For purposes of discussion, we are going to break modules down into three categories: parsers, operators, and
condensers. Render modules are not a consideration when it comes to optimization, as they are always the
final module in a pipeline.

4.11.1 Parsing modules
A parsing module is one that performs field extraction over a data entry. Typically, these modules are
slower than operating modules as they usually read and process the entire data entry and create enumerated
values for any given fields. The json module, as an example, will parse an entire JSON record and create
enumerated values as directed.

For example, say we had some very large JSON entry that looked like:

{ ‘field1’: ‘a’, ‘field2’: ‘aa’, ‘field3’: ‘aaa’, ‘field4’: ‘aaaa’,
... ‘field8000’: ‘aaaaaaaaaaaaaaaaaa....}

If we ran a search like json field2 field488 field8000, the json module would have to read and parse
the entirety of the record. Gravwell distributes these parsing modules to every indexer in the cluster and
these are run very close to the data.

4.11.2 Parsing modules and Accelerators
Accelerators are covered in Section 5.5 and in the online Gravwell documentation, but they should be
mentioned when discussing query optimization. When turned on, they provide very powerful filtering
speedups using our hybrid indexing technology. Invocation of those accelerators occurs in the parsing modules.
In the case of no accelerators being present, filtering arguments that are provided in parsing modules are
invoked after the parsing has occurred.

Using the above example, if we had accelerators turned on for “field3” and issued a search like: json
field3=="foo", this would invoke the accelerator framework to perform filtering before parsing of JSON is
necessary. In this case, that parsing was done ahead of time by the accelerator and an index was created for
rapid lookup.

In general, it is desirable to do field-based filtering in the parsing module, as it can engage acceleration if
available.

4.11.3 Operator modules
For purposes of discussing optimization, operator modules are the common ‘bread and butter’ search modules
available for the Gravwell search pipeline. They run in parallel close to source data (i.e. on the indexers).
These modules are what do the filtering, extracting, enriching, and other analysis to be used further down
the pipeline.

Note: Operator modules in pipeline after a condensing module will execute in series on the Gravwell webserver
frontend.

4.11.4 Condenser modules
Condensing modules are those modules which require all of the data to be present. These modules trigger
a collapse of the pipeline from a parallel series running on the indexers to a single pipeline running on the

4.11. QUERY OPTIMIZATION 101

Gravwell webserver. These are the modules that do counting, sum fields, strip non-unique values, etc. They
require the entirety of data to be present in order to provide accurate results.

These modules are all of the math modules(count, sum, max, etc), stats, anko, and eval.

Let’s use the query json field1 | stats max(field1) as an example where we are looking to find the
maximum value of field1 in our data. When a collapse occurs, the indexers perform the analysis on what
data they possess first, and then send the data to the Gravwell webserver to be aggregated in total.

Any modules following a condensing module will then be operating in series on the webserver, not in parallel
on the indexers.

https://docs.gravwell.io/#!search/math/math.md
https://docs.gravwell.io/#!search/stats/stats.md
https://docs.gravwell.io/#!search/anko/anko.md
https://docs.gravwell.io/#!search/eval/eval.md

102 CHAPTER 4. SEARCHING

4.11.5 Hands-on Lab: Optimizing Queries
Let’s look at a few searches that all accomplishing the same end results of filtering and analyzing some JSON
data. We will execute these queries within the lab docker environments, but the differences won’t be as
noticeable on such a small scale. For any Gravwell deployment with significant data or node count, however,
the knowledge in this section is invaluable.

We need to fire up the base Gravwell container and then the ingesters container to generate some sample
JSON entries:

docker run --rm --net gravnet -p 8080:80 -d --name gravwell gravwell:base

docker run --net gravnet --rm -it --name jsoningesters gravwell:ingesters\
/opt/gravwell/bin/jsonGenerator -clear-conns gravwell:4023 -entry-count 100000

Let’s begin by examining the data:

tag=json

Here is an example of the data we’re looking at:

{
"time":"2022-06-09T13:03:36Z",
"account":{

"user":"jacobbrown802",
"name":"Jacob Jones",
"email":"jacobbrown802@example.org",
"phone":"+850 169 94 122 338",
"address":"58 Adams Circle, Ransom Canyon, PW, 97213",
"state":"AZ",
"country":"Netherlands Antilles"},

"class":43294,
"groups":["mouse","falcon"],
"user_agent":"Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like Gecko",
"ip":"102.115.187.35",
"data":"One dog rolled before him, well-nigh slashed in half; but a second had him by

the thigh, a third gripped his collar be- hind, and a fourth had the blade of the
sword between its teeth, tasting its own blood."

↪→

↪→

}

The data generated is random. To complete this lab, examine the entries and make note of values found for
user_agent, groups, and some random words found in data. For example, in our sample entry above, we may
note the following:

• user_agent

"Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like Gecko"

• groups

"mouse"

"falcon"

• random words found in data

"dog"

"collar"

"sword"

4.11. QUERY OPTIMIZATION 103

In the searches below, make replacements using your pre-selected values.

Let’s start with the base search that’s looking to see how many entries for each group except ’mouse’ have a
specific user agent we are investigating and are not talking about a dog.

tag=json json -x groups groups account.user account.email ip data class user_agent
| eval user_agent=="Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like Gecko"
| grep -e data -v "[dD]og" | stats count by groups | grep -v -e groups "mouse" | table

groups count↪→

That query invokes a parsing module and then immediately condenses with an eval module that’s inefficiently
being used to match the user agent. We can improve this query by moving the user agent match into the
parsing module:

tag=json json -x groups groups account.user account.email ip data class
user_agent=="Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like Gecko"
| grep -e data -v "[dD]og" | stats count by groups | grep -v -e groups "mouse" | table

groups count↪→

This query is also performing the check to remove the ’mouse’ group after the pipeline has condensed. This
filtering can also be moved into the parser module:

tag=json json -x groups groups!="mouse" account.user account.email ip data class
user_agent=="Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like Gecko"
| grep -e data -v "[dD]og" | stats count by groups | table groups count

This is looking a lot better but, depending on whether or not we have accelerators enabled for the various
fields of this data, we can possibly improve the query even further. If accelerators are NOT enabled, it is
actually more performant to do basic matching before the parsing module. The grep module is the fastest
filtering module in the Gravwell pipeline when operating on the raw data entries. Let’s improve further:

tag=json grep "Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like Gecko"
| json -x groups groups!="mouse" account.user account.email ip data class user_agent
| grep -e data -v "[dD]og" | stats count by groups | table groups count

We have optimized the query but beware, as this query now has potential to produce unintended results.
If the data section of these log entries were to contain this user_agent string (perhaps a user is posting
a message requesting technical support), then that entry would match the initial grep despite having an
incorrect user agent. Thus, to further optimize for performance (and not for query length), we can put the
filter back in the parsing module to ensure correctness of results:

tag=json grep "Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like Gecko"
| json -x groups groups!="mouse" account.user account.email ip data class
user_agent=="Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0) like Gecko"
| grep -e data -v "[dD]og" | stats count by groups | table groups count

Something to keep in mind is that if accelerators are enabled, then the initial grep would be a detriment to
performance. See section 5.5 for additional details on query acceleration.

As an exercise, try and sort the above queries from worst to best by writing numbers in the margins. On the
left margin, put the number ranking in a scenario where accelerators are disabled. On the right margin, put
the number ranking where they are enabled.

To clean up after the experiment, simply run:

docker kill $(docker ps -a -q)

104 CHAPTER 4. SEARCHING

4.12 Auto-extractors
Gravwell enables per-tag extraction definitions that can ease the complexity of interacting with unstructured
data and data formats that are not self-describing. Unstructured data often requires complicated regular
expressions or slice specifications to extract desired data fields, which can be time-consuming to produce and
prone to errors.

Auto-extractors are simply definitions that can be applied to tags which describe how to correctly extract
fields from the data in a given tag. The "ax" module then automatically invokes the appropriate functionality
of other modules. The auto-extractor system supports the following extraction methods:

• CSV
• Fields
• Regex
• Slice
• KV
• Syslog
• JSON
• Grok
• CEF

Auto-extractor definitions are used by the ax module which transparently references the correct extraction
based on tags.

Note that only a single extraction can be defined per tag per user. Also note that auto-extractors always
operate on the full underlying data of an entry. They cannot be used to perform extractions on Enumerated
Values (the "-e" argument is disallowed)

4.12.1 Auto-Extractor Configuration
Every auto-extractor can define the following parameters:

• tag - The tag associated with the extraction

• name - A human-friendly name for the extraction

• desc - A human-friendly string that describes the extraction

• module - The processing module used for extraction (regex, slice, csv, fields, etc.)

• args - Module-specific arguments used to change the behavior of the extraction module

• params - The extraction definition

Only the module, params, and tag parameters are required; all others can be left blank if desired (for example,
the regex module does not take any arguments, so args will always be empty).

4.12.2 Managing Auto-Extractors in the GUI
The Gravwell GUI can be used to manage extractors. The screenshot in Figure 4.52 shows the Extractors
page with four defined extractors.

Note the buttons in the upper right. “Add” creates a new extractor interactively, allowing the user to enter
appropriate values, as seen in Figure 4.53.

“Upload” allows you to directly upload files containing text versions of AX definitions; this is a convenient
way to install many extractors at once.

https://docs.gravwell.io/#!search/ax/ax.md

4.12. AUTO-EXTRACTORS 105

Figure 4.52: Extractors page

Figure 4.53: New extractor dialog

106 CHAPTER 4. SEARCHING

4.12.3 Auto-Extractor Files
Auto-extractors can be defined in text files, which may then be uploaded through the web interface. Auto-
extractor files follow the TOML V4 format which allows comments using the "#" character. Each "ax" file
can contain multiple auto-extraction definitions.

There are a few important rules about how the extraction parameters are defined in files:

1. Each extraction parameter’s value must be defined as a string and double- or single-quoted.
2. Double-quoted strings are subject to string escape rules (pay attention when using regex), e.g. "\b"

would be the backspace character (character 0x08) not the literal string "\b".
3. Single quoted strings are raw and not subjected to string escape rules, meaning ’\b’ is literally the

backslash character followed by the ’b’ character, not a backspace.

The ability to ignore string escape rules is especially handy for the "regex" processor as it makes heavy use of
backslash.

Here is a sample auto-extraction file designed to pull some basic data from an Apache 2.0 access log using
the regex module:

#pull ip, method, url, proto, and status from apache access logs
[[extraction]]
tag="apache"
name="apacheaccess"
desc="Apache 2.0 access log extraction to pull requester items"
module="regex"
args=""
params='^(?P<ip>\d+\.\d+\.\d+\.\d+)[^\"]+\"(?P<method>\S+)\s
(?P<url>\S+)\s(?P<proto>\S+)\"\s(?P<status>\d+)'

Multiple extractions can be specified in a single file by simply establishing a new [[extraction]] header
and a new specification. Defining multiple extractions in one file is a convenient way to manage and share
extractions across multiple Gravwell installations.

4.12.4 Extractor Examples
We will demonstrate a few auto-extraction definitions and compare and contrast queries which accomplish
the same task with and without auto-extractors. We will also show how to use filters within AX.

In these examples, we show extractor definitions in the TOML file format described above; to instantiate
them through the GUI, simply save them as a file and use the Upload button.

CSV

CSV or "Comma Separated Values" can be a relatively efficient text transport and storage system. However,
CSV data is not self-describing, meaning that if all we have is a bunch of CSV data it can be difficult to tell
what columns actually are. Auto-extractors can be used to predefine column names and make it dramatically
easier to work with CSV data.

Here is an example data entry that is encoded using CSV:

2019-02-07T10:52:49.741926-07:00,fuschia,275,
68d04d32-6ea1-453f-886b-fe87d3d0e0fe,174.74.125.81,58579,
191.17.155.8,1406,"It is no doubt an optimistic enterprise.",
"TL",Bury,396632323a643862633a653733343a643166383a643762333a

There is a lot of data in there with no indication of which fields are what. To make matters worse, CSV
data can contain commas and surrounding spaces which makes identifying columns with the naked eye very
difficult. Auto-extractors allow the administrator (or user) to identify column names and types once; once
defined, users can transparently leverage them using the “ax” module.

4.12. AUTO-EXTRACTORS 107

The following query manually extracts and names each element:

tag=csvdata csv [0] as ts [1] as name [2] as id [3] as guid [4] as src
[5] as srcport [6] as dst [7] as dstport [8] as data [9] as country
[10] as city [11] as hash
| table

With the following auto-extractor configuration installed:

[[extraction]]
name="testcsv"
desc="CSV auto-extraction for the super ugly CSV data"
module="csv"
tag="csvdata"
params="ts, name, id, guid, src, srcport, dst, dstport, data, country, city, hash"

That same query becomes:

tag=csvdata ax | table

Note: The CSV auto-extraction processor does not support any arguments. The position of the names in the
params variable indicates the field name. Treat it as a CSV header.

Fields

The fields module is an extremely flexible processing module that can define arbitrary delimiters and field rules
in order to extract data. Many popular security applications like Bro/Zeek default to TSV (tab separated
values) for data export. Other custom applications may use weird separators like “|” or a series of bytes like
“//”. The fields extractor can handle them all, and when combined with auto-extractors users don’t have to
worry about the details of the data format.

Unlike other auto-extractor processors, the fields module has a variety of configuration arguments. The list
of arguments is fully documented in the fields module documentation. Only the “-e” flag is unsupported.

First, consider this tab delimited entry (line-wrapped in this document for readability):

2019-02-07T11:27:14.308769-07:00 green 21.41.53.11 1212
57.27.200.146 40348 Have I come to Utopia to hear this sort of thing?

Using the fields module to extract each data item, the query would be:

tag=tabfields fields -d "\t" [0] as ts [1] as app [2] as src [3] as srcport
[4] as dst [5] as dstport [6] as data
| table

An auto-extraction configuration to accomplish the same thing is:

[[extraction]]
tag="tagfields"
name="tabfields"
desc="Tab delimited fields"
module="fields"
args='-d "\t"'
params="ts, app, src, srcport, dst, dstport, data"

Using the ax module and the configuration above, the query becomes:

tag=tagfields ax | table

The following entry uses the more unusual “|” separator:

2019-02-07T11:57:24.230578-07:00|brave|164.5.0.239|1212|
179.15.183.3|40348|"In C the OR operator is ||."

108 CHAPTER 4. SEARCHING

Note that the last field contains the delimiter. The system that generated this data knew that it needed to
include the delimiter in a data item, so it encapsulated that data item in double quotes. The fields module
knows how to deal with quoted data; specifying the “-q” flag will make the module respect quoted fields. The
quotes are kept on the extracted data unless the “-clean” flag is also specified.

Using the fields search module alone, the query would be:

tag=barfields fields -d "|" -q -clean [0] as ts [1] as app
[2] as src [3] as srcport [4] as dst [5] as dstport [6] as data
| table

But with an appropriate auto-extraction configuration (shown below) the query can still be the extremely
simple tag=barfields ax | table:

[[extraction]]
tag="barfields"
name="barfields"
desc="bar | delimited fields with quotes and cleaning"
module="fields"
args='-d "|" -q -clean'
params="ts, app, src, srcport, dst, dstport, data"

Regex

Regex may be the most common use for auto-extractors. Regular expressions are hard to get right, easy to
mistype, and difficult to optimize. Defining an auto-extractor allows the Gravwell administrator to define a
regex once and take the burden off the users.

Here is an example entry with a very chaotic format (which is not uncommon in custom application logs):

2019-02-06T16:57:52.826388-07:00 [fir] <6f21dc22-9fd6-41ee-ae72-a4a6ea8df767>
783b:926c:f019:5de1:b4e0:9b1a:c777:7bea 4462 c34c:2e88:e508:55bf:553b:daa8:59b9:2715
557 /White/Alexander/Abigail/leg.en-BZ Mozilla/5.0 (Linux; Android 8.0.0;
Pixel XL Build/OPR6.170623.012) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/60.0.3112.107 Mobile Safari/537.36 {natalieanderson001@test.org}

The data is a really ugly access log for some custom application. The components of the entry are:

• ts - the timestamp at the beginning of each entry
• app - a string representing the handling application
• uuid - a unique identifier
• src - source address, both IPv4 and IPv6
• srcport - source port
• dst - destination address, both IPv4 and IPv6
• dstport - destination port
• path - URL like path
• user_agent - useragent
• email - email address associated with the request

Here is an extractor definition which can pull out those fields via regex:

[[extraction]]
module="regex"
tag="test"
params='(?P<ts>\S+)\s\[(?P<app>\S+)\]\s<(?P<uuid>\S+)>\s(?P<src>\S+)\s
(?P<srcport>\d+)\s(?P<dst>\S+)\s(?P<dstport>\d+)\s(?P<path>\S+)\s
(?P<user_agent>.+)\s\{(?P<email>\S+)\}$'

In order to extract all those fields using only the regex search module, the user would have to run the
following:

4.12. AUTO-EXTRACTORS 109

ID Timestamp
seconds

Timestamp
nanoseconds

Temperature
(32bit float)

ASCII name

bits 0:2 bits 2:10 bits 10:18 bits 18:22 bits 22:

Table 4.5: Binary data structure

tag=test regex "(?P<ts>\S+)\s\[(?P<app>\S+)\]\s<(?P<uuid>\S+)>\s
(?P<src>\S+)\s(?P<srcport>\d+)\s(?P<dst>\S+)\s(?P<dstport>\d+)\s
(?P<path>\S+)\s(?P<user_agent>.+)\s\{(?P<email>\S+)\}$"
| table

However, with the auto-extractor and the ax module, the search is much simpler:

tag=test ax | table

To filter on a field using the ax module, simply attach a filter directive to the named field on the ax module
call. This example will show all entries that have “test.org” in the email address while still rendering a table
with all extracted fields:

tag=test ax email~"test.org" | table

To only extract specific fields, specify those fields as arguments to the ax module. This directs the ax module
to only extract those specific fields, rather than extracting all fields by default:

tag=test ax email~"test.org" app path | table

Slice

The slice module is a powerful binary-slicing system that can extract data directly from binary data streams.
Gravwell engineers have developed entire protocol dissectors using nothing but the slice module. However,
cutting up binary streams of data and interpreting the data is not for the faint of heart, and slice module
queries can be time-consuming to construct and understand. The slice extractor reduces this cognitive load
for the user.

Showing binary data in text form is difficult, so in this document data is represented in hex encoding. These
examples will operate on a binary data stream coming from a small control system that regulates a refrigerant
compressor to maintain precise temperature control in a brewing system. The control system ships strings,
integers, and some floating point values, and as is often the case in control systems all the data is in Big
Endian order.

Note: The slice AX processor does not support any arguments (e.g. no “-e” allowed)

The slice AX processor is designed to cast data to specific types. As such its filtering options are a little
more nuanced than other modules. Each extracted value has a specific set of filter operators based on its
type. For a full description of filtering operators and types, see the slice module documentation.

Passing the example entries through the hexlify module:

tag=keg hexlify

Results in output that look like this:

12000000000ed3ee7d4300000000014de536401800004b65672031

With some investigation, the packed binary structure was found to contain the structure shown in Table 4.5.

The following slice query can therefore extract each data item, as seen in Figure 4.54.

tag=keg slice uint16be([0:2]) as id int64be([2:10]) as sec
uint64be([10:18]) as nsec float32be([18:22]) as temp [22:] as name
| table

110 CHAPTER 4. SEARCHING

Figure 4.54: Sliced binary data

From the manual query it is possible to derive the following auto-extraction configuration:

[[extraction]]
tag="keg"
name="kegdata"
desc="binary temperature control extractions"
module="slice"
params="uint16be([0:2]) as id int64be([2:10]) as sec

uint64be([10:18]) as nsec float32be([18:22]) as temp [22:] as name"

The complicated slice query now becomes:

tag=keg ax | table

Using filtering in the ax module and some math modules it is now possible to generate a graph showing the
maximum temperature for each of the probes, as shown in Figure 4.55.

tag=keg ax id==0x1200 temp name | max temp by name | chart max by name

Additional filtering can be used to select only the keg temperatures and examine the temperature variance to
see how well the control system is maintaining a constant temperature, as in Figure 4.56.

tag=keg ax id==0x1200 temp name~Keg | stddev temp by name | chart stddev by name

Using the auto-extractor and some basic math it is possible to dissect the binary data and clearly see a
periodic engagement of the compressor, which causes an oscillation of temperature over time.

4.12. AUTO-EXTRACTORS 111

Figure 4.55: Keg temperature graph

Figure 4.56: Keg standard deviation graph

112 CHAPTER 4. SEARCHING

4.12.5 Hands-On Lab: Extractors
In this lab, we will show how to create an extractor to help work with CSV data. First, launch a Gravwell
webserver+indexer container:

docker run --rm --net gravnet -p 8080:80 -d --name gravwell gravwell:base

Log into the web GUI (http://localhost:8080) and leave the page open.

Next, we’ll use the ingester container image to run the CSV generator tool. This will ingest 100 CSV-formatted
entries under the tag “csv”:

docker run --rm --net gravnet --name ingesters -it -e \
GRAVWELL_CLEARTEXT_TARGETS=gravwell:4023 gravwell:ingesters \
/opt/gravwell/bin/csvGenerator -clear-conns gravwell:4023 -tag-name csv

A quick search on the csv tag should show the raw entries, as in Figure 4.57.

tag=csv

Figure 4.57: Raw CSV entries

We could manually pull out fields from these entries by specifying arguments to the csv search module, but a
faster way is to create an extractor. First, we must gather the necessary components to build an extractor:

• tag: “csv”
• name: We will name this extractor “csv_extract”
• description: “CSV generator extraction”
• module: “csv”
• params: Here we must decide what to call each column of CSV entries. Based on our knowledge of the

CSV generator, we know the columns are: a timestamp, an “application name”, a random integer ID, a
UUID, an IP address, a number which could be a TCP port, another IP, another port, a quote from
a piece of literature, a country code, a city name, and a hex-encoded IP address. From this we will
decide to name the columns “ts, app, id, uuid, ipA, portA, ipB, portB, msg, country, city, hexIP”

• args: none needed.

Open the menu in the Gravwell UI, then select the “Extractors” page. Click the “Add” button and populate
it with the values above as shown in Figure 4.58

We can test it by running the query tag=csv ax | table, which will extract and display all fields. The
results should resemble Figure 4.59.

http://localhost:8080

4.12. AUTO-EXTRACTORS 113

Figure 4.58: Creating a new extractor

Figure 4.59: Testing new extraction

114 CHAPTER 4. SEARCHING

To clean up after the experiment, run:

docker kill $(docker ps -a -q)

4.13. BACKGROUNDED AND SAVED SEARCHES 115

4.13 Backgrounded and Saved Searches
Backgrounding a search allows a user to do other things while a search completes–it is conceptually similar
to running a Unix command with an ‘&’ at the end of the command line. Searches can be launched in the
background by selecting the ‘Background Search’ button on the New Search page, as seen in Figure 4.60.

Figure 4.60: Starting a search in the background

Or a running search can be sent to the background from the menu, as in Figure 4.61.

Figure 4.61: Backgrounding a running search

In either case, backgrounding a search frees the user to do other things while the search runs. The results of
the search can later be viewed in the Persistent Searches page (Figure 4.62).

Note that a backgrounded search is not guaranteed to persist across server restarts. To keep the results of a
search permanently, either select ‘Save’ in the search’s menu on the Persistent Searches page (Figure 4.63) or
select ‘Save Results’ from the menu on the search results page (Figure 4.64).

116 CHAPTER 4. SEARCHING

Figure 4.62: Persistent searches page

Figure 4.63: Saving a search from the persistent searches page

Figure 4.64: Saving a search from the search results page

4.13. BACKGROUNDED AND SAVED SEARCHES 117

Be aware that saved searches take up space on the disk, and the Gravwell administrator may choose to place
restrictions on how much disk space users are allowed to consume for search storage. It is good practice to
delete old saved searches when no longer needed!

118 CHAPTER 4. SEARCHING

4.14 Permissions, Groups, and Sharing Results
Any given user may belong to multiple groups, which are assigned by the administrator. Users can then
choose to share their search results, dashboards, resources, and other things within the Gravwell system with
members of a particular group. In general, if something can be shared with a group, the GUI will show a list
of checkboxes, one per group. Checking the box shares the item with that group.

The administrator creates groups on the admin-only Groups administration page. In Figure 4.65, the
administrator is creating a group named “foo” which contains the users John and Bob.

Figure 4.65: Creating a new group

Users can share the results of a search with a group from the Persistent Searches page by selecting the ‘Edit
group’ button for that search, as shown in Figure 4.66.

Once shared with a group, all members of that group will see the search in their Persistent Searches listings.
A user may optionally select a default group for all their searches; this means every search the user performs
will by default be visible to members of that group. This can be set from the Preferences tab of the Account
page (Figure 4.67).

4.14. PERMISSIONS, GROUPS, AND SHARING RESULTS 119

Figure 4.66: Sharing search results

Figure 4.67: Setting default group

120 CHAPTER 4. SEARCHING

4.14.1 Hands-On Lab: Groups and Sharing
This lab will demonstrate user groups and search result sharing. First, launch a Gravwell webserver+indexer
container:

docker run --rm --net gravnet -p 8080:80 -d --name gravwell gravwell:base

Next, we’ll use the ingesters container to feed some entries into the indexer using the JSON generator:

docker run --net gravnet --rm -i --name ingesters gravwell:ingesters \
/opt/gravwell/bin/jsonGenerator -clear-conns gravwell:4023

Now, log in as the administrator (http://localhost:8080), open the Users page, and add two new users named
‘john’ and ‘bob’. Use any passwords you like. Once you’ve created the new users, you should see three users
in the User page, as in Figure 4.68.

Figure 4.68: Additional user accounts

Then open the Groups page and add a new group called ‘Test’ containing those users, as shown in Figure
4.69.

Figure 4.69: Creating a new test group

With that complete, open a new Incognito/Private browser window and log in as ‘john’, then run the search
tag=json over the last day. Save the search, then go to the Persistent Searches page and make the search
accessible to the new Test group (Figure 4.70).

Close the Incognito window and open a new one, then log in as ‘bob’. Go to the Persistent Searches page; you

http://localhost:8080

4.14. PERMISSIONS, GROUPS, AND SHARING RESULTS 121

Figure 4.70: Saved search shared with Test group

should see the saved search owned by john. Open the saved search and verify that the contents are viewable
by this user.

To clean up after the experiment, run:

docker kill $(docker ps -a -q)

122 CHAPTER 4. SEARCHING

4.15 Dashboards
Gravwell dashboards put relevant information in a heads-up format suitable for continuous monitoring and
situational awareness. Dashboards are a collection of searches that are all executed in parallel when the
dashboard is loaded. The results are placed into tiles which can be reordered or resized as desired.

Gravwell also supports “live” dashboards which automatically update the search data. Under the hood, this
is done by re-launching the searches and swapping out the results when the new searches finish.

Dashboards are managed from the Dashboards page, as seen in Figure 4.71.

Figure 4.71: Dashboard management page.

New dashboards can be created by clicking the “Add” button in the upper right; this brings up the dialog
box in Figure 4.72. The dashboard needs a name, a description, and a default timeframe. By default, all
queries run within a dashboard use the same timeframe.

A newly-created dashboard is quite boring, as Figure 4.73 shows. There are two ways to add a new tile to a
dashboard. Figure 4.74 shows how to add a tile from the query results page: open the 3-dot menu, click
“Add to dashboard”, then find the desired dashboard in the list, select it, and optionally specify a new name
for the tile.

Figure 4.75 shows how to add a tile from within the dashboard page: click the “+” icon on the page, then
fill out the resulting dialog. The “Query Settings” portion is where the query will be selected; clicking the
pencil icon will open a sub-dialog with many different query sources, as seen in Figure 4.76. Queries may be
typed in directly, selected from the query library, and so on. In Figure 4.75, we have chosen to enter a query
manually and selected the line chart renderer.

Once a few tiles have been added to the dashboard, they can be rearranged and resized by clicking and
dragging the tiles. Note that after making a change, you must click the “Save changes” popup which appears
in the lower right corner.

4.15.1 Live Update
Dashboards can be configured to live update, meaning they will re-run queries and display new results after a
set period of time. To enable this, click the 3-dot menu on the dashboard and select “Settings”. Within the

4.15. DASHBOARDS 123

Figure 4.72: Creating a new dashboard.

Figure 4.73: An empty dashboard.

124 CHAPTER 4. SEARCHING

Figure 4.74: Adding a search to a dashboard

4.15. DASHBOARDS 125

Figure 4.75: Adding a tile to a dashboard

126 CHAPTER 4. SEARCHING

Figure 4.76: Query picker.

4.15. DASHBOARDS 127

settings page, pick the “Timeframe & Live Update” tab, then turn the “Enable live update” toggle on, as seen
in Figure 4.77. The update interval is configurable; if the queries in the dashboard cover a long timeframe or
process a lot of data, consider setting the interval to a higher value so as to reduce the load on the system.

Figure 4.77: Live update settings.

128 CHAPTER 4. SEARCHING

4.15.2 Hands-on Lab: Network Activity Dashboard
For this exercise, we will be generating some Netflow data and creating a dashboard to provide some
awareness of network activity. Let’s start our docker containers for Gravwell, the netflow ingester, and a
netflow generator.

docker run --rm --net gravnet -p 8080:80 -d --name gravwell gravwell:base

docker run --rm --net gravnet --name ingesters -it -e \
GRAVWELL_CLEARTEXT_TARGETS=gravwell:4023 gravwell:ingesters \
/opt/gravwell/bin/gravwell_netflow_capture

docker run -it --net gravnet --rm \
networkstatic/nflow-generator -t ingesters -p 2055

With Netflow data flowing in we can start to get our queries ready for addition to a dashboard. The goal
of this dashboard is to break down network communications in some nice visuals that help us understand,
at a glance, what the most common hosts are, what traffic is being utilized, where that traffic is going
geographically, and potentially other data.

Let’s start by running a search to show a chart of traffic by port so we can see which services are most used
on our network:

tag=netflow netflow Port Bytes | stats sum(Bytes) by Port | chart sum by Port

Now, use the menu button in the upper right of the search results page to select “Add to dashboard”. We
have the option to create a fresh dashboard right from here, so let’s do so (Figure 4.78).

Figure 4.78: Adding search to a new dashboard

Click “View Dashboard” from the resulting popup message after you save. You should see the newly-created
dashboard with the chart sitting nicely in a tile. Let’s add one more search. Use the main menu to return to
the new search page. This time, let’s get a table together of which hosts are communicating the most:

tag=netflow netflow IP Bytes | stats sum(Bytes) by IP | table IP sum

Follow the same procedure to add this search to the dashboard but instead of selecting “New Dashboard”
you can choose the already existing netflow dashboard. Give your tile a name like “Top Talkers”, click save,
and then let’s move back to the dashboard view.

4.15. DASHBOARDS 129

It would be nice to let the user zoom in on a specific time area of the dashboard results. This is accomplished
by adding another tile as an “Overview” tile. The Overview renderer shows a chart of all log activity and
allows the user to click-drag and zoom in on specific regions for more detail. To add an Overview tile, open
the dashboard, then click the new tile button in the upper right. Give it a name (“Overview” works well) and
set the query to any one of the existing queries in the dashboard. Then chose “Overview” from the renderer
dropdown.

Dashboards can optionally sync up zooming of searches so that a zoom on one Overview renderer will cause
all other tiles to zoom to the same range. This is controlled by the “Update all tiles when zooming” toggle
option under the Settings page for the dashboard, in the “Timeframe & Live Update” section (see Figure
4.79). Open settings, enable that option, save, and then return to the dashboard view. Now try zooming in
on a small region of the overview chart to see the other tiles respond.

Figure 4.79: Live update and zoom sync options.

We should now have two tiles present that are showing us some information about our network communication,
as well as an ‘overview’ tile which we can use for time exploration. As a final task, change the dashboard
to use live updates. This will periodically refresh the underlying search data to keep the latest information
available without having to refresh the page or manually re-run searches. Navigate to the dashboard’s Settings
page and turn on the “Enable live update” toggle in the “Timeframe & Live Update” section (see Figure 4.79).
The default update interval of 10s is fine. Now, if you watch the dashboard, you should see it automatically
refresh every 10 seconds.

To clean up after the experiment, run:

docker kill $(docker ps -a -q)

130 CHAPTER 4. SEARCHING

4.16 Templates
Templates are stored Gravwell queries which require one or more variables to run. This lets you build
advanced queries which can investigate a particular IP address. They are particularly effective when inserted
into a dashboard (section 4.15), or when coupled with an actionable (4.17).

Templates are managed via the templates page, accessed through the main menu under the ‘Tools and
Resources’ section. A template consists of a name, a description, and the query itself. Inside the query, use
words wrapped inside doubled percent signs to denote variables, e.g. %%IPADDR%% as seen in Figure 4.80.

Figure 4.80: Editing a template

Once defined, a template can be run directly from the templates page by clicking the search button. A dialog
(Figure 4.81) will open prompting the user to fill in the variable before launching the search. More often,
though, a template is executed either by launching an actionable from search results, or in a dashboard.

Templates can be included in dashboards by selecting “Templates” in the “Add query via” dropdown when
creating a new tile, as seen in Figure 4.82. When the dashboard is opened, the user is prompted for the
variable values. Dashboards containing templates may also be launched from actionables (section 4.17).

4.16. TEMPLATES 131

Figure 4.81: Launching a template

Figure 4.82: Adding a template to a dashboard tile

132 CHAPTER 4. SEARCHING

4.17 Actionables
Actionables provide a way to create custom triggers and menus that key on any text rendered in a query
and take one or more actions when selected. Similar to an HTML hyperlink, actionables can be used to
open external URLs that key on data, but actionables can also be leveraged to submit new Gravwell queries,
launch dashboards, and execute templates.

Actionables are created by specifying one or more regular expressions, along with one or more actions.
Gravwell automatically parses all text rendered with the table and chart renderers, bringing up appropriate
actionable context menues when the text is clicked, as seen in Figure 4.83.

Figure 4.83: Actionables context menu

Actionables are made up of two components - triggers, which are simply regular expressions that Gravwell
uses to match on text, and actions, which are the actions that can be taken on a matched trigger. An
actionable can contain multiple triggers and/or multiple actions.

To get started with actionables, first open the Actionables menu, found in the main menu. Actionables are
listed by name, and it’s possible for two actionables to have the same name. By allowing actionables to have
the same name, Gravwell can automatically group like actionables from different sources. For example, both
the Netflow and CoreDNS kits provide actionables for IP addresses, and both are named "IP Address", as
shown in Figure 4.84.

To create an actionable, you must define actions and, optionally, one or more triggers.

4.17.1 Actions
Actions provide operations that can be executed on text. An actionable can contain any number of actions.
Actions include opening URLs, launching other searches, and more.

The _VALUE_ Variable

Some actions use the text of a capture group from the trigger to be used in the action itself. For example, we
can use the trigger regex to extract a particular word in a string:

The color is (?<color>.*)

The capture group contents can then be used in a URL, using _VALUE_ for the matched text, e.g.
https://en.wikipedia.org/wiki/_VALUE_

The keyword _VALUE_ is the default placeholder for the matched text, and can be changed in some actions.

4.17. ACTIONABLES 133

Figure 4.84: Actionables duplicate names

Action Types

Gravwell provides several actions, and an actionable can use any or all actions in a single actionable.

• Run a Query: This action runs a new query, replacing the string _VALUE_ with whatever text was
matched by the actionable.

• Execute a Template: The template action runs a pre-made template, using the matched text as the
input variable to the template.

• Launch a Dashboard: The launch dashboard action opens a dashboard. If the dashboard has template
variables, the user is prompted to select which variable to populate with the matched text.

• Open a URL: The URL action supports opening a new window/tab with a given URL and matched
text, and additionally provides a set of timestamp options for providing the time range arguments from
the search that the actionable triggered on. The "Open in a modal" option opens the URL in a window
within the current Gravwell instance, similar to an HTML iframe.

• Run a Saved Query: Run a query from the Query Library.

Triggers

A trigger is a JavaScript regular expression that determines if an actionable should be displayed for any
given piece of text. For instance, one might use (?:[0-9]{1,3})̇{3}[0-9]{1,3} as the trigger to match an
IPv4 address. A trigger can be configured to highlight all matching text in query results with an underlined
hyperlink which opens the actionables menu when clicked (“Click + text selection”), or it can be configured
so that the actionable menu only pops up when the user explicitly selects text which matches the regular
expression (“Text selection”). Figure 4.85 shows an example of a trigger on an actionable which will make
any IPv4 addresses clickable.

134 CHAPTER 4. SEARCHING

Figure 4.85: Example actionable trigger.

4.18. COMPOUND QUERIES 135

4.18 Compound Queries
Compound Queries is an extension to the query language that allows you to perform multiple, in-order,
queries, and use the output from a previous query anywhere in the pipeline of the next, similar to an SQL
JOIN. You can combine multiple queries together as a single "compound" query in order to leverage multiple
data sources, fuse data into another query, and simplify complex queries. Gravwell’s compound query syntax
is a simple sequence of in-order queries, with additional notation to create temporary resources that can be
referenced in queries later in the sequence.

A compound query consists of a main query (the last query in a sequence), and one or more inner queries.
The main query is written just like a normal query, while inner queries are always wrapped in the notation
@<identifier>{<query>}. Queries are separated by a semicolon and whitespace is ignored.

Figure 4.86: Parts of a compound query

For example, below is a compound query that has 2 inner queries and a main query.

@Q1{tag=default grep foo | json foo.bar foo.data};
@Q2{tag=syslog ax | table Event Payload};

tag=default ax
| lookup -r @Q1 match bar bar data
| lookup -r @Q2 Event Event Payload

Inner queries generate named resources in the form of @<identifier>. These can be used as regular resources
with any module that supports table-based resources. Supported modules are shown in table 4.6. Unlike real
resources however, named resources in a compound query are ephemeral and scoped - they exist only while
the query is running and are visible only to compound query in which they were created.

Module Notes
dump
enrich
ipexist Inner queries must use the table module

with the -format ipexist flag
iplookup Inner queries must use the table module

with the -format csv flag
lookup
anko Anko scripts can read from named resources

Table 4.6: Supported modules that can use compound query resources

Named resources are scoped to the compound query they exist in, and are ephemeral - they are only accessible
to other queries in the compound query, and are deleted as soon as the query is completed.

For example, say we have both DNS query and IP-level connection data under the tags "dns" and "conns",
and we want to filter connection data down to only connections that didn’t first have a corresponding DNS

136 CHAPTER 4. SEARCHING

query; these are potentially suspicious IP addresses, since users typically access services via DNS names. We
can use compound queries to enrich our first query with DNS data and filter.

Let’s start with the inner query:

tag=dns json query answers | table query answers

This produces a table seen in Figure 4.87

Figure 4.87: The beginning of an inner query

In the inner query, we simply create a table of all queries and answers in our DNS data. Since this is an
inner query, we need to give it a name so later queries can reference its output, and wrap the query in braces.
We’ll call this inner query "dns":

@dns{tag=dns json query answers | table query answers}

In the main query, we use our connection data, and use the lookup module to read from our inner query
"@dns":

tag=conns json SrcIP DstIP SrcIPBytes DstIPBytes
| lookup -s -v -r @dns SrcIP answers query
| table SrcIP DstIP SrcIPBytes DstIPBytes

This query uses the lookup module drop (via the -s and -v flags) any entry in our conns data that has a SrcIP
that matches a DNS answer. From there we simply create a table of our data.

We wrap this into a compound query simply by joining the queries together and separating them with a
semicolon:

@dns{ tag=dns json query answers | table query answers };

tag=conns json SrcIP DstIP SrcIPBytes DstIPBytes
| lookup -s -v -r @dns SrcIP answers query
| table SrcIP DstIP SrcIPBytes DstIPBytes

This gives us a table (Figure 4.88 of just those connections that didn’t have a corresponding DNS query.

4.18. COMPOUND QUERIES 137

Figure 4.88: Results from a complete compound query

138 CHAPTER 4. SEARCHING

Chapter 5

Indexers and Well Configuration

The two core components of a Gravwell deployment are the Indexer and Webserver. If either of those
components are not properly configured, Gravwell will not function. The indexer is the most important
component, as it is responsible for actually storing, maintaining, and querying data. In this section we will
examine the role of a Gravwell indexer and how to appropriately configure and debug it.

Gravwell follows the principle of least privilege: the shell and Debian installers will create an unprivileged
user and group named gravwell. Gravwell files and resources are stored in /opt/gravwell which is owned
by the gravwell user. Most components have no special permissions and cannot affect sensitive system
files. The exceptions are the webserver, simple relay ingester, file follower ingester, and PCAP ingester. The
webserver and simple relay ingesters are given the CAP_NET_BIND_SERVICE1 capability which allows them to
bind to low ports; this is so we can serve web pages on ports 80 and 443 and listen for syslog packets on
ports 514 and 601. The file follower ingester has a default systemd unit file which starts the process under
the user gravwell and group adm,which allows it to access typical file based system logs in /var/log. The
PCAP ingester is given the CAP_NET_RAW capability so that it can bind to raw sockets2. The special groups
or capabilities can be removed, but the webserver will not be able to bind to low ports and the file follower
ingester may not be able to read system logs.

5.1 Indexer Configuration
Gravwell always ships with a functional gravwell.conf that provides a basic deployment right out of the
box. However, with very large or very complex deployments, tuning the configuration can yield much
better performance and stability. Both indexers and webservers can share the same configuration file, which
is located at /opt/gravwell/etc/gravwell.conf by default. The configuration file that is shipped in a
typical Gravwell installer is very minimal and represents a basic configuration. The shell installer and
Debian package both contain logic to inject randomly generated tokens into each required authentication
parameter. The published Docker image on Docker Hub3 contains environment variables preconfigured to
set the authentication tokens. The preconfigured environment variables for the Docker deployment are not
unique and not secure. If you plan to use Gravwell in Docker, you must override these configuration values
using either Docker secrets or custom values.

1http://man7.org/linux/man-pages/man7/capabilities.7.html
2https://en.wikipedia.org/wiki/Network_socket#Raw_socket
3https://hub.docker.com/

139

140 CHAPTER 5. INDEXERS AND WELL CONFIGURATION

5.1.1 Hands-on Lab: Misconfigured Indexer
For this hands on lab we will be deploying a slightly misconfigured Gravwell instance. We will examine error
logs to identify the misconfiguration and correct it. To get started, let’s cd to the working directory in our
training folder named Indexers/Lab-MisconfiguredIndexer:

cd ~/gravwell_training/Indexers/Lab-MisconfiguredIndexer

Next, follow the steps to get your misconfigured Gravwell instance up and running:

1. Create a gravwell container using the gravwell:base image

docker create --name test --net gravnet gravwell:base

2. Copy the gravwell.conf file into the container

docker cp config/gravwell.conf test:/opt/gravwell/etc/

3. Start the container

docker start test

4. Get the container IP address

docker inspect --format \
'{{.NetworkSettings.Networks.gravnet.IPAddress}}' test

5. Obtain a shell within the container

docker exec -it test /bin/sh

Lab Questions

1. Are you able to view the Gravwell web portal?

2. Is the indexer process running?

3. What log files are available to identify the problem?

4. Why couldn’t the indexer start?

5. What parameter in the gravwell.conf caused the failure?

6. What is the default value for the parameter and how would you change it?

Hands-on Lab Tips and Solutions

If a Gravwell instance is failing to respond, the first item of business is to identify whether or not the
Gravwell processes are running. All Gravwell processes are prefixed with gravwell_ so we can issue a
ps | grep gravwell to get a list of running gravwell processes. In your container you should see the
gravwell_webserver and gravwell_searchagent process, but not gravwell_indexer.

/ # ps | grep gravwell_
11 root 0:00 /opt/gravwell/bin/gravwell_webserver -stderr webserver
13 root 0:00 /opt/gravwell/bin/gravwell_searchagent -stderr searchagent
45 root 0:00 grep gravwell_

The indexer logs status information to a standard set of logs in /opt/gravwell/log, but if the pro-
cess encounters a critical failure that prevents it from writing to the standard log files, it will write
to a file in /dev/shm/. When a gravwell process fails and exits it will attempt to write the reason in
/opt/gravwell/log/error.log, so check the error log to see if there is a message indicating the problem.
Run tail /opt/gravwell/log/error.log and you should see something like:

03-14-2019 22:35:27.185 [8000020b] backend/main.go:561 Failed to create the search server:
listen tcp :4023: bind: address already in use

5.2. WELL CONFIGURATION 141

This message indicates that the Gravwell indexer process could not bind to port 4023 because something
else was already bound to that port. The search server is the component within the Gravwell indexer that
responds to commands from the webserver. The configuration parameter that controls which port it binds to
is Control-Port. Open the gravwell.conf file you retrieved from the training server and examine its contents.

Let’s change the Control-Port value to its default of 9404, copy the configuration file back into the container
and restart it:

docker cp gravwell.conf test:/opt/gravwell/etc/
docker restart test

You should now be able to log into the gravwell web portal using the IP address discovered earlier. Do not
rm the test container, as we are going to use it again for the next lab.

5.2 Well Configuration
Properly configuring a well can yield significant performance gains when querying data. Isolating data into
different wells means that when you issue a query on a tag, the indexer can look at storage that is only
associated with that tag. This allows for highly tuned configurations and storage arrangements. For example,
let’s assume that your Gravwell instance is consuming firewall logs, syslog, Netflow v5, and packet capture.
The logs and Netflow may represent a few gigabytes of data per day and may have retention requirements,
where the packet capture might produce hundreds or thousands of gigabytes per day and have no retention
requirements. So while it might be very useful to consume packet data and hold it for a short time, it is not
subject to the same rules or priority as the logs. Isolating it into its own well means that the high volume of
packet data will have minimal impact on the logs and Netflow, and can be managed very differently.

To add a new well for an indexer we will need to add the well definition and associate the tag with it. Let’s
look at a well definition named “raw” that stores data in /opt/gravwell/storage/raw and is responsible
for all entries with the tag pcap and binary:

[Storage-Well "raw"]
Location=/opt/gravwell/storage/raw
Tags=pcap
Tags=binary

We can define as many wells as you would like; the only requirement is that every well must have its own
storage location and none of the assigned tags may overlap. For example, the tag pcap cannot be assigned to
multiple wells, and two different wells cannot use the same storage directory. If a well specifies a storage
location that does not exist, it will attempt to create it. However, because the indexer is typically running as
a restricted user it may not be able to. If you are specifying well storage locations outside of /opt/gravwell/,
ensure that the location already exists and has the appropriate permissions. It should be owned by the
user/group gravwell/gravwell and have RWX permissions enabled for the owner.

142 CHAPTER 5. INDEXERS AND WELL CONFIGURATION

5.2.1 Hands-on Lab: Well Definitions
For this lab we are going to modify the gravwell.conf file to include a new well definition. We will use the
existing container from the previous lab ("Misconfigured Indexer", 5.1.1)

Open the gravwell.conf file you fixed in the previous lab and append the following well definition:

[Storage-Well "syslog"]
Location=/opt/gravwell/storage/syslog
Tags=syslog

The entire gravwell.conf file should be:

[global]
Web server HTTP/HTTPS settings
Web-Port=80
Insecure-Disable-HTTPS=true

Other web server settings
Remote-Indexers=net:127.0.0.1:9404

Ingester settings
Ingest-Port=4023
Control-Port=9404

Other settings
Log-Level=INFO
Pipe-Ingest-Path=/opt/gravwell/comms/pipe

Paths
[Default-Well]

Location=/opt/gravwell/storage/default/

[Storage-Well "syslog"]
Location=/opt/gravwell/storage/syslog
Tags=syslog

Now copy it into the test container and restart the container:

docker cp gravwell.conf test:/opt/gravwell/etc
docker restart test

Obtain a shell within the docker container as shown below. Check that the indexer process has started and
the well storage location was created. You should see some shards already in the default folder.

user@training:~/gravwell_training$ docker exec -it test /bin/sh
/ # ps -o pid,comm
PID COMMAND

1 manager
11 gravwell_webser
13 gravwell_search
18 gravwell_indexe
55 sh
60 ps

/ # ls -l /opt/gravwell/storage
total 8
drwxr-x--- 3 root root 4096 Aug 5 17:32 default
drwxr-x--- 3 root root 4096 Aug 5 17:33 syslog

5.2. WELL CONFIGURATION 143

/ # ls -al /opt/gravwell/storage/default/
total 12
drwxr-x--- 3 root root 4096 Aug 5 17:32 .
drwxrwx--- 1 gravwell gravwell 4096 Aug 5 17:33 ..
drwxr-xr-x 2 root root 4096 Aug 5 17:32 76d3f
/ #

We can also validate that the new well was created within the GUI. Expand the left sidebar navigation menu
and click “Storage, Indexers, & Wells” under “Systems & Health”. From there, click on the indexer to see the
two wells, default and syslog, as shown in Figure 5.1.

Figure 5.1: Wells and Indexers

Select the Configuration tab at the top to view configuration details for the wells as shown in Figure 5.2.

Figure 5.2: Wells Configuration Details

The indexer also automatically created the syslog tag when it found the new well configuration. Select “Tags”
from the navigation menu and see that Gravwell now knows about the syslog tag, enabling you to search
with it. There are no entries yet, as we haven’t ingested anything, but the tag is there.

Do not rm the test container, as we are going to use it again for the next lab.

144 CHAPTER 5. INDEXERS AND WELL CONFIGURATION

Figure 5.3: Tags

5.3 Well Ageout
Gravwell is designed to manage data sets with minimal user interaction; once a system is appropriately
configured it will manage data sets and storage arrays on its own. Data ageout is one of the most critical
configurations. Properly configured well ageouts prevent disk exhaustion, enable high speed working datasets,
and allow for regulatory or retention compliance. This section will examine the available rulesets which
control how Gravwell indexers manage stored data and how we can use multi-tiered storage to adhere to
compliance requirements while still utilizing a smaller pool of high speed storage for day-to-day operations.

Data ageout can be controlled using three different constraints: time, total storage, and storage availability.
Ageout is also configured on a per well basis, so each well can have entirely different ageout rules. The per
well ageout rules enable Gravwell administrators to prioritize data and adhere to corporate or regulatory
requirements without lumping every data source into the same rule set or priority. Data that must be
captured but may not be useful in day to day operation can be stored directly on low-cost storage devices for
long term storage. Data that may not have legal or corporate retention requirements but plays a central role
in network management or security operations can use high speed storage and ageout to low-cost storage as
needed. Gravwell ageout rules provide a tremendous amount of flexibility in managing how data is stored.

Gravwell indexers are very sensitive to data deletion. You must explicitly enable data deletion via the ageout
controls using the Delete-Cold-Data and Delete-Frozen-Data parameters. If the respective parameters
are not set to “true”, an indexer will not delete data, even if the other configuration parameters indicate that
it should. This additional configuration parameter is somewhat like a secondary sanity check, forcing you to
fully acknowledge that Gravwell is allowed to delete data.

WARNING: Data ageout operates on entire shards and ageout constraints must be satisfied by an entire
shard before an ageout executes. A typical shard size is 1.55 days, so if you set a time based ageout of 1 day,
Gravwell won’t perform an ageout until all data in a shard is more than 1 day old. This means that even
though you specified an ageout duration of 1 day, the storage tier will hold up to 1.55 days. When an ageout
occurs, the entire shard is aged out at once.

5.3.1 Time-based Ageout
Time-based ageout uses entry timestamps to determine their life cycle. Ageout is specified using time spans
that define retention durations. Each storage tier can maintain an independent duration configuration. For
example, we can define that entries are held in the hot storage pool until they are greater than 30 days old, at
which point they are deleted or moved to a cold storage tier. Cold storage can then specify that data be held
for 120 days before it is deleted or archived. Time-based retention is controlled by the Hot-Duration and
Cold-Duration well parameters. Durations can be specified in days (d) or weeks (w). Because aging out data
incurs some computation and storage costs, it may be beneficial to schedule the ageout for a time of day when
users are not interacting with Gravwell, or when log data volumes are lower. The Ageout-Time-Override
parameter allows you to set the time of day that the time-based ageouts occur–note that this time is specified
in UTC!

Below is an example well configuration that stores data in the hot tier for seven days, then moves it to the
cold tier where it is held for 16 weeks and then deleted. Ageout occurs at 1AM UTC.

5.3. WELL AGEOUT 145

[Default-Well]
Location=/mnt/ssd/gravwell/default/
Cold-Location=/mnt/hdd/gravwell/default
Hot-Duration=7d
Cold-Duration=16w
Delete-Frozen-Data=true
Ageout-Time-Override="1:00"

This is a well that does not maintain a cold storage tier; instead it simply deletes data once it is 90 days old:

[Default-Well]
Location=/opt/gravwell/storage/default/
Hot-Duration=90d
Delete-Cold-Data=true

WARNING: The indexer host clock is critically important for accurate ageout controls. The timestamps on
entries are entirely decoupled from the time on the host indexer. If you misconfigure the host clock on an
indexer, ageout may execute prematurely, or not at all.

5.3.2 Storage-based Ageout
Storage-based ageout uses the total physical storage consumed to determine data lifecycles. Using storage-
based ageout is convenient when managing smaller high-speed storage pools, managing specific storage
usage, or when there are no retention requirements. Wells configure their storage-based ageouts using the
Max-Hot-Storage-GB and Max-Cold-Storage-GB well parameters. Setting a storage constraint tells Gravwell
that if a well storage tier goes over the specified storage limit, it should attempt an ageout immediately.
Storage-based ageout rules operate entirely independently of time-based rules. If both time- and storage-based
ageouts are configured and the storage tier exceeds the configured storage limit, the indexer will attempt an
ageout regardless of what the time-based controls say.

This is a well configured with two storage tiers. The hot tier is configured to hold 10GB and the cold tier is
configured to hold 100GB, so the entire well will hold 110GB of searchable data:

[Default-Well]
Location=/mnt/ssd/gravwell/default/
Cold-Location=/mnt/hdd/gravwell/default
Max-Hot-Storage-GB=10
Max-Cold-Storage-GB=100
Delete-Frozen-Data=true

This is a well configured to use a storage constraint on the hot tier and a time constraint on the cold tier.
This means it will keep 10GB in the hot storage device, but ensure that data is held for at least 90 days
using the cold storage device:

[Default-Well]
Location=/mnt/ssd/gravwell/default/
Cold-Location=/mnt/hdd/gravwell/default
Max-Hot-Storage-GB=10
Cold-Duration=90d
Delete-Frozen-Data=true

WARNING: Data ageout can take non-zero time. Ensure that you have ample storage space to continue
ingesting new data while old data is moved between storage tiers. For example, if your hot storage tier has
128GB of available storage it is wise to configure the storage limit to 120GB so that you have 8GB of slack
available while the ageout is in progress.

146 CHAPTER 5. INDEXERS AND WELL CONFIGURATION

5.3.3 Storage Availability Ageout
Storage availability-based ageout a highly flexible system which enables indexers to use storage without
hard constraints on time or stored data. The availability constraints are used to define a specific percentage
of storage that the indexer cannot use, a sort of reserve space. The constraints are controlled by the
Hot-Storage-Reserve and Cold-Storage-Reserve parameters. Storage reserves are calculated by each well
and storage tier independently. This means that wells do not coordinate with each other and they do not
treat disk usage by outside applications any differently than storage used by Gravwell.

This is a well definition which maintains a 10% reserve on the hot storage tier:

[Default-Well]
Location=/opt/gravwell/storage/default/
Hot-Storage-Reserve=10
Delete-Cold-Data=true

This is a configuration with two wells, both using storage reserve-based constraints. Notice that both wells
are based in /opt/gravwell/storage/; if we assume that storage locations are on the same storage device
the ageout behavior may be unexpected. For example, if the storage device has 128GB of available storage,
and the default well has shards that are 100GB in size while the syslog well has shards that are 1GB in size
it will be extremely difficult to predict which well will actually delete its data. If the default well triggers
first, the syslog well may be able to maintain months worth of data. If the syslog well triggers first it may
delete all of its shards trying to hit the storage reserve.

[Default-Well]
Location=/mnt/ssd/gravwell/default/
Hot-Storage-Reserve=10
Delete-Cold-Data=true

[Storage-Well "syslog"]
Location=/opt/gravwell/storage/syslog
Tags=syslog
Hot-Storage-Reserve=20
Delete-Cold-Data=true

WARNING: Using the availability constraints when a Gravwell indexer does not have exclusive control
over an entire storage device can yield unexpected ageout behavior.

5.3. WELL AGEOUT 147

5.3.4 Hands-on Lab: Ageout
This hands-on lab will continue to use the Gravwell docker instance that we used in the previous labs. We
are going to apply ageout constraints to the default and syslog wells and watch data move from the hot
tier to the cold tier. First, let’s make sure our previous container is running, then change to the Lab-Ageout
directory in our training folder:

docker start test
cd ~/gravwell_training/Indexers/Lab-Ageout

Then we’ll use the ingesters container (make sure you’ve loaded the ingesters container image as described in
Section 2.5) to import the syslog data:

docker run -v $PWD/data:/tmp/data --rm -i --net gravnet \
gravwell:ingesters /opt/gravwell/bin/reimport -rebase-timestamp \
-clear-conns test:4023 -i /tmp/data/syslogdata -import-format json

In the command above, we spin up a new container and run the reimport ingester, telling it to read
json-formatted entries from standard input.

Next, let’s apply some ageout constraints to the two wells. We have provided a copy of the base gravwell.conf
in the config/ subdirectory, so modify it and add the following constraints:

1. Default well

(a) One storage tier

i. Hot is at /opt/gravwell/storage/default

(b) Hot tier holds 14 days of data

i. Data is deleted after

2. Syslog well

(a) Two storage tiers

i. Hot location is /opt/gravwell/storage/syslog

ii. Cold is at /opt/gravwell/cold_storage/syslog

(b) Hot tier holds 7 days of data

(c) Cold tier holds 1GB

i. Data is deleted after

Once you have made your docker configuration changes copy the configuration file into the test container and
start it.

docker cp config/gravwell.conf test:/opt/gravwell/etc/
docker restart test

148 CHAPTER 5. INDEXERS AND WELL CONFIGURATION

Check the well configuration details in the GUI to verify that your indexer is properly configured. Selecting
the Health tab for the indexer will show about 20k entries in the syslog well in hot storage.

Figure 5.4: Data in Hot Store

The indexer will age the hot data into the cold well. Please wait to observe this change; it may take some
time. You can also click on each individual well to see details for that one alone.

Figure 5.5: Data in Hot and Cold Stores

5.3. WELL AGEOUT 149

Your modified gravwell.conf well definitions should look something like this:

[Default-Well]
Location=/opt/gravwell/storage/default/
Hot-Duration=14d
Delete-Cold-Data=true

[Storage-Well "syslog"]
Location=/opt/gravwell/storage/syslog/
Cold-Location=/opt/gravwell/cold_storage/syslog
Tags=syslog
Hot-Duration=7d
Max-Cold-Storage-GB=1
Delete-Frozen-Data=true

Do not rm the test container, as we are going to use it again for the next lab.

150 CHAPTER 5. INDEXERS AND WELL CONFIGURATION

5.4 Replication
Hardware failures happen, drives crash, and humans mis-type commands; only a robust data backup solution
can prevent catastrophic data loss. Gravwell implements a data replication system which enables transparent
data backup. As data is ingested, Gravwell will automatically assign the data stream to a remote peer and
copy the data shards to it. The replication system is extremely flexible, enabling tolerance to node, rack, and
even data center failures. Indexers replicate data shards and tag mappings, which is sufficient to completely
rebuild a node in case of total storage failure. Indexer configurations are not replicated, so maintaining an
up-to-date gravwell.conf file is important.

This section will explore the two data replication mechanisms supported by Gravwell and examine the pros
and cons of each. We will describe how to enable replication, pick peers, and recover from failures. Replication
is enabled for every paid Gravwell license, but Community Edition licenses cannot enable replication.

WARNING: The Indexer-UUID variable in the gravwell.conf file is used as the indexer identity in the
replication group. When restoring an indexer, it is critically important that you restore the correct UUID
prior to starting the indexer.

5.4.1 Offline Replication Configuration
Replication is entirely controlled by indexers. While webservers are aware of indexer configurations and can
request hot failover during search, they do not have control over or insight into replication state or peer
selection. To enable replication, we add a replication configuration block to the indexer’s gravwell.conf file.
Below is an example replication configuration with a single offline replication peer:

[Replication]
Peer=172.17.0.3
Storage-Location=/opt/gravwell/replication_storage
Disable-TLS=true
Connect-Wait-Timeout=60
Disable-Server=true

Notice that we disabled the server, but still specified a Storage-Location; replication needs to store the state
of replicated data. While our server may not be replicating data from other nodes, it still needs to track how
much of its own data has been replicated.

There are a few important security considerations associated with the above config:

1. Replication-Secret-Override is not specified.

(a) The indexer will use the Control-Secret for authentication.

2. TLS is disabled, which means that indexer is using a cleartext connection.

(a) Data is replicated in the clear and restored in the clear

3. Connect-Wait-Timeout=60 means Indexers will wait up to 60 seconds for a replication peer.

(a) If an indexer cannot connect to a replication peer in that time, it will start.

(b) This is important when recovering from a failure.

(c) When restoring a failed node, it is recommended that this setting be 0, meaning the indexer will
wait for a replication peer indefinitely before starting.

5.4. REPLICATION 151

5.4.2 Hands-on Lab: Replication
We will be instantiating an offline replication server and configuring our test container to replicate data to
it. The offline replication server acts as a remote data store of replicated data and will allow our indexer to
recover from failure and re-import its data. After replicating the data from our test instance we will destroy
it and start over. When the indexer comes back online, it will identify the failure and restore its data and tag
set from the replication server.

Starting the Offline Replication Server

Change your current working directory to gravwell_training/Indexers/Lab-Replication and check its
contents. You should see a gravwell.conf file in the config/ subdirectory. Make sure you’ve got the
offlinereplication image loaded as described in Section 2.5, then start it with a name and hostname of
offlineserver:

docker run -d --net gravnet --name offlineserver \
-h offlineserver gravwell:offlinereplication
docker ps

Next, stop your test container and edit the gravwell.conf to include a replication configuration block so that
it can replicate its data to the offline replication server. We can use the hostname offlineserver for the
replication peer and leave the authentication secrets blank for reasons that will be covered in section 5.7.
Once you are happy with your replication configuration block, copy it into the test container and restart it.
Then use ping and netstat to verify that the indexer has connected to the offline replication server:

docker cp config/gravwell.conf test:/opt/gravwell/etc/
docker restart test
docker exec -it test ping -c 1 offlineserver
docker exec -it test netstat -pa | grep ESTABLISHED

We should see an established connection to the host offlineserver on port 9406 (the replication port).
Get a shell on the offline replication server using docker exec -it offlineserver /bin/sh. Print the
replication configuration file to find the replication storage directory, then navigate to that directory. We
should see a replication.db file and a directory with the same name as our indexer’s UUID. This means
the indexer has connected and is pushing shards to the offline replication server. Wait a few minutes and
watch as the indexer pushes each successive data shard to the replication server.

Once the indexer has pushed all its shards (you should see about 20), exit the offline replication server shell
with the exit command.

Next, let’s simulate a disk failure by destroying all the shards in our indexer and restarting it. Let’s start
smashing some storage locations within our indexer, then restart it:

docker exec test rm -rf /opt/gravwell/storage/
docker exec test rm -rf /opt/gravwell/cold_storage/
docker restart test

These docker commands basically reached in and annihilated all the data in our indexer and then restarted
the entire container. If not for the replication system we would have lost everything. However with replication,
if we wait just a moment we can see the indexer repopulate its shards, ready for searching. You may have
noticed that the replication system restored the shards to the cold pool. The replication system will typically
target cold pool for restoration, only pushing current hot shards to the hot pool.

Lab Questions

1. Did the shard size change on the indexer after it was restored?

(a) Why?

2. Why would we want to restore shards to the cold well on replication recovery?

152 CHAPTER 5. INDEXERS AND WELL CONFIGURATION

Figure 5.6: Post-restoration Well Stats

To clean up after the experiment, simply run:

docker stop $(docker ps -a -q)
docker rm $(docker ps -a -q)

5.5 Query Acceleration and Indexing
Gravwell indexers provide a couple different data management methodologies, ranging from raw storage with
only temporal indexing to full feature extraction with direct data indexing. This section will explore indexer
acceleration configuration and examine some of the pros and cons of this methodology.

A Gravwell well without any acceleration configuration will employ only temporal indexing, which means
that every entry is grouped according to a timestamp that is indexed using a temporal index. The temporal
index allows for specifying subsections of time without combing through data that isn’t in the time region
specified by the query. Wells can also be configured to enable a secondary index which takes into account data
contents. The secondary indexes use feature extraction modules which behave similarly to query modules.

The feature extraction modules are responsible for extracting fields from raw entries and passing them to an
acceleration engine. The acceleration engine then generates a data structure which can help queries efficiently
filter and lookup specific data features. Gravwell currently supports two acceleration engines: bloom and
index.

The two acceleration engines are designed to provide a tradeoff between disk usage and query speed. At low
data volumes where an indexer can easily cache an entire bloom index, the bloom engine can provide an
efficient method for query acceleration. When data volumes are large enough that it is not practical to cache
significant portions of the index in memory, the index engine allows for direct disk-backed query acceleration.

Note that the acceleration engines will only be engaged when using the equality (==) filter, because the
engines index exact values. Filters such as less-than, great-than, or subset will not be accelerated, because
they require more complex comparisons; they can still be used and will work correctly, but the acceleration
engines will not be engaged for those filters and the query will not execute any faster than on non-accelerated
data.

5.5.1 Accelerator Well Configuration
Accelerators are configured on a per well basis, which enables tailoring field extraction and acceleration
engines to specific data. Practitioners can choose the appropriate storage and query performance tradeoffs
for each data type based on retention requirements, storage availability, and data query frequency. Very large
deployments with many hundreds of terabytes of data can achieve significant cost reductions by choosing the
appropriate acceleration and storage mechanic for each data source.

5.5. QUERY ACCELERATION AND INDEXING 153

Let’s examine a very basic acceleration configuration which expects JSON data and extracts a few
fields. The two required configuration parameters are Accelerator-Name and Accelerator-Args. The
Accelerator-Name parameter defines which field extraction module is responsible for processing incoming
data, and the Accelerator-Args parameter defines what the module should extract.

An example configuration which extracts a username, email, country, group, and ip from a JSON data stream
might look like:

[Storage-Well "json"]
Tags=json
Location=/opt/gravwell/storage/json/
Accelerator-Name="json"
Accelerator-Args="user email country group ip"

The acceleration configuration does not specify an Accelerator-Engine-Override which means the default
engine bloom is used. If we were to add Accelerator-Engine-Override=index to the configuration the
acceleration system would use direct indexing rather than a bloom filter for the engine. The direct indexing
system would consume more storage space, but may also be significantly faster for large data sets.

Entry source fields can also be added to the acceleration configuration to allow the src module to also invoke
acceleration. Accelerating on source may be useful when there are many ingest endpoints and you want to
only look at data that was generated by a specific source. Enabling entry source extraction is performed by
adding Accelerate-On-Source=true to the well configuration. Source acceleration is entirely independent
of the extraction module. Other acceleration tuning parameters such as the bloom collision rate are also
available; make sure to visit the official Gravwell accelerator documentation page for a full list of parameters
and tuning options.

Let’s examine some entry data where the above acceleration configuration would be applicable:

{
"time":"2019-03-18T17:00:22.648353602-06:00",
"class":13897,
"user":"madisonmartinez880",
"name":"Elijah Taylor",
"email":"madisonmartinez880@test.com",
"state":"DC",
"country":"Monaco",
"group":"toucan",
"useragent":"Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/60.0.3112.107 Mobile Safari/537.36",
"ip":"6.89.189.142"
}

The example data is something that might be generated by a service API that responds to user requests and
logs various data about the user. Our accelerator configuration is setup to extract some specific fields from
the entry to enable query acceleration. It is important to note that the field extraction system is much more
tolerant in the acceleration system than it is in query. For example, if the field user was missing from the
entry, the json query module would drop the entry; in the acceleration system entries are never dropped and
field extraction modules will continue attempting to extract any specified fields.

Invoking the acceleration system is entirely transparent. Users need only specify inline filtering arguments at
query time and the indexers will identify whether a field is accelerated on and utilize it. Let’s look at a query
that would invoke acceleration using our example configuration:

tag=json json user country=="Monaco" useragent~"Apple" | table

The query is performing a few inline filters to look for specific field values and then outputting the resulting
enumerated values into a table. Three fields are extracted, with a filter applied to the country and useragent
fields. The country field has an equality filter, specifying that the extracted country must be the exact

154 CHAPTER 5. INDEXERS AND WELL CONFIGURATION

Engine Storage Used Storage % Ingest Rate Ingest %
none N/A N/A 145K/s 100%
bloom 110MB 6.4% 100K/s 68%
index 770MB 45% 61K/s 42%

Table 5.1: Storage Cost by Acceleration Engine

Engine Query Time Speedup
none 6.32s N/A
bloom 700ms 9X
index 220ms 28X

Table 5.2: Speedup by Acceleration Engine

value “Monaco” and the useragent filter simply says that the value “Apple” must occur somewhere within
the useragent field. While both the name and country fields are specified in the acceleration config, only
the country field has an appropriate filter operation, so the acceleration system will only use the country field
for acceleration. The useragent field does not use a supported filter operator; ~ is a subset operation and
can’t be used for acceleration, because the acceleration system can only compare against complete matches,
not substrings.

Accelerator configurations can be changed at any time, however indexers will only apply the new accelerator
configuration on new shards, old shards maintain their old configuration. This means that changing accelerator
configurations does not cause Indexers to reindex old data. The query system will re-evaluate the applicability
of a query for acceleration on each shard. For example, if we added the field group to our acceleration
configuration after a few days of operation, only the new shards would have the field in their indexes. Any
query that specified an equality filter on the group field will transparently use the group field on shards
which have it and not on shards that do not. Users may notice speedups on specific time spans of data but
otherwise don’t need to care what is and is not accelerated.

Gravwell supports an ever growing list of field extraction modules for acceleration, including: csv, fields,
syslog, json, cef, regex, winlog, and binary slicing. Check the official Gravwell documentation page at
https://docs.gravwell.io/#!configuration/accelerators.md for an up-to-date list of supported extraction
modules.

5.5.2 Accelerator Overhead and Query Impact
Enabling acceleration on Gravwell indexers can have a profound impact on query performance. A well-tuned
index can enable a query to find a few specific entries in terabytes of data in just a few milliseconds. However,
indexing is not free; it incurs disk and ingest rate costs. This section will explore the resource costs for each
acceleration engine type to help you better understand when to use them. Let’s start by comparing the
impact acceleration has on a sample dataset consisting of 10 million JSON entries. The JSON dataset is
approximately 5GB of data and consumes about 1.7GB of space when stored on an indexer using the default
compression system. We can see the impact of just temporal indexing vs bloom filtering vs direct indexing
for each engine in Table 5.1.

However, if we look at the impact on query performance using each acceleration engine we can see how the
storage and ingest impacts are warranted. Table 5.2 shows the query speedup of the different acceleration
engines; note that although the index engine requires a lot of storage space to hold the index, it offers a 28x
speedup over un-accelerated querying.

The example dataset and system allowed the entire bloom index to be held in memory during query, but the
direct index system was still significantly faster. Systems where the bloom index cannot be held in memory
will see even more dramatic speedups. One Gravwell customer saw a query that examined 8TB of data
complete in less than 1 second once indexing was properly configured, where un-accelerated queries had
previously taken over 30 minutes.

https://docs.gravwell.io/#!configuration/accelerators.md

5.5. QUERY ACCELERATION AND INDEXING 155

5.5.3 Accelerators and Query Modules
Many query extraction and some filtering modules can make use of query accelerators (like full text indexing,
JSON indexing, etc) when filtering is used with a given module. For example, the netflow module (netflow
Src Dst Port==22) can use a properly-configured accelerator to dramatically reduce search time because not
all records need to be evaluated. Some filtering modules (such as “words”) can also invoke query acceleration
by passing hints to the underlying accelerator.

Not all query modules are compatible with all query acceleration configurations. For example, if the “netflow”
tag is configured to be accelerated using the “netflow” accelerator, the “words” module will not be able
to invoke query acceleration on this tag; this is because the “netflow” accelerator is expecting to operate
on binary data and apply a specific structure to data during indexing, while the “words” module needs
fulltext acceleration. Gravwell will intelligently examine query parameters and invoke the acceleration system
whenever possible, but there are some caveats to be aware of.

Query acceleration that uses specific structure (such as netflow, ipfix, packet, fields, regex, etc) requires that
the query parameters match exactly.

For example, if you customize your accelerator for a given tag so that it uses regular expressions to apply
structure, then you must use the exact regular expression in your query in order to benefit from the accelerator.
If the regular expression does not match exactly, the system will not engage query acceleration, because it
cannot guarantee that the query regular expression is a direct subset of the accelerator regular expression.

Query acceleration may accelerate on subsets of your query.

For example, let’s assume the tag “test” is using fulltext acceleration and we are executing the query tag=test
grep "this that the other". The query is using grep as a brute-force sub-string match which means that
the boundaries of the match string are not necessarily word boundaries. However, the query system is smart
enough to know that some internal parts of the matched string are words, so it will use them to accelerate
the query. The query will accelerate the search as if you had run tag=test words that the | grep "this
that the other".

Query acceleration is not order of operation dependent.

Modules which can accelerate queries will hint about their ability to accelerate no matter where they are in the
query string. Consider the following query: tag=test grep foo* | regex "my name is (?P<name>\S+)"
| words foobar. The words module is capable of invoking query acceleration on a fulltext accelerator and
will hint to the acceleration system that it wants the word "foobar". You may notice that very few entries
actually enter the pipeline even though the words module came much later in the query.

Query acceleration is on a shard-by-shard basis.

Gravwell does not require tag accelerators to be consistent across all time. You can set up acceleration, ingest
some data, and then change the acceleration configuration without re-indexing data. When you issue a query,
the acceleration hits are handed to each shard of data across time and the compatibility of acceleration is
checked on each shard. Gravwell will automatically invoke acceleration wherever possible, which means that
as your query moves over historical data it may be engaging acceleration in different ways transparently.
You may notice that a query is fast on some sections of data and slower on others–that is just the system
engaging acceleration where it can.

Query acceleration operates on positive matches.

Gravwell is not a bitfield index; this means that it will only accelerate on direct matches. For example
tag=syslog syslog Hostname=="foobar" can invoke the accelerator, but tag=syslog ProcID < 20 will
not. The accelerators also do not accelerate on the negative, meaning that tag=syslog syslog Hostname
!= "foobar" will not invoke the accelerator engine.

156 CHAPTER 5. INDEXERS AND WELL CONFIGURATION

5.5.4 Hands-on Lab: Acceleration
For this lab, we are going to configure a well that will store JSON data and enable an accelerator that will
extract fields from the JSON data at ingest time. We will then generate hundreds of megabytes of data using
the JSON generator. Once the data is ingested we will query it and examine how the accelerator reduces the
number of entries that enter the pipeline, thus speeding up the query.

First, we’ll get into the lab subdirectory:

cd gravwell_training/Indexers/Lab-Acceleration/

Create a new container using the gravwell:base image:

docker create --net gravnet --name test gravwell:base

We have provided a copy of the base gravwell.conf in the config/ subdirectory, so modify it to create a new
well named “json” with the following specifications:

1. Storage location of /opt/gravwell/storage/json

2. Tag json assigned

3. Accelerator-Name="json"

4. Extract the following fields:

(a) class account.user account.email account.phone account.state account.country
group ip

Copy the edited gravwell.conf file into the container, start it, and inspect it to find its IP:

docker cp config/gravwell.conf test:/opt/gravwell/etc/gravwell.conf
docker start test

Now we’ll use the generators image to generate some JSON data; if you don’t have the gravwell:generators
image, see Section 2.5 for instructions on how to load it.

docker run --net gravnet --rm -it gravwell:generators \
/jsonGenerator -clear-conns test:4023 -entry-count 500000

Open your Gravwell GUI and check that there is a new well named “json” with 500k entries in it. Then
execute a query over the last week which uses the json module and inline filtering to display only entries
where the account.country field is “Greece”:

tag=json json account.country==Greece

You should see a few thousand entries, as shown in Figure 5.7

Now click the stats tab on your results page to view the search stats, as shown in Figure 5.8. Pay special
attention to the “Entries processed” value. That value specifies how many entries actually entered the pipeline.
Your dataset contained 500k entries, but using the inline filtering and query accelerators enabled you to only
have to process a few thousand entries. That’s hundreds of thousands of entries that we didn’t have to pull
off the disk or look at in any way.

5.5. QUERY ACCELERATION AND INDEXING 157

Figure 5.7: Filtered Search Results

Figure 5.8: Search Results Stats

158 CHAPTER 5. INDEXERS AND WELL CONFIGURATION

Next, we’ll add two additional wells to the indexer. The second well will enable query acceleration that is
almost identical to the well we have already configured, but instead of using the default bloom engine, we are
going to use the index engine. The third well will not enable query acceleration at all.

Open your gravwell.conf file and add two additional wells with the following parameters:

1. Name: json2

(a) Storage location /opt/gravwell/storage/json2

(b) Tag json2 assigned

(c) Accelerator-Name="json"

(d) Extract the following fields: class account.user account.email account.phone account.state
account.country group ip

(e) Set engine via Accelerator-Engine-Override="index" parameter

2. Name: json3

(a) Storage location /opt/gravwell/storage/json3

(b) Tag json3 assigned

Stop your gravwell container, copy the updated gravwell.conf file into it, and then restart it:

docker stop test
docker cp config/gravwell.conf test:/opt/gravwell/etc/gravwell.conf
docker start test

Re-ingest more JSON data using the tags “json2” and “json3”:

docker run --net gravnet --rm -it gravwell:generators \
/jsonGenerator -clear-conns test -entry-count 500000 -tag-name json2

docker run --net gravnet --rm -it gravwell:generators \
/jsonGenerator -clear-conns test -entry-count 500000 -tag-name json3

Go re-run the same query as before over a week, first using the tag “json2” then again using the tag “json3”:

tag=json2 json account.country==Greece
tag=json3 json account.country==Greece

You should get a few thousands results for each query, but check the stats page and examine the “Entries
Processed” results. For the tag json3, which used a well that had no query acceleration, you should notice
that the query had to actually process 500k entries. That means the indexer had to get the 500k entries off
the disk and put them in pipeline. The json module was then responsible for performing all the filtering,
meaning it had to process every single entry. For the json2 tag, you should notice that the number of entries
processed was the exact same as the number of results. That is because the index engine doesn’t have a high
statistical collision rate the way the bloom engine does. By reading even fewer entries off the disk than with
the bloom engine, this query is even faster.

Lab Questions

1. How much more storage did the bloom engine well consume than the raw well?

2. How much more storage did the index engine well consume than the bloom well?

3. What was the difference in ingest speed for each well?

4. How much faster was the index engine well than the bloom well?

5. And how much faster was the bloom well than the non-accelerated (raw) well?

6. If we re-run each query multiple times, how much faster was each?

5.6. INDEXER OPTIMIZATION 159

(a) Why?

(b) When would this NOT happen?

To clean up after the experiment, simply run:

docker stop $(docker ps -a -q)
docker rm $(docker ps -a -q)

5.6 Indexer Optimization
Gravwell prides itself on not requiring specific machine specs and being able to scale across a broad range
of hardware capabilities. While the software makes a best effort at scaling without human intervention,
there are several tuning parameters that can improve storage and query efficiency on very large machines,
and protect very small machines from memory exhaustion. The tuning parameters are focused on how the
indexers organize discrete units of data and how many of those units can be “in flight” at any given time.
Varying each parameter allows machines with lots of CPU cores and significant memory to scale out and feed
those cores as well as make more efficient use of storage by effectively grouping data. Most default values are
geared towards a sane default that will operate well on a smaller machine.

As data is ingested into a Gravwell indexer it is grouped in storage units called blocks. The more efficiently
that like data can be colocated into blocks, the more efficient we can store and query data. Gravwell indexers
allow for fine tuning maximum block sizes and the facilities used to generate those blocks.

Figure 5.9: Indexer Prebuffer

Each indexer employs a prebuffer (Figure 5.9) used during ingest to hold a set of incoming entries and
organize them for better storage efficiency. The prebuffer allows an indexer to tolerate ingesters that are
sending out-of-order data, or multiple ingesters with clock skews, while still generating relatively efficient
storage blocks. Large machines with significant memory can allocate a larger prebuff to enable faster ingest
and better storage efficiency, while smaller machines with limited memory can reduce the prebuffer so that
more memory is available for query.

Tuning block sizes is typically not required, but if you are operating a very large cluster with very high data
ingest rates, tuning the block sizes can help query performance, compression efficiency, and ingest throughput.
By default indexers will store up to 4MB of data in a single block. This means that if more than 4MB of
data with the same timestamp is ingested, it will be broken into multiple blocks. The maximum block size is
controlled using the Max-Block-Size parameter in the global section of the gravwell.conf file. The size of
a block of can impact memory usage at query time, storage efficiency, and compression efficiency. However, if
you specify very large blocks and large pipeline buffers, your indexer will consume significantly more memory
at query time and may not tolerate large numbers of concurrent queries.

160 CHAPTER 5. INDEXERS AND WELL CONFIGURATION

5.7 Docker Configuration
Throughout the training so far we have made heavy use of Docker as a simple container platform that makes
it easy to configure and run Gravwell. As you were working with Gravwell, there may have been a nagging
question about the gravwell.conf files we were using. There were no secret tokens in any of them. The
docs clearly state that you MUST set the Ingest-Secret and Control-Secret parameters, but none of the
gravwell.conf files we have used so far have done so. Why? How have things worked at all?

Docker is designed to rapidly deploy services with as little fanfare as possible. Kubernetes and RedHat
OpenShift build upon that concept and take it to the extreme, making it possible to deploy extremely large
clusters of services with just a few commands. Configuring those services with thousands of configuration
files would be ridiculously difficult, so the platforms provide a system called “secrets” which allow you to
inject environment variables and secure tokens into a container at runtime. Those injected variables are how
we have been configuring the secrets: they were registered with the image and injected every time you fired
up a container. Check it by inspecting a running gravwell:base container or image:

docker inspect gravwell:base

The pertinent section is Config.Env, which should contain the following environment variables:

GRAVWELL_INGEST_AUTH=IngestSecrets
GRAVWELL_INGEST_SECRET=IngestSecrets
GRAVWELL_CONTROL_AUTH=ControlSecrets
GRAVWELL_SEARCHAGENT_AUTH=SearchAgentSecrets
GRAVWELL_PIPE_TARGETS=/opt/gravwell/comms/pipe

Gravwell components will attempt to read configuration variables from the gravwell.conf file, but if
required variables are not present in the config file it will look for them in the environment, and optionally
through Docker secrets4. Gravwell will only look at environment variables and/or secrets if the corresponding
gravwell.conf parameter is empty; the configuration file always supersedes any environment or secret tokens.
For more information see our documentation section on Docker configuration5

The environment variables associated with the image can be overridden at runtime using the -e Docker flag.
Remember that environment variables are NOT a secure way to configure Gravwell, so if you are going to
use Docker, Kubernetes, or Openshift in production, use secrets for the auth tokens.

4https://docs.docker.com/engine/swarm/secrets/
5https://docs.gravwell.io/#!configuration/docker.md

5.7. DOCKER CONFIGURATION 161

5.7.1 Hands-on Lab: Docker Configuration
For this lab we are going to use Docker environment variables to stand up a distributed 4-node Gravwell
cluster in just a few commands without fiddling with configuration files. We will inject all the needed
configuration parameters using Docker. If you are using a community license you can complete the lab, but
will only be able to configure a single indexer.

Look at gravwell_training/Indexers/Lab-Docker/config/gravwell.conf and note that we have re-
moved the Remote-Indexers configuration parameter so that we can inject a list of indexers at runtime.
First, fire up a container that is only running the indexer, show the process list, and then clean up the
container:

docker create --net gravnet --name idx \
-e DISABLE_WEBSERVER=TRUE -e DISABLE_SEARCHAGENT=TRUE \
gravwell:base

docker cp gravwell.conf idx:/opt/gravwell/etc/
docker start idx
docker exec idx ps
docker stop idx
docker rm idx

You should see that only the manager and gravwell_indexer processes are running. The manager application
is an open-source6 Gravwell process management application that somewhat takes on the role of systemd. It
respects some configuration via environment variables of its own.

user@training:~$ docker exec -it idx ps
PID USER TIME COMMAND

1 root 0:00 /opt/gravwell/bin/manager
11 root 0:00 /opt/gravwell/bin/gravwell_indexer -stderr indexer
22 root 0:00 ps

user@training:~$

Now that we know how to start an indexer in a container without the other services, let’s fire up a few of
them with a small loop. Make sure you’re in the Indexers/Lab-Docker/config directory, then run:

for i in 1 2 3 4; do
docker create --net gravnet --name idx$i \
-e DISABLE_WEBSERVER=TRUE \
-e DISABLE_SEARCHAGENT=TRUE \
gravwell:base

docker cp gravwell.conf idx$i:/opt/gravwell/etc/
docker start idx$i
done

We should now have 4 indexers up and running, so let’s start up the webserver and configure it to connect to
our indexers:

docker create --net gravnet --name webserver \
-e DISABLE_INDEXER=TRUE \
-e GRAVWELL_REMOTE_INDEXERS=idx1,idx2,idx3,idx4 \

gravwell:base
docker cp gravwell.conf webserver:/opt/gravwell/etc/
docker start webserver

Get the webserver’s IP address:

docker inspect --format \
'{{.NetworkSettings.Networks.gravnet.IPAddress}}' webserver

6https://github.com/gravwell/gravwell/tree/master/manager

162 CHAPTER 5. INDEXERS AND WELL CONFIGURATION

Let’s open up our Gravwell GUI and check out our indexer and hardware tabs. You should see several
indexers connected with a lot more activity in the hardware monitoring page, as shown in Figures 5.10 and
5.11.

Figure 5.10: Hardware Page with Four Indexers

Figure 5.11: Wells Page with Four Indexers

To clean up after the experiment, simply run:

docker stop $(docker ps -a -q)
docker rm $(docker ps -a -q)

Chapter 6

Webserver Configuration

Gravwell’s webserver component provides users with access to Gravwell’s search capabilities. The simplest
system consists of one indexer and one webserver, both on the same machine. More complex variations are
possible, such as one webserver and multiple indexers or even multiple webservers with one or more indexers.
This chapter will discuss configuration options for the Gravwell webserver.

6.1 Basic Configuration
The webserver is configured via gravwell.conf. The following basic options can be set in gravwell.conf, but
defaults are usually functional:

• Web-Port (default 443): the port on which the webserver should listen.

• Insecure-Disable-HTTPS (default false): enabling this makes the webserver operate HTTP-only.

• Key-File (default /opt/gravwell/etc/key.pem) and Certificate-File (default /opt/gravwell/etc/cert.pem):
specify an X509 pair to use for HTTPS

• HTTP-Proxy (default none): the address of an HTTP proxy that should be used for requests to Internet
resources

The following settings control some parameters around login sessions and brute-force protection. The defaults
are typically acceptable:

• Session-Timeout-Minutes (default 60): how many minutes a login session should last without activity

• Login-Fail-Lock-Count (default 5): how many failed login attempts before a user account is locked

• Login-Fail-Lock-Duration (default 5): how many minutes a user account should remain locked after
a brute-force attempt

6.1.1 Configuring Indexers
A webserver must connect to one or more Gravwell indexers to issue queries, since the actual data resides on
the indexers. The default community edition configuration only talks to one indexer:

Remote-Indexers=net:127.0.0.1:9404

Adding more indexers is as simple as specifying additional Remote-Indexers entries in gravwell.conf:

Remote-Indexers=net:indexer0:9404
Remote-Indexers=net:indexer1:9404

163

164 CHAPTER 6. WEBSERVER CONFIGURATION

Gravwell will automatically use all indexers it knows about when searching. No additional configuration is
required on the indexers.

6.1.2 Hands-on Lab: Adding Indexers to a Webserver
In this lab, we will take an existing webserver + indexer pair and configure the webserver to also use an
additional indexer.

First, verify that you have the gravwell:base and gravwell:indexer images, if not load them from your images
directory as detailed in Section 2.5. Next we will launch two containers. The first is a webserver and indexer
on the same system, the second is just an indexer:

docker run --rm -p 8080:80 -d --net gravnet --name webserver gravwell:base
docker run --rm -d --net gravnet --name indexer0 gravwell:indexer

Next, we point a web browser at http://localhost:8080 and log in.

Then, we add the new indexer to the webserver’s configuration. Copy gravwell.conf from the webserver to
the temp directory:

docker cp webserver:/opt/gravwell/etc/gravwell.conf /tmp

Edit /tmp/gravwell.conf and add the following line below the existing ‘Remote-Indexers’ line:

Remote-Indexers=net:indexer0:9404

Save the file, then run the following to re-update the file to the webserver:

docker cp /tmp/gravwell.conf webserver:/opt/gravwell/etc/gravwell.conf

Finally, we restart the webserver container:

docker restart webserver

Now, browsing to the “Wells and Indexers” page in the GUI should show two indexers, as in Figure 6.1

Figure 6.1: Two indexers

Lab Questions

1. Why was it necessary to restart the webserver process after updating the configuration?

2. How would you configure the webserver to only communicate with the indexer on the indexer0 container,
not the local instance?

To clean up after the experiment, simply run:

docker kill $(docker ps -a -q)

http://localhost:8080

6.2. CONFIGURING MULTIPLE WEBSERVERS 165

6.2 Configuring Multiple Webservers
Gravwell can use multiple webservers to load-balance user requests. These webservers must coordinate with
each other to manage users, searches, etc. This coordination is handled through the datastore, a centralized
authority for webserver data.

Setting up a multiple webserver environment comprises configuring the datastore, pointing the webservers at
the datastore, and optionally installing a load-balancer to balance traffic between the webservers.

The datastore is a separate Gravwell component which must be installed via self-extracting shell archive
available on the Gravwell downloads page. The datastore can be co-resident with a Gravwell webserver, or
it can run on its own devoted machine. It reads its configuration from gravwell.conf; for most situations,
defaults will be fine, but the following options are available:

• Datastore-Listen-Address (default “” [all]): specifies which IP address the datastore should listen
on for connections

• Datastore-Port (default 9405): specifies the port on which the datastore should listen

• Control-Auth: the shared secret by which webservers authenticate to the datastore. This must be the
same on the datastore and webservers!

Webservers must in turn be configured to speak with the datastore using the following options:

• Datastore: the address and optional port to connect to the datastore, e.g. “datastore.gravwell.io:9405”.

• External-Addr: The address which external systems should use to access this webserver. It can be
an IP address or a DNS name. Setting this value allows users on webserver A to view searches on
webserver B.

• Datastore-Update-Interval (default 10): how often (in seconds) the webserver should check in with
the datastore. 10 is a good default.

• Datastore-Insecure-Skip-TLS-Verify: if set to true, the webserver will not verify the datastore’s
TLS certificate. You should never use this in production, but it can be useful for testing.

After configuring the webserver’s gravwell.conf, restart the webserver process. It should connect to the
datastore and begin synchronizing. Repeat this for all webservers

6.2.1 Hands-on Lab: Configuring multiple webservers
This lab will configure an indexer, two webservers, and a datastore. Note that for simplicity, we will be using
self-signed TLS certificates for communications between the webservers and the datastore and will therefore
be disabling TLS verification in our configs. For actual deployments we strongly recommend configuring
properly-signed TLS certificates as explained in Section 14.1.

First, verify that you have the gravwell:webserver, gravwell:indexer, and gravwell:datastore images available.
If not, load them from your images directory as detailed in Section 2.5.

Next, we start four containers: one indexer, two webservers, and the datastore. Note that webserver0 is
forwarded to localhost:8080, and webserver1 is forwarded to localhost:8081:

docker run --net gravnet --rm -d --name indexer0 gravwell:indexer
docker run --net gravnet --rm -p 8080:80 -d --name webserver0 gravwell:webserver
docker run --net gravnet --rm -p 8081:80 -d --name webserver1 gravwell:webserver
docker run --net gravnet --rm -d --name datastore gravwell:datastore

Next, we configure each webserver to talk to the datastore. Do the following for both webserver0 and
webserver1, taking care to set the External-Addr field properly for each:

Copy the config file to the local system (e.g. docker cp webserver0:/opt/gravwell/etc/gravwell.conf
/tmp/gravwell.conf) and add the following in the [Global] section:

166 CHAPTER 6. WEBSERVER CONFIGURATION

Remote-Indexers=net:indexer0:9404
Datastore=datastore
External-Addr=webserver0
Datastore-Insecure-Skip-TLS-Verify=true

Copy the config file back (docker cp /tmp/gravwell.conf webserver0:/opt/gravwell/etc/gravwell.conf)
and restart the webserver:

docker restart webserver0

Now we repeat the process for webserver1; note that the External-Addr field is changed below!

Copy the config file to the local system (e.g. docker cp webserver1:/opt/gravwell/etc/gravwell.conf
/tmp/gravwell.conf) and add the following in the [Global] section:

Remote-Indexers=net:indexer0:9404
Datastore=datastore
External-Addr=webserver1
Datastore-Insecure-Skip-TLS-Verify=true

Copy the config file back (docker cp /tmp/gravwell.conf webserver1:/opt/gravwell/etc/gravwell.conf)
and restart the webserver:

docker restart webserver1

Now connect to http://localhost:8080 and http://localhost:8081 in two separate tabs. Log in (“ad-
min”/”changeme”) to both, leaving each open in its own tab.

Open the Groups management screen in the menu bar on both webservers as shown in Figure 6.2.

Figure 6.2: Adding a new group

On one webserver, create a new group; before long, that new group should be visible on the other webserver’s
Groups screen too. It may be necessary to refresh the page.

Lab Questions

1. Why does it take some seconds for the new group to appear on the second webserver? How might this
be sped up?

To clean up after the experiment, simply run:

docker kill $(docker ps -a -q)

http://localhost:8080
http://localhost:8081

6.3. SETTING UP A LOAD-BALANCER 167

6.3 Setting Up a Load-Balancer
Multiple webservers work well when placed behind a load-balancing proxy, such as nginx, Traefik, or
Gravwell’s own load-balancer. When using a load-balancer, users simply access the load-balancer’s address
(e.g. gravwell.example.org) and are transparently proxied through to one of the webservers (e.g. gravwell-
webserver-01.example.org).

It is essential that the load balancer be configured with “sticky” sessions. This ensures that a given user will
be directed to the same webserver every time.

The Gravwell provided loadbalancer takes much of the guess work out of configuration and hot failover.
While any HTTP loadbalancer that can perform session pinning will work, the native Gravwell load balancer
makes configuration easy by directly integrating with the Gravwell datastore so that it can automatically
discover available webservers and intelligently failover without the need for a user request to fail.

The Gravwell Loadbalancer is available as a Debian, Redhat, or shell installer; we also publish a docker
container in the Docker Hub.

The load balancer configuration is named “loadbalancer.conf” and is typically located in the Gravwell “etc”
directory.

Here is an example “loadbalancer.conf” configuration which is serving HTTP requests on port 8080 and
communicating with the datastore without a TLS conection:

[Global]
Disable-HTTP-Redirector=true
Insecure-Disable-HTTPS=true
Web-Port=8080
Update-Interval=10
Session-Timeout=10
Log-Dir=/opt/gravwell/log/loadbalancer
Log-Level=info
Enable-Access-Log=true

Control-Secret=ControlSecrets
Datastore=172.19.0.2
Datastore-Insecure-Disable-TLS=true
#Datastore-Insecure-Skip-TLS-Verify=true

In this case, the loadbalancer will probe the datastore and automatically discover available webservers. As
webservers come online or go offline the load balancer will dynamically add and remove the webservers from
its available pool.

However, you may wish to manually set some specific webservers that should be considered always online.
This does not mean that these webservers will always be used, just that the load balancer will assume they
are always supposed to be available. Even with "override" webservers the loadbalancer will route users to an
available webserver.

Here is an example configuration with two webservers that have a custom configuration:

[Global]
Disable-HTTP-Redirector=false
Insecure-Disable-HTTPS=false
Web-Port=443
Update-Interval=10
Session-Timeout=10
Log-Dir=/opt/gravwell/log/loadbalancer
Log-Level=info
Enable-Access-Log=true

168 CHAPTER 6. WEBSERVER CONFIGURATION

Control-Secret=ControlSecrets
Datastore=172.19.0.2
#Datastore-Insecure-Disable-TLS=true
Datastore-Insecure-Skip-TLS-Verify=true

Example setting up an override webserver that may not be in the datastore
[Overrides "example1"]

Webserver=172.19.0.100
Insecure-Disable-HTTPS=true

[Overrides "example2"]
Webserver=172.19.0.101
Insecure-Disable-HTTPS=true

6.3.1 Using Traefik
The Traefik load-balancing proxy has been shown to work well with Gravwell. The following is a sample
configuration which load-balances between two Gravwell webservers at 10.0.0.1 and 10.0.0.2:

defaultEntryPoints = ["http", "https"]

[file]

[entryPoints]
[entryPoints.http]
address = ":80"
[entryPoints.https]
address = ":443"

[entryPoints.https.tls]
[[entryPoints.https.tls.certificates]]
certFile = "traefik.crt"
keyFile = "traefik.key"

[frontends]
[frontends.frontend1]

backend = "backend1"
[frontends.frontend1.headers]

SSLRedirect = true
SSLTemporaryRedirect = true

[backends]
[backends.backend1]

[backends.backend1.loadbalancer.stickiness]
[backends.backend1.servers.server1]

url="https://10.0.0.1"
[backends.backend1.servers.server2]

url="https://10.0.0.2"

Chapter 7

Ingesters

Ingesters are programs which collect entries from some data source and send them to one or more indexers.
The ingesters described in this chapter are all intended to run continuously, receiving newly-generated data
and packaging it for Gravwell. If you have pre-existing data (archive files on disk, PCAP files, data in Splunk),
see Chapter 11 for information on how best to import it.

7.1 Dealing with Timestamps
All ingesters attach a timestamp to each entry sent to an indexer. Most ingesters extract timestamps directly
from the data being ingested; some, such as Kinesis and Pub/Sub, can use a timestamp obtained directly
from the upstream data source. When an ingester cannot extract a timestamp, the current time will be
applied to the entry.

To find a timestamp in the source data, the ingester will try a list of possible timestamp formats attempting
to find a match in the data. It will always try to re-apply the most recent successful format first. For example,
if an entry has a timestamp 02 Jan 06 15:04 MST, the ingester will attempt to parse the next entry with
the same timestamp format. If it does not match, then the ingester will attempt all other timestamp formats.

There are several ways to change the behavior of how timestamps are parsed, detailed in the next section.
Additionally, fully custom timestamp formats can be provided in some ingesters.

7.1.1 Time Zones
Dealing with time zones can be one of the most challenging and frustrating aspects of ingestion. If a log’s
timestamp includes an explicit UTC offset (e.g. “-0700”), things are relatively easy, but many log formats do
not include any time zone information at all! Sometimes, the system generating the log entry is in a local
time zone, while the Gravwell ingester’s system is set to UTC, or vice versa.

If you believe you have configured your ingester properly, but you’re not seeing any data in a query, try
expanding your query timeframe to include the future using the "Date Range" timeframe selection: just set
the End Date to some time tomorrow. If the Gravwell ingest system is set to a US time zone, but the logs
are in UTC time with no offset included, the incoming data will be ingested in the "future".

The Timezone-Override parameter (described below) is the surest way to fix time zone prob-
lems. If your data has a UTC timestamp but the system clock is set to another time zone, set
Timezone-Override="Etc/UTC". If your data is in US Eastern time, but the system clock is set to UTC, set
Timezone-Override="America/New_York", and so on.

169

170 CHAPTER 7. INGESTERS

7.1.2 Time Parsing Overrides
Most ingesters attempt to apply a timestamp to each entry by extracting a timestamp from the data. There
are several options which can be applied to each data consumer for fine-tuning of this timestamp extraction:

• Ignore-Timestamps (boolean): setting Ignore-Timestamps=true will make the ingester apply the
current time to each entry rather than attempting to extract a timestamp. This can be the only option
for ingesting data when you have extremely incoherent incoming data.

• Assume-Local-Timezone (boolean): By default, if a timestamp does not include a time zone the
ingester will assume it is a UTC timestamp. Setting Assume-Local-Timezone=true will make the
ingester instead assume whatever the local computer’s timezone is. This is mutually exclusive with the
Timezone-Override option.

• Timezone-Override (string): Setting Timezone-Override tells the ingester that timestamps which
don’t include a timezone should be parsed in the specified timezone. Thus Timezone-Override=US/Pacific
would tell the ingester to treat incoming timestamps as if they were in US Pacific time. Mutually
exclusive with Assume-Local-Timezone.

• Timestamp-Format-Override (string): This parameter tells the ingester to look for a specific times-
tamp format in the data, e.g. Timestamp-Format-Override="RFC822". Refer to the timegrinder
documentation for a full list of possible overrides, with examples.

7.1.3 Ingester Custom Time Formats
Many ingesters can support the inclusion of custom time formats that can extend the capability of the
Gravwell timegrinder time resolution system. Gravwell’s timestamp extraction engine has a wide array of
timestamp formats that it can automatically identify and resolve. However, in the real world with real
developers there is no telling what time format a system may decide to use. That is why we enable users to
specify custom time formats for inclusion in the timegrinder system.

Custom time formats are a fallback when the usual timestamp extraction fails; refer to section 7.1 for more
general information on timestamp extraction.

Defining a Custom Format

A custom format requires three items to function:

• Name

• Regular Expression

• Format

The given name for a custom time format must be unique across other custom time formats and the included
timegrinder formats. For a complete up-to-date listing of included time formats and their names, refer to the
timegrinder documentation1.

Custom time formats are declared in the configuration files for supported ingesters by specifying a named
TimeFormat block. Here is an example format named “foo” which handles timestamps that are delimited
using underscores:

[TimeFormat "foo"]
Format="2006_01_02_15_04_05"
Regex=`\d{4}_\d{1,2}_\d{1,2}_\d{1,2}_\d{1,2}_\d{1,2}`

This format would properly handle the timestamps in the following logs:

2021_02_05_09_00_00 and my id is 1
2021_02_05_09_00_00 and my id is 2

1https://pkg.go.dev/github.com/gravwell/gravwell/v3/timegrinder#pkg-constants

https://pkg.go.dev/github.com/gravwell/gravwell/v3/timegrinder#pkg-constants

7.1. DEALING WITH TIMESTAMPS 171

2021_02_05_09_00_00 and my id is 3
2021_02_05_09_00_00 and my id is 4
2021_02_05_09_00_00 and my id is 5
2021_02_05_09_00_00 and my id is 6

Here is another format that handles logs with only a timestamp:

[TimeFormat "foo2"]
Format="15^04^05"
Regex=`\d{1,2}\^\d{1,2}\^\d{1,2}`

This format would handle the following logs, appropriately applying the current date to each extracted
timestamp:

09^00^00 and my id is 1
09^00^00 and my id is 2
09^00^00 and my id is 3
09^00^00 and my id is 4
09^00^00 and my id is 5
09^00^00 and my id is 6

These custom timestamp definitions will be automatically added to the list used for timestamp extraction,
but the name can also be explicitly specified in the Timestamp-Format-Override parameter. For example,
we can force the timestamp format to our custom format using Timestamp-Format-Override="foo".

Time Formats

The Format component uses the Go standard time format specification2. In short, to define a format, specify
the date ‘Mon Jan 2 15:04:05 MST 2006’ using whatever format you choose.

Time formats can omit the date component. When the custom format system identifies that a custom time
format does not include a date component, it will automatically update the extracted timestamp’s date to
the current day.

Time Zones

All custom time formats will attempt to operate in UTC unless otherwise indicated using the Format directive.
This means that if you have a time format without a date component you must pay special attention to the
timezone. If an application emits a timestamp of “12:00:00” in MST and there is no timezone component or
timezone overrides, timegrinder will interpret the timestamp as UTC and the extracted date will be 7 hours
in the past.

If your timestamp does contain a timezone you must include that in your Format directive so that the
timegrinder system knows to interpret the timestamp in the correct time zone. For example here is the
previously described “foo” custom format but with a timezone component:

[TimeFormat "foo"]
Format="2006_01_02_15_04_05_MST"
Regex=`\d{4}_\d{1,2}_\d{1,2}_\d{1,2}_\d{1,2}_\d{1,2}_\S+`

This example will properly handle timestamps in their respective time zones and apply the correct timestamp
on extraction.

Example

Here is an example File Follower configuration which adds two custom time formats:
2https://golang.org/pkg/time/#pkg-constants

https://golang.org/pkg/time/#pkg-constants

172 CHAPTER 7. INGESTERS

[Global]
Ingester-UUID="463c1889-2954-40a0-a3b4-705ea66459f6"
Ingest-Secret = IngestSecrets
Connection-Timeout = 0
Pipe-Backend-Target=/opt/gravwell/comms/pipe #a named pipe connection, this should be used when ingester is on the same machine as a backend
State-Store-Location=/opt/gravwell/etc/file_follow.state
Log-Level=INFO #options are OFF INFO WARN ERROR
Log-File=/opt/gravwell/log/file_follow.log
Max-Files-Watched=64 # Maximum number of files to watch before rotating out old ones, this can be bumped but will need sysctl flags adjusted

#basic default logger, all entries will go to the default tag
#no Tag-Name means use the default tag
[Follower "auth"]
Base-Directory="/tmp/logs/"
File-Filter="*.log" #we are looking for all authorization log files
Tag-Name=test
Assume-Local-Timezone=true #Default for assume localtime is false

[TimeFormat "foo"]
Format="2006_01_02_15_04_05"
Regex=`\d{4}_\d{1,2}_\d{1,2}_\d{1,2}_\d{1,2}_\d{1,2}`

[TimeFormat "foo2"]
Format="15!04!05"
Regex=`\d{1,2}!\d{1,2}!\d{1,2}`

The file follower will handle timestamps that are specified as “2021_02_14_12_33_52” and “15!05!22”
properly due to the additional custom time formats.

7.2 Configuration
Each ingester uses its own configuration file, typically stored in /opt/gravwell/etc/. The config file consists
of two sections:

• A [Global] section, containing configuration options that apply to the ingester in general.

• One or more named data sources which describe:

– Where to get data

– How to process that data into entries

Here is a sample configuration as used by the packet capture ingester:

[Global]
Ingest-Secret = IngestSecrets
Pipe-Backend-target=/opt/gravwell/comms/pipe
Log-Level=INFO #options are OFF INFO WARN ERROR
Ingest-Cache-Path=/opt/gravwell/cache/network_capture

[Sniffer "spy1"]
Interface="p1p1" #sniffing from interface p1p1
Tag-Name="pcap"
Snap-Len=0xffff #maximum capture size
BPF-Filter="not port 4023"
Promisc=true

7.2. CONFIGURATION 173

Note that it specifies the [Global] section and a single [Sniffer] section. The [Sniffer] section describes
where to get data (from interface p1p1), which tag to apply to the entries, and some other options. The
[Global] section mostly describes how the ingester should connect to an indexer (in this case via Unix pipe)
and how to authenticate, but it also sets up a cache and defines the level of logging to output.

The following global configuration options are supported by all ingesters:

• Ingest-Secret: the shared secret used to authenticate to an indexer. Must match indexer’s Ingest-Auth
setting.

• Insecure-Skip-TLS-Verify: If set to true, self-signed or otherwise invalid TLS certificates sent by an
indexer will be accepted.

• Ingest-Cache-Path: A directory which will be used to cache data in case of a network error.

• Max-Ingest-Cache: Maximum amount of data to cache in MB.

• Cache-Depth: The maximum number of entries to store in memory before writing to disk.

• Cache-Mode: Cache mode determines if the cache is always enabled, or only used when indexer
connections fail.

• Log-Level: A string log level. OFF, INFO, WARN, and ERROR are valid selections.

• Log-File: The location to which logs should be written

• Source-Override: An IP address (ipv4 or ipv6) which should be put into the “Source” field of entries
from this ingester.

NOTE: The Ingest-Secret field must be set, but all other options can be left blank; the defaults are sensible.

The Global section of the Ingester configuration file must also specify at least one way to connect to an
indexer. Ingesters can communicate with an indexer in several ways:

• Unix pipes: Gravwell indexers typically put a Unix pipe file at /opt/gravwell/comms/pipe. Ingesters
on the same system can connect to the pipe for better performance.

– Pipe-Backend-target=/opt/gravwell/comms/pipe

• Cleartext TCP: Gravwell indexers can accept unencrypted ingester traffic, typically on port 4023.
This should only be used on trusted, internal networks.

– Cleartext-Backend-target=127.0.0.1:4023

• Encrypted TCP: Gravwell indexers, if configured with an X509 certificate/key pair, can accept
incoming encrypted connections from ingesters. This is the most secure option.

– Encrypted-Backend-target=127.1.1.1:4023

The non-Global configuration options, which define data sources, are unique to each ingester and are described
in the individual ingester sections of this document.

7.2.1 Timestamp Format Overrides (Optional)
Data values may contain multiple timestamps, which can cause some confusion when attempting to derive
timestamps out of the data. Normally, the Listeners will grab the left most timestamp that can be derived,
but it may be desirable to only look for a timestamp in a very specific format. Many ingesters support
the ability to specify the exact timestamp format that the ingester via the Timestamp-Format-Override
parameter. Many timestamp formats are available such as AnsiC, Unix, Ruby, RFC822, RFC822Z, RFC3339,
RFC3339Nano, etc. Visit the ingester documentation page for a full list3.

To force the Listener to only look for timestamps that match the RFC3339 specification add
Timestamp-Format-Override=RFC3339 to the Listener config.

3https://docs.gravwell.io/#!ingesters/ingesters.md

174 CHAPTER 7. INGESTERS

7.3 Preprocessors
Sometimes, ingested data needs some additional massaging before being sent to the indexer. Maybe it’s
JSON data sent over syslog and you wish to strip out the syslog headers, or you’re getting gzip-compressed
data from an Apache Kafka stream. Maybe you’d like to be able to route entries to different tags based on
the contents of the entries. Ingest preprocessors make this possible by inserting one or more processing steps
before the entry is sent up to the indexer.

Before those entries are sent to a Gravwell indexer, they may optionally be passed through an arbitrary
number of preprocessors. Each preprocessor will have the opportunity to modify the entries. The preprocessors
will always be applied in the same order, meaning you could e.g. uncompress the entry’s data, then modify
the entry tag based on the uncompressed data.

Preprocessors are configured in the ingester’s config file using the Preprocessor configuration stanza. Each
Preprocessor stanza must declare the preprocessor module in use via the Type configuration parameter,
followed by the preprocessor’s specific configuration parameters. Consider the following example for the
Simple Relay ingester:

[Global]
Ingester-UUID="e985bc57-8da7-4bd9-aaeb-cc8c7d489b42"
Ingest-Secret = IngestSecrets
Connection-Timeout = 0
Insecure-Skip-TLS-Verify=true
Cleartext-Backend-target=127.0.0.1:4023 #example of adding a cleartext connection
Log-Level=INFO

[Listener "default"]
Bind-String="0.0.0.0:7777" #we are binding to all interfaces, with TCP implied
Tag-Name=default
Preprocessor=timestamp

[Listener "syslog"]
Bind-String="0.0.0.0:601" # TCP syslog
Tag-Name=syslog

[preprocessor "timestamp"]
Type = regextimestamp
Regex ="(?P<badtimestamp>.+) MSG (?P<goodtimestamp>.+) END"
TS-Match-Name=goodtimestamp
Timezone-Override=US/Pacific

This configuration defines two data consumers (Simple Relay calls them “Listeners”) named “default” and
“syslog”. It also defines a preprocessor named “timestamp”. Note how the “default” listener includes the
option Preprocessor=timestamp. This specifies that entries coming from that listener on port 7777 should
be sent to the “timestamp” preprocessor. Because the “syslog” listener does not set any Preprocessor
option, entries coming in on port 601 will not go through any preprocessors.

The full list of preprocessors, along with complete configuration options for each, is maintained in the Gravwell
online documentation.4 The following is a brief description of some of the more important preprocessors:

• gzip - Uncompresses compressed entries.

• Regex router - Sets entry tag based on the contents of the entries, using regular expressions to match
and extract the contents.

• Regex timestamp extraction - Uses regular expressions to extract and parse particularly complicated
timestamps in entries.

4https://docs.gravwell.io/#!ingesters/preprocessors/preprocessors.md

https://docs.gravwell.io/#!ingesters/preprocessors/preprocessors.md

7.4. SIMPLE RELAY INGESTER 175

• Forwarding - Forwards a log stream on to another endpoint in addition to ingesting into Gravwell.

• Gravwell forwarding - Forwards logs to an additional set of Gravwell indexers, for data duplication.

7.4 Simple Relay Ingester
Simple Relay is the go-to ingester for text based data sources that can be delivered over plaintext TCP
and/or UDP network connections via either IPv4 or IPv6.

Some common use cases for Simple Relay are:

• Remote syslog collection

• Devop log collection over a network

• Bro sensor log collection

• Simple integration with any text source capable of delivering over a network

Simple Relay can ingest data in three different formats, treating each one slightly differently:

• Line-delimited text: each line becomes one entry

• RFC5424/RFC3164 syslog: each syslog message is one entry

• JSON: each JSON entity becomes an entry, with the option to change the tag based on the value of a
particular field

The Simple Relay ingester uses the unified global configuration block described earlier. Like most other
Gravwell ingesters, Simple Relay supports multiple upstream indexers, TLS, cleartext, and named pipe
connections, a local cache, and local logging.

Simple Relay’s config file specifies Listener blocks to describe how it can accept incoming data. Listeners
support several configuration parameters for specifying protocols, listening interfaces and ports, and fine
tuning ingest behavior.

The following is a sample configuration showing all three listener types:

[Global]
Ingest-Secret = IngestSecrets
Connection-Timeout = 0
Insecure-Skip-TLS-Verify=false
Cleartext-Backend-target=127.0.0.1:4023 #example of a cleartext connection
Cleartext-Backend-target=127.1.0.1:4023 #example of second cleartext connection
Encrypted-Backend-target=127.1.1.1:4024 #example of encrypted connection
Pipe-Backend-Target=/opt/gravwell/comms/pipe #a named pipe connection
Ingest-Cache-Path=/opt/gravwell/cache/simple_relay # local storage cache when uplinks

fail↪→

Max-Ingest-Cache=1024 # Number of MB to store, local cache will only store 1GB before
stopping↪→

Log-Level=INFO
Log-File=/opt/gravwell/log/simple_relay.log

[Listener "default"]
Bind-String="0.0.0.0:7777"

[Listener "syslogtcp"]
Bind-String="tcp://0.0.0.0:601" #standard RFC5424 reliable syslog
Reader-Type=rfc5424
Tag-Name=syslog

176 CHAPTER 7. INGESTERS

Assume-Local-Timezone=true
Keep-Priority=true

[JSONListener "loglistener"]
Extractor:"user.country"
Tag-Match="Japan":users_jp
Tag-Match="USA":users_usa
Default-Tag=users_other

7.4.1 Listener Types
As mentioned above, Simple Relay supports three different kinds of listeners: line-delimited, syslog, and
JSON.

Line-Delimited Listeners

Line-delimited listeners are defined with a [Listener "listener-name"] header block as shown in the
sample above. They do not need to specify Reader-Type, since line-delimited is the default.

A line-delimited listener will generate a new entry for every time it sees a newline in the stream. The
Tag-Name parameter can be used to define which tag should be applied to entries; if unspecified, “default”
will be used.

The Bind-String parameter specifies an IP and port on which the collector should listen for incoming flow
records. By default, TCP is used. To use UDP instead, add udp://, e.g. udp://0.0.0.0:514. Specifying an
IP of 0.0.0.0 will listen on all available IP addresses.

Syslog Listeners

RFC5424 Syslog listeners are defined with[Listener "listener-name"] header block. The Reader-Type
option must be set to rfc5424.

To enable a listener that expects syslog messages using a reliable TCP connection on port 601:

[Listener "syslog"]
Bind-String=0.0.0.0:601
Reader-Type=RFC5424

To accept syslog messages over stateless UDP via port 514:

[Listener "syslog"]
Bind-String=udp://0.0.0.0:514
Reader-Type=RFC524

RFC5424 reader types also support a parameter named Keep-Priority which is set to true by default. A
typical syslog message is prepended by a priority identifier, however some users may wish to discard the
priority from stored messages. This is accomplished by added Keep-Priority=false to an RFC5424 listener.
Line-based listeners ignore the Keep-Priority parameter.

An example syslog message with a priority attached:

<30>Sep 11 17:04:14 router dhcpd[9987]: DHCPREQUEST for 10.10.10.82 from
e8:c7:4f:04:e1:af (Chromecast) via insecure↪→

An example listener specification which removes the priority tag from entries:

[Listener "syslog"]
Bind-String=udp://0.0.0.0:514
Reader-Type=RFC524
Keep-Priority=false

7.4. SIMPLE RELAY INGESTER 177

The Tag-Name parameter can be used to define which tag should be applied to entries; if unspecified, “default”
will be used.

The Bind-String parameter specifies an IP and port on which the collector should listen for incoming flow
records. By default, TCP is used. To use UDP instead, add udp://, e.g. udp://0.0.0.0:514. Specifying an
IP of 0.0.0.0 will listen on all available IP addresses.

JSON Listeners

The JSON Listener type enables some mild JSON processing at the time of ingest, allowing it to apply a
unique tag to an entry based on the value of a field in a JSON entry. For instance, it may be useful to send
entries to different tags based on a “country” field in the JSON, as in the following sample:

{ "user": {"name":"Taka", "country":"Japan"}, "ip": "8.83.94.200" }

The JSON Listener requires some unique configuration options:

• Extractor: specifies the JSON extraction string, for example “user.country”.

• Tag-Match: specifies which tag should be applied for a given value extracted by the Extractor

• Default-Tag: specifies the tag to use when no Tag-Match is applicable

Given the example JSON shown above, one possible configuration is shown below:

[JSONListener "loglistener"]
Extractor:"user.country"
Tag-Match="Japan":users_jp
Tag-Match="USA":users_usa
Default-Tag=users_other

This configuration will examine the “user” element for a sub-element named “country”. It will compare
the value of the “country” element to the two Tag-Match values “Japan” and “USA”; if there is a match,
it will tag the entry users_jp or users_usa, respectively. If there is no match, the entry will be tagged
users_other.

The Bind-String parameter specifies an IP and port on which the collector should listen for incoming flow
records. By default, TCP is used. To use UDP instead, add udp://, e.g. udp://0.0.0.0:514. Specifying an
IP of 0.0.0.0 will listen on all available IP addresses.

7.4.2 Non-Listener-Specific Configuration Options
The configuration options in this section can be set on any type of Listener.

Bind-String

The Bind-String parameter controls which interface and port the listener will bind to. The listener can
bind to TCP or UDP ports, specific addresses, and specific ports. IPv4 and IPv6 are supported.

#bind to all interfaces on TCP port 7777
Bind-String=0.0.0.0:7777

#bind to all interfaces on UDP port 514
Bind-String=udp://0.0.0.0:514

#bind to port 1234 on link local IPv6 address on interface p1p
Bind-String=[fe80::4ecc:6aff:fef9:48a3%p1p1]:1234

#bind to IPv6 globally routable address on TCP port 901
Bind-String=[2600:1f18:63ef:e802:355f:aede:dbba:2c03]:901

178 CHAPTER 7. INGESTERS

Ignore-Timestamps (Optional)

The Ignore-Timestamps parameter instructs the listener to apply the current timestamp to entries rather
than attempting to extract a timestamp from them. This parameter is useful when reading data where there
may not be a timestamp present, or the timestamp is wrong on the originating system due to unreliable
system clocks. Ignore-Timestamps is false by default.

Assume-Local-Timezone (Optional) and Timezone-Override (Optional)

Most timestamp formats have a timezone attached which indicates an offset to Universal Coordinated Time
(UTC). However, some systems do not specify the timezone, leaving it up to the receiver to determine what
timezone a log entry may be in. Assume-Local-Timezone makes the Listener assume that the timestamp is
in the same timezone as the Simple Relay reader when the timezone is omitted. Timezone-Override takes
a string in the IANA timezone database format (e.g. "America/Chicago") and applies that timezone to
timestamps which do not specify a timezone.

Assume-Local-Timezone and Timezone-Override are mutually exclusive.

Source-Override (Optional)

The Source-Override parameter instructs the Listener to ignore the source of the data and apply a hard
coded value. It may be desirable to hard-code source values for incoming data as a method to organize
and/or group data sources. Source-Override values can be IPv4 or IPv6 values.

Source-Override=192.168.1.1
Source-Override=127.0.0.1
Source-Override=[fe80::899:b3ff:feb7:2dc6]

7.4.3 Hands-On Lab: Simple Relay
In this lab we will stand up a Simple Relay ingester and send some traffic to it manually using netcat. First,
launch a Gravwell webserver+indexer container:

docker run --rm --net gravnet -p 8080:80 -d --name gravwell gravwell:base

Open the web interface by pointing your browser at http://localhost:8080 and log in (“admin”/“changeme”).
Then start the ingester container running the Simple Relay ingester:

docker run --rm --net gravnet --name ingesters -it \
-e GRAVWELL_CLEARTEXT_TARGETS=gravwell:4023 \
gravwell:ingesters /opt/gravwell/bin/gravwell_simple_relay

Note the use of the option -e GRAVWELL_CLEARTEXT_TARGETS=gravwell:4023. This sets an environment
variable within the container that tells the ingester which indexer it should connect to.

The ingesters container ships with a default Simple Relay configuration which listens for line-delimited entries
on port 7777, shown below:

[Global]
Log-Level=INFO

[Listener "default"]
Bind-String="0.0.0.0:7777"
Ignore-Timestamps=true
Tag-Name=default

Note that this configuration does not define an ingest authentication secret or any indexer connection
information. These are instead passed as environment variables to the Docker container.

We’ll stand up a third container in order to send some entries by hand:

http://localhost:8080/

7.4. SIMPLE RELAY INGESTER 179

docker run --net gravnet -it busybox /bin/sh

From the shell prompt, we can run netcat and hand-type some entries (in this case “foo” and “bar”), then hit
Ctrl-C when done:

nc ingesters 7777
foo
bar

We can verify that the entries have been ingested by running the search tag=default as shown in Figure 7.1.

Figure 7.1: Entries from Simple Relay Ingester

Lab Questions

1. How would you convert the listener to a syslog listener?

2. How would you make the Listener listen for incoming UDP rather than TCP?

To clean up after the experiment, simply run:

docker rm $(docker ps -a -q)

180 CHAPTER 7. INGESTERS

7.5 File Follower Ingester
The File Follower ingester is the best way to ingest files on the local filesystem in situations where those files
may be updated on the fly. It ingests each line of the files as a single entry.

The most common use case for File Follower is monitoring a directory containing log files which are actively
being updated, such as /var/log. It intelligently handles log rotation, detecting when logfile has been
moved to logfile.1 and so on. It can be configured to ingest files matching a specific pattern in a directory,
optionally recursively descending into the subdirectories of that top-level directory.

Note that if you instead wish to ingest existing/archive files (which will not be updated), the File Follower is
not the most efficient option; please see Chapter 11 instead.

The File Follower ingester uses the unified global configuration block described in Section 7.2. Like most
other Gravwell ingesters, File Follower supports multiple upstream indexers, TLS, cleartext, and named pipe
connections, and local logging.

Below is an example configuration for the File Follower ingester, configured to watch several different types
of log files in /var/log and recursively follow files under /tmp/incoming:

[Global]
Ingest-Secret = IngestSecrets
Insecure-Skip-TLS-Verify = false
Cleartext-Backend-target=172.20.0.1:4023
Cleartext-Backend-target=172.20.0.2:4023
State-Store-Location=/opt/gravwell/etc/file_follow.state
Log-Level=ERROR
Max-Files-Watched=64

[Follower "syslog"]
Base-Directory="/var/log/"
File-Filter="syslog,syslog.[0-9]"
Tag-Name=syslog
Assume-Local-Timezone=true

[Follower "external"]
Base-Directory="/tmp/incoming"
Recursive=true
File-Filter="*.log"
Tag-Name=external
Timezone-Override="America/Los_Angeles"

In this example, the syslog follower reads /var/log/syslog and its rotations, ingesting lines to the syslog
tag and assuming dates to be in the local timezone. The external follower reads all files ending in .log from
the directory /tmp/incoming, descending recursively into directories. It parses timestamps as though they
were in the Pacific time zone. This follower illustrates a configuration that would be useful if, for example,
several servers on the US west coast periodically uploaded their log files to this system.

The configuration parameters used above are explained in greater detail in the following sections.

7.5.1 Additional Global Parameters
The File Follower ingester defines several additional parameters for the [Global] section. These parameters
apply to all Followers defined in the config file.

Max-Files-Watched

The Max-Files-Watched parameter prevents the File Follower from maintaining too many open file descriptors.
If Max-Files-Watched=64 is specified, the File Follower will actively watch up to 64 log files. When a new

7.5. FILE FOLLOWER INGESTER 181

file is created, the File Follower will stop actively watching the oldest existing file in order to watch the new
one. However, if the old file is later updated, it will return to the top of the queue.

We recommend leaving this setting at 64 in most cases; configuring the limit too high can run into limits set
by the kernel.

7.5.2 Follower Configuration Parameters
The File Follower configuration file contains one or more “Follower” directives:

[Follower "syslog"]
Base-Directory="/var/log/"
File-Filter="syslog,syslog.[0-9]"
Tag-Name=syslog

Each follower specifies at minimum a base directory and a filename filtering pattern. This section describes
possible configuration parameters which can be set per follower.

Base-Directory

The Base-Directory parameter specifies the directory which will contain the files to be ingested. It should
be an absolute path and contain no wildcards.

File-Filter

The File-Filter parameter defines the filenames which should be ingested. It can be as simple as a single
file name:

File-Filter="foo.log"

Or it can contain multiple patterns:

File-Filter="kern*.log,kern*.log.[0-9]"

which will match any filenames beginning with “kern” and ending with “.log”, or beginning with “kern” and
ending with “.log.0” through “.log.9”.

The full matching syntax, as defined in https://golang.org/pkg/path/filepath/#Match, is:

pattern:
{ term }

term:
'*' matches any sequence of non-Separator characters
'?' matches any single non-Separator character
'[' ['^'] { character-range } ']'

character class (must be non-empty)
c matches character c (c != '*', '?', '\\', '[')
'\\' c matches character c

character-range:
c matches character c (c != '\\', '-', ']')
'\\' c matches character c
lo '-' hi matches character c for lo <= c <= hi

Tag-Name (Optional)

The Tag-Name parameter specifies the tag to apply to entries ingested by this follower. If unset, the “default”
tag is used.

https://golang.org/pkg/path/filepath/#Match

182 CHAPTER 7. INGESTERS

Ignore-Timestamps (Optional)

The Ignore-Timestamps parameter indicates that the follower should not attempt to extract a timestamp
from each line of the file, but rather tag each line with the current time.

Assume-Local-Timezone (Optional)

Assume-Local-Timezone is a boolean setting which directs the ingester to parse timestamps which lack
timezone specifications as though they were in the local time zone rather than the default UTC.

Assume-Local-Timezone and Timezone-Override are mutually exclusive.

Timezone-Override (Optional)

The Timezone-Override parameter directs the ingester to parse timestamps which lack timezone specifications
as though they were in the given time zone rather than the default UTC.

The timezone should be specified in IANA database string format as defined at https://en.wikipedia.org/wiki/List_of_tz_database_time_zones;
for example, US Central Time should be specified as follows:

Timezone-Override="America/Chicago"

Assume-Local-Timezone and Timezone-Override are mutually exclusive.

Timezone-Override="Local" is functionally equivalent to Assume-Local-Timezone=true

Recursive (Optional)

The Recursive parameter directs the File Follower to ingest all files matching the File-Filter recursively
under the Base-Directory.

By default, the ingester will only ingest those files matching the File-Filter under the top level of the
Base-Directory; the following would ingest /tmp/incoming/foo.log but not /tmp/incoming/system1/foo.log:

Base-Directory="/tmp/incoming"
File-Filter="foo.log"

By setting Recursive=true, the configuration will ingest any file named foo.log at any directory depth
under /tmp/incoming.

Ignore-Line-Prefix (Optional)

The ingester will drop (not ingest) any lines beginning with the string passed to Ignore-Line-Prefix. This
is useful when ingesting log files which contain comments, such as Bro logs. The Ignore-Line-Prefix
parameter may be specified multiple times. The following indicates that lines beginning with # or // should
not be ingested:

Ignore-Line-Prefix="#"
Ignore-Line-Prefix="//"

Each follower can specify a unique timestamp format using the Timestamp-Format-Override parameter.

Timestamp-Delimited (Optional)

The Timestamp-Delimited parameter is a boolean specifying that each occurrence of a time stamp should be
considered the start of a new entry. This is useful when log entries may span multiple lines. When specifying
Timestamp-Delimited, the Timestamp-Format-Override parameter must also be set. Let’s look at a file
snippet and explore how timestamp delimiting would affect entry extraction. If we assume the following
snippet:

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

7.5. FILE FOLLOWER INGESTER 183

2012-11-01T22:08:41+00:00 Line 1 of the first entry
Line 2 of the first entry
2012-11-01T22:08:43+00:00 Line 1 of the second entry
Line 2 of the second entry

The entries extracted would be:

Entry 1:

2012-11-01T22:08:41+00:00 Line 1 of the first entry
Line 2 of the first entry

Entry 2:

2012-11-01T22:08:43+00:00 Line 1 of the second entry
Line 2 of the second entry

7.5.3 Hands-On Lab: File Follower
In this lab, we will use the File Follower to ingest Linux system logs. First, launch a Gravwell web-
server+indexer container:

docker run --rm --net gravnet -p 8080:80 -d \
--name gravwell gravwell:base

Next, we create the ingester container. It needs some additional configuration, so we use docker create
rather than docker start:

docker create --rm --net gravnet --name ingesters -it -e \
GRAVWELL_CLEARTEXT_TARGETS=gravwell:4023 -v /var/log:/var/log \
gravwell:ingesters /opt/gravwell/bin/gravwell_file_follow -v

Note the option -v /var/log:/var/log. This mounts the host’s log directory into the container. In this
lab, we will be ingesting the host’s logs, since Docker containers do not generate many log files.

The File Follower in the container is pre-configured with these Follower definitions:

[Follower "auth"]
Base-Directory="/var/log/"
File-Filter="auth.log,auth.log.[0-9]"
Tag-Name=auth

[Follower "kernel"]
Base-Directory="/var/log"
File-Filter="dmesg,dmesg.[0-9]"
Tag-Name=kernel

[Follower "kernel2"]
Base-Directory="/var/log"
File-Filter="kern.log,kern.log.[0-9]"
Tag-Name=kernel

There is a problem with the configuration as it stands. Linux log timestamps don’t include a time zone, and
your system is probably set to the local time zone, so the log files will contain entries with local timestamps.
Docker containers default to UTC, though, so the ingester will improperly parse the log timestamps. Luckily,
this can be fixed in the config file.

NOTE: If your host computer is set to UTC, you can skip these config modifications and skip straight to
starting the ingester.

We’ll first copy out the config file from the ingester:

docker cp ingesters:/opt/gravwell/etc/file_follow.conf /tmp

184 CHAPTER 7. INGESTERS

Edit the file and add the following to each Followerblock, substituting your timezone:

Timezone-Override="America/Denver"

And push the configuration back to the ingester:

docker cp /tmp/file_follow.conf ingesters:/opt/gravwell/etc/file_follow.conf

With the configuration fixed, we can start the ingester:

docker start ingesters

Recall that we passed the -v flag to gravwell_file_follow when we created the container; this enables
verbose mode, which allows us to see every entry the ingester reads and the timestamp it derived from the
log entry. Most ingesters support the -v flag. You can view the log output by running the command docker
logs ingesters; the following is a sample:

GOT 2019-03-09T13:12:59-07:00 Mar 9 13:12:59 bombadil kernel: [7955880.007543] hub
2-1:1.0: 3 ports detected

The portion GOT 2019-03-09T13:12:59-07:00 indicates that the ingester has parsed out a timestamp of
March 9, 13:12:59 US Mountain Time from the log entry, which comprises the rest of the line.

Based on the configuration, we can expect to see entries tagged “auth” and “kernel”, and a quick search for
tag=auth should confirm this, as shown in Figure 7.2.

Figure 7.2: Auth logs ingested via File Follower

Lab Questions

1. Suppose we wanted to ingest all files ending in .log in /var/log, including files in subdirectories.
Configure a Follower that would accomplish this.

To clean up after the experiment, simply run:

docker kill $(docker ps -a -q)

7.6. WINDOWS EVENT INGESTER 185

7.6 Windows Event Ingester
The Windows event ingester is designed to monitor the Windows event service and ingest raw events into
Gravwell. Windows events are formatted in XML and frankly, can get a little unruly; as a result the Windows
ingester supports the ability to subscribe to specific event streams and filter based on Provider and EventID
directly in the ingester. While Gravwell is typically an “ingest first and ask questions later” kind of company,
the Windows logging system produces a tremendous amount of un-useful events that are large and complex
to parse. If you are monitoring significant Windows infrastructure, it may not be necessary to ingest 100GB
of XML that tells you every time a desktop goes to sleep or wakes up.

The Windows event ingester is a system service and is installed into %ProgramFiles%\gravwell. The service
is configured via a config.cfg file located in the same directory. Configuration is similar to other ingesters
and shares the common [Global] block which defines how the ingester will authenticate and communicate
with indexers. After the [Global] section, the config file can define subscriptions for Windows event channels.
Each EventChannel can specify a tag, maximum reachback, and filters for the provider, event id, and level.
Available configuration parameters for an EventChannel are as follows:

• Tag-Name: Specifies the tag the events will go to.

• Provider: Filter to control which providers the ingester will send to indexers.

• EventID: Controls which event IDs are sent to indexers.

• Level: Controls minimum alert level.

• Max-Reachback: Controls a maximum age of entries the ingester will read on first start.

For example, let’s look at an event channel configuration which subscribes to the “security” channel:

[EventChannel "security"]
Tag-Name=windows
Channel=Security

This configuration specifies that the ingester should send all events on the security channel to the tag windows.
Because we haven’t specified any filters or a Max-Reachback, the ingester will grab all historical events that
are available from the Security channel and send every one of them to the indexer. It then begins streaming
new events as they come in.

Let’s next examine a configuration that applies some filters to control what we ingest:

[EventChannel "sysmon"]
Tag-Name=sysmon
Channel=Microsoft-Windows-Sysmon/Operational
Max-Reachback=24h
Level=4
EventID=4000-5000

This configuration reads entries from the Microsoft-Windows-Sysmon/Operational channel, but only if the
Level is 4 and the EventID is between 4000 and 5000. When the Ingester first starts it will also retrieve
entries from the Windows event store that are up to 24 hours old. Tailoring the configuration can help narrow
in on event sources and event IDs that actually have relevance to your mission, whether it be compliance,
security, or performance monitoring.

Let’s take a look at a windows log entry that has been formatted so that we can see some of its structure:

<?xml version="1.0" encoding="UTF-8"?>
<Event xmlns="http://schemas.microsoft.com/win/2004/08/events/event">

<System>
<Provider Name="Microsoft-Windows-Kernel-Power"

Guid="{331c3b3a-2005-44c2-ac5e-77220c37d6b4}" />
<EventID>107</EventID>

186 CHAPTER 7. INGESTERS

<Version>1</Version>
<Level>4</Level>
<Task>102</Task>
<Opcode>0</Opcode>
<Keywords>0x8000000000000444</Keywords>
<TimeCreated SystemTime="2019-03-23T21:15:39.4065468Z"/>
<EventRecordID>2243</EventRecordID>
<Correlation />
<Execution ProcessID="4" ThreadID="9996"/>
<Channel>System</Channel>
<Computer>rebecca-PC</Computer>
<Security />

</System>
<EventData>

<Data Name="TargetState">4</Data>
<Data Name="EffectiveState">5</Data>
<Data Name="WakeFromState">4</Data>
<Data Name="WakeRequesterTypeAc">2</Data>
<Data Name="WakeRequesterTypeDc">0</Data>

</EventData>
</Event>

The log is large and unruly, there is a lot of repetition. Fortunately the winlog search module can help
simplify working with windows XML logs. Let’s start by executing a query that extracts the Provider and
EventID. We will then filter the extracted values to only look at the Microsoft-Windows-Sysmon provider
and EventID 1. The winlog search module supports several shortcuts that can make it easier to extract data
from the Windows XML structures. The shortcuts allow us to specify most of the system members directly
by name, any other arguments which do not specify a system field member is assumed to be a data field
member. Refer to the winlog online documentation for a full list of extractions.5

For example, if we want the Provider and EventID fields, we can execute the query winlog Provider
EventID; the winlog module knows where those fields are located within the XML document. If we wanted
the data field named “TargetState”, we can just pass the argument TargetState. The winlog module figures
out that it’s not a known system field and assumes it is a data name field. Given the example entry above, if
we executed the following query:

tag=windows winlog Provider EventID WakeFromState

The following Enumerated values would be extracted:

Name Value
Provider Microsoft-Windows-Kernel-Power
EventID 107
WakeFromState 4

The winlog module supports inline filtering (which is covered in depth in later chapters), so we can pass
equality statements to each argument to filter down to specific events. For example, if we wanted to only
look at events from the Microsoft-Windows-Sysmon provider we would execute the following query:

tag=windows winlog Provider=="Microsoft-Windows-Sysmon"

5https://docs.gravwell.io/#!search/winlog/winlog.md

7.6. WINDOWS EVENT INGESTER 187

7.6.1 Hands-on Lab: Windows logs
Windows logs are normally XML, which is a large and often complex format. Gravwell provides the winlog
search module that can help with extracting useful data from Windows logs. For this lab we will examine
some Windows logs and extract some basic data so that we can track process creation using sysmon6 using
the SwiftOnSecurity configuration set7. For more information refer to our our Windows events documentation
page8

We can’t run the Windows ingester on Docker, so instead we will just import some Windows logs and poke
around a bit. We’ll fire up a test container and push in the Windows logs using the regexFile ingester. The
regexFile ingester is a one-off ingester that can assist in ingesting single files where the entry delimiter is
more complex than a simple newline. Windows logs often have spaces and newlines in them, so we are going
to use the regexFile ingester to break on XML boundaries. Take note of the rexp argument; it’s a regular
expression that will match the beginning of a Windows log entry.

First, we start the indexer and webserver:

docker run --rm -d -p 8080:80 --net gravnet --name test gravwell:base

Now we’ll push in some data with the reimport ingester:

cd ~/gravwell_training/Ingesters/Lab-Winevent
docker run -v $PWD/data:/tmp/data --rm -i --net gravnet \
gravwell:ingesters /opt/gravwell/bin/reimport -rebase-timestamp \
-clear-conns test:4023 -i /tmp/data/winlog.json.gz -import-format json

Log into the web GUI (http://localhost:8080) and perform the following queries:

1. Use the winlog search module to get all entries that represent process creation events with the following
constraints:

(a) Provider is Microsoft-Windows-Sysmon

(b) EventID is 1

2. Extract the Computer and CommandLine fields and make a table with those columns

Lab Questions:

1. Do you see any command line processes that look interesting?

2. Are there any large parameters that you could decode?

(a) How would you do it?

To clean up after the experiment, simply run:

docker kill $(docker ps -a -q)

6https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon
7https://raw.githubusercontent.com/SwiftOnSecurity/sysmon-config/master/sysmonconfig-export.xml
8https://docs.gravwell.io/#!ingesters/ingesters.md#Windows_Event_Service

http://localhost:8080

188 CHAPTER 7. INGESTERS

7.7 Netflow and IPFIX Ingester
The Netflow ingester acts as a Netflow collector, gathering records created by Netflow exporters and capturing
them as Gravwell entries for later analysis. These entries can then be analyzed using the netflow search
module. The Netflow ingester currently only accepts traffic via UDP.

A sample configuration is shown below:

[Global]
Ingest-Secret = IngestSecrets
Connection-Timeout = 0
Insecure-Skip-TLS-Verify=false
Pipe-Backend-target=/opt/gravwell/comms/pipe #a named pipe connection, this should be

used when ingester is on the same machine as a backend↪→

Log-Level=INFO

[Collector "netflow v5"]
Bind-String="0.0.0.0:2055" #we are binding to all interfaces
Tag-Name=netflow

[Collector "ipfix"]
Tag-Name=ipfix
Bind-String="0.0.0.0:6343"
Flow-Type=ipfix

This configuration defines two collectors, one for Netflow v5, one for IPFIX. The Netflow collector listens on
UDP port 2055 and tags its entries “netflow”, while the IPFIX collector listens on UDP port 6343 and tags
its entries “ipfix”.

Note that the “ipfix” collector type can accept both IPFIX and Netflow v9 data.

7.7.1 Collector Configuration Parameters
Bind-String

The Bind-String parameter specifies an IP and UDP port on which the collector should listen for incoming
flow records. Specifying an IP of 0.0.0.0 will listen on all available IP addresses.

Tag-Name (Optional)

The Tag-Name parameter specifies the tag to apply to entries ingested by this follower. If not specified, the
“default” tag is used.

Flow-Type (Optional)

The Flow-Type parameter specifies which type of flows the collector should read. The available options are
“netflowv5” and “ipfix”; the default is “netflowv5”.

7.7.2 Hands-on Lab: Netflow Ingester
In this lab, we will ingest procedurally-generated Netflow records. First, launch a Gravwell webserver+indexer
container:

docker run --rm --net gravnet -p 8080:80 -d --name gravwell gravwell:base

Next, start the ingester container running the netflow ingester:

7.8. PACKET CAPTURE INGESTER 189

docker run --rm --net gravnet --name ingesters -it \
-e GRAVWELL_CLEARTEXT_TARGETS=gravwell:4023 \
gravwell:ingesters /opt/gravwell/bin/gravwell_netflow_capture

The netflow ingester is pre-configured to listen on port 2055 for incoming Netflow v5 records.

Now, we use another Docker container to generate Netflow records and send them to the ingester:

docker run -it --net gravnet --rm \
networkstatic/nflow-generator -t ingesters -p 2055

The netflow generator will run indefinitely, generating flow records, until killed.

Log into the web GUI (http://localhost:8080). We can now search the netflow data:

tag=netflow netflow Bytes Src | stats sum(Bytes) by Src | table Src sum

We should see traffic originating from many (randomly-generated) IP addresses, as shown in Figure 7.3.

Figure 7.3: Netflow Query Results

To clean up after the experiment, simply run:

docker kill $(docker ps -a -q)

7.8 Packet Capture Ingester
The packet capture ingester illustrates one of Gravwell’s unique strengths: its ability to ingest raw, unprocessed
binary data. This ingester listens on one or more network interfaces and ingests every packet it sees in a
separate entry. Later, those packets can be parsed using the ‘packet’ search module.

A sample configuration is shown below:

[Global]
Ingest-Secret = IngestSecrets
Connection-Timeout = 100s
Cleartext-Backend-target=192.168.0.1:4023 #example of adding another cleartext connection
Max-Ingest-Cache=32
Ingest-Cache-Path=/opt/gravwell/cache/network_capture

http://localhost:8080

190 CHAPTER 7. INGESTERS

[Sniffer "spy1"]
Interface="eth0" #sniffing from interface eth0
Tag-Name="pcap" #assigning tag pcap
Snap-Len=0xffff #maximum capture size
BPF-Filter="not port 4023" #do not sniff any traffic on our backend connection
Promisc=true

This configuration defines a single Sniffer, which listens for packets on interface eth0, tags them as “pcap”,
and ships them to an indexer via an unencrypted connection. Note the use of the BPF-Filter option; this
tells the ingester to ignore packets on port 4023, because the ingester is using port 4023 to transfer entries to
the indexer. If this option was not set, every entry sent to the indexer would result in at least one additional
entry being generated!

7.8.1 Hands-on Lab: Packet Capture Ingester
This lab will demonstrate ingestion of packets. First, launch a base Gravwell container:

docker run --rm --net gravnet -p 8080:80 -d --name gravwell gravwell:base

Log into the web GUI (http://localhost:8080) once the container is started.

Next, start the ingester container running the packet capture ingester:

docker run --rm --net gravnet --name pcap -d \
-e GRAVWELL_CLEARTEXT_TARGETS=gravwell:4023 \
gravwell:pcap /opt/gravwell/bin/gravwell_network_capture

The ingester is pre-configured to capture packets on the eth0 interface. The ingester should start seeing
packets soon, even without generating any traffic; this can be verified by searching for tag=pcap as shown in
Figure 7.4.

Note that the packets are “garbage”. This is because the packets were captured as binary blobs, and without
specifying how to parse them, Gravwell can only print an ASCII representation of the binary.

We can see which protocols are in use by extracting the source IP, dest IP, and IP protocol from each packet.
Results are shown in Figure 7.5.

tag=pcap packet ipv4.SrcIP ipv4.DstIP ipv4.Protocol | table

The screenshot shows that the majority of packets are currently protocol 17 (UDP).

Next, we’ll generate some ping traffic:

docker run -it --net gravnet --rm gravwell:base ping pcap

We can then run a search which limits results only to protocol 1 (ICMP):

tag=pcap packet ipv4.SrcIP ipv4.DstIP ipv4.Protocol==1 | table

We can see which protocol is appearing most frequently by running the following query:

tag=pcap packet ipv4.Protocol | count by Protocol | chart count by Protocol

The results are shown in Figure 7.6, with the chart changed to a pie chart.

To clean up after the experiment, simply run:

docker kill $(docker ps -a -q)

http://localhost:8080

7.8. PACKET CAPTURE INGESTER 191

Figure 7.4: Raw packets

Figure 7.5: Parsing Packets

192 CHAPTER 7. INGESTERS

Figure 7.6: Protocol Ratios

7.9. TAG MANAGEMENT / FEDERATION 193

7.9 Tag Management / Federation
The Federator is an entry relay: ingesters connect to the Federator and send it entries, then the Federator
passes those entries to an indexer. The Federator can act as a trust boundary, securely relaying entries across
network segments without exposing ingest secrets or allowing untrusted nodes to send data for disallowed
tags. The Federator upstream connections are configured like any other ingester, allowing multiplexing, local
caching, encryption, etc. Figure 7.7 shows an example architecture in which multiple Federators are used to
gather data from different business units into a central indexer pool.

Figure 7.7: A Federated Architecture

The Federator is well-suited for several use cases:

• Ingesting data across geographically diverse regions when there may not be robust connectivity

• Providing an authentication barrier between network segments

• Reducing the number of connections to an indexer

• Controlling the tags and data source group can provide

The Federator can improve security by enforcing two kinds of controls:

• Auth: The Federator can use different Ingest Secrets on different listening ports.

– Example: Assume two customers which will be uploading entries from ingesters in their own
infrastructure to your indexer. By configuring a Federator with a separate listener and unique
Ingest Secret for each customer, you can easily revoke one customer’s access.

194 CHAPTER 7. INGESTERS

• Tags: The Federator can restrict which tags ingesters are allowed to use.

– Example: If multiple customers are uploading entries from their own ingesters, a Federator can
ensure that Customer A only uploads entries tagged “custA_data” and Customer B only uploads
entries tagged “custB_data”.

A sample configuration is shown below:

[Global]
Ingest-Secret = SuperSecretUpstreamIndexerSecret
Connection-Timeout = 0
Insecure-Skip-TLS-Verify = false
Encrypted-Backend-target=172.20.232.105:4024
Encrypted-Backend-target=172.20.232.106:4024
Ingest-Cache-Path=/opt/gravwell/cache/federator
Max-Ingest-Cache=1024 #1GB
Log-Level=INFO

[IngestListener "BusinessOps"]
Ingest-Secret = CustomBusinessSecret
Cleartext-Bind = 10.0.0.121:4023
Tags=windows-*
Tags=syslog

[IngestListener "DMZ"]
Ingest-Secret = OtherRandomSecret
TLS-Bind = 192.168.220.105:4024
TLS-Certfile = /opt/gravwell/etc/cert.pem
TLS-Keyfile = /opt/gravwell/etc/key.pem
Tags=apache
Tags=nginx

This configuration connects to two upstream indexers in a protected network segment and provides ingest
services on two untrusted network segments. Each untrusted ingest point has a unique Ingest-Secret, with
one serving TLS with a specific certificate and key pair. The configuration file also enables a local cache,
making the Federator act as a fault-tolerant buffer between the Gravwell indexers and the untrusted network
segments.

7.9.1 Wildcard Tags
When specifying an IngestListener, you may wish to accept a wide range of tags instead of just a handful
of specific ones. Perhaps you’re receiving Windows event logs from hundreds of different machines, and each
one includes its hostname in the tag, e.g. “winlog-activedirectory01”. The Tags field can contain wildcards,
so you could match the example given by simply saying Tags=winlog-*.

7.9.2 Hands-on Lab: Federation
In this lab, we will configure a Federator with tag restrictions, then attempt to send it entries with both
allowed and disallowed tags. First, launch a Gravwell webserver+indexer container:

docker run --rm --net gravnet -p 8080:80 -d --name gravwell gravwell:base

Log into the web GUI (http://localhost:8080) and keep it open.

Start another container running the Federator:

docker run --rm --net gravnet --name federator -it \
-e GRAVWELL_CLEARTEXT_TARGETS=gravwell:4023 \

http://localhost:8080

7.9. TAG MANAGEMENT / FEDERATION 195

gravwell:ingesters /opt/gravwell/bin/gravwell_federator

The container we are using has two pre-configured listeners for the Federator:

• enclaveA, which listens on port 4001, allows entries tagged “testA”, and uses the Ingest Secret
“enclaveASecrets”

• enclaveB, which listens on port 4002, allows entries tagged “testB”, and uses the Ingest Secret
“enclaveBSecrets”

With the Federator up and running, we use the generators container to attempt to send some JSON-formatted
entries to the Federator. We direct it to connect to the “federator” container on port 4001 and use the secret
“enclaveASecrets”, which is the correct configuration for the first IngestListener defined in the Federator
config. However, note that we add the option -tag-name json. This is not one of the allowed tags!

docker run --net gravnet --rm -it gravwell:generators \
/jsonGenerator -clear-conns federator:4001 \
-ingest-secret enclaveASecrets -tag-name json

The command should fail, with an error message saying it failed to negotiate tags:

2020/02/05 18:44:25 ERROR: Timed out waiting for active connection due to All connections
failed Failed to negotiate tags↪→

This is expected, because we attempted to send entries tagged “json”, which is not allowed! Let’s run the
generator again, this time specifying the allowed “testA” tag:

docker run --net gravnet --rm -it gravwell:generators \
/jsonGenerator -clear-conns federator:4001 \
-ingest-secret enclaveASecrets -tag-name testA

We can verify that the entries made it in by running the query tag=testA in the Gravwell interface, as shown
in Figure 7.8.

Figure 7.8: Entries Ingested via Federator

196 CHAPTER 7. INGESTERS

We can send entries to the other Federator listener by tweaking the generator command line, specifying port
4002, the secret “enclaveBSecrets”, and tag “testB”:

docker run --net gravnet --rm -it gravwell:generators \
/jsonGenerator -clear-conns federator:4002 \
-ingest-secret enclaveBSecrets -tag-name testB

To clean up after the experiment, simply run:

docker kill $(docker ps -a -q)

7.10 Ingester Caching
Ingester caching allows Gravwell ingesters to continue receiving data and generating entries even when there
are no active connections to indexers. Entries are stored in an on-disk cache until indexer communication is
reestablished, at which point they are uploaded to the indexer. Additionally, the cache can be configured to
always be engaged, allowing the ingester to absorb bursts of data that cannot be sent to an indexer in real
time.

All officially-supported ingesters support caching. Caching is controlled by four configuration options in the
[Global] section of the ingester configuration file:

• Ingest-Cache-Path: specifies the full path of a directory which should be used for the cache, e.g.
/opt/gravwell/cache/file_follow. Setting this option to a non-empty string enables ingester caching.
If the specified directory does not exist, a new one will be created. Several files and subdirectories will
be created in this directory.

• Max-Ingest-Cache: Specifies a maximum size (in megabytes) for the cache. Once the cache has reached
this size, later entries may be dropped.

• Cache-Depth: The cache depth is the maximum number of in-memory entries to maintain before
committing entries to disk. This is most important for absorbing bursts of data, as it can prevent costly
writes to disk.

• Cache-Mode: There are two cache modes: "always", and "fail". When set to "always", the cache is
always available to the ingester, even when there are active indexer connections. When set to "fail", the
cache is only engaged when all indexer connections are lost. The "always" mode additionally allows an
ingester to begin accepting incoming data before any initial indexer connections are made.

The ingest cache is suitable for use with all ingesters except the File Follower. Gravwell recommends against
using a cache with the File Follower ingester because the on-disk source files essentially constitute their own
cache. The Federator is especially useful when caching is enabled; it can provide an extra level of resilience
between the ingesters and the indexers, allowing ingesters to push their entries to the Federator even when
the indexer is unavailable.

7.10.1 Hands-on Lab: Ingester Cache
In this lab we will stand up a Simple Relay ingester with cache enabled and send it traffic while the Gravwell
indexer is unavailable. First, launch a Gravwell webserver+indexer container:

docker run --rm --net gravnet -p 8080:80 -d --name gravwell gravwell:base

Log into the web GUI (http://localhost:8080) and leave the page open.

Then make the ingester container:

docker run --rm --net gravnet --name ingesters -d \
-e GRAVWELL_CLEARTEXT_TARGETS=gravwell \
gravwell:ingesters /opt/gravwell/bin/gravwell_simple_relay

http://localhost:8080

7.10. INGESTER CACHING 197

The ingesters container ships with a default Simple Relay configuration which listens for line-delimited entries
on port 7777, shown below:

[Global]
Log-Level=INFO

[Listener "default"]
Bind-String="0.0.0.0:7777"
Ignore-Timestamps=true
Tag-Name=default

Copy the file out:

docker cp ingesters:/opt/gravwell/etc/simple_relay.conf /tmp/simple_relay.conf

Edit /tmp/simple_relay.conf and add the following line to the [Global] section:

Ingest-Cache-Path=/opt/gravwell/cache/simple_relay

Then copy the config file back in and restart the container:

docker cp /tmp/simple_relay.conf ingesters:/opt/gravwell/etc/simple_relay.conf
docker restart ingesters

Now that the ingester is configured and running, we will pause the indexer container. Run this command on
the host:

docker pause gravwell

Now we open a shell on the ingester container:

docker exec -it ingesters /bin/sh

From the ingester container’s shell prompt, we now use a loop to send 200,000 entries to the ingester:

for i in `seq 1 200000`
do

echo this is an entry $i
done | nc -w 1 localhost 7777

The cache directory contains several files and subdirectories. We can see that with the indexer paused, the
amount of data in the cache has increased (your output may look different depending on the state the cache
was in when you ingested the data):

ls -lRh /opt/gravwell/cache
.:
total 4K
drwxr-x--- 4 root root 4.0K Jul 22 18:49 simple_relay

./simple_relay:
total 12K
drwxr-x--- 2 root root 4.0K Jul 22 18:45 b
drwxr-x--- 2 root root 4.0K Jul 22 18:45 e
-rw-rw---- 1 root root 37 Jul 22 18:49 tagcache

./simple_relay/b:
total 0
-rw-r----- 1 root root 0 Jul 22 18:49 cache_a
-rw-r----- 1 root root 0 Jul 22 18:45 cache_b
-rw------- 1 root root 0 Jul 22 18:45 lock

198 CHAPTER 7. INGESTERS

./simple_relay/e:
total 2M
-rw-r----- 1 root root 2.1M Jul 22 18:51 cache_a
-rw-r----- 1 root root 30.4K Jul 22 18:50 cache_b
-rw------- 1 root root 0 Jul 22 18:45 lock

To flush the cache, we simply unpause the container on the host side:

docker unpause gravwell

And verify that the cache has been emptied within the ingester container:

ls -lRh /opt/gravwell/cache
.:
total 4K
drwxr-x--- 4 root root 4.0K Jul 22 18:49 simple_relay

./simple_relay:
total 12K
drwxr-x--- 2 root root 4.0K Jul 22 18:45 b
drwxr-x--- 2 root root 4.0K Jul 22 18:45 e
-rw-rw---- 1 root root 37 Jul 22 18:49 tagcache

./simple_relay/b:
total 0
-rw-r----- 1 root root 0 Jul 22 18:49 cache_a
-rw-r----- 1 root root 0 Jul 22 18:45 cache_b
-rw------- 1 root root 0 Jul 22 18:45 lock

./simple_relay/e:
total 0
-rw-r----- 1 root root 0 Jul 22 18:53 cache_a
-rw-r----- 1 root root 0 Jul 22 18:53 cache_b
-rw------- 1 root root 0 Jul 22 18:45 lock

Execute a search on the default tag (tag=default) to verify that the entries were properly ingested, as in
Figure 7.9

To clean up after the experiment, simply run:

docker kill $(docker ps -a -q)

7.10. INGESTER CACHING 199

Figure 7.9: Previously-Cached Entries

200 CHAPTER 7. INGESTERS

7.11 Ingest API and Source Code
Gravwell’s ingest library is open-sourced for public use at github.com/gravwell/gravwell/ingest. This makes it
relatively easy to write a custom ingester for a specific use case completely independent of Gravwell Inc. The
open-source ingesters found at github.com/gravwell/gravwell/ingesters provide useful examples of real-world
ingesters, but for the sake of demonstration this document will describe the basic steps required to ingest
data, including code samples.

7.11.1 Configuring and Starting the Ingest Muxer
The Ingest Muxer is the standard way to connect to one or more Gravwell indexers. If multiple indexers
are specified, it will multiplex incoming entries across all indexers evenly, hence the name. To instantiate a
muxer, define a UniformMuxerConfig:

targets := []string{ "tcp://10.0.0.1:4023", "tcp://10.0.0.2:4023"}
secret := "IngestSecrets"
tags := []string{ "default" }
ingestConfig := ingest.UniformMuxerConfig{

Destinations: targets,
Tags: tags,
Auth: secret,

}

There are three essential arguments in the muxer config:

• Destinations: a list of strings describing how to connect to an indexer, e.g. “tcp://10.0.0.1:4023”.

• Tags: a list of strings containing the tags the ingester will use

• Auth: a string containing the shared secret used to authenticate with the indexers.

With the UniformMuxerConfig defined, instantiate and start the muxer:

igst, err := ingest.NewUniformMuxer(ingestConfig)
if err != nil {

log.Fatalf("Failed build our ingest system: %v\n", err)
}
defer igst.Close()
if err := igst.Start(); err != nil {

log.Fatalf("Failed start our ingest system: %v\n", err)
}

After calling Start() on the muxer, one should typically call WaitForHot to wait until at least one indexer
connection is live. The argument to WaitForHot is a timeout in case no indexer connections are established:

if err := igst.WaitForHot(60 * time.Second); err != nil {
log.Fatalf("Timedout waiting for backend connections: %v\n", err)

}

7.11.2 Creating and Uploading Entries
Once the muxer has been started and WaitForHot has returned successfully, entries can be sent to the
indexer(s). Note, however, that indexers use a mapping of string tag names to numeric tag IDs, and that
entries sent to the indexer must use the numeric tag IDs, not string tags. Thus, we first query the ingest
muxer for the tag ID of the “default” tag:

defaultTagID, err := igst.GetTag("default")
if err != nil {

7.12. PERMISSIONS AND PORT BINDING 201

log.Fatalf("Failed to get tag: %v", err)
}

Having acquired the tag, we are now able to build an Entry:

ent := entry.Entry{
TS: entry.Now(),
SRC: net.ParseIP("127.0.0.1"),
Tag: defaultTagID,
Data: []byte("This is my test data!"),

}

The components of an Entry are:

• TS The timestamp attached to the entry. Although this example uses the current time, it can be set to
anything. The timestamp should generally indicate when the data was generated, not when the entry
was created.

• SRC: An IP address to represent the source of the data. We are using 127.0.0.1 for this example, but
any IPv4 or IPv6 address is valid.

• Tag: A numeric tag ID as derived from the GetTag function.

• Data: A slice of bytes that makes up the actual content of the entry. This can be literally anything.

With the Entry built, the only thing remaining is to send it to the indexer:

if err := igst.WriteEntry(&ent); err != nil {
log.Fatalf("Failed to write entry: %v", err)

}

7.11.3 Cleaning Up/Shutting Down
An ingester will typically start up, build its muxer, and then go into a loop building and uploading Entries
until it either runs out of data or receives a signal from the operating system that it should shut down. In
order to shut down nicely, call the Sync and Close functions on the muxer:

if err := igst.Sync(time.Second); err != nil {
log.Fatalf("Failed to sync: %v\n", err)

}
igst.Close()

7.12 Permissions and Port Binding
Gravwell is designed to execute with as few privileges as possible. The shell and Debian installers will create
an unprivileged user and group named gravwell and create a directory structure in /opt/gravwell which
is owned by the gravwell user. Most of the services don’t need any special privileges, however if we want
to be able to serve the Gravwell GUI on traditional HTTP and HTTPS ports we will need the ability to
bind to port 80 and port 443, which are privileged system ports. Modern Linux kernels have the ability to
assign capabilities9 to executables. Capabilities grant specific privileges that would normally be denied to the
executing user. Gravwell uses these capabilities to enable the webserver to bind to privileged ports without
requiring that we execute as an elevated user or group.

When debugging broken Gravwell installations there are a few things to always check:

1. The ownership of files in /opt/gravwell and any well locations. They should be owned by
gravwell:gravwell

9http://man7.org/linux/man-pages/man7/capabilities.7.html

202 CHAPTER 7. INGESTERS

2. The capabilities assigned to binary files.

(a) The webserver needs CAP_NET_BIND_SERVICE

(b) The network capture ingester needs CAP_NET_RAW

3. Check logs for critical error messages.

(a) /opt/gravwell/log

(b) /opt/gravwell/log/web

(c) /opt/gravwell/log/crash

(d) /dev/shm/

The most common breakages are when users move shards or attempt to manually start a Gravwell component
as root; this causes Gravwell to assign ownership of files and directories to the root user and group. When
Gravwell is then started correctly by systemd, the Gravwell processes (running as the gravwell user) won’t
have access to the files and folders they need.

7.12.1 Hands-on Lab: Permissions and Port Binding
Docker typically just executes everything as root, so we will be using a new container that actually uses a
proper user and group to execute Gravwell components. Start by cleaning up the environment:

docker kill $(docker ps -q)

Ensure the gravwell:brokenperms container is loaded (if you don’t have the gravwell:brokenperms image,
see Section 2.5 for instructions on how to load it), then start it:

docker run -d --net gravnet -p 8080:80 --rm \
--name test gravwell:brokenperms

Check the GUI (http://localhost:8080), are we able to access Gravwell? Is the container up?

Let’s grab a shell within the container as the root user and start poking around:

docker exec -it --user root test /bin/bash

The goal is to fix the installation and get the Gravwell components to start correctly. Start by answering a
few questions:

1. Which services are not starting?

2. Where are the pertinent log files?

3. What other locations contain Gravwell logs?

4. What are the permissions inside /opt/gravwell/?

(a) What should they be?

5. What are the capabilities assigned to each Gravwell service binary?

(a) What should they be?

To clean up after the experiment, simply run:

docker kill $(docker ps -a -q)

http://localhost:8080

7.13. GRAVWELL AND SYSTEMD 203

7.13 Gravwell and Systemd
Gravwell installers assume the availability of Systemd. While there are other init services out there, Systemd
has steadily become the init system of choice for most popular Linux distributions. Systemd controls how
processes start, how failures are handled, and how to shutdown processes using unit files1011. Unit files can
be installed in several locations, but Gravwell places its unit files in /etc/systemd/system/. The unit files
are copied to the target folder, then registered and started using systemctl enable <service name> and
systemctl start <service name>.

This is the unit file for the Gravwell indexer that is shipped for version 3.3.5:

[Install]
WantedBy=multi-user.target

[Unit]
Description=Gravwell Indexer Service
After=network-online.target
OnFailure=gravwell_crash_report@%n.service

[Service]
Type=simple
ExecStart=/opt/gravwell/bin/gravwell_indexer -stderr %n
ExecStopPost=/opt/gravwell/bin/gravwell_crash_report -exit-check %n
WorkingDirectory=/opt/gravwell
Restart=always
User=gravwell
Group=gravwell
StandardOutput=null
StandardError=journal
LimitNPROC=infinity
LimitNOFILE=infinity
TimeoutStopSec=120
KillMode=process
KillSignal=SIGINT

By default we do not limit the number of files or processes that Gravwell has access to. Large systems can
spread out and run many threads and while managing potentially thousands of shards. However, if your
Gravwell is co-resident with other important services it may be desirable to limit access to resources. We do
not recommend limiting the number of open files or processes, but limiting CPU access and memory usage
may be desirable. CPU and memory can be limited using the CPUQuota and MemoryMax parameters in the
[Service] block. IO and network resources can also be limited using IO12.

7.14 Gravwell and Docker
Gravwell supports Docker as a first class citizen (as you can tell by our heavy use for this training). Most
components can use environment variables and Docker secrets for configuration and process control. Our
published Docker container uses a process control daemon called manager13 which can monitor environment
variables that tell it to disable services. The available control parameters are fully documented in Gravwell’s
web documentation14, but let’s dive into controlling Gravwell processes and control parameters using docker.

10https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/sect-
managing_services_with_systemd-unit_files

11https://www.digitalocean.com/community/tutorials/understanding-systemd-units-and-unit-files
12https://www.freedesktop.org/software/systemd/man/systemd.resource-control.html
13https://github.com/gravwell/manager
14https://docs.gravwell.io/#!configuration/docker.md

204 CHAPTER 7. INGESTERS

Gravwell services have a hierarchy of configuration sources when starting. Configuration parameters in a
configuration file are checked first; if a mandatory configuration parameter is empty, it will then potentially
look for the configuration parameter in an environment variable. The environment variable is a two step
lookup. First it checks if an environment variable is set indicating that we should use secrets. Docker secrets
are only available when operating in swarm mode15. Kubernetes16 and OpenShift17 have similar systems
that are compatible with Docker secrets and thus Gravwell. Rather than attempt to get a full Docker swarm
environment up, configuration parameters can also be set as regular Docker environment variables. The core
Gravwell package supports the following environment/secret configuration parameters:

GRAVWELL_REMOTE_INDEXERS
GRAVWELL_REPLICATION_PEERS
GRAVWELL_INDEXER_UUID
GRAVWELL_WEBSERVER_UUID
GRAVWELL_INGEST_AUTH
GRAVWELL_CONTROL_AUTH
GRAVWELL_SEARCHAGENT_AUTH
GRAVWELL_DATASTORE
GRAVWELL_DATASTORE_LISTEN_ADDRESS
GRAVWELL_DATASTORE_LISTEN_PORT

If GRAVWELL_ENABLE_DOCKER_SECRETS is set to TRUE, then Gravwell will attempt to load the configuration
parameters from the secrets system, otherwise it looks for the value in an environment variable. We
use the environment variable method of configuration extensively throughout this training. Run docker
inspect gravwell:base and examine the Config and Env sections. Those environment variables can be
overridden when building a container using the -e flag. For example, docker run -d --name test -e
GRAVWELL_INDEXER_UUID=611757dc-4b54-11e9-acf8-aba211cc704f gravwell:base will start the indexer
with a specific UUID, preventing it from generating and assigning a random value.

7.14.1 Hands-on Lab: Gravwell and Docker
For this lab we will examine how to use Docker to modify core configuration variables at runtime while
deploying a base gravwell.conf file. To start, let’s clean the working environment:

docker kill $(docker ps -q)

Now create a new container named test using the gravwell:base image. When you create the container, override
the default Ingest-Auth, Control-Auth, and Search-Agent-Auth auth tokens with something unique. Once
the container has been created using docker create, log into the GUI and check that everything came up,
then try ingesting some data using JSON generator; be sure to set the appropriate authentication secrets!

docker run --net gravnet --rm -it gravwell:generators \
/jsonGenerator -clear-conns test \
-ingest-secret MY_SECRET

Lab Questions

1. How can we check the environment variable overrides using Docker?

2. Why is it insecure to use environment variables to configure authentication tokens?

3. Why is this configuration system essential for deployment using something like Kubernetes or OpenShift?

To clean up after the experiment, simply run:

docker kill $(docker ps -a -q)

15https://docs.docker.com/engine/swarm/secrets/
16https://kubernetes.io/docs/concepts/configuration/secret/
17https://docs.openshift.com/container-platform/3.5/dev_guide/secrets.html

Chapter 8

Automation

Gravwell provides several utilities to enable automated operations. At the most basic level, users can schedule
searches to be executed at specific times, for example every morning at 1:00. They can also schedule flows
and scripts, which can execute multiple searches, sift and parse search results, and send notifications via
email or HTTP. Flows are designed using a drag-and-drop graphical interface and are generally preferred over
scripts, which should be reserved for legacy situations or very particular usecases which flows cannot cover.

These scheduled operations are run by the search agent, a separate program which connects to the Gravwell
webserver as a client. This chapter describes the search agent, scheduled searches, flows, and scripts.

8.1 Configuring User Email Settings
In order to send emails from scheduled scripts, each user must input settings for their preferred email
server. This will allow Gravwell to act as an SMTP client and send emails on the user’s behalf. The email
configuration page is a sub-tab in the user’s account settings (see Figure 8.1).

The Username and Password fields should be filled out with the user’s authentication tokens for the email
server. If TLS is required by the server, set the ‘Use TLS’ toggle; note that it may be necessary to change
the Port to 465 after enabling TLS.

After populating the configuration, hit ‘Update Settings’ to save the options. ‘Test Configuration’ should
then become clickable. Click it to bring up the email testing dialog, as seen in Figure 8.2.

Change the “From” and “To” addresses to the user’s own email address, then click ‘Send Test Email’. Gravwell
will attempt to use the mail server to send an email to the user. If the email arrives, the email server has
been correctly configured. It may be necessary to check spam folders.

If the email does not arrive, check the Gravwell webserver logs, located in /opt/gravwell/log/web by
default.

8.2 The Search Agent
The search agent is the Gravwell component which actually handles the execution of scheduled searches and
scripts. It is a separate process which connects to a Gravwell webserver as a client, obtains a list of scheduled
searches/scripts, and runs them when scheduled.

The search agent is shipped in the main Gravwell installer and should be installed by default in most situations.
If for some reason the search agent is not enabled, a notification will appear in the Gravwell web interface
warning of that fact (Figure 8.3).

205

206 CHAPTER 8. AUTOMATION

Figure 8.1: Email preferences dialog

Figure 8.2: Email testing dialog

8.2. THE SEARCH AGENT 207

Figure 8.3: Search agent warning

Note that when using multiple Gravwell webservers, the search agent should be disabled on all but one of
them to avoid conflicts and superfluous search executions.

8.2.1 Disabling the Search Agent
To disable the search agent on a server that uses Systemd:

systemctl stop gravwell_searchagent.service
systemctl disable gravwell_searchagent.service

The Docker images provided by Gravwell do not use Systemd; instead, they use a Gravwell-implemented
process manager called “manager”1. To disable the search agent on such a container, pass the argument -e
DISABLE_SEARCHAGENT=TRUE when creating the container, e.g.:

docker run --rm --net gravnet -p 8080:80 -d \
-e DISABLE_SEARCHAGENT=TRUE --name gravwell gravwell:base

8.2.2 Search Agent Configuration
Although the search agent ships with the indexer and webserver components, it uses its own configuration file
found at /opt/gravwell/etc/searchagent.conf. While the defaults set at install time should be sufficient,
this section describes the configuration options in case changes are needed.

Webserver-Address

The Webserver-Address parameter should be an IP or hostname and a port which point to the Gravwell
webserver. If no port is specified, port 443 is used by default (80 if HTTPS is disabled). The following are all
valid Webserver-Address values:

Webserver-Address=10.0.0.1:80
Webserver-Address=127.0.0.1:443
Webserver-Address=192.168.0.1
Webserver-Address=gravwell-webserver.example.com

If Webserver-Address is specified multiple times, the search agent will multiplex scheduled searches across all
listed servers, to distribute load.

Search-Agent-Auth

The Search-Agent-Auth parameter specifies the token which is used to authenticate with the webserver. This
can be any string, but it must correspond with the Search-Agent-Auth parameter defined in the webserver’s
gravwell.conf!

1https://github.com/gravwell/manager

208 CHAPTER 8. AUTOMATION

Insecure-Use-HTTP

Setting the Insecure-Use-HTTP parameter to “true” instructs the search agent to connect to the Gravwell
webserver using unencrypted HTTP. This should only be used on trusted internal networks or on the local
loopback interface!

Insecure-Skip-TLS-Verify

Setting the Insecure-Skip-TLS-Verify parameter to true instructs the search agent to ignore invalid TLS
certificates when connecting to the webserver.

Log-File

Log-File specifies a file where the search agent should write its logs. If not set, the search agent will write
logs to standard error.

Log-Level

Log-Level sets the severity level at which log entries will actually be written to the log, thus setting
Log-Level=WARN ensures only warnings, errors, and critical messages will be sent to the log. The available
levels are OFF, DEBUG, INFO, WARN, ERROR, and CRITICAL.

Max-Script-Run-Time

The Max-Script-Run-Time parameter specifies how long, in minutes, a given scheduled script is allowed to
execute. If set to 0, scripts can run for an unlimited length of time. There are two things to consider when
setting this:

1. A script which runs indefinitely only interferes with itself; other scheduled searches and scripts will run
regardless.

2. Many buggy scripts will automatically time out, because a script must also execute at least one of the
Gravwell-defined scripting functions every 30 seconds. A hung script will quickly be terminated.

8.2.3 Scheduling Searches
Users can schedule searches to run at regular intervals. This enables several useful possibilities, such as
automatically updating lookup tables (e.g. MAC address to IP mappings) or executing a very detailed /
long-running search every morning at 6 a.m. to have the results ready when employees arrive.

Creating a Scheduled Search

To create a scheduled search, select the ‘Scheduled Searches’ page from the menu in the GUI, then click the
‘Add’ button in the upper right corner of the page. A form will pop up, as shown in Figure 8.4.

Enter the desired query in the box labeled ‘Type in a query’, then use the timeframe picker to choose how far
back the search should run. Assign the scheduled search a name and a description.

The ‘Scheduling’ field requires some explanation. This field defines a cron-formatted schedule to specify when
the search should run. Clicking the ‘Cron Helper’ link will open a useful website to experiment with cron
schedules. The following are all valid schedules:

• Run every minute: * * * * *
• Run every 10 minutes: */10 * * * *
• Run every hour: 0 * * * *
• Run every day at 2 a.m.: 0 2 * * *
• Run once a week at 7 P.M.: 0 19 */7 * *

When all the fields have been populated, click ‘Save’ to save the scheduled search. The search agent will soon
discover this new search and will execute it on schedule.

8.2. THE SEARCH AGENT 209

Figure 8.4: New scheduled search form

210 CHAPTER 8. AUTOMATION

Viewing Scheduled Search Results

Once a scheduled search has been executed at least once, the results of the most recent search execution are
available for review. Although the search results appear in the ‘Persistent Searches’ page, the simplest way to
view the results for a particular scheduled search is to select the ‘Run last search’ icon on the tile for that
scheduled search within the ‘Scheduled Searches’ page (Figure 8.5).

This will open the most recent results from that scheduled search. Note that when the search agent runs
a scheduled search, it deletes the previous run’s results when the new search completes. This prevents old
searches from cluttering the disk.

8.2.4 Hands-On Lab
This lab will demonstrate how a scheduled search can automatically update lookup tables. First, create a
Gravwell webserver+indexer container:

docker run -d --rm --net gravnet -p 8080:80 --name gravwell gravwell:base

Then we’ll use the ingesters container (make sure you’ve loaded the ingesters container image as described in
Section 2.5) to import some DHCP data:

cd ~/gravwell_training/Automation/Lab-Scheduled

docker run -v $PWD/data:/tmp/data --rm -i --net gravnet \
gravwell:ingesters /opt/gravwell/bin/reimport -rebase-timestamp \
-clear-conns gravwell:4023 -i /tmp/data/dhcp.json.gz -import-format json \
-tag-override syslog

Log into the web GUI (http://localhost:8080). A simple search on the “syslog” tag over the last two weeks
should show some results similar to Figure 8.6.

These DHCP server logs can be used by a scheduled search to build a lookup table for search enrichment,
mapping MAC addresses and IP addresses to hostnames. Go to the Scheduled Searches page, click ‘Add’,
and fill in the form with the following:

• Query:

tag=syslog regex "HOSTNAME: (?P<hostname>\S+) on (?P<ip>\S+) at (?P<mac>\S+)"
| unique hostname ip mac
| table -save hosts hostname ip mac

• Timeframe: 14 days

• Name: hostsfile

• Description: update hosts file

• Scheduling: * * * * *

This scheduled search will run every minute, searching over the last 14 days to extract MAC:IP:hostname
mappings. It will use the table renderer’s -save flag to save the results in a resource named “hosts”.

Within a minute, a resource named “hosts” should appear on the Resources page. We will test this lookup
table by attempting to look up the hostname which corresponds to the IP requested in DHCPREQUEST
messages. Here is a sample DHCPREQUEST message:

<190> 11:15:02 apu dhcpd: DHCPREQUEST for 192.168.2.52 from 08:00:27:ca:b2:e7 via igb2

From this, we can create a regular expression which extracts the IP address, then use the new lookup table
to match that IP address against a hostname in the hosts resource. Figure 8.7 shows the results.

tag=syslog regex "DHCPREQUEST for (?P<ip>\S+)"
| lookup -r hosts ip ip hostname as hostname | table

http://localhost:8080

8.2. THE SEARCH AGENT 211

Figure 8.5: The “Run last search” button

212 CHAPTER 8. AUTOMATION

Figure 8.6: Raw DHPC logs

Figure 8.7: Lookup table results

8.2. THE SEARCH AGENT 213

To clean up after the experiment, simply run:

docker kill $(docker ps -a -q)

214 CHAPTER 8. AUTOMATION

8.3 Flows
Flows provide a no-code method for developing advanced automations in Gravwell. A flow consists of one of
more nodes; each node performs a single action and passes the results (if any) on to the next node(s). By
wiring together nodes in a drag-and-drop user interface, users can:

• Run queries
• Generate PDF reports
• Send emails
• Fire off Slack and MS Teams messages
• Re-ingest alerts
• etc.

8.3.1 Flow Concepts
Flows are automations, meaning they are normally executed on a user-specified schedule by the search agent.
They can also be run manually through the user interface. The basic process of flow development is:

1. Create a new flow

2. Instantiate nodes in the flow and connect them together

3. Configure nodes

4. Test the flow with debug runs

5. Deploy the flow by setting a schedule & enabling scheduled execution

Nodes

A flow is a collection of nodes, linked together to define an order of execution. Each node does a single task,
such as running a query or sending an email. Figure 8.8 shows a simple flow of three nodes; the leftmost
node runs a Gravwell query, then the middle node formats the results of that query into a PDF document,
and finally the rightmost node sends that PDF document as an email attachment.

Figure 8.8: A simple flow with three nodes.

All nodes have a single output socket. Most have only a single input socket, but some nodes which merge
payloads (see below) have multiple input sockets. One node’s output socket may be connected to the inputs
of multiple other nodes, but each input socket can only take one connection.

Payloads

Payloads are collections of data passed from node to node, representing the state of execution. For instance,
the “Run a Query” node will insert an item named “search” into the payload, containing things like the query
results and metadata about the search. The PDF node can read that “search” item, format it into a nice
PDF document, and insert the PDF file back into the payload with a name like “gravwell.pdf”. Then the
Email node can be configured to attach “gravwell.pdf” to the outgoing email.

Most nodes receive a single incoming payload through a single input socket, then pass a single outgoing
payload via the output socket. In most cases, the outgoing payload will be a modified version of the incoming
payload.

8.3. FLOWS 215

The merge nodes are exceptions to this general rule. The Stack Merge and Nest Merge nodes take multiple
incoming payloads (via multiple input sockets) and merge them into a single output. See Section 8.3.3 for
more detailed descriptions of these nodes.

Execution order

Nodes are always executed one at a time. A node can be executed if all nodes upstream of it (its dependencies)
have executed. If multiple nodes are ready to execute, one will be chosen at random. In Figure 8.9, both
the “Run a Query” node and the “HTTP” node are candidates to run first. After the Query node finishes,
the If node can execute; when it is done, the Slack Message node may run. We say that the “If” node is
downstream of the Query node, and the Slack node is downstream of both the If and Query nodes.

Figure 8.9: An illustration of execution order.

Note that some nodes may block execution of downstream nodes. The If node is configured with a boolean
logic expression; if that expression evaluates to false, none of the If node’s downstream nodes are executed.
Nodes which can block downstream execution will always have a note to that effect in the online documentation.

8.3.2 The Flow Editor
Flows are created using the flow editor. Although the Gravwell flow editor can be intimidating at first glance,
a few minutes’ worth of experimentation and exploration should be enough to get started building flows.
This section will go through the various components of the UI, explaining each component.

Note: If you’re not yet familiar with the basic components of a flow (nodes, sockets, payloads), refer to
Section 8.3.1 for an overview.

You can access the flow editor from the Query & Dev Studio interface, found in the Main Menu. Select
“Flows” from the left-hand side, as shown in Figure 8.10. From there, you can either start a new blank flow
(“Start a New Flow”) or instantiate one of the “starter flows” provided by Gravwell.

Selecting either option will take you into the flow editor, the parts of which are marked in Figure 8.11. The
palette provides a list of available nodes, which can be dragged out into the canvas. The console provides
information about problems with the flow and output from any test runs.

Nodes are instantiated by dragging them from the palette onto the canvas. Once on the canvas, node input
and output sockets can be connected, nodes can be re-arranged, etc. Note that the scroll wheel can be used
to zoom in and out of the canvas view.

The toolbar contains buttons for quick access to editor functionality. From left to right:

• Flow Designer: shows the flow canvas (default view).

• Info & Scheduling: shows options to set flow name, description, scheduling, sharing, etc.

• Disable scheduling: toggle to quickly enable/disable automatic execution of the flow.

• Save: save the flow.

• Debug: run the flow

• Clear selection: deselects any currently-selected node.

216 CHAPTER 8. AUTOMATION

Figure 8.10: Flows in the Query Studio

Figure 8.11: Parts of the Flow Editor.

8.3. FLOWS 217

• Delete: delete the selected node.

• Delete all: delete all nodes (requires confirmation).

• Export flow: download the flow specification, for backup or sharing.

• Import flow: upload a previously-exported flow spec.

• Fit all nodes on screen: zoom & center the canvas so that all nodes are visible.

• Fullscreen: puts the editor into fullscreen mode.

Configuring Nodes

Once a node has been instantiated by dragging it from the palette to the canvas, it must be configured.
Clicking on the node will bring up the configuration pane as seen in Figure 8.12.

Figure 8.12: Configuring a node.

The HTTP node shown in Figure 8.12 is a particularly complex node with many config options, which serves
well for demonstration. Note that the URL and Method fields are marked with an asterisk, indicating that
they are required. Note also the drop-down menus for each config option; these allow you to change between
entering a constant value (e.g. the string “http://gravwell.io” in the URL config) or selecting a value from
the payload as shown with the Body config.

If a node is misconfigured, the console will display a list of problems. In Figure 8.13, we see that the Email
node has several config options which are not yet set. As those options are populated, the errors will go away.

Note: You can return to the palette view at any time by clicking the palette icon above the configuration
pane.

218 CHAPTER 8. AUTOMATION

Figure 8.13: Parse errors.

Debugging

Once a flow has been designed and configured, it can be debugged. This will signal the search agent component
that it should try executing the flow. To start a debug run, click the “Run flow and debug” button (the “play
button”) in the toolbar. The user interface will then wait for the search agent to complete its run.

Once the run is complete, the console will have detailed execution information for each node in the “Debug
Output” pane. The nodes are listed in order of execution. Clicking on a node in the debug output will bring
up a pane showing that node’s log output and the actual contents of that node’s output payload. In Figure
8.14, we can see that the If node received a payload where search.Count was “10”, meaning the If node’s
boolean statement evaluated to true and the HTTP node was allowed to execute:

Figure 8.14: Node payload showing If node payload.

If we modify the If node’s config so the statement is search.Count <= 0 and re-run the flow, we’ll see that

8.3. FLOWS 219

it now evaluates to false and the HTTP node does not execute (as seen by the empty “Message” column in
the Debug Output pane), as shown in Figure 8.15

Figure 8.15: Debug run where If node evaluates to false and execution halts.

Info & Scheduling

Once you’re happy with a flow, the final step is to give it a schedule and enable it. This is done in the “Info
& Scheduling” page, accessible via a button in the toolbar.

You should specify a name and description for the flow, then define a schedule. The schedule is set in cron
format2, which is very flexible but can also be intimidating. There are a few shortcuts for simple cases:
@hourly runs at the start of every hour, @daily at midnight every day, and so on.

Once the schedule is set, toggle the “Disable scheduling” option to enable scheduled executions of the flow.
The search agent will then automatically run it on the given schedule.

In-Flow “Sticky” Notes

The “Note” node is a special node used to annotate flows. Unlike other nodes, it plays no role in the execution
of the flow; notes exist purely for the convenience of users.

When dragged from the palette, a Note node starts out in a minimized state as seen in Figure 8.17.

When clicked, the note expands and text can be entered, as shown in Figure 8.18.

Clicking the “X” will minimize the note, leaving the start of the text visible as seen in Figure 8.19.

2https://cron.help/

220 CHAPTER 8. AUTOMATION

Figure 8.16: Info & scheduling page for flows.

Figure 8.17: A minimized note.

Figure 8.18: An “open” note.

Figure 8.19: Multiple minimized notes with text preview visible.

8.3. FLOWS 221

8.3.3 Nodes
The following nodes are currently implemented:

• Email: send email messages.

• Flow Storage Read: read items from a persistent storage.

• Flow Storage Write: write items into a persistent storage.

• Gravwell Notification: set Gravwell notifications.

• HTTP: do HTTP requests.

• If: perform logical operations.

• Indexer Info: get information about Gravwell indexers.

• Ingest: ingest data into Gravwell.

• Ingester Info: get information about Gravwell ingesters.

• JavaScript: run small snippets of Javascript code for custom operations.

• JSON Encode/Decode: encode and decode JSON.

• Mattermost Message: send a Mattermost message.

• Nest Merge: join multiple input payloads into one.

• PDF: create PDF documents.

• Query Log Ingest: convert search results to alert entries & ingest.

• Read Macros: read Gravwell macros.

• Rename: rename variables in the payload.

• Run a Query: run a Gravwell query.

• Set Variables: inject variables into the payload.

• Slack File: upload a file to a Slack channel.

• Slack Message: send a message to a Slack channel.

• Sleep: pause flow execution for a given period of time.

• Splunk Query: run a Splunk query.

• Stack Merge: join multiple input payloads into one.

• Teams Message: send a Microsoft Teams message.

• Text Template: format text.

• Throttle: limit execution frequency of certain nodes within a flow.

The following nodes tend to be needed only in particular advanced cases:

• Get Table Results: get results from a search using the table renderer.

• Get Text Results: get results from a search using the text renderer.

A selection of nodes are described in greater detail below. Documentation for every individual node is
available on the Gravwell documentation website.3

3https://docs.gravwell.io/#!flows/flows.md

https://docs.gravwell.io/#!flows/flows.md

222 CHAPTER 8. AUTOMATION

Nest Merge Node

The Nest Merge node can join multiple input payloads into a single output payload. It “nests” each input
payload under a different name in the outgoing payload. Figures 8.20 and 8.21 show a simplified example of
how this works. Two Set Variable nodes are instantiated, each injecting a variable named “foo”; the first sets
the value to first value and the other sets the value to second value. The outputs of these nodes are fed
to the Nest Merge node, which has been configured with two input sockets named x1 and x2. Figure 8.21
shows how the Nest Merge node places the incoming payloads under new top-level names corresponding to
the input sockets; thus the foo: "first value" output of the first Set Variable node is nested under the
name x1.

Figure 8.20: Nest merge inputs.

Figure 8.21: Nest merge output.

8.3. FLOWS 223

Stack Merge Node

The Stack Merge node can join multiple input payloads into a single output payload. Where the Nest Merge
node “nests” input payloads and thus always preserves the entirety of all inputs, the Stack Merge node
“overlays” inputs. That is, it takes the first input payload, then merges in the second payload, overwriting
any variables with the same name. It repeats this process for all input payloads.

Figures 8.22 and 8.23 show a simplified example of how this works. Two Set Variable nodes are instantiated,
each injecting a variable named “foo”; the first sets the value to first value and the other sets the value to
second value. The first node also injects a variable named “x” with a value of y.

The outputs of these nodes are fed to the Stack Merge node, which has been configured with two input
sockets. Figure 8.23 shows how the Stack Merge node overwrites values; thus the foo: "first value"
output of the first Set Variable node is overwritten by the second node’s foo: "second value" output, but
the “x” variable is preserved since the second node does not set a variable with the same name.

Figure 8.22: Stack merge inputs.

Figure 8.23: Stack merge output.

224 CHAPTER 8. AUTOMATION

Email Node

The Email node sends emails from within a flow. It can attach items from the payload. Note that the user
who owns the flow must configure an email server as described in Section 3.2.3 for the Email node to function
properly!

• Sender, required: This is the address which will appear in the “From” header of the email.

• Recipients, required: The email will be sent to this address or addresses.

• Subject, required: The subject line of the email.

• Body, required: The body text of the email message. Enter a string manually, or select a variable
containing suitable text. The Text Template node provides powerful tools for formatting text in the
flow.

• Attachments: An optional array of items to add as attachments on the email.

The Email node makes a best-effort attempt at determining the appropriate file type on the attachment.
Naming payload items with appropriate file extensions (e.g. appending .pdf to the output name of the PDF
node) helps the Email node figure out the correct type, but it can also make some deductions based on the
structure of the data.

JavaScript Node

The JavaScript node can execute JavaScript code in a flow, allowing complex logic and custom operations on
the payload. The configuration of a JavaScript node consists of three items:

• Code: the actual JavaScript code to execute.

• Libraries: a set of libraries to load; these are key-value pairs, where the key is the name of the library
(for user reference only) and the value is the content of the library.

• Outputs: a list of variables to be output from the script (see below).

Scripts can read from and write to the payload by accessing the payload variable, e.g. payload.flow.Scheduled.
Note that variables created in the payload are only visible to downstream nodes if that variable is explicitly
listed in the “Outputs” configuration field.

Combining the HTTP node and the JavaScript node makes it trivially easy to load JS libraries from the
Internet. For instance, the flow in Figure 8.24 uses the HTTP node to fetch the Lodash JavaScript library4,
then the JavaScript node loads the HTTP response as a library and uses it to round a number. (Note that
the Lodash library loads itself into a variable named _, so calling the round function from the Lodash library
looks like _.round(4.123))

PDF Node

The PDF node formats search results and other data into an attractive PDF document, which can then be
sent to recipients using the Email node, the Slack node, the HTTP node, etc.

There are many configuration options on the PDF node:

• Title, required: the title of the PDF.

• Subtitle: an optional sub-title.

• Contents, required: select one or more items from the payload to be included in the PDF. Query results
will be automatically formatted.

• Page Size: change the size of the pages in the PDF.
4https://raw.githubusercontent.com/lodash/lodash/4.17.15-npm/lodash.js

8.3. FLOWS 225

Figure 8.24: Loading JavaScript libraries.

• Include Flow Metadata Page: if set to true, the PDF will include a final page giving information about
the execution of the flow.

• Password: if set, the PDF will be password-protected.

• Output Variable Name: sets the name for the output PDF in the payload.

The “Contents” field is perhaps the most critical. The node will attempt to format each item in this field as
a section within the PDF document. It knows how to parse query results, meaning that a query using the
table renderer will be inserted into the PDF as a proper table. Figure 8.25 shows an example flow in which
the outputs of several queries, plus the output of a Text Template node, are used as the Contents of a PDF.
Figure 8.26 shows an example of what such a PDF may look like.

Figure 8.25: Including multiple query results in a PDF.

The “Output Variable Name” config option specifies the name to use for the output PDF in the payload.
Using a name which ends in .pdf will help inform other nodes that the object is a PDF file, for instance
when included as an attachment on the Email node.

Setting “Include Flow Metadata Page” to true causes the node to insert an additional page at the end of the

226 CHAPTER 8. AUTOMATION

Figure 8.26: Sample PDF output.

8.3. FLOWS 227

document containing additional information about the user who executed the flow, the status of the Gravwell
cluster, and the current Gravwell license. It will also insert the full query string, the timeframe, and the
execution time for any queries which were packaged into the PDF.

228 CHAPTER 8. AUTOMATION

Slack File/Message Nodes

Two nodes can send to Slack: Slack Message and Slack File. As the names imply, one sends a text message
to a Slack channel, while the other uploads a file. Both nodes have the following configuration options:

• Token, required: a Slack access token5 for the desired server.

• Channel, required: the channel that will receive the message, without a preceding ‘#’ character.

• Message: the message body; Markdown is supported.

The Slack Message node also has a “Verbatim Text” config, which is optional text to be attached to the
message verbatim, without being parsed as Markdown. This is useful for showing the result of an HTTP
request or other unformatted data.

The Slack File node also has a “File to Send” config, which is an item from the payload to be attached to the
message. This works particularly well with the output of the PDF node.

Note that any user with read access to the flow will be able to extract the token, giving them the ability to
write to the same Slack server. For this reason, we recommend that flows with Slack nodes should not be
shared with other users.

Teams Node

The Teams node can send a message to a Microsoft Teams channel. The configuration options are:

• Webhook, required: an incoming webhook6 URL for Microsoft Teams.

• Title: an optional title for the message.

• Message, required: the body of the message to send.

Note that any user with read access to the flow will be able to extract the webhook, giving them the ability
to write to the same Teams channel. For this reason, we recommend that flows with Teams nodes should not
be shared with other users.

5https://api.slack.com/authentication/token-types
6https://docs.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/what-are-webhooks-and-connectors

https://api.slack.com/authentication/token-types
https://docs.microsoft.com/en-us/microsoftteams/platform/webhooks-and-connectors/what-are-webhooks-and-connectors

8.3. FLOWS 229

8.3.4 Hands-On Lab: Flows
This lab will demonstrate how to build a flow. The flow will send a notification whenever there have been
failed login attempts to the Gravwell system. First, create a Gravwell webserver+indexer container:

docker run -d --rm --net gravnet -p 8080:80 --name gravwell gravwell:base

Now log into the web GUI (http://localhost:8080). After that, open a new private browser window (so
the existing login cookie isn’t used) and enter some invalid login credentials, e.g. username “admin” with
password “admin”. This will generate a login failure message which we can check using the following query:

tag=gravwell syslog Message=="Authentication failure" user
| stats count by user
| table user count

Figure 8.27: Query showing failed login attempts.

We will use that query as the basis for a new flow. Select “Flows” from the “Automation & Flows” section in
the main menu, then click the “+” icon in the upper right to create a new flow. Drag the following nodes
from the node palette out to the canvas:

• Run a Query

• If

• Gravwell Notification

Wire them up as seen in Figure 8.28

Figure 8.28: Node layout for lab.

Each node now needs to be configured. Begin with the Run a Query node; click it, then paste the Gravwell
query above into the “Query String” config field. Note how the “Search Timeframe” defaults to the last hour,
and “Output Variable Name” defaults to “search”. This means the payload output by the Run a Query node
will contain an item named “search” with information about the query which was executed.

The If node should be configured to check search.Count > 0. This means that execution will continue if
there were any results from the search.

http://localhost:8080

230 CHAPTER 8. AUTOMATION

Finally, set a message in the Gravwell Notification node’s Message field, something like “Failed logins! Go
check!”.

Once all three nodes are configured, the Design Issues tab of the console should be empty. If there are issues
reported, check your configuration on the associated node.

To test the flow, click the debug icon in the toolbar. You should soon see a notification appear as in Figure
8.29.

Figure 8.29: Example notification from flow.

If no notification appears, double-check that the query given above actually returns results when run over the
last hour, or try generating more failed login attempts.

Once the flow is working, you can prepare the flow for deployment. In the Run Query node’s config, change
the Search Timeframe dropdown from “ISO Duration” to “Variable”. The value should change to the default
flow.Interval. Then go to the Info & Scheduling tab, set the schedule to “* * * * *” to make it run every
minute, toggle the “Disable scheduling” slider, and hit Save. These two changes will make the flow run
automatically every minute, and cause the query to run only over the last minute (this is the effect of setting
the duration to flow.Interval).

Test these changes by periodically creating failed login events. You should see a notification pop up after a
failed login. Delete the notification; it should not come back again until you do another failed login.

To clean up after the experiment, run:

docker kill $(docker ps -a -q)

8.4. SEARCH SCRIPTING AND ORCHESTRATION 231

8.4 Search Scripting and Orchestration
Please note that for most use cases, Gravwell flows are a much easier solution than writing a
script.

Scripts provide an additional layer of power beyond scheduled searches. A script can execute multiple searches,
filter and enrich the results, then re-ingest the resulting entries under a different tag, send alerting emails, or
do HTTP requests automatically.

Scripts can be run on a schedule, just like scheduled searches, or they can be run manually with the command
line client. This section will first discuss how scripts are written, then delve into examples of how they can be
run and used.

A script can be scheduled in exactly the same way as a scheduled search by simply changing the dropdown in
the scheduled search creation form from “Search query” to “Anko script” and pasting the script into the
form, as shown in Figure 8.30.

Figure 8.30: Creating a new scheduled script

232 CHAPTER 8. AUTOMATION

The rest of this section will describe what scripts look like and how they are written.

8.4.1 The Anko Scripting Language
Gravwell scripts are written in the Anko scripting language (see http://github.com/mattn/anko). Anko is an
interpreted, dynamically-typed language whose syntax resembles Go. This section gives a brief overview of
the language.

Comments

Anko comments can be prefixed with either the hash character or a pair of slashes, or they can be wrapped
in C-style comment markers:

// This is a valid Anko comment
This is also a valid comment
/* This is a comment, too */

Declaring variables

In Anko, variables can be created and modified with the same syntax:

// This creates the variable
x = 1
// And this updates it
x = x + 1

The ‘var’ keyword can be used to indicate that a new variable must be allocated at the current scope:

// Declare a variable
var x = 1

if true {
// Declare a new variable at the inside scope
var x = 2

}
println(x) // prints “1”

If the ‘var’ keyword was not used, the println call would have printed ‘2’.

Slices

Anko implements slices (arrays) in a similar way to Go, but with more implicit operations allowed:

a = [1, 2, 3]
a += 4 // append
println(a) // prints [1 2 3 4]
println(a[1]) // prints 2

Anko’s default slice type is []interface{}, which means a slice can contain many different types. Note that
slices are “expanded” when appended:

a = [1, 2.2, “foo”]
a += [3, 4]
a += [[5, 6]]
println(a) // prints [1 2.2 foo 3 4 [5 6]]

http://github.com/mattn/anko

8.4. SEARCH SCRIPTING AND ORCHESTRATION 233

Maps

Anko maps are maps of interface{} to interface{}, meaning a given map can mix key and value types:

m = { “foo”: 2 } // initializes a map with a single entry, “foo” -> 2
m[3] = 7 // map key 3 to value 7
println(m[3]) // prints “7”
println(m[“foo”]) // prints “2”

If-Else Statements

If-ElseIf-Else statements work exactly the same in Anko as in Go:

if x > 10 || y {
count1++

} else if x == 3 && !y {
count2++

} else {
count3++

}

Switch Statements

Anko provides switch statements similar to Go. Note that there is no “fallthrough” keyword.

switch val {
case “foo”:

count1++
case 3:

count2++
default:

notfound++
}

For Loops

Anko supports traditional for loops:

for i = 0; i < 10; i++ {
println(i)

}

It also can also iterate over the contents of a slice:

a = ["foo", 3, 8.3]
for i in a {
println(i) // will print “foo”, 3, 8.3

}

The ‘range’ built-in function is convenient for iteration:

// this will print 0 through 9
for i in range(0, 10) {
println(i)

}

// this will print 0, 2, 4, 6, 8
for i in range(0, 10, 2) {

234 CHAPTER 8. AUTOMATION

println(i)
}

Function Declaration

Anko functions resemble Go functions, but they do not declare any return types. Arguments are passed by
value, not by reference:

func foo(x) {
return x++

}

var a = 1
foo(a)
println(a) // prints "1"
a = foo(a)
println(a) // prints "2"

8.4.2 Available Libraries
A selection of Go libraries have some functionality exported to Anko for use in scripts. Check the Gravwell
online documentation for a full list. Some examples are:

• “bytes”

• “encoding/json”

• “errors”

• “math”

• “math/big”

• “math/rand”

• “net/url”

• “path”

• “path/filepath”

• “regexp”

• “sort”

• “strings”

• “time”

• “io”

• “flag”

• “io/ioutil”

• “encoding/csv”

• “crypto/md5”

• “crypto/sha1”

• “crypto/sha256”

• “crypto/sha512”

• “net”

8.4. SEARCH SCRIPTING AND ORCHESTRATION 235

• “net/http”

• “github.com/ziutek/telnet”

• “google/uuid” (github.com/google/uuid)

Libraries must be imported using the import function before use:

var md5 = import(“crypto/md5”)
fooSum = md5.Sum(“foo”)

8.4.3 Gravwell Anko Functions
Gravwell has extended the Anko language with additional functions specifically suited to writing orches-
tration scripts. This section describes those functions. The functions are listed below in the format
functionName(<functionArgs>) <returnValues>. Functions which return more than one argument have
the return values wrapped in parentheses.

Resources and persistent data functions

“Persistent maps” are a convenience offered for scheduled searches. Values set in a persistent map will be
available for reading in subsequent runs of the scheduled search. If the named persistent map does not exist,
it will be created. Persistent maps do nothing when the script is run at the Gravwell CLI.

• getResource(name) ([]byte, error) - returns the contents of the specified resource as a slice of
bytes, while the error is any error encountered while fetching the resource.

• setResource(name, value) error - creates (if necessary) and updates a resource named name with
the contents of value, returning an error if one arises.

• setPersistentMap(mapname, key, value) - stores a key-value pair in a map which will persist
between executions of a scheduled script.

• getPersistentMap(mapname, key) value - returns the value associated with the given key from the
named persistent map.

• delPersistentMap(mapname, key) - deletes the specified key/value pair from the given map.

Search entry manipulation functions

These functions get, set, and delete enumerated values on a single entry (as returned by the getEntries
function described later)

• setEntryEnum(ent, key, value) - sets an enumerated value on the specified entry.
• getEntryEnum(ent, key) (value, error) - reads an enumerated value from the specified entry.
• delEntryEnum(ent, key) - deletes the specified enumerated value from the given entry.

General utility functions

• len(val) int - returns the length of val, which can be a string, slice, etc.
• toIP(string) IP - converts string to an IP, suitable for comparing against IPs generated by e.g. the

packet module.
• toMAC(string) MAC - converts string to a MAC address.
• toString(val) string - converts val to a string.
• toInt(val) int64 - converts val to an integer if possible. Returns 0 if no conversion is possible.
• toFloat(val) float64 - converts val to a floating point number if possible. Returns 0.0 if no conversion

is possible.
• toBool(val) bool - attempts to convert val to a boolean. Returns false if no conversion is possible.

Non-zero numbers and the strings “y”, “yes”, and “true” will return true.
• typeOf(val) type - returns the type of val as a string, e.g. “string”, “bool”.

236 CHAPTER 8. AUTOMATION

Search management functions

Due to the way Gravwell’s search system works, some of the functions in this section return Search structs
(written as “search” in the parameters) while others return search IDs (written as “searchID” in the
parameters). Each Search struct contains a search ID, which can be accessed as search.ID.

Search structs are used to actively read entries from a search, while search IDs tend to refer to inactive
searches to which we may attach or otherwise manage.

• startBackgroundSearch(query, start, end) (search, err) - creates a backgrounded search with
the given query string, executed over the time range specified by ’start’ and ’end’. The return value is
a Search struct. These time values should be specified using the time library; see the examples for a
demonstration.

• startSearch(query, start, end) (search, err) - acts exactly like startBackgroundSearch, but
does not background the search.

• detachSearch(search) - detaches the given search (a Search struct). This will allow non-backgrounded
searches to be automatically cleaned up and should be called whenever you’re done with a search.

• attachSearch(searchID) (search, error) - attaches to the search with the given ID and returns a
Search struct which can be used to read entries etc.

• getSearchStatus(searchID) (string, error) - returns the status of the specified search, which can
be “ACTIVE”, “ATTACHED”, “DORMANT”, “SAVED”, “SAVING”, or “UNKNOWN”.

• getAvailableEntryCount(search) (uint64, bool, error) - returns the number of entries that can
be read from the given search, a boolean specifying if the search is complete, and an error if anything
went wrong.

• getEntries(search, start, end) ([]SearchEntry, error) - pulls the specified entries from the
given search. The bounds for start and end can be found with the getAvailableEntryCount function.

• isSearchFinished(search) (bool, error) - returns true if the given search is complete
• executeSearch(query, start, end) ([]SearchEntry, error) - starts a search, waits for it to com-

plete, retrieves up to ten thousand entries, detaches from search and returns the entries.
• deleteSearch(searchID) error - deletes the search with the specified ID
• backgroundSearch(searchID) error - sends the specified search to the background; this is useful for

“keeping” a search for later manual inspection.
• downloadSearch(searchID, format, start, end) ([]byte, error) - downloads the given search

as if a user had clicked the ’Download’ button in the web UI. format should be a string containing
either “json”, “csv”, “text”, “pcap”, or “lookupdata” as appropriate. start and end are time values.

• getDownloadHandle(searchID, format, start, end) (io.Reader, error) - returns a streaming
handle to the results of the given search as if the user had clicked the ’Download’ button in the web UI.
The handle returned is suitable for use with the HTTP library functions shown later in this document.

Search Data Type

When executing a search via the startSearch or startBackgroundSearch functions the search data type is
returned. The search data type contains the following members:

• ID - A string containing the search ID. Use this member for other functions like getSearchStatus and
attachSearch.

• RenderMod - A string indicating the renderer attached to the search. It may be something like raw,
text, table, chart, or fdg.

• SearchString - A string containing the search string passed in during the request
• SearchStart - A string containing the start timestamp for the search
• SearchEnd - A string containing the end timestamp for the search
• Background - A boolean indicating whether the search was started as a background search
• Name - An optional string with a search name.

Transmitting alerts or search results

The scripting system provides several methods for transmitting script results to external systems.

8.4. SEARCH SCRIPTING AND ORCHESTRATION 237

The following functions provide basic HTTP functionality:

• httpGet(url) (string, error) - performs an HTTP GET request on the given URL, returning the
response body as a string.

• httpPost(url, contentType, data) (response, error) - performs an HTTP POST request to the
given URL with the specified content type (e.g. “application/json”) and the given data as the POST
body.

More elaborate HTTP operations are possible with the “net/http” library. See the package documentation in
the online anko documentation7 for a description of what is available.

If the user has configured their personal email settings within Gravwell, the email function is a very simple
way to send an email:

• email(from, to, subject, message) error - sends an email via SMTP. The from field is simply
a string, while the to field should be a slice of strings containing email addresses. The subject and
message fields are also strings which should contain the subject line and body of the email.

Creating and ingesting entries

It is possible to ingest new entries into the indexers from within a script using the following functions:

• newEntry(time, data) Entry - returns a new entry with the given timestamp (a time.Time, as from
time.Now()) and data (frequently a string).

• ingestEntries(entries, tag) error - ingests the given slice of entries ([]Entry) with the specified
tag string.

The entries returned by the getEntries function can be modified if desired and re-ingested via ingestEntries,
or new entries can be created from scratch. For example, to re-ingest some entries from a previous search
into the tag “newtag”:

Get the first 100 entries from the search
ents, _ = getEntries(mySearch, 0, 100)
ingestEntries(ents, "newtag")

To ingest new entries based on some other condition:

if condition == true {
ents = make([]Entry)
ents += newEntry(time.Now(), "Script condition triggered")
ingestEntries(ents, "results")

}

8.4.4 Example Scripts
This script creates a backgrounded search that finds which IPs have communicated with Cloudflare’s 1.1.1.1
DNS service over the last day. If no results are found, the search is deleted, but if there are results the search
will remain for later perusal by the user in the ‘Persistent Searches’ screen of the GUI.

Import the time library
var time = import("time")
Define start and end times for the search
start = time.Now().Add(-24 * time.Hour)
end = time.Now()
Launch the search
s, err = startSearch("tag=netflow netflow Dst==1.1.1.1 Src | unique Src | table Src",

start, end)↪→

if err != nil {

7https://docs.gravwell.io/#!scripting/scriptingsearch.md

238 CHAPTER 8. AUTOMATION

return err
}
Wait until the search is finished
for {

f, err = isSearchFinished(s)
if err != nil {

return err
}
if f {

break
}
time.Sleep(1 * time.Second)

}
Find out how many entries were returned
c, _, err = getAvailableEntryCount(s)
if err != nil {

return err
}
If no entries returned, delete the search
Otherwise, background it
if c == 0 {

deleteSearch(s.ID)
} else {

err = backgroundSearch(s.ID)
if err != nil {

return err
}

}
Always detach from the search at the end of execution
detachSearch(s)

8.4.5 Developing & Testing Scripts
Because the same script can be executed as either a scheduled search or manually with the CLI client, scripts
are usually tested/developed using the CLI client and then copied into a scheduled search later. Scripts run
with the CLI client can display printed output, which is ignored when run on a schedule; this is particularly
useful when debugging a script.

A script can be executed manually from the client in the following way:

$ gravwell -s <server> script
script file path> /path/to/script.ank

A convenient way to run a script repeatedly is to use the “watch” modifier. The client will execute the script,
then prompt to re-run. If the script file is modified between runs, the next execution will use the updated
script. Here, a script that hashes a string with MD5 is modified to hash using SHA1:

$ gravwell -s <server> watch script
script file path> /tmp/hash.ank
[172 189 24 219 76 194 248 92 237 239 101 79 204 196 164 216]
Hit [enter] to re-run, or [q][enter] to cancel

[11 238 199 181 234 63 15 219 201 93 13 212 127 60 91 194 117 218 138 51]
Hit [enter] to re-run, or [q][enter] to cancel

8.4. SEARCH SCRIPTING AND ORCHESTRATION 239

8.4.6 Hands-on Lab: Scripting
This lab will demonstrate how to send email alerts from a script. This lab will test the script using the
Gravwell CLI client, then schedule it for automated execution.

The script will operate on Netflow records and send an alert whenever traffic is seen originating from
the 7.0.0.0/8 subnet, which in this example stands in for a “known bad” subnet or subnets. In an actual
deployment, one might keep a list of known-bad subnets in a resource lookup table (which can be automatically
updated via another script!) and compare flow records against that lookup table instead, but for simplicity
we will use a single hard-coded subnet.

First, launch a Gravwell webserver+indexer container:

docker run --rm --net gravnet -p 8080:80 -d --name gravwell gravwell:base

Log in, go to the Account settings page and select the Email Server tab, then populate your email server
configuration and test it (Figure 8.31).

Figure 8.31: Configuring email server

240 CHAPTER 8. AUTOMATION

Next, start the ingester container running the Netflow ingester:

docker run --rm -d --net gravnet --name ingesters \
-e GRAVWELL_CLEARTEXT_TARGETS=gravwell:4023 gravwell:ingesters \
/opt/gravwell/bin/gravwell_netflow_capture

The Netflow ingester is pre-configured to listen on port 2055 for incoming Netflow v5 records.

Now, we use another Docker container to generate Netflow records and send them to the ingester:

docker run -it --net gravnet --rm \
networkstatic/nflow-generator -t ingesters -p 2055

The Netflow generator will run indefinitely, generating flow records, until killed. Let it run at least until the
following query shows at least one result:

tag=netflow netflow Src | subnet Src /8 as sub | ip sub == 7.0.0.0 | table

This query will form the basis of our script. It extracts the source IP address from the Netflow records,
converts that to a /8 subnet and stores the result in an enumerated value named “sub”, then compares “sub”
to 7.0.0.0.

Open the file named email-netflow.ank on the host system and paste the following into it (or use the
version in the training package):

var time = import("time")
SET THESE VARIABLES
from = "MY.ADDRESS@EXAMPLE.COM"
to = ["RECIPIENT@EXAMPLE.COM"]
my_name = "HANK"
Do the search over the last day
end = time.Now()
start = end.Add(-24 * time.Hour)
query = `tag=netflow netflow Src | subnet Src /8 as sub | ip sub == 7.0.0.0 | table`
s, err = startSearch(query, start, end)
if err != nil {

return err
}
Wait for the search to complete
for {

f, err = isSearchFinished(s)
if err != nil {

return err
}
if f {

break
}
time.Sleep(1 * time.Second)

}
Figure out how many results there were
c, _, err = getAvailableEntryCount(s)
if err != nil {

return err
}
clean up the search, we only care about how many entries there were
detachSearch(s)

If there was more than 0 entries, send an email

8.4. SEARCH SCRIPTING AND ORCHESTRATION 241

if c > 0 {
summary = "There were " + c + " flows originating from the banned subnet!"
email(from, to, my_name + " alert!", summary)

}

Modify the ‘from’, ‘to’, and ‘my_name’ variables at the top of the script; ‘from’ should be your email
address, ‘to’ is a list of email recipients (this should probably be your email address again), and ‘my_name’
is your own name.

Now copy the file to the Gravwell container and run a shell:

docker cp email-netflow.ank gravwell:/tmp/
docker exec -it gravwell /bin/sh

Within that shell, run the Gravwell CLI client and execute the script:

$ gravwell -insecure-no-https script
Username: admin
Password: changeme
script file path> /tmp/email-netflow.ank

If all goes well, an email alert should arrive soon!

The script can be trivially run on a schedule by simply pasting it into the New Scheduled Search dialog, as
shown in Figure 8.32.

Note that this will send an email every minute, so either delete the scheduled script once it’s been verified to
work, or shut down the entire experiment when satisfied:

docker kill $(docker ps -a -q)

242 CHAPTER 8. AUTOMATION

Figure 8.32: Creating scheduled script

8.5. SECRETS 243

8.5 Secrets
Gravwell can store secret strings for use in flows and scripts. Once created, the user cannot read the contents
of the secret again, although they may change the value later. The user may then refer to the secret in certain
node types when building a flow; for instance, in Figure 8.33, the user has set the Webhook URL field of the
Mattermost Message node to use a secret named “Mattermost Webhook”.

Figure 8.33: Using a secret in a flow

Secrets are managed via the Secrets page in the Tools & Resources section of the Gravwell main menu. To
create a new secret, click the “+ Secret” button in the upper right and fill out the fields in the dialog as
shown in Figure 8.34.

Figure 8.34: Creating a secret

Note that once the secret is created, the user will not be able to retrieve the contents of the secret again! It
is possible to change the contents of the secret, but never to read them.

8.5.1 Sharing Secrets
Secrets may be shared with other users. For instance, an administrator may decide that users in the group
named “mattermost-users” should be allowed to use a common Mattermost webhook to send notifications

244 CHAPTER 8. AUTOMATION

from their flows. Sharing the secret (Figure 8.35) with that group allows those users to use it in their flows,
but prevents them from retrieving the actual contents of the secret.

Figure 8.35: Sharing a secret

8.5.2 Security Considerations
Although Gravwell does its best to protect the contents of secrets, there are several fundamental issues which
must be faced by any system which uses stored secrets in automations. In brief, anyone who has root access
to the Gravwell webserver systems can probably extract your secrets with a little work. Further details are
given below.

Before creating a secret, think through what could happen if the secret were leaked and how you would
respond. Adding a secret containing a Mattermost webhook URL to your internal corporate Gravwell system
is low-risk; creating a secret containing your SSH private key on a publicly-accessible Gravwell system is
higher-risk.

• Secrets are stored unencrypted on the webserver’s filesystem (and on the datastore, if used). This
means that anyone who can read files in /opt/gravwell/etc on the Gravwell server(s) can theoretically
extract the contents of a secret from the database.

• If Gravwell is configured with HTTPS disabled, secrets will cross the network unencrypted; anyone who
can sniff network traffic may be able to retrieve them.

• Secrets must be available to the search agent component for use in flows. The search agent retrieves
the secret values after authenticating via a special method used only by the search agent. The search
agent authenticates using a token stored in /opt/gravwell/etc; in theory, anyone who can read the
files containing the token could impersonate the search agent and retrieve the secrets.

Chapter 9

Gravwell Kits

Gravwell Kits act like a sort of ‘app store’ from which Gravwell users can install kits to gain out-of-box
capabilities for common technologies. As an example, let’s take an organization that uses Zeek for firewall/IDS
logging on their network. These logs are ingested by Gravwell and easily searchable, but the users must
issue their own queries to explore and analyze that data. This requires knowledge and experience with both
Gravwell and Zeek in order to create useful dashboards, automation, data enrichments, or otherwise get value
out of the data using Gravwell.

With Gravwell Kits, that organization can install the pre-built and signed kit for Zeek. This comes with:

• Commonly-used dashboards for quick situational awareness and heads-up monitoring of Zeek activity.
• Scheduled searches which look for statistical anomalies within the Zeek data and alert when any are

discovered.
• Investigative dashboards that search Zeek data for items of interest such as IP addresses found in other

logs or data within Gravwell.
• Search Templates for easily running common queries.
• Threat intelligence resources that search Zeek events for known-malicious activity.
• And more!

Creating Gravwell kits isn’t very different than the hands-on activity we have been conducting to date.
Building dashboards, setting up automated searches, loading data enrichment resources–all of these things
are what goes into developing a cohesive kit. These Gravwell resources are bundled up, digitally signed, and
distributed via Gravwell infrastructure to users. Because these kits can include Gravwell scripts (which are
Turing-complete programs), the Gravwell team assesses and digitally signs all kits approved for distribution.

This chapter shows how to browse, install, and explore kits. It also discusses the kit building process, which
allows you to package things you build to share with friends and colleagues.

The ‘Kits’ section of the Gravwell web UI is the centralized place to work with kits. You can find the Kits
page in the main menu, as shown in Figure 9.1.

9.1 What’s in a Kit?
There are many components which make up a kit. First, there are the contents of the kit, which fall into 2
categories:

• Items: Regular Gravwell components such as dashboards, scheduled searches, macros, actionables, etc.
• Configuration Macros: These are specialized macros which the kit uses to configure itself, which can

allow greater flexibility in e.g. choices of tags used. For instance, rather than using tag=netflow in
all queries, a Netflow kit can say tag=$NETFLOW_KIT_TAG, then define a configuration macro named

245

246 CHAPTER 9. GRAVWELL KITS

Figure 9.1: Kits menu item

NETFLOW_KIT_TAG. At installation time, the kit prompts the user for which tag or tags contain Netflow
records.

There are a few other things which help identify a kit that are useful to keep in mind:

• ID: Identifies the kit. Gravwell uses namespaces similar to Android applications, e.g. "io.gravwell.netflow".
• Version: Kits may be updated over time, and the version number tracks this so Gravwell can automati-

cally notify of new kit versions.
• Name: A user-friendly name for the kit, e.g. "Netflow v5".
• Description: A detailed description of what the kit does.
• MinVersion/MaxVersion: Some kits require specific Gravwell features; to ensure those features are

available, these fields specify which Gravwell versions are compatible with the kit.
• Dependencies: Kits can depend on other kits, like packages in a Linux distribution. Gravwell’s Netflow

v5 kit depends on the Network Enrichment kit, for example. Dependencies are automatically installed
along with the kit.

9.1.1 Dependencies
: A kit may have dependencies defined. Dependencies are other kits which the kit requires for proper
functionality. For example, many kits depend on the Network Enrichment kit, which provides some baseline
resources for enriching network data, such as a GeoIP database. Dependencies are installed automatically
when you deploy a kit, provided the dependency exists on the Gravwell kit server.

9.2 Browsing and Installing Kits
On a fresh Gravwell cluster, no kits are installed. Opening the ‘Kits’ section will present an empty page
(Figure 9.2). If you click ‘Manage Kits’, you will be taken directly to the list of kits on the Gravwell kit
server, as shown in Figure 9.3.

You can click the kit details button to learn more about a given kit. Once you’ve decided on a kit to install,
click the install kit button. The system will download the kit, then pop up a wizard for installation. In
Figure 9.4, we have selected the IPFIX kit for installation. The first page shows a list of items contained in

9.2. BROWSING AND INSTALLING KITS 247

Figure 9.2: Kits page on a new Gravwell installation

Figure 9.3: Browsing available kits

248 CHAPTER 9. GRAVWELL KITS

the kit; after reviewing the contents, click the checkbox and select the Next button. The wizard will then
display any licenses packaged with the kit, as seen in Figure 9.5. Note that if there are multiple licenses, you
will have to select each one individually from the list on the left and click each checkbox before continuing.

Figure 9.4: Installing IPFIX kit, step 1

Figure 9.5: Installing IPFIX kit, step 2

Next, the wizard will prompt for Configuration Macros, if any are defined by the kit. Figure 9.6 shows this
step. A configuration macro allows install-time configuration of the queries which are shipped by the kit;
these will typically include a default value but also provide a description to help you figure out what to enter.
In the screenshot, it needs to know which tag contains IPFIX records; because we intend to use the ipfix
tag, we can leave the default value alone.

The final page of the wizard (Figure 9.7 prompts for additional options. “Override Existing Items”, if checked,
will overwrite any conflicting objects which may already exist on the system–for instance, if you have created
a resource named “foo”, but the kit will also create a resource named “foo”. The “Group Access” dropdown
allows you to optionally select a group which can see the contents of the kit. Admin users will also have the
option to install the kit globally, meaning all users can see it.

When you click the “Deploy” button, the kit and any dependencies will be installed. The GUI will display kit
installation status as it goes. It may take some time, but eventually the installation will complete as shown
in Figure 9.8.

9.2. BROWSING AND INSTALLING KITS 249

Figure 9.6: Installing IPFIX kit, step 3

Figure 9.7: Installing IPFIX kit, step 4

Figure 9.8: Kit deployment status

250 CHAPTER 9. GRAVWELL KITS

9.2.1 Exploring a Kit
If you click ‘Explore the Kit’ on the kit installation dialog (Figure 9.8, you’ll be taken to a page outlining the
contents of the kit, as seen in Figure 9.9.

Figure 9.9: Exploring a kit

Note that opening the kit like this (or clicking its icon in the list of installed kits) puts you in the kit’s context.
You can tell you are inside a kit context because the text “Kits / IPFIX” is in the top bar of the UI. While
you’re in a kit context, the UI will only show items contained within the kit. To leave the kit context, either
click the Gravwell logo at the top of the page, or click ‘Exit kit’ in the main menu.

You can always re-visit an installed kit by opening the kit menu and clicking the kit’s icon in the list of
installed kits.

9.3 Managing Installed Kits
9.3.1 Upgrading Kits
Once a kit has been installed, little administration is required. The sole point of manual intervention required
is upgrading a kit when a new version comes out. Gravwell will periodically push updates to the official kit
server. When one of your installed kits has an update available, an “Upgrade” button will appear on that
kit’s tile, as shown in Figure 9.10

Figure 9.10: The kit upgrade notification

Clicking the button will launch an upgrade wizard similar to the installation wizard. The most important
difference is the Backup option. If you have modified any of the items which were included in the kit, the
wizard will notify you and provide options for copying or downloading the modified items. If there are no

9.4. HANDS-ON LAB: INSTALLING KITS 251

items which have been modified, the Backup step will not be shown. The rest of the wizard is identical to
the installation wizard, although defaults such as group access should be already set for you.

Be warned that upgrading a kit to a new version involves the complete deletion of the previous version’s
contents. Do not click the “Deploy” button at the end of the wizard until you are prepared for this to happen!

9.3.2 Uninstalling Kits
To remove an installed kit, enter kit management mode by clicking the “Manage Kits” button in the upper-
right corner of the main kits page. Then select the trash can icon on the desired kit. A dialog will pop up for
confirmation, as shown in Figure 9.11. If you then click “Uninstall”, the kit will be removed, unless you have
manually changed any of the kit contents. If you have modified any of the kit items, you will see a second
dialog warning you of this fact and allowing one last chance to abort the process, as seen in Figure 9.12

Figure 9.11: Kit deletion dialog

Figure 9.12: Kit deletion warning dialog for modified items

9.4 Hands-on Lab: Installing Kits
For this hands on lab we are going to install the Netflow kit, browse some of the kit contents, then uninstall
the kit.

Start by cleaning your environment and starting up a new base Gravwell instance:

docker stop $(docker ps -q)
docker rm $(docker ps -q -a)
docker create --rm --net gravnet -p 8080:80 --name kits gravwell:base
docker start kits

Next, start the ingester container running the netflow ingester:

252 CHAPTER 9. GRAVWELL KITS

docker run --rm --net gravnet --name ingesters -it \
-e GRAVWELL_CLEARTEXT_TARGETS=kits:4023 \
gravwell:ingesters /opt/gravwell/bin/gravwell_netflow_capture

The netflow ingester is pre-configured to listen on port 2055 for incoming Netflow v5 records.

Now, we use another Docker container to generate Netflow records and send them to the ingester:

docker run -it --net gravnet --rm \
networkstatic/nflow-generator -t ingesters -p 2055

The netflow generator will run indefinitely, generating flow records, until killed.

Log into your Gravwell GUI (http://localhost:8080) and navigate to the Kits page. Click ‘Manage kits’,
which should take you to the list of available kits. Find and click the deploy button on the Netflow v5 kit,
then walk through the installation wizard.

When installation is done, click the ‘Explore the kit’ button, then open the playbook and run some of the
sample queries on the Netflow data we’re ingesting. Explore the rest of the kit, then try to answer these
questions:

1. How many dashboards are included in the kit?

2. Click the Gravwell icon at the top of the page to leave the kit context. How do you now get back into
the kit contents list?

3. Open the Netflow V5 Traffic Overview dashboard, scroll down to the ’Rare Ports’ tile, and click one of
the IP addresses. If you wanted to add to the actionables, how would you find the actionable definitions?

When you’re done, return to the ‘Manage kits’ page and uninstall the kit. Verify that none of the Netflow
dashboards or other objects still exist. Note that there is still a kit installed–which kit is it, and why was it
installed?

To clean up after the experiment, simply run:

docker kill $(docker ps -a -q)

9.5 Building Kits

Although Gravwell distributes pre-built official kits, any user can build a kit themselves. This is a convenient
way to share objects built on one Gravwell instance with another instance. Note that kits built like this are
not signed by Gravwell and therefore can only be installed by administrators.

You can build a kit by clicking the ‘Build’ button on the Manage Kits page. This launches the kit-building
wizard. On the first page, seen in Figure 9.13, you set general options. The name should be a user-friendly
short name like “Network Enrichment”, “Zeek Kit”, etc. The kit ID should be a namespaced and unique ID for
your kit; although the field is free-form, we recommend using domain namespaces, e.g. “io.gravwell.example”.
The Version field sets a version for the kit, which is useful for upgrades if you decide to set up your own kit
server. The optional Gravwell minimum and maximum versions allow you to restrict the kit’s compatiblity to
particular versions of Gravwell. Finally, the kit icon field lets you optionally set a small image which may be
used by Gravwell to help identify the kit to users.

http://localhost:8080

9.5. BUILDING KITS 253

Figure 9.13: Build wizard, general options

The next page (Figure 9.14) is a markdown editor in which you can write a detailed description of the kit.
You can go as simple or as complex as you like, but try to add some detail.

Figure 9.14: Build wizard, description page

The third page, seen in Figure 9.15, is where you actually select what goes in the kit. You can select an asset
category on the left (dashboards, resources, macros, playbooks, etc.), then click to select or deselect items
within that category on the right. In the screenshot, we are viewing the Query Library entries and have
selected the first 5. We have also previously selected one dashboard.

254 CHAPTER 9. GRAVWELL KITS

Figure 9.15: Build wizard, asset selection

After selecting assets comes the license page (Figure 9.16), where you can add licenses if needed–for instance,
if you were bundling a third-party resource which requires a license.

Figure 9.16: Build wizard, license page

After selecting assets, the only step remaining is to download the completed kit. Figure 9.17 shows this page.
Note that if you don’t click “Download”, the in-progress kit will not be saved anywhere! You can go back and
make changes to any of the previous steps before downloading by clicking the step at the top of the page.

9.5. BUILDING KITS 255

Figure 9.17: Build wizard download

256 CHAPTER 9. GRAVWELL KITS

Chapter 10

User and Group Management

Gravwell implements users and groups in a manner very similar to Unix. Each user has a username, a real
name, and a numeric UID. Each group has a name, a numeric group ID, and a list of member UIDs. As in
Unix, users can belong to multiple groups. The biggest difference from Unix is that a given item (such as a
resource) can often be made accessible to members of multiple groups, where Unix only allows one.

Many user actions generate entries in the webserver’s logs. Provided the webserver’s Log-Level parameter has
been set to INFO, the file /opt/gravwell/log/web/info.log will contain very verbose logs of user logins,
user searches, and more.

10.1 Managing Users
The Gravwell GUI includes an admin-only page for managing users, located in the menu under the Adminis-
trator section. From this page, an administrator can create new users, modify existing users, or delete users.
Figure 10.1 shows the User page on a freshly-installed Gravwell system; the only extant user is the default
“admin”.

Figure 10.1: A Freshly-Installed System’s User List

Clicking the ‘Add’ button in the upper right brings up a dialog to create a new user, as shown in Figure 10.2.
Note the ‘Administrator’ checkbox at the bottom of the dialog. If this box is checked, the user will receive
administrator-level privileges. Take care when selecting this option!

Each user information tile has four icons across the bottom, as shown in Figure 10.3. Selecting the trashcan
icon will delete the user (prompting for confirmation). The padlock icon will lock the user account, logging

257

258 CHAPTER 10. USER AND GROUP MANAGEMENT

Figure 10.2: New User Dialog

10.1. MANAGING USERS 259

out any sessions they may currently have and preventing them from logging in again until the account is
unlocked; this is a good way to deal with misbehaving users. Both of these icons are disabled for the ‘admin’
user.

Figure 10.3: The User Information Tile

The pencil icon brings up a dialog to edit the existing user, as shown in Figure 10.4. This allows you to reset
the user’s password, change their personal information, or even make them an administrator if needed.

Figure 10.4: Editing User Information

Finally, the clock icon brings up the user’s search history, as shown in Figure 10.5. This can be useful when
attempting to help a user figure out why their searches aren’t working, or to keep an eye on what users are
trying to extract from your data.

260 CHAPTER 10. USER AND GROUP MANAGEMENT

Figure 10.5: User Search History

10.2 Managing Groups
Group management is very similar to user management. The Groups page in the Administration section of
the menu will initially show no groups, as in Figure 10.6

Figure 10.6: A Freshly-Installed System’s Group List

A group can be added by clicking the ‘Add’ button and filling out the form, optionally selecting any users
which should be members of the new group, as shown in Figure 10.7

Figure 10.7: New Group Dialog

Once created, a group’s tile has three action icons as seen in Figure 10.8. The trashcan icon deletes the group.
The pencil icon allows the group to be renamed or for members to be added/deleted. The clock icon shows

10.2. MANAGING GROUPS 261

the history of searches which have been run which were accessible to this group.

Figure 10.8: The Group Information Tile

262 CHAPTER 10. USER AND GROUP MANAGEMENT

10.3 Hands-on Lab: Managing Users and Groups
First, launch a Gravwell webserver+indexer container:

docker run --rm --net gravnet -p 8080:80 -d --name gravwell gravwell:base

Log into the web GUI (http://localhost:8080) and try the following tasks using the GUI:

1. Create a new user for yourself.

2. Create a new group and add your user to the group.

3. Log in as your user in a separate incognito window. From the admin account, lock your user account.
What happened?

To clean up after the experiment, run:

docker kill $(docker ps -a -q)

http://localhost:8080

Chapter 11

Migration

When you first stand up Gravwell, one of the first tasks is typically getting data from an old system or log
archive into Gravwell. Migration may involve pulling historical data out of an existing system like Splunk,
scraping a large database, or just ingesting 5 years of old syslog from flat files. Gravwell provides a series of
"normal" ingesters designed to stream data in from a variety of sources in near real-time, but for one-time
migration of existing data, there are specialized tools which may be a better choice.

This section will explore the available tools to migrate existing data and give some tips on how to efficiently
migrate potentially hundreds of TB of existing logs into a new Gravwell instance. We will examine a few
scenarios where using migration tools will provide much better migration performance and storage efficiency
as opposed to just tossing something at a typical ingester. Most of our migration tools are open source, so we
can also provide links to source code and deep dive examinations of functionality. Most data migrations are a
one time occurrence, which means a one-off tool that is specialized for the task is usually the right answer.

11.1 The Interactive Migration Tool
Gravwell provides an interactive tool for migrating text files and Splunk data into Gravwell. This section
describes how to install, configure, and use it.

11.1.1 Installation
The migration tool is included in the gravwell-tools package for Debian and Redhat, and is also available as
a standalone shell installer. Once installed, the program is located at /usr/local/sbin/gravwell_migrate.

11.1.2 Basic Configuration
The migration tool stores its configuration in two different places:

• A top-level config file, by default located at /opt/gravwell/etc/migrate.conf.

• A config directory, by default /opt/gravwell/etc/migrate.conf.d, which contains automatically-
generated config snippets stored by the program.

These files are owned by the gravwell user. Both of these locations may be specified manually using the
-config-file parameter to point at your main config file, and -config-overlays to point at a directory
you wish to use for configuration snippets, which is useful if you are unable to execute the migrate command
as the Gravwell user.

In general, you should only need to modify migrate.conf. The following is a simple configuration which
migrates data from both Splunk and from files on disk:

263

264 CHAPTER 11. MIGRATION

[Global]
Ingester-UUID="0796e339-bd04-4dbf-be8d-f92fa5b08792"
Ingest-Secret = IngestSecrets
Connection-Timeout = 0
Insecure-Skip-TLS-Verify=false
Cleartext-Backend-Target=192.168.1.50:4023
State-Store-Location=/opt/gravwell/etc/migrate.state
Log-Level=INFO
Log-File=/opt/gravwell/log/migrate.log

[Splunk "splunk1"]
Token=`eyJraWQiOj[...]nlHnn4Oivew`
Server=splunk.example.org

[Files "auth"]
Base-Directory="/var/log"
File-Filter="auth.log,auth.log.[0-9]"
Tag-Name=auth
Recursive=true
Ignore-Line-Prefix="#"
Ignore-Line-Prefix="//"
Timezone-Override="UTC" #force the timezone

It specifies:

• Data should be ingested to the Gravwell indexer at 192.168.1.50:4023, using ‘IngestSecrets’ as the
token to authenticate with Gravwell.

• There is a Splunk server at splunk.example.org which can be accessed using the given token (the
token has been shortened for this document).

• It should pull auth.log, auth.log.1, auth.log.2 and so on from /var/log and ingest each line as
an entry, using the Gravwell tag "auth".

The sections on migrating files and migrating Splunk data have detailed descriptions of the configuring each
migration type; see below.

11.1.3 Launching the Tool
To start the tool, just run the provided binary as the gravwell user :

/usr/local/sbin/gravwell_migrate

If you cannot execute the program as the gravwell user, you’ll need to create your own configuration file
and config directory, then specify them via command-line options (see section 11.1.2 for more details):

/usr/local/sbin/gravwell_migrate -config-file ~/migrate.conf -config-overlays ~/migrate.conf.d/

If the configuration is valid, you should see the main menu of the migrate tool (see screenshot below). The
UI displays several panes of information: the main menu where you select actions, the “Jobs” pane where
running migrations are tracked, the “Logs” pane where debugging information is displayed, and the “Help”
pane which shows some basic key combinations (see Figure 11.1.

11.1.4 Migrating Files
Importing files from the disk is quite simple. First, set up the configuration file to point at files on the disk
you’re interested in ingesting. Then, from the main menu, select the "Files" option. You should see a list of
all the Files config blocks you defined. For instance, given the following configuration block, you should see
a menu which resembles the screenshot in Figure 11.2.

11.1. THE INTERACTIVE MIGRATION TOOL 265

Figure 11.1: The migration tool UI

[Files "auth"]
Base-Directory="/tmp/log"
File-Filter="auth.log,auth.log.[0-9]"
Tag-Name=auth2
Ignore-Timestamps=true #do not ignore timestamps
Recursive=true

Selecting “auth” opens another menu from which the migration can be launched. To begin the migration,
press the ‘s’ key or select the “Start” option. As seen in Figure 11.3, a job will appear in the Jobs pane
showing the migration progress. In this case, there were 2 files ingested, for a total of 1444 entries and 141537
bytes of data.

Note that there are actually two jobs shown in the screenshot. After the first migration job completed, “Start”
was selected again. However, the migration tool tracks how much of each file it has ingested, so it will not
duplicate data; the second job simply noted that there was no new data to ingest and exited.

266 CHAPTER 11. MIGRATION

Figure 11.2: File migration menu

Figure 11.3: File migration jobs

11.1. THE INTERACTIVE MIGRATION TOOL 267

File Configuration Details

The migrate tool can have multiple Files configuration blocks which allows the migrate tool to consume from
many different directories, applying tags, custom timestamps, and even custom preprocessors to different
batches of files. If you are performing a very large migration from many different file sources, you can set up
a big config file that points at all your sources, fire up the migration jobs, and head home for the weekend.
The ‘migrate‘ tool will walk each directory and consume each file according to the given configuration.

A Files configuration target is defined using the Files specifier with a unique name. Here is an example
looking for files in /tmp/logs:

[Files "auth"]
Base-Directory="/tmp/logs/"
File-Filter="auth.log,auth.log.[0-9]" #we are looking for all authorization log files
Tag-Name=auth

The Files configuration element can contain the parameters in Table 11.1.

Here is an example config snippet which shows the full range of config options for a directory, including the
use of a preprocessor:

[Files "testing"]
Base-Directory="/tmp/testlogs/"
File-Filter="app.log,app.log.[0-9],host.log*"
Tag-Name=apps
Assume-Local-Timezone=true #Default for assume localtime is false
Ignore-Timestamps=false
Recursive=true
Ignore-Line-Prefix="#"
Ignore-Line-Prefix="//"
Preprocessor="loginapps"

[Preprocessor "loginapp"]
Type=regexextract
Regex="\\S+ (?P<host>\\S+) \\d+ \\S+ \\S+ (?P<data>\\{.+\\})$"
Template="{\"host\": \"${host}\", \"data\": ${data}}"

268 CHAPTER 11. MIGRATION

Parameter Required Description Example
Base-Directory yes A full path to the directory containing

flat files to be ingested.
Base-Directory=/var/log/auth

File-Filter yes A comma separated list of file glob pat-
terns that specify which files to con-
sume.

File-Filter="*.log,file.txt"

Tag-Name yes The tag name that the migrate tool
should ingest all files into. This must
be a valid tag name.

Tag-Name=auth

Ignore-Timestamps A Boolean value indicating if the mi-
grate tool should not attempt to re-
solve timestamps, but should instead
use the timestamp of now. The default
value is false.

Ignore-Timestamps=true

Assume-Local-
Timezone

A Boolean indicating that if the re-
solved timestamps do not have a time-
zone, use the local timezone. The de-
fault is false, meaning use UTC.

Assume-Local-Timezone=true

Timezone-Override A string indicating that if the resolved
timestamps do not have a timezone,
use the given timezone. The timezone
must be specified in IANA format.

Timezone-Override="America/New_York"

Recursive A Boolean indicating that the tool
should recurse into any sub-directories
found in the Base-Directory and at-
tempt to match and consume files. De-
fault is false.

Recursive=true

Ignore-Line-Prefix A string which indicates that a line
should be ignored. This can be spec-
ified multiple times and is useful for
dealing with headers on files.

Ignore-Line-Prefix="#"

Preprocessor Specify preprocessors to be applied to
entries as they are consumed from flat
files. More than one preprocessor can
be specified and they are executed in
order.

Preprocessor="logins"

Table 11.1: Files configuration options

11.1. THE INTERACTIVE MIGRATION TOOL 269

11.1.5 Migrating Splunk Data
The migrate tool can copy data out of a Splunk server and into Gravwell. In Splunk, entries are organized by
index and source type; in the migration process, the tool pulls entries out of a given index & sourcetype and
ingests them into a Gravwell tag.

Configuring Splunk Tokens

In order to fetch data from a Splunk server, you must generate an authentication token which the migration
tool can use to communicate with Splunk. Tokens may be generated in the Splunk UI under Settings >
Tokens (Figure 11.4).

Figure 11.4: Splunk tokens menu

On the Tokens page, click the ‘New Token’ button, then fill in the “Audience” field with something like
“Gravwell migration”, select a token expiration time if desired (+60d is a good choice), and click ‘Create’.
The UI will then display a token in the “Token” field as seen in Figure 11.5; copy this and save it somewhere,
because it cannot be retrieved later!

This token string should be inserted into the Token field of a Splunk configuration block in the main config
file. The Server field should correspond to whatever IP address or hostname you use to access your Splunk
server.

270 CHAPTER 11. MIGRATION

Figure 11.5: Newly-generated Splunk token.

11.1. THE INTERACTIVE MIGRATION TOOL 271

Parameter Required Description Example
Server yes The hostname or IP address of the

Splunk server. Port 8089 must be ac-
cessible.

Server=splunk.example.org

Token yes A valid Splunk auth token. Token=eyJraWQiOj[...]nlHnn4Oivew
Ingest-From-Unix-
Time

A Unix timestamp which specifies the
default “start” time to use when copy-
ing entries from the Splunk server.
This may be overridden on a per-
sourcetype basis.

Ingest-From-Unix-Time=1625100000

Index-Sourcetype-
To-Tag

A mapping of a Splunk index and
sourcetype pair to a Gravwell tag. Can
be set interactively from within the mi-
grate tool.

Index-Sourcetype-To-Tag=main,json:importedjson
(maps the index "main" and source-
type "json" to the Gravwell tag
"importedjson")

Preprocessor Specify preprocessors to be applied
to entries as they are consumed from
Splunk. More than one preprocessor
can be specified and they are executed
in order.

Preprocessor="logins"

Table 11.2: Splunk config options

Configuring Splunk Migrations

The migrate tool must know a few basic things about the Splunk server in order to connect:

• The server’s IP or hostname.

• A valid auth token for the Splunk server.

These properties are defined in a Splunk configuration block within the config file. The simplest version
might look like this, defining a server named “splunk1”:

[Splunk "splunk1"]
Token=`eyJraWQiOj[...]nlHnn4Oivew`
Server=splunk.example.org

Multiple Splunk blocks may be defined, although each must have a unique name. The parameters shown in
Table 11.2 may be used in a Splunk config block.

Note: The migrate tool will automatically create a file named splunk1.conf in /opt/gravwell/etc/migrate.conf.d
to store your index+sourcetype→tag mappings (see below). Settings in this file will be merged with the
settings in the main configuration file automatically.

Importing Splunk Data

To import data from Splunk, make sure you have configured at least one Splunk block in the config file (see
configuration section above), then select “Splunk” from the main menu. This will open a new menu (Figure
11.6) in which you can select which Splunk server to migrate from.

Once a server has been selected, you will see the server’s menu (Figure 11.7)

272 CHAPTER 11. MIGRATION

Figure 11.6: Splunk server selection.

Figure 11.7: Splunk server menu.

11.1. THE INTERACTIVE MIGRATION TOOL 273

Mapping index+sourcetype to tag

You must now define how Splunk’s data organization should be mapped to Gravwell. In Splunk, data is
organized into indexes and sourcetypes. In Gravwell, data simply receives a tag. To define these mappings,
select “Manage Mappings”; this will open the mapping screen shown in Figure 11.8

Figure 11.8: Mapping management menu.

Initially, the tool is not aware of which indexes and sourcetypes exist on the Splunk server. Select “Scan”
to connect to the Splunk server and query this information; this may take a few seconds. Once the scan is
complete, several index+sourcetype pairs should be visible, each with a blank tag, as seen in Figure 11.9.

Figure 11.9: Sourcetype listing.

Select a pair which you wish to import and press enter. A form (Figure 11.10) will be displayed in which you
may enter the Gravwell tag to be used; note that it will only allow you to type valid tag characters. You may
also set a Unix timestamp to start the migration from, if you wish to exclude old data.

Note: If the Unix timestamp is set to 0, migration will begin from 1970, which can take a long time to
complete even when no data is present. To speed things up, we strongly recommend either setting a timestamp

274 CHAPTER 11. MIGRATION

Figure 11.10: Tag definition form.

in this form, or setting the Ingest-From-Unix-Time parameter in the config file (see above).

After you have set the tag for the desired index + sourcetype pairs, you can select “Write Config” to write
out a file in the migrate.conf.d directory which will store the mappings permanently.

Starting Migrations

Having defined mappings from Splunk index+sourcetype to Gravwell tag, you may now launch migration
jobs. From the server menu, select “Start Migrations”. A menu will appear showing the index+sourcetype →
tag mappings you defined earlier. Selecting one of these mappings will start a migration job (Figure 11.11).

Figure 11.11: Migration jobs.

You can launch multiple migrations at once. Note that Splunk migrations may take a while; if you exit the
migrate tool while a Splunk migration is running, the job will be halted as soon as possible and the most
recent timestamp will be stored to resume later–we make every effort to avoid data duplication!

11.1.6 Quitting the Tool
You can exit the migration tool at any time by hitting Ctrl-C, or by backing all the way up to the top-level
menu and pressing q. The tool will gracefully shut down all in-progress migrations and save its state. Note
that if a particularly data-heavy Splunk migration job is in progress, it may take several seconds for the data
to finish transferring; the UI will notify you that it is still waiting on some jobs and will quit when all are
done.

11.2. IMPORTING ONE FILE 275

11.2 Importing One File
The single file ingester is one of the most basic ingesters. It is designed to ingest a single line-delimited file to a
specific tag. It can transparently decompress files and has some limited parsing ability. If you have a single large
Apache access log or just need to script up some one off file ingestion, it can be the simplest option. The ingester
is included in the ‘gravwell-tools‘ package for Debian and Redhat, and is also available as a standalone shell
installer. Once installed, the program is located at /usr/local/sbin/gravwell_single_file_ingester.

The ingester is a standalone ingester that is designed to operate using flags rather than a config file. This
means that it lacks some of the additional functionality of other ingesters such as custom timestamp definitions
and preprocessor support. Pass the -h flag to the command to get a listing of options:

-block-size int
Optimized ingest using blocks, 0 disables

-clean-quotes
clean quotes off lines

-clear-conns string
comma-separated server:port list of cleartext targets

-i string
Input file to process (specify - for stdin)

-ignore-prefix string
Ignore lines that start with the prefix

-ignore-ts
Ignore timestamp

-ingest-secret string
Ingest key (default "IngestSecrets")

-pipe-conn string
Path to pipe connection

-quotable-lines
Allow lines to contain quoted newlines

-source-override string
Override source with address, hash, or integer

-status
Output ingest rate stats as we go

-tag-name string
Tag name for ingested data (default "default")

-timeout int
Connection timeout in seconds (default 1)

-timestamp-override string
Timestamp override

-timezone-override string
Timezone override e.g. America/Chicago

-tls-conns string
comma-separated server:port list of TLS connections

-tls-private-key string
Path to TLS private key

-tls-public-key string
Path to TLS public key

-tls-remote-verify
Validate remote TLS certificates (default true)

-utc
Assume UTC time

-verbose
Print every step

-version

276 CHAPTER 11. MIGRATION

Print version and exit

Most of these flags are optional, but the following are required: At least one indexer must be specified, using
-clear-conns, tls-conns, pipe-conn, or a combination thereof. The ingest secret should also be specified
with -ingest-secret, and the desired tag should be specified with -tag. Finally, the file to ingest must be
specified using the -i flag.

The following command ingests the contents of /tmp/my-logs.txt, one entry per line. It ignores (does not
ingest) any lines starting with the # character. It will attempt to extract timestamps from the log entries
(the default) but if no timezone is specified in the log entry, it will assume America/Chicago. The entries will
be ingested to the indexer at 10.0.0.50.

/usr/local/sbin/gravwell_single_file_ingester -clear-conns 10.0.0.50 -ingest-secret xyzzy123 -timezone-override "America/Chicago" -ignore-prefix "#" -status -i /tmp/my-logs.txt

11.3 Importing PCAP Files
If you have existing PCAP files (from Wireshark or tcpdump or some other packet capture tool), you can
ingest them using the PCAP file ingester. The ingester is included in the ‘gravwell-tools‘ package for Debian
and Redhat, and is also available as a standalone shell installer. After installation, the program is found in
/usr/local/sbin/gravwell_pcap_file_ingester.

The ingester is a standalone ingester that is designed to operate using flags rather than a config file. This
means that it lacks some of the additional functionality of other ingesters such as custom timestamp definitions
and preprocessor support. Pass the -h flag to the command to get a listing of options:

-clear-conns string
comma-separated server:port list of cleartext targets

-ingest-secret string
Ingest key (default "IngestSecrets")

-no-ingest
Do not ingest the packets, just read the pcap file

-pcap-file string
Path to the pcap file

-pipe-conn string
Path to pipe connection

-source-override string
Override source with address, hash, or integer

-tag-name string
Tag name for ingested data (default "default")

-timeout int
Connection timeout in seconds (default 1)

-tls-conns string
comma-separated server:port list of TLS connections

-tls-private-key string
Path to TLS private key

-tls-public-key string
Path to TLS public key

-tls-remote-verify
Validate remote TLS certificates (default true)

-ts-override
Override the timestamps and start them at now

-version
Print the version information and exit

Most of these flags are optional, but the following are required: At least one indexer must be specified, using
-clear-conns, tls-conns, pipe-conn, or a combination thereof. The ingest secret should also be specified

11.3. IMPORTING PCAP FILES 277

with -ingest-secret, and the desired tag should be specified with -tag. Finally, the ingest file must be
specified using the -pcap-file flag.

The following ingests the packets in /tmp/netflow-capture.pcap to an indexer on the local machine. Each
packet is ingested as a single entry.

/usr/local/sbin/gravwell_pcap_file_ingester -pipe-conns /opt/gravwell/comms/pipe \
-ingest-secret MyIngestSecret -pcap-file /tmp/netflow-capture.pcap

278 CHAPTER 11. MIGRATION

Chapter 12

Command Line Interface

In addition to the GUI we’ve shown so far, Gravwell provides a command-line client. This client can be
useful for certain repetitive tasks such as testing scripts (see the Automation chapter for more info) or in
situations where the GUI is not available. It can also be used in shell scripts or cron jobs to automatically
gather information from a Gravwell instance, if needed. The intent is that the command line interface should
provide every function available in the GUI.

12.1 Running the Client
The command-line client is installed as /usr/sbin/gravwell by default. It will attempt to connect to
localhost unless a different server is specified with the “-s” flag, but be aware that since Gravwell’s default
install disables HTTPS, we’ll need to use the “-insecure-no-https” flag. The client will prompt for a username
and password; use the same credentials you would use to log in to the GUI:

/ # gravwell -insecure-no-https
Username: admin
Password: changeme
#>

Once you log in, the client will show a top-level prompt. Similar to the Cisco command line, the client
implements multi-level menus; by typing ‘admin’, we can enter the administrative menu, then we can type
‘help’ to get a listing of available commands. Here is a snippet of available commands:

#> admin
admin> help
add_user Add a new user
impersonate_user Impersonate an existing users
del_user Delete an existing user
get_user Get an existing users details
update_user Update an existing user
list_users List all users
lock_user Lock a user account
user_activity Show a specific users activity

Help is available at all menu levels. When a command is selected, the client will prompt for input:

#> search
query> tag=* count
time range> -6h
count 1100
1/1

279

280 CHAPTER 12. COMMAND LINE INTERFACE

Press q[Enter] to quit, [Enter] to continue

Total Items: 1
1101 stats records from Mar 22 16:29:53.000 <-> Mar 22 22:29:54.000
count 1.10 K/1.00 663.35 KB/547 B 65.238537ms

12.2 Hands-on Lab: Basic CLI exploration
Launch a Gravwell webserver+indexer container:

docker run --rm --net gravnet -p 8080:80 -d --name gravwell gravwell:base

Now get a shell on the Gravwell container and run the client:

$ docker exec -it gravwell /bin/sh
/ # gravwell -insecure-no-https
Username: admin
Password: changeme
#>

Try the following tasks:

1. Create a new user

2. Lock that user

3. Verify that the user has been locked.

4. Unlock the user

5. Delete the user

When you’re done, use the “exit” command to quit the CLI, then “exit” again to leave the shell in the Docker
container.

Now, let’s use the command line client non-interactively to run a search and download the results. First,
we’ll ingest 1,000 random JSON entries into the Gravwell instance:

docker run --net gravnet --rm -it --name ingesters gravwell:ingesters \
/opt/gravwell/bin/jsonGenerator -clear-conns gravwell:4023 -entry-count 1000

Now, we use the client to run a search in the background; the search will find all entries containing the name
“David”:

$ docker exec -it gravwell /bin/sh
/ # gravwell -insecure-no-https -b search
query> tag=json grep David
time range> -6h
Background search with ID 569547375 launched

And use the client to download the results:

/ # gravwell -insecure-no-https download
+----------+-----+---------+----------+--------------------+-----------+
|Search ID |User | Group | State | Attached Clients | Storage |
+==========+=====+=========+==========+====================+===========+
|569547375 | 1 | 0 | DORMANT | 0 | 12.66 KB |
+----------+-----+---------+----------+--------------------+-----------+
search ID> 569547375
Available formats:
json

12.2. HANDS-ON LAB: BASIC CLI EXPLORATION 281

text
csv
format> text
Save Location (default: /tmp)> /tmp
Saving to /tmp/569547375.text

Lab Questions

1. Download the results in csv and json format. What’s the difference?

2. What happens when you leave out the “-b” flag while launching the search?

To clean up after the experiment, run:

docker kill $(docker ps -a -q)

282 CHAPTER 12. COMMAND LINE INTERFACE

Chapter 13

The Gravwell REST API

13.1 Introduction
Gravwell implements a REST API over HTTP. This API powers the Gravwell UI, but it can also be used to
interface other systems with Gravwell. For instance, a Python script can run a Gravwell query by hitting a
single API endpoint. This chapter discusses API Tokens, which are special authentication tokens given to
client applications for accessing the API, and demonstrates how to access perhaps the most useful REST
endpoint: the direct search API.

13.2 API Tokens
Gravwell users can generate tokens which allow an application to act as that user, but with limited privileges.
Tokens are passed to the Gravwell webserver with HTTP requests as a method of authentication. Tokens
are managed through the Tokens page (Figure 13.1), accessible in the Main Menu under the “Tools and
Resources” section.

Figure 13.1: The token management page.

New tokens are created by clicking the “+ Token” button in the upper right. This brings up a page where
the token’s name and description may be specified and a list of permissions can be selected. Figure 13.2
demonstrates how fine-grained capabilities can be assigned; in this example, the token will be able to run
searches, download the results, get a list of tags, and even ingest additional entries, but it will not be able to
mark searches for saving or view search history. By carefully selecting permissions, it is possible to restrict
the potential for harm if an API token is leaked.

Tokens can be set to expire after a period of time. By default, tokens last indefinitely, but the dropdown at
the bottom of the new token page can be used to set a limited duration as seen in Figure 13.3.

283

284 CHAPTER 13. THE GRAVWELL REST API

Figure 13.2: Defining a new token.

Figure 13.3: Token expiration options.

13.3. ACCESSING THE GRAVWELL API 285

Once permissions have been selected for the new token, clicking “Save” will bring up a dialog showing the
secret key for the token (Figure 13.4. This key should be copied at this time; it cannot be retrieved again
later.

Figure 13.4: Token secret.

If the secret is lost, the token can be regenerated, creating a new secret key, but any applications using the
old secret will stop working until updated.

13.2.1 Token Permissions and Restrictions
Token permissions are defined using specific allowances, in which the user selects exactly which functionality
a given token is allowed to perform. The Gravwell user interface provides some nice features to let you select
groups of permissions that might be logically related, but in the end each token must declare exactly what
APIs and systems it is allowed to access. Most permissions are divided into read and write components. This
means a token might be configured so it can read resources but not write them, or a token can read the state
of automation scripts but not create, update, or schedule them.

Permissions on tokens are an overlay on the user’s existing permissions. This means that if the current user
cannot access an API or feature, then the token cannot either–tokens can only restrict access, they cannot
grant access that a user does not currently have.

Note: The ‘Token write’ permission can be particularly dangerous. If you grant a token the ability to write to
the token API, it can create new tokens with any permission it wants. Token permissions are not transitive,
so a restricted token with access to the ‘Token Write’ permission could create new tokens with no restrictions.

The token system only provides access to user-level APIs and cannot be used by admins to access admin-level
APIs. An admin can still create and use tokens, but they cannot access APIs that require admin permissions.
For example, an admin cannot use a token to create users or update a license.

13.3 Accessing the Gravwell API
There are many, many REST endpoints in the Gravwell API. A reasonably complete listing is available on
the Gravwell documentation site.1 The easiest way to interact with the API is using the curl command.
Authentication is done by including a token secret (as described above) into a header named “Gravwell-Token”.
For example, to fetch a list of tags in the system:

% curl -H 'Gravwell-Token: DQ-Tgpe56czTSZ_kzzDlFqqMKSkIR65hOoTmcdUK0J-7DMq3H2YmDK-0WQ' \
http://gravwell.example.org/api/tags
["default","syslog","kernel","dmesg","windows","www","netflow","ipfix"]

13.4 Direct Search API
The Gravwell Direct Query API is designed to provide atomic, REST-powered access to the Gravwell query
system. This API allows for simple integration with external tools and systems that do not normally know
how to interact with Gravwell. The API is designed to be as flexible as possible and support any tool that
knows how to interact with an HTTP API.

1https://docs.gravwell.io/#!api/api.md

https://docs.gravwell.io/#!api/api.md

286 CHAPTER 13. THE GRAVWELL REST API

The Direct Query API is authenticated and requires a valid Gravwell account with access to the Gravwell
query system; a Gravwell token is the best way to access the API.

Issuing a query via the Direct Query API requires the same set of parameters as issuing a query via the
Gravwell web GUI: a query string, a time range, and an optional output format. The Direct Query API
has some limitations on which output formats can be provided. For example, the pointmap and heatmap
renderers cannot output rendered maps via this API, nor can this API draw a chart and deliver it as an
image. This API is primarily used for retrieving raw results and delivering them to other systems for direct
integration.

The Direct Query API is atomic: one request will execute an entire search and deliver the completed results.
Queries that cover large time ranges or require significant time to execute may require that HTTP clients
adjust their respective client timeouts.

13.4.1 Query Endpoints
The Direct Query API consists of two REST endpoints which can parse a search and execute a search. The
parse API is useful for testing whether a query is valid and could execute while the search API will actually
execute a search and deliver the results. Both the query and parse APIs require the user and/or token to
have the ‘Search‘ permission.

Parse API

The parse API is used to validate the syntax of a Gravwell query before attempting to execute it. The parse
API is accessed via a POST request to /api/parse. The parse API a query string delivered by header value,
URL parameter, or a ParseSearchRequest2 JSON object. A ParseSearchResponse3 object and a 200 code will
be returned if the query is valid.

The following curl commands are all functionally equivalent:

curl -X POST \
-H "Gravwell-Token: aFOa_YbO7Pe0MAqK08PSD-oTrEZxopc5JBf0hu0W5_Vo-FxWsjHp" \
-H "query: tag=gravwell limit 10" \
http://10.0.0.1/api/parse

curl -X POST \
-H "Gravwell-Token: aFOa_YbO7Pe0MAqK08PSD-oTrEZxopc5JBf0hu0W5_Vo-FxWsjHp" \
http://10.0.0.1/api/parse?query=tag%3Dgravwell%20limit%2010

curl -X POST -H -d '{"SearchString":"tag=gravwell limit 10"}' \
"Gravwell-Token: aFOa_YbO7Pe0MAqK08PSD-oTrEZxopc5JBf0hu0W5_Vo-FxWsjHp" \
http://10.0.0.1/api/parse

An example response is shown below:

[H]
{
"Sequence": 0,
"GoodQuery": false,
"ParsedQuery": "tag=gravwell limit 10",
"RawQuery": "tag=gravwell limit 10",
"ModuleIndex": 0,
"CollapsingIndex": 1,
"RenderModule": "text",
"TimeZoomDisabled": false,
"Tags": [
2https://pkg.go.dev/github.com/gravwell/gravwell/v3/client/types#ParseSearchRequest
3https://pkg.go.dev/github.com/gravwell/gravwell/v3/client/types#ParseSearchResponse

13.4. DIRECT SEARCH API 287

"gravwell"
],
"ModuleHints": [
{
"Name": "limit",
"ProducedEVs": null,
"ConsumedEVs": null,
"ResourcesNeeded": null,
"Condensing": true

},
{
"Name": "limitCollapser",
"ProducedEVs": null,
"ConsumedEVs": null,
"ResourcesNeeded": null,
"Condensing": true

},
{
"Name": "sort",
"ProducedEVs": null,
"ConsumedEVs": null,
"ResourcesNeeded": null,
"Condensing": false

}
]

}

Query API

The query API actually runs a search and returns the results. It is accessed via a POST to
/api/search/direct. The search API requires the parameters in Table 13.1 be delivered by header values,
URL parameters, or a JSON object.

Parameter Description Optional
query A complete Gravwell query string
format Query output format
preview Boolean indicating that the query should execute as a preview query yes
start RFC3339 start timestamp for the query yes
end RFC3339 end timestamp for the query yes
duration Go-encoded duration yes

Table 13.1: Query Request Parameters

Note that while the ‘start’, ‘end’, and ‘duration’ parameters are optional at least one complete set must be
provided, either ‘start’ and ‘end’ or ‘duration’.

The results of the query are returned in the body of the response. Each query renderer will support a different
set of output formats. If the specified output format is not supported a 400 BadRequest response will be
returned.

The following are all valid invocations; the first example shows a sample result as well:

% curl -X POST \
-H "Gravwell-Token: aFOa_YbO7Pe0MAqK08PSD-oTrEZxopc5JBf0hu0W5_Vo-FxWsjHp" \
-H "query: tag=gravwell stats count" \

288 CHAPTER 13. THE GRAVWELL REST API

-H "duration: 1h" \
-H "format: text" \
http://10.0.0.1/api/search/direct

count 14599

% curl -X POST \
-H "Gravwell-Token: aFOa_YbO7Pe0MAqK08PSD-oTrEZxopc5JBf0hu0W5_Vo-FxWsjHp" \
'http://10.0.0.1/api/search/direct?query=tag%3Dgravwell%20stats%20count&format=text&duration=1h'

% curl -X POST \
-H "Gravwell-Token: aFOa_YbO7Pe0MAqK08PSD-oTrEZxopc5JBf0hu0W5_Vo-FxWsjHp" \
-d '{"SearchString":"tag=gravwell stats count","SearchStart":"2022-03-01T12:00:00Z",

"SearchEnd":"2022-03-01T13:00:00Z","Format":"text"}' \
http://10.0.0.1/api/search/direct

This example mixes some parameters in a JSON object, some as headers, and some as URL parameters:

% curl -X POST \
-H "Gravwell-Token: aFOa_YbO7Pe0MAqK08PSD-oTrEZxopc5JBf0hu0W5_Vo-FxWsjHp" \
-d '{"SearchString":"tag=gravwell limit 10"}'
-H 'duration: 1h' \
http://10.0.0.1/api/search/direct?format=text

This example fetches the results in CSV format:

% curl -X POST \
-H "Gravwell-Token: aFOa_YbO7Pe0MAqK08PSD-oTrEZxopc5JBf0hu0W5_Vo-FxWsjHp" \
-H "query: tag=gravwell syslog Appname | stats count by Appname | table Appname count" \
-H "duration: 1h" \
-H "format: csv" \
http://10.0.0.1/api/search/direct

This example fetches the results as raw PCAP and stores the output in /tmp/port80.pcap:

% curl -X POST \
-H "Gravwell-Token: aFOa_YbO7Pe0MAqK08PSD-oTrEZxopc5JBf0hu0W5_Vo-FxWsjHp" \
-H "query: tag=packets packet tcp.Port==80 ipv4.IP==192.168.1.1 | pcap" \
-H "duration: 1h" \
-H "format: pcap" \
--output /tmp/port80.pcap \
http://10.0.0.1/api/search/direct

Chapter 14

Securing Gravwell

This chapter discusses security considerations for a Gravwell cluster. It will discuss indexer and webserver
security, securing ingesters, and user authentication.

This chapter makes frequent references to shared secrets. These are strings used by Gravwell components
to communicate with each other without user intervention. Shared secrets are never transmitted directly over
the network; instead, clients and servers use a challenge-response algorithm to verify that they have the same
shared secret. Because the shared secrets must be stored in plaintext to perform challenge-response, they are
potentially vulnerable to users on the same machine and should therefore be protected. The shared secrets
can be stored in three different ways:

1. Directly in gravwell.conf. This is the simplest, but care should be taken to ensure the file is only
readable by the gravwell user.

2. As environment variables. If done correctly, this can help protect the secrets, but take note that setting
the environment variables in a Docker command line (e.g. ‘-e GRAVWELL_INGEST_AUTH=MySecret’)
can make them vulnerable to interception by other users. See the Gravwell online documentation1 for a
description of environment variables.

3. As a Docker secret. This is only available for systems running in Docker containers. See the Gravwell
online documentation2 for a description of how to pass Docker secret files to a Gravwell instance.

14.1 TLS/HTTPS
By default, Gravwell is configured to communicate via unencrypted channels. This means that communications
between the webserver and the user, as well as communication between ingesters and indexers, will be visible to
any adversary capable of intercepting traffic. As later sections will explain, Gravwell’s built-in authentication
methods ensure that the ingester’s shared secrets will not be leaked, but an adversary could potentially
capture passwords as users authenticate to the webserver, view entries as they are ingested, etc.

Switching over to TLS-encrypted communications will have two benefits: it will encrypt traffic to prevent
eavesdropping, and it will allow components to verify that they are actually connecting to the correct system
rather than an adversary’s man-in-the-middle attack. The datastore component cannot be used without
installing TLS certificates, so enabling TLS encryption is also a necessary part of configuring distributed
frontends.

We strongly recommend installing a properly-signed TLS certificate on the Gravwell webserver and indexer
before deploying Gravwell in any production environment. If a properly-signed certificate is unavailable,
Gravwell can be deployed with a self-signed certificate, but every component will need to be configured to
ignore invalid certificates, which makes the system vulnerable to man-in-the-middle attacks.

1https://docs.gravwell.io/#!configuration/environment-variables.md
2https://docs.gravwell.io/#!configuration/environment-variables.md

289

290 CHAPTER 14. SECURING GRAVWELL

14.1.1 Installing a properly-signed TLS certificate
A properly-signed TLS certificate is the most secure way to access Gravwell. Browsers will automatically
accept the certificate without complaint.

Obtaining a certificate is outside the scope of this documentation; consider either purchasing a certificate
through one of the traditional providers or using LetsEncrypt3 to obtain a free one.

To use the certificate, Gravwell must be told where the certificate and key files are. Assuming the files
are installed at /etc/certs/cert.pem and /etc/certs/key.pem, edit gravwell.conf to uncomment and
populate the Certificate-File and Key-File options:

Certificate-File=/etc/certs/cert.pem
Key-File=/etc/certs/key.pem

Note: These files must be readable by the “gravwell” user, but make sure other users can’t read them.

To enable HTTPS on the webserver, change the Web-Port directive from 80 to 443, then comment
out the Insecure-Disable-HTTPS directive. To enable TLS-encrypted ingester connections, find
and uncomment the line TLS-Ingest-Port=4024. To enable HTTPS for the search agent, open
/opt/gravwell/etc/searchagent.conf, comment out the Insecure-Use-HTTP=true line and change the
port in the Webserver-Address line from 80 to 443.

Finally, restart the webserver, indexer, and search agent:

systemctl restart gravwell_webserver.service
systemctl restart gravwell_indexer.service
systemctl restart gravwell_searchagent.service

14.1.2 Install a self-signed certificate
Although it is not as secure as a proper TLS certificate, a self-signed certificate will ensure encrypted
communication between users and Gravwell. By instructing browsers to trust the self-signed cert, it is also
possible to avoid recurring warning screens.

First, we will generate a 1-year certificate in /opt/gravwell/etc using gencert, a program we ship with
the Gravwell install:

cd /opt/gravwell/etc
sudo -u gravwell ../bin/gencert -h HOSTNAME

Make sure to replace HOSTNAME with either the hostname or the IP address of your Gravwell sys-
tem. You can specify multiple hostnames or IPs by separating them with commas, e.g. gencert -h
gravwell.example.com,10.0.0.1,192.168.0.3

Now, open gravwell.conf and uncomment the Certificate-File and Key-File directives. The defaults
should point correctly to the two files we just created.

To enable HTTPS on the webserver, change the Web-Port directive from 80 to 443, then comment out the
Insecure-Disable-HTTPS line. To enable TLS-encrypted ingester connections, find and uncomment the line
TLS-Ingest-Port=4024.

To enable HTTPS for the search agent, open /opt/gravwell/etc/searchagent.conf, comment out the
Insecure-Use-HTTP=true line and change the port in the Webserver-Address line from 80 to 443. With a
self-signed certificate, you will also need to ensure that Insecure-Skip-TLS-Verify=true is set.

Finally, restart the webserver, indexer, and search agent:

systemctl restart gravwell_webserver.service
systemctl restart gravwell_indexer.service
systemctl restart gravwell_searchagent.service

3https://letsencrypt.org

14.2. INDEXER SECURITY 291

14.2 Indexer Security
Gravwell indexers communicate with two components: ingesters, and webservers. Users never interact directly
with indexers.

14.2.1 Authentication & Secrets
Ingesters and webservers authenticate to the indexer using shared secrets. Ingesters are authenticated using
the Ingest-Auth secret while webservers use the Control-Auth secret. These shared secrets are stored in
plaintext and used to perform challenge-response authentication. This means ingesters and webservers can
auth to the indexer over plaintext channels without leaking the shared secrets, but it also means these secrets
are vulnerable to attackers who have access to the filesystems of these systems.

14.2.2 Indexer-Webserver Communications
Communications between the indexer and the webserver take place over TCP port 9404 by default (specified
by the Control-Port parameter). These connections are not encrypted. Indexers often have to transfer
very large numbers of entries to the webserver during a search, and encryption would significantly slow the
transfer. For this reason, indexers and webservers should communicate only over trusted networks. If the
indexer-webserver traffic must traverse the Internet, we strongly recommend using a VPN or other tunnel to
transport the traffic.

14.2.3 Indexer-Ingester Communications
Ingesters can connect to indexers using either encrypted or unencrypted connections. By default, indexers
listen for cleartext ingest connections on TCP port 4023. If a TLS certificate is set up on the indexer, it can
also listen for encrypted connections; by convention, indexers should listen for TLS ingest connections on
TCP port 4024.

14.3 Webserver Security
Webservers communicate with user clients, indexers, the search agent, and optionally the datastore. As the
gateway into the Gravwell system, they are often accessible from public networks and should therefore be
protected carefully.

14.3.1 Authentication & Secrets
Webservers store the following shared secrets:

• Control-Auth, used to authenticate the webserver to indexers and the datastore.
• Search-Agent-Auth, used by the search agent to authenticate to the webserver.

They also maintain a database of Gravwell users, stored by default in /opt/gravwell/etc/users.db.
Passwords in the user database are bcrypt hashed, but care should still be taken to prevent unauthorized
system users from reading this file.

14.3.2 Webserver-Indexer Communication
Communications between the indexer and the webserver take place over TCP port 9404 by default (specified
by the Control-Port parameter). These connections are not encrypted. Indexers often have to transfer
very large numbers of entries to the webserver during a search, and encryption would significantly slow the
transfer. For this reason, indexers and webservers should communicate only over trusted networks. If the
indexer-webserver traffic must traverse the Internet, we strongly recommend using a VPN or other tunnel to
transport the traffic.

292 CHAPTER 14. SECURING GRAVWELL

14.3.3 Webserver-User Communication
Users access the webserver via their web browsers over either HTTP or HTTPS. Authentication consists of an
HTTP POST request containing a username and password, meaning a user’s password may be transmitted
in plaintext if TLS is not configured on the webserver. Because of this, no Gravwell webserver should be used
over the Internet without first installing TLS certificates.

14.3.4 Webserver-Search Agent Communication
The automated search agent connects to a Gravwell webserver over the same HTTP or HTTPS ports as a
regular user, but it authenticates using a challenge-response algorithm and the search agent-specific shared
secret. The search agent will default to unencrypted HTTP, which may be acceptable when the search agent
is on the same system as the webserver, but if a search agent is installed on a separate system it should be
configured to use HTTPS.

14.3.5 Webserver-Datastore Communication
When multiple webservers are configured in a Gravwell cluster, they coordinate via the datastore component.
Communications between the webservers and the datastore include (hashed) user passwords, search histories,
user-uploaded resources, and other potentially sensitive items. For this reason, Gravwell strongly suggests that
communication between the webserver and the datastore be TLS-encrypted; configuring a TLS certificate as
described in an earlier section is an important step in setting up a Gravwell cluster with multiple webservers.

14.4 Ingester security
Ingesters communicate only with indexers, using a shared ingest secret which can be stored via the methods
described at the beginning of this chapter. As documented in the section on indexer security, ingesters may
communicate with the indexers over either cleartext or encrypted connections. In either case, the shared
secret is never transmitted, so it is not susceptible to interception, but an adversary could potentially intercept
entries as they are uploaded over a cleartext connection. For this reason we strongly recommend configuring
TLS certificates on the indexer if you intend to run ingesters outside your trusted networks.

If all ingesters use the same ingest secret, and one is compromised, the attacker could theoretically use that
compromised ingest secret to upload entries to your indexers. Consider deploying Federators (see Section 7.9)
in order to segment your ingesters into different security enclaves to help mitigate this risk.

14.5 User Authentication and Lockout
As mentioned in the webserver section, users are authenticated to the webserver by sending their username
and password in an HTTP POST request. If the webserver is not configured to offer HTTPS connections,
user credentials are at risk of interception. Always set up TLS certificates on the webserver and enable
HTTPS before allowing users to log on from public networks.

Gravwell provides a basic form of brute-force protection. If several failed login attempts are made over a short
period, the webserver will delay its response to subsequent attempts by several seconds. This is intended to
slow down brute-forcers while still allowing legitimate users to log in.

Index

Acceleration, 100, 152
Actionables, 132
Ageout, 144
Anko, 231
API, 283

direct search, 285, 287
parse, 286
permissions, 285
tokens, 283

Auto-extractors, see Extractors
Automation, 205

flows, see Flows
scheduled searches, 208
scripts, 231

Clusters, 10, 12
Command-line interface, 279
Compound queries, 135

Dashboards, 122
actionables, 132
live update, 122
templates, 130

Data exploration, 57
Data fusion, 95
Data ingest, 11, 139
Datastore, 9, 14, 165
Distributed webservers, 10, 14, 165
Docker, 17, 139, 160, 203

Email configuration, 27, 205
Entries, 9, 10, 43, 45, 200
Enumerated Values, 9, 49
Extractors, 104

Federator, 193
Flows, 214

nodes, 214
payloads, 214

gravwell.conf, 139, 163
grep, 46
Groups, 260
GUI, 21

account preferences, 25
email configuration, 27

extractors, 104
flow editor, 215
groups, 260
labels, 28
main menu, 21
menus, 21
notifications, 24
users, 257

Indexers, 9, 139
security, 291

Indexing, see Acceleration
Ingest API, 200
Ingesters, 9, 11, 169

caching, 196
federator, 193
file follow, 180
IPFIX, 188
migration, 263
netflow, 188
packet capture, 189
PCAP file, 276
preprocessors, 174
security, 292
simple relay, 175
single file, 275
windows event, 185

Kits, 245
building, 252
dependencies, 246
installation, 246
kit labels, 32
uninstalling, 251
upgrading, 250

Labels, 28
Load balancer, 10, 167

Markdown, 37
Migrating data, 263

Notifications, 24

PCAP, 189
Playbooks, 37

293

294 INDEX

Renderers, 9
chart, 80
force-directed graph, 88
heatmap, 83
pointmap, 83
raw, 75
stack graph, 86
table, 78
text, 75

Replication, 15, 150
Resources, 90

Scheduled scripts, see Automation
Scheduled searches, see Automation
Search, 33, 43

background searches, 115
compound queries, 135
data exploration, 57
data fusion, 95
downloading, 75
entries, 45
enumerated values, 49
extractors, 104
filtering, 53
modules, 43, 62, 100
optimization, 100
pipeline, 43
renderers, 9, 43, 73, 75
saved searches, 115
templates, 130
temporal vs. non-temporal, 73

Search agent, 9, 205
Security, 289

encryption, 289
TLS, 289

Shards, 9
Source, 10
Splunk, 269
SRC, see Source
SystemD, 203

Tags, 9, 10, 43, 45
Timestamps, 10, 173
timestamps, 169
Tokens, see API
Traefik, 167
Troubleshooting

permissions, 201
ports, 201

Tuning
indexers, 159

User Interface, see GUI
Users, 257, 292

Webservers, 9, 163
distributed, 165
security, 289, 291

Wells, 9, 141
ageout, 144

	Architecture Overview
	Terminology
	Gravwell Entries
	``Timestamp'' field
	``Data'' field
	``Tag'' field
	``Source'' field

	Data Ingest
	Example Gravwell Deployments
	Single Node
	Cluster Deployment
	Distributed Webserver Architecture

	Replication
	Online Replication
	Offline Replication

	Scheduled Search and Orchestration

	Lab Setup and Docker Testing
	Getting Started With Docker
	Host System Requirements
	Verifying Docker Installation
	Granting User Access to Docker

	Testing Docker Image Imports
	Starting a Container in Docker
	Testing Gravwell in a Container
	Loading the Lab Images
	Creating the Gravwell Test Network
	Helpful Docker Tips

	Using the GUI
	Introduction
	Menus
	The Main Menu
	Notifications
	The Account Menu

	Labels and Filtering
	Defining and Managing Labels
	Filtering Objects
	Special Labels

	Search Interfaces
	Playbooks
	Playbook Markdown

	Searching
	Search Pipeline Architectural Overview
	Query Entries and Tags
	Chaining Multiple Modules
	The grep Module
	Hands-on Lab: Basic Filtering

	Entries, Enumerated Values, and Field Extraction
	Hands-on Lab: Searching with Enumerated Values and Field Extraction

	Inline Filtering
	Hands-on Lab: Inline Filtering

	Data Exploration
	Word Filtering
	Field Extraction

	Search Modules
	Extraction Modules
	Statistics Modules
	Enrichment Modules

	Render Modules
	Temporal vs. Non-Temporal Rendering
	Hands-on Lab: Temporal vs. Non-Temporal Rendering
	Downloading Results
	Text/Raw Renderers
	Table Renderer
	Chart Renderer
	Mapping Modules
	Stackgraph Renderer
	Force-Directed Graph Renderer

	Resources
	Resource Basics
	Resource name resolution
	Managing resources with the GUI
	Hands-on Lab: Enriching Netflow with GeoIP

	Data Fusion
	Hands-on Lab: Data Fusion

	Query Optimization
	Parsing modules
	Parsing modules and Accelerators
	Operator modules
	Condenser modules
	Hands-on Lab: Optimizing Queries

	Auto-extractors
	Auto-Extractor Configuration
	Managing Auto-Extractors in the GUI
	Auto-Extractor Files
	Extractor Examples
	Hands-On Lab: Extractors

	Backgrounded and Saved Searches
	Permissions, Groups, and Sharing Results
	Hands-On Lab: Groups and Sharing

	Dashboards
	Live Update
	Hands-on Lab: Network Activity Dashboard

	Templates
	Actionables
	Actions

	Compound Queries

	Indexers and Well Configuration
	Indexer Configuration
	Hands-on Lab: Misconfigured Indexer

	Well Configuration
	Hands-on Lab: Well Definitions

	Well Ageout
	Time-based Ageout
	Storage-based Ageout
	Storage Availability Ageout
	Hands-on Lab: Ageout

	Replication
	Offline Replication Configuration
	Hands-on Lab: Replication

	Query Acceleration and Indexing
	Accelerator Well Configuration
	Accelerator Overhead and Query Impact
	Accelerators and Query Modules
	Hands-on Lab: Acceleration

	Indexer Optimization
	Docker Configuration
	Hands-on Lab: Docker Configuration

	Webserver Configuration
	Basic Configuration
	Configuring Indexers
	Hands-on Lab: Adding Indexers to a Webserver

	Configuring Multiple Webservers
	Hands-on Lab: Configuring multiple webservers

	Setting Up a Load-Balancer
	Using Traefik

	Ingesters
	Dealing with Timestamps
	Time Zones
	Time Parsing Overrides
	Ingester Custom Time Formats

	Configuration
	Timestamp Format Overrides (Optional)

	Preprocessors
	Simple Relay Ingester
	Listener Types
	Non-Listener-Specific Configuration Options
	Hands-On Lab: Simple Relay

	File Follower Ingester
	Additional Global Parameters
	Follower Configuration Parameters
	Hands-On Lab: File Follower

	Windows Event Ingester
	Hands-on Lab: Windows logs

	Netflow and IPFIX Ingester
	Collector Configuration Parameters
	Hands-on Lab: Netflow Ingester

	Packet Capture Ingester
	Hands-on Lab: Packet Capture Ingester

	Tag Management / Federation
	Wildcard Tags
	Hands-on Lab: Federation

	Ingester Caching
	Hands-on Lab: Ingester Cache

	Ingest API and Source Code
	Configuring and Starting the Ingest Muxer
	Creating and Uploading Entries
	Cleaning Up/Shutting Down

	Permissions and Port Binding
	Hands-on Lab: Permissions and Port Binding

	Gravwell and Systemd
	Gravwell and Docker
	Hands-on Lab: Gravwell and Docker

	Automation
	Configuring User Email Settings
	The Search Agent
	Disabling the Search Agent
	Search Agent Configuration
	Scheduling Searches
	Hands-On Lab

	Flows
	Flow Concepts
	The Flow Editor
	Nodes
	Hands-On Lab: Flows

	Search Scripting and Orchestration
	The Anko Scripting Language
	Available Libraries
	Gravwell Anko Functions
	Example Scripts
	Developing & Testing Scripts
	Hands-on Lab: Scripting

	Secrets
	Sharing Secrets
	Security Considerations

	Gravwell Kits
	What's in a Kit?
	Dependencies

	Browsing and Installing Kits
	Exploring a Kit

	Managing Installed Kits
	Upgrading Kits
	Uninstalling Kits

	Hands-on Lab: Installing Kits
	Building Kits

	User and Group Management
	Managing Users
	Managing Groups
	Hands-on Lab: Managing Users and Groups

	Migration
	The Interactive Migration Tool
	Installation
	Basic Configuration
	Launching the Tool
	Migrating Files
	Migrating Splunk Data
	Quitting the Tool

	Importing One File
	Importing PCAP Files

	Command Line Interface
	Running the Client
	Hands-on Lab: Basic CLI exploration

	The Gravwell REST API
	Introduction
	API Tokens
	Token Permissions and Restrictions

	Accessing the Gravwell API
	Direct Search API
	Query Endpoints

	Securing Gravwell
	TLS/HTTPS
	Installing a properly-signed TLS certificate
	Install a self-signed certificate

	Indexer Security
	Authentication & Secrets
	Indexer-Webserver Communications
	Indexer-Ingester Communications

	Webserver Security
	Authentication & Secrets
	Webserver-Indexer Communication
	Webserver-User Communication
	Webserver-Search Agent Communication
	Webserver-Datastore Communication

	Ingester security
	User Authentication and Lockout

