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Methods to Study Splicing from High-Throughput RNA
Sequencing Data

Gael P. Alamancos, Eneritz Agirre, and Eduardo Eyras

Abstract

The development of novel high-throughput sequencing (HTS) methods for RNA (RNA-Seq) has provided
a very powerful mean to study splicing under multiple conditions at unprecedented depth. However, the
complexity of the information to be analyzed has turned this into a challenging task. In the last few years,
a plethora of tools have been developed, allowing researchers to process RNA-Seq data to study the expres-
sion of isoforms and splicing events, and their relative changes under different conditions. We provide an
overview of the methods available to study splicing from short RNA-Seq data, which could serve as an
entry point for users who need to decide on a suitable tool for a specific analysis. We also attempt to
propose a classification of the tools according to the operations they do, to facilitate the comparison and
choice of methods.
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1 Introduction

The development of novel high-throughput sequencing (HTS)
methods for RNA (RNA-Seq) has facilitated the discovery of many
novel transcribed regions and splicing isoforms [1] and has pro-
vided evidence that a large fraction of the transcribed RNA in
human cells undergo alternative splicing [2, 3]. RNA-Seq thus
represents a very powerful tool to study alternative splicing under
multiple conditions at unprecedented depth. However, the large
datasets produced and the complexity of the information to be ana-
lyzed has turned this into a challenging task. In the last few years, a
plethora of tools have been developed (Fig. 1), allowing researchers
to process RNA-Seq data to study the expression of isoforms and
splicing events, and their relative changes under different condi-
tions. In this chapter, we provide an overview of the methods
available to study alternative splicing from short RNA-Seq data.
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Fig. 1 Graphical representation of methods to study splicing from RNA-Seq. Methods are divided according to
whether they perform mapping, reconstruction of events/isoforms, quantification of events/isoforms and
whether they can perform a comparison between two or more conditions of event/isoform relative abun-
dances, or of isoform expression. We only list the mapping methods that are spliced-mappers or the ones that
use some heuristics to map to known exons and junctions. Mapping methods that also perform quantification
are repeated in both levels. Methods for reconstruction (b/ue), quantification (green), and comparison (red) are
divided according to whether they work with isoforms (/ighter color) or with events (darker color); when they
work at both levels, events and isoforms, they are overlapped by the two color tones, darker and lighter,
respectively. Methods are also grouped by rounded rectangles according to the tables in Subheading 2. Some
methods perform reconstruction and quantification and are grouped with those that only perform reconstruc-
tion. Methods that require an annotation are indicated. Quantification methods that work with or without
annotation are in different groups. Solid arrows connect Mapping methods to the tools in the other three levels;
since, in principle, any mapping method producing BAM as output could be fed to methods reading BAM as
input. Some methods perform mapping and quantification or mapping and differential splicing and are con-
nected with a solid arrow too. We indicate with dashed gray arrows those cases when a comparison method
can use the output from a quantification method
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We will group the methods according to the different questions
they address:

1. Assignment of the sequencing reads to their likely gene of origin.
This is addressed by methods that map reads to the genome
and/or to the available gene annotations (Subheading 2.1).

2. Quantification of events and isoforms. Either using an annota-
tion (Subheadings 2.2 and 2.3) or after reconstructing tran-
scripts  (Subheading 2.4), many methods estimate the
expression level or the relative usage of isoforms and /or events.

3. Recovering the sequence of splicing events and isoforms. This
is addressed by transcript reconstruction and de novo assembly
methods (Subheadings 2.4, 2.5, and 2.6).

4. Providing an isoform or event view of differential splicing or
expression. These include methods that compare relative
event/isoform abundance or isoform expression across two or
more conditions (Subheadings 2.7 and 2.8).

5. Visualizing splicing regulation. Various tools facilitate the visu-
alization of the RNA-Seq data in the context of alternative
splicing (Subheading 2.9).

In this review, we use transcript or isoform to refer to a distinct
RNA molecule transcribed from a gene locus. We use gene to refer
to the set of isoforms transcribed from the same genomic region and
the same strand, sharing some exonic sequence; and a gene locus
refers to this genomic region. A splicing event refers to the exonic
region of a gene that shows variability across two or more of its iso-
forms. Splicing events generally include exon skipping (or cassette
exon), alternative 5" and 3’ splice-sites, mutually exclusive exons,
retained introns, alternative first exons and alternative last exons
(see for example [4]), although other events may occur as a combi-
nation of two or more of these ones. In this review, we do not enter
into the details of the specific mathematical models behind each
method; for a comparative analysis of the mathematical models
behind many of these methods see ref. 5. Our aim is rather to provide
an overview that could serve as an entry point for users who need to
decide on a suitable tool for a specific analysis. We also attempt to
propose a classification of the tools according to the operations they
do, to facilitate the comparison and choice of methods.

2 Materials

2.1 Spliced-Mappers

This section includes the list of methods described in subsequent
sections.

In Table 1, we provide a list of mapping tools that are able to locate
exon—intron boundaries. Some of the methods use annotation infor-
mation for mapping (OSA, X-MATE, SAMMate, IsoformEx,
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RNASEQR, RUM, SpliceSeq, MapAl), some can use annotation as
an option (GEM, MapNext, STAR, TopHat), and others (the rest)
work directly with the genome reference. Additionally, some meth-
ods perform quantification (Subheading 2.2 ) (SAMMate, IsoformEx,
RUM, SpliceSeq) and are included here since they provide an inde-
pendent method for mapping. We also indicate whether the method
can map paired-end reads, the type of splice-site model used, the
reference where the method is described and the URL where the
software is available.

In Table 2, we give a list of methods that can be used to quantify
known splicing events (RUM, SpliceSeq, MMES, SpliceTrap),
known isoforms (SAMMate, IsoformEx, Erange, rSeq, rQuant,
FluxCapacitor, 1QSeq, Cufflinks, Casper, CEM, Isolnfer, SLIDE,
RABT, DRUT, iReckon), or both (MISO, ALEXA-Seq, SOLAS)
when a genome-based annotation is available. Some include the
mapping step (RUM, SpliceSeq, SAMMate, IsoformEx). Some
isoform-based methods can quantify known and novel isoforms
simultaneously (Isolnfer, SLIDE, RABT, DRUT, iReckon) or
choose between quantifying known or novel isoforms (Cufflinks,
Casper, CEM, IsoLasso). We indicate the type of input used by
each method, whether they exploit paired-end read information in
the calculation and what type of quantification is given. We also
provide the reference where the method is described, and the URL
(or email) where the software is available.

Table 3 includes methods that quantify isoforms using a transcrip-
tome annotation and reads mapped with a non-spliced mapper.
All the methods listed used bowtie to map reads to transcripts in
the original publication. Although they generally work with reads
mapped to a transcriptome, some methods (RSEM, MMSEQ) can
work with reads mapped to a genome. We indicate the type of
input used by the method, whether they exploit paired-end read
information in the calculation and what type of isoform quantifica-
tion is given. We also provide the reference where the method is
described, and the URL where the software is available.

Table 4 includes methods to reconstruct (all methods) and to
quantify (all methods except for G-Mo.R-Se and assemblySAM)
multiple isoforms from genome-mapped reads without using any
gene annotation. Some methods can also be run with annotations
for quantification (Cufflinks, IsoLasso, Casper, CEM). Some per-
form simultaneously the reconstruction and quantification of novel
isoforms (NSMAP, Montebello, IsoLasso). We indicate the type of
input used by each method, whether they exploit paired-end read
information in the calculation and what type of isoform quantifica-
tion is given. We also provide the reference where the method is
described and the URL or email where the software is available.
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2.5 Evidence-Based
Alternatively Spliced
Gene Prediction

2.6 De Novo
Transcriptome
Assembly

2.7 Differential
Splicing

2.8 Isoform-Based
Differential Expression

Table 5 includes methods that could be used to perform alternatively
spliced gene prediction from RNA-Seq data. Besides the de novo
reconstruction and quantification methods from Subheading 2.4
and those from Subheading 2.2 that can predict novel and known
isoforms simultaneously (Isolnfer, SLIDE, RABT, DRUT,
iReckon), we also include methods that can use various sources of
evidence to predict alternatively spliced genes (TAU, SpliceGrapher,
ExonMap/JunctionWalk) and methods that predict alternatively
spliced protein-coding genes from multiple evidences (Augustus,
mGene). We also include classical protein-coding gene prediction
methods that could potentially use RNA-Seq as evidence (Gaze,
JigSaw, EVM, Evigan). For each method, we indicate the type of
input used, whether they exploit paired-end read information in the
calculation or provide any isoform quantification. We also give the
reference where the method is described and the URL or email
where the software is available.

Table 6 includes methods for de novo transcriptome assembly.
Some of these methods produce multiple isoforms per assembled
gene (OASES, SOAPdenovo-trans, TransAbyss, Trinity) and only
two quantify the alternative isoforms (TransAbyss, Trinity).
Nonetheless, these methods could be coupled with transcriptome-
based quantification methods (Subheading 2.3). KisSplice assem-
bles alternatively spliced events rather than isoforms and quantifies
the read coverage of these events. We indicate whether they exploit
paired-end read information in the calculation, the £-mer approach
(single /multiple), whether they detect multiple isoforms per gene
and whether they perform isoform quantification. We also provide
the reference where the method is described and the URL (or email)
where the software is available.

Table 7 includes methods that measure relative changes in inclu-
sion/usage between two or more conditions at the exon level
(DEXSeq, DSGSeq, GPSeq, SOLAS), event level (MATS,
JuncBASE, JETTA, SpliceSeq), and isoform region level
(DiftSplice, SplicingCompass, FDM, rDiff) or at both, isoform and
event levels (MISO, ALEXA-Seq). We indicate whether the meth-
ods perform any quantification per sample, the measure of differ-
ential splicing provided, whether they exploit paired-end read
information in the calculation, the reference where the method is
described and the URL where the software is available.

Table 8 includes methods that measure ditferential expression at
the transcript level between two or more conditions, allowing
multiple transcripts per gene. Cuffdiff2, additionally, can calculate
significant changes in the relative abundance of isoforms. For each
method, we indicate the quantification performed per sample,
whether it exploits paired-end read information in the calculation,
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2.9 Visualization of
Alternative Splicing
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the measure of differential expression provided, the reference
where the method is described and the URL where the software is
available.

Table 9 includes some of the available tools for the visualization of
alternative splicing using RNA-Seq data. Some of them can be
used as command line tools that are included in the distribution of
the analysis tools (RSEM, SpliceGrapher, DitfSplice, DEXSeq,
SplicingCompass) or provided separately (Sashimi Plots), whereas
others are Graphical User Interfaces (Savant, ALEXA-Seq,
SpliceSeq).

3 Methods

3.1 Spliced-Mapping
Short Reads

Event and Isoform quantification are very much dependent on the
correct assignment of RNA-Seq reads to the molecule of origin.
Accordingly, we will start by reviewing some of the read mappers
that are splice-site aware, and therefore, can be used to detect
exon-intron boundaries and connections between exons. This
alignment problem has been addressed in the past by tools that
combine fast heuristics for sequence matching with a model for
splice-sites, for example, Exonerate [97], BLAT [98], or GMAP
[99]. These methods, however, are not competitive enough to
map all reads from a sequencing run in a reasonable time. In the
last few years, a myriad of methods have been developed for map-
ping short reads to a reference genome [100]. Those that are
splice-site aware and incorporate intron-like gaps are generally
called spliced-mappers, split-mappers, or spliced aligners. Their
main challenge is that reads must be split into shorter pieces, which
may be harder to map unambiguously; and although introns are
marked by splice-site signals, these occur frequently by chance in
the genome.

Spliced-mappers have been classified previously into two main
classes [101], exon-first and seed-and-extend (Subheading 2.1).
Exon-first methods map reads first to the genome using an unspliced
approach to find read-clusters; unmapped reads are then used to
find connections between these read-clusters. These methods
include TopHat [6], SOAPsplice [7], PASSion [8], MapSplice [9],
SpliceMap [10], HMMsplicer [11], TrueSight [12], and GEM [13].
Seed-and-extend methods generally start by mapping part of the
reads as k-mers or substrings; candidate matches are then extended
using different algorithms and potential splice-sites are located.
These methods include SplitSeek [14], Supersplat [15], SeqSaw
[16], ABMapper [17], MapNext [18], STAR [19], GSNAP [20],
and PALMapper [22]. A generalization of seed-and-extend meth-
ods is represented by the multi-seed methods, like CRAC [23],
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OLego [24], and Subread [25], which consider multiple subreads
within each read. Similarly, ABMapper consider multiple read-splits
for mapping. Some methods actually use a hybrid strategy, following
an exon-first approach for unspliced reads, and then using seed-
and-extend approach for spliced reads, like MapSplice, SpliceMap,
HMMSplicer, TrueSight, GEM, and PALMapper; the latter being
a combination of GenomeMapper [102] and QPalma [21] for
spliced reads. Exon-first methods depend strongly on sufficient
coverage on potential exons to incorporate spliced reads, but are
generally faster than seed-and-extend methods. On the other hand,
seed-and-extend methods tend to be less dependent on recovering
exon-like read-clusters and may recover more novel splice-sites.
However, the storage of k-mers for long reads requires sufficient
computer memory for large %, and the mapping has limited accu-
racy for small & [7].

There is also a different class of tools, which use the annota-
tion and/or some heuristics to map reads. These include OSA
[26], X-Mate [27], RNASEQR [28], MapAl [29], SAMMate
[30], IsoformEx [31], RUM [32], SpliceSeq [33], and PASTA
[34]. RNASEQR and RUM use Bowtie [103] to map reads to the
transcriptome and genome; and then identify novel junctions
from the unmapped reads using BLAT [98]. Similarly, SAMMate
and IsoformEx use Bowtie to locate reads in exons and junctions,
whereas SpliceSeq uses Bowtie to map reads to a graph represen-
tation of the annotation; X-Mate uses its own heuristics to trim
and map reads recursively to locate reads on exons and junctions.
On the other hand, PASTA does not use any gene annotation; it
uses Bowtie and a splice-site model to locate read fragments on
exon junctions. Among these methods, SAMMate, IsoformEx,
RUM, and SpliceSeq also provide some level of quantification for
exons, events, or isoforms (Subheading 2.2) (Fig. 1), which makes
them convenient as a pipeline tool. OSA is actually a seed-and-
extend mapping method but relies on an annotation. OSA avoids
splitting reads into subreads which helps improving speed; and
like other annotation-guided methods, also split-maps reads that
are not located in the provided annotation using the seed-and-
extend approach. Finally, unlike the other methods, MapAl and
ContextMap use reads already mapped to a reference genome.
MapAl uses reads mapped to a transcriptome to assign them to
their genomic positions, whereas ContextMap refines the genome
mappings using the read context, extending to all reads the con-
text approach used by methods like MapSplice or GEM for spliced
reads. In the newest version, ContextMap can also be used as a
standalone read-mapping tool. Annotation-guided mapping
methods are possibly the best option to accurately assign reads to
gene annotations, whereas de novo mapping tools are convenient
for finding new splicing junctions.
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3.2 Definition and
Quantification of
Events and Isoforms

Besides the differences in the mapping procedure, de novo
mapping tools detect splice-sites using a variety of approaches, which
may determine the reliability of the splice-sites detected and the pos-
sibility of obtaining novel ones. Most tools search for an exact match
of the flanking intronic dinucleotides to the canonical splice-sites
GT-AG, GC-AG, AT-AC (see Subheading 2.1). Tools like MapNext
and Tophat use a two-step approach, first mapping to the known
junctions and then locating novel ones with GT-AG dinucleotides,
whereas tools like MapSplice, Supersplat, SpliceMap, and
HMMSplicer use a gapped-alignment approach that allows the detec-
tion of junctions regardless of the exon coverage. HMMSplice,
QPalma, PASTA, and OLego use a more complex representation for
splice-sites. HMMSplice is based on a hidden Markov model, QPalma
on a Support Vector Machine, PASTA on a logistic regression, and
OLego in the combined logistic modeling of sequence bias and
intron-size; all of which are trained on known splice-sites. In contrast,
MapSplice, SeqSaw, STAR, SplitSeek, and CRAC can do an unbiased
search of splice-junctions, not necessarily looking for the splice-site
motif and generally using support from multiple reads; hence, they
can potentially recover noncanonical splice-sites. Annotation-guided
methods will accurately assign reads to known splice-sites, but will
miss novel ones, unless they use some heuristics for novel junctions
like RUM and RNASEQR. Mapping methods like STAR, GEM,
MapNext, and TopHat accept annotations as optional input, which
will guide the initial mapping of reads. Other parameters may be
important too, like the search range of intron lengths. Most mod-
els impose restrictions in the minimum and maximum intron
lengths, but methods like MapSplice does not impose any restric-
tion and OSA has a specific search for novel exons using distal frag-
ments. The decision of which tool to use depends very much on
whether the aim is to assign reads to known annotations or to find
novel splice-sites.

First reports using RNA-Seq to quantify splicing followed an
approach analogous to splicing junction arrays [104]. They were
based on the analysis of junctions built from known gene annota-
tions [2, 3, 105-108]. In these and later methods, reads aligning
to candidate alternative exons and its junctions are considered as
inclusion reads, whereas reads mapping to flanking exons and to
junctions skipping the candidate alternative exon are considered as
skipping or exclusion reads. These reads are then used to provide
an estimate of the relative inclusion of the regulated exon [109],
generally called inclusion level. This approach has shown a reason-
able agreement with microarrays and can be modified to include
exon-body reads and variable exon lengths [2, 109]

An alternative measure, “percent spliced in” (PSI), has been
defined as the number of isoforms that include the exon over the
total isoforms [110], or equivalently, as the fraction of mRNAs
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that represent the inclusion isoform [38]. If the PSI value is
calculated for a particular splicing event, it can be considered
equivalent to the inclusion level. Isoform quantification can be
expressed in terms of either a global measure of expression [58],
which may provide a global ranking comparable across genes in
one sample, or in terms of a relative measure of expression, which
is normalized per gene locus and comparable across conditions.
The global measure is generally given in terms of RPKM or
FPKM (Reads or Fragments Per Kilobase of transcript sequence
per Millions mapped reads); and the relative measure is given in
terms of a PSI value or a similar value.

Besides the original approaches [2, 3, 105-108], various tools
have been developed recently to quantify events and isoforms.
These range from simply quantifying the inclusion of events to the
reconstruction and quantification of novel isoforms. Some of the
tools that reconstruct isoforms also estimate their quantification,
and some tools may quantify either known isoforms or novel ones,
or both simultaneously. Accordingly, we classify the methods
depending on whether they use annotation or not and on the type
of input and output:

1. Event/isoform quantification using known (genome-based)
gene annotations (Subheading 2.2).

2. Isoform quantification using a transcriptome annotation
(Subheading 2.3).

3. De novo isoform reconstruction with a genome reference,
either purely focused on reconstruction or also providing iso-
form quantification (Subheading 2.4).

4. Isoform reconstruction and quantification guided by annota-
tion. These methods use a gene annotation as a guide and can
complete the annotation with new exons, new isoforms, or
even with some new gene loci (Subheading 2.5).

5. Finally, some of the de novo transcript assembly methods also
quantify isoforms (Subheading 2.6).

Various tools have been developed for event quantification from a
single condition (Subheading 2.2) (Fig. 1): RUM [32], SpliceSeq
[33]. MMES [36], SpliceTrap [37], MISO [38], ALEXA-Seq
[39], and SOLAS [40]. RUM provides quantification of genes,
exons, and junctions in terms of read-counts and RPKM (reads per
kilobase per million mapped reads), whereas SpliceTrap and MMES
use the reads mapped to junctions and employ a statistical model
to calculate exon inclusion levels and junction scores, RUM and
MMES also provide the mapping step. RUM has its own heuristics
(Subheading 2.1), whereas MMES maps reads to exon—exon junc-
tions using SOAP [111]. Similarly, SpliceSeq maps reads to a splic-
ing-graph to obtain exon and junction inclusion levels. MISO and
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ALEXA-Seq use reads on exons and junctions, whereas SOLAS uses
only reads on exons. MISO provides PSI values, while ALEXA-Seq
and SOLAS event and isoform expression levels. MISO, ALEXA-Seq,
and SOLAS can also estimate isoform relative abundances and can
be further used for differential splicing (Subheading 2.7).

Quantification of isoforms is more complicated than that of
events, as it requires the correct assignment of reads to isoforms
sharing part of their sequence. One of the first attempts to do this
was Erange [41], where reads mapped to the genome and known
junctions were distributed in isoforms according to the coverage of
the genomic context, and isoform expression was defined in terms
of RPKM. However, the uncertainty in the assignment of reads
shared by two or more isoforms must be appropriately modeled.
Accordingly, a number of methodologies have been proposed to
address this issue (Subheading 2.2): SAMMate [30], IsoformEx [31],
MISO [38], ALEXA-Seq [39], SOLAS [40], rSeq [42], rQuant [43],
FluxCapacitor [44], 1QSeq [45], Cufflinks [46], Casper [47], CEM
[48], IsolLasso [49], Isolnfer [50], SLIDE [51], RABT [52],
DRUT [53], and iReckon [54]. Isoform quantification is generally
given in terms of RPKM, FPKM, some equivalent isoform expression
level value, PSI, or an equivalent relative expression value.

SAMMate and IsoformEx use the reads mapped to exons and
junctions by their own methods to quantify gene and isoform
expression in terms of RPKM values. SAMMate incorporates two
quantification methods, one that is not sensitive to coverage, so it
can be used on early sequencing platforms [112] and a recent one
that is aimed for deeper coverage and uses a filtering of non-
expressed transcripts [ 113]. SOLAS and rSeq use reads on exons to
estimate isoform expression levels, whereas rQuant uses the position-
wise density of mapped reads to calculate two abundance estimates:
the RPKM and the estimated average read coverage for each tran-
script. 1QSeq provides a statistical model that facilitates the incor-
poration of data from multiple technologies; and FluxCapacitor,
unlike other methods, does not account for the mapping variability
across isoforms and directly solves the constraints derived from
distributing the reads in isoforms according to the splicing graph
built from the read evidence.

Isolnfer, SLIDE, RABT, DRUT, and iReckon can quantify the
known annotation and at the same time predict and quantify novel
isoforms in known gene loci. RABT quantifies known and novel
isoforms, taking into account existing gene annotations and using
the same graph assembly algorithm of Cufflinks, combining the
sequencing reads with reads obtained by fragmenting known tran-
scripts. RABT is part of the Cufflinks distribution, but here we dis-
tinguish it from the original Cufflinks, which quantifies abundances
of either only annotated or only novel isoforms [46, [52]. Similar to
RABT, SLIDE uses RNA-Seq data and existing gene annotation to
discover novel isoforms and to estimate the abundance of known
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and new isoforms. Additionally, it can use other sources of evidence,
like RACE, CAGE, and EST, or even the output from other iso-
form reconstruction algorithms. Isolnfer uses the transcript start
and end sites, plus exon—intron boundaries to enumerate all possi-
ble isoforms, estimate their expression levels and then choose the
subset of isoforms that best explain the observed reads, predicting
novel isoforms from the existing exon data. On the other hand,
iReckon can work with just transcript start and end sites or with full
annotations; it models multimapped reads, intron-retention and
unspliced pre-mRNAs and performs reconstruction and quantifica-
tion simultaneously. DRUT uses a modified version of the IsoEM
algorithm [56] in combination with a de novo reconstruction
method similar to Cufflinks to complete partial existing annotations
as well as to estimate isoform frequencies. Casper, similar to
Culfflinks, estimates abundances of known or novel isoforms sepa-
rately, but unlike other methods, uses information of the connectiv-
ity of more than two exons. Generally, known isoform quantification
methods show a high level of agreement with experimental valida-
tion [54] and can be improved using annotation-guided methods
for read mapping [29].

A number of methods consider reads mapped to a transcriptome
for isoform quantification (Subheading 2.3); these include RSEM
[55], IsoEM [56], NEUMA [57], BitSeq [58], MMSEQ [59],
and eXpress [60]. Although these methods depend on a transcrip-
tome annotation, they can use a standard (non-spliced) mapper to
obtain the input data. Additionally, they can work also with pre-
dicted isoforms from transcript assembly methods (Fig. 1). All of
them provide a measure of global isoform expression, similar to
RPKM. Moreover, RSEM also calculates the fraction of transcripts
represented by the isoform, equivalent to PSI. RSEM and IsoEM
use both an Expectation—-Maximization algorithm and model
paired-end fragment size. RSEM models the mapping uncertainty
to transcripts and provides confidence intervals of the abundance
estimates. IsoEM uses the fragment-size information to disambig-
uate the assignment of reads to isoforms. BitSeq is based on a
Bayesian approach, incorporates the mapping step to the transcrip-
tome, models the nonuniformity of reads, and provides an expres-
sion value per isoform. BitSeq can also be used for differential
isoform expression (see below). MMSEQ also takes into account
the nonuniform read distribution and deconvolutes the mapping
to isoforms to estimate isoform-expression and haplotype-specific
isoform-expression. The method eXpress is in fact a general tool
for quantifying abundances of a set of sequences in a generic exper-
iment and can be used with a reference genome or transcriptome.
For RNA-Seq reads mapped to a transcriptome, eXpress provides
isoform quantification in terms of FPKM. Finally, NEUMA is
different from the other methods, as it does not use any probabilistic
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3.2.3 Genome-Based
Transcript Reconstruction
and Quantification Without
Annotation

description and assumes uniformity of the reads along transcripts.
NEUMA labels reads according to whether they are isoform or
gene specific and calculates a measure of isoform quantification
defined as the number of fragments per virtual kilobase per million
reads (FVKM). Transcript-based methods can be generally applied
to the transcripts obtained from genome annotations, so that the
correspondence of transcripts to gene loci is maintained.
Additionally, they can be used in combination with de novo transcript
assembly methods (see below) to estimate isoform abundance in
genomes without a reference.

These methods use the reads mapped to the genome to recon-
struct isoforms de novo. They are generally based on previous
approaches to transcript reconstruction from ESTs [114-117].
As for ESTs [118], accuracy is limited by the lengths of the input
reads; hence, the use of paired-end sequencing becomes crucial.
Additionally, as RNA abundance spans a wide range of values, the
correct recovery of lowly expressed isoforms requires sufficient
sequencing coverage. Although these methods work independently
of the mapping procedure, they strongly rely on the accuracy of
the spliced-mapper.

Purely reconstruction methods, without isoform quantification,
include G-Mo.R-Se [61] and assemblySAM [62]. Methods that
reconstruct isoforms as well as estimate their abundances include
Culfflinks [46], Casper [47], CEM [48], IsoLasso [49], TAU [63],
Scripture [64], Montebello [65], and NSMAP [66]. G-Mor.R-Se,
Scripture, and TAU proceed in a similar way by first obtaining
candidate exons from read-clusters and then connecting them
using reads spanning exon—exon junctions. Subsequently, all possible
isoforms from the graph of connected exons are computed.
As they explore all possible connections between potential exons,
they ensure a high sensitivity but at the cost of a high false-positive
rate. In contrast, Cufflinks first connects predicted exons trying to
identify the minimum number of possible isoforms using a graph
generated from the reads; expression levels are then calculated
using a statistical model [42]. IsoLasso also tries to obtain the min-
imal set of isoforms from predicted exons, but maximizing the
number of reads included in each isoform. CEM model takes into
account positional, sequencing and mappability biases of the RNA-
Seq. Casper follows a heuristics similar to Cufflinks but exploiting
the reads that connect more than 2 exon. Some of these methods
use paired-end reads and/or model the insert-size distribution,
which improve the reconstruction accuracy [119]. NSMADPD,
IsoLasso, and Montebello perform identification of the exonic
structures and estimation of the isoform expression levels simulta-
neously in a single probabilistic model; iReckon does so too, but
was not included in this section as it needs at least the transcript
start and end positions. The rest of methods perform reconstruction
and quantification independently.
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Although reasonable overlap among methods has been
reported [120], there are still many predictions unique to each
method. Interestingly, given a fixed number of sequenced bases,
sequencing longer reads does not seem to lead to more accurate
quantifications [55, 56], although exonic structures may be better
predicted [48]. These de novo reconstruction and quantification
methods seem a good option for finding novel isoforms [64],
alternatively spliced genes in a genome with partial annotation
[61] and for quantifying isoforms under various conditions [46].
However, they depend much on coverage. Accordingly, if the aim is
to obtain the expression of known isoforms, gene-based methods
may be a better choice. Alternatively, for protein-coding gene finding
there are other options available, as discussed next.

The methods described above are mainly focused on isoform
quantification, using available annotation, or on the de novo
reconstruction and quantification of isoforms, using reads mapped
to the genome. Quantification methods based solely on gene
annotations could miss many novel genes and isoforms, whereas de
novo approaches not using annotations may produce many false
positives. Combined approaches that discover novel isoforms in
known and new loci and, at the same time, quantify them, could
help improving the gene annotation. Some of the annotation-
based quantification methods can also reconstruct and quantify
new isoforms in known gene loci (Subheading 2.5): Isolnfer [50],
SLIDE [51], RABT [52], DRUT [53], and iReckon [54]. Some
of these methods can work with partial evidence, like iReckon.
However, they do not predict new isoforms in new gene loci. To
this end, a number of methods can use RNA-Seq and other sources
of evidence to predict the exon-intron structures of isoforms, or
even to predict full protein-coding gene structures. These methods
include (Subheading 2.5) TAU [63], SpliceGrapher [67], mGene
[69], and the method described in ref. 68. The method mGene is
an SVM-based gene predictor (see, e.g., [121]) that first recon-
structs a high-quality gene set, which then uses to train a gene
model that is applied using RNA-Seq data in addition to the previ-
ously determined genomic signal predictors. In contrast,
SpliceGrapher and TAU incorporate into the same graph model
information from ESTs and RNA-Seq reads to complete known
gene annotations and produce novel variants. ExonMap/
JunctionWalk proposed in ref. [68] combine SpliceMap [10] align-
ments with known annotations to complete known isoforms and
obtain novel ones without quantification (Fig. 1).

Some of these methodologies are reminiscent of the
evidence-based gene prediction methods. These are generally
based on probabilistic models of protein-coding genes, which
can incorporate external spliced evidence like ESTs and ¢cDNAs
into the model to guide the prediction of the exon—intron struc-
ture, and some of which can predict multiple isoforms in a gene
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3.2.5 De Novo Transcript
Assembly

locus. Accordingly, evidence-based gene prediction methods
could still be useful for splicing analysis from RNA-Seq. In par-
ticular, Augustus [70] is an evidence-based protein-coding gene
prediction method, capable of finding multiple isoforms per
gene, which has been shown to be highly accurate using a blind
test set [122, 123]. Other evidence-based prediction methods
include (Subheading 2.5) GAZE [71], JigSaw [72], EVM [73],
and Evigan [74]. Although these four methods do not explicitly
model alternative isoforms, they can still produce multiple tran-
scripts in a locus.

Evidence-based gene prediction methods can take as input
transcripts reconstructed by other methods and generate protein-
coding isoforms. They do not provide a quantification of isoforms,
but in combination with quantification methods (Subheadings 2.2
and 2.3) they could be a powerful approach to annotate and quan-
tify alternatively spliced protein-coding genes from newly sequenced
genomes using RNA-Seq data.

De novo transcript assemblers put together reads into transcriptional
units without mapping the reads to a genome reference, similar to
building Unigene clusters from ESTs prior to having a genome
reference [124]. A transcriptional unit can be defined as the set of
RNA sequences that are transcribed from the same genome locus
and share some sequence, i.c., the set of RNA isoforms from the
same gene. This is generally represented as a sequence-based graph,
where paths along the graph potentially resolve the different iso-
forms. Methods for transcript assembly include (Subheading 2.6)
Rnnotator [75], STM [76], OASES [77], SOAPdenovo-trans
[78], TransAbyss [79], Trinity [80], and Kissplice [81]. Although
KisSplice focuses on recovering alternative splicing events, we include
it here as it follows a similar approach to the other methods. See ref. 125
for a recent comparison between some of these methods.

The main challenge of these methods is not only to distinguish
sequence errors from polymorphisms but also to distinguish close
paralogues from alternative isoforms, which requires correctly cap-
turing the exonic variability. All these methods are based on a graph
built from k-mer overlaps between read sequences. The choice of
k-mer length affects the assembly, being more sensitive at low values
of k and more specific at high values. Accordingly, some use a
variable k-mer approach. Isoforms are recovered as paths through
the graph with sufficient read coverage. Not all methods can provide
multiple isoforms from the same gene (Subheading 2.6).

Genome-independent methods are useful when there is no
genome reference sequence available, and could also be valuable
when the RNA is expected to contain much variation, like in a cancer
cell with many copy number alterations, mutations and genome
rearrangements compared to the reference genome. De novo
assembly methods tend to be more sensitive to sequencing errors
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and low coverage, and generally require more computational
resources, although full parallelization of the graph algorithms
can alleviate this issue [126]. Some of the methods also consider
the comparison to reference sets of DNA or protein sequences
[76]. In fact, mapping assembled transcripts to a reference genome,
even from a related species, seems to improve accuracy in transcript
quantification [127]. KisSplice is explicitly designed to obtain and
quantify de novo alternative splicing events, which may potentially
be coupled with other methods to study differential splicing. On the
other hand, OASES, TransAbyss, Trinity, and SOAPdenovo-trans
can produce multiple isoforms, but only TransAbyss and Trinity
perform quantification. Nonetheless, multiple assembled isoforms
can be quantified with transcript-based methods (Subheading 2.3)
or further processed with isoform-based differential expression
methods (Subheading 2.8).

The comparison of events and isoforms across two or more condi-
tions provide valuable information to understand the regulation of
alternative splicing. However, it is important to distinguish differ-
ential isoform relative abundance, from differential isoform expres-
sion. Changes in relative abundance of isoforms, regardless of the
expression change, indicate a splicing-related mechanism. On the
other hand, there can be measurable changes in the expression of
isoforms across samples, without necessarily changing the relative
abundance, which possibly indicates a transcription-related mecha-
nism. With this in mind, we can consider two types of methods,
those that measure relative event or isoform usage (Subheading 2.7)
and those that measure isoform-based changes in expression
(Subheading 2.8).

Most of these methods are focused on splicing events, thereby
summarizing the isoform relative abundance into two possible
splicing outcomes in a local region of the gene (Fig. 1). They use a
predetermined set of splicing events, generally calculated from
gene annotations and additional EST and ¢cDNA data; hence, they
are suitable for studying splicing variation in well-annotated genomes.
They all consider exon-skipping events (cassette exons), and some also
include alternative 5" and 3’ splice-sites, mutually exclusive exons and
retained introns; and in very few cases, multiple-cassette exons, alter-
native first exons and alternative last exons [38]. Potential novel
events are sometimes built by considering hypothetical exon—exon
junctions from the annotation [85].

Methods that calculate differential relative abundance of events
or exons under at least two conditions include (Subheading 2.7)
SpliceSeq [33], MISO [38], ALEXA-Seq [39], SOLAS [40],
DEXSeq [82], DSGSeq [83], GPSeq [84], MATS [85], JuncBase
[86], JETTA [87], SplicingCompass [88], DiftSplice [89], FDM
[90] rDiff [91, 128], and the methods from ref. 129. ALEXA-Seq
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estimates inclusion levels on a set of pre-calculated events using
only unambiguous reads, i.¢., reads that map to one unique event,
and calculates various measures of differential expression, including
the splicing index, i.e., a measure of change in expression of an
event between two conditions relative to the change in expression
of the entire gene locus between the same two conditions. On the
other hand, SOLAS uses single-reads and only takes into account
those mapping within exons, disregarding reads spanning exon-
exon junctions, to detect differentially spliced events between two
conditions. DEXSeq, DSGSeq, and GPSeq use read counts on
exons to calculate those genes with differential splicing between
two conditions. They do not provide any event or isoform infor-
mation and report the exons with significant change (Fig. 1).
MATS and MISO use both a Bayesian approach to calculate the
differential inclusion of splicing events between two samples, using
reads that map to exons and to the inclusion and skipping exon
junctions. JuncBASE also uses reads mapped to exon junctions and
uses a Fisher exact test to compare the read count in the inclusion
and exclusion forms in two conditions. JETTA estimates the
differential inclusion between two conditions from pre-calculated
expression values for genes, exons, and junctions, which the
authors obtain using SeqMap [130] and rSeq [49]. SpliceSeq
calculates read coverage along genes, exons, and junctions for each
sample, which are then compared to identify significant changes in
splicing across samples. SpliceSeq also includes the evaluation of the
impact of alternative splicing on protein products and a visualiza-
tion of the events (see below). Besides all these methods, various
methods were proposed in ref. 129 based on reads over exon
junctions to find robust estimates of PSI, taking into account the
positional bias of reads relative to the junction.

Some of these methods can also measure the change in the
relative abundance of isoforms (Fig. 1): MISO can measure changes
in isoform relative abundances from previously calculated isoform
PSI values; ALEXA-Seq uses the events that are differentially
expressed to infer isoform abundance differences between two
conditions. Finally, rDiff, FDM, and DiffSplice are methods that
work with a more general definition of event and that can operate
without an annotation. FDM and DiffSplice are graph-based meth-
ods and both identify regions of differential abundance of tran-
scripts between two samples using the variability of reads that
define a splicing graph. Similarly, rDiff uses a Maximum Mean
Discrepancy test [ 131] to estimate regions that have a significant
distance between the read distributions in the two conditions.
Alternatively, rDiff can work with an annotation; it considers
reads in exonic regions that are not in all isoforms and groups
those regions according to whether they occur in the same set of
isoforms. Finally, SplicingCompass uses a geometric approach to
detect differentially spliced genes and quantifies relative exon usage.
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In summary, these methods test whether events, isoforms, or
genic regions, change their relative abundances between two or
more conditions, and so directly address the question of differ-
ential splicing.

When comparing two or more conditions, biological variability
becomes an important issue, which has been shown to be relevant
for studying expression [132] and splicing [82] from RNA-Seq
data. However, not all methods take this into account. From the
methods described here, DEXSeq, DSGSeq, GPSeq, DiftSplice,
FDM, rDiff, and a newer version of MATS accept multiple repli-
cates and model biological variability in different ways. In contrast,
the initial methods for calculating splicing changes from RNA-Seq
data [2, 3, 105], as well as MISO, ALEXA-Seq, JETTA, SpliceSeq,
SOLAS, and SplicingCompass, do not work with multiple repli-
cates. On the other hand, JuncBASE can work with replicated data
but does not seem to model variability. As the cost of sequencing
continue to decrease, it will be more common to include replicates
in the differential splicing analysis, which will prove relevant to
discern actual regulatory changes from biological variability.

Current methods to study differential splicing at the event level
show a high validation rate [2, 85]. However, their agreement with
microarray-based methods is not as high as one may expect [2].
This limitation could be due to the simplification of considering
only events, rather than full RNA isoforms. An improvement in
this direction would be to quantify changes in isoform expression.
A possible approach is to combine methods that quantify isoforms
with methods for differential gene expression. However, as previ-
ously pointed out [5, 90, 93], this may be problematic, since tools
for differential gene expression analysis do not generally take into
account the uncertainty of mapping reads to isoforms. We will not
discuss here the many methods that have been proposed to study
differential gene expression analysis from RNA-Seq data; for a
recent review see refs. 5, 133.

A number of methods have been proposed to detect expression
changes at the isoform level (Subheading 2.8): BitSeq [58], BASIS
[92], Cuftdiff2 [93], and EBSeq [94]. Cuftdiff2, BitSeq, and
EBSeq take into account the read-mapping uncertainty, accept
multiple replicates and model biological variability. BASIS does
not accept replicates, but it models variability along genes. Cuftdiff2
and BitSeq provide quantification and differential expression of
isoforms from genome-mapped and transcriptome-mapped reads,
respectively. Cuftdiff2 can use reads directly mapped to the genome
or can use the results from Cufflinks on two conditions after using
cuffcompare [46] (Fig. 1), which gives equivalent transcripts in
both conditions. On the other hand, EBSeq relies on the iso-
form quantification from other methods, like RSEM or
Cufflinks, and is actually included in the current release of RSEM;
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3.4 Visualizing
Alternative Splicing

whereas BASIS uses coverage over exon regions that are isoform-
specific to calculate differential expression of isoforms. These
methods rely on an annotation, either genome-based (Cuffdift2,
BASIS, and EBSeq) or transcriptome-based (BitSeq and EBSeq).
Except for Cuftdiff2, these methods do not explicitly address the
question of whether the relative abundance of these isoforms
change across samples (Fig. 1). Accordingly, if there is an increase
of transcription but the relative abundance of isoforms remain con-
stant, they can detect changes in isoform expression, even though
there might not be an actual change in splicing. On the other hand,
if there are changes in the relative abundance of isoforms, they may
possibly detect expression changes, but they will not provide infor-
mation about the change of the relative abundances, and there-
fore do not directly address the question of differential splicing.

Being able to visualize the complexity of alternative splicing is an
important aspect of the analysis. In the past, there have been mul-
tiple efforts to store and visualize alternative isoforms from ESTs
and cDNAs [134, 135]. Visualization for RNA-Seq requires
specialized tools that can efficiently process large amount of data
from multiple samples. This has triggered the development of spe-
cialized tools to visualize alternative isoforms and events from
RNA-Seq data (Subheading 2.9). Perhaps the simplest way to
visualize isoforms and events is to generate track files for a genome
browser. For instance, RSEM produces WIG files that can be
viewed as tracks in the UCSC browser [ 136]. Similarly, SpliceGrapher
and DiftSplice produce files in GFF-like formats (http://gmod.
org/wiki/GFF), which can be uploaded into visualization tools like
GBrowse [137] or Apollo [138]. On the other hand, SpliceGrapher
and Alexa-Seq have their own visualization utilities. Other tools have
been developed independently from the analysis method. For
instance, the Sashimi plot toolkit to visualize isoforms and events
and their relative coverage was used with MISO but can be used
with the results from other tools (Subheading 2.8). Similarly, the
browser Savant [95] has been used in conjunction with iReckon,
but can be used independently for multiple HTS data formats.
Finally, SpliceSeq [33] and SplicingViewer [96] are stand-alone
tools that, besides mapping reads and quantitying events, also
provide a visualization of results.

4 Conclusions and Outlook

The rapid development of short-read RNA sequencing technologies
has triggered the development of new methods for data analysis.
In this review, we have tried to provide an overview of methods
applicable to the study of alternative splicing. These provide a way
to detect and quantify exon—exon junctions, transcript isoforms,
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and differential splicing. Despite the many tools available not all
are necessarily applicable to every purpose. For instance, for
genomes with good annotation coverage, like human, the expres-
sion of known isoforms and possibly their changes under several
conditions might be more accurately assessed using annotation-
guided methods. Similarly, if sufficient annotation is available,
there are also hybrid methods that can quantify known isoforms
and predict novel ones simultaneously. For newly sequenced
genomes, there are effective methods to perform de novo recon-
struction and quantification of isoforms. However, if one is specifi-
callyinterested in protein-coding genes, there are also evidence-based
gene prediction methods available, which can be quite effective for
isoform prediction.

One can identify some open questions and areas of improve-
ment. For instance, not all of the de novo transcript assembly
methods describe multiple isoforms per gene and only few actually
quantify them. These are still two hard problems to solve, as
incompleteness or absence of transcriptomes can lead to many
reconstruction and quantification errors [ 139]. There are different
approaches to improve these questions, either by a combination of
methods and homology searches [ 140] or by using error correction
of sequencing reads before assembly [141]. These tools are of great
relevance for non-model organisms and we will probably see sub-
stantial improvements in the near future. Accurate reconstruction
and quantification of isoforms is crucial for downstream analysis
and in particular, for differential analysis of isoform abundances.
Methods to estimate differential splicing at the event level seem to
provide accurate measures as shown by experimental validation.
However, differential expression at the isoform level is still an active
area of development.

Extending de novo transcriptome assembly methods to calculate
differential expression of isoforms between two or more conditions
could facilitate the analysis of isoform expression for non-model
organisms. Although this may be done currently with a combina-
tion of methods, a tool that integrates all these could provide a
powerful approach to study expression and splicing in tumor sam-
ples, where multiple genome rearrangements and copy number
alterations are expected to have occurred. On a different direction,
considering that a reference genome sequence does not represent
all DNA that can be possibly transcribed in a cell, unmapped RNA
reads may come from functional RNAs not represented in the
genome annotation. Tools that map reads to a genome reference
and simultaneously attempt to perform transcript assembly will be
also quite useful to perform systematic analyzes of RNA in cancer
samples as well as in genomes that are partly assembled.

Besides the technical improvements, there is probably also a
need to improve the comparison and evaluation of current methods.
Transcript reconstruction methods should be evaluated using
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manual gene annotation sets, as proposed previously for gene
prediction methods [123] and currently by RGASP for RNA-
Seq based methods (http://www.gencodegenes.org/rgasp).
Additionally, these comparisons should use measures that take into
account alternative splicing [ 123, 142]. Similarly, there is the need
to develop an experimental gold standard dataset for isoform quan-
tification and differential isoform expression [143].

As a final question, we may ask for how long some of these
methods will be needed. There are new technologies for single-
molecule sequencing that soon will be used to probe the transcrip-
tome. This may preclude the need to perform reconstruction of
isoforms. Nonetheless, short-read RNA-Seq may still be necessary
for efficient quantification. On the other hand, single-molecule
sequencing technologies will open up a whole new set of problems,
like that of reconciling new cell-specific RNA sequences with the
information available for the genome sequence and its annotation.
In fact, we will be in the position to quantity multiple transcrip-
tomes and to revisit previous studies of differential splicing and
expression in cancer, as the DNA and transcription complexity of
the tumor cell is fully revealed.

With this review, we have aimed to provide an overview of the
different tools to study different aspects of alternative splicing from
RNA-Seq data, organized such that it is useful for the end user to
navigate through the list of methods. All of them have their advan-
tages and disadvantages, but are certainly useful to answer specific
questions. We also hope that this review makes it easier to identify
the tools that are still missing in order to improve the study of
splicing with RNA-Seq.
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