forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SortingKernel.cpp
180 lines (160 loc) · 5.38 KB
/
SortingKernel.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#define TORCH_ASSERT_NO_OPERATORS
#include <ATen/native/Sorting.h>
#include <ATen/core/TensorBase.h>
#include <ATen/Dispatch.h>
#include <ATen/Parallel.h>
#include <ATen/NumericUtils.h>
#include <ATen/TensorIterator.h>
#include <ATen/native/StridedRandomAccessor.h>
#include <ATen/native/CompositeRandomAccessor.h>
#include <ATen/native/TopKImpl.h>
#include <c10/core/WrapDimMinimal.h>
#include <c10/util/irange.h>
namespace at { namespace native {
namespace {
template <typename func_t>
void _dim_apply(
const TensorBase &values,
const TensorBase &indices,
int64_t dim,
const std::string& method_name,
const func_t& f) {
auto iter = TensorIteratorConfig()
.check_all_same_dtype(false)
.resize_outputs(false)
.declare_static_shape(values.sizes(), /*squash_dims=*/dim)
.add_output(values)
.add_output(indices)
.build();
auto values_dim_stride = values.stride(dim);
auto indices_dim_stride = indices.stride(dim);
auto dim_size = values.size(dim);
AT_DISPATCH_ALL_TYPES_AND3(
ScalarType::Bool, ScalarType::Half, ScalarType::BFloat16, iter.dtype(),
"sorting_kernel_method_name", [&] {
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
auto* values_data_bytes = data[0];
auto* indices_data_bytes = data[1];
if(values_data_bytes==nullptr || indices_data_bytes==nullptr){
return;
}
for (const auto i C10_UNUSED : c10::irange(n)) {
f(
reinterpret_cast<scalar_t*>(values_data_bytes),
values_dim_stride,
reinterpret_cast<int64_t*>(indices_data_bytes),
indices_dim_stride,
dim_size
);
values_data_bytes += strides[0];
indices_data_bytes += strides[1];
}
};
int64_t grain_size = internal::GRAIN_SIZE / std::max(int64_t{1}, dim_size);
iter.for_each(loop, /*grain_size=*/grain_size);
}
);
}
template <typename scalar_t>
struct KeyValueCompAsc {
template <typename LHS, typename RHS>
constexpr bool operator()(LHS lhs, RHS rhs) const {
return (!_isnan<scalar_t>(get<0>(lhs)) && _isnan<scalar_t>(get<0>(rhs)))
|| (get<0>(lhs) < get<0>(rhs));
}
};
template <typename scalar_t>
struct KeyValueCompDesc {
template <typename LHS, typename RHS>
constexpr bool operator()(LHS lhs, RHS rhs) const {
return (_isnan<scalar_t>(get<0>(lhs)) && !_isnan<scalar_t>(get<0>(rhs)))
|| (get<0>(lhs) > get<0>(rhs));
}
};
static void sort_kernel(
const TensorBase& self,
const TensorBase& values,
const TensorBase& indices,
int64_t dim,
bool descending,
bool stable) {
dim = maybe_wrap_dim(dim, values.dim());
_fill_indices(indices, dim);
_dim_apply(
values, indices, dim,
"sort_cpu", [&](
auto* values, int64_t values_dim_stride,
auto* indices, int64_t indices_dim_stride,
int64_t dim_size
) {
using scalar_t = typename std::remove_pointer<decltype(values)>::type;
auto values_accessor = StridedRandomAccessor<scalar_t>(
values, values_dim_stride);
auto indices_accessor = StridedRandomAccessor<int64_t>(
indices, indices_dim_stride);
auto composite_accessor = CompositeRandomAccessorCPU<
decltype(values_accessor), decltype(indices_accessor)
>(values_accessor, indices_accessor);
if (descending) {
if (stable) {
std::stable_sort(composite_accessor, composite_accessor + dim_size,
KeyValueCompDesc<scalar_t>());
}
else {
std::sort(composite_accessor, composite_accessor + dim_size,
KeyValueCompDesc<scalar_t>());
}
}
else {
if (stable) {
std::stable_sort(composite_accessor, composite_accessor + dim_size,
KeyValueCompAsc<scalar_t>());
}
else {
std::sort(composite_accessor, composite_accessor + dim_size,
KeyValueCompAsc<scalar_t>());
}
}
}
);
}
static void topk_kernel(
const TensorBase &values,
const TensorBase &indices,
const TensorBase &self,
int64_t k,
int64_t dim,
bool largest,
bool sorted) {
auto sizes = self.sizes();
auto iter = TensorIteratorConfig()
.check_all_same_dtype(false)
.resize_outputs(false)
.declare_static_shape(sizes, /*squash_dims=*/dim)
.add_output(values)
.add_output(indices)
.add_input(self)
.build();
auto mode_values_stride = values.strides()[dim];
auto mode_indices_stride = indices.strides()[dim];
auto tmp_values_stride = self.strides()[dim];
AT_DISPATCH_ALL_TYPES_AND(ScalarType::BFloat16, self.scalar_type(), "topk_cpu", [&] {
auto loop = [&](char** data, const int64_t* strides, int64_t n) {
if (self.scalar_type() == ScalarType::BFloat16) {
return topk_impl_loop<scalar_t, float>(
mode_values_stride, mode_indices_stride, tmp_values_stride,
k, sizes[dim], largest, sorted, data, strides, n);
} else {
return topk_impl_loop<scalar_t, scalar_t>(
mode_values_stride, mode_indices_stride, tmp_values_stride,
k, sizes[dim], largest, sorted, data, strides, n);
}
};
int64_t grain_size = internal::GRAIN_SIZE / std::max(int64_t{1}, sizes[dim]);
iter.for_each(loop, /*grain_size=*/grain_size);
});
}
} // anonymous namespace
REGISTER_DISPATCH(sort_stub, &sort_kernel);
REGISTER_DISPATCH(topk_stub, &topk_kernel);
}} //at::native