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Item response theory (IRT)

The name “IRT” is a bit unfortunate because it is a measurement
model and not in and of itself a theory.

We usually think of IRT this way:

Takes Spits out an
binary → continuous

items only latent variable

But there are versions of IRT that

I Take ordinal or nominal items (only)

I Take ordinal and nominal and binary items together

I Also take continuous, count, proportion, etc. all together

I Embed a structural equation model

I Use time series data
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Canonical Application of IRT: Grading a test

X1,X2, . . . ,Xk are questions (items) on a test.

The items are binary:

I Xij = 1 if student i gets question j correct,

I otherwise Xij = 0.

θi is student i ’s latent ability.

To measure ability, why not simply take a sum of the X s?
Because some Xs are more informative about θ than others.

IRT weights the items on two criteria:

1. The difficulty of each question,

2. and the ability of a question to discriminate between high
and low ability students.
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Three topics we need to review

I love item response theory (IRT). I think it provides a great
balance between theoretical modeling and flexible measurement.

IRT comes from psychometrics, and it is underused because
psychologists seem unwilling to apply it more broadly than the
canonical problems, and economists have little use for it.

But before we can delve into this topic we must review three
topics:

I Bayes’ rule and proportionality

I Confirmatory factor analysis and path diagrams

I Generalized linear models (GLM)
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Review: Bayes’ rule

X — a binary random variable.
Does the student get the question right or wrong?

θ — a continuous random variable that influences X .
The student’s ability.

P(X |θ) – the conditional probability of X given θ
What is the probability that a student of a particular ability level
gets the question right?

P(θ|X ) – the conditional probability of θ given X
What is the probability that a student who gets the question right
has a particular ability level?

Our goal is to estimate these two conditional probabilites.
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Review: Bayes’ rule

Suppose that we know P(X |θ). We can find the other conditional
probability by using Bayes’ rule:

P(θ|X ) =
P(X |θ)P(θ)

P(X )
.

In general, we don’t know P(X ), but we know P(X |θ) for any
value of θ.

Suppose there were two values of θ:

low ability θL and high ability θH .

Then we could rewrite the denominator as

P(X ) = P(X |θL)P(θL) + P(X |θH)P(θH).
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Review: Bayes’ rule

Suppose there were ten values:

θ1, . . . , θ10

Then we could rewrite the denominator as

P(X ) =
10∑
i=1

P(X |θi )P(θi ).

But if θ is continuous, there are infinitely many values. The infinite
analogue of a sum is an integral. So in this case:

P(X ) =

∫ ∞
−∞

P(X |θ)P(θ) dθ.
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Review: Bayes’ rule
So we can rewrite Bayes’ rule as

P(θ|X ) =
P(X |θ)P(θ)∫∞

−∞ P(X |θ)P(θ) dθ
.

IRT (and most Bayesian methods) use a dirty trick that depends
on proportionality. Two functions are proportional if one is a
multiple of the other.

Example:

f (x) = x2 + 1, g(x) = 3x2 + 3, h(x) = −.75x2 − .75

are all proportional because

g(x) = 3f (x), h(x) = −.75f (x).

The sign ∝ means “proportional to.”

f (x) ∝ g(x), f (x) ∝ h(x).
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Review: Bayes’ rule
It turns out that

P(X ) =

∫ ∞
−∞

P(X |θ)P(θ) dθ

is just equal to a single, scalar value. We don’t need to know what
this value is. Since it is scalar, we can rewrite Bayes’ rule again like
this:

P(θ|X ) ∝ P(X |θ)P(θ).

This setup gives us a curve for P(θ|X ) that has the right shape,
but the wrong scale.

The dirty trick we use is drawing θ values from this curve. We
know that this technique

I does not change the maximum or mean,

I and the 2.5% and 97.5% percentiles of simulated θ values are
a correct estimate of the 95% “credible” (like a confidence)
interval.
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Review: Bayes’ rule

So what? What does all this technical Bayes’ stuff mean?

P(θ|X ) ∝ P(X |θ)P(θ)

It means that if we can figure out two things:

1. P(X |θ), the probability of a correct answer given an ability
level,

2. and P(θ), a reasonable prior expectation for ability,

then it’s easy to estimate P(θ|X ) by multiplying these two
functions together.

Usually, we assume that every student has a prior P(θ) that is
standard normal (like assuming every student is average). Then
the test answers let us update that belief.

All we need now is a model for P(X |θ)!
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Review: CFA and path diagrams

Let X1, X2, . . ., Xk be items (that’s the language of IRT – but
these are also indicators, measures, observed variables, etc.)

Let θ be the latent variable (the factor, the score, etc.)

Remember, confirmatory factor analysis is built on a path diagram:

θ

X1
X2
X3


Xk
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Review: CFA and path diagrams

θ

X1
X2
X3


Xk

That means that θ is the independent variable and the items are
the dependent variables.

This diagram implies a system of equations as follows:
X1 = α1 + β1θ + ε1,

X2 = α2 + β2θ + ε2,
...,

Xk = αk + βkθ + εk .
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X1 = α1 + β1θ + ε1,

X2 = α2 + β2θ + ε2,
...,

Xk = αk + βkθ + εk .

Since each X is a dependent variable, and θ is an independent
variable, we can write each model as

f (Xk |θ),

which is exactly what we need to solve Bayes’ rule for the posterior
estimate of θ.
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Review: GLM
What is a really common way that social scientists can model

f (Xk |θ),

if the outcome X is binary?

Logistic (logit) regression. Probit regression works too, but most
IRT users work with logit, and that will be our focus too.

Logit and probit are examples of generalized linear models (GLMs).
A GLM has three parts:

1. A family that represents the variation of the outcomes. The
family has parameters that alter the shape of the distribution.

2. A linear model that contains the independent variables and
coefficients.

3. A link function that allows you to substitute the linear model
for one of the family’s parameters.
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Review: GLM
Logistic regression:

Family: the Bernoulli distribution

f (yi |pi ) = pyii (1− pi )
1−yi .

Parameter: pi – the probability that observation i is a 1. pi must
be between 0 and 1.

Linear model: denoted y∗i and allowed to take on all real numbers,

y∗i = α + β1xi1 + . . . βkxik

Link function: a function that converts the domain of y∗ (all reals)
to the domain of the parameter (between 0 and 1).

For logit, we use the logistic CDF:

pi =
1

1 + e−y
∗
i
.
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Review: GLM

Suppose that the only independent variable were θ. Then we could
write

y∗i = b0 + b1θ.

Equivalently we can write this as

y∗i = α(θ − β)

where α = b1 and β = −b1/b0.

Then the probabilities are

P(X = 1|θ) = pi =
1

1 + exp
(
− α(θ − β)

) ,
P(X = 0|θ) = 1− pi = 1− 1

1 + exp
(
− α(θ − β)

) .
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Test curves

An IRT test curve looks like this:

P(Xi = 1|θi ) =
1

1 + exp
(
− α(θi − β)

) .

Suppose that we already know θi . Then to get ML estimates of
α and β, we estimate a logistic regression.

The parameters:

I β – DIFFICULTY.
Represents the level of ability necessary to have a 50/50
chance of getting the problem right. Higher values mean the
question is more difficult.

I α – DISCRIMINATION
Represents how quickly probabilities go to 0 to the left of the
.5 point, and how quickly probabilities go to 1 to the right.
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Test Curve: the probability of an item equalling 1 conditional on θ
and on the item parameters.

An easy item, β = −2
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Test Curve: the probability of an item equalling 1 conditional on θ
and on the item parameters.

A difficult item, β = 2
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Test Curve: the probability of an item equalling 1 conditional on θ
and on the item parameters.

An item that discriminates between high and low ability students
well, α = 1
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Test Curve: the probability of an item equalling 1 conditional on θ
and on the item parameters.

An item that discriminates between high and low ability students
poorly, α = 0.1
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Some notes about test curves

Discrimination parameters are like factor loadings:

I The steeper the curve,

I the more the variation of X is explained by θ,

I the better the item fits as a measure of the latent variable.

Low discrimination = a bad item. Like including a Shakespeare
question on a math test. Bad students still might get it right,
good students still might get it wrong.

There are other versions with more/fewer parameters, different
distributions. But this setup is most common.

Can be estimated through iterated ML or MCMC.
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How to estimate θ?

Start with a prior for the value of θ for every observation i .

A common approach: everyone’s θ has a standard normal prior,
independent of one another.

Then consider item 1 (if we observe Xi1 = 1). Suppose we know
α1 and β1. Then we know

P(Xi1 = 1|θi ) =
1

1 + exp
(
− α1(θi − β1)

) ,
Update the estimate of θi using Bayes’ rule:

P(θi |Xi1 = 1) ∝ P(Xi1 = 1|θi )P(θi )
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How to estimate θ?

Replace the prior P(θi ) with the latest posterior: P(θi |Xi1).

Then consider item 2 (if we observe Xi2 = 0). Suppose we know
α2 and β2, so we know

P(Xi2 = 0|θi ) = 1− 1

1 + exp
(
− α2(θi − β2)

) , .
Update the estimate of θ using Bayes’ rule:

P(θi |Xi2 = 0) ∝ P(Xi2 = 1|θi )P(θi |Xi1)

Replace the prior with the latest posterior: P(θi |Xi1,Xi2). Repeat
for every item.
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How to estimate θ?

The estimate of θ for observation i turns out to be the PRODUCT
of

I the (original) prior distribution of θi ,

I and every test curve for observation i .

Just multiply everything together!

The resulting curve has the right shape, wrong scale.

Use (MCMC or EM) simulation to

I Obtain standard errors, confidence intervals,

I Go back and forth between estimating test curves and θ until
these quantities converge to one answer.
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Prior distribution of the latent variable θi :
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Item 1: medium difficulty, medium discrimination, CORRECT

−3 −2 −1 0 1 2 3

θi

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
( 

X
 =

 1
 | θ

i, 
α,

 β
 )



Item 1: medium difficulty, medium discrimination, CORRECT

−3 −2 −1 0 1 2 3

θi

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
( 

X
 =

 1
 | θ

i, 
α,

 β
 )

−3 −2 −1 0 1 2 3

θi



Item 2: medium difficulty, low discrimination, CORRECT
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Item 3: high difficulty, high discrimination, CORRECT
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Item 4: high difficulty, low discrimination, INCORRECT
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Assumptions

IRT makes a few strong assumptions:

First, observations are independent conditional on θ.
Two students’ test answers are related only in so far that the
students have similar ability.

Second, items are independent conditional on θ.
Getting one question right should not affect the probability of
getting another question right, outside of the ability demonstrated
in answering both questions.

Usually (but not necessarily), the priors P(θi ) are assumed to be
independent across observations. That implies that the posteriors
are also independent.

Can you think of situations in which these assumptions are
violated?
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Other Uses of IRT

Psychometrics, used to measure latent self-esteem, depression,
attachment anxiety.

Computerized adaptive testing (Montgomery and Cutler 2013)

Examples in political science:

I Cross-national variation in democracy (Treier and Jackman 2008)

I Ideal point estimates for:
I members of Congress (Clinton, Jackman, and Rivers 2004)

I Supreme Court Justices (Martin and Quinn 2002, Bailey and

Maltzmann 2008)

I state legislators (Shor and McCarty 2011)

I member states in the UN (Voeten 2004)
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Extensions of IRT

IRT is, in my opinion, terribly underutilized.

Not that is isn’t used enough in research – but when it is used, it’s
used in too limited a way.

The current practice is that only binary, or only ordinal, or only
nominal items are used.

But all IRT is an extension of GLM. Anything we can do in GLM,
we can do in IRT. Some extensions:

1. IRT when the items are ordinal, nominal

2. Count, proportion, continuous items, general test curves

3. Multidimensional estimates of θ

4. Creating time dependent estimates of θ
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Graded Response Model

The version of IRT that uses all ordinal items is called the graded
response model (GRM).

The name comes from the idea that items aren’t just
correct or incorrect, but have varying degrees of correctness, with
labels like A, B, C, D, F. The GRM uses this ordinal information.

Binary IRT is built on the logic of logistic regression. So, it makes
sense that the GRM is built on top of a ordered logit model.
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Graded Response Model

The GRM uses the same standard normal prior distributions on the
values of the latent variable as binary logit:

θ ∼ N(0, 1)

Also like binary IRT, GRM gets posterior estimates of each θ by
multiplying the prior by every test curve. The question is: what
should the test curves be?

Binary items can only be 0 or 1 so the two test curves are

P(X = 1) =
1

1 + e−α(θ−β)
and P(X = 0) = 1− 1

1 + e−α(θ−β)

where α is the item’s discrimination and β is the item’s difficulty.
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Graded Response Model

But ordinal items can be equal to many different ordered
categories (let’s call the categories 1, 2, . . ., K ). So we need K
test curves. The first category’s curve is:

P(X = 1) =
1

1 + e−α(θ−β1)
,

the test curve for categories 2 through K − 1 are

P(X = j) =
1

1 + e−α(θ−βj )
− 1

1 + e−α(θ−βj−1)
,

and the test curve for the last category is

P(X = K ) = 1− 1

1 + e−α(θ−βK )
.
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1 + e−α(θ−βj−1)
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P(X = K ) = 1− 1

1 + e−α(θ−βK )
.

These are the exact same functions as the link function for ordered
logit, only the linear model is rearranged to produce difficulty and
discrimination parameters.

There is one discrimination parameter α for the item, but K − 1
difficulty parameters for the K categories. Why? Because these
difficulty parameters take the place of the ordered logit
cutpoints.
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Graphically, the first and last of the ordinal test curves are
S-shaped, just like the binary IRT test curves.
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But the intermediate test curves look like bell curves. These are
logistic, not normal, bell curves, but are very similar.

Either way, the curves represent the probability that an observation
with a particular θ responds with each category. If you plot all the
curves together and draw any vertical line, the y -values
(probabilities) add to 1.
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Nominal IRT
It is possible to work with unordered categorical items as well.
These items are much more rare on a test, but common in political
data. Some examples:

I vote choices,

I regime types,

I conflict outcomes,

I demographics like race, religion, marital status.

The nominal IRT model is built upon multinomial logit. Consider
an item with 3 categories. The test curves are:

P(X = 1) =
1

1 + e−α1(θ−β1)
,

P(X = 2) =
1

1 + e−α2(θ−β2)
,

P(X = 3) = 1− 1

1 + e−α1(θ−β1)
− 1

1 + e−α2(θ−β2)
.
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Note that unlike the GRM, we now have different discrimination
parameters for every category except one.

In this case, the discrimination and difficulty parameters are
interpreted relative to the base category.
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Other kinds of IRT

There is absolutely nothing stopping us from applying the GLM
logic to items of all other kinds.

Consider count items. What can we do to create a count IRT
model? Use a negative binomial test curve:

P(X = c) =

(
c + r + 1

c

)
(1− p)rpc ,

where r is the negative binomial overdispersion parameter, and

p =
1

1 + e−α(θ−β)
.

Likewise, we can build an IRT model from any GLM: normal (for
continuous), beta (for proportions), Weibull (for durations),
gamma (for non-negative continuous), etc.
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1

1 + e−α(θ−β)
.

Likewise, we can build an IRT model from any GLM: normal (for
continuous), beta (for proportions), Weibull (for durations),
gamma (for non-negative continuous), etc.



Other kinds of IRT

There’s also nothing stopping us from putting all of these items
together in one big IRT model. All we have to do it multiply the
prior by every item’s unique test curve.

This model is the cutting edge of measurement statistics. It is
flexible because it can handle all sorts of model specifications and
item types. But it is also built on top of theoretically driven GLMs.

The best new examples of clever measurement almost all
start with IRT and customize it for a specific application by using
alternative GLMs or a game theoretic model for test curves (as
DW-NOMINATE does).

The limiting factor: making the computer do what we want. We
will use a powerful tool for exactly that, called Stan, next week.
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Something I Did: Time-Series Item Response Theory
(TSIRT)

Cases: N = 1

Timepoints: T →∞

Data: X is (T × K ), T timepoints and K items.
Items may be categorical, continuous, count, or proportion.

Latent variable: θt , unidimensional, derived from shared covariance
of columns of X

Prior: Integrated time series (also used by Martin and Quinn (2002))

θ0 ∼ N(0, σ2), θt ∼ N(θt−1, σ
2),

where t ∈ {1, 2, . . . ,T}, and σ2 is fixed across t and estimated.



Test Curves

ptj =
1

1 + exp(−αj(θt − βj))

Binary items: Xj ∼ Bernoulli(ptj),

Count items: Xj ∼ NB(ptj , rj),

Proportion items: Xj ∼ Beta(ptj , φj),

Standardized continuous items: Xj ∼ N(θt , α
2
j ),

Item parameters to estimate:

αj – discrimination

βj – difficulty

rj – negative binomial shape parameter

φj – Beta total count parameter
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Test Curve: the distribution of an item conditional on θt and on
the item parameters.

Binary items: Xj ∼ Bernoulli(p), where

ptj =
1

1 + exp(−αj(θt − βj))
.

Item parameters to estimate:

I αj – discrimination

I βj – difficulty

Standardized continuous items: Xj ∼ N(θt , α
2
j ).

Item parameter to estimate:

I αj – standard deviation (discrimination)



Count items: Xj distributed Negative Binomial:

f (Xj |θt , αj , βj , rj) =

(
Xj + rj − 1

Xj

)
(1− ptj)

rptj
Xj ,

ptj =
1

1 + exp(−αj(θt − βj))
.

Item parameters to estimate:

I αj – discrimination

I βj – difficulty

I rj – the number of negative draws before the experiment is
terminated



Proportion items: Xj ∈ [0, 1], distributed Beta:

f (Xj |θt , αj , βj , φj) =
(Xj)

ptjφj−1(1− Xj)
(1−ptj )φj−1

B

(
ptjφj , (1− ptj)φj

) ,

ptj =
1

1 + exp(−αj(θt − βj))
,

where B() is the Beta function.

Item parameters to estimate:

I αj – discrimination

I βj – difficulty

I φj – total count parameter



Normal test curve, low discrimination
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Normal test curve, high discrimination
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Count test curve, low discrimination
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Count test curve, high discrimination
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Proportion test curve, low discrimination

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

α = 0.8

X

f(
 X

 | 
θ t

, α
 )

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

θt = −1
θt = 0
θt = 1



Proportion test curve, high discrimination
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TSIRT is implemented as a fully Bayesian model, and θt , σ
2, and

the item parameters are estimated through MCMC:

P(θt , σ
2, α, β, r , φ|X ) ∝ Pθ(θt) · Pσ2 (σ2) · Pα(α) · Pβ(β) · Pr (r) · Pφ(φ)

(binary) ×
KB∏
k=1

fBk (X|θt , αk , βk )

(count) ×
KC∏
k=1

fCk (X|θt , αk , βk , rk )

(proportion) ×
KP∏
k=1

fPk (X|θt , αk , βk , φk ).

(continuous) ×
KN∏
k=1

fNk (X|θt , αk )

Convergence assessed through multiple chains and R̂ statistic
(Gelman and Rubin 1992).

Posterior estimates of θ have serial dependence because the prior
Pθ(θ) has serial dependence.
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Example: the Israeli/Palestinian Conflict, 1971-2013

Spoiler Violence
(Kydd & Walter 2002)

I Violence surrounding
cooperation aimed at
undermining talks

I Excluded factions aim
to spoil peace

I Occurs during talks
and implementation

I Short term

Bueno de Mesquita
(2005)

I Moderates are pulled
into cooperation
leaving extremists in
opposition

I Increased militancy
leads to higher
violence

I Sustained increase in
violence following
negotiations

I Long term

Data: Dyadic event counts via GDELT (Leetaru and Schrodt 2013),
compiled quarterly, 1971-2012.
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Cooperation Data

Event Direction Mean SD Min Max
ISR → PAL 28.7 16.5 0 96Provide Aid
PAL → ISR 17.5 11.2 0 59
ISR → PAL 76.4 33.4 33 206Appeal for Cooperation
PAL → ISR 77.7 30.2 9 184
ISR → PAL 60.1 25.1 15 163Cooperative Action
PAL → ISR 72.1 28.4 0 182
ISR → PAL 143.1 56.4 35 269Express Intent to Cooperate
PAL → ISR 137.4 50.3 18 277
ISR → PAL 42.4 20.4 0 102Optimistic Statement
PAL → ISR 42.7 18.8 0 105
ISR → PAL 13.2 13.9 0 86Release Prisoners
PAL → ISR 24.7 20.1 0 111
ISR → PAL 44.2 19.9 0 103Concessions
PAL → ISR 33.9 18.9 0 95

Formal Agreement 20.5 19.9 1 104
Meet 115.1 47.9 31 260

Negotiate 58.9 32.0 7 152



Conflict Data

Event Direction Mean SD Min Max

Administrative Sanctions
ISR → PAL 17.8 10.6 0 61
PAL → ISR 33.0 16.9 0 94
ISR → PAL 9.9 10.7 0 66Assassination Attempts
PAL → ISR 10.0 11.0 0 53

Coercion
ISR → PAL 3.0 3.8 0 23
PAL → ISR 0.8 1.7 0 10
ISR → PAL 48.5 22.6 0 131Denounce
PAL → ISR 52.1 25.0 0 194

Deportation
ISR → PAL 6.6 7.7 2 55
PAL → ISR 5.1 6.0 1 39
ISR → PAL 39.6 27.0 0 137Detention
PAL → ISR 50.1 25.2 0 167

Embargo
ISR → PAL 4.0 6.4 0 34
PAL → ISR 4.6 5.5 0 25
ISR → PAL 4.2 5.0 1 25Mass Killing
PAL → ISR 5.1 6.7 0 28



Conflict Data

Event Direction Mean SD Min Max

Conventional Military Action
ISR → PAL 135.6 69.5 38 446
PAL → ISR 132.6 62.5 39 396
ISR → PAL 37.3 21.6 0 104Occupation
PAL → ISR 18.1 14.4 0 110

Action Against Property
ISR → PAL 21.7 16.6 0 78
PAL → ISR 10.9 9.5 0 50
ISR → PAL 7.0 7.9 0 57Restrict Movement
PAL → ISR 9.9 10.4 0 74

Threaten
ISR → PAL 62.3 24.2 7 144
PAL → ISR 61.3 24.4 0 119
ISR → PAL 53.3 27.9 0 175Unconventional Violence
PAL → ISR 60.6 26.8 0 142

Civil Unrest
ISR → PAL 22.0 15.7 0 86
PAL → ISR 30.8 22.3 1 141
ISR → PAL 1.7 2.7 0 14Violent Repression
PAL → ISR 3.7 4.8 0 29



Cooperation and Conflict Indices

−
3

−
2

−
1

0
1

2

Time

In
de

x 
Va

lu
e

−
3

−
2

−
1

0
1

2

Time

In
de

x 
Va

lu
e

1979 1983 1987 1991 1995 1999 2003 2007 2011

Cooperation
Conflict



U.S. Economic Performance Since 1978

What economic indicator is the best measure of the overall
performance of the economy?

Table: Indicators of U.S. Quarterly Economic Performance, 1978-2013.

Indicator Mean Best Worst

GDP Growth 2.71 16.7 (1978, Q2) -8.9 (2008, Q4)

Consumer Sentiment Index 85.3 110.1 (2000, Q1) 51.1 (1980, Q2)

S&P 500, % Change 2.20 20.2 (1982, Q4) -27.2 (2008, Q4)

Unemployment Rate 6.42 3.9 (2000, Q4) 10.7 (1982, Q4)

Housing Starts, % Change -0.18 31.5 (1980, Q3) -23.1 (2008, Q4)
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Captures the the recessions of the early 1980s, the stock market
crash of 1987, the recession of the early 1990s, the burst of the
“dot-com” bubble in the early 2000s, and the recession of 2008.
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