-
Download MMDeploy
git clone -b master git@github.com:open-mmlab/mmdeploy.git MMDeploy cd MMDeploy git submodule update --init --recursive
Note:
-
If fetching submodule fails, you could get submodule manually by following instructions:
git clone git@github.com:NVIDIA/cub.git third_party/cub cd third_party/cub git checkout c3cceac115 # go back to third_party directory and git clone pybind11 cd .. git clone git@github.com:pybind/pybind11.git pybind11 cd pybind11 git checkout 70a58c5
-
-
Install cmake
Install cmake>=3.14.0, you could refer to cmake website for more detailed info.
sudo apt-get install -y libssl-dev wget https://github.com/Kitware/CMake/releases/download/v3.20.0/cmake-3.20.0.tar.gz tar -zxvf cmake-3.20.0.tar.gz cd cmake-3.20.0 ./bootstrap make sudo make install
-
GCC 7+
MMDeploy requires compilers that support C++17.
# Add repository if ubuntu < 18.04 sudo add-apt-repository ppa:ubuntu-toolchain-r/test sudo apt-get install gcc-7 sudo apt-get install g++-7
-
Create a conda virtual environment and activate it
conda create -n mmdeploy python=3.7 -y conda activate mmdeploy
-
Install PyTorch>=1.8.0, following the official instructions
# CUDA 11.1 conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1 -c pytorch -c conda-forge
-
Install mmcv-full. Refer to the guide for details.
export cu_version=cu111 # cuda 11.1 export torch_version=torch1.8.0 pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/${cu_version}/${torch_version}/index.html
Build the inference engine extension libraries you need.
cd ${MMDEPLOY_DIR} # To mmdeploy root directory
pip install -e .
Note
- Some dependencies are optional. Simply running
pip install -e .
will only install the minimum runtime requirements. To use optional dependencies, install them manually withpip install -r requirements/optional.txt
or specify desired extras when callingpip
(e.g.pip install -e . [optional]
). Valid keys for the extras field are:all
,tests
,build
,optional
.
Readers can skip this chapter if you are only interested in model converter.
Currently, SDK is tested on Linux x86-64, more platforms will be added in the future. The following packages are required to build MMDeploy SDK.
Each package's installation command is given based on Ubuntu 18.04.
-
OpenCV 3+
sudo apt-get install libopencv-dev
-
spdlog 0.16+
sudo apt-get install libspdlog-dev
On Ubuntu 16.04, please use the following command
wget http://archive.ubuntu.com/ubuntu/pool/universe/s/spdlog/libspdlog-dev_0.16.3-1_amd64.deb sudo dpkg -i libspdlog-dev_0.16.3-1_amd64.deb
You can also build spdlog from its source to enjoy its latest features. But be sure to add
-fPIC
compilation flags at first. -
pplcv
A high-performance image processing library of openPPL supporting x86 and cuda platforms.
It is OPTIONAL which only be needed ifcuda
platform is required.git clone git@github.com:openppl-public/ppl.cv.git cd ppl.cv ./build.sh cuda
-
backend engines
SDK uses the same backends as model converter does. Please follow build backend guide to install your interested backend.
-
Turn on SDK build switch
-DMMDEPLOY_BUILD_SDK=ON
-
Enabling Devices
By default, only CPU device is included in the target devices. You can enable device support for other devices by passing a semicolon separated list of device names to
MMDEPLOY_TARGET_DEVICES
variable, e.g.-DMMDEPLOY_TARGET_DEVICES="cpu;cuda"
.
Currently, the following devices are supported.device name path setter Host cpu N/A CUDA cuda CUDA_TOOLKIT_ROOT_DIR & pplcv_DIR If you have multiple CUDA versions installed on your system, you will need to pass
CUDA_TOOLKIT_ROOT_DIR
to cmake to specify the version.
Meanwhile,pplcv_DIR
has to be provided in order to build image processing operators on cuda platform. -
Enabling inference engines
By default, no target inference engines are set, since it's highly dependent on the use case.
MMDEPLOY_TARGET_BACKENDS
must be set to a semicolon separated list of inference engine names, e.g.-DMMDEPLOY_TARGET_BACKENDS="trt;ort;pplnn;ncnn;openvino"
A path to the inference engine library is also needed. The following backends are currently supportedlibrary name path setter PPL.nn pplnn pplnn_DIR ncnn ncnn ncnn_DIR ONNXRuntime ort ONNXRUNTIME_DIR TensorRT trt TENSORRT_DIR & CUDNN_DIR OpenVINO openvino InferenceEngine_DIR -
Enabling codebase's postprocess components
MMDEPLOY_CODEBASES
MUST be specified by a semicolon separated list of codebase names. The currently supported codebases are 'mmcls', 'mmdet', 'mmedit', 'mmseg', 'mmocr'. Instead of listing them one by one inMMDEPLOY_CODEBASES
, user can also passall
to enable all of them, i.e.,-DMMDEPLOY_CODEBASES=all
-
Put it all together
The following is a recipe for building MMDeploy SDK with cpu device and ONNXRuntime support
mkdir build && cd build cmake .. \ -DMMDEPLOY_BUILD_SDK=ON \ -DCMAKE_CXX_COMPILER=g++-7 \ -DONNXRUNTIME_DIR=/path/to/onnxruntime \ -DMMDEPLOY_TARGET_DEVICES=cpu \ -DMMDEPLOY_TARGET_BACKENDS=ort \ -DMMDEPLOY_CODEBASES=all cmake --build . -- -j$(nproc) && cmake --install .
Here is another example to build MMDeploy SDK with cuda device and TensorRT backend
mkdir build && cd build cmake .. \ -DMMDEPLOY_BUILD_SDK=ON \ -DCMAKE_CXX_COMPILER=g++-7 \ -Dpplcv_DIR=/path/to/ppl.cv/install/lib/cmake/ppl \ -DTENSORRT_DIR=/path/to/tensorrt \ -DCUDNN_DIR=/path/to/cudnn \ -DMMDEPLOY_TARGET_DEVICES="cuda;cpu" \ -DMMDEPLOY_TARGET_BACKENDS=trt \ -DMMDEPLOY_CODEBASES=all cmake --build . -- -j$(nproc) && cmake --install .