forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 1
/
spaces-divisors.tex
1989 lines (1742 loc) · 72.1 KB
/
spaces-divisors.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Divisors on Algebraic Spaces}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we study divisors on algebraic spaces and related topics.
A basic reference for algebraic spaces is \cite{Kn}.
\section{Effective Cartier divisors}
\label{section-effective-Cartier-divisors}
\noindent
For some reason it seem convenient to define the notion of an effective
Cartier divisor before anything else. Note that in
Morphisms of Spaces, Section \ref{spaces-morphisms-section-closed-immersions}
we discussed the correspondence between closed subspaces and quasi-coherent
sheaves of ideals. Moreover, in
Properties of Spaces, Section
\ref{spaces-properties-section-properties-modules}, we discussed properties
of quasi-coherent modules, in particular ``locally generated by $1$ element''.
These references show that the following definition is
compatible with the definition for schemes.
\begin{definition}
\label{definition-effective-Cartier-divisor}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
\begin{enumerate}
\item A {\it locally principal closed subspace} of $X$ is a closed subspace
whose sheaf of ideals is locally generated by $1$ element.
\item An {\it effective Cartier divisor} on $X$ is a closed subspace
$D \subset X$ such that the ideal sheaf $\mathcal{I}_D \subset \mathcal{O}_X$
is an invertible $\mathcal{O}_X$-module.
\end{enumerate}
\end{definition}
\noindent
Thus an effective Cartier divisor is a locally principal closed subspace,
but the converse is not always true. Effective Cartier divisors are closed
subspaces of pure codimension $1$ in the strongest possible sense. Namely
they are locally cut out by a single element which is not a zerodivisor.
In particular they are nowhere dense.
\begin{lemma}
\label{lemma-characterize-effective-Cartier-divisor}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $D \subset X$ be a closed subspace.
The following are equivalent:
\begin{enumerate}
\item The subspace $D$ is an effective Cartier divisor on $X$.
\item For some scheme $U$ and surjective \'etale morphism $U \to X$
the inverse image $D \times_X U$ is an effective Cartier divisor on $U$.
\item For every scheme $U$ and every \'etale morphism $U \to X$
the inverse image $D \times_X U$ is an effective Cartier divisor on $U$.
\item For every $x \in |D|$ there exists an \'etale morphism
$(U, u) \to (X, x)$ of pointed algebraic spaces such that $U = \Spec(A)$
and $D \times_X U = \Spec(A/(f))$ with $f \in A$ not a zerodivisor.
\end{enumerate}
\end{lemma}
\begin{proof}
The equivalence of (1) -- (3) follows from
Definition \ref{definition-effective-Cartier-divisor}
and the references preceding it.
Assume (1) and let $x \in |D|$. Choose a scheme $W$ and a
surjective \'etale morphism
$W \to X$. Choose $w \in D \times_X W$ mapping to $x$.
By (3) $D \times_X W$ is an effective Cartier
divisor on $W$. Hence we can find affine \'etale neighbourhood $U$
by choosing an affine open neighbourhood of $w$ in $W$ as in
Divisors, Lemma \ref{divisors-lemma-characterize-effective-Cartier-divisor}.
\medskip\noindent
Assume (4). Then we see that $\mathcal{I}_D|_U$ is invertible by
Divisors, Lemma \ref{divisors-lemma-characterize-effective-Cartier-divisor}.
Since we can find an \'etale covering of $X$ by the collection of
all such $U$ and $X \setminus D$, we conclude that
$\mathcal{I}_D$ is an invertible $\mathcal{O}_X$-module.
\end{proof}
\begin{lemma}
\label{lemma-complement-locally-principal-closed-subscheme}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $Z \subset X$ be a locally principal closed
subspace. Let $U = X \setminus Z$. Then $U \to X$ is an affine morphism.
\end{lemma}
\begin{proof}
The question is \'etale local on $X$, see
Morphisms of Spaces, Lemmas \ref{spaces-morphisms-lemma-affine-local}
and
Lemma \ref{lemma-characterize-effective-Cartier-divisor}.
Thus this follows from the case of schemes which is
Divisors, Lemma
\ref{divisors-lemma-complement-locally-principal-closed-subscheme}.
\end{proof}
\begin{lemma}
\label{lemma-complement-effective-Cartier-divisor}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $D \subset X$ be an effective Cartier divisor.
Let $U = X \setminus D$. Then $U \to X$ is an affine morphism and $U$
is scheme theoretically dense in $X$.
\end{lemma}
\begin{proof}
Affineness is Lemma \ref{lemma-complement-locally-principal-closed-subscheme}.
The density question is \'etale local on $X$ by
Morphisms of Spaces, Definition
\ref{spaces-morphisms-definition-scheme-theoretically-dense}.
Thus this follows from the case of schemes which is
Divisors, Lemma
\ref{divisors-lemma-complement-effective-Cartier-divisor}.
\end{proof}
\begin{lemma}
\label{lemma-effective-Cartier-makes-dimension-drop}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $D \subset X$ be an effective Cartier divisor.
Let $x \in |D|$.
If $\dim_x(X) < \infty$, then $\dim_x(D) < \dim_x(X)$.
\end{lemma}
\begin{proof}
Both the definition of an effective Cartier divisor and of the
dimension of an an algebraic space at a point
(Properties of Spaces, Definition
\ref{spaces-properties-definition-dimension-at-point})
are \'etale local. Hence this lemma follows from the case of schemes
which is
Divisors, Lemma \ref{divisors-lemma-effective-Cartier-makes-dimension-drop}.
\end{proof}
\begin{definition}
\label{definition-sum-effective-Cartier-divisors}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Given effective Cartier divisors
$D_1$, $D_2$ on $X$ we set $D = D_1 + D_2$ equal to the
closed subspace of $X$ corresponding to the quasi-coherent
sheaf of ideals
$\mathcal{I}_{D_1}\mathcal{I}_{D_2} \subset \mathcal{O}_S$.
We call this the {\it sum of the effective Cartier divisors
$D_1$ and $D_2$}.
\end{definition}
\noindent
It is clear that we may define the sum $\sum n_iD_i$ given
finitely many effective Cartier divisors $D_i$ on $X$
and nonnegative integers $n_i$.
\begin{lemma}
\label{lemma-sum-effective-Cartier-divisors}
The sum of two effective Cartier divisors is an effective
Cartier divisor.
\end{lemma}
\begin{proof}
Omitted. \'Etale locally this reduces to the following simple
algebra fact: if $f_1, f_2 \in A$ are nonzerodivisors of a ring $A$, then
$f_1f_2 \in A$ is a nonzerodivisor.
\end{proof}
\begin{lemma}
\label{lemma-sum-closed-subschemes-effective-Cartier}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $Z, Y$ be two closed subspaces of $X$
with ideal sheaves $\mathcal{I}$ and $\mathcal{J}$. If $\mathcal{I}\mathcal{J}$
defines an effective Cartier divisor $D \subset X$, then $Z$ and $Y$
are effective Cartier divisors and $D = Z + Y$.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-characterize-effective-Cartier-divisor}
this reduces to the case of schemes which is
Divisors, Lemma \ref{divisors-lemma-sum-closed-subschemes-effective-Cartier}.
\end{proof}
\noindent
Recall that we have defined the inverse image of a closed subspace
under any morphism of algebraic spaces in
Morphisms of Spaces, Definition
\ref{spaces-morphisms-definition-inverse-image-closed-subspace}.
\begin{lemma}
\label{lemma-pullback-locally-principal}
Let $S$ be a scheme.
Let $f : X' \to X$ be a morphism of algebraic spaces over $S$.
Let $Z \subset X$ be a locally principal closed subspace.
Then the inverse image $f^{-1}(Z)$ is a locally principal closed
subspace of $X'$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{definition}
\label{definition-pullback-effective-Cartier-divisor}
Let $S$ be a scheme.
Let $f : X' \to X$ be a morphism of algebraic spaces over $S$.
Let $D \subset X$
be an effective Cartier divisor. We say the {\it pullback of
$D$ by $f$ is defined} if the closed subspace $f^{-1}(D) \subset X'$
is an effective Cartier divisor. In this case we denote it either
$f^*D$ or $f^{-1}(D)$ and we call it the
{\it pullback of the effective Cartier divisor}.
\end{definition}
\noindent
The condition that $f^{-1}(D)$ is an effective Cartier divisor
is often satisfied in practice.
\begin{lemma}
\label{lemma-pullback-effective-Cartier-defined}
Let $S$ be a scheme.
Let $f : X \to Y$ be a morphism of algebraic spaces over $S$.
Let $D \subset Y$ be an effective Cartier divisor.
The pullback of $D$ by $f$ is defined in each of the following cases:
\begin{enumerate}
\item $f$ is flat, and
\item add more here as needed.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-pullback-effective-Cartier-divisors-additive}
Let $S$ be a scheme.
Let $f : X' \to X$ be a morphism of algebraic spaces over $S$.
Let $D_1$, $D_2$ be effective Cartier divisors on $X$.
If the pullbacks of $D_1$ and $D_2$ are defined then the
pullback of $D = D_1 + D_2$ is defined and
$f^*D = f^*D_1 + f^*D_2$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{definition}
\label{definition-invertible-sheaf-effective-Cartier-divisor}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$
and let $D \subset X$ be an effective Cartier divisor.
The {\it invertible sheaf $\mathcal{O}_X(D)$ associated to $D$}
is given by
$$
\mathcal{O}_X(D) :=
\SheafHom_{\mathcal{O}_X}(\mathcal{I}_D, \mathcal{O}_X) =
\mathcal{I}_D^{\otimes -1}.
$$
The canonical section, usually denoted $1$ or $1_D$, is the
global section of $\mathcal{O}_X(D)$ corresponding to
the inclusion mapping $\mathcal{I}_D \to \mathcal{O}_X$.
\end{definition}
\begin{lemma}
\label{lemma-conormal-effective-Cartier-divisor}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $D \subset X$ be an effective Cartier divisor.
Then for the conormal sheaf we have $\mathcal{C}_{D/X} = \mathcal{I}_D|D =
\mathcal{O}_X(D)^{\otimes -1}|_D$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-invertible-sheaf-sum-effective-Cartier-divisors}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $D_1$, $D_2$ be effective Cartier divisors on $X$.
Let $D = D_1 + D_2$.
Then there is a unique isomorphism
$$
\mathcal{O}_X(D_1) \otimes_{\mathcal{O}_X} \mathcal{O}_X(D_2)
\longrightarrow
\mathcal{O}_X(D)
$$
which maps $1_{D_1} \otimes 1_{D_2}$ to $1_D$.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{definition}
\label{definition-regular-section}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $\mathcal{L}$ be an invertible sheaf on $X$.
A global section $s \in \Gamma(X, \mathcal{L})$ is called a
{\it regular section} if the map $\mathcal{O}_X \to \mathcal{L}$,
$f \mapsto fs$ is injective.
\end{definition}
\begin{lemma}
\label{lemma-regular-section-structure-sheaf}
Let $S$ be a scheme.
Let $X$ be an algebraic space over $S$.
Let $f \in \Gamma(X, \mathcal{O}_X)$.
The following are equivalent:
\begin{enumerate}
\item $f$ is a regular section, and
\item for any $x \in X$ the image $f \in \mathcal{O}_{X, \overline{x}}$
is not a zerodivisor.
\item for any affine $U = \Spec(A)$ \'etale over $X$
the restriction $f|_U$ is a nonzerodivisor of $A$, and
\item there exists a scheme $U$ and a surjective \'etale morphism
$U \to X$ such that $f|_U$ is a regular section of $\mathcal{O}_U$.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\noindent
Note that a global section $s$ of an invertible $\mathcal{O}_X$-module
$\mathcal{L}$ may be seen as an $\mathcal{O}_X$-module map
$s : \mathcal{O}_X \to \mathcal{L}$. Its dual is therefore a
map $s : \mathcal{L}^{\otimes -1} \to \mathcal{O}_X$.
(See Modules on Sites, Lemma \ref{sites-modules-lemma-constructions-invertible}
for the dual invertible sheaf.)
\begin{definition}
\label{definition-zero-scheme-s}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $\mathcal{L}$ be an invertible sheaf.
Let $s \in \Gamma(X, \mathcal{L})$.
The {\it zero scheme} of $s$ is the closed subspace $Z(s) \subset X$
defined by the quasi-coherent sheaf of ideals
$\mathcal{I} \subset \mathcal{O}_X$ which is the image of the
map $s : \mathcal{L}^{\otimes -1} \to \mathcal{O}_X$.
\end{definition}
\begin{lemma}
\label{lemma-zero-scheme}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module.
Let $s \in \Gamma(X, \mathcal{L})$.
\begin{enumerate}
\item Consider closed immersions $i : Z \to X$ such that
$i^*s \in \Gamma(Z, i^*\mathcal{L}))$ is zero
ordered by inclusion. The zero scheme $Z(s)$ is the
maximal element of this ordered set.
\item For any morphism of algebraic spaces $f : Y \to X$ over $S$
we have $f^*s = 0$ in $\Gamma(Y, f^*\mathcal{L})$ if and only if
$f$ factors through $Z(s)$.
\item The zero scheme $Z(s)$ is a locally principal closed subspace of $X$.
\item The zero scheme $Z(s)$ is an effective Cartier divisor on $X$
if and only if $s$ is a regular section of $\mathcal{L}$.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-characterize-OD}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
\begin{enumerate}
\item If $D \subset X$ is an effective Cartier divisor, then
the canonical section $1_D$ of $\mathcal{O}_X(D)$ is regular.
\item Conversely, if $s$ is a regular section of the invertible
sheaf $\mathcal{L}$, then there exists a unique effective
Cartier divisor $D = Z(s) \subset X$ and a unique isomorphism
$\mathcal{O}_X(D) \to \mathcal{L}$ which maps $1_D$ to $s$.
\end{enumerate}
The constructions
$D \mapsto (\mathcal{O}_X(D), 1_D)$ and $(\mathcal{L}, s) \mapsto Z(s)$
give mutually inverse maps
$$
\left\{
\begin{matrix}
\text{effective Cartier divisors on }X
\end{matrix}
\right\}
\leftrightarrow
\left\{
\begin{matrix}
\text{pairs }(\mathcal{L}, s)\text{ consisting of an invertible}\\
\mathcal{O}_X\text{-module and a regular global section}
\end{matrix}
\right\}
$$
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-effective-Cartier-divisor-Sk}
Let $S$ be a scheme and let $X$ be a locally Noetherian algebraic space
over $S$. Let $D \subset X$ be an effective Cartier divisor. If $X$ is
$(S_k)$, then $D$ is $(S_{k - 1})$.
\end{lemma}
\begin{proof}
By our definition of the property $(S_k)$ for algebraic spaces
(Properties of Spaces, Section
\ref{spaces-properties-section-types-properties})
and
Lemma \ref{lemma-characterize-effective-Cartier-divisor}
this follows from the case of schemes
(Divisors, Lemma \ref{divisors-lemma-effective-Cartier-divisor-Sk}).
\end{proof}
\begin{lemma}
\label{lemma-normal-effective-Cartier-divisor-S1}
Let $S$ be a scheme and let $X$ be a locally Noetherian normal
algebraic space over $S$. Let $D \subset X$ be an
effective Cartier divisor. Then $D$ is $(S_1)$.
\end{lemma}
\begin{proof}
By our definition of normality for algebraic spaces
(Properties of Spaces, Section
\ref{spaces-properties-section-types-properties})
and
Lemma \ref{lemma-characterize-effective-Cartier-divisor}
this follows from the case of schemes
(Divisors, Lemma \ref{divisors-lemma-normal-effective-Cartier-divisor-S1}).
\end{proof}
\section{Relative Proj}
\label{section-relative-proj}
\noindent
This section revisits the construction of the relative proj
in the setting of algebraic spaces. The material in this section
corresponds to the material in Constructions, Section
\ref{constructions-section-relative-proj}
and Divisors, Section \ref{divisors-section-relative-proj}
in the case of schemes.
\begin{situation}
\label{situation-relative-proj}
Here $S$ is a scheme, $X$ is an algebraic space over $S$, and
$\mathcal{A}$ is a quasi-coherent graded $\mathcal{O}_X$-algebra.
\end{situation}
\noindent
In Situation \ref{situation-relative-proj} we are going to define
a functor $F : (\Sch/S)_{fppf}^{opp} \to \textit{Sets}$ which will
turn out to be an algebraic space. We will follow (mutatis mutandis)
the procedure of
Constructions, Section \ref{constructions-section-relative-proj}.
First, given a scheme $T$ over $S$ we define a
{\it quadruple over $T$} to be a system
$(d, f : T \to S, \mathcal{L}, \psi)$
\begin{enumerate}
\item $d \geq 1$ is an integer,
\item $f : T \to X$ is a morphism over $S$,
\item $\mathcal{L}$ is an invertible $\mathcal{O}_T$-module, and
\item
$\psi : f^*\mathcal{A}^{(d)} \to \bigoplus_{n \geq 0}\mathcal{L}^{\otimes n}$
is a homomorphism of graded $\mathcal{O}_T$-algebras
such that $f^*\mathcal{A}_d \to \mathcal{L}$ is surjective.
\end{enumerate}
We say two quadruples $(d, f, \mathcal{L}, \psi)$ and
$(d', f', \mathcal{L}', \psi')$ are {\it equivalent}\footnote{This
definition is motivated by
Constructions, Lemma \ref{constructions-lemma-equivalent-relative}.
The advantage of choosing this one is that it clearly defines
an equivalence relation.}
if and only if
we have $f = f'$ and for some positive integer $m = ad = a'd'$
there exists an isomorphism
$\beta : \mathcal{L}^{\otimes a} \to (\mathcal{L}')^{\otimes a'}$
with the property that $\beta \circ \psi|_{f^*\mathcal{A}^{(m)}}$
and $\psi'|_{f^*\mathcal{A}^{(m)}}$ agree
as graded ring maps
$f^*\mathcal{A}^{(m)} \to \bigoplus_{n \geq 0} (\mathcal{L}')^{\otimes mn}$.
Given a quadruple $(d, f, \mathcal{L}, \psi)$
and a morphism $h : T' \to T$ we have the pullback
$(d, f \circ h, h^*\mathcal{L}, h^*\psi)$. Pullback preserves
the equivalence relation. Finally, for a {\it quasi-compact} scheme $T$
over $S$ we set
$$
F(T) = \text{the set of equivalence classes of quadruples over }T
$$
and for an arbitrary scheme $T$ over $S$ we set
$$
F(T)
=
\lim_{V \subset T\text{ quasi-compact open}} F(V).
$$
In other words, an element $\xi$ of $F(T)$ corresponds to a compatible
system of choices of elements $\xi_V \in F(V)$ where $V$ ranges over the
quasi-compact opens of $T$. Thus we have defined our functor
\begin{equation}
\label{equation-proj}
F : \Sch^{opp} \longrightarrow \textit{Sets}
\end{equation}
There is a morphism $F \to X$ of functors sending the quadruple
$(d, f, \mathcal{L}, \psi)$ to $f$.
\begin{lemma}
\label{lemma-relative-proj}
In Situation \ref{situation-relative-proj}. The functor $F$ above is an
algebraic space. For any morphism $g : Z \to X$ where $Z$ is a scheme
there is a canonical isomorphism
$\underline{\text{Proj}}_Z(g^*\mathcal{A}) = Z \times_X F$
compatible with further base change.
\end{lemma}
\begin{proof}
It suffices to prove the second assertion, see
Spaces, Lemma \ref{spaces-lemma-representable-over-space}.
Let $g : Z \to X$ be a morphism where $Z$ is a scheme.
Let $F'$ be the functor of quadruples associated
to the graded quasi-coherent $\mathcal{O}_Z$-algebra $g^*\mathcal{A}$.
Then there is a canonical isomorphism $F' = Z \times_X F$, sending
a quadruple $(d, f : T \to Z, \mathcal{L}, \psi)$ for $F'$
to $(d, g \circ f, \mathcal{L}, \psi)$ (details omitted, see proof of
Constructions, Lemma \ref{constructions-lemma-proj-base-change}).
By Constructions, Lemmas
\ref{constructions-lemma-equivalent-relative},
\ref{constructions-lemma-relative-proj}, and
\ref{constructions-lemma-glueing-gives-functor-proj} and
Definition \ref{constructions-definition-relative-proj}
we see that $F'$ is representable by
$\underline{\text{Proj}}_Z(g^*\mathcal{A})$.
\end{proof}
\noindent
The lemma above tells us the following definition makes sense.
\begin{definition}
\label{definition-relative-proj}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $\mathcal{A}$ be a quasi-coherent sheaf of
graded $\mathcal{O}_X$-algebras. The
{\it relative homogeneous spectrum of $\mathcal{A}$ over $X$},
or the {\it homogeneous spectrum of $\mathcal{A}$ over $X$}, or the
{\it relative Proj of $\mathcal{A}$ over $X$} is the algebraic space
$F$ over $X$ of Lemma \ref{lemma-relative-proj}.
We denote it $\pi : \underline{\text{Proj}}_X(\mathcal{A}) \to X$.
\end{definition}
\noindent
In particular the structure morphism of the relative Proj is representable
by construction. We can also think about the relative Proj via glueing. Let
$\varphi : U \to X$ be a surjective \'etale morphism, where $U$ is a scheme.
Set $R = U \times_X U$ with projection morphisms $s, t : R \to U$.
By Lemma \ref{lemma-relative-proj} there exists a canonical isomorphism
$$
\gamma :
\underline{\text{Proj}}_U(\varphi^*\mathcal{A})
\longrightarrow
\underline{\text{Proj}}_X(\mathcal{A}) \times_X U
$$
over $U$. Let $\alpha : t^*\varphi^*\mathcal{A} \to s^*\varphi^*\mathcal{A}$
be the canonical isomorphism of
Properties of Spaces, Proposition
\ref{spaces-properties-proposition-quasi-coherent}.
Then the diagram
$$
\xymatrix{
&
\underline{\text{Proj}}_U(\varphi^*\mathcal{A}) \times_{U, s} R
\ar@{=}[r] &
\underline{\text{Proj}}_R(s^*\varphi^*\mathcal{A})
\ar[dd]_{\text{induced by }\alpha} \\
\underline{\text{Proj}}_X(\mathcal{A}) \times_X R
\ar[ru]_{s^*\gamma} \ar[rd]^{t^*\gamma} \\
&
\underline{\text{Proj}}_U(\varphi^*\mathcal{A}) \times_{U, t} R
\ar@{=}[r] &
\underline{\text{Proj}}_R(t^*\varphi^*\mathcal{A})
}
$$
is commutative (the equal signs come from
Constructions, Lemma \ref{constructions-lemma-relative-proj-base-change}).
Thus, if we denote $\mathcal{A}_U$, $\mathcal{A}_R$
the pullback of $\mathcal{A}$ to $U$, $R$, then
$P = \underline{\text{Proj}}_X(\mathcal{A})$ has an \'etale covering
by the scheme $P_U = \underline{\text{Proj}}_U(\mathcal{A}_U)$ and
$P_U \times_P P_U$ is equal to
$P_R = \underline{\text{Proj}}_R(\mathcal{A}_R)$.
Using these remarks we can argue in the usual fashion using \'etale
localization to transfer results on the relative proj from the case
of schemes to the case of algebraic spaces.
\begin{lemma}
\label{lemma-twists-of-structure-sheaf}
In Situation \ref{situation-relative-proj}. The relative Proj comes
equipped with a quasi-coherent sheaf of $\mathbf{Z}$-graded algebras
$\bigoplus_{n \in \mathbf{Z}}
\mathcal{O}_{\underline{\text{Proj}}_X(\mathcal{A})}(n)$
and a canonical homomorphism of graded algebras
$$
\psi :
\pi^*\mathcal{A}
\longrightarrow
\bigoplus\nolimits_{n \geq 0}
\mathcal{O}_{\underline{\text{Proj}}_X(\mathcal{A})}(n)
$$
whose base change to any scheme over $X$ agrees with
Constructions, Lemma \ref{constructions-lemma-glue-relative-proj-twists}.
\end{lemma}
\begin{proof}
As in the discussion following Definition \ref{definition-relative-proj}
choose a scheme $U$ and a surjective \'etale morphism
$U \to X$, set $R = U \times_X U$ with projections $s, t : R \to U$,
$\mathcal{A}_U = \mathcal{A}|_U$, $\mathcal{A}_R = \mathcal{A}|_R$,
and $\pi : P = \underline{\text{Proj}}_X(\mathcal{A}) \to X$,
$\pi_U : P_U = \underline{\text{Proj}}_U(\mathcal{A}_U)$ and
$\pi_R : P_R = \underline{\text{Proj}}_U(\mathcal{A}_R)$.
By the
Constructions, Lemma \ref{constructions-lemma-glue-relative-proj-twists}
we have a quasi-coherent sheaf of $\mathbf{Z}$-graded
$\mathcal{O}_{P_U}$-algebras
$\bigoplus_{n \in \mathbf{Z}} \mathcal{O}_{P_U}(n)$
and a canonical map
$\psi_U : \pi_U^*\mathcal{A}_U \to \bigoplus_{n \geq 0} \mathcal{O}_{P_U}(n)$
and similarly for $P_R$. By
Constructions, Lemma \ref{constructions-lemma-relative-proj-base-change}
the pullback of $\mathcal{O}_{P_U}(n)$ and $\psi_U$ by either projection
$P_R \to P_U$ is equal to $\mathcal{O}_{P_R}(n)$ and $\psi_R$.
By Properties of Spaces, Proposition
\ref{spaces-properties-proposition-quasi-coherent}
we obtain $\mathcal{O}_{P}(n)$ and $\psi$.
We omit the verification of compatibility with pullback to
arbitrary schemes over $X$.
\end{proof}
\noindent
Having constructed the relative Proj we turn to some basic
properties.
\begin{lemma}
\label{lemma-relative-proj-base-change}
Let $S$ be a scheme. Let $g : X' \to X$ be a morphism of algebraic spaces
over $S$ and let $\mathcal{A}$ be a quasi-coherent sheaf
of graded $\mathcal{O}_X$-algebras. Then there is a canonical isomorphism
$$
r :
\underline{\text{Proj}}_{X'}(g^*\mathcal{A})
\longrightarrow
X' \times_X \underline{\text{Proj}}_X(\mathcal{A})
$$
as well as a corresponding isomorphism
$$
\theta :
r^*\text{pr}_2^*\left(\bigoplus\nolimits_{d \in \mathbf{Z}}
\mathcal{O}_{\underline{\text{Proj}}_X(\mathcal{A})}(d)\right)
\longrightarrow
\bigoplus\nolimits_{d \in \mathbf{Z}}
\mathcal{O}_{\underline{\text{Proj}}_{X'}(g^*\mathcal{A})}(d)
$$
of $\mathbf{Z}$-graded
$\mathcal{O}_{\underline{\text{Proj}}_{X'}(g^*\mathcal{A})}$-algebras.
\end{lemma}
\begin{proof}
Let $F$ be the functor (\ref{equation-proj}) and let $F'$ be the
corresponding functor defined using $g^*\mathcal{A}$ on $X'$.
We claim there is a canonical isomorphism $r : F' \to X' \times_X F$
of functors (and of course $r$ is the isomorphism of the lemma).
It suffices to construct the bijection
$r : F'(T) \to X'(T) \times_{X(T)} F(T)$ for quasi-compact schemes $T$
over $S$. First, if $\xi = (d', f', \mathcal{L}', \psi')$ is a
quadruple over $T$ for $F'$, then we can set
$r(\xi) = (f', (d', g \circ f', \mathcal{L}', \psi'))$. This makes sense
as $(g \circ f')^*\mathcal{A}^{(d)} = (f')^*(g^*\mathcal{A})^{(d)}$.
The inverse map sends the pair $(f', (d, f, \mathcal{L}, \psi))$
to the quadruple $(d, f', \mathcal{L}, \psi)$. We omit the proof
of the final assertion (hint: reduce to the case of schemes by \'etale
localization and apply Constructions, Lemma
\ref{constructions-lemma-relative-proj-base-change}).
\end{proof}
\begin{lemma}
\label{lemma-relative-proj-separated}
In Situation \ref{situation-relative-proj} the morphism
$\pi : \underline{\text{Proj}}_X(\mathcal{A}) \to X$
is separated.
\end{lemma}
\begin{proof}
By Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-separated-local}
and the construction of the relative Proj this follows from the
case of schemes which is
Constructions, Lemma \ref{constructions-lemma-relative-proj-separated}.
\end{proof}
\begin{lemma}
\label{lemma-relative-proj-quasi-compact}
In Situation \ref{situation-relative-proj}. If one of the following holds
\begin{enumerate}
\item $\mathcal{A}$ is of finite type as a sheaf of
$\mathcal{A}_0$-algebras,
\item $\mathcal{A}$ is generated by $\mathcal{A}_1$ as an
$\mathcal{A}_0$-algebra and $\mathcal{A}_1$ is a finite type
$\mathcal{A}_0$-module,
\item there exists a finite type quasi-coherent $\mathcal{A}_0$-submodule
$\mathcal{F} \subset \mathcal{A}_{+}$ such that
$\mathcal{A}_{+}/\mathcal{F}\mathcal{A}$ is a locally nilpotent
sheaf of ideals of $\mathcal{A}/\mathcal{F}\mathcal{A}$,
\end{enumerate}
then $\pi : \underline{\text{Proj}}_X(\mathcal{A}) \to X$ is quasi-compact.
\end{lemma}
\begin{proof}
By Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-quasi-compact-local}
and the construction of the relative Proj this follows from the
case of schemes which is
Divisors, Lemma \ref{divisors-lemma-relative-proj-quasi-compact}.
\end{proof}
\begin{lemma}
\label{lemma-relative-proj-finite-type}
In Situation \ref{situation-relative-proj}.
If $\mathcal{A}$ is of finite type as a sheaf of
$\mathcal{O}_X$-algebras, then
$\pi : \underline{\text{Proj}}_X(\mathcal{A}) \to X$ is of finite type.
\end{lemma}
\begin{proof}
By Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-finite-type-local}
and the construction of the relative Proj this follows from the
case of schemes which is
Divisors, Lemma \ref{divisors-lemma-relative-proj-finite-type}.
\end{proof}
\begin{lemma}
\label{lemma-relative-proj-universally-closed}
In Situation \ref{situation-relative-proj}. If
$\mathcal{O}_X \to \mathcal{A}_0$
is an integral algebra map\footnote{In other words, the integral
closure of $\mathcal{O}_X$ in $\mathcal{A}_0$, see
Morphisms of Spaces, Definition
\ref{spaces-morphisms-definition-integral-closure}, equals
$\mathcal{A}_0$.} and $\mathcal{A}$ is of finite type as an
$\mathcal{A}_0$-algebra, then
$\pi : \underline{\text{Proj}}_X(\mathcal{A}) \to X$ is universally closed.
\end{lemma}
\begin{proof}
By Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-universally-closed-local}
and the construction of the relative Proj this follows from the
case of schemes which is
Divisors, Lemma \ref{divisors-lemma-relative-proj-universally-closed}.
\end{proof}
\begin{lemma}
\label{lemma-relative-proj-proper}
In Situation \ref{situation-relative-proj}.
The following conditions are equivalent
\begin{enumerate}
\item $\mathcal{A}_0$ is a finite type $\mathcal{O}_X$-module
and $\mathcal{A}$ is of finite type as an $\mathcal{A}_0$-algebra,
\item $\mathcal{A}_0$ is a finite type $\mathcal{O}_X$-module
and $\mathcal{A}$ is of finite type as an $\mathcal{O}_X$-algebra.
\end{enumerate}
If these conditions hold, then
$\pi : \underline{\text{Proj}}_X(\mathcal{A}) \to X$
is proper.
\end{lemma}
\begin{proof}
By Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-proper-local}
and the construction of the relative Proj this follows from the
case of schemes which is
Divisors, Lemma \ref{divisors-lemma-relative-proj-universally-closed}.
\end{proof}
\begin{lemma}
\label{lemma-relative-proj-generated-in-degree-1}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $\mathcal{A}$ be a quasi-coherent sheaf of graded $\mathcal{O}_X$-modules
generated as an $\mathcal{A}_0$-algebra by $\mathcal{A}_1$.
With $P = \underline{\text{Proj}}_X(\mathcal{A})$ we have
\begin{enumerate}
\item $P$ represents the functor $F_1$ which associates to
$T$ over $S$ the set of isomorphism classes of
triples $(f, \mathcal{L}, \psi)$, where $f : T \to X$ is a morphism
over $S$, $\mathcal{L}$ is an invertible $\mathcal{O}_T$-module, and
$\psi : f^*\mathcal{A} \to \bigoplus_{n \geq 0} \mathcal{L}^{\otimes n}$
is a map of graded $\mathcal{O}_T$-algebras inducing a surjection
$f^*\mathcal{A}_1 \to \mathcal{L}$,
\item the canonical map $\pi^*\mathcal{A}_1 \to \mathcal{O}_P(1)$ is
surjective, and
\item each $\mathcal{O}_P(n)$ is invertible
and the multiplication maps induce isomorphisms
$\mathcal{O}_P(n) \otimes_{\mathcal{O}_P} \mathcal{O}_P(m) =
\mathcal{O}_P(n + m)$.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
See Constructions, Lemma \ref{constructions-lemma-apply-relative}
for the case of schemes.
\end{proof}
\section{Functoriality of relative proj}
\label{section-functoriality-relative-proj}
\noindent
This section is the analogue of
Constructions, Section \ref{constructions-section-functoriality-relative-proj}.
\begin{lemma}
\label{lemma-morphism-relative-proj}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $\psi : \mathcal{A} \to \mathcal{B}$ be a map of
quasi-coherent graded $\mathcal{O}_X$-algebras. Set
$P = \underline{\text{Proj}}_X(\mathcal{A}) \to X$ and
$Q = \underline{\text{Proj}}_X(\mathcal{B}) \to X$.
There is a canonical open subspace
$U(\psi) \subset Q$ and a canonical morphism of
algebraic spaces
$$
r_\psi :
U(\psi)
\longrightarrow
P
$$
over $X$ and a map of $\mathbf{Z}$-graded $\mathcal{O}_{U(\psi)}$-algebras
$$
\theta = \theta_\psi :
r_\psi^*\left(
\bigoplus\nolimits_{d \in \mathbf{Z}} \mathcal{O}_P(d)
\right)
\longrightarrow
\bigoplus\nolimits_{d \in \mathbf{Z}} \mathcal{O}_{U(\psi)}(d).
$$
The triple $(U(\psi), r_\psi, \theta)$ is characterized by the property
that for any scheme $W$ \'etale over $X$ the triple
$$
(U(\psi) \times_X W,\quad
r_\psi|_{U(\psi) \times_X W} : U(\psi) \times_X W \to P \times_X W,\quad
\theta|_{U(\psi) \times_X W})
$$
is equal to the triple associated to $\psi : \mathcal{A}|_W \to \mathcal{B}|_W$
of Constructions, Lemma \ref{constructions-lemma-morphism-relative-proj}.
\end{lemma}
\begin{proof}
This lemma follows from \'etale localization and the case of schemes, see
discussion following
Definition \ref{definition-relative-proj}. Details omitted.
\end{proof}
\begin{lemma}
\label{lemma-morphism-relative-proj-transitive}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $\mathcal{A}$, $\mathcal{B}$, and $\mathcal{C}$ be
quasi-coherent graded $\mathcal{O}_X$-algebras.
Set $P = \underline{\text{Proj}}_X(\mathcal{A})$,
$Q = \underline{\text{Proj}}_X(\mathcal{B})$ and
$R = \underline{\text{Proj}}_X(\mathcal{C})$.
Let $\varphi : \mathcal{A} \to \mathcal{B}$,
$\psi : \mathcal{B} \to \mathcal{C}$ be graded $\mathcal{O}_X$-algebra maps.
Then we have
$$
U(\psi \circ \varphi) = r_\varphi^{-1}(U(\psi))
\quad
\text{and}
\quad
r_{\psi \circ \varphi}
=
r_\varphi \circ r_\psi|_{U(\psi \circ \varphi)}.
$$
In addition we have
$$
\theta_\psi \circ r_\psi^*\theta_\varphi
=
\theta_{\psi \circ \varphi}
$$
with obvious notation.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\begin{lemma}
\label{lemma-surjective-graded-rings-map-relative-proj}
With hypotheses and notation as in Lemma \ref{lemma-morphism-relative-proj}
above. Assume $\mathcal{A}_d \to \mathcal{B}_d$ is surjective for
$d \gg 0$. Then
\begin{enumerate}
\item $U(\psi) = Q$,
\item $r_\psi : Q \to R$ is a closed immersion, and
\item the maps $\theta : r_\psi^*\mathcal{O}_P(n) \to \mathcal{O}_Q(n)$
are surjective but not isomorphisms in general (even if
$\mathcal{A} \to \mathcal{B}$ is surjective).
\end{enumerate}
\end{lemma}
\begin{proof}
Follows from the case of schemes
(Constructions, Lemma
\ref{constructions-lemma-surjective-graded-rings-map-relative-proj})
by \'etale localization.
\end{proof}
\begin{lemma}
\label{lemma-eventual-iso-graded-rings-map-relative-proj}
With hypotheses and notation as in Lemma \ref{lemma-morphism-relative-proj}
above. Assume $\mathcal{A}_d \to \mathcal{B}_d$ is an isomorphism for all
$d \gg 0$. Then
\begin{enumerate}
\item $U(\psi) = Q$,
\item $r_\psi : Q \to P$ is an isomorphism, and
\item the maps $\theta : r_\psi^*\mathcal{O}_P(n) \to \mathcal{O}_Q(n)$
are isomorphisms.
\end{enumerate}
\end{lemma}
\begin{proof}
Follows from the case of schemes
(Constructions, Lemma
\ref{constructions-lemma-eventual-iso-graded-rings-map-relative-proj})
by \'etale localization.
\end{proof}
\begin{lemma}
\label{lemma-surjective-generated-degree-1-map-relative-proj}
With hypotheses and notation as in Lemma \ref{lemma-morphism-relative-proj}
above. Assume $\mathcal{A}_d \to \mathcal{B}_d$ is surjective for $d \gg 0$
and that $\mathcal{A}$ is generated by $\mathcal{A}_1$ over $\mathcal{A}_0$.
Then
\begin{enumerate}
\item $U(\psi) = Q$,
\item $r_\psi : Q \to P$ is a closed immersion, and
\item the maps $\theta : r_\psi^*\mathcal{O}_P(n) \to \mathcal{O}_Q(n)$
are isomorphisms.
\end{enumerate}
\end{lemma}
\begin{proof}
Follows from the case of schemes
(Constructions, Lemma
\ref{constructions-lemma-surjective-generated-degree-1-map-relative-proj})
by \'etale localization.
\end{proof}
\section{Closed subspaces of relative proj}
\label{section-closed-in-relative-proj}