forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 1
/
spaces-pushouts.tex
1573 lines (1439 loc) · 60.3 KB
/
spaces-pushouts.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Pushouts of Algebraic Spaces}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
The goal of this chapter is to discuss pushouts in the category of
algebraic spaces. This can be done with varying assumptions.
A fairly general pushout construction is given in \cite{Temkin-Tyomkin}:
one of the morphisms is affine and the other is a closed immersion.
We discuss a particular case of this in Section \ref{section-pushouts}
where we assume one of the morphisms is affine and the other is a
thickening, a situation that often comes up in deformation theory.
\medskip\noindent
In Sections \ref{section-formal-glueing} and
\ref{section-formal-glueing-spaces} we discuss diagrams
$$
\xymatrix{
f^{-1}(X \setminus Z) \ar[r] \ar[d] & Y \ar[d]^f \\
X \setminus Z \ar[r] & X
}
$$
where $f$ is a quasi-compact and quasi-separated morphism of
algebraic spaces, $Z \to X$ is a closed immersion of finite presentation,
the map $f^{-1}(Z) \to Z$ is an isomorphism, and
$f$ is flat along $f^{-1}(Z)$. In this situation we glue
quasi-coherent modules on $X \setminus Z$ and $Y$
(in Section \ref{section-formal-glueing}) to quasi-coherent modules on $X$
and we glue algebraic spaces over $X \setminus Z$ and $Y$
(in Section \ref{section-formal-glueing-spaces}) to algebraic spaces over $X$.
\medskip\noindent
In Section \ref{section-coequalizer-glue} we discuss how proper birational
morphisms of Noetherian algebraic spaces give rise to coequalizer diagrams
in algebraic spaces in some sense.
\section{Pushouts in the category of algebraic spaces}
\label{section-pushouts}
\noindent
This section is analogue of
More on Morphisms, Section \ref{more-morphisms-section-pushouts}.
We first prove a general result on colimits and algebraic spaces.
To do this we discuss a bit of notation. Let $S$ be a scheme.
Let $\mathcal{I} \to (\Sch/S)_{fppf}$, $i \mapsto X_i$
be a diagram (see Categories, Section \ref{categories-section-limits}).
For each $i$ we may consider the small \'etale site $X_{i, \etale}$.
For each morphism $i \to j$ of $\mathcal{I}$ we have the morphism
$X_i \to X_j$ and hence a pullback functor
$X_{j, \etale} \to X_{i, \etale}$.
Hence we obtain a pseudo functor from $\mathcal{I}^{opp}$ into
the $2$-category of categories. Denote
$$
\lim_i X_{i, \etale}
$$
the $2$-limit (see insert future reference here). What does this mean
concretely? An object of this limit is a system of \'etale morphisms
$U_i \to X_i$ over $\mathcal{I}$ such that for each $i \to j$ in
$\mathcal{I}$ the diagram
$$
\xymatrix{
U_i \ar[r] \ar[d] & U_j \ar[d] \\
X_i \ar[r] & X_j
}
$$
is cartesian. Morphisms between objects are defined in the obvious manner.
Suppose that $f_i : X_i \to T$ is a family of morphisms such that
for each $i \to j$ the composition $X_i \to X_j \to T$ is equal to $f_i$.
Then we get a functor $T_\etale \to \lim X_{i, \etale}$.
With this notation in hand we can formulate our lemma.
\begin{lemma}
\label{lemma-colimit-agrees}
Let $S$ be a scheme. Let $\mathcal{I} \to (\Sch/S)_{fppf}$, $i \mapsto X_i$
be a diagram as above. Assume that
\begin{enumerate}
\item $X = \colim X_i$ exists in the category of schemes,
\item $\coprod X_i \to X$ is surjective,
\item if $U \to X$ is \'etale and $U_i = X_i \times_X U$, then
$U = \colim U_i$ in the category of schemes, and
\item the functor $X_\etale \to \lim X_{i, \etale}$
is an equivalence.
\end{enumerate}
Then $X = \colim X_i$ in the category of algebraic spaces over $S$ also.
\end{lemma}
\begin{proof}
Let $Z$ be an algebraic space over $S$. Suppose that $f_i : X_i \to Z$ is
a family of morphisms such that for each $i \to j$ the composition
$X_i \to X_j \to Z$ is equal to $f_i$. We have to construct a morphism
of algebraic spaces $f : X \to Z$ such that we can recover $f_i$ as
the composition $X_i \to X \to Z$. Let $W \to Z$ be a surjective
\'etale morphism of a scheme to $Z$. For each $i$ set
$U_i = W \times_{Z, f_i} X_i$ and denote $h_i : U_i \to W$ the projection.
Then $U_i \to X_i$ forms an object of $\lim X_{i, \etale}$. By
assumption (4) we can find an \'etale morphism $U \to X$ and (functorial)
isomorphisms $U_i = X_i \times_X U$. By assumption (3) there exists a morphism
$h : U \to W$ such that the compositions $U_i \to U \to W$ are $h_i$.
Let $g : U \to Z$ be the composition of $h$ with the map $W \to Z$. To
finish the proof we have to show that $g : U \to Z$ descends to a morphism
$X \to Z$. To do this, consider the morphism
$(h, h) : U \times_X U \to W \times_Z W$.
Composing with $U_i \times_{X_i} U_i \to U \times_X U$ we obtain
$(h_i, h_i)$ which factors through $W \times_Z W$. Since $U \times_X U$
is the colimit of the schemes $U_i \times_{X_i} U_i$ by (3) we see
that $(h, h)$ factors through $W \times_Z W$. Hence the two compositions
$U \times_X U \to U \to W \to Z$ are equal. Because each $U_i \to X_i$ is
surjective and assumption (2) we see that $U \to X$ is surjective.
As $Z$ is a sheaf for the \'etale topology, we conclude that
$g : U \to Z$ descends to $f : X \to Z$ as desired.
\end{proof}
\begin{lemma}
\label{lemma-pushout-along-thickening-schemes}
Let $S$ be a scheme. Let $X \to X'$ be a thickening of schemes
over $S$ and let $X \to Y$ be an affine morphism of schemes over $S$.
Let $Y' = Y \amalg_X X'$ be the pushout in the category of schemes (see
More on Morphisms, Lemma \ref{more-morphisms-lemma-pushout-along-thickening}).
Then $Y'$ is also a pushout in the category of algebraic spaces over $S$.
\end{lemma}
\begin{proof}
This is an immediate consequence of Lemma \ref{lemma-colimit-agrees} and
More on Morphisms, Lemmas
\ref{more-morphisms-lemma-pushout-along-thickening},
\ref{more-morphisms-lemma-equivalence-categories-schemes-over-pushout}, and
\ref{more-morphisms-lemma-equivalence-categories-schemes-over-pushout-flat}.
\end{proof}
\begin{lemma}
\label{lemma-pushout-along-thickening}
Let $S$ be a scheme. Let $X \to X'$ be a thickening of algebraic spaces
over $S$ and let $X \to Y$ be an affine morphism of algebraic spaces over $S$.
Then there exists a pushout
$$
\xymatrix{
X \ar[r] \ar[d]_f
&
X' \ar[d]^{f'}
\\
Y \ar[r]
&
Y \amalg_X X'
}
$$
in the category of algebraic spaces over $S$. Moreover $Y' = Y \amalg_X X'$
is a thickening of $Y$ and
$$
\mathcal{O}_{Y'} = \mathcal{O}_Y \times_{f_*\mathcal{O}_X} f'_*\mathcal{O}_{X'}
$$
as sheaves on $Y_\etale = (Y')_\etale$.
\end{lemma}
\begin{proof}
Choose a scheme $V$ and a surjective \'etale morphism $V \to Y$.
Set $U = V \times_Y X$. This is a scheme affine over $V$ with a
surjective \'etale morphism $U \to X$. By More on Morphisms of Spaces,
Lemma \ref{spaces-more-morphisms-lemma-thickening-equivalence}
there exists a $U' \to X'$
surjective \'etale with $U = U' \times_{X'} X$. In particular the
morphism of schemes $U \to U'$ is a thickening too. Apply
More on Morphisms, Lemma \ref{more-morphisms-lemma-pushout-along-thickening}
to obtain a pushout $V' = V \amalg_U U'$ in the category of schemes.
\medskip\noindent
We repeat this procedure to construct a pushout
$$
\xymatrix{
U \times_X U \ar[d] \ar[r] & U' \times_{X'} U' \ar[d] \\
V \times_Y V \ar[r] & R'
}
$$
in the category of schemes. Consider the morphisms
$$
U \times_X U \to U \to V',\quad
U' \times_{X'} U' \to U' \to V',\quad
V \times_Y V \to V \to V'
$$
where we use the first projection in each case. Clearly these glue to
give a morphism $t' : R' \to V'$ which is \'etale by
More on Morphisms, Lemma
\ref{more-morphisms-lemma-equivalence-categories-schemes-over-pushout-flat}.
Similarly, we obtain $s' : R' \to V'$ \'etale.
The morphism $j' = (t', s') : R' \to V' \times_S V'$ is unramified
(as $t'$ is \'etale) and a monomorphism when restricted to the closed
subscheme $V \times_Y V \subset R'$. As $V \times_Y V \subset R'$ is
a thickening it follows that $j'$ is a monomorphism too. Finally, $j'$
is an equivalence relation as we can use the functoriality of pushouts
of schemes to construct a morphism $c' : R' \times_{s', V', t'} R' \to R'$
(details omitted). At this point we set $Y' = U'/R'$, see
Spaces, Theorem \ref{spaces-theorem-presentation}.
\medskip\noindent
We have morphisms $X' = U'/U' \times_{X'} U' \to V'/R' = Y'$ and
$Y = V/V \times_Y V \to V'/R' = Y'$.
By construction these fit into the commutative diagram
$$
\xymatrix{
X \ar[r] \ar[d]_f & X' \ar[d]^{f'} \\
Y \ar[r] & Y'
}
$$
Since $Y \to Y'$ is a thickening we have
$Y_\etale = (Y')_\etale$, see More on Morphisms of Spaces,
Lemma \ref{spaces-more-morphisms-lemma-thickening-equivalence}.
The commutativity of the diagram gives a map of sheaves
$$
\mathcal{O}_{Y'}
\longrightarrow
\mathcal{O}_Y \times_{f_*\mathcal{O}_X} f'_*\mathcal{O}_{X'}
$$
on this set. By More on Morphisms, Lemma
\ref{more-morphisms-lemma-pushout-along-thickening}
this map is an isomorphism when we restrict to
the scheme $V'$, hence it is an isomorphism.
\medskip\noindent
To finish the proof we show that the diagram above is a pushout in
the category of algebraic spaces. To see this, let $Z$ be an algebraic
space and let $a' : X' \to Z$ and $b : Y \to Z$ be morphisms of
algebraic spaces. By
Lemma \ref{lemma-pushout-along-thickening-schemes}
we obtain a unique morphism $h : V' \to Z$ fitting into the commutative
diagrams
$$
\vcenter{
\xymatrix{
U' \ar[d] \ar[r] & V' \ar[d]^h \\
X' \ar[r]^{a'} & Z
}
}
\quad\text{and}\quad
\vcenter{
\xymatrix{
V \ar[r] \ar[d] & V' \ar[d]^h \\
Y \ar[r]^b & Z
}
}
$$
The uniqueness shows that $h \circ t' = h \circ s'$. Hence $h$ factors
uniquely as $V' \to Y' \to Z$ and we win.
\end{proof}
\noindent
In the following lemma we use the fibre product of categories as
defined in
Categories, Example \ref{categories-example-2-fibre-product-categories}.
\begin{lemma}
\label{lemma-categories-spaces-over-pushout}
Let $S$ be a base scheme. Let $X \to X'$ be a thickening of algebraic spaces
over $S$ and let $X \to Y$ be an affine morphism of algebraic spaces over $S$.
Let $Y' = Y \amalg_X X'$ be the pushout (see
Lemma \ref{lemma-pushout-along-thickening}). Base change gives a functor
$$
F :
(\textit{Spaces}/Y')
\longrightarrow
(\textit{Spaces}/Y) \times_{(\textit{Spaces}/Y')} (\textit{Spaces}/X')
$$
given by $V' \longmapsto (V' \times_{Y'} Y, V' \times_{Y'} X', 1)$ which
sends $(\Sch/Y')$ into $(\Sch/Y) \times_{(\Sch/Y')} (\Sch/X')$.
The functor $F$ has a left adjoint
$$
G :
(\textit{Spaces}/Y) \times_{(\textit{Spaces}/Y')} (\textit{Spaces}/X')
\longrightarrow
(\textit{Spaces}/Y')
$$
which sends the triple $(V, U', \varphi)$ to the pushout
$V \amalg_{(V \times_Y X)} U'$ in the category of algebraic spaces over $S$.
The functor $G$ sends $(\Sch/Y) \times_{(\Sch/Y')} (\Sch/X')$ into $(\Sch/Y')$.
\end{lemma}
\begin{proof}
The proof is completely formal.
Since the morphisms $X \to X'$ and $X \to Y$ are representable it
is clear that $F$ sends $(\Sch/Y')$ into
$(\Sch/Y) \times_{(\Sch/Y')} (\Sch/X')$.
\medskip\noindent
Let us construct $G$. Let $(V, U', \varphi)$ be an object of the fibre
product category. Set $U = U' \times_{X'} X$. Note that $U \to U'$ is a
thickening. Since $\varphi : V \times_Y X \to U' \times_{X'} X = U$ is an
isomorphism we have a morphism $U \to V$ over $X \to Y$ which identifies
$U$ with the fibre product $X \times_Y V$. In particular $U \to V$ is
affine, see
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-base-change-affine}.
Hence we can apply Lemma \ref{lemma-pushout-along-thickening}
to get a pushout $V' = V \amalg_U U'$. Denote $V' \to Y'$ the morphism
we obtain in virtue of the fact that $V'$ is a pushout and because
we are given morphisms $V \to Y$ and $U' \to X'$ agreeing on $U$
as morphisms into $Y'$. Setting $G(V, U', \varphi) = V'$
gives the functor $G$.
\medskip\noindent
If $(V, U', \varphi)$ is an object of $(\Sch/Y) \times_{(\Sch/Y')} (\Sch/X')$
then $U = U' \times_{X'} X$ is a scheme too and we can form the pushout
$V' = V \amalg_U U'$ in the category of schemes by
More on Morphisms, Lemma \ref{more-morphisms-lemma-pushout-along-thickening}.
By Lemma \ref{lemma-pushout-along-thickening-schemes}
this is also a pushout in the category of schemes, hence
$G$ sends $(\Sch/Y) \times_{(\Sch/Y')} (\Sch/X')$ into $(\Sch/Y')$.
\medskip\noindent
Let us prove that $G$ is a left adjoint to $F$. Let $Z$ be an algebraic space
over $Y'$. We have to show that
$$
\Mor(V', Z) = \Mor((V, U', \varphi), F(Z))
$$
where the morphism sets are taking in their respective categories.
Let $g' : V' \to Z$ be a morphism. Denote $\tilde g$, resp.\ $\tilde f'$
the composition of $g'$ with the morphism $V \to V'$, resp.\ $U' \to V'$.
Base change $\tilde g$, resp.\ $\tilde f'$ by $Y \to Y'$, resp.\ $X' \to Y'$
to get a morphism $g : V \to Z \times_{Y'} Y$,
resp.\ $f' : U' \to Z \times_{Y'} X'$. Then $(g, f')$ is an element
of the right hand side of the equation above (details omitted).
Conversely, suppose that $(g, f') : (V, U', \varphi) \to F(Z)$ is an
element of the right hand side.
We may consider the composition $\tilde g : V \to Z$,
resp.\ $\tilde f' : U' \to Z$ of $g$, resp.\ $f$ by
$Z \times_{Y'} X' \to Z$, resp.\ $Z \times_{Y'} Y \to Z$.
Then $\tilde g$ and $\tilde f'$ agree as morphism from $U$ to $Z$.
By the universal property of pushout, we obtain a morphism
$g' : V' \to Z$, i.e., an element of the left hand side.
We omit the verification that these constructions are mutually inverse.
\end{proof}
\begin{lemma}
\label{lemma-diagram}
Let $S$ be a scheme. Let
$$
\xymatrix{
A \ar[r] \ar[d] & C \ar[d] \ar[r] & E \ar[d] \\
B \ar[r] & D \ar[r] & F
}
$$
be a commutative diagram of algebraic spaces over $S$.
Assume that $A, B, C, D$ and $A, B, E, F$ form cartesian squares
and that $B \to D$ is surjective \'etale.
Then $C, D, E, F$ is a cartesian square.
\end{lemma}
\begin{proof}
This is formal.
\end{proof}
\begin{lemma}
\label{lemma-equivalence-categories-spaces-over-pushout}
In the situation of Lemma \ref{lemma-categories-spaces-over-pushout}
the functor $F \circ G$ is isomorphic to the identity functor.
\end{lemma}
\begin{proof}
We will prove that $F \circ G$ is isomorphic to the identity by
reducing this to the corresponding statement of
More on Morphisms, Lemma
\ref{more-morphisms-lemma-equivalence-categories-schemes-over-pushout}.
\medskip\noindent
Choose a scheme $Y_1$ and a surjective \'etale morphism
$Y_1 \to Y$. Set $X_1 = Y_1 \times_Y X$. This is a scheme affine over
$Y_1$ with a surjective \'etale morphism $X_1 \to X$. By
More on Morphisms of Spaces,
Lemma \ref{spaces-more-morphisms-lemma-thickening-equivalence}
there exists a $X'_1 \to X'$
surjective \'etale with $X_1 = X_1' \times_{X'} X$. In particular the
morphism of schemes $X_1 \to X_1'$ is a thickening too. Apply
More on Morphisms, Lemma \ref{more-morphisms-lemma-pushout-along-thickening}
to obtain a pushout $Y_1' = Y_1 \amalg_{X_1} X_1'$ in the category of
schemes. In the proof of Lemma \ref{lemma-pushout-along-thickening}
we constructed
$Y'$ as a quotient of an \'etale equivalence relation on $Y_1'$
such that we get a commutative diagram
\begin{equation}
\label{equation-cube}
\vcenter{
\xymatrix{
& X \ar[rr] \ar'[d][dd] & & X' \ar[dd] \\
X_1 \ar[rr] \ar[dd] \ar[ru] & & X_1' \ar[dd] \ar[ru] & \\
& Y \ar'[r][rr] & & Y' \\
Y_1 \ar[rr] \ar[ru] & & Y_1' \ar[ru]
}
}
\end{equation}
where all squares except the front and back squares are cartesian
(the front and back squares are pushouts) and the northeast arrows
are surjective \'etale. Denote $F_1$, $G_1$ the
functors constructed in
More on Morphisms, Lemma
\ref{more-morphisms-lemma-equivalence-categories-schemes-over-pushout}
for the front square. Then the diagram of categories
$$
\xymatrix{
(\Sch/Y_1') \ar@<-1ex>[r]_-{F_1} \ar[d] &
(\Sch/Y_1) \times_{(\Sch/Y_1')} (\Sch/X_1') \ar[d] \ar@<-1ex>[l]_-{G_1} \\
(\textit{Spaces}/Y') \ar@<-1ex>[r]_-F &
(\textit{Spaces}/Y) \times_{(\textit{Spaces}/Y')} (\textit{Spaces}/X')
\ar@<-1ex>[l]_-G
}
$$
is commutative by simple considerations regarding base change functors
and the agreement of pushouts in schemes with pushouts in
spaces of Lemma \ref{lemma-pushout-along-thickening-schemes}.
\medskip\noindent
Let $(V, U', \varphi)$ be an object of
$(\textit{Spaces}/Y) \times_{(\textit{Spaces}/Y')} (\textit{Spaces}/X')$.
Denote $U = U' \times_{X'} X$ so that $G(V, U', \varphi) = V \amalg_U U'$.
Choose a scheme $V_1$ and a surjective \'etale morphism
$V_1 \to Y_1 \times_Y V$. Set $U_1 = V_1 \times_Y X$. Then
$$
U_1 = V_1 \times_Y X
\longrightarrow
(Y_1 \times_Y V) \times_Y X =
X_1 \times_Y V = X_1 \times_X X \times_Y V = X_1 \times_X U
$$
is surjective \'etale too. By
More on Morphisms of Spaces, Lemma
\ref{spaces-more-morphisms-lemma-thickening-equivalence}
there exists a thickening $U_1 \to U_1'$ and a surjective \'etale morphism
$U_1' \to X_1' \times_{X'} U'$ whose base change to $X_1 \times_X U$ is the
displayed morphism. At this point $(V_1, U'_1, \varphi_1)$ is an object of
$(\Sch/Y_1) \times_{(\Sch/Y_1')} (\Sch/X_1')$. In the proof of
Lemma \ref{lemma-pushout-along-thickening} we constructed
$G(V, U', \varphi) = V \amalg_U U'$ as a quotient of an \'etale equivalence
relation on $G_1(V_1, U_1', \varphi_1) = V_1 \amalg_{U_1} U_1'$
such that we get a commutative diagram
\begin{equation}
\label{equation-cube-over}
\vcenter{
\xymatrix{
& U \ar[rr] \ar'[d][dd] & & U' \ar[dd] \\
U_1 \ar[rr] \ar[dd] \ar[ru] & & U_1' \ar[dd] \ar[ru] & \\
& V \ar'[r][rr] & & G(V, U', \varphi) \\
V_1 \ar[rr] \ar[ru] & & G_1(V_1, U_1', \varphi_1) \ar[ru]
}
}
\end{equation}
where all squares except the front and back squares are cartesian
(the front and back squares are pushouts) and the northeast arrows
are surjective \'etale. In particular
$$
G_1(V_1, U_1', \varphi_1) \to G(V, U', \varphi)
$$
is surjective \'etale.
\medskip\noindent
Finally, we come to the proof of the lemma. We have to show that the adjunction
mapping $(V, U', \varphi) \to F(G(V, U', \varphi))$ is an isomorphism. We know
$(V_1, U_1', \varphi_1) \to F_1(G_1(V_1, U_1', \varphi_1))$ is an isomorphism
by More on Morphisms, Lemma
\ref{more-morphisms-lemma-equivalence-categories-schemes-over-pushout}.
Recall that $F$ and $F_1$ are given by base change.
Using the properties of (\ref{equation-cube-over})
and Lemma \ref{lemma-diagram}
we see that
$V \to G(V, U', \varphi) \times_{Y'} Y$ and
$U' \to G(V, U', \varphi) \times_{Y'} X'$ are isomorphisms, i.e.,
$(V, U', \varphi) \to F(G(V, U', \varphi))$ is an isomorphism.
\end{proof}
\begin{lemma}
\label{lemma-space-over-pushout-flat-modules}
Let $S$ be a base scheme.
Let $X \to X'$ be a thickening of algebraic spaces over $S$
and let $X \to Y$ be an affine morphism of algebraic spaces over $S$.
Let $Y' = Y \amalg_X X'$ be the pushout
(see Lemma \ref{lemma-pushout-along-thickening}).
Let $V' \to Y'$ be a morphism of algebraic spaces over $S$. Set
$V = Y \times_{Y'} V'$, $U' = X' \times_{Y'} V'$, and $U = X \times_{Y'} V'$.
There is an equivalence of categories between
\begin{enumerate}
\item quasi-coherent $\mathcal{O}_{V'}$-modules flat over $Y'$, and
\item the category of triples $(\mathcal{G}, \mathcal{F}', \varphi)$ where
\begin{enumerate}
\item $\mathcal{G}$ is a quasi-coherent $\mathcal{O}_V$-module flat over $Y$,
\item $\mathcal{F}'$ is a quasi-coherent $\mathcal{O}_{U'}$-module flat
over $X$, and
\item $\varphi : (U \to V)^*\mathcal{G} \to (U \to U')^*\mathcal{F}'$
is an isomorphism of $\mathcal{O}_U$-modules.
\end{enumerate}
\end{enumerate}
The equivalence maps $\mathcal{G}'$ to
$((V \to V')^*\mathcal{G}', (U' \to V')^*\mathcal{G}', can)$.
Suppose $\mathcal{G}'$ corresponds to the triple
$(\mathcal{G}, \mathcal{F}', \varphi)$. Then
\begin{enumerate}
\item[(a)] $\mathcal{G}'$ is a finite type $\mathcal{O}_{V'}$-module if and
only if $\mathcal{G}$ and $\mathcal{F}'$ are finite type
$\mathcal{O}_Y$ and $\mathcal{O}_{U'}$-modules.
\item[(b)] if $V' \to Y'$ is locally of finite presentation, then
$\mathcal{G}'$ is an $\mathcal{O}_{V'}$-module of finite
presentation if and only if $\mathcal{G}$ and $\mathcal{F}'$ are
$\mathcal{O}_Y$ and $\mathcal{O}_{U'}$-modules of finite presentation.
\end{enumerate}
\end{lemma}
\begin{proof}
A quasi-inverse functor assigns to the triple
$(\mathcal{G}, \mathcal{F}', \varphi)$ the fibre product
$$
(V \to V')_*\mathcal{G}
\times_{(U \to V')_*\mathcal{F}}
(U' \to V')_*\mathcal{F}'
$$
where $\mathcal{F} = (U \to U')^*\mathcal{F}'$. This works, because on
affines \'etale over $V'$ and $Y'$ we recover the equivalence of
More on Algebra, Lemma
\ref{more-algebra-lemma-relative-flat-module-over-fibre-product}.
Details omitted.
\medskip\noindent
Parts (a) and (b) reduce by \'etale localization
(Properties of Spaces, Section
\ref{spaces-properties-section-properties-modules})
to the case where $V'$ and $Y'$ are affine in which case the result
follows from
More on Algebra, Lemmas
\ref{more-algebra-lemma-relative-finite-module-over-fibre-product} and
\ref{more-algebra-lemma-relative-finitely-presented-module-over-fibre-product}.
\end{proof}
\begin{lemma}
\label{lemma-equivalence-categories-spaces-pushout-flat}
In the situation of
Lemma \ref{lemma-equivalence-categories-spaces-over-pushout}.
If $V' = G(V, U', \varphi)$ for some triple $(V, U', \varphi)$, then
\begin{enumerate}
\item $V' \to Y'$ is locally of finite type if and only if $V \to Y$ and
$U' \to X'$ are locally of finite type,
\item $V' \to Y'$ is flat if and only if $V \to Y$ and $U' \to X'$ are flat,
\item $V' \to Y'$ is flat and locally of finite presentation if and only if
$V \to Y$ and $U' \to X'$ are flat and locally of finite presentation,
\item $V' \to Y'$ is smooth if and only if $V \to Y$ and $U' \to X'$ are smooth,
\item $V' \to Y'$ is \'etale if and only if $V \to Y$ and $U' \to X'$
are \'etale, and
\item add more here as needed.
\end{enumerate}
If $W'$ is flat over $Y'$, then the adjunction mapping
$G(F(W')) \to W'$ is an isomorphism. Hence $F$ and $G$ define mutually
quasi-inverse functors between the category of spaces flat over $Y'$
and the category of triples $(V, U', \varphi)$ with $V \to Y$
and $U' \to X'$ flat.
\end{lemma}
\begin{proof}
Choose a diagram (\ref{equation-cube}) as in the proof of
Lemma \ref{lemma-equivalence-categories-spaces-over-pushout}.
\medskip\noindent
Proof of (1) -- (5). Let $(V, U', \varphi)$ be an object of
$(\textit{Spaces}/Y) \times_{(\textit{Spaces}/Y')} (\textit{Spaces}/X')$.
Construct a diagram (\ref{equation-cube-over}) as in the proof of
Lemma \ref{lemma-equivalence-categories-spaces-over-pushout}.
Then the base change of $G(V, U', \varphi) \to Y'$ to
$Y'_1$ is $G_1(V_1, U_1', \varphi_1) \to Y_1'$. Hence (1) -- (5)
follow immediately from the corresponding statements of
More on Morphisms, Lemma
\ref{more-morphisms-lemma-equivalence-categories-schemes-over-pushout-flat}
for schemes.
\medskip\noindent
Suppose that $W' \to Y'$ is flat. Choose a scheme $W'_1$ and a surjective
\'etale morphism $W'_1 \to Y_1' \times_{Y'} W'$. Observe that $W'_1 \to W'$
is surjective \'etale as a composition of surjective \'etale morphisms. We
know that $G_1(F_1(W_1')) \to W_1'$ is an isomorphism by
More on Morphisms, Lemma
\ref{more-morphisms-lemma-equivalence-categories-schemes-over-pushout-flat}
applied to $W'_1$ over $Y'_1$ and the front of the diagram (with functors
$G_1$ and $F_1$ as in the proof of
Lemma \ref{lemma-equivalence-categories-spaces-over-pushout}).
Then the construction of $G(F(W'))$ (as a pushout, i.e.,
as constructed in Lemma \ref{lemma-pushout-along-thickening}) shows that
$G_1(F_1(W'_1)) \to G(F(W))$ is surjective \'etale. Whereupon we conclude
that $G(F(W)) \to W$ is \'etale, see for example
Properties of Spaces, Lemma \ref{spaces-properties-lemma-etale-local}.
But $G(F(W)) \to W$ is an isomorphism on underlying reduced
algebraic spaces (by construction), hence it is an isomorphism.
\end{proof}
\section{Formal glueing of quasi-coherent modules}
\label{section-formal-glueing}
\noindent
This section is the analogue of
More on Algebra, Section \ref{more-algebra-section-formal-glueing}.
In the case of morphisms of schemes, the result can be found in
the paper by Joyet \cite{Joyet}; this is a good place to start reading.
For a discussion of applications to descent problems for stacks, see the
paper by Moret-Bailly \cite{MB}. In the case of an affine
morphism of schemes there is a statement in the appendix of the paper
\cite{Ferrand-Raynaud} but one needs to add the hypothesis
that the closed subscheme is cut out by a finitely generated
ideal (as in the paper by Joyet) since otherwise the result does not hold.
A generalization of this material to (higher) derived categories
with potential applications to nonflat situations
can be found in \cite[Section 5]{Bhatt-Algebraize}.
\medskip\noindent
We start with a lemma on abelian sheaves supported on closed subsets.
\begin{lemma}
\label{lemma-stalk-pushforward-with-support}
Let $S$ be a scheme. Let $f : Y \to X$ be a morphism of algebraic spaces
over $S$. Let $Z \subset X$ closed subspace such that $f^{-1}Z \to Z$ is
integral and universally injective. Let $\overline{y}$ be a geometric point
of $Y$ and $\overline{x} = f(\overline{y})$. We have
$$
(Rf_*Q)_{\overline{x}} = Q_{\overline{y}}
$$
in $D(\textit{Ab})$ for any object $Q$ of $D(Y_\etale)$ supported
on $|f^{-1}Z|$.
\end{lemma}
\begin{proof}
Consider the commutative diagram of algebraic spaces
$$
\xymatrix{
f^{-1}Z \ar[r]_{i'} \ar[d]_{f'} & Y \ar[d]_f \\
Z \ar[r]^i & X
}
$$
By Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-complexes-with-support-on-closed} we can write
$Q = Ri'_*K'$ for some object $K'$ of $D(f^{-1}Z_\etale)$.
By Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-integral-universally-injective-push-pull}
we have $K' = (f')^{-1}K$ with $K = Rf'_*K'$.
Then we have $Rf_*Q = Rf_*Ri'_*K' = Ri_*Rf'_*K' = Ri_*K$.
Let $\overline{z}$ be the geometric point of $Z$ corresponding
to $\overline{x}$ and let $\overline{z}'$ be the geometric point
of $f^{-1}Z$ corresponding to $\overline{y}$. We obtain
the result of the lemma as follows
$$
Q_{\overline{y}} = (Ri'_*K')_{\overline{y}} = K'_{\overline{z}'} =
(f')^{-1}K_{\overline{z}'} = K_{\overline{z}} = Ri_*K_{\overline{x}} =
Rf_*Q_{\overline{x}}
$$
The middle equality holds because of the description of the stalk
of a pullback given in
Properties of Spaces, Lemma \ref{spaces-properties-lemma-stalk-pullback}.
\end{proof}
\begin{lemma}
\label{lemma-stalk-formal-glueing}
Let $S$ be a scheme. Let $f : Y \to X$ be a morphism of algebraic spaces
over $S$. Let $Z \subset X$ closed subspace such that $f^{-1}Z \to Z$ is
integral and universally injective. Let $\overline{y}$ be a geometric point
of $Y$ and $\overline{x} = f(\overline{y})$. Let $\mathcal{G}$
be an abelian sheaf on $Y$. Then the map of two term complexes
$$
\left(f_*\mathcal{G}_{\overline{x}} \to
(f \circ j')_*(\mathcal{G}|_V)_{\overline{x}}\right)
\longrightarrow
\left(\mathcal{G}_{\overline{y}} \to j'_*(\mathcal{G}|_V)_{\overline{y}}\right)
$$
induces an isomorphism on kernels and an injection on cokernels.
Here $V = Y \setminus f^{-1}Z$ and $j' : V \to Y$ is the inclusion.
\end{lemma}
\begin{proof}
Choose a distinguished triangle
$$
\mathcal{G} \to Rj'_*\mathcal{G}|_V \to Q \to \mathcal{G}[1]
$$
n $D(Y_\etale)$. The cohomology sheaves of $Q$
are supported on $|f^{-1}Z|$. We apply $Rf_*$ and we obtain
$$
Rf_*\mathcal{G} \to Rf_*Rj'_*\mathcal{G}|_V \to Rf_*Q
\to Rf_*\mathcal{G}[1]
$$
Taking stalks at $\overline{x}$ we obtain an exact sequence
$$
0 \to
(R^{-1}f_*Q)_{\overline{x}} \to
f_*\mathcal{G}_{\overline{x}} \to
(f \circ j')_*(\mathcal{G}|_V)_{\overline{x}} \to
(R^0f_*Q)_{\overline{x}}
$$
We can compare this with the exact sequence
$$
0 \to
H^{-1}(Q)_{\overline{y}} \to
\mathcal{G}_{\overline{y}} \to
j'_*(\mathcal{G}|_V)_{\overline{y}} \to
H^0(Q)_{\overline{y}}
$$
Thus we see that the lemma follows because
$Q_{\overline{y}} = Rf_*Q_{\overline{x}}$ by
Lemma \ref{lemma-stalk-pushforward-with-support}.
\end{proof}
\begin{lemma}
\label{lemma-stalk-of-pushforward}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $f : Y \to X$ be a quasi-compact and quasi-separated morphism.
Let $\overline{x}$ be a geometric point of $X$ and let
$\Spec(\mathcal{O}_{X, \overline{x}}) \to X$
be the canonical morphism. For a quasi-coherent module
$\mathcal{G}$ on $Y$ we have
$$
f_*\mathcal{G}_{\overline{x}} =
\Gamma(Y \times_X \Spec(\mathcal{O}_{X, \overline{x}}), p^*\mathcal{F})
$$
where $p : Y \times_X \Spec(\mathcal{O}_{X, \overline{x}}) \to Y$
is the projection.
\end{lemma}
\begin{proof}
Observe that $f_*\mathcal{G}_{\overline{x}} =
\Gamma(\Spec(\mathcal{O}_{X, \overline{x}}), h^*f_*\mathcal{G})$
where $h : \Spec(\mathcal{O}_{X, \overline{x}}) \to X$.
Hence the result is true because $h$ is flat so that
Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-flat-base-change-cohomology}
applies.
\end{proof}
\begin{lemma}
\label{lemma-stalk-of-module-with-support}
Let $S$ be a scheme. Let $X$ be an algebraic space over $S$.
Let $i : Z \to X$ be a closed immersion of finite presentation.
Let $Q \in D_\QCoh(\mathcal{O}_X)$ be supported on $|Z|$.
Let $\overline{x}$ be a geometric point of $X$ and let
$I_{\overline{x}} \subset \mathcal{O}_{X, \overline{x}}$ be the stalk of
the ideal sheaf of $Z$. Then the cohomology modules
$H^n(Q_{\overline{x}})$ are $I_{\overline{x}}$-power torsion
(see More on Algebra, Definition
\ref{more-algebra-definition-f-power-torsion}).
\end{lemma}
\begin{proof}
Choose an affine scheme $U$ and an \'etale morphism $U \to X$ such
that $\overline{x}$ lifts to a geometric point $\overline{u}$
of $U$. Then we can replace $X$ by $U$, $Z$ by $U \times_X Z$,
$Q$ by the restriction $Q|_U$, and $\overline{x}$ by $\overline{u}$.
Thus we may assume that $X = \Spec(A)$ is affine. Let $I \subset A$
be the ideal defining $Z$. Since $i : Z \to X$ is of finite presentation,
the ideal $I = (f_1, \ldots, f_r)$ is finitely generated.
The object $Q$ comes from a complex of $A$-modules $M^\bullet$, see
Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-derived-quasi-coherent-small-etale-site}
and
Derived Categories of Schemes, Lemma
\ref{perfect-lemma-affine-compare-bounded}.
Since the cohomology sheaves of $Q$ are supported on $Z$
we see that the localization $M^\bullet_f$ is acyclic for each $f \in I$.
Take $x \in H^p(M^\bullet)$. By the above we can find $n_i$ such
that $f_i^{n_i} x = 0$ in $H^p(M^\bullet)$ for each $i$.
Then with $n = \sum n_i$ we see that $I^n$ annihilates $x$.
Thus $H^p(M^\bullet)$ is $I$-power torsion. Since the ring
map $A \to \mathcal{O}_{X, \overline{x}}$ is flat and since
$I_{\overline{x}} = I\mathcal{O}_{X, \overline{x}}$ we conclude.
\end{proof}
\begin{lemma}
\label{lemma-formal-glueing-on-closed}
Let $S$ be a scheme. Let $f : Y \to X$ be a morphism of algebraic spaces
over $S$. Let $Z \subset X$ be a closed subspace. Assume $f^{-1}Z \to Z$
is an isomorphism and that $f$ is flat in every point of $f^{-1}Z$. For any
$Q$ in $D_\QCoh(\mathcal{O}_Y)$ supported on $|f^{-1}Z|$ we have
$Lf^*Rf_*Q = Q$.
\end{lemma}
\begin{proof}
We show the canonical map $Lf^*Rf_*Q \to Q$ is an isomorphism
by checking on stalks at $\overline{y}$. If $\overline{y}$ is not
in $f^{-1}Z$, then both sides are zero and the result is true.
Assume the image $\overline{x}$ of $\overline{y}$ is in $Z$.
By Lemma \ref{lemma-stalk-pushforward-with-support} we have
$Rf_*Q_{\overline{x}} = Q_{\overline{y}}$ and since $f$ is flat
at $\overline{y}$ we see that
$$
(Lf^*Rf_*Q)_{\overline{y}} =
(Rf_*Q)_{\overline{x}}
\otimes_{\mathcal{O}_{X, \overline{x}}}
\mathcal{O}_{Y, \overline{y}} =
Q_{\overline{y}} \otimes_{\mathcal{O}_{X, \overline{x}}}
\mathcal{O}_{Y, \overline{y}}
$$
Thus we have to check that the canonical map
$$
Q_{\overline{y}} \otimes_{\mathcal{O}_{X, \overline{x}}}
\mathcal{O}_{Y, \overline{y}}
\longrightarrow Q_{\overline{y}}
$$
is an isomorphism in the derived category. Let
$I_{\overline{x}} \subset \mathcal{O}_{X, \overline{x}}$ be the
stalk of the ideal sheaf defining $Z$. Since $Z \to X$ is locally of
finite presentation this ideal is finitely generated and the
cohomology groups of $Q_{\overline{y}}$
are $I_{\overline{y}} = I_{\overline{x}}\mathcal{O}_{Y, \overline{y}}$-power
torsion by Lemma \ref{lemma-stalk-of-module-with-support} applied to $Q$ on $Y$.
It follows that they are also $I_{\overline{x}}$-power torsion.
The ring map
$\mathcal{O}_{X, \overline{x}} \to \mathcal{O}_{Y, \overline{y}}$
is flat and induces an isomorphism after dividing by
$I_{\overline{x}}$ and $I_{\overline{y}}$ because we assumed
that $f^{-1}Z \to Z$ is an isomorphism. Hence we see that
the cohomology modules of
$Q_{\overline{y}} \otimes_{\mathcal{O}_{X, \overline{x}}}
\mathcal{O}_{Y, \overline{y}}$
are equal to the cohomology modules of $Q_{\overline{y}}$ by
More on Algebra, Lemma \ref{more-algebra-lemma-neighbourhood-isomorphism}
which finishes the proof.
\end{proof}
\begin{situation}
\label{situation-formal-glueing}
Here $S$ is a base scheme, $f : Y \to X$ is a quasi-compact
and quasi-separated morphism of algebraic spaces over $S$, and
$Z \to X$ is a closed immersion of finite presentation. We assume that
$f^{-1}(Z) \to Z$ is an isomorphism and that $f$ is flat in every
point $x \in |f^{-1}Z|$. We set $U = X \setminus Z$ and
$V = Y \setminus f^{-1}(Z)$.
Picture
$$
\xymatrix{
V \ar[r]_{j'} \ar[d]_{f|_V} & Y \ar[d]^f \\
U \ar[r]^j & X
}
$$
\end{situation}
\noindent
In Situation \ref{situation-formal-glueing} we define
$\textit{QCoh}(Y \to X, Z)$ as the category of
triples $(\mathcal{H}, \mathcal{G}, \varphi)$ where
$\mathcal{H}$ is a quasi-coherent sheaf of
$\mathcal{O}_U$-modules, $\mathcal{G}$ is a quasi-coherent sheaf
of $\mathcal{O}_Y$-modules, and
$\varphi : f^*\mathcal{H} \to \mathcal{G}|_V$ is an isomorphism
of $\mathcal{O}_V$-modules. There is a canonical
functor
\begin{equation}
\label{equation-formal-glueing-modules}
\QCoh(\mathcal{O}_X) \longrightarrow \textit{QCoh}(Y \to X, Z)
\end{equation}
which maps $\mathcal{F}$ to the system
$(\mathcal{F}|_U, f^*\mathcal{F}, can)$.
By analogy with the proof given in the affine case, we construct
a functor in the opposite direction. To an object
$(\mathcal{H}, \mathcal{G}, \varphi)$ we assign the $\mathcal{O}_X$-module
\begin{equation}
\label{equation-reverse}
\Ker(j_*\mathcal{H} \oplus f_*\mathcal{G} \to (f \circ j')_*\mathcal{G}|_V)
\end{equation}
Observe that $j$ and $j'$ are quasi-compact morphisms as
$Z \to X$ is of finite presentation. Hence $f_*$, $j_*$, and $(f \circ j')_*$
transform quasi-coherent modules into quasi-coherent modules
(Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-pushforward}).
Thus the module (\ref{equation-reverse}) is quasi-coherent.
\begin{lemma}
\label{lemma-adjoint}
In Situation \ref{situation-formal-glueing}.
The functor (\ref{equation-reverse}) is right adjoint to
the functor (\ref{equation-formal-glueing-modules}).
\end{lemma}
\begin{proof}
This follows easily from the adjointness of $f^*$ to $f_*$
and $j^*$ to $j_*$. Details omitted.
\end{proof}
\begin{lemma}
\label{lemma-reverse-commutes-with-flat-base-change}
In Situation \ref{situation-formal-glueing}.
Let $X' \to X$ be a flat morphism of algebraic spaces.
Set $Z' = X' \times_X Z$ and $Y' = X' \times_X Y$.
The pullbacks $\QCoh(\mathcal{O}_X) \to \QCoh(\mathcal{O}_{X'})$
and $\QCoh(Y \to X, Z) \to \QCoh(Y' \to X', Z')$ are compatible
with the functors (\ref{equation-reverse}) and
\ref{equation-formal-glueing-modules}).
\end{lemma}
\begin{proof}
This is true because pullback commutes with pullback and because
flat pullback commutes with pushforward along quasi-compact
and quasi-separated morphisms, see
Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-flat-base-change-cohomology}.
\end{proof}
\begin{proposition}
\label{proposition-formal-glueing-modules}
In Situation \ref{situation-formal-glueing} the functor
(\ref{equation-formal-glueing-modules}) is an equivalence
with quasi-inverse given by (\ref{equation-reverse}).
\end{proposition}
\begin{proof}
We first treat the special case where $X$ and $Y$ are affine schemes
and where the morphism $f$ is flat. Say $X = \Spec(R)$ and $Y = \Spec(S)$.
Then $f$ corresponds to a flat ring map $R \to S$. Moreover, $Z \subset X$
is cut out by a finitely generated ideal $I \subset R$. Choose generators
$f_1, \ldots, f_t \in I$. By the description of quasi-coherent modules
in terms of modules
(Schemes, Section \ref{schemes-section-quasi-coherent-affine}),
we see that the category $\textit{QCoh}(Y \to X, Z)$
is canonically equivalent to the category
$\text{Glue}(R \to S, f_1, \ldots, f_t)$
of More on Algebra, Remark \ref{more-algebra-remark-glueing-data}
such that the functors
(\ref{equation-formal-glueing-modules}) and (\ref{equation-reverse})
correspond to the functors $\text{Can}$ and $H^0$.
Hence the result follows from
More on Algebra, Proposition \ref{more-algebra-proposition-equivalence}
in this case.
\medskip\noindent
We return to the general case.
Let $\mathcal{F}$ be a quasi-coherent module on $X$.
We will show that
$$
\alpha :
\mathcal{F}
\longrightarrow
\Ker\left(j_*\mathcal{F}|_U \oplus f_*f^*\mathcal{F} \to
(f \circ j')_*f^*\mathcal{F}|_V\right)
$$
is an isomorphism. Let $(\mathcal{H}, \mathcal{G}, \varphi)$
be an object of $\QCoh(Y \to X, Z)$. We will show that
$$
\beta :
f^*\Ker\left(
j_*\mathcal{H} \oplus f_*\mathcal{G} \to (f \circ j')_*\mathcal{G}|_V
\right)
\longrightarrow
\mathcal{G}
$$
and
$$
\gamma :
j^*\Ker\left(
j_*\mathcal{H} \oplus f_*\mathcal{G} \to (f \circ j')_*\mathcal{G}|_V
\right)
\longrightarrow
\mathcal{H}
$$
are isomorphisms. To see these statements are true it suffices to
look at stalks. Let $\overline{y}$ be a geometric point of $Y$ mapping
to the geometric point $\overline{x}$ of $X$.
\medskip\noindent
Fix an object $(\mathcal{H}, \mathcal{G}, \varphi)$ of $\QCoh(Y \to X, Z)$.
By Lemma \ref{lemma-stalk-formal-glueing}
and a diagram chase (omitted) the canonical map
$$
\Ker(j_*\mathcal{H} \oplus f_*\mathcal{G} \to
(f \circ j')_*\mathcal{G}|_V)_{\overline{x}}
\longrightarrow
\Ker(
j_*\mathcal{H}_{\overline{x}} \oplus \mathcal{G}_{\overline{y}}
\to
j'_*\mathcal{G}_{\overline{y}}
)
$$
is an isomorphism.
\medskip\noindent
In particular, if $\overline{y}$ is a geometric point of $V$, then
we see that $j'_*\mathcal{G}_{\overline{y}} = \mathcal{G}_{\overline{y}}$
and hence that this kernel is equal to $\mathcal{H}_{\overline{x}}$.
This easily implies that $\alpha_{\overline{x}}$, $\beta_{\overline{x}}$,
and $\beta_{\overline{y}}$ are isomorphisms in this case.
\medskip\noindent
Next, assume that $\overline{y}$ is a point of $f^{-1}Z$.
Let $I_{\overline{x}} \subset \mathcal{O}_{X, \overline{x}}$,