forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 1
/
spaces-resolve.tex
1165 lines (990 loc) · 42.7 KB
/
spaces-resolve.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Resolution of Surfaces Revisited}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This chapter discusses resolution of singularities of
Noetherian algebraic spaces of dimension $2$.
We have already discussed resolution of surfaces
for schemes following Lipman \cite{Lipman} in an earlier
chapter. See
Resolution of Surfaces, Section \ref{resolve-section-introduction}.
Most of the results in this chapter are straightforward
consequences of the results on schemes.
\medskip\noindent
Unless specifically mentioned otherwise all geometric objects
in this chapter will be algebraic spaces. Thus if we say
``let $f : X \to Y$ be a modification'' then this means that
$f$ is a morphism as in Spaces over Fields, Definition
\ref{spaces-over-fields-definition-modification}.
Similarly for proper morphism, etc, etc.
\section{Modifications}
\label{section-modifications}
\noindent
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local ring. We set
$S = \Spec(A)$ and $U = S \setminus \{\mathfrak m\}$. In this section
we will consider the category
\begin{equation}
\label{equation-modification}
\left\{
f : X \longrightarrow S
\quad \middle| \quad
\begin{matrix}
X\text{ is an algebraic space}\\
f\text{ is a proper morphism}\\
f^{-1}(U) \to U\text{ is an isomorphism}
\end{matrix}
\right\}
\end{equation}
A morphism from $X/S$ to $X'/S$ will be a morphism of algebraic spaces
$X \to X'$ compatible with the structure morphisms over $S$. In
Restricted Power Series, Section \ref{restricted-section-modifications}
we have seen that this category only depends on the completion of $A$
and we have proven some elementary properties of objects in this category.
In this section we specifically study cases where
$\dim(A) \leq 2$ or where the dimension of the closed fibre is at most $1$.
\begin{lemma}
\label{lemma-modification}
Let $(A, \mathfrak m, \kappa)$ be a $2$-dimensional Noetherian
local domain such that $U = \Spec(A) \setminus \{\mathfrak m\}$
is a normal scheme. Then any modification $f : X \to \Spec(A)$
is a morphism as in (\ref{equation-modification}).
\end{lemma}
\begin{proof}
Let $f : X \to S$ be a modification. We have to show that
$f^{-1}(U) \to U$ is an isomorphism. Since every closed point $u$ of $U$
has codimension $1$, this follows from
Spaces over Fields, Lemma
\ref{spaces-over-fields-lemma-modification-normal-iso-over-codimension-1}.
\end{proof}
\begin{lemma}
\label{lemma-closed-immersion-on-fibre}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local ring.
Let $g : X \to Y$ be a morphism in the category (\ref{equation-modification}).
If the induced morphism $X_\kappa \to Y_\kappa$ of special fibres is
a closed immersion, then $g$ is a closed immersion.
\end{lemma}
\begin{proof}
This is a special case of
More on Morphisms of Spaces, Lemma
\ref{spaces-more-morphisms-lemma-where-closed-immersion}.
\end{proof}
\begin{lemma}
\label{lemma-projective-over-complete}
Let $(A, \mathfrak m, \kappa)$ be a complete Noetherian local ring.
Let $X$ be an algebraic space over $\Spec(A)$.
If $X \to \Spec(A)$ is proper and $\dim(X_\kappa) \leq 1$, then
$X$ is a scheme projective over $A$.
\end{lemma}
\begin{proof}
By Spaces over Fields, Lemma
\ref{spaces-over-fields-lemma-codim-1-point-in-schematic-locus}
the algebraic space $X_\kappa$ is a scheme. Hence $X_\kappa$
is a proper scheme of dimension $\leq 1$ over $\kappa$.
By Varieties, Lemma \ref{varieties-lemma-dim-1-proper-projective}
we see that $X_\kappa$ is H-projective over $\kappa$.
Let $\mathcal{L}$ be an ample invertible sheaf on $X_\kappa$.
\medskip\noindent
We are going to show that $\mathcal{L}$ lifts to a compatible system
$\{\mathcal{L}_n\}$ of
invertible sheaves on the $n$th infinitesimal neighbourhoods
$$
X_n = X \times_{\Spec(A)} \Spec(A/\mathfrak m^n)
$$
of $X_\kappa = X_1$. Recall that the \'etale sites of $X_\kappa$
and all $X_n$ are canonically equivalent, see
More on Morphisms of Spaces, Lemma
\ref{spaces-more-morphisms-lemma-thickening-equivalence}.
In the rest of the proof we do not distinguish between sheaves on $X_n$
and sheaves on $X_m$ or $X_\kappa$.
Suppose, given a lift $\mathcal{L}_n$ to $X_n$. We consider
the exact sequence
$$
1 \to
(1 + \mathfrak m^n\mathcal{O}_X/\mathfrak m^{n + 1}\mathcal{O}_X)^* \to
\mathcal{O}_{X_{n + 1}}^* \to \mathcal{O}_{X_n}^* \to 1
$$
of sheaves on $X_{n + 1}$. We have
$(1 + \mathfrak m^n\mathcal{O}_X/\mathfrak m^{n + 1}\mathcal{O}_X)^*
\cong \mathfrak m^n\mathcal{O}_X/\mathfrak m^{n + 1}\mathcal{O}_X$
as abelian sheaves on $X_{n + 1}$. The class of $\mathcal{L}_n$ in
$H^1(X_n, \mathcal{O}_{X_n}^*)$ (see
Cohomology on Sites, Lemma \ref{sites-cohomology-lemma-h1-invertible})
can be lifted to an element of $H^1(X_{n + 1}, \mathcal{O}_{X_{n + 1}}^*)$
if and only if the obstruction in
$H^2(X_{n + 1}, \mathfrak m^n\mathcal{O}_X/\mathfrak m^{n + 1}\mathcal{O}_X)$
is zero. Note that
$\mathfrak m^n\mathcal{O}_X/\mathfrak m^{n + 1}\mathcal{O}_X$
is a quasi-coherent $\mathcal{O}_{X_\kappa}$-module on $X_\kappa$.
Hence its \'etale cohomology agrees with its cohomology on the
scheme $X_\kappa$, see
Descent, Proposition \ref{descent-proposition-same-cohomology-quasi-coherent}.
However, as $X_\kappa$ is a Noetherian scheme of dimension $\leq 1$
this cohomology group vanishes (Cohomology, Proposition
\ref{cohomology-proposition-vanishing-Noetherian}).
\medskip\noindent
By Grothendieck's algebraization theorem
(Cohomology of Schemes, Theorem \ref{coherent-theorem-algebraization})
we find a projective morphism of schemes $Y \to \Spec(A)$ and a compatible
system of isomorphisms $X_n \to Y_n$. Here we use the assumption
that $A$ is complete. By
More on Morphisms of Spaces, Lemma
\ref{spaces-more-morphisms-lemma-algebraize-morphism}
we see that $X \cong Y$ and the proof is complete.
\end{proof}
\begin{lemma}
\label{lemma-dimension-special-fibre}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local domain
of dimension $\geq 1$.
Let $f : X \to \Spec(A)$ be a morphism of algebraic spaces.
Assume at least one of the following conditions is satisfied
\begin{enumerate}
\item $f$ is a modification (Spaces over Fields, Definition
\ref{spaces-over-fields-definition-modification}),
\item $f$ is an alteration (Spaces over Fields, Definition
\ref{spaces-over-fields-definition-alteration}),
\item $f$ is locally of finite type, quasi-separated, $X$ is integral,
and there is exactly one point of $|X|$ mapping to the generic point
of $\Spec(A)$,
\item $f$ is locally of finite type, $X$ is decent, and the points
of $|X|$ mapping to the generic point of $\Spec(A)$ are
the generic points of irreducible components of $|X|$,
\item add more here.
\end{enumerate}
Then $\dim(X_\kappa) \leq \dim(A) - 1$.
\end{lemma}
\begin{proof}
Cases (1), (2), and (3) are special cases of (4). Choose an affine scheme
$U = \Spec(B)$ and an \'etale morphism $U \to X$. The ring map $A \to B$
is of finite type. We have to show that
$\dim(U_\kappa) \leq \dim(A) - 1$. Since $X$ is decent, the generic
points of irreducible components of $U$ are the points lying over
generic points of irreducible components of $|X|$, see
Decent Spaces, Lemma \ref{decent-spaces-lemma-decent-generic-points}.
Hence the fibre of $\Spec(B) \to \Spec(A)$ over $(0)$
is the (finite) set of minimal primes $\mathfrak q_1, \ldots, \mathfrak q_r$
of $B$. Thus $A_f \to B_f$ is finite for some nonzero $f \in A$
(Algebra, Lemma \ref{algebra-lemma-generically-finite}).
We conclude the field extensions $f.f.(A) \subset \kappa(\mathfrak q_i)$
are finite. Let $\mathfrak q \subset B$ be a prime lying over $\mathfrak m$.
Then
$$
\dim(B_\mathfrak q) = \max \dim((B/\mathfrak q_i)_{\mathfrak q})
\leq \dim(A)
$$
the inequality by the dimension formula for $A \subset B/\mathfrak q_i$, see
Algebra, Lemma \ref{algebra-lemma-dimension-formula}.
However, the dimension of $B_\mathfrak q/\mathfrak m B_\mathfrak q$
(which is the local ring of $U_\kappa$ at the corresponding point)
is at least one less because the minimal primes $\mathfrak q_i$
are not in $V(\mathfrak m)$. We conclude by
Properties, Lemma \ref{properties-lemma-dimension}.
\end{proof}
\begin{lemma}
\label{lemma-modification-of-dim-2-is-projective-over-complete}
If $(A, \mathfrak m, \kappa)$ is a complete Noetherian local domain
of dimension $2$, then every modification of $\Spec(A)$ is projective over $A$.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-projective-over-complete} it suffices to show that
the special fibre of any modification $X$ of $\Spec(A)$ has dimension
$\leq 1$. This follows from Lemma \ref{lemma-dimension-special-fibre}.
\end{proof}
\section{Strategy}
\label{section-strategy}
\noindent
Let $S$ be a scheme. Let $X$ be a decent algebraic space over $S$.
Let $x_1, \ldots, x_n \in |X|$ be pairwise distinct closed points.
For each $i$ we pick an elementary \'etale neighbourhood
$(U_i, u_i) \to (X, x_i)$ as in Decent Spaces, Lemma
\ref{decent-spaces-lemma-decent-space-elementary-etale-neighbourhood}.
This means that $U_i$ is an affine scheme, $U_i \to X$ is \'etale,
$u_i$ is the unique point of $U_i$ lying over $x_i$, and
$\Spec(\kappa(u_i)) \to X$ is a monomorphism representing $x_i$.
After shrinking $U_i$ we may and do assume that for $j \not = i$
there does not exist a point of $U_i$ mapping to $x_j$.
Observe that $u_i \in U_i$ is a closed point.
\medskip\noindent
Denote $\mathcal{C}_{X, \{x_1, \ldots, x_n\}}$ the category of
morphisms of algebraic spaces $f : Y \to X$ which induce an isomorphism
$f^{-1}(X \setminus \{x_1, \ldots, x_n\}) \to X \setminus \{x_1, \ldots, x_n\}$.
For each $i$ denote $\mathcal{C}_{U_i, u_i}$ the category of
morphisms of algebraic spaces $g_i : Y_i \to U_i$ which induce an
isomorphism $g_i^{-1}(U_i \setminus \{u_i\}) \to U_i \setminus \{u_i\}$.
Base change defines an functor
\begin{equation}
\label{equation-equivalence}
F :
\mathcal{C}_{X, \{x_1, \ldots, x_n\}}
\longrightarrow
\mathcal{C}_{U_1, u_1} \times \ldots \times \mathcal{C}_{U_n, u_n}
\end{equation}
To reduce at least some of the problems in this chapter to the case
of schemes we have the following lemma.
\begin{lemma}
\label{lemma-equivalence}
The functor $F$ (\ref{equation-equivalence}) is an equivalence.
\end{lemma}
\begin{proof}
For $n = 1$ this is Limits of Spaces, Lemma
\ref{spaces-limits-lemma-excision-modifications}.
For $n > 1$ the lemma can be proved in exactly the same way or it
can be deduced from it. For example, suppose that
$g_i : Y_i \to U_i$ are objects of $\mathcal{C}_{U_i, u_i}$.
Then by the case $n = 1$ we can find $f'_i : Y'_i \to X$
which are isomorphisms over $X \setminus \{x_i\}$ and whose
base change to $U_i$ is $f_i$. Then we can set
$$
f : Y = Y'_1 \times_X \ldots \times_X Y'_n \to X
$$
This is an object of $\mathcal{C}_{X, \{x_1, \ldots, x_n\}}$
whose base change by $U_i \to X$ recovers $g_i$. Thus the functor
is essentially surjective. We omit the proof of
fully faithfulness.
\end{proof}
\begin{lemma}
\label{lemma-equivalence-properties}
Let $X, x_i, U_i \to X, u_i$ be as in (\ref{equation-equivalence}).
If $f : Y \to X$ corresponds to $g_i : Y_i \to U_i$ under $F$,
then $f$ is quasi-compact, quasi-separated, separated, locally of finite
presentation, of finite presentation, locally of finite type, of finite type,
proper, integral, finite, if and only if $g_i$ is so
for $i = 1, \ldots, n$.
\end{lemma}
\begin{proof}
Follows from Limits of Spaces, Lemma
\ref{spaces-limits-lemma-excision-modifications-properties}.
\end{proof}
\begin{lemma}
\label{lemma-equivalence-fibre}
Let $X, x_i, U_i \to X, u_i$ be as in (\ref{equation-equivalence}).
If $f : Y \to X$ corresponds to $g_i : Y_i \to U_i$ under $F$,
then $Y_{x_i} \cong (Y_i)_{u_i}$ as algebraic spaces.
\end{lemma}
\begin{proof}
This is clear because $u_i \to x_i$ is an isomorphism.
\end{proof}
\section{Dominating by quadratic transformations}
\label{section-quadratic-spaces}
\noindent
We define the blow up of a space at a point only if $X$ is decent.
\begin{definition}
\label{definition-blowup-at-point}
Let $S$ be a scheme. Let $X$ be a decent algebraic space over $S$.
Let $x \in |X|$ be a closed point. By
Decent Spaces, Lemma \ref{decent-spaces-lemma-decent-space-closed-point}
we can represent $x$ by a closed immersion $i : \Spec(k) \to X$.
The {\it blowing up $X' \to X$ of $X$ at $x$} means the blowing up of $X$
in the closed subspace $Z = i(\Spec(k)) \subset X$.
\end{definition}
\noindent
In this generality the blowing up of $X$ at $x$ is not necessarily proper.
However, if $X$ is locally Noetherian, then it follows from
Divisors on Spaces, Lemma \ref{spaces-divisors-lemma-blowing-up-projective}
that the blowing up is proper.
Recall that a locally Noetherian algebraic space is Noetherian if
and only if it is quasi-compact and quasi-separated. Moreover, for
a locally Noetherian algebraic space, being quasi-separated is
equivalent to being decent (Decent Spaces, Lemma
\ref{decent-spaces-lemma-locally-Noetherian-decent-quasi-separated}).
\begin{lemma}
\label{lemma-equivalence-sequence-blowups}
Let $X, x_i, U_i \to X, u_i$ be as in (\ref{equation-equivalence})
and assume $f : Y \to X$ corresponds to $g_i : Y_i \to U_i$ under $F$.
Then there exists a factorization
$$
Y = Z_m \to Z_{m - 1} \to \ldots \to Z_1 \to Z_0 = X
$$
of $f$ where $Z_{j + 1} \to Z_j$ is the blowing up of $Z_j$ at a closed
point $z_j$ lying over $\{x_1, \ldots, x_n\}$ if and only if for each
$i$ there exists a factorization
$$
Y_i = Z_{i, m_i} \to Z_{i, m_i - 1} \to \ldots \to Z_{i, 1} \to Z_{i, 0} = U_i
$$
of $g_i$ where $Z_{i, j + 1} \to Z_{i, j}$ is the blowing up of $Z_{i, j}$
at a closed point $z_{i, j}$ lying over $u_i$.
\end{lemma}
\begin{proof}
A blowing up is a representable morphism. Hence in either case
we inductively see that $Z_j \to X$ or $Z_{i, j} \to U_i$ is
representable. Whence each $Z_j$ or $Z_{i, j}$ is a decent
algebraic space by Decent Spaces, Lemma
\ref{decent-spaces-lemma-representable-named-properties}.
This shows that the assertions make sense (since blowing up
is only defined for decent spaces).
To prove the equivalence, let's start with a sequence of blowups
$Z_m \to Z_{m - 1} \to \ldots \to Z_1 \to Z_0 = X$.
The first morphism $Z_1 \to X$ is given
by blowing up one of the $x_i$, say $x_1$. Applying $F$
to $Z_1 \to X$ we find a blow up $Z_{1, 1} \to U_1$ at $u_1$
is the blowing up at $u_1$ and otherwise $Z_{i, 0} = U_i$ for $i > 1$.
In the next step, we either blow up one of the $x_i$, $i \geq 2$
on $Z_1$ or we pick a closed point $z_1$ of the fibre of $Z_1 \to X$
over $x_1$. In the first case it is clear what to do and in
the second case we use that $(Z_1)_{x_1} \cong (Z_{1, 1})_{u_1}$
(Lemma \ref{lemma-equivalence-fibre})
to get a closed point $z_{1, 1} \in Z_{1, 1}$ corresponding to $z_1$.
Then we set $Z_{1, 2} \to Z_{1, 1}$ equal to the blowing up
in $z_{1, 1}$. Continuing in this manner we construct the factorizations
of each $g_i$.
\medskip\noindent
Conversely, given sequences of blowups
$Z_{i, m_i} \to Z_{i, m_i - 1} \to \ldots \to Z_{i, 1} \to Z_{i, 0} = U_i$
we construct the sequence of blowing ups of $X$ in exactly the same manner.
\end{proof}
\begin{lemma}
\label{lemma-make-ideal-principal}
Let $S$ be a scheme. Let $X$ be a Noetherian algebraic space over $S$.
Let $T \subset |X|$ be a finite set of closed points $x$ such that
(1) $X$ is regular at $x$ and (2) the local ring of $X$ at $x$ has
dimension $2$. Let $\mathcal{I} \subset \mathcal{O}_X$ be a quasi-coherent
sheaf of ideals such that $\mathcal{O}_X/\mathcal{I}$ is supported on $T$.
Then there exists a sequence
$$
X_m \to X_{m - 1} \to \ldots \to X_1 \to X_0 = X
$$
where $X_{j + 1} \to X_j$ is the blowing up of $X_j$ at a closed
point $x_j$ lying above a point of $T$ such that
$\mathcal{I}\mathcal{O}_{X_n}$ is an invertible ideal sheaf.
\end{lemma}
\begin{proof}
Say $T = \{x_1, \ldots, x_r\}$. Pick elementary \'etale neighbourhoods
$(U_i, u_i) \to (X, x_i)$ as in Section \ref{section-strategy}.
For each $i$ the restriction
$\mathcal{I}_i = \mathcal{I}|_{U_i} \subset \mathcal{O}_{U_i}$
is a quasi-coherent sheaf of ideals supported at $u_i$.
The local ring of $U_i$ at $u_i$ is regular and has dimension $2$.
Thus we may apply
Resolution of Surfaces, Lemma \ref{resolve-lemma-make-ideal-principal}
to find a sequence
$$
X_{i, m_i} \to X_{i, m_i - 1} \to \ldots \to X_1 \to X_{i, 0} = U_i
$$
of blowing ups in closed points lying over $u_i$ such that
$\mathcal{I}_i \mathcal{O}_{X_{i, m_i}}$ is invertible.
By Lemma \ref{lemma-equivalence-sequence-blowups}
we find a sequence of blowing ups
$$
X_m \to X_{m - 1} \to \ldots \to X_1 \to X_0 = X
$$
as in the statement of the lemma whose base change to our $U_i$
produces the given sequences. It follows that
$\mathcal{I}\mathcal{O}_{X_n}$ is an invertible ideal sheaf.
Namely, we know this is true over $X \setminus \{x_1, \ldots, x_n\}$
and in an \'etale neighbourhood of the fibre of each $x_i$
it is true by construction.
\end{proof}
\begin{lemma}
\label{lemma-dominate-by-blowing-up-in-points}
Let $S$ be a scheme. Let $X$ be a Noetherian algebraic space over $S$.
Let $T \subset |X|$ be a finite set of closed points $x$ such that
(1) $X$ is regular at $x$ and (2) the local ring of $X$ at $x$ has
dimension $2$. Let $f : Y \to X$ be a proper morphism of
algebraic spaces which is an isomorphism over $U = X \setminus T$.
Then there exists a sequence
$$
X_n \to X_{n - 1} \to \ldots \to X_1 \to X_0 = X
$$
where $X_{i + 1} \to X_i$ is the blowing up of $X_i$ at a closed
point $x_i$ lying above a point of $T$ and a factorization $X_n \to Y \to X$
of the composition.
\end{lemma}
\begin{proof}
By More on Morphisms of Spaces,
Lemma \ref{spaces-more-morphisms-lemma-dominate-modification-by-blowup}
there exists a $U$-admissible blowup $X' \to X$ which dominates
$Y \to X$. Hence we may assume there exists an ideal sheaf
$\mathcal{I} \subset \mathcal{O}_X$ such that
$\mathcal{O}_X/\mathcal{I}$ is supported on $T$ and such that
$Y$ is the blowing up of $X$ in $\mathcal{I}$.
By Lemma \ref{lemma-make-ideal-principal}
there exists a sequence
$$
X_n \to X_{n - 1} \to \ldots \to X_1 \to X_0 = X
$$
where $X_{i + 1} \to X_i$ is the blowing up of $X_i$ at a closed
point $x_i$ lying above a point of $T$ such that
$\mathcal{I}\mathcal{O}_{X_n}$ is an invertible ideal sheaf.
By the universal property of blowing up
(Divisors on Spaces, Lemma
\ref{spaces-divisors-lemma-universal-property-blowing-up})
we find the desired factorization.
\end{proof}
\section{Dominating by normalized blowups}
\label{section-normalized-blowups}
\noindent
In this section we prove that a modification of a surface can be dominated
by a sequence of normalized blowups in poins.
\begin{definition}
\label{definition-normalized-blowup}
Let $S$ be a scheme. Let $X$ be a decent algebraic space over $S$ satisfying
the equivalent conditions of
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-prepare-normalization}.
Let $x \in |X|$ be a closed point. The {\it normalized blowup of $X$ at $x$}
is the composition $X'' \to X' \to X$ where $X' \to X$ is the blowup
of $X$ at $x$ (Definition \ref{definition-blowup-at-point})
and $X'' \to X'$ is the normalization of $X'$.
\end{definition}
\noindent
Here the normalization $X'' \to X'$ is defined as the algebraic space
$X'$ satisfies the equivalent conditions of
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-prepare-normalization}
by
Divisors on Spaces, Lemma
\ref{spaces-divisors-lemma-blowup-finite-nr-irreducibles}.
See Morphisms of Spaces, Definition
\ref{spaces-morphisms-definition-normalization}
for the definition of the normalization.
\medskip\noindent
In general the normalized blowing up need not be proper even
when $X$ is Noetherian. Recall that an algebraic space is Nagata if it
has an \'etale covering by affines which are spectra of Nagata rings
(Properties of Spaces, Definition
\ref{spaces-properties-definition-type-property} and
Remark \ref{spaces-properties-remark-list-properties-local-etale-topology} and
Properties, Definition \ref{properties-definition-nagata}).
\begin{lemma}
\label{lemma-Nagata-normalized-blowup}
In Definition \ref{definition-normalized-blowup} if $X$ is Nagata,
then the normalized blowing up of $X$ at $x$ is a
normal Nagata algebraic space proper over $X$.
\end{lemma}
\begin{proof}
The blowup morphism $X' \to X$ is proper
(as $X$ is locally Noetherian we may apply
Divisors on Spaces, Lemma \ref{spaces-divisors-lemma-blowing-up-projective}).
Thus $X'$ is Nagata
(Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-finite-type-nagata}).
Therefore the normalization $X'' \to X'$ is finite
(Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-nagata-normalization})
and we conclude that $X'' \to X$ is proper as well
(Morphisms of Spaces, Lemmas \ref{spaces-morphisms-lemma-finite-proper} and
\ref{spaces-morphisms-lemma-composition-proper}).
It follows that the normalized blowing up
is a normal (Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-normalization-normal})
Nagata algebraic space.
\end{proof}
\noindent
Here is the analogue of
Lemma \ref{lemma-equivalence-sequence-blowups}
for normalized blowups.
\begin{lemma}
\label{lemma-equivalence-sequence-normalized-blowups}
Let $X, x_i, U_i \to X, u_i$ be as in (\ref{equation-equivalence})
and assume $f : Y \to X$ corresponds to $g_i : Y_i \to U_i$ under $F$.
Assume $X$ satisfies the equivalent conditions of
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-prepare-normalization}.
Then there exists a factorization
$$
Y = Z_m \to Z_{m - 1} \to \ldots \to Z_1 \to Z_0 = X
$$
of $f$ where $Z_{j + 1} \to Z_j$ is the normalized blowing up of $Z_j$
at a closed point $z_j$ lying over $\{x_1, \ldots, x_n\}$ if and only if
for each $i$ there exists a factorization
$$
Y_i = Z_{i, m_i} \to Z_{i, m_i - 1} \to \ldots \to Z_{i, 1} \to Z_{i, 0} = U_i
$$
of $g_i$ where $Z_{i, j + 1} \to Z_{i, j}$ is the normalized blowing up of
$Z_{i, j}$ at a closed point $z_{i, j}$ lying over $u_i$.
\end{lemma}
\begin{proof}
This follows by the exact same argument as used to prove
Lemma \ref{lemma-equivalence-sequence-blowups}.
\end{proof}
\noindent
A Nagata algebraic space is locally Noetherian.
\begin{lemma}
\label{lemma-dominate-by-normalized-blowing-up}
Let $S$ be a scheme. Let $X$ be a Noetherian Nagata algebraic space over $S$
with $\dim(X) = 2$. Let $f : Y \to X$ be a proper birational morphism.
Then there exists a commutative diagram
$$
\xymatrix{
X_n \ar[r] \ar[d] &
X_{n - 1} \ar[r] &
\ldots \ar[r] &
X_1 \ar[r] &
X_0 \ar[d] \\
Y \ar[rrrr] & & & & X
}
$$
where $X_0 \to X$ is the normalization and
where $X_{i + 1} \to X_i$ is the normalized blowing up of $X_i$ at a closed
point.
\end{lemma}
\begin{proof}
Although one can prove this lemma directly for algebraic spaces,
we will continue the approach used above to reduce it to the case
of schemes.
\medskip\noindent
We will use that Noetherian algebraic spaces are quasi-separated
and hence points have well defined residue fields (for example by
Decent Spaces, Lemma
\ref{decent-spaces-lemma-decent-space-elementary-etale-neighbourhood}).
We will use the results of Morphisms of Spaces, Sections
\ref{spaces-morphisms-section-nagata},
\ref{spaces-morphisms-section-dimension-formula}, and
\ref{spaces-morphisms-section-normalization} without further mention.
We may replace $Y$ by its normalization. Let $X_0 \to X$ be the normalization.
The morphism $Y \to X$ factors through $X_0$.
Thus we may assume that both $X$ and $Y$ are normal.
\medskip\noindent
Assume $X$ and $Y$ are normal. The morphism $f : Y \to X$ is an isomorphism
over an open which contains every point of codimension $0$ and $1$ in $Y$ and
every point of $Y$ over which the fibre is finite, see
Spaces over Fields, Lemma
\ref{spaces-over-fields-lemma-modification-normal-iso-over-codimension-1}.
Hence we see that there is a finite set of closed points $T \subset |X|$
such that $f$ is an isomorphism over $X \setminus T$.
By More on Morphisms of Spaces, Lemma
\ref{spaces-more-morphisms-lemma-dominate-modification-by-blowup}
there exists an $X \setminus T$-admissible blowup $Y' \to X$
which dominates $Y$. After replacing $Y$ by the normalization of
$Y'$ we see that we may assume that $Y \to X$ is representable.
\medskip\noindent
Say $T = \{x_1, \ldots, x_r\}$. Pick elementary \'etale neighbourhoods
$(U_i, u_i) \to (X, x_i)$ as in Section \ref{section-strategy}.
For each $i$ the morphism $Y_i = Y \times_X U_i \to U_i$
is a proper birational morphism which is an isomorphism over
$U_i \setminus \{u_i\}$. Thus we may apply
Resolution of Surfaces, Lemma
\ref{resolve-lemma-dominate-by-normalized-blowing-up}
to find a sequence
$$
X_{i, m_i} \to X_{i, m_i - 1} \to \ldots \to X_1 \to X_{i, 0} = U_i
$$
of normalized blowing ups in closed points lying over $u_i$ such that
$X_{i, m_i}$ dominates $Y_i$.
By Lemma \ref{lemma-equivalence-sequence-normalized-blowups}
we find a sequence of normalized blowing ups
$$
X_m \to X_{m - 1} \to \ldots \to X_1 \to X_0 = X
$$
as in the statement of the lemma whose base change to our $U_i$
produces the given sequences. It follows that $X_m$ dominates
$Y$ by the equivalence of categories of
Lemma \ref{lemma-equivalence}.
\end{proof}
\section{Base change to the completion}
\label{section-aux}
\noindent
The following simple lemma will turn out to be a useful tool in what follows.
\begin{lemma}
\label{lemma-iso-completions}
Let $(A, \mathfrak m, \kappa)$ be a local ring with finitely generated
maximal ideal $\mathfrak m$. Let $X$ be a decent algebraic
space over $A$. Let $Y = X \times_{\Spec(A)} \Spec(A^\wedge)$ where
$A^\wedge$ is the $\mathfrak m$-adic completion of $A$.
For a point $q \in |Y|$ with image $p \in |X|$ lying
over the closed point of $\Spec(A)$ the map
$\mathcal{O}_{X, p}^h \to \mathcal{O}_{Y, q}^h$
of henselian local rings induces an isomorphism on completions.
\end{lemma}
\begin{proof}
This follows immediately from the case of schemes by
choosing an elementary \'etale neighbourhood $(U, u) \to (X, p)$
as in Decent Spaces, Lemma
\ref{decent-spaces-lemma-decent-space-elementary-etale-neighbourhood},
setting $V = U \times_X Y = U \times_{\Spec(A)} \Spec(A^\wedge)$
and $v = (u, q)$.
The case of schemes is
Resolution of Surfaces, Lemma \ref{resolve-lemma-iso-completions}.
\end{proof}
\begin{lemma}
\label{lemma-port-regularity-to-completion}
Let $(A, \mathfrak m, \kappa)$ be a Noetherian local ring.
Let $X \to \Spec(A)$ be a morphism which is locally of finite type
with $X$ a decent algebraic space. Set
$Y = X \times_{\Spec(A)} \Spec(A^\wedge)$. Let $y \in |Y|$
with image $x \in |X|$. Then
\begin{enumerate}
\item if $\mathcal{O}_{Y, y}^h$ is regular, then
$\mathcal{O}_{X, x}^h$ is regular,
\item if $y$ is in the closed fibre, then $\mathcal{O}_{Y, y}^h$ is regular
$\Leftrightarrow \mathcal{O}_{X, x}^h$ is regular, and
\item If $X$ is proper over $A$, then $X$ is regular
if and only if $Y$ is regular.
\end{enumerate}
\end{lemma}
\begin{proof}
By \'etale localization the first two statements follow
immediately from the counter part to this lemma for schemes, see
Resolution of Surfaces, Lemma \ref{resolve-lemma-port-regularity-to-completion}.
For part (3), since $Y \to X$ is surjective (as $A \to A^\wedge$
is faithfully flat) we see that $Y$ regular implies $X$ regular
by part (1). Conversely, if $X$ is regular, then the henselian
local rings of $Y$ are regular for all points of the special fibre.
Let $y \in |Y|$ be a general point.
Since $|Y| \to |\text{Spec}(A^\wedge)|$ is closed in the proper
case, we can find a specialization $y \leadsto y_0$ with
$y_0$ in the closed fibre. Choose an elementary \'etale
neighbourhood $(V, v_0) \to (Y, y_0)$ as in
Decent Spaces, Lemma
\ref{decent-spaces-lemma-decent-space-elementary-etale-neighbourhood}.
Since $Y$ is decent we can lift $y \leadsto y_0$ to a specialization
$v \leadsto v_0$ in $V$
(Decent Spaces, Lemma \ref{decent-spaces-lemma-decent-specialization}).
Then we conclude that
$\mathcal{O}_{V, v}$ is a localization of $\mathcal{O}_{V, v_0}$
hence regular and the proof is complete.
\end{proof}
\begin{lemma}
\label{lemma-formally-unramified}
Let $(A, \mathfrak m)$ be a local Noetherian ring. Let
$X$ be an algebraic space over $A$. Assume
\begin{enumerate}
\item $A$ is analytically unramified
(Algebra, Definition \ref{algebra-definition-analytically-unramified}),
\item $X$ is locally of finite type over $A$,
\item $X \to \Spec(A)$ is \'etale at every point of codimension $0$ in $X$.
\end{enumerate}
Then the normalization of $X$ is finite over $X$.
\end{lemma}
\begin{proof}
Choose a scheme $U$ and a surjective \'etale morphism $U \to X$.
Then $U \to \Spec(A)$ satisfies the assumptions and hence the
conclusions of
Resolution of Surfaces, Lemma \ref{resolve-lemma-formally-unramified}.
\end{proof}
\section{Implied properties}
\label{section-existence-gives}
\noindent
In this section we prove that for a Noetherian integral algebraic space
the existence of a regular alteration has quite a few consequences.
This section should be skipped by those not interested in ``bad''
Noetherian algebraic spaces.
\begin{lemma}
\label{lemma-regular-alteration-implies}
Let $S$ be a scheme. Let $Y$ be a Noetherian integral algebraic space
over $S$. Assume there exists an alteration
$f : X \to Y$ with $X$ regular. Then the normalization $Y^\nu \to Y$
is finite and $Y$ has a dense open which is regular.
\end{lemma}
\begin{proof}
By \'etale localization, it suffices to prove this when
$Y = \Spec(A)$ where $A$ is a Noetherian domain.
Let $B$ be the integral closure of $A$ in its fraction field.
Set $C = \Gamma(X, \mathcal{O}_X)$. By
Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-proper-pushforward-coherent}
we see that $C$ is a finite $A$-module.
As $X$ is normal
(Properties of Spaces, Lemma
\ref{spaces-properties-lemma-regular-normal})
we see that $C$ is normal domain
(Spaces over Fields, Lemma
\ref{spaces-over-fields-lemma-normal-integral-sections}).
Thus $B \subset C$ and we conclude that $B$ is finite over $A$
as $A$ is Noetherian.
\medskip\noindent
There exists a nonempty open $V \subset Y$ such that $f^{-1}V \to V$
is finite, see Spaces over Fields, Definition
\ref{spaces-over-fields-definition-alteration}.
After shrinking $V$ we may assume that $f^{-1}V \to V$ is flat
(Morphisms of Spaces, Proposition
\ref{spaces-morphisms-proposition-generic-flatness-reduced}).
Thus $f^{-1}V \to V$ is faithfully flat. Then $V$ is regular by
Algebra, Lemma \ref{algebra-lemma-descent-regular}.
\end{proof}
\begin{lemma}
\label{lemma-regular-alteration-implies-local}
Let $(A, \mathfrak m, \kappa)$ be a local Noetherian domain.
Assume there exists an alteration $f : X \to \Spec(A)$
with $X$ regular. Then
\begin{enumerate}
\item there exists a nonzero $f \in A$ such that $A_f$ is regular,
\item the integral closure $B$ of $A$ in its fraction field is finite over $A$,
\item the $\mathfrak m$-adic completion of $B$ is a normal ring, i.e., the
completions of $B$ at its maximal ideals are normal domains, and
\item the generic formal formal fibre of $A$ is regular.
\end{enumerate}
\end{lemma}
\begin{proof}
Parts (1) and (2) follow from Lemma \ref{lemma-regular-alteration-implies}.
We have to redo part of the proof of that lemma in order to set up notation
for the proof of (3). Set $C = \Gamma(X, \mathcal{O}_X)$. By
Cohomology of Spaces, Lemma
\ref{spaces-cohomology-lemma-proper-pushforward-coherent}
we see that $C$ is a finite $A$-module.
As $X$ is normal
(Properties of Spaces, Lemma
\ref{spaces-properties-lemma-regular-normal})
we see that $C$ is normal domain
(Spaces over Fields, Lemma
\ref{spaces-over-fields-lemma-normal-integral-sections}).
Thus $B \subset C$ and we conclude that $B$ is finite over $A$
as $A$ is Noetherian. By
Resolution of Surfaces, Lemma \ref{resolve-lemma-algebra-helper}
in order to prove (3) it suffices to show
that the $\mathfrak m$-adic completion $C^\wedge$ is normal.
\medskip\noindent
By Algebra, Lemma \ref{algebra-lemma-completion-finite-extension}
the completion $C^\wedge$ is the product of the completions of
$C$ at the prime ideals of $C$ lying over $\mathfrak m$.
There are finitely many of these and these are the maximal
ideals $\mathfrak m_1, \ldots, \mathfrak m_r$ of $C$.
(The corresponding result for $B$ explains the final statement of the lemma.)
Thus replacing $A$ by $C_{\mathfrak m_i}$ and $X$ by
$X_i = X \times_{\Spec(C)} \Spec(C_{\mathfrak m_i})$
we reduce to the case discussed in the next paragraph.
(Note that $\Gamma(X_i, \mathcal{O}) = C_{\mathfrak m_i}$ by
Cohomology of Spaces,
Lemma \ref{spaces-cohomology-lemma-flat-base-change-cohomology}.)
\medskip\noindent
Here $A$ is a Noetherian local normal domain and $f : X \to \Spec(A)$
is a regular alteration with $\Gamma(X, \mathcal{O}_X) = A$.
We have to show that the completion $A^\wedge$
of $A$ is a normal domain. By
Lemma \ref{lemma-port-regularity-to-completion}
$Y = X \times_{\Spec(A)} \Spec(A^\wedge)$ is regular.
Since $\Gamma(Y, \mathcal{O}_Y) = A^\wedge$
by Cohomology of Spaces,
Lemma \ref{spaces-cohomology-lemma-flat-base-change-cohomology}.
We conclude that $A^\wedge$ is normal as before.
Namely, $Y$ is normal by Properties of Spaces, Lemma
\ref{spaces-properties-lemma-regular-normal}.
It is connected because $\Gamma(Y, \mathcal{O}_Y) = A^\wedge$ is local.
Hence $Y$ is normal and integral (as connected and normal
implies integral for separated algebraic spaces). Thus
$\Gamma(Y, \mathcal{O}_Y) = A^\wedge$ is a normal domain by
Spaces over Fields, Lemma
\ref{spaces-over-fields-lemma-normal-integral-sections}.
This proves (3).
\medskip\noindent
Proof of (4). Let $\eta \in \Spec(A)$ denote the generic point
and denote by a subscript $\eta$ the base change to $\eta$.
Since $f$ is an alteration, the scheme $X_\eta$ is finite and
faithfully flat over $\eta$. Since $Y = X \times_{\Spec(A)} \Spec(A^\wedge)$
is regular by Lemma \ref{lemma-port-regularity-to-completion}
we see that $Y_\eta$ is regular (as a limit of opens in $Y$).
Then $Y_\eta \to \Spec(A^\wedge \otimes_A f.f.(A))$ is finite
faithfully flat onto the generic formal fibre. We conclude by
Algebra, Lemma \ref{algebra-lemma-descent-regular}.
\end{proof}
\section{Resolution}
\label{section-resolution}
\noindent
Here is a definition.
\begin{definition}
\label{definition-resolution}
Let $S$ be a scheme. Let $Y$ be a Noetherian integral algebraic space over
$S$. A {\it resolution of singularities} of $X$ is a modification
$f : X \to Y$ such that $X$ is regular.
\end{definition}
\noindent
In the case of surfaces we sometimes want a bit more information.
\begin{definition}
\label{definition-resolution-surface}
Let $S$ be a scheme. Let $Y$ be a $2$-dimensional Noetherian integral
algebraic space over $S$. We say $Y$ has a
{\it resolution of singularities by normalized blowups}
if there exists a sequence
$$
Y_n \to X_{n - 1} \to \ldots \to Y_1 \to Y_0 \to Y
$$
where
\begin{enumerate}
\item $Y_i$ is proper over $Y$ for $i = 0, \ldots, n$,
\item $Y_0 \to Y$ is the normalization,
\item $Y_i \to Y_{i - 1}$ is a normalized blowup for $i = 1, \ldots, n$, and
\item $Y_n$ is regular.
\end{enumerate}
\end{definition}
\noindent
Observe that condition (1) implies that the normalization
$Y_0$ of $Y$ is finite over $Y$ and that the normalizations
used in the normalized blowing ups are finite as well.
We finally come to the main theorem of this chapter.
\begin{theorem}
\label{theorem-resolve}
Let $S$ be a scheme. Let $Y$ be a two dimensional integral
Noetherian algebraic space over $S$. The following are equivalent
\begin{enumerate}
\item there exists an alteration $X \to Y$ with $X$ regular,
\item there exists a resolution of singularities of $Y$,
\item $Y$ has a resolution of singularities by normalized blowups,
\item the normalization $Y^\nu \to Y$ is finite and $Y^\nu$ has
finitely many singular points $y_1, \ldots, y_m \in |Y|$ such that the
completions of the henselian local rings $\mathcal{O}_{Y^\nu, y_i}^h$
are normal.
\end{enumerate}
\end{theorem}
\begin{proof}
The implications (3) $\Rightarrow$ (2) $\Rightarrow$ (1) are immediate.
\medskip\noindent
Let $X \to Y$ be an alteration with $X$ regular. Then $Y^\nu \to Y$
is finite by Lemma \ref{lemma-regular-alteration-implies}.
Consider the factorization $f : X \to Y^\nu$ from
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-normalization-normal}.
The morphism $f$ is finite over an open $V \subset Y^\nu$ containing
every point of codimension $\leq 1$ in $Y^\nu$
by Spaces over Fields, Lemma \ref{spaces-over-fields-lemma-finite-in-codim-1}.
Then $f$ is flat over $V$ by
Algebra, Lemma \ref{algebra-lemma-CM-over-regular-flat}
and the fact that a normal local ring
of dimension $\leq 2$ is Cohen-Macaulay by Serre's criterion
(Algebra, Lemma \ref{algebra-lemma-criterion-normal}).
Then $V$ is regular by Algebra, Lemma \ref{algebra-lemma-descent-regular}.
As $Y^\nu$ is Noetherian we conclude that
$Y^\nu \setminus V = \{y_1, \ldots, y_m\}$ is finite.
For each $i$ let $\mathcal{O}_{Y^\nu, y_i}^h$ be the henselian
local ring. Then $X \times_Y \Spec(\mathcal{O}_{Y^\nu, y_i}^h)$
is a regular alteration of $\Spec(\mathcal{O}_{Y^\nu, y_i}^h)$
(some details omitted).
By Lemma \ref{lemma-regular-alteration-implies-local}
the completion of $\mathcal{O}_{Y^\nu, y_i}^h$ is normal.
In this way we see that (1) $\Rightarrow$ (4).
\medskip\noindent
Assume (4). We have to prove (3). We may immediately replace
$Y$ by its normalization. Let $y_1, \ldots, y_m \in |Y|$ be the
singular points. Choose a collection of elementary \'etale neighbourhoods
$(V_i, v_i) \to (Y, y_i)$ as in Section \ref{section-strategy}.
For each $i$ the henselian local ring $\mathcal{O}_{Y^\nu, y_i}^h$
is the henselization of $\mathcal{O}_{V_i, v_i}$.
Hence these rings have isomorphic completions.
Thus by the result for schemes
(Resolution of Surfaces, Theorem \ref{resolve-theorem-resolve})
we see that there exist finite sequences of normalized blowups