forked from stacks/stacks-project
-
Notifications
You must be signed in to change notification settings - Fork 1
/
spaces-simplicial.tex
2126 lines (1908 loc) · 75.7 KB
/
spaces-simplicial.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Simplicial Spaces}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This chapter develops some theory concerning simplicial topological spaces,
simplicial ringed spaces, simplicial schemes, and simplicial algebraic spaces.
The theory of simplicial spaces sometimes allows one to prove local to global
principles which appear difficult to prove in other ways.
Some example applications can be found in the papers
\cite{faltings_finiteness}, \cite{Kiehl}, and \cite{HodgeIII}.
\medskip\noindent
We assume throughout that the reader is familiar with the basic concepts
and results of the chapter Simplical Methods, see
Simplicial, Section \ref{simplicial-section-introduction}.
In particular, we continue to write $X$ and not $X_\bullet$
for a simplicial object.
\section{Simplicial topological spaces}
\label{section-simplicial-top}
\noindent
A {\it simplicial space} is a simplicial object in the category of
topological spaces where morphisms are continuous maps of topological
spaces. (We will use ``simplicial algebraic space'' to refer to simplicial
objects in the category of algebraic spaces.)
We may picture a simplicial space $X$ as follows
$$
\xymatrix{
X_2
\ar@<2ex>[r]
\ar@<0ex>[r]
\ar@<-2ex>[r]
&
X_1
\ar@<1ex>[r]
\ar@<-1ex>[r]
\ar@<1ex>[l]
\ar@<-1ex>[l]
&
X_0
\ar@<0ex>[l]
}
$$
Here there are two morphisms $d^1_0, d^1_1 : X_1 \to X_0$
and a single morphism $s^0_0 : X_0 \to X_1$, etc.
It is important to keep in mind that $d^n_i : X_n \to X_{n - 1}$
should be thought of as a ``projection forgetting the
$i$th coordinate'' and $s^n_j : X_n \to X_{n + 1}$ as the diagonal
map repeating the $j$th coordinate.
\medskip\noindent
Let $X$ be a simplicial space. We associate a site
$X_{Zar}$\footnote{This notation is similar to the notation in
Sites, Example \ref{sites-example-site-topological}
and
Topologies, Definition \ref{topologies-definition-big-small-Zariski}.}
to $X$ as follows.
\begin{enumerate}
\item An object of $X_{Zar}$ is an open $U$ of $X_n$ for some $n$,
\item a morphism $U \to V$ of $X_{Zar}$ is given by a
$\varphi : [m] \to [n]$ where $n, m$ are such that
$U \subset X_n$, $V \subset X_m$ and $\varphi$ is such that
$X(\varphi)(U) \subset V$, and
\item a covering $\{U_i \to U\}$ in $X_{Zar}$ means
that $U, U_i \subset X_n$ are open, the maps $U_i \to U$ are
given by $\text{id} : [n] \to [n]$, and $U = \bigcup U_i$.
\end{enumerate}
Note that in particular, if $U \to V$ is a morphism of $X_{Zar}$
given by $\varphi$, then $X(\varphi) : X_n \to X_m$ does in fact
induce a continuous map $U \to V$ of topological spaces.
\noindent
It is clear that the above is a special case of a construction that
associates to any diagram of topological spaces a site. We formulate
the obligatory lemma.
\begin{lemma}
\label{lemma-simplicial-site}
Let $X$ be a simplicial space. Then $X_{Zar}$
as defined above is a site.
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\noindent
Let $X$ be a simplicial space. Let $\mathcal{F}$ be a sheaf on $X_{Zar}$.
It is clear from the definition of coverings, that the restriction
of $\mathcal{F}$ to the opens of $X_n$ defines a sheaf $\mathcal{F}_n$
on the topological space $X_n$. For every $\varphi : [m] \to [n]$ the
restriction maps of $\mathcal{F}$ for pairs $U \subset X_n$, $V \subset X_m$
with $X(\varphi)(U) \subset V$, define an $X(\varphi)$-map
$\mathcal{F}(\varphi) : \mathcal{F}_m \to \mathcal{F}_n$, see
Sheaves, Definition \ref{sheaves-definition-f-map}.
Moreover, given $\varphi : [m] \to [n]$ and $\psi : [l] \to [m]$
we have
$$
\mathcal{F}(\psi) \circ \mathcal{F}(\varphi) =
\mathcal{F}(\varphi \circ \psi)
$$
(LHS uses composition of $f$-maps, see
Sheaves, Definition \ref{sheaves-definition-composition-f-maps}).
Clearly, the converse is true as well: if we have a system
$(\{\mathcal{F}_n\}_{n \geq 0},
\{\mathcal{F}(\varphi)\}_{\varphi \in \text{Arrows}(\Delta)})$
as above, satisfying the displayed equalities,
then we obtain a sheaf on $X_{Zar}$.
\begin{lemma}
\label{lemma-describe-sheaves-simplicial-site}
Let $X$ be a simplicial space. There is an equivalence of
categories between
\begin{enumerate}
\item $\Sh(X_{Zar})$, and
\item category of systems $(\mathcal{F}_n, \mathcal{F}(\varphi))$
described above.
\end{enumerate}
\end{lemma}
\begin{proof}
See discussion above.
\end{proof}
\begin{lemma}
\label{lemma-simplicial-space-site-functorial}
Let $f : Y \to X$ be a morphism of simplicial spaces.
Then the functor $u : X_{Zar} \to Y_{Zar}$
which associates to the open $U \subset X_n$ the open
$f_n^{-1}(U) \subset Y_n$ defines a morphism of sites
$f_{Zar} : Y_{Zar} \to X_{Zar}$.
\end{lemma}
\begin{proof}
It is clear that $u$ is a continuous functor. Hence we obtain functors
$f_{Zar, *} = u^s$ and $f_{Zar}^{-1} = u_s$, see
Sites, Section \ref{sites-section-morphism-sites}.
To see that we obtain a morphism of sites we have to show
that $u^s$ is exact. We will use
Sites, Lemma \ref{sites-lemma-directed-morphism} to see this.
Let $V \subset Y_n$ be an open subset. The category
$\mathcal{I}_V^u$ (see Sites, Section \ref{sites-section-functoriality-PSh})
consists of pairs $(U, \varphi)$ where
$\varphi : [m] \to [n]$ and $U \subset X_m$ open such that
$Y(\varphi)(V) \subset f_m^{-1}(U)$. Moreover, a morphism
$(U, \varphi) \to (U', \varphi')$ is given by a
$\psi : [m'] \to [m]$ such that $X(\psi)(U) \subset U'$
and $\varphi \circ \psi = \varphi'$.
It is our task to show that $\mathcal{I}_V^u$ is cofiltered.
\medskip\noindent
We verify the conditions of
Categories, Definition \ref{categories-definition-codirected}.
Condition (1) holds because $(X_n, \text{id}_{[n]})$ is an object.
Let $(U, \varphi)$ be an object. The condition
$Y(\varphi)(V) \subset f_m^{-1}(U)$ is equivalent to
$V \subset f_n^{-1}(X(\varphi)^{-1}(U))$. Hence we obtain a morphism
$(X(\varphi)^{-1}(U), \text{id}_{[n]}) \to (U, \varphi)$ given
by setting $\psi = \varphi$. Moreover, given a pair of objects
of the form $(U, \text{id}_{[n]})$ and $(U', \text{id}_{[n]})$
we see there exists an object, namely $(U \cap U', \text{id}_{[n]})$,
which maps to both of them. Thus condition (2) holds.
To verify condition (3) suppose given two morphisms
$a, a': (U, \varphi) \to (U', \varphi')$ given by $\psi, \psi' : [m'] \to [m]$.
Then precomposing with the morphism
$(X(\varphi)^{-1}(U), \text{id}_{[n]}) \to (U, \varphi)$ given
by $\varphi$ equalizes $a, a'$ because
$\varphi \circ \psi = \varphi' = \varphi \circ \psi'$.
This finishes the proof.
\end{proof}
\begin{lemma}
\label{lemma-describe-functoriality}
Let $f : Y \to X$ be a morphism of simplicial spaces. In terms of the
description of sheaves in
Lemma \ref{lemma-describe-sheaves-simplicial-site} the
morphism $f_{Zar}$ of Lemma \ref{lemma-simplicial-space-site-functorial}
can be described as follows.
\begin{enumerate}
\item If $\mathcal{G}$ is a sheaf on $Y$, then
$(f_{Zar, *}\mathcal{G})_n = f_{n, *}\mathcal{G}_n$.
\item If $\mathcal{F}$ is a sheaf on $X$, then
$(f_{Zar}^{-1}\mathcal{F})_n = f_n^{-1}\mathcal{F}_n$.
\end{enumerate}
\end{lemma}
\begin{proof}
The first part is immediate from the definitions. For the second part, note
that in the proof of
Lemma \ref{lemma-simplicial-space-site-functorial}
we have shown that for a $V \subset Y_n$ open the category
$(\mathcal{I}_V^u)^{opp}$ contains as a cofinal subcategory
the category of opens $U \subset X_n$ with $f_n^{-1}(U) \supset V$
and morphisms given by inclusions. Hence we see that the restriction
of $u_p\mathcal{F}$ to opens of $Y_n$ is the presheaf
$f_{n, p}\mathcal{F}_n$ as defined in
Sheaves, Lemma \ref{sheaves-lemma-pullback-presheaves}.
Since $f_{Zar}^{-1}\mathcal{F} = u_s\mathcal{F}$ is the sheafification
of $u_p\mathcal{F}$ and since sheafification uses only coverings and
since coverings in $Y_{Zar}$ use only inclusions between opens on the
same $Y_n$, the result follows from the fact that $f_n^{-1}\mathcal{F}_n$
is (correspondingly) the sheafification of $f_{n, p}\mathcal{F}_n$, see
Sheaves, Section \ref{sheaves-section-presheaves-functorial}.
\end{proof}
\noindent
Let $X$ be a topological space. In
Sites, Example \ref{sites-example-site-topological}
we denoted $X_{Zar}$ the site consisting of opens of $X$
with inclusions as morphisms and coverings given by open coverings.
We identify the topos $\Sh(X_{Zar})$ with the category
of sheaves on $X$.
\begin{lemma}
\label{lemma-restriction-to-components}
Let $X$ be a simplicial space. The functor
$X_{n, Zar} \to X_{Zar}$, $U \mapsto U$ is continuous
and cocontinuous. The associated morphism of
topoi $g : \Sh(X_n) \to \Sh(X_{Zar})$ satisfies
\begin{enumerate}
\item $g^{-1}$ associates to the sheaf $\mathcal{F}$ on $X$
the sheaf $\mathcal{F}_n$ on $X_n$,
\item $g^{-1}$ has a left adjoint $g^{Sh}_!$ which commutes
with finite connected limits,
\item $g^{-1} : \textit{Ab}(X_{Zar}) \to \textit{Ab}(X_n)$
has a left adjoint $g_! : \textit{Ab}(X_n) \to \textit{Ab}(X_{Zar})$
which is exact.
\end{enumerate}
\end{lemma}
\begin{proof}
Besides the properties of our functor mentioned in the statement,
the category $X_{n, Zar}$ has fibre products and equalizers
and the functor commutes with them (beware that $X_{Zar}$ does not
have all fibre products). Hence the lemma follows from the discussion in
Sites, Sections \ref{sites-section-cocontinuous-functors} and
\ref{sites-section-cocontinuous-morphism-topoi}
and
Modules on Sites, Section \ref{sites-modules-section-exactness-lower-shriek}.
More precisely,
Sites, Lemmas \ref{sites-lemma-cocontinuous-morphism-topoi},
\ref{sites-lemma-when-shriek}, and
\ref{sites-lemma-preserve-equalizers}
and
Modules on Sites, Lemmas
\ref{sites-modules-lemma-g-shriek-adjoint} and
\ref{sites-modules-lemma-exactness-lower-shriek}.
\end{proof}
\begin{lemma}
\label{lemma-restriction-injective-to-component}
Let $X$ be a simplicial space. If $\mathcal{I}$ is an injective abelian
sheaf on $X_{Zar}$, then $\mathcal{I}_n$ is an injective abelian sheaf
on $X_n$.
\end{lemma}
\begin{proof}
This follows from
Homology, Lemma \ref{homology-lemma-adjoint-preserve-injectives}
and
Lemma \ref{lemma-restriction-to-components}.
\end{proof}
\begin{lemma}
\label{lemma-restriction-to-components-functorial}
Let $f : Y \to X$ be a morphism of simplicial spaces. Then
$$
\xymatrix{
\Sh(Y_n) \ar[d] \ar[r]_{f_n} & \Sh(X_n) \ar[d] \\
\Sh(Y_{Zar}) \ar[r]^{f_{Zar}} & \Sh(X_{Zar})
}
$$
is a commutative diagram of topoi.
\end{lemma}
\begin{proof}
Direct from the description of pullback functors in
Lemmas \ref{lemma-describe-functoriality} and
\ref{lemma-restriction-to-components}.
\end{proof}
\noindent
Let $X$ be a topological space. Denote $X_\bullet$ the constant simplicial
topological space with value $X$. By
Lemma \ref{lemma-describe-sheaves-simplicial-site}
a sheaf on $X_{\bullet, Zar}$ is the same
thing as a cosimplicial object in the category of sheaves on $X$.
\begin{lemma}
\label{lemma-constant-simplicial-space}
Let $X$ be a topological space. Let $X_\bullet$ be the constant
simplical topological space with value $X$. The functor
$$
X_{\bullet, Zar} \longrightarrow X_{Zar},\quad
U \longmapsto U
$$
is continuous and cocontinuous and defines a morphism of
topoi $g : \Sh(X_{\bullet, Zar}) \to \Sh(X)$ as well as a left adjoint
$g_!$ to $g^{-1}$. We have
\begin{enumerate}
\item $g^{-1}$ associates to a sheaf on $X$ the constant cosimplicial
sheaf on $X$,
\item $g_!$ associates to a sheaf $\mathcal{F}$ on $X_{\bullet, Zar}$ the
sheaf $\mathcal{F}_0$, and
\item $g_*$ associates to a sheaf $\mathcal{F}$ on $X_{\bullet, Zar}$ the
equalizer of the two maps $\mathcal{F}_0 \to \mathcal{F}_1$.
\end{enumerate}
\end{lemma}
\begin{proof}
The statements about the functor are straightforward to verify.
The existence of $g$ and $g_!$ follow from
Sites, Lemmas \ref{sites-lemma-cocontinuous-morphism-topoi} and
\ref{sites-lemma-when-shriek}. The description of
$g^{-1}$ is immediate from Sites, Lemma \ref{sites-lemma-when-shriek}.
The description of $g_*$ and $g_!$ follows as the functors given are
right and left adjoint to $g^{-1}$.
\end{proof}
\begin{lemma}
\label{lemma-augmentation}
Let $Y$ be a simplicial space and $X$ a topological space.
Let $a : Y \to X$ be an augmentation
(Simplicial, Definition \ref{simplicial-definition-augmentation}).
There is a canonical morphism of topoi
$$
a : \Sh(Y_{Zar}) \to \Sh(X)
$$
which comes from composing the morphism
$a_{Zar} : \Sh(Y_{Zar}) \to \Sh(X_{\bullet, Zar})$ of
Lemma \ref{lemma-simplicial-space-site-functorial}
with the morphism $g : \Sh(X_{\bullet, Zar}) \to \Sh(X)$ of
Lemma \ref{lemma-constant-simplicial-space}.
\end{lemma}
\begin{proof}
This lemma proves itself.
\end{proof}
\begin{lemma}
\label{lemma-simplicial-resolution-Z}
Let $X$ be a simplicial topological space. The complex of
abelian presheaves on $X_{Zar}$
$$
\ldots \to \mathbf{Z}_{X_2} \to \mathbf{Z}_{X_1} \to \mathbf{Z}_{X_0}
$$
with boundary $\sum (-1)^i d^n_i$ is a resolution
of the constant presheaf $\mathbf{Z}$.
\end{lemma}
\begin{proof}
Let $U \subset X_m$ be an object of $X_{Zar}$. Then the value of
the complex above on $U$ is the complex of abelian groups
$$
\ldots \to
\mathbf{Z}[\Mor_\Delta([2], [m])] \to
\mathbf{Z}[\Mor_\Delta([1], [m])] \to
\mathbf{Z}[\Mor_\Delta([0], [m])]
$$
In other words, this is the complex associated to the
free abelian group on the simplicial set $\Delta[m]$, see
Simplicial, Example \ref{simplicial-example-simplex-simplicial-set}.
Since $\Delta[m]$ is homotopy equivalent to $\Delta[0]$, see
Simplicial, Example \ref{simplicial-example-simplex-contractible},
and since ``taking free abelian groups'' is a functor,
we see that the complex above is homotopy equivalent to
the free abelian group on $\Delta[0]$
(Simplicial, Remark \ref{simplicial-remark-homotopy-better} and
Lemma \ref{simplicial-lemma-homotopy-equivalence-s-N}).
This complex is acyclic in positive degrees
and equal to $\mathbf{Z}$ in degree $0$.
\end{proof}
\begin{lemma}
\label{lemma-simplicial-sheaf-cohomology}
Let $X$ be a simplicial topological space. Let $\mathcal{F}$ be an abelian
sheaf on $X$. There is a spectral sequence $(E_r, d_r)_{r \geq 0}$ with
$$
E_1^{p, q} = H^q(X_p, \mathcal{F}_p)
$$
converging to $H^{p + q}(X_{Zar}, \mathcal{F})$.
This spectral sequence is functorial in $\mathcal{F}$.
\end{lemma}
\begin{proof}
Let $\mathcal{F} \to \mathcal{I}^\bullet$ be an injective resolution.
Consider the double complex with terms
$$
A^{p, q} = \mathcal{I}^q(X_p)
$$
and first differential given by the alternating sum along the maps
$d^{p + 1}_i$-maps $\mathcal{I}_p^q \to \mathcal{I}_{p + 1}^q$, see
Lemma \ref{lemma-describe-sheaves-simplicial-site}. Note that
$$
A^{p, q} = \Gamma(X_p, \mathcal{I}_p^q) =
\Mor_{\textit{PSh}}(h_{X_p}, \mathcal{I}^q) =
\Mor_{\textit{PAb}}(\mathbf{Z}_{X_p}, \mathcal{I}^q)
$$
Hence it follows from Lemma \ref{lemma-simplicial-resolution-Z} and
Cohomology on Sites, Lemma
\ref{sites-cohomology-lemma-injective-abelian-sheaf-injective-presheaf}
that the rows of the double complex are exact in positive degrees and
evaluate to $\Gamma(X_{Zar}, \mathcal{I}^q)$ in degree $0$.
On the other hand, since restriction is exact
(Lemma \ref{lemma-restriction-to-components})
the map
$$
\mathcal{F}_p \to \mathcal{I}_p^\bullet
$$
is a resolution. The sheaves $\mathcal{I}_p^q$ are injective
abelian sheaves on $X_p$
(Lemma \ref{lemma-restriction-injective-to-component}).
Hence the cohomology of the columns computes the groups
$H^q(X_p, \mathcal{F}_p)$. We conclude by applying
Homology, Lemmas \ref{homology-lemma-first-quadrant-ss} and
\ref{homology-lemma-double-complex-gives-resolution}.
\end{proof}
\section{Simplicial sites and topoi}
\label{section-simplicial-sites}
\noindent
It seems natural to define a {\it simplicial site} as a simplicial
object in the (big) category whose objects are sites
and whose morphisms are morphisms of sites.
See Sites, Definitions \ref{sites-definition-site} and
\ref{sites-definition-morphism-sites}
with composition of morphisms as in
Sites, Lemma \ref{sites-lemma-composition-morphisms-sites}.
But here are some variants one might want to consider:
(a) we could work with cocontinuous functors
(see Sites, Sections \ref{sites-section-cocontinuous-functors} and
\ref{sites-section-cocontinuous-morphism-topoi}) between sites instead,
(b) we could work in a suitable $2$-category of sites where one introduces
the notion of a $2$-morphism between morphisms of sites,
(c) we could work in a $2$-category constructed out of cocontinuous
functors. Instead of picking one of these variants as a definition
we will simply develop theory as needed.
\medskip\noindent
Certainly a {\it simplicial topos} should probably be defined as a
pseudo-functor from $\Delta^{opp}$ into the $2$-category of topoi.
See Categories, Definition \ref{categories-definition-functor-into-2-category}
and Sites, Section \ref{sites-section-topoi} and
\ref{sites-section-2-category}. We will try to avoid working with such
a beast if possible.
\medskip\noindent
Let $\mathcal{C}$ be a simplicial object in the category whose objects
are sites and whose morphisms are morphisms of sites. This means that
for every morphism $\varphi : [m] \to [n]$ of $\Delta$ we have a morphism
of sites $f_\varphi : \mathcal{C}_n \to \mathcal{C}_m$. This morphism is
given by a continuous functor in the opposite direction which we will denote
$u_\varphi : \mathcal{C}_m \to \mathcal{C}_n$.
\begin{lemma}
\label{lemma-simplicial-site-site}
Let $\mathcal{C}$ be a simplicial object in the category of sites.
With notation as above we construct a site $\mathcal{C}_{site}$ as follows.
\begin{enumerate}
\item An object of $\mathcal{C}_{site}$ is an object $U$ of
$\mathcal{C}_n$ for some $n$,
\item a morphism $(\varphi, f) : U \to V$ of $\mathcal{C}_{site}$
is given by a map $\varphi : [m] \to [n]$ with
$U \in \Ob(\mathcal{C}_n)$, $V \in \Ob(\mathcal{C}_m)$
and a morphism $f : U \to u_\varphi(V)$ of $\mathcal{C}_n$, and
\item a covering $\{(\text{id}, f_i) : U_i \to U\}$ in $\mathcal{C}_{site}$
is given by an $n$ and a covering $\{f_i : U_i \to U\}$
of $\mathcal{C}_n$.
\end{enumerate}
\end{lemma}
\begin{proof}
Composition of $(\varphi, f) : U \to V$ with $(\psi, g) : V \to W$
is given by $(\varphi \circ \psi, u_\varphi(g) \circ f)$.
This uses that $u_\varphi \circ u_\psi = u_{\varphi \circ \psi}$.
\medskip\noindent
Let $\{(\text{id}, f_i) : U_i \to U\}$ be a covering as in (3)
and let $(\varphi, g) : W \to U$ be a morphism with
$W \in \Ob(\mathcal{C}_m)$. We claim that
$$
W \times_{(\varphi, g), U, (\text{id}, f_i)} U_i =
W \times_{g, u_\varphi(U), u_\varphi(f_i)} u_\varphi(U_i)
$$
in the category $\mathcal{C}_{site}$. This makes sense as by our
definition of morphisms of sites, the required fibre products
in $\mathcal{C}_m$ exist since $u_\varphi$ transforms coverings into
coverings. The same reasoning implies the claim (details omitted).
Thus we see that the collection of coverings is stable under base
change. The other axioms of a site are immediate.
\end{proof}
\noindent
Let $\mathcal{C}$ be a simplicial object in the category whose objects are
sites and whose morphisms are cocontinuous functors. This means that for
every morphism $\varphi : [m] \to [n]$ of $\Delta$ we have a cocontinuous
functor denoted $u_\varphi : \mathcal{C}_n \to \mathcal{C}_m$.
\begin{lemma}
\label{lemma-simplicial-cocontinuous-site}
Let $\mathcal{C}$ be a simplicial object in the category whose objects are
sites and whose morphisms are cocontinuous functors. With notation as above,
assume the functors $u_\varphi : \mathcal{C}_n \to \mathcal{C}_m$
have property $P$ of Sites, Remark \ref{sites-remark-cartesian-cocontinuous}.
Then we can construct a site $\mathcal{C}_{site}$ as follows.
\begin{enumerate}
\item An object of $\mathcal{C}_{site}$ is an object $U$ of
$\mathcal{C}_n$ for some $n$,
\item a morphism $(\varphi, f) : U \to V$ of $\mathcal{C}_{site}$
is given by a map $\varphi : [m] \to [n]$ with
$U \in \Ob(\mathcal{C}_n)$, $V \in \Ob(\mathcal{C}_m)$
and a morphism $f : u_\varphi(U) \to V$ of $\mathcal{C}_m$, and
\item a covering $\{(\text{id}, f_i) : U_i \to U\}$ in $\mathcal{C}_{site}$
is given by an $n$ and a covering $\{f_i : U_i \to U\}$
of $\mathcal{C}_n$.
\end{enumerate}
\end{lemma}
\begin{proof}
Composition of $(\varphi, f) : U \to V$ with $(\psi, g) : V \to W$
is given by $(\varphi \circ \psi, g \circ u_\psi(f))$.
This uses that $u_\psi \circ u_\varphi = u_{\varphi \circ \psi}$.
\medskip\noindent
Let $\{(\text{id}, f_i) : U_i \to U\}$ be a covering as in (3)
and let $(\varphi, g) : W \to U$ be a morphism with
$W \in \Ob(\mathcal{C}_m)$. We claim that
$$
W \times_{(\varphi, g), U, (\text{id}, f_i)} U_i =
W \times_{g, U, f_i} U_i
$$
in the category $\mathcal{C}_{site}$ where the right hand side
is the object of $\mathcal{C}_m$ defined in
Sites, Remark \ref{sites-remark-cartesian-cocontinuous}
which exists by property $P$. Compatibility of this type of fibre product
with compositions of functors implies the claim (details omitted).
Since the family $\{W \times_{g, U, f_i} U_i \to W\}$ is a
covering of $\mathcal{C}_m$ by property $P$ we see that
the collection of coverings is stable under base
change. The other axioms of a site are immediate.
\end{proof}
\begin{situation}
\label{situation-simplicial-site}
Here we have one of the following two cases:
\begin{enumerate}
\item[(A)] $\mathcal{C}$ is a simplicial object in the category whose
objects are sites and whose morphisms are morphisms of sites. For every
morphism $\varphi : [m] \to [n]$ of $\Delta$ we have a morphism of sites
$f_\varphi : \mathcal{C}_n \to \mathcal{C}_m$ given by a continuous
functor $u_\varphi : \mathcal{C}_m \to \mathcal{C}_n$.
\item[(B)] $\mathcal{C}$ is a simplicial object in the category whose
objects are sites and whose morphisms are cocontinuous functors having
property $P$ of Sites, Remark \ref{sites-remark-cartesian-cocontinuous}.
For every morphism $\varphi : [m] \to [n]$ of $\Delta$ we have a cocontinuous
functor $u_\varphi : \mathcal{C}_n \to \mathcal{C}_m$ which induces a
morphism of topoi $f_\varphi : \Sh(\mathcal{C}_n) \to \Sh(\mathcal{C}_m)$.
\end{enumerate}
As usual we will denote $f_\varphi^{-1}$ and $f_{\varphi, *}$ the
pullback and pushforward. We let $\mathcal{C}_{site}$ denote the
site defined in
Lemma \ref{lemma-simplicial-site-site} (case A) or
Lemma \ref{lemma-simplicial-cocontinuous-site} (case B).
\end{situation}
\noindent
Let $\mathcal{C}$ be as in Situation \ref{situation-simplicial-site}.
Let $\mathcal{F}$ be a sheaf on $\mathcal{C}_{site}$.
It is clear from the definition of coverings, that the restriction
of $\mathcal{F}$ to the objects of $\mathcal{C}_n$ defines a sheaf
$\mathcal{F}_n$ on the site $\mathcal{C}_n$. For every
$\varphi : [m] \to [n]$ the restriction maps of $\mathcal{F}$
along the morphisms $(\varphi, f) : U \to V$ with
$U \in \Ob(\mathcal{C}_n)$ and $V \in \Ob(\mathcal{C}_m)$
define an element $\mathcal{F}(\varphi)$ of
$$
\Mor_{\Sh(\mathcal{C}_m)}(\mathcal{F}_m, f_{\varphi, *}\mathcal{F}_n) =
\Mor_{\Sh(\mathcal{C}_n)}(f_\varphi^{-1}\mathcal{F}_m, \mathcal{F}_n)
$$
Moreover, given $\varphi : [m] \to [n]$ and $\psi : [l] \to [m]$
we have
$$
f_\varphi^{-1}\mathcal{F}(\psi) \circ \mathcal{F}(\varphi) =
\mathcal{F}(\varphi \circ \psi)
$$
Clearly, the converse is true as well: if we have a system
$(\{\mathcal{F}_n\}_{n \geq 0},
\{\mathcal{F}(\varphi)\}_{\varphi \in \text{Arrows}(\Delta)})$
as above, satisfying the displayed equalities,
then we obtain a sheaf on $\mathcal{C}_{site}$.
\begin{lemma}
\label{lemma-describe-sheaves-simplicial-site-site}
In Situation \ref{situation-simplicial-site} there is an equivalence of
categories between
\begin{enumerate}
\item $\Sh(\mathcal{C}_{site})$, and
\item category of systems $(\mathcal{F}_n, \mathcal{F}(\varphi))$
described above.
\end{enumerate}
In particular, the topos $\Sh(\mathcal{C}_{site})$ only depends on
the topoi $\Sh(\mathcal{C}_n)$ and the morphisms of topoi $f_\varphi$.
\end{lemma}
\begin{proof}
See discussion above.
\end{proof}
\begin{lemma}
\label{lemma-restriction-to-components-site}
In Situation \ref{situation-simplicial-site} the functor
$\mathcal{C}_n \to \mathcal{C}_{site}$, $U \mapsto U$ is continuous
and cocontinuous. The associated morphism of
topoi $g : \Sh(\mathcal{C}_n) \to \Sh(\mathcal{C}_{site})$ satisfies
\begin{enumerate}
\item $g^{-1}$ associates to the sheaf $\mathcal{F}$ on $\mathcal{C}_{site}$
the sheaf $\mathcal{F}_n$ on $\mathcal{C}_n$,
\item $g^{-1}$ has a left adjoint $g^{Sh}_!$ which commutes
with finite connected limits, and
\item $g^{-1} : \textit{Ab}(\mathcal{C}_{site}) \to \textit{Ab}(\mathcal{C}_n)$
has a left adjoint
$g_! : \textit{Ab}(\mathcal{C}_n) \to \textit{Ab}(\mathcal{C}_{site})$
which is exact.
\end{enumerate}
\end{lemma}
\begin{proof}
It is clear that functor $\mathcal{C}_n \to \mathcal{C}_{site}$ is
continuous and cocontinuous. Hence part (1) and the existence
of $g^{Sh}_!$ and $g_!$ follows from
Sites, Lemmas \ref{sites-lemma-cocontinuous-morphism-topoi} and
\ref{sites-lemma-when-shriek}
and
Modules on Sites, Lemmas \ref{sites-modules-lemma-g-shriek-adjoint} and
\ref{sites-modules-lemma-back-and-forth}.
\medskip\noindent
Next, we come to the exactness properties of $g^{Sh}_!$ and $g_!$.
Perhaps the most straightforward way to prove this is to give a formula
for these functors. If $\mathcal{G}$ is a sheaf on $\mathcal{C}_n$,
then we claim $\mathcal{H} = g^{Sh}_!\mathcal{G}$ is the sheaf on
$\mathcal{C}_{site}$ whose degree $m$ part is the sheaf
$$
\mathcal{H}_m = \coprod\nolimits_{\varphi : [n] \to [m]}
f_\varphi^{-1}\mathcal{G}
$$
Given a map $\psi : [m] \to [m']$ the map
$\mathcal{H}(\psi) : f_\psi^{-1}\mathcal{H}_m \to \mathcal{H}_{m'}$
is given on components by the identifications
$$
f_\psi^{-1} f_\varphi^{-1} \mathcal{G} \to
f_{\psi \circ \varphi}^{-1}\mathcal{G}
$$
Observe that given a map $a : \mathcal{H} \to \mathcal{F}$ of sheaves on
$\mathcal{C}_{site}$ we obtain a map $\mathcal{G} \to \mathcal{F}_n$
corresponding to the restriction of $a_n$ to the component
$\mathcal{G}$ in $\mathcal{H}_n$. Conversely, given
$b : \mathcal{G} \to \mathcal{H}_n$ we can define
$a : \mathcal{H} \to \mathcal{F}$ by letting $a_m$ be the map which
on components
$$
f_\varphi^{-1}\mathcal{G} \to \mathcal{F}_m
$$
uses the maps adjoint to $\mathcal{F}(\varphi) \circ f_\varphi^{-1}b$.
We omit the arguments showing these two constructions give
mutually inverse maps
$$
\Mor_{\Sh(\mathcal{C}_n)}(\mathcal{G}, \mathcal{F}_n) =
\Mor_{\Sh(\mathcal{C}_{site})}(\mathcal{H}, \mathcal{F})
$$
thus verifying the claim above.
If $\mathcal{G}$ is an abelian sheaf on $\mathcal{C}_n$,
then $g_!\mathcal{G}$ is the abelian sheaf on $\mathcal{C}_{site}$
whose degree $m$ part is the sheaf
$$
\bigoplus\nolimits_{\varphi : [n] \to [m]} f_\varphi^{-1}\mathcal{G}
$$
with transition maps defined exactly as above. By definition of the
site $\mathcal{C}_{site}$ we see that these functors have the desired
exactness properties and we conclude.
\end{proof}
\begin{lemma}
\label{lemma-restriction-injective-to-component-site}
\begin{slogan}
An injective abelian sheaf on a simplicial site is injective on each component
\end{slogan}
In Situation \ref{situation-simplicial-site}. If $\mathcal{I}$ is an
injective abelian sheaf on $\mathcal{C}_{site}$, then $\mathcal{I}_n$ is an
injective abelian sheaf on $\mathcal{C}_n$.
\end{lemma}
\begin{proof}
This follows from
Homology, Lemma \ref{homology-lemma-adjoint-preserve-injectives}
and
Lemma \ref{lemma-restriction-to-components-site}.
\end{proof}
\noindent
Let $\mathcal{C}$ be as in Situation \ref{situation-simplicial-site}.
In statement of the following lemmas we will let
$g_n : \mathcal{C}_n \to \mathcal{C}_{site}$ be the functor of
Lemma \ref{lemma-restriction-to-components-site}. If $\varphi : [m] \to [n]$
is a morphism of $\Delta$, then the diagram of topoi
$$
\xymatrix{
\Sh(\mathcal{C}_n) \ar[rd]_{g_n} \ar[rr]_{f_\varphi} & &
\Sh(\mathcal{C}_m) \ar[ld]^{g_m} \\
& \Sh(\mathcal{C}_{site})
}
$$
is not commutative, but there is a $2$-morphism $g_n \to g_m \circ f_\varphi$
coming from the maps
$\mathcal{F}(\varphi) : f_\varphi^{-1}\mathcal{F}_m \to \mathcal{F}_n$.
See Sites, Section \ref{sites-section-2-category}.
\begin{lemma}
\label{lemma-simplicial-resolution-Z-site}
In Situation \ref{situation-simplicial-site} and with notation as above
there is a complex
$$
\ldots \to g_{2!}\mathbf{Z} \to g_{1!}\mathbf{Z} \to g_{0!}\mathbf{Z}
$$
of abelian sheaves on $\mathcal{C}_{site}$ which forms a resolution of
the constant sheaf with value $\mathbf{Z}$ on $\mathcal{C}_{site}$.
\end{lemma}
\begin{proof}
We will use the description of the functors $g_{n!}$ in the proof of
Lemma \ref{lemma-restriction-to-components-site} without further mention.
As maps of the complex we take $\sum (-1)^i d^n_i$ where
$d^n_i : g_{n!}\mathbf{Z} \to g_{n - 1!}\mathbf{Z}$ is the
adjoint to the map $\mathbf{Z} \to
\bigoplus_{[n - 1] \to [n]} \mathbf{Z} = g_n^{-1}g_{n - 1!}\mathbf{Z}$
corresponding to the factor labeled with $\delta^n_i : [n - 1] \to [n]$.
Then $g_m^{-1}$ applied to the complex gives the complex
$$
\ldots \to
\bigoplus\nolimits_{\alpha \in \Mor_\Delta([2], [m])]} \mathbf{Z} \to
\bigoplus\nolimits_{\alpha \in \Mor_\Delta([1], [m])]} \mathbf{Z} \to
\bigoplus\nolimits_{\alpha \in \Mor_\Delta([0], [m])]} \mathbf{Z}
$$
on $\mathcal{C}_m$.
In other words, this is the complex associated to the
free abelian sheaf on the simplicial set $\Delta[m]$, see
Simplicial, Example \ref{simplicial-example-simplex-simplicial-set}.
Since $\Delta[m]$ is homotopy equivalent to $\Delta[0]$, see
Simplicial, Example \ref{simplicial-example-simplex-contractible},
and since ``taking free abelian sheaf on'' is a functor,
we see that the complex above is homotopy equivalent to
the free abelian sheaf on $\Delta[0]$
(Simplicial, Remark \ref{simplicial-remark-homotopy-better} and
Lemma \ref{simplicial-lemma-homotopy-equivalence-s-N}).
This complex is acyclic in positive degrees
and equal to $\mathbf{Z}$ in degree $0$.
\end{proof}
\begin{lemma}
\label{lemma-simplicial-sheaf-cohomology-site}
In Situation \ref{situation-simplicial-site}. Let $\mathcal{F}$ be an abelian
sheaf on $\mathcal{C}_{site}$. There is a spectral sequence
$(E_r, d_r)_{r \geq 0}$ with
$$
E_1^{p, q} = H^q(\mathcal{C}_p, \mathcal{F}_p)
$$
converging to $H^{p + q}(\mathcal{C}_{site}, \mathcal{F})$.
This spectral sequence is functorial in $\mathcal{F}$.
\end{lemma}
\begin{proof}
Let $\mathcal{F} \to \mathcal{I}^\bullet$ be an injective resolution.
Consider the double complex with terms
$$
A^{p, q} = \Gamma(\mathcal{C}_p, \mathcal{I}^q_p)
$$
and first differential given by the alternating sum along the maps
$d^{p + 1}_i$-maps $\mathcal{I}_p^q \to \mathcal{I}_{p + 1}^q$, see
Lemma \ref{lemma-describe-sheaves-simplicial-site-site}. Note that
$$
A^{p, q} = \Gamma(\mathcal{C}_p, \mathcal{I}_p^q) =
\Mor_{\textit{Ab}(\mathcal{C}_{site})}(g_{p!}\mathbf{Z}, \mathcal{I}^q)
$$
Hence it follows from Lemma \ref{lemma-simplicial-resolution-Z-site}
that the rows of the double complex are exact in positive degrees
and evaluate to $\Gamma(\mathcal{C}_{site}, \mathcal{I}^q)$ in degree $0$.
On the other hand, since restriction is exact
(Lemma \ref{lemma-restriction-to-components-site})
the map
$$
\mathcal{F}_p \to \mathcal{I}_p^\bullet
$$
is a resolution. The sheaves $\mathcal{I}_p^q$ are injective
abelian sheaves on $\mathcal{C}_p$
(Lemma \ref{lemma-restriction-injective-to-component-site}).
Hence the cohomology of the columns computes the groups
$H^q(\mathcal{C}_p, \mathcal{F}_p)$. We conclude by applying
Homology, Lemmas \ref{homology-lemma-first-quadrant-ss} and
\ref{homology-lemma-double-complex-gives-resolution}.
\end{proof}
\section{Simplicial semi-representable objects}
\label{section-semi-representable}
\noindent
Let $\mathcal{C}$ be a site. Recall that $\text{SR}(\mathcal{C})$
denotes the category of semi-representable objects of $\mathcal{C}$.
See Hypercoverings, Definition \ref{hypercovering-definition-SR}.
For an object $K = \{U_i\}_{i \in I}$ of $\text{SR}(\mathcal{C})$
we will use the notation
$$
\mathcal{C}/K = \coprod\nolimits_{i \in I} \mathcal{C}/U_i
$$
and we will call it the {\it localization of $\mathcal{C}$ at $K$}.
There is a natural structure of a site on this category, with
coverings inherited from the localizations $\mathcal{C}/U_i$
(and whence from $\mathcal{C}$). If $f : K \to L$ is a morphism of
$\text{SR}(\mathcal{C})$, then we obtain a cocontinuous functor
$$
f : \mathcal{C}/K \longrightarrow \mathcal{C}/L
$$
by applying the construction of Sites, Lemma \ref{sites-lemma-relocalize}
to the components. More precisely, if $f = (\alpha, f_i)$
where $K = \{U_i\}_{i \in I}$, $L = \{V_j\}_{j \in J}$, $\alpha : I \to J$,
and $f_i : U_i \to V_{\alpha(i)}$ then $f$ maps the component
$\mathcal{C}/U_i$ into the component $\mathcal{C}/V_{\alpha(i)}$
via the construction of the aforementioned lemma.
\medskip\noindent
Let $K$ be a simplicial object of $\text{SR}(\mathcal{C})$.
By the construction above we obtain a simplicial object
$n \mapsto \mathcal{C}/K_n$ in the category
whose objects are sites and whose morphisms are cocontinuous
functors of sites. Since these localization functors satisfy the assumption
of Lemma \ref{lemma-simplicial-cocontinuous-site} by
Sites, Remark \ref{sites-remark-localization-cartesian-cocontinuous}
we obtain a site $(\mathcal{C}/K)_{site}$.
\medskip\noindent
We can describe this site explicitly as follows. Say
$K_n = \{U_{n, i}\}_{i \in I_n}$ and that for $\varphi : [m] \to [n]$
the morphism $K(\varphi) : K_n \to K_m$ is given by
$a(\varphi) : I_n \to I_m$ and
$f_{\varphi, i} : U_{n, i} \to U_{m, a(\varphi)(i)}$ for $i \in I_n$.
Then we have
\begin{enumerate}
\item an object of $\mathcal{C}/K$ corresponds to an object $(U/U_{n, i})$
of $\mathcal{C}/U_{n, i}$ for some $n$ and some $i \in I_n$,
\item a morphism between $U$ and $V$ is a pair $(\varphi, f)$
where $\varphi : [m] \to [n]$ with $U/U_{n, i}$ and
$V/U_{m, a(\varphi)(i)}$ and $f : U \to V$ is a morphism of $\mathcal{C}$
such that
$$
\xymatrix{
U \ar[r]_f \ar[d] & V \ar[d] \\
U_{n, i} \ar[r]^-{f_{\varphi, i}} & U_{m, a(\varphi)(i)}
}
$$
is commutative, and
\item a covering $\{(\text{id}, f_j) : U_j \to U\}$ is given by
an $n$ and $i \in I_n$ and objects $U/U_{n, i}$, $U_j/U_{n, i}$
such that $\{f_j : U_j \to U\}$ is a covering of $\mathcal{C}$.
\end{enumerate}
\begin{lemma}
\label{lemma-sr-when-fibre-products}
Let $\mathcal{C}$ be a site. Let $K$ be a simplicial object of
$\text{SR}(\mathcal{C})$. If $\mathcal{C}$ has fibre products,
then $\mathcal{C}/K$ can also be viewed as a simplicial object
in the category whose objects are sites and whose morphisms are
morphisms of sites. The construction of
Lemma \ref{lemma-simplicial-site-site}
then produces the same site as the construction above.
\end{lemma}
\begin{proof}
Given a morphism of objects $U \to V$ of $\mathcal{C}$ the localization
morphism $j : \mathcal{C}/U \to \mathcal{C}/U$ is a left adjoint to
the base change functor $\mathcal{C}/V \to \mathcal{C}/U$.
The base change functor is continuous and induces the same morphism of
topoi as $j$. See
Sites, Lemma \ref{sites-lemma-relocalize-given-fibre-products}.
Argueing as above we can use this to define a morphism of sites
$\mathcal{C}/A \to \mathcal{C}/B$ given any morphism $A \to B$
of $\text{SR}(\mathcal{C})$. Applying this to the morphisms of
the simplicial object $K$ we obtain simplicial object
$(\mathcal{C}/K)'$ in the category of sites with morphisms of sites.
Let $(\mathcal{C}/K)'_{site}$ be the site constructed in
Lemma \ref{lemma-simplicial-site-site}.
Since the base change functors are adjoint to the localization
functors, we find that $(\mathcal{C}/K)'_{site}$ is the same
as the category $(\mathcal{C}/K)_{site}$. Equality of the
sets of coverings is immediate from the definitions.
\end{proof}
\noindent
Let $\mathcal{C}$ be a site. Let $L = \{V_i\}$ be an object of
$\text{SR}(\mathcal{C})$. There is a continuous and cocontinuous
localization functor $j : \mathcal{C}/K \to \mathcal{C}$ which is
the product of the localization functors $\mathcal{C}/V_i \to \mathcal{C}$.
We obtain functors $j^{-1}$, $j_*$, $j^{Sh}_!$, and $j_!$ exactly
as in Sites, Section \ref{sites-section-localize} and
Modules on Sites, Section \ref{sites-modules-section-localize}.
Given a simplicial
object $K$ of $\text{SR}(\mathcal{C})$ we obtain a family
of localization functors $j_n : \mathcal{C}/K_n \to \mathcal{C}$.
\begin{lemma}
\label{lemma-comparison}
Let $\mathcal{C}$ be a site. Let $K$ be a simplicial object of
$\text{SR}(\mathcal{C})$. The forgetful functor
$(\mathcal{C}/K)_{site} \to \mathcal{C}$ is continuous and cocontinuous
and induces a morphism of topoi
$$
g : \Sh((\mathcal{C}/K)_{site}) \longrightarrow \Sh(\mathcal{C})
$$
as well as functors $g^{Sh}_!$ and $g_!$ left adjoint to $g^{-1}$
on sheaves of sets and abelian groups with the following properties:
\begin{enumerate}
\item the functor $g^{-1}$ associates to a sheaf $\mathcal{F}$ on
$\mathcal{C}$ the sheaf on $(\mathcal{C}/K)_{site}$ wich in degree $n$
is equal to $j_n^{-1}\mathcal{F}$,
\item the functor $g_*$ associates to a sheaf $\mathcal{G}$ on
$(\mathcal{C}/K)_{site}$ the equalizer of the two maps
$j_{0, *}\mathcal{G}_0 \to j_{1, *}\mathcal{G}_1$,
\end{enumerate}
\end{lemma}
\begin{proof}
The functor is continuous and cocontinuous by our choice of coverings and
our description of (certain) fibre products in $(\mathcal{C}/K)_{site}$
in the proof of Lemma \ref{lemma-simplicial-cocontinuous-site}. Details omitted.
Thus we obtain a morphism of topoi and functors $g^{Sh}_!$ and $g_!$, see
Sites, Section \ref{sites-section-cocontinuous-morphism-topoi} and
Modules on Sites, Section
\ref{sites-modules-section-exactness-lower-shriek}.
The description of $g^{-1}$ is immediate from the definition as the
compostion $\mathcal{C}/K_n \to \mathcal{C}/K \to \mathcal{C}$ is
the localization morphism $j_n$.
\medskip\noindent
Proof of (2). Let $\mathcal{F}$ be a sheaf on $\mathcal{C}$ and let
$\mathcal{G}$ be a sheaf on $(\mathcal{C}/K)_{site}$. A map
$a : g^{-1}\mathcal{F} \to \mathcal{G}$ corresponds to a system of maps
$a_n : j_n^{-1}\mathcal{F} \to \mathcal{G}_n$ on $\mathcal{C}/K_n$
by Lemma \ref{lemma-describe-sheaves-simplicial-site-site}.
Taking $n = 0$ we get a map $j_0^{-1}\mathcal{F} \to \mathcal{G}_0$
which is adjoint to a map $a_0 : \mathcal{F} \to j_{0, *}\mathcal{G}_0$.
Since $a_0$ is compatible with $a_1$ via the two maps
$j_{0, *}\mathcal{G}_0 \to j_{1, *}\mathcal{G}_1$ we see that
$a_0$ maps into the equalizer. Conversely, given a map
$a_0 : \mathcal{F} \to j_{0, *}\mathcal{G}_0$ into the equalizer
we can pick, for any $n$, one of the maps
$j_{0, *}\mathcal{G}_0 \to j_{n, *}\mathcal{G}_n$ and compose
to get a well defined map $a_n : \mathcal{F} \to j_{n, *}\mathcal{G}_n$.
These fit together to define a map of sheaves
$g^{-1}\mathcal{F} \to \mathcal{G}$.
\end{proof}
\begin{lemma}
\label{lemma-compare-cohomology-hypercovering}
Let $\mathcal{C}$ be a site with equalizers and fibre products.