Skip to content

harmanpreet93/reinforcement-learning

Repository files navigation

Reinforcement Learning - COMP-767

RL algorithms and concepts implementation:

  • Policy Gradient Methods
    • REINFORCE algorithm with MLP
    • Actor-Critic Method
  • Semi-Gradient TD Lamda with Eligibility Traces
  • Function Approximation: Linear and Non-Linear (Deep Neural Networks)
  • n-step SARSA: On-Policy TD Control
  • n-step Q-learning with Function Approximation
  • n-step Expected SARSA with Function Approximation
  • Baird’s counterexample: Semi-gradient Off-Policy TD(0) to demonstrate off-policy divergence
  • Experience Replay to stabilize training
  • Multi-armed Bandit Problem
    • Boltzmann (Softmax)
    • UCB
    • Thomson sampling
    • E-Greedy
  • Policy Iteration
  • Value Iteration
  • Q-learning: Off-Policy TD Control
  • Continuos Random Walk
  • Sparse Coarse Coding