#!/usr/bin/env python import argparse import sys import gzip import numpy as np import itertools import genomics from multiprocessing import Process, Queue from multiprocessing.queues import SimpleQueue from threading import Thread from time import sleep #################################################################################################################################### '''A function that reads from the window queue, calls some other function and writes to the results queue This function needs to be tailored to the particular analysis funcion(s) you're using. This is the function that will run on each of the N cores.''' def stats_wrapper(windowQueue, resultQueue, windType, genoFormat, sampleData, minSites, minPerInd, includeSameWithSame, outFormat, roundTo, outputWindowData, addWindowID=False): while True: nInd = len(sampleData.indNames) windowNumber,window = windowQueue.get() # retrieve window if windType == "coordinate" or windType == "predefined": scaf,start,end,mid,sites = (window.scaffold, window.limits[0], window.limits[1], window.midPos(),window.seqLen()) else: scaf,start,end,mid,sites = (window.scaffold, window.firstPos(), window.lastPos(),window.midPos(),window.seqLen()) if sites >= minSites: isGood = True #make alignment object aln = genomics.genoToAlignment(window.seqDict(), sampleData, genoFormat = genoFormat) if minPerInd and min(aln.seqNonNan()) < minPerInd: isGood = False else: pairDistDict = aln.indPairDists(includeSameWithSame=includeSameWithSame) distMat = np.zeros([nInd,nInd]) for i,j in itertools.combinations_with_replacement(range(nInd),2): distMat[i,j] = distMat[j,i] = pairDistDict[sampleData.indNames[i]][sampleData.indNames[j]] else: isGood = False if not isGood: distMat = np.empty([nInd,nInd]) distMat.fill(np.NaN) if outFormat == "nexus": distMatString = genomics.makeDistMatNexusString(distMat, names=sampleData.indNames, roundTo=roundTo) elif outFormat == "phylip": distMatString = genomics.makeDistMatPhylipString(distMat, names=sampleData.indNames, roundTo=roundTo) elif outFormat == "raw": distMatString = genomics.makeDistMatString(distMat, roundTo=roundTo) + "\n" result = {"main":distMatString} if outputWindowData: windowData = [] if not addWindowID else [window.ID] windowData += [scaf,start,end,mid,sites] windowDataString = "\t".join([str(x) for x in windowData]) + "\n" result["windows"] = windowDataString resultQueue.put((windowNumber, result, isGood)) '''a function that watches the result queue and sorts results. This should be a generic funcion regardless of the result, as long as the first object is the result number, and this increases consecutively.''' def sorter(resultQueue, writeQueue, verbose): global resultsReceived sortBuffer = {} expect = 0 while True: resNumber,result,isGood = resultQueue.get() resultsReceived += 1 if verbose: print >> sys.stderr, "Sorter received result", resNumber if resNumber == expect: writeQueue.put((resNumber,result,isGood)) if verbose: print >> sys.stderr, "Result", resNumber, "sent to writer" expect +=1 #now check buffer for further results while True: try: result,isGood = sortBuffer.pop(str(expect)) writeQueue.put((expect,result,isGood)) if verbose: print >> sys.stderr, "Result", expect, "sent to writer" expect +=1 except: break else: #otherwise this line is ahead of us, so add to buffer dictionary sortBuffer[str(resNumber)] = (result,isGood) '''a writer function that writes the sorted result. This is also generic''' def writer(writeQueue, outs, writeFailedWindows=False): global resultsWritten global resultsHandled while True: resNumber,result,isGood = writeQueue.get() if verbose: print >> sys.stderr, "Writer received result", resNumber if isGood or writeFailedWindows: for key in result.keys(): outs[key].write(result[key]) resultsWritten += 1 resultsHandled += 1 '''loop that checks stats''' def checkStats(): while True: sleep(10) print >> sys.stderr, windowsQueued, "windows queued", resultsReceived, "results received", resultsWritten, "results written." #################################################################################################################### parser = argparse.ArgumentParser() parser.add_argument("--windType", action = "store", choices = ("sites","coordinate","predefined","cat"), default = "coordinate", help="Type of windows to makem, or concatenate all sites") parser.add_argument("-w", "--windSize", help="Window size in bases", type=int, action = "store", required = False, metavar="sites") parser.add_argument("-s", "--stepSize", help="Step size for sliding window", type=int, action = "store", required = False, metavar="sites") parser.add_argument("-m", "--minSites", help="Minumum good sites per window", type=int, action = "store", required = False, metavar="sites", default = 1) parser.add_argument("-Mi", "--minPerInd", help="Minumum good sites per individual", type=int, action = "store", required = False, metavar="sites") parser.add_argument("-O", "--overlap", help="Overlap for sites sliding window", type=int, action = "store", required = False, metavar="sites") parser.add_argument("-D", "--maxDist", help="Maximum span distance for sites window", type=int, action = "store", required = False) parser.add_argument("--windCoords", help="Window coordinates file (scaffold start end)", required = False) parser.add_argument("--samples", help="Samples to include for individual analysis", nargs="+", action = "store", metavar = "sample names") parser.add_argument("--includeSameWithSame", action="store_true", help="Include comparisons of each haplotype to itself.") parser.add_argument("--ploidy", help="Ploidy for each sample", action = "store", type=int, nargs="+") parser.add_argument("--ploidyFile", help="File with samples names and ploidy as columns", action = "store") parser.add_argument("--haploid", help="Alternatively just name samples that are haploid", nargs="+", action = "store", metavar = "sample names") parser.add_argument("--inferPloidy", help="Ploidy will be inferred in each window (NOT RECOMMENED)", action = "store_true") parser.add_argument("-g", "--genoFile", help="Input genotypes file", required = False) parser.add_argument("-o", "--outFile", help="Results file", required = False) parser.add_argument("--windowDataOutFile", help="Optional window data file", required = False) parser.add_argument("-f", "--genoFormat", action='store', choices = ("phased","pairs","haplo","diplo"), required = True, help="Format of genotypes in genotypes file") parser.add_argument("--outFormat", action = "store", choices = ("raw","phylip","nexus"), default = "phylip", help="Format for distance matrix output") parser.add_argument("--roundTo", help="Round to N decomal places", type=int, action = "store", default=4) parser.add_argument("--exclude", help="File of scaffolds to exclude", required = False) parser.add_argument("--include", help="File of scaffolds to analyse", required = False) parser.add_argument("-T", "--threads", help="Number of worker threads for parallel processing", type=int, default=1, required = False, metavar="threads") parser.add_argument("--verbose", help="Verbose output", action="store_true") parser.add_argument("--addWindowID", help="Add window name or number as first column", action="store_true") parser.add_argument("--writeFailedWindows", help="Write output even for windows with too few sites.", action="store_true") args = parser.parse_args() #window parameters minSites = args.minSites if args.windType == "coordinate": assert args.windSize, "Window size must be provided." windSize = args.windSize stepSize = args.stepSize if not stepSize: stepSize = windSize assert not args.overlap, "Overlap does not apply to coordinate windows. Use --stepSize instead." assert not args.maxDist, "Maximum distance only applies to sites windows." elif args.windType == "sites": assert args.windSize, "Window size (number of sites) must be provided." windSize = args.windSize overlap = args.overlap if not overlap: overlap = 0 maxDist = args.maxDist if not maxDist: maxDist = np.inf assert not args.stepSize, "Step size only applies to coordinate windows. Use --overlap instead." elif args.windType == "predefined": assert args.windCoords, "Please provide a file of window coordinates." assert not args.overlap, "Overlap does not apply for predefined windows." assert not args.maxDist, "Maximum does not apply for predefined windows." assert not args.stepSize,"Step size does not apply for predefined windows." assert not args.include,"You cannot only include specific scaffolds if using predefined windows." assert not args.exclude,"You cannot exclude specific scaffolds if using predefined windows." with open(args.windCoords,"r") as wc: windCoords = tuple([(x,int(y),int(z),) for x,y,z in [line.split()[:3] for line in wc]]) else: minSites = 1 if not minSites: minSites = windSize #other verbose = args.verbose ############## parse samples and populations allInds = [] if args.samples is not None: allInds = list(set(allInds + args.samples)) if len(allInds) == 0: with gzip.open(args.genoFile, "r") if args.genoFile.endswith(".gz") else open(args.genoFile, "r") as gf: allInds = gf.readline().split()[2:] if args.ploidy is not None: ploidy = args.ploidy if len(args.ploidy) != 1 else args.ploidy*len(allInds) assert len(ploidy) == len(allInds), "Incorrect number of ploidy values supplied." ploidyDict = dict(zip(allInds,ploidy)) elif args.ploidyFile is not None: with open(args.ploidyFile, "r") as pf: ploidyDict = dict([[s[0],int(s[1])] for s in [l.split() for l in pf]]) elif args.inferPloidy: ploidyDict = dict(zip(allInds,[None]*len(allInds))) else: if args.genoFormat == "haplo": ploidyDict = dict(zip(allInds,[1]*len(allInds))) else: ploidyDict = dict(zip(allInds,[2]*len(allInds))) if args.haploid: for sample in args.haploid: ploidyDict[sample] = 1 sampleData = genomics.SampleData(indNames = allInds, ploidyDict = ploidyDict) ############################################################################################################################################ #open files if args.genoFile != None: genoFile = gzip.open(args.genoFile, "r") if args.genoFile.endswith(".gz") else open(args.genoFile, "r") else: genoFile = sys.stdin outs = {} if args.outFile: outs["main"] = gzip.open(args.outFile, "w") if args.outFile.endswith(".gz") else open(args.outFile, "w") else: outs["main"] = sys.stdout if args.windowDataOutFile: outs["windows"] = gzip.open(args.windowDataOutFile, "w") if args.windowDataOutFile.endswith(".gz") else open(args.windowDataOutFile, "w") if not args.addWindowID: outs["windows"].write("scaffold,start,end,mid,sites,") else: outs["windows"].write("windowID,scaffold,start,end,mid,sites,") outputWindowData = True else: outputWindowData = False ############################################################################################################################################ #scafs to exclude (only works for window methods) if args.exclude: scafsFile = open(args.exclude, "rU") scafsToExclude = [line.rstrip() for line in scafsFile.readlines()] print >> sys.stderr, len(scafsToExclude), "scaffolds will be excluded." scafsFile.close() else: scafsToExclude = None if args.include: scafsFile = open(args.include, "rU") scafsToInclude = [line.rstrip() for line in scafsFile.readlines()] print >> sys.stderr, len(scafsToInclude), "scaffolds will be analysed." scafsFile.close() else: scafsToInclude = None ########################################################################################################## #counting stat that will let keep track of how far we are windowsQueued = 0 resultsReceived = 0 resultsWritten = 0 resultsHandled = 0 '''Create queues to hold the data one will hold the line info to be passed to the analysis''' windowQueue = SimpleQueue() #one will hold the results (in the order they come) resultQueue = SimpleQueue() #one will hold the sorted results to be written writeQueue = SimpleQueue() '''start worker Processes for analysis. The comand should be tailored for the analysis wrapper function of course these will only start doing anything after we put data into the line queue the function we call is actually a wrapper for another function.(s) This one reads from the line queue, passes to some analysis function(s), gets the results and sends to the result queue''' for x in range(args.threads): worker = Process(target=stats_wrapper, args = (windowQueue, resultQueue, args.windType, args.genoFormat, sampleData, minSites, args.minPerInd, args.includeSameWithSame, args.outFormat, args.roundTo, outputWindowData,args.addWindowID)) worker.daemon = True worker.start() print >> sys.stderr, "started worker", x '''thread for sorting results''' worker = Thread(target=sorter, args=(resultQueue,writeQueue,verbose,)) worker.daemon = True worker.start() '''start thread for writing the results''' worker = Thread(target=writer, args=(writeQueue, outs, args.writeFailedWindows,)) worker.daemon = True worker.start() '''start background Thread that will run a loop to check run statistics and print We use thread, because I think this is necessary for a process that watches global variables like linesTested''' worker = Thread(target=checkStats) worker.daemon = True worker.start() ########################################################## if args.windType == "cat": window = genomics.parseGenoFile(genoFile, names=sampleData.indNames) windowQueue.put((windowsQueued,window)) windowsQueued += 1 else: #get windows and analyse if args.windType == "coordinate": windowGenerator = genomics.slidingCoordWindows(genoFile, windSize, stepSize, sampleData.indNames, include = scafsToInclude, exclude = scafsToExclude) elif args.windType == "sites": windowGenerator = genomics.slidingSitesWindows(genoFile, windSize, overlap, maxDist, minSites, sampleData.indNames, include = scafsToInclude, exclude = scafsToExclude) else: windowGenerator = genomics.predefinedCoordWindows(genoFile, windCoords, sampleData.indNames) for window in windowGenerator: windowQueue.put((windowsQueued,window)) windowsQueued += 1 ############################################################################################################################################ while resultsHandled < windowsQueued: sleep(1) sleep(5) genoFile.close() for out in outs.values(): out.close() print >> sys.stderr, str(windowsQueued), "windows were tested.\n" print >> sys.stderr, str(resultsWritten), "results were written.\n" print >> sys.stderr, "\nDone." sys.exit()