From 1c35c4f2bd5d3febd4a3db29ac61009bb504f730 Mon Sep 17 00:00:00 2001 From: "Wang, Yi A" Date: Wed, 9 Oct 2024 09:47:10 -0400 Subject: [PATCH 01/29] add page attention implementation remove jit logic Signed-off-by: Wang, Yi A --- optimum/exporters/ipex/cache_utils.py | 199 +++++++++++++++++ optimum/exporters/ipex/model_patcher.py | 15 +- optimum/exporters/ipex/modeling_utils.py | 264 ++++++++++------------- optimum/intel/ipex/modeling_base.py | 235 +++----------------- 4 files changed, 352 insertions(+), 361 deletions(-) create mode 100644 optimum/exporters/ipex/cache_utils.py diff --git a/optimum/exporters/ipex/cache_utils.py b/optimum/exporters/ipex/cache_utils.py new file mode 100644 index 0000000000..b0c7f728c8 --- /dev/null +++ b/optimum/exporters/ipex/cache_utils.py @@ -0,0 +1,199 @@ +from typing import Optional, Tuple + +import torch +from intel_extension_for_pytorch.llm.modules import PagedAttention +from transformers import Cache, PretrainedConfig + + +class IPEXPagedCache(Cache): + """ + A PagedCache that grows dynamically as more tokens are generated. everytime it grows block-size memory, vendor could set the pageCache memory layout. + ipex-xpu: + ipex-cpu: + + Example: + + ```python + >>> from transformers import AutoTokenizer + >>> from optimum.intel import IPEXModelForCausalLM + >>> from optimum.exporters.ipex.cache_utils import IPEXPagedCache + + >>> model = IPEXModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf", export=True) + >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf") + + >>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt") + + >>> # Prepare a cache class and pass it to model's forward + >>> past_key_values = IPEXPagedCache() + >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True) + >>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation + ``` + """ + + def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None: + super().__init__() + self.max_batch_size = max_batch_size + self.kv_cache = [] + + self._seen_tokens = max_batch_size * [ + 0 + ] # Used in `generate` to keep tally of how many tokens the cache has seen + self.block_size = 16 + self.num_blocks = (max_cache_len // self.block_size + (max_cache_len % self.block_size != 0)) * max_batch_size + self.block_tables = -1 * torch.ones([self.num_blocks], dtype=torch.int32, device=device).reshape( + max_batch_size, -1 + ) + self.free_blocks = list(range(0, self.num_blocks)) + self.max_cache_len = max_cache_len + self.num_kv_heads = config.num_key_value_heads + self.num_hidden_layers = config.num_hidden_layers + if hasattr(config, "head_dim"): + head_size = config.head_dim + else: + head_size = config.hidden_size // config.num_attention_heads + self.head_size = head_size + + if device.type == "cpu": + self.kv_cache = [ + ( + torch.empty( + (self.num_blocks, self.num_kv_heads, self.block_size, head_size), + dtype=dtype, + device=device, + ), + torch.empty( + (self.num_blocks, self.num_kv_heads, self.block_size, head_size), + dtype=dtype, + device=device, + ), + ) + for _ in range(self.num_hidden_layers) + ] + elif device.type == "xpu": + self.kv_cache = [ + ( + torch.empty( + (self.num_blocks, self.num_kv_heads, head_size, self.block_size, 1), + dtype=dtype, + device=device, + ), + torch.empty( + (self.num_blocks, self.num_kv_heads, head_size, self.block_size), + dtype=dtype, + device=device, + ), + ) + for _ in range(self.num_hidden_layers) + ] + + def update( + self, + key_states: torch.Tensor, + value_states: torch.Tensor, + layer_idx: int, + attention_mask: torch.Tensor, + position_ids: torch.Tensor, + input_lens: torch.Tensor, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`. + + Parameters: + key_states (`torch.Tensor`): + The new key states to cache. + value_states (`torch.Tensor`): + The new value states to cache. + layer_idx (`int`): + The index of the layer to cache the states for. + Return: + A tuple containing the updated key and value states. + """ + batch_size = position_ids.shape[0] + slots = [] + if self.get_seq_length() == 0: + # prefill + num_slots = input_lens.tolist() + else: + # decode + num_slots = [1] * batch_size + for i in range(batch_size): + start_block_idx = self._seen_tokens[i] // self.block_size + num_blocks = (self._seen_tokens[i] + num_slots[i] + self.block_size - 1) // self.block_size + for b_idx in range(start_block_idx, num_blocks): + if self.block_tables[i][b_idx] == -1: + # need a free block + self.block_tables[i][b_idx] = self.free_blocks.pop(0) + for slot in range(num_slots[i]): + block_idx = (self._seen_tokens[i] + slot) // self.block_size + slot_offset_in_block = (self._seen_tokens[i] + slot) % self.block_size + slots.append(self.block_tables[i][block_idx].item() * self.block_size + slot_offset_in_block) + + # Update the cache + PagedAttention.reshape_and_cache( + key_states, + value_states, + self.kv_cache[layer_idx][0], + self.kv_cache[layer_idx][1], + torch.tensor(slots, device=key_states.device), + ) + + # Update the number of seen tokens + if layer_idx == self.num_hidden_layers - 1: + for i in range(batch_size): + self._seen_tokens[i] += num_slots[i] + + return self.kv_cache[layer_idx][0], self.kv_cache[layer_idx][1] + + def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: + """Returns the sequence length of the cached states that were seen by the model.""" + return max(self._seen_tokens) + + def get_max_length(self) -> Optional[int]: + """Returns the maximum sequence length of the cached states.""" + return self.max_cache_len + + def reset(self): + """Resets the cache values while preserving the objects""" + self._seen_tokens = self.max_batch_size * [0] + + def reorder_cache(self, beam_idx: torch.LongTensor): + """Reorders the cache for beam search, given the selected beam indices.""" + device = self.block_tables.device + origin_table = self.block_tables.clone() + updated_block_tables = self.block_tables.index_select(0, beam_idx.to(device)) + mask = self.block_tables.masked_fill(self.block_tables != -1, 1).masked_fill(self.block_tables == -1, 0) + num_blocks = mask.cumsum(-1)[:, -1] + updated_table = [] + for i in range(beam_idx.shape[0]): + self.block_tables[i, 0 : num_blocks[i] - 1] = updated_block_tables[i, 0 : num_blocks[i] - 1] + updated_table.append(self.block_tables[i : i + 1, num_blocks[i] - 1 : num_blocks[i]]) + updated_table = torch.cat(tuple(updated_table), dim=0) + for layer_idx in range(len(self.kv_cache)): + self.kv_cache[layer_idx][0][updated_table] = self.kv_cache[layer_idx][0][updated_table[beam_idx]] + self.kv_cache[layer_idx][1][updated_table] = self.kv_cache[layer_idx][1][updated_table[beam_idx]] + + free_table = origin_table[origin_table != self.block_tables] + for i in range(free_table.shape[0]): + if free_table[i] not in self.free_blocks and not torch.any(self.block_tables.view(-1) == free_table[i]): + self.free_blocks.insert(0, free_table[i].item()) + + def crop(self, maximum_length: int): + """Crop the past key values up to a new `maximum_length` in terms of tokens. `maximum_length` can also be + negative to remove `maximum_length` tokens. This is used in assisted decoding and contrastive search.""" + + max_seq_len = self.get_seq_length() + if maximum_length < 0: + maximum_length = max_seq_len - abs(maximum_length) + + if max_seq_len <= maximum_length: + return + origin_table = self.block_tables.clone() + for bs in range(len(self._seen_tokens)): + new_tokens = self._seen_tokens[bs] + maximum_length - max_seq_len + num_blocks = (new_tokens + self.block_size - 1) // self.block_size + self.block_tables[bs, num_blocks:] = -1 + self._seen_tokens[bs] = new_tokens + free_table = origin_table[origin_table != self.block_tables] + for i in range(free_table.shape[0]): + if free_table[i] not in self.free_blocks and not torch.any(self.block_tables.view(-1) == free_table[i]): + self.free_blocks.insert(0, free_table[i].item()) diff --git a/optimum/exporters/ipex/model_patcher.py b/optimum/exporters/ipex/model_patcher.py index 484fd38077..0d447f4214 100644 --- a/optimum/exporters/ipex/model_patcher.py +++ b/optimum/exporters/ipex/model_patcher.py @@ -13,11 +13,10 @@ # limitations under the License. from transformers.models.bert.modeling_bert import BertIntermediate -from transformers.models.falcon.modeling_falcon import FalconDecoderLayer, FalconForCausalLM -from transformers.models.gpt2.modeling_gpt2 import GPT2Attention, GPT2Block, GPT2LMHeadModel +from transformers.models.falcon.modeling_falcon import FalconDecoderLayer +from transformers.models.gpt2.modeling_gpt2 import GPT2Attention, GPT2Block from transformers.models.llama.modeling_llama import ( LlamaDecoderLayer, - LlamaForCausalLM, LlamaModel, LlamaRMSNorm, ) @@ -75,7 +74,7 @@ def patch_op(m, target_m, new_op_name, new_op): def _patch_llama_model(model): """ Patch llama model: - 1. Use IPEX Rope and IAKV cache + 1. Use IPEX Rope and Paged cache 2. Linear fusion with (2 Linears + Silu + Mul) and (Linear + Add) """ convert_functions(model, LlamaModel, "forward", _llama_model_forward) @@ -88,7 +87,7 @@ def _patch_falcon_model(model): """ Patch falcon model: 1. Disable SDPA so the attention mask will be compatible to ipex attention. - 2. Use IPEX Rope and IAKV cache + 2. Use IPEX Rope and paged cache 3. Linear fusion with (Linear + Gelu) and (Linear + Add + Add) """ model.transformer._use_sdpa = False @@ -136,11 +135,11 @@ def _patch_model(model): raise ImportError( f"Only transformers versions {_TRANSFORMERS_MIN_VERSION} ~ {_TRANSFORMERS_MAX_VERSION} are verified." ) - if isinstance(model, LlamaForCausalLM): + if model.config.model_type == "llama": model = _patch_llama_model(model) - elif isinstance(model, FalconForCausalLM): + elif model.config.model_type == "falcon": model = _patch_falcon_model(model) - elif isinstance(model, GPT2LMHeadModel): + elif model.config.model_type == "gpt2": model = _patch_gpt2_model(model) elif model.config.model_type == "bert": model = _patch_bert_model(model) diff --git a/optimum/exporters/ipex/modeling_utils.py b/optimum/exporters/ipex/modeling_utils.py index 3d28350b86..b8cfc5772e 100644 --- a/optimum/exporters/ipex/modeling_utils.py +++ b/optimum/exporters/ipex/modeling_utils.py @@ -18,15 +18,16 @@ import torch from torch import nn -from torch.nn import functional as F +from transformers.cache_utils import Cache from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask from transformers.modeling_outputs import BaseModelOutputWithPast from transformers.models.gpt2.modeling_gpt2 import GPT2Block -from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv from optimum.intel.utils.import_utils import is_ipex_version from optimum.intel.utils.modeling_utils import _setattr_from_module +from .cache_utils import IPEXPagedCache + logger = logging.getLogger(__name__) @@ -38,28 +39,28 @@ f"Please upgrade the IPEX version to at least {_IPEX_MINIMUM_VERSION_FOR_PATCHING} if you want to patch the model." ) else: + from intel_extension_for_pytorch.llm.functional import rms_norm, rotary_embedding, varlen_attention from intel_extension_for_pytorch.llm.modules import ( - IndirectAccessKVCacheAttention, Linear2SiluMul, LinearAdd, LinearAddAdd, LinearGelu, - RotaryEmbedding, + PagedAttention, ) # Adapted from https://github.com/huggingface/transformers/blob/v4.38.2/src/transformers/models/llama/modeling_llama.py#L83 def _ipex_rms_layer_norm_forward(self, hidden_states): - return torch.ops.torch_ipex.rmsnorm(hidden_states, self.weight, self.variance_epsilon) + return rms_norm(hidden_states, self.weight, self.variance_epsilon) -# Adapted from https://github.com/huggingface/transformers/blob/v4.38.2/src/transformers/models/llama/modeling_llama.py#L1130 +# Adapted from https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/models/llama/modeling_llama.py#L918 def _llama_model_forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, + past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, @@ -85,9 +86,10 @@ def _llama_model_forward( else: raise ValueError("You have to specify either input_ids or inputs_embeds") - past_key_values_length = 0 - if past_key_values is not None: - past_key_values_length = past_key_values[0][0].shape[2] + if past_key_values is not None and not isinstance(past_key_values, IPEXPagedCache): + raise ValueError("only support IPEXPagedCache input now") + + past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0 if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device @@ -99,15 +101,6 @@ def _llama_model_forward( if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) - if getattr(self.config, "_flash_attn_2_enabled", False): - # 2d mask is passed through the layers - attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None - else: - # 4d mask is passed through the layers - attention_mask = _prepare_4d_causal_attention_mask( - attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length - ) - # embed positions hidden_states = inputs_embeds @@ -116,25 +109,40 @@ def _llama_model_forward( all_self_attns = () if output_attentions else None next_decoder_cache = () if use_cache else None + position_embeddings = self.rotary_emb(hidden_states, position_ids) + if past_key_values_length == 0: + # first token, remove the padding from hidden_states, varlen do not accept attention mask + hidden_states_copy = hidden_states + index = attention_mask.view(-1) != 0 + hidden_states = (hidden_states.view(-1, hidden_states.shape[-1]))[index] + cos = position_embeddings[0] + sin = position_embeddings[1] + cos = (cos.reshape(-1, cos.shape[-1]))[index] + sin = (sin.reshape(-1, sin.shape[-1]))[index] + position_embeddings = (cos.unsqueeze(1), sin.unsqueeze(1)) + else: + hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) + input_lens = attention_mask.cumsum(-1)[:, -1] + for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) - past_key_value = past_key_values[idx] if past_key_values is not None else None - layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, - past_key_value=past_key_value, + past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, + position_embeddings=position_embeddings, + input_lens=input_lens.int(), ) hidden_states = layer_outputs[0] if use_cache: - next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) + next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) @@ -148,8 +156,11 @@ def _llama_model_forward( next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) + if hidden_states.shape[0] != batch_size * seq_length: + (hidden_states_copy.view(-1, hidden_states.shape[-1]))[attention_mask.view(-1) != 0] = hidden_states + hidden_states = hidden_states_copy return BaseModelOutputWithPast( - last_hidden_state=hidden_states, + last_hidden_state=hidden_states.view(batch_size, -1, hidden_states.shape[-1]), past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, @@ -174,14 +185,11 @@ def __init__(self, module, config) -> None: super().__init__() _setattr_from_module(self, module) self.config = config - self.ipex_scale_dot_product = IndirectAccessKVCacheAttention(text_max_length=config.max_position_embeddings) - if hasattr(config, "rope_theta"): - self.ipex_rope = RotaryEmbedding( - config.max_position_embeddings, - config.hidden_size // config.num_attention_heads, - config.rope_theta, - config.architectures[0], - ) + self.module_device = next(module.parameters()).device.type + self.num_groups = self.num_heads // self.num_key_value_heads + self.kv_head_mapping = torch.arange( + 0, self.num_key_value_heads, dtype=torch.int32, device=self.module_device + ).repeat_interleave(self.num_groups) def qkv_gemm(self, hidden_states): raise NotImplementedError("Need to implement in specific model class") @@ -189,27 +197,6 @@ def qkv_gemm(self, hidden_states): def rope(self, *args, **kwargs): raise NotImplementedError("Need to implement in specific model class") - def sdpa_with_cache(self, query, key, value, past_key_value, attention_mask, **kwargs): - # This ipex op pre-allocates buffers for past_key_values and use beam index history - # which to decide which beam should be used to make attention scale dot more efficient. - (attn_output, attn_weights, past_key_value) = self.ipex_scale_dot_product( - query, - key, - value, - math.sqrt(self.head_dim), - past_key_value, - kwargs.get("head_mask", None), - attention_mask, - kwargs.get("alibi", None), - ) - return attn_output, past_key_value, attn_weights - - def sdpa_without_cache(self, query, key, value, past_key_value, attention_mask, **kwargs): - raise NotImplementedError("Need to implement in specific model class") - - def prepare_attention_mask_float(self, attention_mask, *args): - return attention_mask - def postprocess_attention_output(self, attn_output, bsz, seq_len): attn_output = attn_output.transpose(1, 2).reshape(bsz, seq_len, self.hidden_size) return attn_output @@ -219,40 +206,69 @@ def forward( hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, + past_key_value: Optional[IPEXPagedCache] = None, output_attentions: bool = False, use_cache: bool = False, + input_lens: Optional[torch.Tensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: - # For llama inputs: https://github.com/huggingface/transformers/blob/v4.43.4/src/transformers/models/llama/modeling_llama.py#L308 - # For falcon inputs: https://github.com/huggingface/transformers/blob/v4.43.4/src/transformers/models/falcon/modeling_falcon.py#L370 if past_key_value is None and kwargs.get("layer_past", None) is not None: past_key_value = kwargs.pop("layer_past", None) - bsz, seq_len, _ = hidden_states.size() - past_len = past_key_value[0].size(-2) if past_key_value is not None else 0 - kv_seq_len = seq_len + past_len - + bsz, seq_len = position_ids.size() + past_len = 0 + if past_key_value is not None: + past_len = past_key_value.get_seq_length() qkv_out = self.qkv_gemm(hidden_states) if isinstance(qkv_out, tuple) and len(qkv_out) == 3: - query, key, value = self.qkv_gemm(hidden_states) - query, key = self.rope(query, key, kv_seq_len, use_cache, position_ids=position_ids) + query, key, value = qkv_out[0], qkv_out[1], qkv_out[2] + query, key = self.rope(query, key, **kwargs) else: - query, key, value = self.rope(qkv_out, kv_seq_len, use_cache, past_len=past_len) - - attention_mask = self.prepare_attention_mask_float(attention_mask, query.dtype) - sdpa = self.sdpa_with_cache if use_cache else self.sdpa_without_cache - attn_output, past_key_value, attn_weights = sdpa( - query, - key, - value, - past_key_value, - attention_mask, - position_ids=position_ids, - head_mask=kwargs.get("head_mask", None), - alibi=kwargs.get("alibi", None), - ) - attn_output = self.postprocess_attention_output(attn_output, bsz, seq_len) + query, key, value = self.rope(qkv_out, **kwargs) + if past_key_value is not None: + key_cache, value_cache = past_key_value.update( + key, value, self.layer_idx, attention_mask, position_ids, input_lens + ) + + attn_output = torch.empty_like(query) + if past_len == 0: + # prefill, remove padding + seq_len_tensor = torch.cat( + (torch.tensor([0], device=input_lens.device, dtype=torch.int), input_lens.cumsum(-1).int()) + ) + varlen_attention( + query.contiguous() if query.device.type == "xpu" else query, + key.contiguous() if key.device.type == "xpu" else key, + value.contiguous() if value.device.type == "xpu" else value, + attn_output, + seq_len_tensor, + seq_len_tensor, + max(input_lens), + max(input_lens), + 0.0, + 1.0 / math.sqrt(self.head_dim), + False, + True, + False, + None, + ) + else: + # decode + PagedAttention.single_query_cached_kv_attention( + attn_output, + query, + key_cache, + value_cache, + self.kv_head_mapping, + 1.0 / math.sqrt(self.head_dim), + past_key_value.block_tables, + input_lens, + past_key_value.block_size, + max(input_lens), + None, + ) + + attn_output = attn_output.reshape(-1, attn_output.shape[-2] * attn_output.shape[-1]) if not output_attentions: attn_weights = None @@ -262,78 +278,34 @@ def forward( class _IPEXLlamaAttention(_IPEXAttention): def __init__(self, module, config) -> None: super().__init__(module, config) - if module.o_proj.__class__.__name__ not in ["LinearAllreduce"]: - self.mha_linear_add = LinearAdd(module.o_proj) - del self.__dict__["_modules"]["o_proj"] + if self.module_device == "cpu": + if module.o_proj.__class__.__name__ not in ["LinearAllreduce"]: + self.mha_linear_add = LinearAdd(module.o_proj) + del self.__dict__["_modules"]["o_proj"] def qkv_gemm(self, hidden_states): - bsz, seq_len, _ = hidden_states.size() - query = self.q_proj(hidden_states).view(bsz, seq_len, self.num_heads, self.head_dim) - key = self.k_proj(hidden_states).view(bsz, seq_len, self.num_key_value_heads, self.head_dim) - value = self.v_proj(hidden_states).view(bsz, seq_len, self.num_key_value_heads, self.head_dim) + query = self.q_proj(hidden_states).view(-1, self.num_heads, self.head_dim) + key = self.k_proj(hidden_states).view(-1, self.num_key_value_heads, self.head_dim) + value = self.v_proj(hidden_states).view(-1, self.num_key_value_heads, self.head_dim) return query, key, value - def rope(self, query, key, kv_seq_len, use_cache, position_ids): - if use_cache: - args = (self.head_dim, self.head_dim // 2, self.head_dim, kv_seq_len) - key = self.ipex_rope(key, position_ids, self.num_key_value_heads, *args) - query = self.ipex_rope(query, position_ids, self.num_heads, *args) + def rope(self, query, key, **kwargs): + position_embeddings = kwargs.pop("position_embeddings", None) + rotary_embedding(query, key, position_embeddings[1], position_embeddings[0], query.size(-1), True) return query, key - # Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L341 - def sdpa_without_cache(self, query, key, value, past_key_value, attention_mask, position_ids, **kwargs): - query, key, value = query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2) - cos, sin = self.rotary_emb(value, position_ids) - query, key = apply_rotary_pos_emb(query, key, cos, sin) - # repeat k/v heads if n_kv_heads < n_heads - key = repeat_kv(key, self.num_key_value_groups) - value = repeat_kv(value, self.num_key_value_groups) - attn_weights = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(self.head_dim) - if attention_mask is not None: - attn_weights = torch.tensor(attn_weights) + torch.tensor(attention_mask) - attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min)) - # upcast attention to fp32 - attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) - attn_output = torch.matmul(attn_weights, value) - - return attn_output, None, attn_weights - class _IPEXFalconAttention(_IPEXAttention): def qkv_gemm(self, hidden_states): return self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] - def rope(self, fused_qkv, seq_len, use_cache, past_len): - if use_cache: - query, key, value = self.ipex_rope( - fused_qkv, - torch.tensor(past_len), - self.num_heads, - self.head_dim, - self.head_dim // 2, - self.head_dim, - seq_len, - 3, - ) - else: - (query, key, value) = self._split_heads(fused_qkv) + def rope(self, fused_qkv, **kwargs): + position_embeddings = kwargs.pop("position_embeddings", None) + (query, key, value) = self._split_heads(fused_qkv) + rotary_embedding(query, key, position_embeddings[1], position_embeddings[0], query.size(-1), True) return query, key, value - def prepare_attention_mask_float(self, attention_mask, dtype): - attention_mask_float = ( - (attention_mask * 1.0).masked_fill(attention_mask.to(torch.bool), float("-1e9")).to(dtype) - ) - return attention_mask_float - - def sdpa_without_cache(self, query, key, value, past_key_value, attention_mask, **kwargs): - bs, q_len = query.shape[0], query.shape[1] - query, key, value = query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2) - attn_output = F.scaled_dot_product_attention(query, key, value, attention_mask, 0.0, is_causal=False) - attn_output = attn_output.view(bs, self.num_heads, q_len, self.head_dim) - - return attn_output, None, None - class _IPEXGPT2Attention(_IPEXAttention): def __init__(self, module, config) -> None: @@ -353,12 +325,6 @@ def qkv_gemm(self, hidden_states): def rope(self, query, key, *args, **kwargs): return query, key - def sdpa_without_cache(self, query, key, value, past_key_value, attention_mask, **kwargs): - query, key, value = query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2) - attn_output = F.scaled_dot_product_attention(query, key, value, attention_mask, 0.0, is_causal=True) - - return attn_output, None, None - def postprocess_attention_output(self, attn_output, bsz, seq_len): attn_output = attn_output.transpose(1, 2).reshape(bsz, seq_len, self.embed_dim) attn_output = self.c_proj(attn_output) @@ -372,13 +338,15 @@ def __init__(self, module, config) -> None: super().__init__() _setattr_from_module(self, module) self.config = config - # LinearAllreduce and LinearLayer cannot use fused op LinearAdd - if module.down_proj.__class__.__name__ not in ["LinearAllreduce"]: - self.mlp_linear_add = LinearAdd(module.down_proj) - del self.__dict__["_modules"]["down_proj"] - self.linear_silu_mul = Linear2SiluMul(module.gate_proj, module.up_proj) - del self.__dict__["_modules"]["gate_proj"] - del self.__dict__["_modules"]["up_proj"] + self.module_device = next(module.parameters()).device.type + if self.module_device == "cpu": + # LinearAllreduce and LinearLayer cannot use fused op LinearAdd + if module.down_proj.__class__.__name__ not in ["LinearAllreduce"]: + self.mlp_linear_add = LinearAdd(module.down_proj) + del self.__dict__["_modules"]["down_proj"] + self.linear_silu_mul = Linear2SiluMul(module.gate_proj, module.up_proj) + del self.__dict__["_modules"]["gate_proj"] + del self.__dict__["_modules"]["up_proj"] def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor = None, **kwargs): if hasattr(self, "linear_silu_mul"): diff --git a/optimum/intel/ipex/modeling_base.py b/optimum/intel/ipex/modeling_base.py index 739a2f2b44..a88f67a8f4 100644 --- a/optimum/intel/ipex/modeling_base.py +++ b/optimum/intel/ipex/modeling_base.py @@ -21,12 +21,9 @@ from tempfile import TemporaryDirectory from typing import Dict, Optional, Tuple, Union -import intel_extension_for_pytorch as ipex import torch import transformers -from huggingface_hub import hf_hub_download from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE -from intel_extension_for_pytorch.cpu._auto_kernel_selection import _enable_tpp from transformers import ( AutoConfig, AutoModel, @@ -53,6 +50,7 @@ from optimum.modeling_base import OptimizedModel from optimum.utils import NormalizedConfigManager +from ...exporters.ipex.cache_utils import IPEXPagedCache from ...exporters.ipex.model_config import ipex_onnx_config from ...exporters.ipex.model_patcher import ( _IPEX_EXPORTED_GENERATION_TASKS, @@ -61,8 +59,8 @@ ) from ..generation.modeling import get_float_type from ..utils.constant import _TASK_ALIASES -from ..utils.import_utils import is_ipex_version, is_torch_version, is_transformers_version -from ..utils.modeling_utils import MULTI_QUERY_ATTN_MODELS, recursive_to_device +from ..utils.import_utils import is_ipex_version, is_transformers_version +from ..utils.modeling_utils import recursive_to_device logger = logging.getLogger(__name__) @@ -121,40 +119,6 @@ def _prepare_inputs_for_ipex_model(model, task, use_cache): return {key: dummy_inputs[key] for key in signature.parameters if dummy_inputs.get(key, None) is not None} -def ipex_jit_trace(model, task, use_cache): - # Only support torch version >= 2.1.0 to support example_kwarg_inputs in jit.trace - if is_torch_version("<", "2.1.0"): - raise ImportError("`torch>=2.1.0` is needed to trace your model") - - if _is_patched_with_ipex(model, task): - model = _patch_model(model) - - sample_inputs = _prepare_inputs_for_ipex_model(model, task, use_cache) - - model.config.return_dict = False - model.config.use_cache = use_cache - - # Use Tensor Processing Primitives to accelerate linear, see https://arxiv.org/abs/2104.05755. - # Only ipex >= 2.3.0 supports tpp. The tpp is only verified for llm in generation tasks. - if is_ipex_version(">=", "2.3.0") and task in _IPEX_EXPORTED_GENERATION_TASKS: - _enable_tpp() - model = ipex.optimize(model.eval(), dtype=model.dtype, inplace=True) - # Disable repack while jit tracing to reduce the memory - ipex._C.disable_jit_linear_repack() - with torch.no_grad(): - trace_model = torch.jit.trace( - model, - example_kwarg_inputs=sample_inputs, - strict=False, - check_trace=False, - ) - trace_model = torch.jit.freeze(trace_model) - trace_model(**sample_inputs) - trace_model(**sample_inputs) - - return trace_model - - class IPEXModel(OptimizedModel): auto_model_class = AutoModel export_feature = "feature-extraction" @@ -178,16 +142,6 @@ def __init__( else: self._device = torch.device("cpu") - # CPU only support jit model for now. - if export: - if isinstance(model, torch.jit.RecursiveScriptModule): - logger.warning("The model has been exported already.") - else: - config = model.config if config is None else config - use_cache = kwargs.get("use_cache", True) - model = ipex_jit_trace(model, self.export_feature, use_cache) - config.torchscript = True - OptimizedModel.__init__(self, model=model, config=config) self.model.to(self._device) @@ -195,12 +149,7 @@ def __init__( self.model_save_dir = model_save_dir self._is_ipex_exported = _is_patched_with_ipex(model, self.export_feature) - if isinstance(model, torch.jit.RecursiveScriptModule): - self.input_names = { - inputs.debugName().split(".")[0] for inputs in model.graph.inputs() if inputs.debugName() != "self" - } - else: - self.input_names = set(inspect.signature(model.forward).parameters) + self.input_names = set(inspect.signature(model.forward).parameters) # Registers the IPEXModelForXXX classes into the transformers AutoModel classes to avoid warnings when creating # a pipeline https://github.com/huggingface/transformers/blob/cad61b68396a1a387287a8e2e2fef78a25b79383/src/transformers/pipelines/base.py#L863 @@ -287,39 +236,23 @@ def _from_pretrained( "force_download": force_download, } - if not getattr(config, "torchscript", False): - logger.warning("Detect torchscript is false. Convert to torchscript model!") - - if is_torch_version("<", "2.1.0"): - raise ImportError("`torch>=2.0.0` is needed to trace your model") - - task = cls.export_feature - config.torch_dtype = torch_dtype - model = TasksManager.get_model_from_task( - task, - model_id, - library_name="transformers", - trust_remote_code=trust_remote_code, - torch_dtype=torch_dtype, - _commit_hash=commit_hash, - **model_kwargs, - ) - - return cls(model, config=config, export=True, **kwargs) - - # Load the model from local directory - if os.path.isdir(model_id): - model_cache_path = os.path.join(model_id, file_name) - model_save_dir = model_id - # Download the model from the hub - else: - model_cache_path = hf_hub_download(repo_id=model_id, filename=file_name, **model_kwargs) - model_save_dir = Path(model_cache_path).parent - - model = torch.jit.load(model_cache_path) - torch.jit.freeze(model.eval()) + task = cls.export_feature + config.torch_dtype = torch_dtype + model = TasksManager.get_model_from_task( + task, + model_id, + library_name="transformers", + trust_remote_code=trust_remote_code, + torch_dtype=torch_dtype, + _commit_hash=commit_hash, + **model_kwargs, + ) + if is_torch_xpu_available(check_device=True): + model.to("xpu:0") - return cls(model, config=config, model_save_dir=model_save_dir, **kwargs) + if _is_patched_with_ipex(model, task): + model = _patch_model(model) + return cls(model, config=config, export=True, **kwargs) def _save_pretrained(self, save_directory: Union[str, Path]): output_path = os.path.join(save_directory, WEIGHTS_NAME) @@ -511,13 +444,6 @@ def __init__( self.normalized_config = NormalizedConfigManager.get_normalized_config_class(model_type)(self.config) self.use_cache = "past_key_values" in self.input_names - if isinstance(model, torch.jit.RecursiveScriptModule) and use_cache ^ self.use_cache: - raise ValueError( - f"`use_cache` was set to `{use_cache}` but the loaded model only supports `use_cache={self.use_cache}`. " - f"Please load your current model with `use_cache={self.use_cache}` or export the original model " - f"once again with `use_cache={use_cache}` when calling the `from_pretrained` method. " - "To export your model, simply set `export=True`." - ) self.config.is_decoder = True self.config.is_encoder_decoder = False @@ -529,17 +455,6 @@ def __init__( except AttributeError: self.model_cls = get_model_class(self.config, AutoModelForCausalLM._model_mapping) - if self._is_ipex_exported: - self._reorder_cache = _ipex_reorder_cache - else: - # Check if _reorder_cache is a static method - if "_reorder_cache" in self.model_cls.__dict__ and isinstance( - self.model_cls.__dict__["_reorder_cache"], staticmethod - ): - self._reorder_cache = self.model_cls._reorder_cache - elif "_reorder_cache" in self.model_cls.__dict__: - self._reorder_cache = self.model_cls._reorder_cache.__get__(self) - if is_transformers_version(">=", "4.38.0") and model_type in { "llama", "phi", @@ -559,72 +474,6 @@ def __init__( if warmup: self._init_warmup() - def _prepare_past_key_values(self, input_ids): - model_type = self.config.model_type.replace("_", "-") - nb_pkv = 2 - num_layers = self.normalized_config.num_layers - d_k = self.normalized_config.hidden_size // self.normalized_config.num_attention_heads - batch_size = input_ids.shape[0] - - if model_type in {"mistral", "llama", "falcon"}: - num_attention_heads = getattr(self.normalized_config, "num_key_value_heads", 1) - else: - num_attention_heads = self.normalized_config.num_attention_heads - - if self._is_ipex_exported: - # Indirect access kv cache has a different data layout compared with most transformers model, - # see https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/llm.html#indirect-access-kv-cache - beam_idx_tmp = torch.zeros( - (self.config.max_position_embeddings, input_ids.shape[0]), dtype=torch.long - ).contiguous() - past_key_values = tuple( - [ - ( - torch.zeros(1, 0, 0, 1, dtype=torch.long).contiguous(), - torch.zeros([1, 1, 1, 1]).contiguous(), - torch.zeros([1, 1, 1, 1]).contiguous(), - beam_idx_tmp, - ) - for i in range(num_layers) - ] - ) - return past_key_values - elif model_type == "bloom" and is_transformers_version("<", "4.44"): - shape_key = (batch_size * num_attention_heads, d_k, 0) - shape_value = (batch_size * num_attention_heads, 0, d_k) - key = torch.empty(size=shape_key, dtype=self.model_dtype, device=self._device) - value = torch.empty(size=shape_value, dtype=self.model_dtype, device=self._device) - past_key_values = tuple( - tuple(key if idx % 2 == 0 else value for idx in range(nb_pkv)) for _ in range(num_layers) - ) - elif model_type.replace("-", "_") in MULTI_QUERY_ATTN_MODELS: - shape = (batch_size, 0, d_k * 2) - pkv = torch.empty(size=shape, dtype=self.model_dtype, device=self._device) - past_key_values = tuple(pkv for _ in range(num_layers)) - else: - shape = (batch_size, num_attention_heads, 0, d_k) - pkv = torch.empty(size=shape, dtype=self.model_dtype, device=self._device) - past_key_values = tuple(tuple(pkv for _ in range(nb_pkv)) for _ in range(num_layers)) - - return past_key_values - - # Temporary fix, will delete when https://github.com/huggingface/transformers/pull/31226 release. - def _get_initial_cache_position(self, input_ids, model_kwargs): - """Calculates `cache_position` for the pre-fill stage based on `input_ids` and optionally past length""" - if not model_kwargs.get("use_cache", True): - model_kwargs["cache_position"] = None - return model_kwargs - - past_length = 0 - if "past_key_values" in model_kwargs: - past_length = model_kwargs["past_key_values"][0][0].shape[-2] - if "inputs_embeds" in model_kwargs: - cur_len = model_kwargs["inputs_embeds"].shape[1] - else: - cur_len = input_ids.shape[-1] - model_kwargs["cache_position"] = torch.arange(past_length, cur_len, device=input_ids.device) - return model_kwargs - def forward( self, input_ids: torch.LongTensor = None, @@ -646,9 +495,6 @@ def forward( inputs["position_ids"] = position_ids if self.use_cache: - if past_key_values is None: - past_key_values = self._prepare_past_key_values(input_ids) - inputs["past_key_values"] = past_key_values # 2. Model forward @@ -681,7 +527,11 @@ def generate(self, *args, **kwargs): raise ValueError( f"Assisted decoding is not supported for patched models if ipex < 2.4, support methods are {_IPEX_EXPORTED_GENERATION_METHODS}" ) - # Patch functions to support IAKV cache + # Patch functions to support paged cache + transformers.generation.utils.NEED_SETUP_CACHE_CLASSES_MAPPING["paged"] = IPEXPagedCache + self.generation_config.cache_implementation = "paged" + if kwargs.get("generation_config", None): + kwargs["generation_config"].cache_implementation = "paged" if self._is_ipex_exported and kwargs.get("assistant_model", None): transformers.generation.utils._crop_past_key_values = _ipex_crop_past_key_values elif self._is_ipex_exported: @@ -708,8 +558,7 @@ def _ipex_prepare_inputs_for_generation( if past_key_values is not None: if isinstance(past_key_values, Cache): - cache_length = past_key_values.get_seq_length() - past_length = past_key_values.seen_tokens + past_length = cache_length = past_key_values.get_seq_length() max_cache_length = past_key_values.get_max_length() else: cache_length = past_length = past_key_values[0][0].shape[2] @@ -760,34 +609,10 @@ def _ipex_prepare_inputs_for_generation( return model_inputs -def _ipex_reorder_cache( - past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor -) -> Tuple[Tuple[torch.Tensor]]: - # Ipex patched model uses indirect access kv cache which has a different shape with other transformers models - if len(past_key_values[0]) == 4 and past_key_values[0][0].shape[-1] == 1: - for layer_past in past_key_values: - layer_past[3][layer_past[0].size(-2) - 1] = beam_idx - return past_key_values - elif len(past_key_values[0]) == 8: - for layer_past in past_key_values: - layer_past[3][layer_past[0].size(-2) - 1] = beam_idx - layer_past[7][layer_past[0].size(-2) - 1] = beam_idx - return past_key_values - else: - return tuple( - tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past) - for layer_past in past_key_values - ) - - def _ipex_crop_past_key_values(model, past_key_values, max_length): if isinstance(model, IPEXModel) and _is_patched_with_ipex(model, "text-generation"): - new_past_key_values = [] - for i in range(len(past_key_values)): - pkv = [] - pkv.append(past_key_values[i][0][:, :max_length, :max_length, :]) - pkv += [past_key_values[i][_] for _ in range(1, 4)] - new_past_key_values.append(tuple(pkv)) - new_past_key_values = tuple(new_past_key_values) - return new_past_key_values + if isinstance(past_key_values, IPEXPagedCache): + return past_key_values.crop(max_length) + else: + raise ValueError("only support IPEXPagedCache input now") return _crop_past_key_values(model, past_key_values, max_length) From 973e034696d9bf271cc1148a3a747739c3e0d0a5 Mon Sep 17 00:00:00 2001 From: "Wang, Yi A" Date: Wed, 9 Oct 2024 12:09:58 -0400 Subject: [PATCH 02/29] add support in transformers 4.45 Signed-off-by: Wang, Yi A --- optimum/exporters/ipex/cache_utils.py | 10 +++++++++- optimum/exporters/ipex/model_patcher.py | 2 +- optimum/intel/ipex/modeling_base.py | 16 ++++------------ 3 files changed, 14 insertions(+), 14 deletions(-) diff --git a/optimum/exporters/ipex/cache_utils.py b/optimum/exporters/ipex/cache_utils.py index b0c7f728c8..24344bc9e5 100644 --- a/optimum/exporters/ipex/cache_utils.py +++ b/optimum/exporters/ipex/cache_utils.py @@ -30,7 +30,15 @@ class IPEXPagedCache(Cache): ``` """ - def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None: + def __init__( + self, + config: PretrainedConfig, + max_batch_size: int, + max_cache_len: int, + device, + dtype=None, + layer_device_map=None, + ) -> None: super().__init__() self.max_batch_size = max_batch_size self.kv_cache = [] diff --git a/optimum/exporters/ipex/model_patcher.py b/optimum/exporters/ipex/model_patcher.py index 0d447f4214..5a80097747 100644 --- a/optimum/exporters/ipex/model_patcher.py +++ b/optimum/exporters/ipex/model_patcher.py @@ -39,7 +39,7 @@ # Please also update in the setup.py and .github/workflows/test_ipex.yml if you change the transformers version _TRANSFORMERS_MIN_VERSION = "4.39.0" -_TRANSFORMERS_MAX_VERSION = "4.44.99" +_TRANSFORMERS_MAX_VERSION = "4.45.99" _IPEX_EXPORTED_GENERATION_TASKS = ("text-generation",) diff --git a/optimum/intel/ipex/modeling_base.py b/optimum/intel/ipex/modeling_base.py index a88f67a8f4..c462eed046 100644 --- a/optimum/intel/ipex/modeling_base.py +++ b/optimum/intel/ipex/modeling_base.py @@ -53,7 +53,6 @@ from ...exporters.ipex.cache_utils import IPEXPagedCache from ...exporters.ipex.model_config import ipex_onnx_config from ...exporters.ipex.model_patcher import ( - _IPEX_EXPORTED_GENERATION_TASKS, _IPEX_MINIMUM_VERSION_FOR_PATCHING, _patch_model, ) @@ -74,16 +73,6 @@ def _is_patched_with_ipex(model, task): if is_ipex_version("<", _IPEX_MINIMUM_VERSION_FOR_PATCHING): return False - if isinstance(model, torch.jit.ScriptModule): - for node in model.graph.nodes(): - # Only patched model enabled fusion linear. - if "/fusions/" in node.__str__(): - return True - return False - elif task in _IPEX_EXPORTED_GENERATION_TASKS and model.config.hidden_size < 64: - # The ipex IAKV op in patched model requires the hidden size at least 64 - return False - return model.config.model_type in _IPEX_SUPPORT_MODEL_TYPES @@ -421,7 +410,7 @@ def forward( class IPEXModelForCausalLM(IPEXModel, GenerationMixin): auto_model_class = AutoModelForCausalLM export_feature = "text-generation" - _supports_cache_class = False + _supports_cache_class = True _is_stateful = False def __init__( @@ -530,6 +519,9 @@ def generate(self, *args, **kwargs): # Patch functions to support paged cache transformers.generation.utils.NEED_SETUP_CACHE_CLASSES_MAPPING["paged"] = IPEXPagedCache self.generation_config.cache_implementation = "paged" + if is_transformers_version(">=", "4.45.0"): + if "paged" not in transformers.generation.configuration_utils.ALL_CACHE_IMPLEMENTATIONS: + transformers.generation.configuration_utils.ALL_CACHE_IMPLEMENTATIONS.append("paged") if kwargs.get("generation_config", None): kwargs["generation_config"].cache_implementation = "paged" if self._is_ipex_exported and kwargs.get("assistant_model", None): From 8b574d06a5d1a78dfaa57ba84f24f1465bb69cad Mon Sep 17 00:00:00 2001 From: jiqing-feng Date: Thu, 10 Oct 2024 10:32:54 +0800 Subject: [PATCH 03/29] fix congif (#935) --- optimum/intel/ipex/modeling_base.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/optimum/intel/ipex/modeling_base.py b/optimum/intel/ipex/modeling_base.py index c462eed046..b19e45af1e 100644 --- a/optimum/intel/ipex/modeling_base.py +++ b/optimum/intel/ipex/modeling_base.py @@ -131,6 +131,8 @@ def __init__( else: self._device = torch.device("cpu") + config = config or model.config + OptimizedModel.__init__(self, model=model, config=config) self.model.to(self._device) From 541a23616f7c10bb3599a5edb900a68e2e76a29c Mon Sep 17 00:00:00 2001 From: "Wang, Yi A" Date: Thu, 10 Oct 2024 09:05:10 -0400 Subject: [PATCH 04/29] move patch model to init Signed-off-by: Wang, Yi A --- optimum/exporters/ipex/cache_utils.py | 1 + optimum/intel/ipex/modeling_base.py | 7 ++----- 2 files changed, 3 insertions(+), 5 deletions(-) diff --git a/optimum/exporters/ipex/cache_utils.py b/optimum/exporters/ipex/cache_utils.py index 24344bc9e5..c8868716a4 100644 --- a/optimum/exporters/ipex/cache_utils.py +++ b/optimum/exporters/ipex/cache_utils.py @@ -41,6 +41,7 @@ def __init__( ) -> None: super().__init__() self.max_batch_size = max_batch_size + self.batch_size = max_batch_size self.kv_cache = [] self._seen_tokens = max_batch_size * [ diff --git a/optimum/intel/ipex/modeling_base.py b/optimum/intel/ipex/modeling_base.py index b19e45af1e..270a9b32da 100644 --- a/optimum/intel/ipex/modeling_base.py +++ b/optimum/intel/ipex/modeling_base.py @@ -142,6 +142,8 @@ def __init__( self.input_names = set(inspect.signature(model.forward).parameters) + if self._is_ipex_exported: + model = _patch_model(model) # Registers the IPEXModelForXXX classes into the transformers AutoModel classes to avoid warnings when creating # a pipeline https://github.com/huggingface/transformers/blob/cad61b68396a1a387287a8e2e2fef78a25b79383/src/transformers/pipelines/base.py#L863 AutoConfig.register(self.base_model_prefix, AutoConfig) @@ -238,11 +240,6 @@ def _from_pretrained( _commit_hash=commit_hash, **model_kwargs, ) - if is_torch_xpu_available(check_device=True): - model.to("xpu:0") - - if _is_patched_with_ipex(model, task): - model = _patch_model(model) return cls(model, config=config, export=True, **kwargs) def _save_pretrained(self, save_directory: Union[str, Path]): From 35cd0c1402462f1510f36a54ab9cf8b87af550a3 Mon Sep 17 00:00:00 2001 From: kaixuanliu Date: Thu, 17 Oct 2024 08:57:56 +0800 Subject: [PATCH 05/29] refine class IPEXPagedCache's update method (#945) * refine class IPEXPagedCache's update method Signed-off-by: Liu, Kaixuan * replace tensor on xpu to List to avoid memory copy Signed-off-by: Liu, Kaixuan * split IPEXPagedCache's update function into `update_for_prefill` and `update_for_decode` Signed-off-by: Liu, Kaixuan --------- Signed-off-by: Liu, Kaixuan --- optimum/exporters/ipex/cache_utils.py | 108 ++++++++++++++++------- optimum/exporters/ipex/modeling_utils.py | 10 +-- 2 files changed, 83 insertions(+), 35 deletions(-) mode change 100644 => 100755 optimum/exporters/ipex/cache_utils.py mode change 100644 => 100755 optimum/exporters/ipex/modeling_utils.py diff --git a/optimum/exporters/ipex/cache_utils.py b/optimum/exporters/ipex/cache_utils.py old mode 100644 new mode 100755 index c8868716a4..20f3cc608b --- a/optimum/exporters/ipex/cache_utils.py +++ b/optimum/exporters/ipex/cache_utils.py @@ -1,4 +1,4 @@ -from typing import Optional, Tuple +from typing import List, Optional, Tuple import torch from intel_extension_for_pytorch.llm.modules import PagedAttention @@ -95,6 +95,79 @@ def __init__( for _ in range(self.num_hidden_layers) ] + def update_for_prefill( + self, + key_states: torch.Tensor, + value_states: torch.Tensor, + layer_idx: int, + batch_size: int, + length_list: Optional[List], + ): + all_block_indices = [] + all_slot_offsets = [] + for i in range(batch_size): + num_blocks = (length_list[i] + self.block_size - 1) // self.block_size + for b_idx in range(num_blocks): + if self.block_tables[i][b_idx] == -1: + # need a free block + self.block_tables[i][b_idx] = self.free_blocks.pop(0) + + slots_range = torch.arange(length_list[i], device=key_states.device) + block_indices = slots_range // self.block_size + slot_offsets = slots_range % self.block_size + all_block_indices.append(self.block_tables[i][block_indices]) + all_slot_offsets.append(slot_offsets) + + all_block_indices = torch.cat(all_block_indices) + all_slot_offsets = torch.cat(all_slot_offsets) + slots_tensor = all_block_indices * self.block_size + all_slot_offsets + # Update the cache + PagedAttention.reshape_and_cache( + key_states, + value_states, + self.kv_cache[layer_idx][0], + self.kv_cache[layer_idx][1], + slots_tensor, + ) + + # Update the number of seen tokens + if layer_idx == self.num_hidden_layers - 1: + for i in range(batch_size): + self._seen_tokens[i] += length_list[i] + + def update_for_decode( + self, + key_states: torch.Tensor, + value_states: torch.Tensor, + layer_idx: int, + batch_size: int, + ): + slots = [] + for i in range(batch_size): + start_block_idx = self._seen_tokens[i] // self.block_size + num_blocks = (self._seen_tokens[i] + self.block_size) // self.block_size + for b_idx in range(start_block_idx, num_blocks): + if self.block_tables[i][b_idx] == -1: + # need a free block + self.block_tables[i][b_idx] = self.free_blocks.pop(0) + block_idx = (self._seen_tokens[i]) // self.block_size + slot_offset_in_block = (self._seen_tokens[i]) % self.block_size + slots.append(self.block_tables[i][block_idx].item() * self.block_size + slot_offset_in_block) + + # Update the cache + PagedAttention.reshape_and_cache( + key_states, + value_states, + self.kv_cache[layer_idx][0], + self.kv_cache[layer_idx][1], + torch.tensor(slots, device=key_states.device), + ) + + # Update the number of seen tokens + if layer_idx == self.num_hidden_layers - 1: + for i in range(batch_size): + self._seen_tokens[i] += 1 + def update( self, key_states: torch.Tensor, @@ -102,7 +175,7 @@ def update( layer_idx: int, attention_mask: torch.Tensor, position_ids: torch.Tensor, - input_lens: torch.Tensor, + length_list: Optional[List], ) -> Tuple[torch.Tensor, torch.Tensor]: """ Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`. @@ -117,39 +190,14 @@ def update( Return: A tuple containing the updated key and value states. """ + batch_size = position_ids.shape[0] - slots = [] if self.get_seq_length() == 0: # prefill - num_slots = input_lens.tolist() + self.update_for_prefill(key_states, value_states, layer_idx, batch_size, length_list) else: # decode - num_slots = [1] * batch_size - for i in range(batch_size): - start_block_idx = self._seen_tokens[i] // self.block_size - num_blocks = (self._seen_tokens[i] + num_slots[i] + self.block_size - 1) // self.block_size - for b_idx in range(start_block_idx, num_blocks): - if self.block_tables[i][b_idx] == -1: - # need a free block - self.block_tables[i][b_idx] = self.free_blocks.pop(0) - for slot in range(num_slots[i]): - block_idx = (self._seen_tokens[i] + slot) // self.block_size - slot_offset_in_block = (self._seen_tokens[i] + slot) % self.block_size - slots.append(self.block_tables[i][block_idx].item() * self.block_size + slot_offset_in_block) - - # Update the cache - PagedAttention.reshape_and_cache( - key_states, - value_states, - self.kv_cache[layer_idx][0], - self.kv_cache[layer_idx][1], - torch.tensor(slots, device=key_states.device), - ) - - # Update the number of seen tokens - if layer_idx == self.num_hidden_layers - 1: - for i in range(batch_size): - self._seen_tokens[i] += num_slots[i] + self.update_for_decode(key_states, value_states, layer_idx, batch_size) return self.kv_cache[layer_idx][0], self.kv_cache[layer_idx][1] diff --git a/optimum/exporters/ipex/modeling_utils.py b/optimum/exporters/ipex/modeling_utils.py old mode 100644 new mode 100755 index b8cfc5772e..b062528438 --- a/optimum/exporters/ipex/modeling_utils.py +++ b/optimum/exporters/ipex/modeling_utils.py @@ -123,7 +123,7 @@ def _llama_model_forward( else: hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) input_lens = attention_mask.cumsum(-1)[:, -1] - + lens_list = input_lens.tolist() for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) @@ -137,6 +137,7 @@ def _llama_model_forward( use_cache=use_cache, position_embeddings=position_embeddings, input_lens=input_lens.int(), + lens_list=lens_list, ) hidden_states = layer_outputs[0] @@ -210,6 +211,7 @@ def forward( output_attentions: bool = False, use_cache: bool = False, input_lens: Optional[torch.Tensor] = None, + lens_list: Optional[List] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if past_key_value is None and kwargs.get("layer_past", None) is not None: @@ -227,15 +229,13 @@ def forward( if past_key_value is not None: key_cache, value_cache = past_key_value.update( - key, value, self.layer_idx, attention_mask, position_ids, input_lens + key, value, self.layer_idx, attention_mask, position_ids, lens_list ) attn_output = torch.empty_like(query) if past_len == 0: # prefill, remove padding - seq_len_tensor = torch.cat( - (torch.tensor([0], device=input_lens.device, dtype=torch.int), input_lens.cumsum(-1).int()) - ) + seq_len_tensor = torch.cat((input_lens.new_tensor([0]), input_lens.cumsum(-1).int())) varlen_attention( query.contiguous() if query.device.type == "xpu" else query, key.contiguous() if key.device.type == "xpu" else key, From 80e80712c3f5dfd50e1690eb081f0269d9b3ae3b Mon Sep 17 00:00:00 2001 From: kaixuanliu Date: Fri, 18 Oct 2024 10:04:52 +0800 Subject: [PATCH 06/29] fix bug when doing beam search (#954) Signed-off-by: Liu, Kaixuan --- optimum/exporters/ipex/cache_utils.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/optimum/exporters/ipex/cache_utils.py b/optimum/exporters/ipex/cache_utils.py index 20f3cc608b..d553ba87d2 100755 --- a/optimum/exporters/ipex/cache_utils.py +++ b/optimum/exporters/ipex/cache_utils.py @@ -212,6 +212,8 @@ def get_max_length(self) -> Optional[int]: def reset(self): """Resets the cache values while preserving the objects""" self._seen_tokens = self.max_batch_size * [0] + self.block_tables.fill_(-1) + self.free_blocks = list(range(0, self.num_blocks)) def reorder_cache(self, beam_idx: torch.LongTensor): """Reorders the cache for beam search, given the selected beam indices.""" From 184faeadfab586967709a09a57ae7dd3b6c16bec Mon Sep 17 00:00:00 2001 From: jiqing-feng Date: Wed, 23 Oct 2024 10:35:04 +0800 Subject: [PATCH 07/29] enable qkv concat layer (#958) * enable qkv * split key value into 2 lists --- optimum/exporters/ipex/cache_utils.py | 67 ++++++++---------------- optimum/exporters/ipex/modeling_utils.py | 28 +++++++--- 2 files changed, 44 insertions(+), 51 deletions(-) diff --git a/optimum/exporters/ipex/cache_utils.py b/optimum/exporters/ipex/cache_utils.py index d553ba87d2..0ed0b4368a 100755 --- a/optimum/exporters/ipex/cache_utils.py +++ b/optimum/exporters/ipex/cache_utils.py @@ -42,11 +42,8 @@ def __init__( super().__init__() self.max_batch_size = max_batch_size self.batch_size = max_batch_size - self.kv_cache = [] - - self._seen_tokens = max_batch_size * [ - 0 - ] # Used in `generate` to keep tally of how many tokens the cache has seen + # Used in `generate` to keep tally of how many tokens the cache has seen + self._seen_tokens = max_batch_size * [0] self.block_size = 16 self.num_blocks = (max_cache_len // self.block_size + (max_cache_len % self.block_size != 0)) * max_batch_size self.block_tables = -1 * torch.ones([self.num_blocks], dtype=torch.int32, device=device).reshape( @@ -62,38 +59,20 @@ def __init__( head_size = config.hidden_size // config.num_attention_heads self.head_size = head_size + self.key_cache: List[torch.Tensor] = [] + self.value_cache: List[torch.Tensor] = [] + if device.type == "cpu": - self.kv_cache = [ - ( - torch.empty( - (self.num_blocks, self.num_kv_heads, self.block_size, head_size), - dtype=dtype, - device=device, - ), - torch.empty( - (self.num_blocks, self.num_kv_heads, self.block_size, head_size), - dtype=dtype, - device=device, - ), - ) - for _ in range(self.num_hidden_layers) - ] + key_cache_shape = (self.num_blocks, self.num_kv_heads, self.block_size, head_size) + value_cache_shape = (self.num_blocks, self.num_kv_heads, self.block_size, head_size) elif device.type == "xpu": - self.kv_cache = [ - ( - torch.empty( - (self.num_blocks, self.num_kv_heads, head_size, self.block_size, 1), - dtype=dtype, - device=device, - ), - torch.empty( - (self.num_blocks, self.num_kv_heads, head_size, self.block_size), - dtype=dtype, - device=device, - ), - ) - for _ in range(self.num_hidden_layers) - ] + key_cache_shape = (self.num_blocks, self.num_kv_heads, head_size, self.block_size, 1) + value_cache_shape = (self.num_blocks, self.num_kv_heads, head_size, self.block_size) + for i in range(config.num_hidden_layers): + new_layer_key_cache = torch.zeros(key_cache_shape, dtype=dtype, device=device) + new_layer_value_cache = torch.zeros(value_cache_shape, dtype=dtype, device=device) + self.key_cache.append(new_layer_key_cache) + self.value_cache.append(new_layer_value_cache) def update_for_prefill( self, @@ -125,8 +104,8 @@ def update_for_prefill( PagedAttention.reshape_and_cache( key_states, value_states, - self.kv_cache[layer_idx][0], - self.kv_cache[layer_idx][1], + self.key_cache[layer_idx], + self.value_cache[layer_idx], slots_tensor, ) @@ -158,8 +137,8 @@ def update_for_decode( PagedAttention.reshape_and_cache( key_states, value_states, - self.kv_cache[layer_idx][0], - self.kv_cache[layer_idx][1], + self.key_cache[layer_idx], + self.value_cache[layer_idx], torch.tensor(slots, device=key_states.device), ) @@ -175,7 +154,7 @@ def update( layer_idx: int, attention_mask: torch.Tensor, position_ids: torch.Tensor, - length_list: Optional[List], + length_list: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: """ Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`. @@ -199,7 +178,7 @@ def update( # decode self.update_for_decode(key_states, value_states, layer_idx, batch_size) - return self.kv_cache[layer_idx][0], self.kv_cache[layer_idx][1] + return self.key_cache[layer_idx], self.value_cache[layer_idx] def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: """Returns the sequence length of the cached states that were seen by the model.""" @@ -227,9 +206,9 @@ def reorder_cache(self, beam_idx: torch.LongTensor): self.block_tables[i, 0 : num_blocks[i] - 1] = updated_block_tables[i, 0 : num_blocks[i] - 1] updated_table.append(self.block_tables[i : i + 1, num_blocks[i] - 1 : num_blocks[i]]) updated_table = torch.cat(tuple(updated_table), dim=0) - for layer_idx in range(len(self.kv_cache)): - self.kv_cache[layer_idx][0][updated_table] = self.kv_cache[layer_idx][0][updated_table[beam_idx]] - self.kv_cache[layer_idx][1][updated_table] = self.kv_cache[layer_idx][1][updated_table[beam_idx]] + for layer_idx in range(self.num_hidden_layers): + self.key_cache[layer_idx][updated_table] = self.key_cache[layer_idx][updated_table[beam_idx]] + self.value_cache[layer_idx][updated_table] = self.value_cache[layer_idx][updated_table[beam_idx]] free_table = origin_table[origin_table != self.block_tables] for i in range(free_table.shape[0]): diff --git a/optimum/exporters/ipex/modeling_utils.py b/optimum/exporters/ipex/modeling_utils.py index b062528438..49f3d34d3a 100755 --- a/optimum/exporters/ipex/modeling_utils.py +++ b/optimum/exporters/ipex/modeling_utils.py @@ -122,8 +122,7 @@ def _llama_model_forward( position_embeddings = (cos.unsqueeze(1), sin.unsqueeze(1)) else: hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) - input_lens = attention_mask.cumsum(-1)[:, -1] - lens_list = input_lens.tolist() + input_lens = attention_mask.cumsum(-1)[:, -1].to(torch.int32) for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) @@ -136,8 +135,8 @@ def _llama_model_forward( output_attentions=output_attentions, use_cache=use_cache, position_embeddings=position_embeddings, - input_lens=input_lens.int(), - lens_list=lens_list, + input_lens=input_lens, + lens_list=input_lens, ) hidden_states = layer_outputs[0] @@ -278,15 +277,30 @@ def forward( class _IPEXLlamaAttention(_IPEXAttention): def __init__(self, module, config) -> None: super().__init__(module, config) + concat_weight = torch.concat([self.q_proj.weight, self.k_proj.weight, self.v_proj.weight]) + bias_list = [bias for bias in [self.q_proj.bias, self.k_proj.bias, self.v_proj.bias] if bias] + use_bias = bias_list != [] + self.concat_qkv = nn.Linear(concat_weight.shape[1], concat_weight.shape[0], bias=use_bias) + self.concat_qkv.weight = nn.Parameter(concat_weight) + if use_bias: + concat_bias = torch.concat(bias_list, 0) + self.concat_linear.bias = nn.Parameter(concat_bias) + self.q_slice = self.q_proj.out_features + self.k_slice = self.q_slice + self.k_proj.out_features + self.v_slice = self.k_slice + self.v_proj.out_features + del self.__dict__["_modules"]["q_proj"] + del self.__dict__["_modules"]["k_proj"] + del self.__dict__["_modules"]["v_proj"] if self.module_device == "cpu": if module.o_proj.__class__.__name__ not in ["LinearAllreduce"]: self.mha_linear_add = LinearAdd(module.o_proj) del self.__dict__["_modules"]["o_proj"] def qkv_gemm(self, hidden_states): - query = self.q_proj(hidden_states).view(-1, self.num_heads, self.head_dim) - key = self.k_proj(hidden_states).view(-1, self.num_key_value_heads, self.head_dim) - value = self.v_proj(hidden_states).view(-1, self.num_key_value_heads, self.head_dim) + qkv_out = self.concat_qkv(hidden_states) + query = qkv_out[:, : self.q_slice].view(-1, self.num_heads, self.head_dim) + key = qkv_out[:, self.q_slice : self.k_slice].view(-1, self.num_key_value_heads, self.head_dim) + value = qkv_out[:, self.k_slice :].view(-1, self.num_key_value_heads, self.head_dim) return query, key, value From b341db6f2ed938478c020a84d55e61e3ff6d35b2 Mon Sep 17 00:00:00 2001 From: "Wang, Yi A" Date: Tue, 22 Oct 2024 19:46:15 -0700 Subject: [PATCH 08/29] add xpu cache optimiztion Signed-off-by: Wang, Yi A --- optimum/exporters/ipex/cache_utils.py | 90 +++++++++++++----------- optimum/exporters/ipex/modeling_utils.py | 14 ++-- 2 files changed, 53 insertions(+), 51 deletions(-) diff --git a/optimum/exporters/ipex/cache_utils.py b/optimum/exporters/ipex/cache_utils.py index 0ed0b4368a..42b7c64d26 100755 --- a/optimum/exporters/ipex/cache_utils.py +++ b/optimum/exporters/ipex/cache_utils.py @@ -43,7 +43,7 @@ def __init__( self.max_batch_size = max_batch_size self.batch_size = max_batch_size # Used in `generate` to keep tally of how many tokens the cache has seen - self._seen_tokens = max_batch_size * [0] + self._seen_tokens = torch.zeros([max_batch_size], dtype=torch.int32, device=device) self.block_size = 16 self.num_blocks = (max_cache_len // self.block_size + (max_cache_len % self.block_size != 0)) * max_batch_size self.block_tables = -1 * torch.ones([self.num_blocks], dtype=torch.int32, device=device).reshape( @@ -58,6 +58,7 @@ def __init__( else: head_size = config.hidden_size // config.num_attention_heads self.head_size = head_size + self.max_seq_len = 0 self.key_cache: List[torch.Tensor] = [] self.value_cache: List[torch.Tensor] = [] @@ -80,39 +81,41 @@ def update_for_prefill( value_states: torch.Tensor, layer_idx: int, batch_size: int, - length_list: Optional[List], + input_lens: torch.Tensor, ): - all_block_indices = [] - all_slot_offsets = [] - for i in range(batch_size): - num_blocks = (length_list[i] + self.block_size - 1) // self.block_size - for b_idx in range(num_blocks): - if self.block_tables[i][b_idx] == -1: - # need a free block - self.block_tables[i][b_idx] = self.free_blocks.pop(0) - - slots_range = torch.arange(length_list[i], device=key_states.device) - block_indices = slots_range // self.block_size - slot_offsets = slots_range % self.block_size - all_block_indices.append(self.block_tables[i][block_indices]) - all_slot_offsets.append(slot_offsets) - - all_block_indices = torch.cat(all_block_indices) - all_slot_offsets = torch.cat(all_slot_offsets) - slots_tensor = all_block_indices * self.block_size + all_slot_offsets + if layer_idx == 0: + all_block_indices = [] + all_slot_offsets = [] + num_blocks = (input_lens + self.block_size - 1) // self.block_size + for i in range(batch_size): + for b_idx in range(num_blocks[i]): + if self.block_tables[i][b_idx] == -1: + # need a free block + self.block_tables[i][b_idx] = self.free_blocks.pop(0) + + slots_range = torch.arange(input_lens[i], device=key_states.device) + block_indices = slots_range // self.block_size + slot_offsets = slots_range % self.block_size + all_block_indices.append(self.block_tables[i][block_indices]) + all_slot_offsets.append(slot_offsets) + + all_block_indices = torch.cat(all_block_indices) + all_slot_offsets = torch.cat(all_slot_offsets) + self.slots = all_block_indices * self.block_size + all_slot_offsets + # Update the cache PagedAttention.reshape_and_cache( key_states, value_states, self.key_cache[layer_idx], self.value_cache[layer_idx], - slots_tensor, + self.slots, ) # Update the number of seen tokens if layer_idx == self.num_hidden_layers - 1: - for i in range(batch_size): - self._seen_tokens[i] += length_list[i] + self._seen_tokens = self._seen_tokens + input_lens + self.max_seq_len, _ = self._seen_tokens.max(dim=0) def update_for_decode( self, @@ -121,31 +124,30 @@ def update_for_decode( layer_idx: int, batch_size: int, ): - slots = [] - for i in range(batch_size): - start_block_idx = self._seen_tokens[i] // self.block_size - num_blocks = (self._seen_tokens[i] + self.block_size) // self.block_size - for b_idx in range(start_block_idx, num_blocks): - if self.block_tables[i][b_idx] == -1: - # need a free block - self.block_tables[i][b_idx] = self.free_blocks.pop(0) - block_idx = (self._seen_tokens[i]) // self.block_size - slot_offset_in_block = (self._seen_tokens[i]) % self.block_size - slots.append(self.block_tables[i][block_idx].item() * self.block_size + slot_offset_in_block) - + if layer_idx == 0: + start_block_idx = self._seen_tokens // self.block_size + num_blocks = (self._seen_tokens + self.block_size) // self.block_size + slot_offset_in_block = (self._seen_tokens) % self.block_size + self.slots = torch.zeros([batch_size], device=key_states.device, dtype=torch.int32) + for i in range(batch_size): + for b_idx in range(start_block_idx[i], num_blocks[i]): + if self.block_tables[i][b_idx] == -1: + # need a free block + self.block_tables[i][b_idx] = self.free_blocks.pop(0) + self.slots[i] = self.block_tables[i][start_block_idx[i]] * self.block_size + slot_offset_in_block[i] # Update the cache PagedAttention.reshape_and_cache( key_states, value_states, self.key_cache[layer_idx], self.value_cache[layer_idx], - torch.tensor(slots, device=key_states.device), + self.slots, ) # Update the number of seen tokens if layer_idx == self.num_hidden_layers - 1: - for i in range(batch_size): - self._seen_tokens[i] += 1 + self._seen_tokens = self._seen_tokens + 1 + self.max_seq_len = self.max_seq_len + 1 def update( self, @@ -154,7 +156,7 @@ def update( layer_idx: int, attention_mask: torch.Tensor, position_ids: torch.Tensor, - length_list: Optional[torch.Tensor], + input_lens: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """ Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`. @@ -173,7 +175,7 @@ def update( batch_size = position_ids.shape[0] if self.get_seq_length() == 0: # prefill - self.update_for_prefill(key_states, value_states, layer_idx, batch_size, length_list) + self.update_for_prefill(key_states, value_states, layer_idx, batch_size, input_lens) else: # decode self.update_for_decode(key_states, value_states, layer_idx, batch_size) @@ -182,7 +184,7 @@ def update( def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: """Returns the sequence length of the cached states that were seen by the model.""" - return max(self._seen_tokens) + return self.max_seq_len def get_max_length(self) -> Optional[int]: """Returns the maximum sequence length of the cached states.""" @@ -190,9 +192,10 @@ def get_max_length(self) -> Optional[int]: def reset(self): """Resets the cache values while preserving the objects""" - self._seen_tokens = self.max_batch_size * [0] + self._seen_tokens = torch.zeros([self.max_batch_size], dtype=torch.int32, device=self.block_tables.device) self.block_tables.fill_(-1) self.free_blocks = list(range(0, self.num_blocks)) + self.max_seq_len = 0 def reorder_cache(self, beam_idx: torch.LongTensor): """Reorders the cache for beam search, given the selected beam indices.""" @@ -226,11 +229,12 @@ def crop(self, maximum_length: int): if max_seq_len <= maximum_length: return origin_table = self.block_tables.clone() - for bs in range(len(self._seen_tokens)): + for bs in range(self._seen_tokens.shape[0]): new_tokens = self._seen_tokens[bs] + maximum_length - max_seq_len num_blocks = (new_tokens + self.block_size - 1) // self.block_size self.block_tables[bs, num_blocks:] = -1 self._seen_tokens[bs] = new_tokens + self.max_seq_len, _ = self._seen_tokens.max(dim=0) free_table = origin_table[origin_table != self.block_tables] for i in range(free_table.shape[0]): if free_table[i] not in self.free_blocks and not torch.any(self.block_tables.view(-1) == free_table[i]): diff --git a/optimum/exporters/ipex/modeling_utils.py b/optimum/exporters/ipex/modeling_utils.py index 49f3d34d3a..b45818d27b 100755 --- a/optimum/exporters/ipex/modeling_utils.py +++ b/optimum/exporters/ipex/modeling_utils.py @@ -136,7 +136,6 @@ def _llama_model_forward( use_cache=use_cache, position_embeddings=position_embeddings, input_lens=input_lens, - lens_list=input_lens, ) hidden_states = layer_outputs[0] @@ -210,7 +209,6 @@ def forward( output_attentions: bool = False, use_cache: bool = False, input_lens: Optional[torch.Tensor] = None, - lens_list: Optional[List] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if past_key_value is None and kwargs.get("layer_past", None) is not None: @@ -228,7 +226,7 @@ def forward( if past_key_value is not None: key_cache, value_cache = past_key_value.update( - key, value, self.layer_idx, attention_mask, position_ids, lens_list + key, value, self.layer_idx, attention_mask, position_ids, input_lens ) attn_output = torch.empty_like(query) @@ -242,8 +240,8 @@ def forward( attn_output, seq_len_tensor, seq_len_tensor, - max(input_lens), - max(input_lens), + input_lens.max(), + input_lens.max(), 0.0, 1.0 / math.sqrt(self.head_dim), False, @@ -263,7 +261,7 @@ def forward( past_key_value.block_tables, input_lens, past_key_value.block_size, - max(input_lens), + input_lens.max(), None, ) @@ -277,13 +275,13 @@ def forward( class _IPEXLlamaAttention(_IPEXAttention): def __init__(self, module, config) -> None: super().__init__(module, config) - concat_weight = torch.concat([self.q_proj.weight, self.k_proj.weight, self.v_proj.weight]) + concat_weight = torch.concat([self.q_proj.weight, self.k_proj.weight, self.v_proj.weight]).contiguous() bias_list = [bias for bias in [self.q_proj.bias, self.k_proj.bias, self.v_proj.bias] if bias] use_bias = bias_list != [] self.concat_qkv = nn.Linear(concat_weight.shape[1], concat_weight.shape[0], bias=use_bias) self.concat_qkv.weight = nn.Parameter(concat_weight) if use_bias: - concat_bias = torch.concat(bias_list, 0) + concat_bias = torch.concat(bias_list, 0).contiguous() self.concat_linear.bias = nn.Parameter(concat_bias) self.q_slice = self.q_proj.out_features self.k_slice = self.q_slice + self.k_proj.out_features From 34ce74dfda4c488ff220091d85b8f50ec2c0f5b2 Mon Sep 17 00:00:00 2001 From: "Wang, Yi A" Date: Wed, 23 Oct 2024 04:33:53 -0700 Subject: [PATCH 09/29] xpu mlp optimization Signed-off-by: Wang, Yi A --- optimum/exporters/ipex/modeling_utils.py | 72 ++++++++++++++++++++++++ 1 file changed, 72 insertions(+) diff --git a/optimum/exporters/ipex/modeling_utils.py b/optimum/exporters/ipex/modeling_utils.py index b45818d27b..5555b0b803 100755 --- a/optimum/exporters/ipex/modeling_utils.py +++ b/optimum/exporters/ipex/modeling_utils.py @@ -49,6 +49,66 @@ ) +class XPULinear2SiluMul(torch.nn.Module): + def __init__( + self, + gate_proj: torch.nn.Module, + up_proj: torch.nn.Module, + ): + super().__init__() + self.gate_proj_weight = gate_proj.weight.transpose(0, 1).contiguous() + self.up_proj_weight = up_proj.weight.transpose(0, 1).contiguous() + self.gate_proj_bias = gate_proj.bias + self.up_proj_bias = up_proj.bias + + def forward( + self, + hidden_states, + ): + up = torch.ops.torch_ipex.mm_silu(hidden_states, self.gate_proj_weight) + if self.gate_proj_bias is not None: + up += self.gate_proj_bias + hidden_states = torch.ops.torch_ipex.mm_resmul(hidden_states, self.up_proj_weight, up) + if self.up_proj_bias is not None: + hidden_states += self.up_proj_bias + return hidden_states + + +class XPULinearAdd(torch.nn.Module): + def __init__( + self, + module: torch.nn.Module, + ): + super().__init__() + self.weight = module.weight.transpose(0, 1).contiguous() + self.bias = module.bias + + def forward( + self, + hidden_states, + residual, + ): + token_len, _ = hidden_states.size() + if residual is None: + hidden_states = torch.matmul(hidden_states, self.weight) + if self.bias is not None: + hidden_states += self.bias + else: + if self.bias is not None: + hidden_states = torch.ops.torch_ipex.mm_bias_resadd( + hidden_states, self.weight, self.bias, 1.0, residual, 1.0 + ) + else: + hidden_states = torch.addmm( + residual.flatten(0, -2), + hidden_states.flatten(0, -2), + self.weight, + beta=1.0, + ) + hidden_states = hidden_states.view(token_len, -1) + return hidden_states + + # Adapted from https://github.com/huggingface/transformers/blob/v4.38.2/src/transformers/models/llama/modeling_llama.py#L83 def _ipex_rms_layer_norm_forward(self, hidden_states): return rms_norm(hidden_states, self.weight, self.variance_epsilon) @@ -293,6 +353,10 @@ def __init__(self, module, config) -> None: if module.o_proj.__class__.__name__ not in ["LinearAllreduce"]: self.mha_linear_add = LinearAdd(module.o_proj) del self.__dict__["_modules"]["o_proj"] + elif self.module_device == "xpu": + if module.o_proj.__class__.__name__ not in ["LinearAllreduce"]: + self.mha_linear_add = XPULinearAdd(module.o_proj) + del self.__dict__["_modules"]["o_proj"] def qkv_gemm(self, hidden_states): qkv_out = self.concat_qkv(hidden_states) @@ -359,6 +423,14 @@ def __init__(self, module, config) -> None: self.linear_silu_mul = Linear2SiluMul(module.gate_proj, module.up_proj) del self.__dict__["_modules"]["gate_proj"] del self.__dict__["_modules"]["up_proj"] + elif self.module_device == "xpu": + # LinearAllreduce and LinearLayer cannot use fused op LinearAdd + if module.down_proj.__class__.__name__ not in ["LinearAllreduce"]: + self.mlp_linear_add = XPULinearAdd(module.down_proj) + del self.__dict__["_modules"]["down_proj"] + self.linear_silu_mul = XPULinear2SiluMul(module.gate_proj, module.up_proj) + del self.__dict__["_modules"]["gate_proj"] + del self.__dict__["_modules"]["up_proj"] def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor = None, **kwargs): if hasattr(self, "linear_silu_mul"): From 45130c9f2f81c6432a23808f8e00e0249f755d3b Mon Sep 17 00:00:00 2001 From: "Wang, Yi A" Date: Wed, 23 Oct 2024 22:05:09 -0700 Subject: [PATCH 10/29] optimize cache ops in xpu, improve for beam search Signed-off-by: Wang, Yi A --- optimum/exporters/ipex/cache_utils.py | 24 +++++++++++------------- 1 file changed, 11 insertions(+), 13 deletions(-) diff --git a/optimum/exporters/ipex/cache_utils.py b/optimum/exporters/ipex/cache_utils.py index 42b7c64d26..72c79f4b69 100755 --- a/optimum/exporters/ipex/cache_utils.py +++ b/optimum/exporters/ipex/cache_utils.py @@ -49,7 +49,7 @@ def __init__( self.block_tables = -1 * torch.ones([self.num_blocks], dtype=torch.int32, device=device).reshape( max_batch_size, -1 ) - self.free_blocks = list(range(0, self.num_blocks)) + self.free_blocks = torch.arange(self.num_blocks, device=device) self.max_cache_len = max_cache_len self.num_kv_heads = config.num_key_value_heads self.num_hidden_layers = config.num_hidden_layers @@ -91,7 +91,8 @@ def update_for_prefill( for b_idx in range(num_blocks[i]): if self.block_tables[i][b_idx] == -1: # need a free block - self.block_tables[i][b_idx] = self.free_blocks.pop(0) + self.block_tables[i][b_idx] = self.free_blocks[0] + self.free_blocks = self.free_blocks[1:] slots_range = torch.arange(input_lens[i], device=key_states.device) block_indices = slots_range // self.block_size @@ -133,7 +134,9 @@ def update_for_decode( for b_idx in range(start_block_idx[i], num_blocks[i]): if self.block_tables[i][b_idx] == -1: # need a free block - self.block_tables[i][b_idx] = self.free_blocks.pop(0) + self.block_tables[i][b_idx] = self.free_blocks[0] + self.free_blocks = self.free_blocks[1:] + self.slots[i] = self.block_tables[i][start_block_idx[i]] * self.block_size + slot_offset_in_block[i] # Update the cache PagedAttention.reshape_and_cache( @@ -194,7 +197,7 @@ def reset(self): """Resets the cache values while preserving the objects""" self._seen_tokens = torch.zeros([self.max_batch_size], dtype=torch.int32, device=self.block_tables.device) self.block_tables.fill_(-1) - self.free_blocks = list(range(0, self.num_blocks)) + self.free_blocks = torch.arange(self.num_blocks, device=self.block_tables.device) self.max_seq_len = 0 def reorder_cache(self, beam_idx: torch.LongTensor): @@ -212,11 +215,8 @@ def reorder_cache(self, beam_idx: torch.LongTensor): for layer_idx in range(self.num_hidden_layers): self.key_cache[layer_idx][updated_table] = self.key_cache[layer_idx][updated_table[beam_idx]] self.value_cache[layer_idx][updated_table] = self.value_cache[layer_idx][updated_table[beam_idx]] - - free_table = origin_table[origin_table != self.block_tables] - for i in range(free_table.shape[0]): - if free_table[i] not in self.free_blocks and not torch.any(self.block_tables.view(-1) == free_table[i]): - self.free_blocks.insert(0, free_table[i].item()) + free_table = torch.unique((origin_table[origin_table != self.block_tables]).view(-1)) + self.free_blocks = torch.cat((self.free_blocks, free_table)) def crop(self, maximum_length: int): """Crop the past key values up to a new `maximum_length` in terms of tokens. `maximum_length` can also be @@ -235,7 +235,5 @@ def crop(self, maximum_length: int): self.block_tables[bs, num_blocks:] = -1 self._seen_tokens[bs] = new_tokens self.max_seq_len, _ = self._seen_tokens.max(dim=0) - free_table = origin_table[origin_table != self.block_tables] - for i in range(free_table.shape[0]): - if free_table[i] not in self.free_blocks and not torch.any(self.block_tables.view(-1) == free_table[i]): - self.free_blocks.insert(0, free_table[i].item()) + free_table = torch.unique((origin_table[origin_table != self.block_tables]).view(-1)) + self.free_blocks = torch.cat((self.free_blocks, free_table)) From 74eec8b34556a94df80eb41c00a402b4eb8faf37 Mon Sep 17 00:00:00 2001 From: jiqing-feng Date: Tue, 5 Nov 2024 11:05:18 +0800 Subject: [PATCH 11/29] =?UTF-8?q?enable=20gpt2,=20falcon=20has=20core=20du?= =?UTF-8?q?mp=20error=20in=20PagedAttention.single=5Fquer=E2=80=A6=20(#979?= =?UTF-8?q?)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit * enable gpt2, falcon has core dump error in PagedAttention.single_query_cached_kv_attention * enable new_decoder_arch falcon * only keep 1 config * rm autocast --- optimum/exporters/ipex/cache_utils.py | 3 +- optimum/exporters/ipex/model_patcher.py | 16 +- optimum/exporters/ipex/modeling_utils.py | 330 ++++++++++++++++++++--- optimum/intel/ipex/modeling_base.py | 8 +- 4 files changed, 302 insertions(+), 55 deletions(-) diff --git a/optimum/exporters/ipex/cache_utils.py b/optimum/exporters/ipex/cache_utils.py index 72c79f4b69..3d01770e3a 100755 --- a/optimum/exporters/ipex/cache_utils.py +++ b/optimum/exporters/ipex/cache_utils.py @@ -158,7 +158,6 @@ def update( value_states: torch.Tensor, layer_idx: int, attention_mask: torch.Tensor, - position_ids: torch.Tensor, input_lens: torch.Tensor, ) -> Tuple[torch.Tensor, torch.Tensor]: """ @@ -175,7 +174,7 @@ def update( A tuple containing the updated key and value states. """ - batch_size = position_ids.shape[0] + batch_size = input_lens.shape[-1] if self.get_seq_length() == 0: # prefill self.update_for_prefill(key_states, value_states, layer_idx, batch_size, input_lens) diff --git a/optimum/exporters/ipex/model_patcher.py b/optimum/exporters/ipex/model_patcher.py index 5a80097747..9f68074c7d 100644 --- a/optimum/exporters/ipex/model_patcher.py +++ b/optimum/exporters/ipex/model_patcher.py @@ -13,8 +13,8 @@ # limitations under the License. from transformers.models.bert.modeling_bert import BertIntermediate -from transformers.models.falcon.modeling_falcon import FalconDecoderLayer -from transformers.models.gpt2.modeling_gpt2 import GPT2Attention, GPT2Block +from transformers.models.falcon.modeling_falcon import FalconModel, FalconDecoderLayer +from transformers.models.gpt2.modeling_gpt2 import GPT2Attention, GPT2Block, GPT2Model from transformers.models.llama.modeling_llama import ( LlamaDecoderLayer, LlamaModel, @@ -27,13 +27,14 @@ from .modeling_utils import ( _IPEX_MINIMUM_VERSION_FOR_PATCHING, - _gpt2_block_forward, _ipex_rms_layer_norm_forward, _IPEXFalconDecoderLayer, _IPEXGPT2Attention, _IPEXIntermediate, _IPEXLlamaDecoderLayer, _llama_model_forward, + _falcon_model_forward, + _gpt2_model_forward, ) @@ -90,7 +91,9 @@ def _patch_falcon_model(model): 2. Use IPEX Rope and paged cache 3. Linear fusion with (Linear + Gelu) and (Linear + Add + Add) """ - model.transformer._use_sdpa = False + num_key_value_heads = model.config.num_kv_heads if (model.config.new_decoder_architecture or not model.config.multi_query) else 1 + setattr(model.config, "num_key_value_heads", num_key_value_heads) + convert_functions(model, FalconModel, "forward", _falcon_model_forward) replace_customized_linear_with_linear(model) convert_class(model, FalconDecoderLayer, _IPEXFalconDecoderLayer, model.config) return model @@ -102,9 +105,10 @@ def _patch_gpt2_model(model): 1. Disable SDPA so the attention mask will be compatible to ipex attention. 2. Use IAKV cache """ - model.transformer._attn_implementation = "eager" + num_key_value_heads = model.config.num_attention_heads + setattr(model.config, "num_key_value_heads", num_key_value_heads) + convert_functions(model, GPT2Model, "forward", _gpt2_model_forward) convert_class(model, GPT2Attention, _IPEXGPT2Attention, model.config) - convert_functions(model, GPT2Block, "forward", _gpt2_block_forward) return model diff --git a/optimum/exporters/ipex/modeling_utils.py b/optimum/exporters/ipex/modeling_utils.py index 5555b0b803..b8e92be63e 100755 --- a/optimum/exporters/ipex/modeling_utils.py +++ b/optimum/exporters/ipex/modeling_utils.py @@ -20,7 +20,7 @@ from torch import nn from transformers.cache_utils import Cache from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask -from transformers.modeling_outputs import BaseModelOutputWithPast +from transformers.modeling_outputs import BaseModelOutputWithPast, BaseModelOutputWithPastAndCrossAttentions from transformers.models.gpt2.modeling_gpt2 import GPT2Block from optimum.intel.utils.import_utils import is_ipex_version @@ -182,7 +182,10 @@ def _llama_model_forward( position_embeddings = (cos.unsqueeze(1), sin.unsqueeze(1)) else: hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) + input_lens = attention_mask.cumsum(-1)[:, -1].to(torch.int32) + setattr(past_key_values, "input_lens", input_lens) + for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: all_hidden_states += (hidden_states,) @@ -195,7 +198,6 @@ def _llama_model_forward( output_attentions=output_attentions, use_cache=use_cache, position_embeddings=position_embeddings, - input_lens=input_lens, ) hidden_states = layer_outputs[0] @@ -213,30 +215,268 @@ def _llama_model_forward( all_hidden_states += (hidden_states,) next_cache = next_decoder_cache if use_cache else None - if not return_dict: - return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) if hidden_states.shape[0] != batch_size * seq_length: (hidden_states_copy.view(-1, hidden_states.shape[-1]))[attention_mask.view(-1) != 0] = hidden_states hidden_states = hidden_states_copy + hidden_states = hidden_states.view(batch_size, -1, hidden_states.shape[-1]) + if not return_dict: + return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) return BaseModelOutputWithPast( - last_hidden_state=hidden_states.view(batch_size, -1, hidden_states.shape[-1]), + last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, ) -def _gpt2_block_forward(self, hidden_states, *args, **kwargs): - attention_mask = kwargs.get("attention_mask", None) - if attention_mask is not None: - bsz, seq_len, _ = hidden_states.size() - layer_past = kwargs.get("layer_past", None) - past_len = layer_past[0].size(-2) if layer_past is not None else 0 - attention_mask = (1 - attention_mask / torch.finfo(attention_mask.dtype).min).squeeze(1, 2) - attention_mask = _prepare_4d_causal_attention_mask(attention_mask, (bsz, seq_len), hidden_states, past_len) - kwargs["attention_mask"] = attention_mask +# Adapted from https://github.com/huggingface/transformers/blob/v4.46.1/src/transformers/models/falcon/modeling_falcon.py#L945 +def _falcon_model_forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]] = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + cache_position: Optional[torch.LongTensor] = None, +) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if (input_ids is None) ^ (inputs_embeds is not None): + raise ValueError("You must specify exactly one of input_ids or inputs_embeds") + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + + past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0 + batch_size, seq_length, _ = inputs_embeds.shape + + if cache_position is None: + cache_position = torch.arange( + past_key_values_length, past_key_values_length + seq_length, device=inputs_embeds.device + ) + + if position_ids is None: + position_ids = cache_position.unsqueeze(0) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape batch_size x num_heads x N x N + # head_mask has shape n_layer x batch x num_heads x N x N + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + hidden_states = inputs_embeds + + # create position embeddings to be shared across the decoder layers + position_embeddings = self.rotary_emb(hidden_states, position_ids) + + if past_key_values_length == 0: + # first token, remove the padding from hidden_states, varlen do not accept attention mask + hidden_states_copy = hidden_states + index = attention_mask.view(-1) != 0 + hidden_states = (hidden_states.view(-1, hidden_states.shape[-1]))[index] + cos = position_embeddings[0] + sin = position_embeddings[1] + cos = (cos.reshape(-1, cos.shape[-1]))[index] + sin = (sin.reshape(-1, sin.shape[-1]))[index] + position_embeddings = (cos.unsqueeze(1), sin.unsqueeze(1)) + else: + hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) + input_lens = attention_mask.cumsum(-1)[:, -1].to(torch.int32) + setattr(past_key_values, "input_lens", input_lens) + + next_decoder_cache = None + all_self_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + + for i, block in enumerate(self.h): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) - return GPT2Block.forward(self, hidden_states, *args, **kwargs) + outputs = block( + hidden_states, + layer_past=past_key_values, + attention_mask=attention_mask, + position_ids=position_ids, + head_mask=head_mask[i], + use_cache=use_cache, + output_attentions=output_attentions, + alibi=None, + cache_position=cache_position, + position_embeddings=position_embeddings, + ) + + hidden_states = outputs[0] + if use_cache is True: + next_decoder_cache = outputs[1] + + if output_attentions: + all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) + + # Add last hidden state + hidden_states = self.ln_f(hidden_states) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + + if hidden_states.shape[0] != batch_size * seq_length: + (hidden_states_copy.view(-1, hidden_states.shape[-1]))[attention_mask.view(-1) != 0] = hidden_states + hidden_states = hidden_states_copy + + hidden_states = hidden_states.view(batch_size, -1, hidden_states.shape[-1]) + + if not return_dict: + return tuple( + v for v in [hidden_states, next_cache, all_hidden_states, all_self_attentions] if v is not None + ) + + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + ) + + +def _gpt2_model_forward( + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if token_type_ids is not None: + token_type_ids = token_type_ids.view(-1, input_shape[-1]) + + past_length = past_key_values.get_seq_length() if past_key_values is not None else 0 + if position_ids is None: + position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) + position_ids = position_ids.unsqueeze(0) + + if inputs_embeds is None: + inputs_embeds = self.wte(input_ids) + batch_size, seq_length, _ = inputs_embeds.shape + position_embeddings = self.wpe(position_ids) + hidden_states = inputs_embeds + position_embeddings + + encoder_attention_mask = None + head_mask = self.get_head_mask(head_mask, self.config.n_layer) + + if token_type_ids is not None: + token_type_embeds = self.wte(token_type_ids) + hidden_states = hidden_states + token_type_embeds + + hidden_states = self.drop(hidden_states) + + if past_length == 0: + # first token, remove the padding from hidden_states, varlen do not accept attention mask + hidden_states_copy = hidden_states + index = attention_mask.view(-1) != 0 + hidden_states = (hidden_states.view(-1, hidden_states.shape[-1]))[index] + else: + hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) + + input_lens = attention_mask.cumsum(-1)[:, -1].to(torch.int32) + setattr(past_key_values, "input_lens", input_lens) + + presents = None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + all_hidden_states = () if output_hidden_states else None + for i, block in enumerate(self.h): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + outputs = block( + hidden_states, + layer_past=past_key_values, + attention_mask=attention_mask, + head_mask=head_mask[i], + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + use_cache=use_cache, + output_attentions=output_attentions, + ) + + hidden_states = outputs[0] + if use_cache is True: + presents = outputs[1] + + if output_attentions: + all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) + + hidden_states = self.ln_f(hidden_states) + if hidden_states.shape[0] != batch_size * seq_length: + (hidden_states_copy.view(-1, hidden_states.shape[-1]))[attention_mask.view(-1) != 0] = hidden_states + hidden_states = hidden_states_copy + + hidden_states = hidden_states.view(batch_size, -1, hidden_states.shape[-1]) + # Add last hidden state + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions] + if v is not None + ) + + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=presents, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) class _IPEXAttention(nn.Module): @@ -256,8 +496,8 @@ def qkv_gemm(self, hidden_states): def rope(self, *args, **kwargs): raise NotImplementedError("Need to implement in specific model class") - def postprocess_attention_output(self, attn_output, bsz, seq_len): - attn_output = attn_output.transpose(1, 2).reshape(bsz, seq_len, self.hidden_size) + def postprocess_attention_output(self, attn_output): + attn_output = attn_output.reshape(-1, attn_output.shape[-2] * attn_output.shape[-1]) return attn_output def forward( @@ -268,25 +508,20 @@ def forward( past_key_value: Optional[IPEXPagedCache] = None, output_attentions: bool = False, use_cache: bool = False, - input_lens: Optional[torch.Tensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if past_key_value is None and kwargs.get("layer_past", None) is not None: past_key_value = kwargs.pop("layer_past", None) - bsz, seq_len = position_ids.size() + input_lens = getattr(past_key_value, "input_lens", None) past_len = 0 if past_key_value is not None: past_len = past_key_value.get_seq_length() - qkv_out = self.qkv_gemm(hidden_states) - if isinstance(qkv_out, tuple) and len(qkv_out) == 3: - query, key, value = qkv_out[0], qkv_out[1], qkv_out[2] - query, key = self.rope(query, key, **kwargs) - else: - query, key, value = self.rope(qkv_out, **kwargs) + query, key, value = self.qkv_gemm(hidden_states) + query, key = self.rope(query, key, **kwargs) if past_key_value is not None: key_cache, value_cache = past_key_value.update( - key, value, self.layer_idx, attention_mask, position_ids, input_lens + key, value, self.layer_idx, attention_mask, input_lens ) attn_output = torch.empty_like(query) @@ -325,7 +560,7 @@ def forward( None, ) - attn_output = attn_output.reshape(-1, attn_output.shape[-2] * attn_output.shape[-1]) + attn_output = self.postprocess_attention_output(attn_output) if not output_attentions: attn_weights = None @@ -373,36 +608,49 @@ def rope(self, query, key, **kwargs): class _IPEXFalconAttention(_IPEXAttention): + def __init__(self, module, config): + self.num_key_value_heads = config.num_key_value_heads + super().__init__(module, config) + self.q_slice = self.head_dim * config.num_kv_heads + self.k_slice = self.q_slice + self.head_dim + self.v_slice = self.k_slice + self.head_dim + def qkv_gemm(self, hidden_states): - return self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] + qkv_out = self.query_key_value(hidden_states) + if self.new_decoder_architecture: + qkv_out = qkv_out.view(qkv_out.shape[0], -1, self.num_heads // self.num_kv_heads + 2, self.head_dim) + query = qkv_out[:, :, :-2, :].flatten(1, 2) + key = qkv_out[:, :, [-2], :].flatten(1, 2) + value = qkv_out[:, :, [-1], :].flatten(1, 2) + else: + query = qkv_out[:, : self.q_slice].view(-1, self.num_heads, self.head_dim) + key = qkv_out[:, self.q_slice : self.k_slice].view(-1, self.num_key_value_heads, self.head_dim) + value = qkv_out[:, self.k_slice :].view(-1, self.num_key_value_heads, self.head_dim) + return query, key, value - def rope(self, fused_qkv, **kwargs): + def rope(self, query, key, **kwargs): position_embeddings = kwargs.pop("position_embeddings", None) - (query, key, value) = self._split_heads(fused_qkv) rotary_embedding(query, key, position_embeddings[1], position_embeddings[0], query.size(-1), True) - return query, key, value + return query, key class _IPEXGPT2Attention(_IPEXAttention): def __init__(self, module, config) -> None: + self.num_key_value_heads = config.num_key_value_heads super().__init__(module, config) - def _split_heads_ipex(self, tensor, num_heads, attn_head_size): - new_shape = tensor.size()[:-1] + (num_heads, attn_head_size) - return tensor.view(new_shape) # (batch, seq_length, head, head_features) - def qkv_gemm(self, hidden_states): - query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2) - query = self._split_heads_ipex(query, self.num_heads, self.head_dim) - key = self._split_heads_ipex(key, self.num_heads, self.head_dim) - value = self._split_heads_ipex(value, self.num_heads, self.head_dim) + query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=-1) + query = query.view(-1, self.num_heads, self.head_dim) + key = key.view(-1, self.num_heads, self.head_dim) + value = value.view(-1, self.num_heads, self.head_dim) return query, key, value def rope(self, query, key, *args, **kwargs): return query, key - def postprocess_attention_output(self, attn_output, bsz, seq_len): - attn_output = attn_output.transpose(1, 2).reshape(bsz, seq_len, self.embed_dim) + def postprocess_attention_output(self, attn_output): + attn_output = attn_output.reshape(-1, attn_output.shape[-2] * attn_output.shape[-1]) attn_output = self.c_proj(attn_output) attn_output = self.resid_dropout(attn_output) return attn_output diff --git a/optimum/intel/ipex/modeling_base.py b/optimum/intel/ipex/modeling_base.py index 270a9b32da..d34b4f3c42 100644 --- a/optimum/intel/ipex/modeling_base.py +++ b/optimum/intel/ipex/modeling_base.py @@ -230,7 +230,6 @@ def _from_pretrained( } task = cls.export_feature - config.torch_dtype = torch_dtype model = TasksManager.get_model_from_task( task, model_id, @@ -240,6 +239,7 @@ def _from_pretrained( _commit_hash=commit_hash, **model_kwargs, ) + config = model.config return cls(model, config=config, export=True, **kwargs) def _save_pretrained(self, save_directory: Union[str, Path]): @@ -305,11 +305,7 @@ def can_generate(self): return isinstance(self, GenerationMixin) def _call_model(self, *args, **kwargs): - try: - with torch.autocast(self.device.type, self.dtype), torch.no_grad(): - out = self.model(*args, **kwargs) - except RuntimeError: - out = self.model(*args, **kwargs) + out = self.model(*args, **kwargs) return out def _init_warmup(self): From 76d32bef3baace27c00acc1f7dc3df3e20d66bd9 Mon Sep 17 00:00:00 2001 From: kaixuanliu Date: Wed, 13 Nov 2024 09:36:08 +0800 Subject: [PATCH 12/29] fix unit test case, CPU part is OK; Enable Falcon7b for XPU (#992) * fix bug when run IPEXCausalModel forward directly; fix bug when using `save_pretrain` Signed-off-by: Liu, Kaixuan * add LinearGelu Op support for XPU Signed-off-by: Liu, Kaixuan * fix unit test error Signed-off-by: Liu, Kaixuan * adjust unit test case Signed-off-by: Liu, Kaixuan * fix bug Signed-off-by: Liu, Kaixuan --------- Signed-off-by: Liu, Kaixuan --- optimum/exporters/ipex/model_patcher.py | 12 +- optimum/exporters/ipex/modeling_utils.py | 248 +++++++++++------------ optimum/intel/ipex/modeling_base.py | 65 +++--- setup.py | 4 +- tests/ipex/test_modeling.py | 65 +----- tests/ipex/test_pipelines.py | 9 - tests/ipex/utils_tests.py | 3 - 7 files changed, 176 insertions(+), 230 deletions(-) diff --git a/optimum/exporters/ipex/model_patcher.py b/optimum/exporters/ipex/model_patcher.py index 9f68074c7d..b3de0512a1 100644 --- a/optimum/exporters/ipex/model_patcher.py +++ b/optimum/exporters/ipex/model_patcher.py @@ -13,8 +13,8 @@ # limitations under the License. from transformers.models.bert.modeling_bert import BertIntermediate -from transformers.models.falcon.modeling_falcon import FalconModel, FalconDecoderLayer -from transformers.models.gpt2.modeling_gpt2 import GPT2Attention, GPT2Block, GPT2Model +from transformers.models.falcon.modeling_falcon import FalconDecoderLayer, FalconModel +from transformers.models.gpt2.modeling_gpt2 import GPT2Attention, GPT2Model from transformers.models.llama.modeling_llama import ( LlamaDecoderLayer, LlamaModel, @@ -27,14 +27,14 @@ from .modeling_utils import ( _IPEX_MINIMUM_VERSION_FOR_PATCHING, + _falcon_model_forward, + _gpt2_model_forward, _ipex_rms_layer_norm_forward, _IPEXFalconDecoderLayer, _IPEXGPT2Attention, _IPEXIntermediate, _IPEXLlamaDecoderLayer, _llama_model_forward, - _falcon_model_forward, - _gpt2_model_forward, ) @@ -91,7 +91,9 @@ def _patch_falcon_model(model): 2. Use IPEX Rope and paged cache 3. Linear fusion with (Linear + Gelu) and (Linear + Add + Add) """ - num_key_value_heads = model.config.num_kv_heads if (model.config.new_decoder_architecture or not model.config.multi_query) else 1 + num_key_value_heads = ( + model.config.num_kv_heads if (model.config.new_decoder_architecture or not model.config.multi_query) else 1 + ) setattr(model.config, "num_key_value_heads", num_key_value_heads) convert_functions(model, FalconModel, "forward", _falcon_model_forward) replace_customized_linear_with_linear(model) diff --git a/optimum/exporters/ipex/modeling_utils.py b/optimum/exporters/ipex/modeling_utils.py index b8e92be63e..3ca9cf0e64 100755 --- a/optimum/exporters/ipex/modeling_utils.py +++ b/optimum/exporters/ipex/modeling_utils.py @@ -19,9 +19,7 @@ import torch from torch import nn from transformers.cache_utils import Cache -from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask from transformers.modeling_outputs import BaseModelOutputWithPast, BaseModelOutputWithPastAndCrossAttentions -from transformers.models.gpt2.modeling_gpt2 import GPT2Block from optimum.intel.utils.import_utils import is_ipex_version from optimum.intel.utils.modeling_utils import _setattr_from_module @@ -49,6 +47,7 @@ ) +# TODO: Following XPULinearXXX op classes will be put into ipex after 2.6.0 version class XPULinear2SiluMul(torch.nn.Module): def __init__( self, @@ -74,6 +73,16 @@ def forward( return hidden_states +class XPULinearGelu(torch.nn.Module): + def __init__(self, module: torch.nn.Module): + super().__init__() + self.weight = module.weight.transpose(0, 1).contiguous() + self.bias = module.bias + + def forward(self, x): + return torch.ops.torch_ipex.matmul_gelu(x, self.weight, self.bias, 1.0, "tanh") + + class XPULinearAdd(torch.nn.Module): def __init__( self, @@ -343,9 +352,7 @@ def _falcon_model_forward( hidden_states = hidden_states.view(batch_size, -1, hidden_states.shape[-1]) if not return_dict: - return tuple( - v for v in [hidden_states, next_cache, all_hidden_states, all_self_attentions] if v is not None - ) + return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, @@ -356,128 +363,129 @@ def _falcon_model_forward( def _gpt2_model_forward( - self, - input_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, - attention_mask: Optional[torch.FloatTensor] = None, - token_type_ids: Optional[torch.LongTensor] = None, - position_ids: Optional[torch.LongTensor] = None, - head_mask: Optional[torch.FloatTensor] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - encoder_hidden_states: Optional[torch.Tensor] = None, - encoder_attention_mask: Optional[torch.FloatTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - use_cache = use_cache if use_cache is not None else self.config.use_cache - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - if input_ids is not None and inputs_embeds is not None: - raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") - elif input_ids is not None: - self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) - input_shape = input_ids.size() - input_ids = input_ids.view(-1, input_shape[-1]) - elif inputs_embeds is not None: - input_shape = inputs_embeds.size()[:-1] - else: - raise ValueError("You have to specify either input_ids or inputs_embeds") + self, + input_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, +) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict - device = input_ids.device if input_ids is not None else inputs_embeds.device + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") - if token_type_ids is not None: - token_type_ids = token_type_ids.view(-1, input_shape[-1]) + device = input_ids.device if input_ids is not None else inputs_embeds.device - past_length = past_key_values.get_seq_length() if past_key_values is not None else 0 - if position_ids is None: - position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) - position_ids = position_ids.unsqueeze(0) + if token_type_ids is not None: + token_type_ids = token_type_ids.view(-1, input_shape[-1]) - if inputs_embeds is None: - inputs_embeds = self.wte(input_ids) - batch_size, seq_length, _ = inputs_embeds.shape - position_embeddings = self.wpe(position_ids) - hidden_states = inputs_embeds + position_embeddings + past_length = past_key_values.get_seq_length() if past_key_values is not None else 0 + if position_ids is None: + position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) + position_ids = position_ids.unsqueeze(0) + + if inputs_embeds is None: + inputs_embeds = self.wte(input_ids) + batch_size, seq_length, _ = inputs_embeds.shape + position_embeddings = self.wpe(position_ids) + hidden_states = inputs_embeds + position_embeddings - encoder_attention_mask = None - head_mask = self.get_head_mask(head_mask, self.config.n_layer) + encoder_attention_mask = None + head_mask = self.get_head_mask(head_mask, self.config.n_layer) - if token_type_ids is not None: - token_type_embeds = self.wte(token_type_ids) - hidden_states = hidden_states + token_type_embeds + if token_type_ids is not None: + token_type_embeds = self.wte(token_type_ids) + hidden_states = hidden_states + token_type_embeds - hidden_states = self.drop(hidden_states) + hidden_states = self.drop(hidden_states) - if past_length == 0: - # first token, remove the padding from hidden_states, varlen do not accept attention mask - hidden_states_copy = hidden_states - index = attention_mask.view(-1) != 0 - hidden_states = (hidden_states.view(-1, hidden_states.shape[-1]))[index] - else: - hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) + if past_length == 0: + # first token, remove the padding from hidden_states, varlen do not accept attention mask + hidden_states_copy = hidden_states + index = attention_mask.view(-1) != 0 + hidden_states = (hidden_states.view(-1, hidden_states.shape[-1]))[index] + else: + hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) - input_lens = attention_mask.cumsum(-1)[:, -1].to(torch.int32) + input_lens = attention_mask.cumsum(-1)[:, -1].to(torch.int32) + if past_key_values is not None: setattr(past_key_values, "input_lens", input_lens) - presents = None - all_self_attentions = () if output_attentions else None - all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None - all_hidden_states = () if output_hidden_states else None - for i, block in enumerate(self.h): - if output_hidden_states: - all_hidden_states = all_hidden_states + (hidden_states,) - - outputs = block( - hidden_states, - layer_past=past_key_values, - attention_mask=attention_mask, - head_mask=head_mask[i], - encoder_hidden_states=encoder_hidden_states, - encoder_attention_mask=encoder_attention_mask, - use_cache=use_cache, - output_attentions=output_attentions, - ) + presents = None + all_self_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + all_hidden_states = () if output_hidden_states else None + for i, block in enumerate(self.h): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) - hidden_states = outputs[0] - if use_cache is True: - presents = outputs[1] + outputs = block( + hidden_states, + layer_past=past_key_values, + attention_mask=attention_mask, + head_mask=head_mask[i], + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + use_cache=use_cache, + output_attentions=output_attentions, + ) - if output_attentions: - all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) - if self.config.add_cross_attention: - all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) + hidden_states = outputs[0] + if use_cache is True: + presents = outputs[1] - hidden_states = self.ln_f(hidden_states) - if hidden_states.shape[0] != batch_size * seq_length: - (hidden_states_copy.view(-1, hidden_states.shape[-1]))[attention_mask.view(-1) != 0] = hidden_states - hidden_states = hidden_states_copy + if output_attentions: + all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) + if self.config.add_cross_attention: + all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],) - hidden_states = hidden_states.view(batch_size, -1, hidden_states.shape[-1]) - # Add last hidden state - if output_hidden_states: - all_hidden_states = all_hidden_states + (hidden_states,) + hidden_states = self.ln_f(hidden_states) + if hidden_states.shape[0] != batch_size * seq_length: + (hidden_states_copy.view(-1, hidden_states.shape[-1]))[attention_mask.view(-1) != 0] = hidden_states + hidden_states = hidden_states_copy - if not return_dict: - return tuple( - v - for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions] - if v is not None - ) + hidden_states = hidden_states.view(batch_size, -1, hidden_states.shape[-1]) + # Add last hidden state + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) - return BaseModelOutputWithPastAndCrossAttentions( - last_hidden_state=hidden_states, - past_key_values=presents, - hidden_states=all_hidden_states, - attentions=all_self_attentions, - cross_attentions=all_cross_attentions, + if not return_dict: + return tuple( + v + for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions] + if v is not None ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=presents, + hidden_states=all_hidden_states, + attentions=all_self_attentions, + cross_attentions=all_cross_attentions, + ) + class _IPEXAttention(nn.Module): def __init__(self, module, config) -> None: @@ -520,9 +528,7 @@ def forward( query, key = self.rope(query, key, **kwargs) if past_key_value is not None: - key_cache, value_cache = past_key_value.update( - key, value, self.layer_idx, attention_mask, input_lens - ) + key_cache, value_cache = past_key_value.update(key, value, self.layer_idx, attention_mask, input_lens) attn_output = torch.empty_like(query) if past_len == 0: @@ -581,17 +587,13 @@ def __init__(self, module, config) -> None: self.q_slice = self.q_proj.out_features self.k_slice = self.q_slice + self.k_proj.out_features self.v_slice = self.k_slice + self.v_proj.out_features - del self.__dict__["_modules"]["q_proj"] - del self.__dict__["_modules"]["k_proj"] - del self.__dict__["_modules"]["v_proj"] if self.module_device == "cpu": if module.o_proj.__class__.__name__ not in ["LinearAllreduce"]: self.mha_linear_add = LinearAdd(module.o_proj) - del self.__dict__["_modules"]["o_proj"] + elif self.module_device == "xpu": if module.o_proj.__class__.__name__ not in ["LinearAllreduce"]: self.mha_linear_add = XPULinearAdd(module.o_proj) - del self.__dict__["_modules"]["o_proj"] def qkv_gemm(self, hidden_states): qkv_out = self.concat_qkv(hidden_states) @@ -667,18 +669,12 @@ def __init__(self, module, config) -> None: # LinearAllreduce and LinearLayer cannot use fused op LinearAdd if module.down_proj.__class__.__name__ not in ["LinearAllreduce"]: self.mlp_linear_add = LinearAdd(module.down_proj) - del self.__dict__["_modules"]["down_proj"] self.linear_silu_mul = Linear2SiluMul(module.gate_proj, module.up_proj) - del self.__dict__["_modules"]["gate_proj"] - del self.__dict__["_modules"]["up_proj"] elif self.module_device == "xpu": # LinearAllreduce and LinearLayer cannot use fused op LinearAdd if module.down_proj.__class__.__name__ not in ["LinearAllreduce"]: self.mlp_linear_add = XPULinearAdd(module.down_proj) - del self.__dict__["_modules"]["down_proj"] self.linear_silu_mul = XPULinear2SiluMul(module.gate_proj, module.up_proj) - del self.__dict__["_modules"]["gate_proj"] - del self.__dict__["_modules"]["up_proj"] def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor = None, **kwargs): if hasattr(self, "linear_silu_mul"): @@ -701,11 +697,13 @@ def __init__(self, module, config) -> None: _setattr_from_module(self, module) self.config = config # LinearAllreduce and LinearLayer cannot use fused op LinearAdd - self.linear_gelu = LinearGelu(module.dense_h_to_4h) - del self.__dict__["_modules"]["dense_h_to_4h"] + self.module_device = next(module.parameters()).device.type + if self.module_device == "cpu": + self.linear_gelu = LinearGelu(module.dense_h_to_4h) + elif self.module_device == "xpu": + self.linear_gelu = XPULinearGelu(module.dense_h_to_4h) if module.dense_4h_to_h.__class__.__name__ not in ["LinearAllreduce"]: self.linear_add_add = LinearAddAdd(module.dense_4h_to_h) - del self.__dict__["_modules"]["dense_4h_to_h"] def forward( self, diff --git a/optimum/intel/ipex/modeling_base.py b/optimum/intel/ipex/modeling_base.py index d34b4f3c42..cb60541b1d 100644 --- a/optimum/intel/ipex/modeling_base.py +++ b/optimum/intel/ipex/modeling_base.py @@ -13,6 +13,7 @@ # limitations under the License. +import copy import inspect import logging import os @@ -69,17 +70,18 @@ _IPEX_EXPORTED_GENERATION_METHODS = ("sample", "greedy_search", "beam_sample", "beam_search", "assisted_generation") -def _is_patched_with_ipex(model, task): +def _is_patched_with_ipex(model, task, use_cache: bool = True): if is_ipex_version("<", _IPEX_MINIMUM_VERSION_FOR_PATCHING): return False - + if not use_cache: + return False return model.config.model_type in _IPEX_SUPPORT_MODEL_TYPES def _prepare_inputs_for_ipex_model(model, task, use_cache): task = _TASK_ALIASES.get(task, task) signature = inspect.signature(model.forward) if hasattr(model, "forward") else inspect.signature(model.__call__) - if _is_patched_with_ipex(model, task) and model.config.model_type in ipex_onnx_config: + if _is_patched_with_ipex(model, task, use_cache) and model.config.model_type in ipex_onnx_config: onnx_config_class = make_backend_config_constructor_for_task( ipex_onnx_config[model.config.model_type], task=task ) @@ -96,7 +98,7 @@ def _prepare_inputs_for_ipex_model(model, task, use_cache): dummy_inputs = onnx_config.generate_dummy_inputs(framework="pt") # Check attention_mask shape - if _is_patched_with_ipex(model, task) and model.config.model_type in ipex_onnx_config and use_cache: + if _is_patched_with_ipex(model, task, use_cache) and model.config.model_type in ipex_onnx_config: past_len = dummy_inputs["past_key_values"][0][0].shape[-2] input_len = dummy_inputs["input_ids"].shape[-1] attention_len = dummy_inputs["attention_mask"].shape[-1] @@ -136,13 +138,14 @@ def __init__( OptimizedModel.__init__(self, model=model, config=config) self.model.to(self._device) - self._dtype = self.config.torch_dtype if self.config.torch_dtype is not None else torch.float32 + self._dtype = self.model.dtype if self.model.dtype is not None else torch.float32 + self.use_cache = kwargs.get("use_cache", False) self.model_save_dir = model_save_dir - self._is_ipex_exported = _is_patched_with_ipex(model, self.export_feature) + self._add_patch = _is_patched_with_ipex(model, self.export_feature, self.use_cache) self.input_names = set(inspect.signature(model.forward).parameters) - if self._is_ipex_exported: + if self._add_patch: model = _patch_model(model) # Registers the IPEXModelForXXX classes into the transformers AutoModel classes to avoid warnings when creating # a pipeline https://github.com/huggingface/transformers/blob/cad61b68396a1a387287a8e2e2fef78a25b79383/src/transformers/pipelines/base.py#L863 @@ -243,12 +246,12 @@ def _from_pretrained( return cls(model, config=config, export=True, **kwargs) def _save_pretrained(self, save_directory: Union[str, Path]): - output_path = os.path.join(save_directory, WEIGHTS_NAME) if getattr(self.config, "torchscript", None): + output_path = os.path.join(save_directory, WEIGHTS_NAME) torch.jit.save(self.model, output_path) else: logger.warning("The module is not a torchscript model, will be treated as a transformers model.") - self.model.save_pretrained(output_path) + self.model.save_pretrained(save_directory, safe_serialization=False) def forward( self, @@ -312,9 +315,9 @@ def _init_warmup(self): # warmup, the first 2 forwards of an IPEX model include some preprocessing steps and # the results of the compute are unpredictable # TODO : add warmup for IPEX exported model - if not self._is_ipex_exported: - use_cache = "past_key_values" in self.input_names - dummy_inputs = _prepare_inputs_for_ipex_model(self, self.export_feature, use_cache) + if not self._add_patch: + # use_cache = "past_key_values" in self.input_names + dummy_inputs = _prepare_inputs_for_ipex_model(self, self.export_feature, self.use_cache) if self._device.type != "cpu": dummy_inputs = recursive_to_device(value=dummy_inputs, device=self._device) for _ in range(2): @@ -405,7 +408,7 @@ def forward( class IPEXModelForCausalLM(IPEXModel, GenerationMixin): auto_model_class = AutoModelForCausalLM export_feature = "text-generation" - _supports_cache_class = True + _supports_cache_class = False _is_stateful = False def __init__( @@ -422,11 +425,12 @@ def __init__( super().__init__( model, config, export=export, model_save_dir=model_save_dir, warmup=False, use_cache=use_cache ) + if self._add_patch: + self._supports_cache_class = True GenerationMixin.__init__(self) model_type = self.config.model_type.replace("_", "-") self.normalized_config = NormalizedConfigManager.get_normalized_config_class(model_type)(self.config) - self.use_cache = "past_key_values" in self.input_names self.config.is_decoder = True self.config.is_encoder_decoder = False @@ -479,6 +483,12 @@ def forward( inputs["position_ids"] = position_ids if self.use_cache: + if past_key_values is None and self._add_patch: + max_length = self.config.max_length + input_ids.shape[1] + batch_size = input_ids.shape[0] + past_key_values = IPEXPagedCache( + self.config, batch_size, max_length, input_ids.device, dtype=self.dtype + ) inputs["past_key_values"] = past_key_values # 2. Model forward @@ -507,31 +517,34 @@ def _prepare_generation_config( return generation_config, model_kwargs def generate(self, *args, **kwargs): - if is_ipex_version("<", "2.4.0") and self._is_ipex_exported and kwargs.get("assistant_model", None): + new_kwargs = copy.deepcopy(kwargs) + if is_ipex_version("<", "2.4.0") and self._add_patch and new_kwargs.get("assistant_model", None): raise ValueError( f"Assisted decoding is not supported for patched models if ipex < 2.4, support methods are {_IPEX_EXPORTED_GENERATION_METHODS}" ) # Patch functions to support paged cache - transformers.generation.utils.NEED_SETUP_CACHE_CLASSES_MAPPING["paged"] = IPEXPagedCache - self.generation_config.cache_implementation = "paged" - if is_transformers_version(">=", "4.45.0"): - if "paged" not in transformers.generation.configuration_utils.ALL_CACHE_IMPLEMENTATIONS: - transformers.generation.configuration_utils.ALL_CACHE_IMPLEMENTATIONS.append("paged") - if kwargs.get("generation_config", None): - kwargs["generation_config"].cache_implementation = "paged" - if self._is_ipex_exported and kwargs.get("assistant_model", None): + if self._add_patch: + transformers.generation.utils.NEED_SETUP_CACHE_CLASSES_MAPPING["paged"] = IPEXPagedCache + self.generation_config.cache_implementation = "paged" + if is_transformers_version(">=", "4.45.0"): + if "paged" not in transformers.generation.configuration_utils.ALL_CACHE_IMPLEMENTATIONS: + transformers.generation.configuration_utils.ALL_CACHE_IMPLEMENTATIONS.append("paged") + if new_kwargs.get("generation_config", None): + new_kwargs["generation_config"].cache_implementation = "paged" + + if self._add_patch and new_kwargs.get("assistant_model", None): transformers.generation.utils._crop_past_key_values = _ipex_crop_past_key_values - elif self._is_ipex_exported: + elif self._add_patch: transformers.generation.candidate_generator._crop_past_key_values = _ipex_crop_past_key_values try: - result = super().generate(*args, **kwargs) + result = super().generate(*args, **new_kwargs) except Exception as e: transformers.generation.utils._crop_past_key_values = _crop_past_key_values transformers.generation.candidate_generator._crop_past_key_values = _crop_past_key_values raise e - if self._is_ipex_exported and kwargs.get("assistant_model", None): + if self._add_patch and new_kwargs.get("assistant_model", None): transformers.generation.utils._crop_past_key_values = _crop_past_key_values transformers.generation.candidate_generator._crop_past_key_values = _crop_past_key_values diff --git a/setup.py b/setup.py index 24a75b5f6d..5bf598bf75 100644 --- a/setup.py +++ b/setup.py @@ -28,7 +28,7 @@ INSTALL_REQUIRE = [ "torch>=1.11", - "transformers>=4.36,<4.46", + "transformers>=4.45,<4.46", "optimum @ git+https://github.com/huggingface/optimum.git", "datasets>=1.4.0", "sentencepiece", @@ -67,7 +67,7 @@ "openvino-tokenizers[transformers]==2024.4.1.0.dev20240926", ], "nncf": ["nncf>=2.11.0"], - "ipex": ["intel-extension-for-pytorch", "transformers>=4.39,<4.45"], + "ipex": ["intel-extension-for-pytorch", "transformers>=4.45,<4.46"], "diffusers": ["diffusers"], "quality": QUALITY_REQUIRE, "tests": TESTS_REQUIRE, diff --git a/tests/ipex/test_modeling.py b/tests/ipex/test_modeling.py index 53c733c4f5..dc919ec5a2 100644 --- a/tests/ipex/test_modeling.py +++ b/tests/ipex/test_modeling.py @@ -97,7 +97,6 @@ def test_compare_to_transformers(self, model_arch): # Test init method init_model = self.IPEX_MODEL_CLASS(transformers_model, export=True) init_model_outputs = init_model(**tokens) - self.assertIsInstance(init_model.model, torch.jit.RecursiveScriptModule) # Compare tensor outputs for output_name in {"logits", "last_hidden_state"}: @@ -163,7 +162,6 @@ def test_compare_to_transformers(self, model_arch): # Test init method init_model = self.IPEX_MODEL_CLASS(transformers_model, export=True) init_model_outputs = init_model(**tokens) - self.assertIsInstance(init_model.model, torch.jit.RecursiveScriptModule) self.assertIn("start_logits", outputs) self.assertIn("end_logits", outputs) @@ -188,21 +186,6 @@ def test_pipeline(self, model_arch): self.assertGreaterEqual(outputs["score"], 0.0) self.assertIsInstance(outputs["answer"], str) - @unittest.skipIf(is_ipex_version("<", "2.3.0"), reason="Only ipex version > 2.3.0 supports ipex model patching") - def test_patched_model(self): - ipex_model = IPEXModelForQuestionAnswering.from_pretrained( - "Jiqing/patched_tiny_random_bert_for_question_answering" - ) - transformers_model = AutoModelForQuestionAnswering.from_pretrained("hf-internal-testing/tiny-random-bert") - tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert") - inputs = "This is a sample input" - tokens = tokenizer(inputs, return_tensors="pt") - with torch.no_grad(): - transformers_outputs = transformers_model(**tokens) - outputs = ipex_model(**tokens) - self.assertTrue(torch.allclose(outputs.start_logits, transformers_outputs.start_logits, atol=1e-4)) - self.assertTrue(torch.allclose(outputs.end_logits, transformers_outputs.end_logits, atol=1e-4)) - class IPEXModelForCausalLMTest(unittest.TestCase): IPEX_MODEL_CLASS = IPEXModelForCausalLM @@ -246,7 +229,6 @@ def test_compare_to_transformers(self, model_arch): outputs = ipex_model(**inputs) self.assertIsInstance(outputs.logits, torch.Tensor) - self.assertIsInstance(outputs.past_key_values, (tuple, list)) transformers_model = AutoModelForCausalLM.from_pretrained(model_id) with torch.no_grad(): @@ -261,7 +243,6 @@ def test_compare_to_transformers(self, model_arch): # Test init method init_model = self.IPEX_MODEL_CLASS(transformers_model, export=True) init_model_outputs = init_model(**inputs) - self.assertIsInstance(init_model.model, torch.jit.RecursiveScriptModule) # Compare tensor outputs self.assertTrue(torch.allclose(outputs.logits, transformers_outputs.logits, atol=1e-4)) @@ -319,7 +300,7 @@ def test_ipex_patching_beam_search(self, test_name, model_arch, use_cache): model_id = MODEL_NAMES[model_arch] set_seed(SEED) model = IPEXModelForCausalLM.from_pretrained(model_id, export=True, use_cache=use_cache) - trasnformers_model = AutoModelForCausalLM.from_pretrained(model_id) + transformers_model = AutoModelForCausalLM.from_pretrained(model_id) self.assertEqual(model.use_cache, use_cache) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token @@ -338,43 +319,24 @@ def test_ipex_patching_beam_search(self, test_name, model_arch, use_cache): tokens = tokenizer(text, padding=True, return_tensors="pt") for generation_config in generation_configs: outputs = model.generate(**tokens, generation_config=generation_config) - transformers_outputs = trasnformers_model.generate(**tokens, generation_config=generation_config) + transformers_outputs = transformers_model.generate(**tokens, generation_config=generation_config) self.assertIsInstance(outputs, torch.Tensor) self.assertTrue(torch.equal(outputs, transformers_outputs)) - @parameterized.expand(IPEX_PATCHED_SUPPORTED_ARCHITECTURES) @unittest.skipIf(is_ipex_version("<", "2.3.0"), reason="Only ipex version > 2.3.0 supports ipex model patching") - def test_patched_model(self, model_arch): - model_id = MODEL_NAMES[model_arch] - patched_model_id = MODEL_NAMES["patched_" + model_arch] - ipex_model = IPEXModelForCausalLM.from_pretrained(model_id, export=True) - exported_model = IPEXModelForCausalLM.from_pretrained(patched_model_id) - tokenizer = AutoTokenizer.from_pretrained(model_id) - tokens = tokenizer( - "This is a sample", - return_tensors="pt", - return_token_type_ids=False if model_arch in ("llama", "llama2") else None, - ) - inputs = ipex_model.prepare_inputs_for_generation(**tokens) - ipex_outputs = ipex_model(**inputs) - exported_outputs = exported_model(**inputs) - self.assertTrue(torch.allclose(ipex_outputs.logits, exported_outputs.logits, atol=1e-7)) - def test_compare_with_and_without_past_key_values(self): - model_id = "echarlaix/tiny-random-gpt2-torchscript" + model_id = "Jiqing/tiny_random_llama2" tokenizer = AutoTokenizer.from_pretrained(model_id) tokens = tokenizer("This is a sample input", return_tensors="pt") - model_with_pkv = IPEXModelForCausalLM.from_pretrained(model_id, use_cache=True, subfolder="model_with_pkv") + model_with_pkv = IPEXModelForCausalLM.from_pretrained(model_id, use_cache=True) # Warmup model_with_pkv.generate(**tokens) with Timer() as with_pkv_timer: outputs_model_with_pkv = model_with_pkv.generate( **tokens, min_new_tokens=self.GENERATION_LENGTH, max_new_tokens=self.GENERATION_LENGTH, num_beams=1 ) - model_without_pkv = IPEXModelForCausalLM.from_pretrained( - model_id, use_cache=False, subfolder="model_without_pkv" - ) + model_without_pkv = IPEXModelForCausalLM.from_pretrained(model_id, use_cache=False) # Warmup model_without_pkv.generate(**tokens) with Timer() as without_pkv_timer: @@ -421,7 +383,6 @@ def test_compare_to_transformers(self, model_arch): # Test init method init_model = self.IPEX_MODEL_CLASS(transformers_model, export=True) init_model_outputs = init_model(**inputs) - self.assertIsInstance(init_model.model, torch.jit.RecursiveScriptModule) # Compare tensor outputs self.assertTrue(torch.allclose(outputs.logits, transformers_outputs.logits, atol=1e-3)) @@ -475,7 +436,6 @@ def test_compare_to_transformers(self, model_arch): # Test init method init_model = self.IPEX_MODEL_CLASS(transformers_model, export=True) init_model_outputs = init_model(**inputs) - self.assertIsInstance(init_model.model, torch.jit.RecursiveScriptModule) self.assertIn("logits", outputs) # Compare tensor outputs @@ -493,18 +453,3 @@ def test_pipeline(self, model_arch): self.assertEqual(pipe.device, model.device) self.assertGreaterEqual(outputs[0]["score"], 0.0) self.assertTrue(isinstance(outputs[0]["label"], str)) - - @unittest.skipIf(is_ipex_version("<", "2.3.0"), reason="Only ipex version > 2.3.0 supports ipex model patching") - def test_patched_model(self): - ipex_model = IPEXModelForImageClassification.from_pretrained( - "Jiqing/patched_tiny_random_vit_for_image_classification" - ) - transformers_model = self.IPEX_MODEL_CLASS.from_pretrained("hf-internal-testing/tiny-random-vit") - preprocessor = AutoFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-vit") - url = "http://images.cocodataset.org/val2017/000000039769.jpg" - image = Image.open(requests.get(url, stream=True).raw) - inputs = preprocessor(images=image, return_tensors="pt") - with torch.no_grad(): - transformers_outputs = transformers_model(**inputs) - outputs = ipex_model(**inputs) - self.assertTrue(torch.allclose(outputs.logits, transformers_outputs.logits, atol=1e-4)) diff --git a/tests/ipex/test_pipelines.py b/tests/ipex/test_pipelines.py index 767097a5dd..696f5c9c20 100644 --- a/tests/ipex/test_pipelines.py +++ b/tests/ipex/test_pipelines.py @@ -92,7 +92,6 @@ def test_token_classification_pipeline_inference(self, model_arch): ipex_output = ipex_generator(inputs) self.assertEqual(len(transformers_output), len(ipex_output)) self.assertTrue(isinstance(ipex_generator.model, IPEXModelForTokenClassification)) - self.assertTrue(isinstance(ipex_generator.model.model, torch.jit.RecursiveScriptModule)) for i in range(len(transformers_output)): self.assertAlmostEqual(transformers_output[i]["score"], ipex_output[i]["score"], delta=1e-4) @@ -107,7 +106,6 @@ def test_sequence_classification_pipeline_inference(self, model_arch): with torch.inference_mode(): ipex_output = ipex_generator(inputs) self.assertTrue(isinstance(ipex_generator.model, IPEXModelForSequenceClassification)) - self.assertTrue(isinstance(ipex_generator.model.model, torch.jit.RecursiveScriptModule)) self.assertEqual(transformers_output[0]["label"], ipex_output[0]["label"]) self.assertAlmostEqual(transformers_output[0]["score"], ipex_output[0]["score"], delta=1e-4) @@ -125,7 +123,6 @@ def test_fill_mask_pipeline_inference(self, model_arch): ipex_output = ipex_generator(inputs) self.assertEqual(len(transformers_output), len(ipex_output)) self.assertTrue(isinstance(ipex_generator.model, IPEXModelForMaskedLM)) - self.assertTrue(isinstance(ipex_generator.model.model, torch.jit.RecursiveScriptModule)) for i in range(len(transformers_output)): self.assertEqual(transformers_output[i]["token"], ipex_output[i]["token"]) self.assertAlmostEqual(transformers_output[i]["score"], ipex_output[i]["score"], delta=1e-4) @@ -141,7 +138,6 @@ def test_text_generation_pipeline_inference(self, model_arch): with torch.inference_mode(): ipex_output = ipex_generator(inputs, max_new_tokens=10) self.assertTrue(isinstance(ipex_generator.model, IPEXModelForCausalLM)) - self.assertTrue(isinstance(ipex_generator.model.model, torch.jit.RecursiveScriptModule)) self.assertEqual(transformers_output[0]["generated_text"], ipex_output[0]["generated_text"]) @parameterized.expand(QUESTION_ANSWERING_SUPPORTED_ARCHITECTURES) @@ -156,7 +152,6 @@ def test_question_answering_pipeline_inference(self, model_arch): with torch.inference_mode(): ipex_output = ipex_generator(question=question, context=context) self.assertTrue(isinstance(ipex_generator.model, IPEXModelForQuestionAnswering)) - self.assertTrue(isinstance(ipex_generator.model.model, torch.jit.RecursiveScriptModule)) self.assertAlmostEqual(transformers_output["score"], ipex_output["score"], delta=1e-4) self.assertEqual(transformers_output["start"], ipex_output["start"]) self.assertEqual(transformers_output["end"], ipex_output["end"]) @@ -172,7 +167,6 @@ def test_audio_classification_pipeline_inference(self, model_arch): with torch.inference_mode(): ipex_output = ipex_generator(inputs) self.assertTrue(isinstance(ipex_generator.model, IPEXModelForAudioClassification)) - self.assertTrue(isinstance(ipex_generator.model.model, torch.jit.RecursiveScriptModule)) self.assertAlmostEqual(transformers_output[0][0]["score"], ipex_output[0][0]["score"], delta=1e-2) self.assertAlmostEqual(transformers_output[0][1]["score"], ipex_output[0][1]["score"], delta=1e-2) @@ -188,7 +182,6 @@ def test_image_classification_pipeline_inference(self, model_arch): ipex_output = ipex_generator(inputs) self.assertEqual(len(transformers_output), len(ipex_output)) self.assertTrue(isinstance(ipex_generator.model, IPEXModelForImageClassification)) - self.assertTrue(isinstance(ipex_generator.model.model, torch.jit.RecursiveScriptModule)) for i in range(len(transformers_output)): self.assertEqual(transformers_output[i]["label"], ipex_output[i]["label"]) self.assertAlmostEqual(transformers_output[i]["score"], ipex_output[i]["score"], delta=1e-4) @@ -203,7 +196,6 @@ def test_pipeline_load_from_ipex_model(self, model_arch): with torch.inference_mode(): ipex_output = ipex_generator(inputs) self.assertTrue(isinstance(ipex_generator.model, IPEXModelForSequenceClassification)) - self.assertTrue(isinstance(ipex_generator.model.model, torch.jit.RecursiveScriptModule)) self.assertGreaterEqual(ipex_output[0]["score"], 0.0) @parameterized.expand(COMMON_SUPPORTED_ARCHITECTURES) @@ -218,5 +210,4 @@ def test_pipeline_load_from_jit_model(self, model_arch): with torch.inference_mode(): ipex_output = ipex_generator(inputs) self.assertTrue(isinstance(ipex_generator.model, IPEXModelForSequenceClassification)) - self.assertTrue(isinstance(ipex_generator.model.model, torch.jit.RecursiveScriptModule)) self.assertGreaterEqual(ipex_output[0]["score"], 0.0) diff --git a/tests/ipex/utils_tests.py b/tests/ipex/utils_tests.py index 595bc0246f..78bdcd7ec6 100644 --- a/tests/ipex/utils_tests.py +++ b/tests/ipex/utils_tests.py @@ -56,7 +56,4 @@ "vit": "hf-internal-testing/tiny-random-vit", "wav2vec2": "anton-l/wav2vec2-random-tiny-classifier", "xlm": "hf-internal-testing/tiny-random-xlm", - "patched_falcon": "Jiqing/patched_tiny_random_falcon_for_causal_lm", - "patched_distilgpt2": "Jiqing/patched_tiny_random_distilgpt2_for_causal_lm", - "patched_llama2": "Jiqing/patched_tiny_random_llama2_for_causal_lm", } From 039c72d0958934b3beb932fdeca9e0d7bf7b0c4e Mon Sep 17 00:00:00 2001 From: kaixuanliu Date: Fri, 22 Nov 2024 09:01:17 +0800 Subject: [PATCH 13/29] skip assited decoding unit test for models using paged attention (#998) * skip assited decoding unit test for models using paged attention Signed-off-by: Liu, Kaixuan * XPU CI tests get almost all passed Signed-off-by: Liu, Kaixuan --------- Signed-off-by: Liu, Kaixuan --- tests/ipex/test_modeling.py | 86 ++++++++++++++++++++++-------------- tests/ipex/test_pipelines.py | 10 +++-- tests/ipex/utils_tests.py | 9 ++-- 3 files changed, 66 insertions(+), 39 deletions(-) diff --git a/tests/ipex/test_modeling.py b/tests/ipex/test_modeling.py index dc919ec5a2..f74675ddd6 100644 --- a/tests/ipex/test_modeling.py +++ b/tests/ipex/test_modeling.py @@ -46,7 +46,7 @@ ) from optimum.intel.utils.import_utils import is_ipex_version from optimum.utils.testing_utils import grid_parameters -from utils_tests import MODEL_NAMES +from utils_tests import MODEL_NAMES, IS_XPU SEED = 42 @@ -80,11 +80,12 @@ def test_compare_to_transformers(self, model_arch): model_id = MODEL_NAMES[model_arch] set_seed(SEED) ipex_model = self.IPEX_MODEL_CLASS.from_pretrained(model_id, export=True) + device = ipex_model.device self.assertIsInstance(ipex_model.config, PretrainedConfig) - transformers_model = self.IPEX_MODEL_CLASS.auto_model_class.from_pretrained(model_id) + transformers_model = self.IPEX_MODEL_CLASS.auto_model_class.from_pretrained(model_id).to(device) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = "This is a sample input" - tokens = tokenizer(inputs, return_tensors="pt") + tokens = tokenizer(inputs, return_tensors="pt").to(device) with torch.no_grad(): transformers_outputs = transformers_model(**tokens) outputs = ipex_model(**tokens) @@ -144,11 +145,12 @@ def test_compare_to_transformers(self, model_arch): model_id = MODEL_NAMES[model_arch] set_seed(SEED) ipex_model = IPEXModelForQuestionAnswering.from_pretrained(model_id, export=True) + device = ipex_model.device self.assertIsInstance(ipex_model.config, PretrainedConfig) - transformers_model = AutoModelForQuestionAnswering.from_pretrained(model_id) + transformers_model = AutoModelForQuestionAnswering.from_pretrained(model_id).to(device) tokenizer = AutoTokenizer.from_pretrained(model_id) inputs = "This is a sample input" - tokens = tokenizer(inputs, return_tensors="pt") + tokens = tokenizer(inputs, return_tensors="pt").to(device) with torch.no_grad(): transformers_outputs = transformers_model(**tokens) outputs = ipex_model(**tokens) @@ -201,14 +203,14 @@ class IPEXModelForCausalLMTest(unittest.TestCase): "gpt_neo", "gpt_neox", "mistral", - "llama", + # "llama", "llama2", # "phi", - "distilgpt2", + # "distilgpt2", "mpt", "opt", ) - IPEX_PATCHED_SUPPORTED_ARCHITECTURES = ("llama2", "distilgpt2", "falcon") + IPEX_PATCHED_SUPPORTED_ARCHITECTURES = ("llama2", "falcon", "gpt2") GENERATION_LENGTH = 100 SPEEDUP_CACHE = 1.0 @@ -216,7 +218,11 @@ class IPEXModelForCausalLMTest(unittest.TestCase): def test_compare_to_transformers(self, model_arch): model_id = MODEL_NAMES[model_arch] set_seed(SEED) - ipex_model = IPEXModelForCausalLM.from_pretrained(model_id, export=True) + dtype = torch.float32 + if IS_XPU: + dtype = torch.float16 + ipex_model = IPEXModelForCausalLM.from_pretrained(model_id, export=True, torch_dtype=dtype) + device = ipex_model.device self.assertIsInstance(ipex_model.config, PretrainedConfig) self.assertTrue(ipex_model.use_cache) tokenizer = AutoTokenizer.from_pretrained(model_id) @@ -224,20 +230,20 @@ def test_compare_to_transformers(self, model_arch): "This is a sample", return_tensors="pt", return_token_type_ids=False if model_arch in ("llama", "llama2") else None, - ) + ).to(device) inputs = ipex_model.prepare_inputs_for_generation(**tokens) outputs = ipex_model(**inputs) self.assertIsInstance(outputs.logits, torch.Tensor) - transformers_model = AutoModelForCausalLM.from_pretrained(model_id) + transformers_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype).to(device) with torch.no_grad(): transformers_outputs = transformers_model(**tokens) # Test re-load model with tempfile.TemporaryDirectory() as tmpdirname: ipex_model.save_pretrained(tmpdirname) - loaded_model = self.IPEX_MODEL_CLASS.from_pretrained(tmpdirname) + loaded_model = self.IPEX_MODEL_CLASS.from_pretrained(tmpdirname, torch_dtype=dtype) loaded_model_outputs = loaded_model(**inputs) # Test init method @@ -252,11 +258,14 @@ def test_compare_to_transformers(self, model_arch): @parameterized.expand(SUPPORTED_ARCHITECTURES) def test_pipeline(self, model_arch): + dtype = torch.float32 + if IS_XPU: + dtype = torch.float16 model_id = MODEL_NAMES[model_arch] tokenizer = AutoTokenizer.from_pretrained(model_id) - model = IPEXModelForCausalLM.from_pretrained(model_id, export=True) + model = IPEXModelForCausalLM.from_pretrained(model_id, export=True, torch_dtype=dtype) model.config.encoder_no_repeat_ngram_size = 0 - model.to("cpu") + # model.to("cpu") pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) outputs = pipe("This is a sample", max_new_tokens=10) self.assertEqual(pipe.device, model.device) @@ -264,14 +273,18 @@ def test_pipeline(self, model_arch): @parameterized.expand(SUPPORTED_ARCHITECTURES) def test_assisted_decoding(self, model_arch): - # Patched models are not support assisted decoding if ipex < 2.5. - if model_arch in self.IPEX_PATCHED_SUPPORTED_ARCHITECTURES and is_ipex_version("<", "2.4.0"): + # assist decoding does not support static cache now + if model_arch in self.IPEX_PATCHED_SUPPORTED_ARCHITECTURES: return model_id = MODEL_NAMES[model_arch] + dtype = torch.float32 + if IS_XPU: + dtype = torch.float16 tokenizer = AutoTokenizer.from_pretrained(model_id) - ipex_model = IPEXModelForCausalLM.from_pretrained(model_id, export=True) - transformers_model = AutoModelForCausalLM.from_pretrained(model_id) - tokens = tokenizer("This is a sample input", return_tensors="pt") + ipex_model = IPEXModelForCausalLM.from_pretrained(model_id, export=True, torch_dtype=dtype) + device = ipex_model.device + transformers_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype).to(device) + tokens = tokenizer("This is a sample input", return_tensors="pt").to(device) ipex_output = ipex_model.generate(**tokens, do_sample=False, max_new_tokens=4) ipex_output_assisted = ipex_model.generate( **tokens, do_sample=False, assistant_model=transformers_model, max_new_tokens=4 @@ -299,8 +312,12 @@ def test_assisted_decoding(self, model_arch): def test_ipex_patching_beam_search(self, test_name, model_arch, use_cache): model_id = MODEL_NAMES[model_arch] set_seed(SEED) - model = IPEXModelForCausalLM.from_pretrained(model_id, export=True, use_cache=use_cache) - transformers_model = AutoModelForCausalLM.from_pretrained(model_id) + dtype = torch.float32 + if IS_XPU: + dtype = torch.float16 + model = IPEXModelForCausalLM.from_pretrained(model_id, export=True, use_cache=use_cache, torch_dtype=dtype) + device = model.device + transformers_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype).to(device) self.assertEqual(model.use_cache, use_cache) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token @@ -316,7 +333,7 @@ def test_ipex_patching_beam_search(self, test_name, model_arch, use_cache): ), ) for text in texts: - tokens = tokenizer(text, padding=True, return_tensors="pt") + tokens = tokenizer(text, padding=True, return_tensors="pt").to(device) for generation_config in generation_configs: outputs = model.generate(**tokens, generation_config=generation_config) transformers_outputs = transformers_model.generate(**tokens, generation_config=generation_config) @@ -325,18 +342,21 @@ def test_ipex_patching_beam_search(self, test_name, model_arch, use_cache): @unittest.skipIf(is_ipex_version("<", "2.3.0"), reason="Only ipex version > 2.3.0 supports ipex model patching") def test_compare_with_and_without_past_key_values(self): - model_id = "Jiqing/tiny_random_llama2" + model_id = "Intel/tiny_random_llama2" + dtype = torch.float32 + if IS_XPU: + dtype = torch.float16 + model_with_pkv = IPEXModelForCausalLM.from_pretrained(model_id, use_cache=True, torch_dtype=dtype) + device = model_with_pkv.device tokenizer = AutoTokenizer.from_pretrained(model_id) - tokens = tokenizer("This is a sample input", return_tensors="pt") - - model_with_pkv = IPEXModelForCausalLM.from_pretrained(model_id, use_cache=True) + tokens = tokenizer("This is a sample input", return_tensors="pt").to(device) # Warmup model_with_pkv.generate(**tokens) with Timer() as with_pkv_timer: outputs_model_with_pkv = model_with_pkv.generate( **tokens, min_new_tokens=self.GENERATION_LENGTH, max_new_tokens=self.GENERATION_LENGTH, num_beams=1 ) - model_without_pkv = IPEXModelForCausalLM.from_pretrained(model_id, use_cache=False) + model_without_pkv = IPEXModelForCausalLM.from_pretrained(model_id, use_cache=False, torch_dtype=dtype) # Warmup model_without_pkv.generate(**tokens) with Timer() as without_pkv_timer: @@ -366,10 +386,11 @@ def _generate_random_audio_data(self): def test_compare_to_transformers(self, model_arch): model_id = MODEL_NAMES[model_arch] ipex_model = self.IPEX_MODEL_CLASS.from_pretrained(model_id, export=True) + device = ipex_model.device self.assertIsInstance(ipex_model.config, PretrainedConfig) - transformers_model = self.IPEX_MODEL_CLASS.auto_model_class.from_pretrained(model_id) + transformers_model = self.IPEX_MODEL_CLASS.auto_model_class.from_pretrained(model_id).to(device) preprocessor = AutoFeatureExtractor.from_pretrained(model_id) - inputs = preprocessor(self._generate_random_audio_data(), return_tensors="pt") + inputs = preprocessor(self._generate_random_audio_data(), return_tensors="pt").to(device) with torch.no_grad(): transformers_outputs = transformers_model(**inputs) outputs = ipex_model(**inputs) @@ -417,12 +438,13 @@ def test_compare_to_transformers(self, model_arch): model_id = MODEL_NAMES[model_arch] set_seed(SEED) ipex_model = self.IPEX_MODEL_CLASS.from_pretrained(model_id, export=True) + device = ipex_model.device self.assertIsInstance(ipex_model.config, PretrainedConfig) - transformers_model = self.IPEX_MODEL_CLASS.auto_model_class.from_pretrained(model_id) + transformers_model = self.IPEX_MODEL_CLASS.auto_model_class.from_pretrained(model_id).to(device) preprocessor = AutoFeatureExtractor.from_pretrained(model_id) url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) - inputs = preprocessor(images=image, return_tensors="pt") + inputs = preprocessor(images=image, return_tensors="pt").to(device) with torch.no_grad(): transformers_outputs = transformers_model(**inputs) outputs = ipex_model(**inputs) @@ -440,7 +462,7 @@ def test_compare_to_transformers(self, model_arch): self.assertIn("logits", outputs) # Compare tensor outputs self.assertTrue(torch.allclose(outputs.logits, transformers_outputs.logits, atol=1e-4)) - self.assertTrue(torch.equal(outputs.logits, loaded_model_outputs.logits)) + self.assertTrue(torch.allclose(outputs.logits, loaded_model_outputs.logits, atol=1e-4)) self.assertTrue(torch.allclose(init_model_outputs.logits, transformers_outputs.logits, atol=1e-4)) @parameterized.expand(SUPPORTED_ARCHITECTURES) diff --git a/tests/ipex/test_pipelines.py b/tests/ipex/test_pipelines.py index 696f5c9c20..4580303469 100644 --- a/tests/ipex/test_pipelines.py +++ b/tests/ipex/test_pipelines.py @@ -20,7 +20,7 @@ from parameterized import parameterized from transformers import AutoTokenizer from transformers.pipelines import pipeline as transformers_pipeline -from utils_tests import MODEL_NAMES +from utils_tests import IS_XPU, MODEL_NAMES from optimum.intel.ipex.modeling_base import ( IPEXModelForAudioClassification, @@ -56,7 +56,6 @@ class PipelinesIntegrationTest(unittest.TestCase): "gpt2", "gpt_neo", "gpt_neox", - "llama", "llama2", "mistral", "mpt", @@ -130,8 +129,11 @@ def test_fill_mask_pipeline_inference(self, model_arch): @parameterized.expand(TEXT_GENERATION_SUPPORTED_ARCHITECTURES) def test_text_generation_pipeline_inference(self, model_arch): model_id = MODEL_NAMES[model_arch] - transformers_generator = transformers_pipeline("text-generation", model_id) - ipex_generator = ipex_pipeline("text-generation", model_id, accelerator="ipex") + dtype = torch.float32 + if IS_XPU: + dtype = torch.float16 + transformers_generator = transformers_pipeline("text-generation", model_id, torch_dtype=dtype) + ipex_generator = ipex_pipeline("text-generation", model_id, accelerator="ipex", torch_dtype=dtype) inputs = "Describe a real-world application of AI." with torch.inference_mode(): transformers_output = transformers_generator(inputs, max_new_tokens=10) diff --git a/tests/ipex/utils_tests.py b/tests/ipex/utils_tests.py index 78bdcd7ec6..a16f91dc04 100644 --- a/tests/ipex/utils_tests.py +++ b/tests/ipex/utils_tests.py @@ -11,8 +11,11 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +from transformers import is_torch_xpu_available +IS_XPU = is_torch_xpu_available(check_device=True) + MODEL_NAMES = { "albert": "hf-internal-testing/tiny-random-albert", "beit": "hf-internal-testing/tiny-random-BeitForImageClassification", @@ -28,15 +31,15 @@ "distilgpt2": "Jiqing/tiny_random_distilgpt2", "electra": "hf-internal-testing/tiny-random-electra", "flaubert": "hf-internal-testing/tiny-random-flaubert", - "falcon": "Jiqing/tiny_random_falcon", + "falcon": "Intel/tiny_random_falcon", "gpt_bigcode": "hf-internal-testing/tiny-random-GPTBigCodeModel", - "gpt2": "hf-internal-testing/tiny-random-gpt2", + "gpt2": "Intel/tiny_random_gpt2", "gpt_neo": "hf-internal-testing/tiny-random-GPTNeoModel", "gpt_neox": "hf-internal-testing/tiny-random-GPTNeoXForCausalLM", "gptj": "hf-internal-testing/tiny-random-GPTJModel", "levit": "hf-internal-testing/tiny-random-LevitModel", "llama": "fxmarty/tiny-llama-fast-tokenizer", - "llama2": "Jiqing/tiny_random_llama2", + "llama2": "Intel/tiny_random_llama2", "marian": "sshleifer/tiny-marian-en-de", "mbart": "hf-internal-testing/tiny-random-mbart", "mistral": "echarlaix/tiny-random-mistral", From 1ab0233f218ed1fbd3098a8efd52d64ba92c9f39 Mon Sep 17 00:00:00 2001 From: jiqing-feng Date: Fri, 22 Nov 2024 09:22:40 +0800 Subject: [PATCH 14/29] fix ci config (#1010) Signed-off-by: jiqing-feng --- .github/workflows/test_ipex.yml | 9 +++------ setup.py | 2 +- 2 files changed, 4 insertions(+), 7 deletions(-) diff --git a/.github/workflows/test_ipex.yml b/.github/workflows/test_ipex.yml index a14fc73374..64a5c07a6a 100644 --- a/.github/workflows/test_ipex.yml +++ b/.github/workflows/test_ipex.yml @@ -18,8 +18,9 @@ jobs: strategy: fail-fast: false matrix: - torch-version: ["2.2.0", "2.3.*", "2.4.*"] - transformers-version: ["4.39.0", "4.44.*"] + python-version: [3.10] + transformers-version: ["4.44.0", "4.45.*"] + ipex-version: ["2.4.0", "2.5.*"] runs-on: ubuntu-22.04 @@ -38,10 +39,6 @@ jobs: pip install torch==${{ matrix.torch-version }} torchaudio torchvision --extra-index-url https://download.pytorch.org/whl/cpu pip install .[ipex,tests] transformers[testing]==${{ matrix.transformers-version }} intel_extension_for_pytorch==${{ matrix.torch-version }} - - if: ${{ matrix.torch-version == '2.2.0' }} - name: Downgrade Numpy - run: pip install numpy==1.* - - name: Assert versions run: | python -c "import torch; print(torch.__version__); assert torch.__version__.startswith('${{ matrix.torch-version }}'.replace('.*', ''))" diff --git a/setup.py b/setup.py index 5aadf13889..fa4d94e507 100644 --- a/setup.py +++ b/setup.py @@ -29,7 +29,7 @@ INSTALL_REQUIRE = [ "torch>=1.11", "transformers>=4.45,<4.46", - "optimum @ git+https://github.com/huggingface/optimum.git", + "optimum", "datasets>=1.4.0", "sentencepiece", "setuptools", From b0cd5dbf3f68199fdd30ed922df2aaf628ec1e39 Mon Sep 17 00:00:00 2001 From: jiqing-feng Date: Fri, 22 Nov 2024 09:28:56 +0800 Subject: [PATCH 15/29] Fix tests versions (#1011) * fix ci config * fix test versions * fix ipex version Signed-off-by: jiqing-feng --- .github/workflows/test_ipex.yml | 7 +++---- optimum/exporters/ipex/model_patcher.py | 2 +- optimum/exporters/ipex/modeling_utils.py | 2 +- 3 files changed, 5 insertions(+), 6 deletions(-) diff --git a/.github/workflows/test_ipex.yml b/.github/workflows/test_ipex.yml index 64a5c07a6a..3683d8b4c3 100644 --- a/.github/workflows/test_ipex.yml +++ b/.github/workflows/test_ipex.yml @@ -18,9 +18,8 @@ jobs: strategy: fail-fast: false matrix: - python-version: [3.10] - transformers-version: ["4.44.0", "4.45.*"] - ipex-version: ["2.4.0", "2.5.*"] + transformers-version: ["4.44.0", "4.45.2"] + ipex-version: ["2.4.0", "2.5.0"] runs-on: ubuntu-22.04 @@ -31,7 +30,7 @@ jobs: - name: Setup Python uses: actions/setup-python@v5 with: - python-version: 3.9 + python-version: 3.10 - name: Install dependencies run: | diff --git a/optimum/exporters/ipex/model_patcher.py b/optimum/exporters/ipex/model_patcher.py index b3de0512a1..2d3c252371 100644 --- a/optimum/exporters/ipex/model_patcher.py +++ b/optimum/exporters/ipex/model_patcher.py @@ -39,7 +39,7 @@ # Please also update in the setup.py and .github/workflows/test_ipex.yml if you change the transformers version -_TRANSFORMERS_MIN_VERSION = "4.39.0" +_TRANSFORMERS_MIN_VERSION = "4.45.0" _TRANSFORMERS_MAX_VERSION = "4.45.99" _IPEX_EXPORTED_GENERATION_TASKS = ("text-generation",) diff --git a/optimum/exporters/ipex/modeling_utils.py b/optimum/exporters/ipex/modeling_utils.py index 3ca9cf0e64..b42966e3d7 100755 --- a/optimum/exporters/ipex/modeling_utils.py +++ b/optimum/exporters/ipex/modeling_utils.py @@ -29,7 +29,7 @@ logger = logging.getLogger(__name__) -_IPEX_MINIMUM_VERSION_FOR_PATCHING = "2.3.0" +_IPEX_MINIMUM_VERSION_FOR_PATCHING = "2.4.0" if is_ipex_version("<", _IPEX_MINIMUM_VERSION_FOR_PATCHING): From e31e6d403cdfcde9b36e9ba1f427baee42441a25 Mon Sep 17 00:00:00 2001 From: jiqing-feng Date: Fri, 22 Nov 2024 09:33:12 +0800 Subject: [PATCH 16/29] fix torch test version (#1012) Signed-off-by: jiqing-feng --- .github/workflows/test_ipex.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/test_ipex.yml b/.github/workflows/test_ipex.yml index 3683d8b4c3..479405d5ba 100644 --- a/.github/workflows/test_ipex.yml +++ b/.github/workflows/test_ipex.yml @@ -19,7 +19,7 @@ jobs: fail-fast: false matrix: transformers-version: ["4.44.0", "4.45.2"] - ipex-version: ["2.4.0", "2.5.0"] + torch-version: ["2.4.0", "2.5.0"] runs-on: ubuntu-22.04 From ed35ffcd200ff21d9b72341a788bdb15f7099b88 Mon Sep 17 00:00:00 2001 From: jiqing-feng Date: Fri, 22 Nov 2024 11:00:23 +0800 Subject: [PATCH 17/29] use python3.9 test (#1013) * use python3.9 test Signed-off-by: jiqing-feng --- .github/workflows/test_inc.yml | 6 +----- .github/workflows/test_ipex.yml | 4 ++-- setup.py | 6 +++--- tests/ipex/test_modeling.py | 1 + tests/neural_compressor/test_cli.py | 1 + tests/neural_compressor/test_ipex.py | 2 ++ 6 files changed, 10 insertions(+), 10 deletions(-) diff --git a/.github/workflows/test_inc.yml b/.github/workflows/test_inc.yml index c1a75a6e3e..caab286979 100644 --- a/.github/workflows/test_inc.yml +++ b/.github/workflows/test_inc.yml @@ -18,7 +18,7 @@ jobs: strategy: fail-fast: false matrix: - torch-version: ["2.2.0", "2.3.*", "2.4.*"] + torch-version: ["2.4.0", "2.5.0"] runs-on: ubuntu-22.04 @@ -37,10 +37,6 @@ jobs: pip install torch==${{ matrix.torch-version }} torchaudio torchvision --index-url https://download.pytorch.org/whl/cpu pip install .[neural-compressor,ipex,diffusers,peft,tests] transformers[testing] intel-extension-for-pytorch==${{ matrix.torch-version }} - - if: ${{ matrix.torch-version == '2.2.0' }} - name: Downgrade Numpy - run: pip install numpy==1.* - - name: Assert versions run: | python -c "import torch; print(torch.__version__); assert torch.__version__.startswith('${{ matrix.torch-version }}'.replace('.*', ''))" diff --git a/.github/workflows/test_ipex.yml b/.github/workflows/test_ipex.yml index 479405d5ba..4f59ee214c 100644 --- a/.github/workflows/test_ipex.yml +++ b/.github/workflows/test_ipex.yml @@ -18,7 +18,7 @@ jobs: strategy: fail-fast: false matrix: - transformers-version: ["4.44.0", "4.45.2"] + transformers-version: ["4.45.*"] torch-version: ["2.4.0", "2.5.0"] runs-on: ubuntu-22.04 @@ -30,7 +30,7 @@ jobs: - name: Setup Python uses: actions/setup-python@v5 with: - python-version: 3.10 + python-version: 3.9 - name: Install dependencies run: | diff --git a/setup.py b/setup.py index fa4d94e507..33599e0abe 100644 --- a/setup.py +++ b/setup.py @@ -28,8 +28,8 @@ INSTALL_REQUIRE = [ "torch>=1.11", - "transformers>=4.45,<4.46", - "optimum", + "optimum~=1.23", + "transformers>=4.36,<4.46", "datasets>=1.4.0", "sentencepiece", "setuptools", @@ -62,7 +62,7 @@ EXTRAS_REQUIRE = { "nncf": ["nncf>=2.11.0"], - "ipex": ["intel-extension-for-pytorch", "transformers>=4.45,<4.46"], + "ipex": ["intel-extension-for-pytorch", "transformers>=4.39,<4.46"], "openvino": ["nncf>=2.11.0", "openvino==2024.5.0", "openvino-tokenizers==2024.5.0"], "neural-compressor": ["neural-compressor[pt]>3.0", "accelerate", "transformers<4.46"], "diffusers": ["diffusers"], diff --git a/tests/ipex/test_modeling.py b/tests/ipex/test_modeling.py index f74675ddd6..3f366d3faf 100644 --- a/tests/ipex/test_modeling.py +++ b/tests/ipex/test_modeling.py @@ -272,6 +272,7 @@ def test_pipeline(self, model_arch): self.assertTrue(all("This is a sample" in item["generated_text"] for item in outputs)) @parameterized.expand(SUPPORTED_ARCHITECTURES) + @unittest.skip(reason="Paged attention do not support assisted decoding for now") def test_assisted_decoding(self, model_arch): # assist decoding does not support static cache now if model_arch in self.IPEX_PATCHED_SUPPORTED_ARCHITECTURES: diff --git a/tests/neural_compressor/test_cli.py b/tests/neural_compressor/test_cli.py index 089ab09af1..9874d08dbe 100644 --- a/tests/neural_compressor/test_cli.py +++ b/tests/neural_compressor/test_cli.py @@ -12,6 +12,7 @@ def test_string_type(self): self.assertIsInstance(dynamic_api, str) self.assertIsInstance(static_api, str) + @unittest.skip(reason="INC is going to deprecate, skip this failed test") def test_cli(self): with tempfile.TemporaryDirectory() as tempdir: # TODO : enable diff --git a/tests/neural_compressor/test_ipex.py b/tests/neural_compressor/test_ipex.py index ef1f19812e..7744cdf87a 100644 --- a/tests/neural_compressor/test_ipex.py +++ b/tests/neural_compressor/test_ipex.py @@ -17,6 +17,7 @@ import os import tempfile +import unittest from neural_compressor.config import PostTrainingQuantConfig @@ -52,6 +53,7 @@ class IPEXQuantizationTest(INCTestMixin): SUPPORTED_ARCHITECTURES_WITH_EXPECTED_QUANTIZED_MATMULS = (("text-classification", "bert", 21),) @parameterized.expand(SUPPORTED_ARCHITECTURES_WITH_EXPECTED_QUANTIZED_MATMULS) + @unittest.skip(reason="INC is going to deprecate, skip this failed test") def test_ipex_static_quantization_with_smoothquant(self, task, model_arch, expected_quantized_matmuls): recipes = {"smooth_quant": True, "smooth_quant_args": {"alpha": 0.5}} num_samples = 10 From a5c48a89ab5258205f99ff6a6775b8d768a8db56 Mon Sep 17 00:00:00 2001 From: jiqing-feng Date: Fri, 22 Nov 2024 13:11:58 +0800 Subject: [PATCH 18/29] change ipex transformers limited verison in setup (#1015) * change ipex transformers limited verison in setup * fix inc tests Signed-off-by: jiqing-feng --- setup.py | 4 ++-- tests/neural_compressor/test_cli.py | 1 - tests/neural_compressor/test_ipex.py | 3 +-- 3 files changed, 3 insertions(+), 5 deletions(-) diff --git a/setup.py b/setup.py index 33599e0abe..1dd9eb0c12 100644 --- a/setup.py +++ b/setup.py @@ -29,7 +29,7 @@ INSTALL_REQUIRE = [ "torch>=1.11", "optimum~=1.23", - "transformers>=4.36,<4.46", + "transformers>=4.36,<4.47", "datasets>=1.4.0", "sentencepiece", "setuptools", @@ -62,9 +62,9 @@ EXTRAS_REQUIRE = { "nncf": ["nncf>=2.11.0"], - "ipex": ["intel-extension-for-pytorch", "transformers>=4.39,<4.46"], "openvino": ["nncf>=2.11.0", "openvino==2024.5.0", "openvino-tokenizers==2024.5.0"], "neural-compressor": ["neural-compressor[pt]>3.0", "accelerate", "transformers<4.46"], + "ipex": ["intel-extension-for-pytorch", "transformers>=4.39,<4.46"], "diffusers": ["diffusers"], "quality": QUALITY_REQUIRE, "tests": TESTS_REQUIRE, diff --git a/tests/neural_compressor/test_cli.py b/tests/neural_compressor/test_cli.py index 9874d08dbe..089ab09af1 100644 --- a/tests/neural_compressor/test_cli.py +++ b/tests/neural_compressor/test_cli.py @@ -12,7 +12,6 @@ def test_string_type(self): self.assertIsInstance(dynamic_api, str) self.assertIsInstance(static_api, str) - @unittest.skip(reason="INC is going to deprecate, skip this failed test") def test_cli(self): with tempfile.TemporaryDirectory() as tempdir: # TODO : enable diff --git a/tests/neural_compressor/test_ipex.py b/tests/neural_compressor/test_ipex.py index 7744cdf87a..0ab6fbf3cf 100644 --- a/tests/neural_compressor/test_ipex.py +++ b/tests/neural_compressor/test_ipex.py @@ -53,7 +53,6 @@ class IPEXQuantizationTest(INCTestMixin): SUPPORTED_ARCHITECTURES_WITH_EXPECTED_QUANTIZED_MATMULS = (("text-classification", "bert", 21),) @parameterized.expand(SUPPORTED_ARCHITECTURES_WITH_EXPECTED_QUANTIZED_MATMULS) - @unittest.skip(reason="INC is going to deprecate, skip this failed test") def test_ipex_static_quantization_with_smoothquant(self, task, model_arch, expected_quantized_matmuls): recipes = {"smooth_quant": True, "smooth_quant_args": {"alpha": 0.5}} num_samples = 10 @@ -81,5 +80,5 @@ def test_ipex_static_quantization_with_smoothquant(self, task, model_arch, expec is_static=True, num_samples=num_samples, load_inc_model=False, - load_ipex_model=True, + load_ipex_model=False, ) From 388265f7139d2920daed57f6da044e7e88841680 Mon Sep 17 00:00:00 2001 From: kaixuanliu Date: Fri, 22 Nov 2024 14:05:53 +0800 Subject: [PATCH 19/29] add XPU LinearAddAdd op (#1017) Signed-off-by: Liu, Kaixuan --- optimum/exporters/ipex/modeling_utils.py | 20 +++++++++++++++++++- 1 file changed, 19 insertions(+), 1 deletion(-) diff --git a/optimum/exporters/ipex/modeling_utils.py b/optimum/exporters/ipex/modeling_utils.py index b42966e3d7..a892335ee8 100755 --- a/optimum/exporters/ipex/modeling_utils.py +++ b/optimum/exporters/ipex/modeling_utils.py @@ -118,6 +118,21 @@ def forward( return hidden_states +class XPUlinearAddAdd(torch.nn.Module): + def __init__(self, module: torch.nn.Module): + super().__init__() + self.weight = module.weight.transpose(0, 1).contiguous() + self.bias = module.bias + + def forward(self, x, y, z): + if self.bias is not None: + x = torch.ops.torch_ipex.mm_bias_resadd(x, self.weight, self.bias, 1.0, y, 1.0) + x += z + else: + x = torch.ops.torch_ipex.mm_bias_resadd(x, self.weight, z, 1.0, y, 1.0) + return x + + # Adapted from https://github.com/huggingface/transformers/blob/v4.38.2/src/transformers/models/llama/modeling_llama.py#L83 def _ipex_rms_layer_norm_forward(self, hidden_states): return rms_norm(hidden_states, self.weight, self.variance_epsilon) @@ -703,7 +718,10 @@ def __init__(self, module, config) -> None: elif self.module_device == "xpu": self.linear_gelu = XPULinearGelu(module.dense_h_to_4h) if module.dense_4h_to_h.__class__.__name__ not in ["LinearAllreduce"]: - self.linear_add_add = LinearAddAdd(module.dense_4h_to_h) + if self.module_device == "cpu": + self.linear_add_add = LinearAddAdd(module.dense_4h_to_h) + elif self.module_device == "xpu": + self.linear_add_add = XPUlinearAddAdd(module.dense_4h_to_h) def forward( self, From ad9b795e86e46b55aa8153a40c1b02eacc7125de Mon Sep 17 00:00:00 2001 From: jiqing-feng Date: Mon, 25 Nov 2024 11:16:00 +0800 Subject: [PATCH 20/29] fix bert and vit patch (#1022) * fix bert and vit patch * fix vit and bert save Signed-off-by: jiqing-feng --- optimum/exporters/ipex/modeling_utils.py | 1 - optimum/intel/ipex/modeling_base.py | 7 ++++++- tests/ipex/test_modeling.py | 8 ++++++++ 3 files changed, 14 insertions(+), 2 deletions(-) diff --git a/optimum/exporters/ipex/modeling_utils.py b/optimum/exporters/ipex/modeling_utils.py index a892335ee8..f9039fa790 100755 --- a/optimum/exporters/ipex/modeling_utils.py +++ b/optimum/exporters/ipex/modeling_utils.py @@ -806,7 +806,6 @@ def __init__(self, module, config): super().__init__() _setattr_from_module(self, module) self.linear_gelu = LinearGelu(module.dense) - del self.__dict__["_modules"]["dense"] def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.linear_gelu(hidden_states) diff --git a/optimum/intel/ipex/modeling_base.py b/optimum/intel/ipex/modeling_base.py index cb60541b1d..7928492b32 100644 --- a/optimum/intel/ipex/modeling_base.py +++ b/optimum/intel/ipex/modeling_base.py @@ -54,6 +54,7 @@ from ...exporters.ipex.cache_utils import IPEXPagedCache from ...exporters.ipex.model_config import ipex_onnx_config from ...exporters.ipex.model_patcher import ( + _IPEX_EXPORTED_GENERATION_TASKS, _IPEX_MINIMUM_VERSION_FOR_PATCHING, _patch_model, ) @@ -73,7 +74,7 @@ def _is_patched_with_ipex(model, task, use_cache: bool = True): if is_ipex_version("<", _IPEX_MINIMUM_VERSION_FOR_PATCHING): return False - if not use_cache: + if not use_cache and task in _IPEX_EXPORTED_GENERATION_TASKS: return False return model.config.model_type in _IPEX_SUPPORT_MODEL_TYPES @@ -299,6 +300,10 @@ def model_dtype(self): ) return self._dtype + @property + def add_patch(self) -> bool: + return self._add_patch + def to(self, device: Union[torch.device, str]): self._device = device if isinstance(device, torch.device) else torch.device(device) self.model.to(self._device) diff --git a/tests/ipex/test_modeling.py b/tests/ipex/test_modeling.py index 3f366d3faf..459d1c9b15 100644 --- a/tests/ipex/test_modeling.py +++ b/tests/ipex/test_modeling.py @@ -74,12 +74,15 @@ class IPEXModelTest(unittest.TestCase): "squeezebert", "xlm", ) + IPEX_PATCHED_SUPPORTED_ARCHITECTURES = ("bert",) @parameterized.expand(SUPPORTED_ARCHITECTURES) def test_compare_to_transformers(self, model_arch): model_id = MODEL_NAMES[model_arch] set_seed(SEED) ipex_model = self.IPEX_MODEL_CLASS.from_pretrained(model_id, export=True) + if model_arch in self.IPEX_PATCHED_SUPPORTED_ARCHITECTURES: + self.assertTrue(ipex_model.add_patch) device = ipex_model.device self.assertIsInstance(ipex_model.config, PretrainedConfig) transformers_model = self.IPEX_MODEL_CLASS.auto_model_class.from_pretrained(model_id).to(device) @@ -317,6 +320,8 @@ def test_ipex_patching_beam_search(self, test_name, model_arch, use_cache): if IS_XPU: dtype = torch.float16 model = IPEXModelForCausalLM.from_pretrained(model_id, export=True, use_cache=use_cache, torch_dtype=dtype) + if use_cache: + self.assertTrue(model.add_patch) device = model.device transformers_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype).to(device) self.assertEqual(model.use_cache, use_cache) @@ -433,12 +438,15 @@ class IPEXModelForImageClassificationIntegrationTest(unittest.TestCase): "resnet", "vit", ) + IPEX_PATCHED_SUPPORTED_ARCHITECTURES = ("vit",) @parameterized.expand(SUPPORTED_ARCHITECTURES) def test_compare_to_transformers(self, model_arch): model_id = MODEL_NAMES[model_arch] set_seed(SEED) ipex_model = self.IPEX_MODEL_CLASS.from_pretrained(model_id, export=True) + if model_arch in self.IPEX_PATCHED_SUPPORTED_ARCHITECTURES: + self.assertTrue(ipex_model.add_patch) device = ipex_model.device self.assertIsInstance(ipex_model.config, PretrainedConfig) transformers_model = self.IPEX_MODEL_CLASS.auto_model_class.from_pretrained(model_id).to(device) From b48192b5394d90ee8a686ca9e8ea62fbf4de042d Mon Sep 17 00:00:00 2001 From: jiqing-feng Date: Mon, 25 Nov 2024 18:07:06 +0800 Subject: [PATCH 21/29] Paged attn (#1024) * fix reorder cache for non-patch models Signed-off-by: jiqing-feng * disable torch < 2.3 tests, we won't use torch < 2.4 Signed-off-by: jiqing-feng * fix test beam serach Signed-off-by: jiqing-feng * fix cache selection Signed-off-by: jiqing-feng * upgrad to transformers4.46 Signed-off-by: jiqing-feng * change ipex test yaml transformers version to 4.46 Signed-off-by: jiqing-feng --------- Signed-off-by: jiqing-feng --- .github/workflows/test_ipex.yml | 2 +- optimum/exporters/ipex/cache_utils.py | 14 ++-- optimum/exporters/ipex/model_patcher.py | 4 +- optimum/intel/ipex/modeling_base.py | 89 +++++-------------------- setup.py | 2 +- tests/ipex/test_modeling.py | 9 +-- 6 files changed, 30 insertions(+), 90 deletions(-) diff --git a/.github/workflows/test_ipex.yml b/.github/workflows/test_ipex.yml index f51a701dda..d69dcdb0fa 100644 --- a/.github/workflows/test_ipex.yml +++ b/.github/workflows/test_ipex.yml @@ -18,7 +18,7 @@ jobs: strategy: fail-fast: false matrix: - transformers-version: ["4.45.*"] + transformers-version: ["4.46.*"] torch-version: ["2.4.0", "2.5.0"] runs-on: ubuntu-22.04 diff --git a/optimum/exporters/ipex/cache_utils.py b/optimum/exporters/ipex/cache_utils.py index 3d01770e3a..dec1e81895 100755 --- a/optimum/exporters/ipex/cache_utils.py +++ b/optimum/exporters/ipex/cache_utils.py @@ -33,21 +33,21 @@ class IPEXPagedCache(Cache): def __init__( self, config: PretrainedConfig, - max_batch_size: int, + batch_size: int, max_cache_len: int, device, dtype=None, layer_device_map=None, + **kwargs, ) -> None: super().__init__() - self.max_batch_size = max_batch_size - self.batch_size = max_batch_size + self.batch_size = batch_size # Used in `generate` to keep tally of how many tokens the cache has seen - self._seen_tokens = torch.zeros([max_batch_size], dtype=torch.int32, device=device) + self._seen_tokens = torch.zeros([batch_size], dtype=torch.int32, device=device) self.block_size = 16 - self.num_blocks = (max_cache_len // self.block_size + (max_cache_len % self.block_size != 0)) * max_batch_size + self.num_blocks = (max_cache_len // self.block_size + (max_cache_len % self.block_size != 0)) * batch_size self.block_tables = -1 * torch.ones([self.num_blocks], dtype=torch.int32, device=device).reshape( - max_batch_size, -1 + batch_size, -1 ) self.free_blocks = torch.arange(self.num_blocks, device=device) self.max_cache_len = max_cache_len @@ -194,7 +194,7 @@ def get_max_length(self) -> Optional[int]: def reset(self): """Resets the cache values while preserving the objects""" - self._seen_tokens = torch.zeros([self.max_batch_size], dtype=torch.int32, device=self.block_tables.device) + self._seen_tokens = torch.zeros([self.batch_size], dtype=torch.int32, device=self.block_tables.device) self.block_tables.fill_(-1) self.free_blocks = torch.arange(self.num_blocks, device=self.block_tables.device) self.max_seq_len = 0 diff --git a/optimum/exporters/ipex/model_patcher.py b/optimum/exporters/ipex/model_patcher.py index 2d3c252371..89cc528e08 100644 --- a/optimum/exporters/ipex/model_patcher.py +++ b/optimum/exporters/ipex/model_patcher.py @@ -39,8 +39,8 @@ # Please also update in the setup.py and .github/workflows/test_ipex.yml if you change the transformers version -_TRANSFORMERS_MIN_VERSION = "4.45.0" -_TRANSFORMERS_MAX_VERSION = "4.45.99" +_TRANSFORMERS_MIN_VERSION = "4.46.0" +_TRANSFORMERS_MAX_VERSION = "4.46.99" _IPEX_EXPORTED_GENERATION_TASKS = ("text-generation",) diff --git a/optimum/intel/ipex/modeling_base.py b/optimum/intel/ipex/modeling_base.py index 7928492b32..c24bba4038 100644 --- a/optimum/intel/ipex/modeling_base.py +++ b/optimum/intel/ipex/modeling_base.py @@ -413,8 +413,6 @@ def forward( class IPEXModelForCausalLM(IPEXModel, GenerationMixin): auto_model_class = AutoModelForCausalLM export_feature = "text-generation" - _supports_cache_class = False - _is_stateful = False def __init__( self, @@ -430,6 +428,13 @@ def __init__( super().__init__( model, config, export=export, model_save_dir=model_save_dir, warmup=False, use_cache=use_cache ) + + self._supports_cache_class = getattr(model, "_supports_cache_class", None) + self._supports_sdpa = getattr(model, "_supports_sdpa", None) + self._supports_cache_class = getattr(model, "_supports_cache_class", None) + self._supports_quantized_cache = getattr(model, "_supports_quantized_cache", None) + self._supports_static_cache = getattr(model, "_supports_static_cache", None) + if self._add_patch: self._supports_cache_class = True GenerationMixin.__init__(self) @@ -448,18 +453,6 @@ def __init__( except AttributeError: self.model_cls = get_model_class(self.config, AutoModelForCausalLM._model_mapping) - if is_transformers_version(">=", "4.38.0") and model_type in { - "llama", - "phi", - "persimmon", - "mistral", - "falcon", - "gpt2", - }: - self.prepare_inputs_for_generation = _ipex_prepare_inputs_for_generation - else: - self.prepare_inputs_for_generation = self.model_cls.prepare_inputs_for_generation.__get__(self) - if hasattr(self.model_cls, "_convert_to_standard_cache"): self._convert_to_standard_cache = self.model_cls._convert_to_standard_cache if hasattr(self.model_cls, "_convert_to_bloom_cache"): @@ -521,6 +514,12 @@ def _prepare_generation_config( return generation_config, model_kwargs + def _reorder_cache(self, *args, **kwargs): + return self.model._reorder_cache(*args, **kwargs) + + def prepare_inputs_for_generation(self, *args, **kwargs): + return self.model.prepare_inputs_for_generation(*args, **kwargs) + def generate(self, *args, **kwargs): new_kwargs = copy.deepcopy(kwargs) if is_ipex_version("<", "2.4.0") and self._add_patch and new_kwargs.get("assistant_model", None): @@ -556,68 +555,12 @@ def generate(self, *args, **kwargs): return result -def _ipex_prepare_inputs_for_generation( - input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs -): - from transformers.cache_utils import Cache - - if past_key_values is not None: - if isinstance(past_key_values, Cache): - past_length = cache_length = past_key_values.get_seq_length() - max_cache_length = past_key_values.get_max_length() - else: - cache_length = past_length = past_key_values[0][0].shape[2] - max_cache_length = None - - # Keep only the unprocessed tokens: - # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where - # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as - # input) - if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: - input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] - # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard - # input_ids based on the past_length. - elif past_length < input_ids.shape[1]: - input_ids = input_ids[:, past_length:] - # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. - - # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. - if ( - max_cache_length is not None - and attention_mask is not None - and cache_length + input_ids.shape[1] > max_cache_length - ): - attention_mask = attention_mask[:, -max_cache_length:] - - position_ids = kwargs.get("position_ids", None) - if attention_mask is not None and position_ids is None: - # create position_ids on the fly for batch generation - position_ids = attention_mask.long().cumsum(-1) - 1 - position_ids.masked_fill_(attention_mask == 0, 1) - if past_key_values: - position_ids = position_ids[:, -input_ids.shape[1] :] - - # if `inputs_embeds` are passed, we only want to use them in the 1st generation step - if inputs_embeds is not None and past_key_values is None: - model_inputs = {"inputs_embeds": inputs_embeds} - else: - model_inputs = {"input_ids": input_ids} - - model_inputs.update( - { - "position_ids": position_ids, - "past_key_values": past_key_values, - "use_cache": kwargs.get("use_cache"), - "attention_mask": attention_mask, - } - ) - return model_inputs - - def _ipex_crop_past_key_values(model, past_key_values, max_length): if isinstance(model, IPEXModel) and _is_patched_with_ipex(model, "text-generation"): if isinstance(past_key_values, IPEXPagedCache): - return past_key_values.crop(max_length) + # .crop is an inplace op, returns None + past_key_values = past_key_values.crop(max_length) + return past_key_values else: raise ValueError("only support IPEXPagedCache input now") return _crop_past_key_values(model, past_key_values, max_length) diff --git a/setup.py b/setup.py index 1dd9eb0c12..b6a31593ec 100644 --- a/setup.py +++ b/setup.py @@ -64,7 +64,7 @@ "nncf": ["nncf>=2.11.0"], "openvino": ["nncf>=2.11.0", "openvino==2024.5.0", "openvino-tokenizers==2024.5.0"], "neural-compressor": ["neural-compressor[pt]>3.0", "accelerate", "transformers<4.46"], - "ipex": ["intel-extension-for-pytorch", "transformers>=4.39,<4.46"], + "ipex": ["intel-extension-for-pytorch", "transformers>=4.39,<4.47"], "diffusers": ["diffusers"], "quality": QUALITY_REQUIRE, "tests": TESTS_REQUIRE, diff --git a/tests/ipex/test_modeling.py b/tests/ipex/test_modeling.py index 459d1c9b15..866fc296be 100644 --- a/tests/ipex/test_modeling.py +++ b/tests/ipex/test_modeling.py @@ -44,7 +44,6 @@ IPEXModelForSequenceClassification, IPEXModelForTokenClassification, ) -from optimum.intel.utils.import_utils import is_ipex_version from optimum.utils.testing_utils import grid_parameters from utils_tests import MODEL_NAMES, IS_XPU @@ -307,20 +306,19 @@ def test_assisted_decoding(self, model_arch): @parameterized.expand( grid_parameters( { - "model_arch": IPEX_PATCHED_SUPPORTED_ARCHITECTURES, + "model_arch": SUPPORTED_ARCHITECTURES, "use_cache": [True, False], } ) ) - @unittest.skipIf(is_ipex_version("<", "2.3.0"), reason="Only ipex version > 2.3.0 supports ipex model patching") - def test_ipex_patching_beam_search(self, test_name, model_arch, use_cache): + def test_ipex_beam_search(self, test_name, model_arch, use_cache): model_id = MODEL_NAMES[model_arch] set_seed(SEED) dtype = torch.float32 if IS_XPU: dtype = torch.float16 model = IPEXModelForCausalLM.from_pretrained(model_id, export=True, use_cache=use_cache, torch_dtype=dtype) - if use_cache: + if use_cache and model_arch in self.IPEX_PATCHED_SUPPORTED_ARCHITECTURES: self.assertTrue(model.add_patch) device = model.device transformers_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype).to(device) @@ -346,7 +344,6 @@ def test_ipex_patching_beam_search(self, test_name, model_arch, use_cache): self.assertIsInstance(outputs, torch.Tensor) self.assertTrue(torch.equal(outputs, transformers_outputs)) - @unittest.skipIf(is_ipex_version("<", "2.3.0"), reason="Only ipex version > 2.3.0 supports ipex model patching") def test_compare_with_and_without_past_key_values(self): model_id = "Intel/tiny_random_llama2" dtype = torch.float32 From 8a8e7e31e2f3c6df26445336e9efb57f2eb19dac Mon Sep 17 00:00:00 2001 From: jiqing-feng Date: Tue, 26 Nov 2024 12:12:48 +0800 Subject: [PATCH 22/29] set device as the same as origin model (#1031) * set device as the same as origin model * fix device Signed-off-by: jiqing-feng --------- Signed-off-by: jiqing-feng --- .github/workflows/test_ipex.yml | 2 +- optimum/intel/ipex/modeling_base.py | 35 ++++++++-------------------- setup.py | 2 +- tests/neural_compressor/test_ipex.py | 3 +-- 4 files changed, 13 insertions(+), 29 deletions(-) diff --git a/.github/workflows/test_ipex.yml b/.github/workflows/test_ipex.yml index d69dcdb0fa..a8ee4284d6 100644 --- a/.github/workflows/test_ipex.yml +++ b/.github/workflows/test_ipex.yml @@ -18,7 +18,7 @@ jobs: strategy: fail-fast: false matrix: - transformers-version: ["4.46.*"] + transformers-version: ["4.46.0", "4.46.3"] torch-version: ["2.4.0", "2.5.0"] runs-on: ubuntu-22.04 diff --git a/optimum/intel/ipex/modeling_base.py b/optimum/intel/ipex/modeling_base.py index c24bba4038..19971dacf8 100644 --- a/optimum/intel/ipex/modeling_base.py +++ b/optimum/intel/ipex/modeling_base.py @@ -38,7 +38,6 @@ GenerationConfig, GenerationMixin, PretrainedConfig, - is_torch_xpu_available, ) from transformers.dynamic_module_utils import get_class_from_dynamic_module from transformers.generation.candidate_generator import _crop_past_key_values @@ -127,18 +126,9 @@ def __init__( warmup: bool = True, **kwargs, ): - if is_torch_xpu_available(check_device=True): - self._device = torch.device("xpu:0") - elif torch.cuda.is_available(): - self._device = torch.device("cuda:0") - else: - self._device = torch.device("cpu") - config = config or model.config - OptimizedModel.__init__(self, model=model, config=config) - self.model.to(self._device) self._dtype = self.model.dtype if self.model.dtype is not None else torch.float32 self.use_cache = kwargs.get("use_cache", False) self.model_save_dir = model_save_dir @@ -174,7 +164,6 @@ def _from_pretrained( local_files_only: bool = False, torch_dtype: Optional[Union[str, "torch.dtype"]] = None, trust_remote_code: bool = False, - file_name: Optional[str] = WEIGHTS_NAME, **kwargs, ): """ @@ -207,9 +196,6 @@ def _from_pretrained( float16 or bfloat16 or float32: load in a specified dtype, ignoring the model config.torch_dtype if one exists. If not specified, the model will get loaded in float32. trust_remote_code (`bool`, *optional*) Allows to use custom code for the modeling hosted in the model repository. This option should only be set for repositories you trust and in which you have read the code, as it will execute on your local machine arbitrary code present in the model repository. - file_name (`str`, *optional*): - The file name of the model to load. Overwrites the default file name and allows one to load the model - with a different name. """ if use_auth_token is not None: warnings.warn( @@ -287,7 +273,7 @@ def eval(self): @property def device(self) -> torch.device: - return self._device + return self.model.device @property def dtype(self) -> torch.dtype: @@ -305,8 +291,7 @@ def add_patch(self) -> bool: return self._add_patch def to(self, device: Union[torch.device, str]): - self._device = device if isinstance(device, torch.device) else torch.device(device) - self.model.to(self._device) + self.model.to(self.device) return self def can_generate(self): @@ -323,8 +308,8 @@ def _init_warmup(self): if not self._add_patch: # use_cache = "past_key_values" in self.input_names dummy_inputs = _prepare_inputs_for_ipex_model(self, self.export_feature, self.use_cache) - if self._device.type != "cpu": - dummy_inputs = recursive_to_device(value=dummy_inputs, device=self._device) + if self.device.type != "cpu": + dummy_inputs = recursive_to_device(value=dummy_inputs, device=self.device) for _ in range(2): self(**dummy_inputs) @@ -526,15 +511,15 @@ def generate(self, *args, **kwargs): raise ValueError( f"Assisted decoding is not supported for patched models if ipex < 2.4, support methods are {_IPEX_EXPORTED_GENERATION_METHODS}" ) - # Patch functions to support paged cache + # Patch functions to support ipex_paged cache if self._add_patch: - transformers.generation.utils.NEED_SETUP_CACHE_CLASSES_MAPPING["paged"] = IPEXPagedCache - self.generation_config.cache_implementation = "paged" + transformers.generation.utils.NEED_SETUP_CACHE_CLASSES_MAPPING["ipex_paged"] = IPEXPagedCache + self.generation_config.cache_implementation = "ipex_paged" if is_transformers_version(">=", "4.45.0"): - if "paged" not in transformers.generation.configuration_utils.ALL_CACHE_IMPLEMENTATIONS: - transformers.generation.configuration_utils.ALL_CACHE_IMPLEMENTATIONS.append("paged") + if "ipex_paged" not in transformers.generation.configuration_utils.ALL_CACHE_IMPLEMENTATIONS: + transformers.generation.configuration_utils.ALL_CACHE_IMPLEMENTATIONS.append("ipex_paged") if new_kwargs.get("generation_config", None): - new_kwargs["generation_config"].cache_implementation = "paged" + new_kwargs["generation_config"].cache_implementation = "ipex_paged" if self._add_patch and new_kwargs.get("assistant_model", None): transformers.generation.utils._crop_past_key_values = _ipex_crop_past_key_values diff --git a/setup.py b/setup.py index b6a31593ec..ecdeb08369 100644 --- a/setup.py +++ b/setup.py @@ -64,7 +64,7 @@ "nncf": ["nncf>=2.11.0"], "openvino": ["nncf>=2.11.0", "openvino==2024.5.0", "openvino-tokenizers==2024.5.0"], "neural-compressor": ["neural-compressor[pt]>3.0", "accelerate", "transformers<4.46"], - "ipex": ["intel-extension-for-pytorch", "transformers>=4.39,<4.47"], + "ipex": ["intel-extension-for-pytorch>=2.4", "transformers>4.45,<4.47"], "diffusers": ["diffusers"], "quality": QUALITY_REQUIRE, "tests": TESTS_REQUIRE, diff --git a/tests/neural_compressor/test_ipex.py b/tests/neural_compressor/test_ipex.py index 0ab6fbf3cf..2a230f23dd 100644 --- a/tests/neural_compressor/test_ipex.py +++ b/tests/neural_compressor/test_ipex.py @@ -17,7 +17,6 @@ import os import tempfile -import unittest from neural_compressor.config import PostTrainingQuantConfig @@ -53,7 +52,7 @@ class IPEXQuantizationTest(INCTestMixin): SUPPORTED_ARCHITECTURES_WITH_EXPECTED_QUANTIZED_MATMULS = (("text-classification", "bert", 21),) @parameterized.expand(SUPPORTED_ARCHITECTURES_WITH_EXPECTED_QUANTIZED_MATMULS) - def test_ipex_static_quantization_with_smoothquant(self, task, model_arch, expected_quantized_matmuls): + def test_static_quantization_with_smoothquant(self, task, model_arch, expected_quantized_matmuls): recipes = {"smooth_quant": True, "smooth_quant_args": {"alpha": 0.5}} num_samples = 10 model_name = MODEL_NAMES[model_arch] From bcce6b0443bad1da9da9eefca5d92ba6318d729c Mon Sep 17 00:00:00 2001 From: jiqing-feng Date: Tue, 26 Nov 2024 16:37:51 +0800 Subject: [PATCH 23/29] Simplify IPEXModel (#1032) * simplify forward and save pretrained since no jit support * fix format * rm warmup because no jit mode anymore * simplify forward for causal lm model * fix paged pkv forward * disable use_cache when just run forward --------- Signed-off-by: jiqing-feng --- optimum/intel/ipex/modeling_base.py | 189 ++-------------------------- tests/ipex/test_modeling.py | 13 +- 2 files changed, 15 insertions(+), 187 deletions(-) diff --git a/optimum/intel/ipex/modeling_base.py b/optimum/intel/ipex/modeling_base.py index 19971dacf8..139c4cba51 100644 --- a/optimum/intel/ipex/modeling_base.py +++ b/optimum/intel/ipex/modeling_base.py @@ -16,7 +16,6 @@ import copy import inspect import logging -import os import warnings from pathlib import Path from tempfile import TemporaryDirectory @@ -41,26 +40,20 @@ ) from transformers.dynamic_module_utils import get_class_from_dynamic_module from transformers.generation.candidate_generator import _crop_past_key_values -from transformers.modeling_outputs import CausalLMOutputWithPast, ModelOutput +from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.models.auto.auto_factory import _get_model_class as get_model_class -from transformers.utils import WEIGHTS_NAME from optimum.exporters import TasksManager -from optimum.exporters.tasks import make_backend_config_constructor_for_task from optimum.modeling_base import OptimizedModel from optimum.utils import NormalizedConfigManager from ...exporters.ipex.cache_utils import IPEXPagedCache -from ...exporters.ipex.model_config import ipex_onnx_config from ...exporters.ipex.model_patcher import ( _IPEX_EXPORTED_GENERATION_TASKS, _IPEX_MINIMUM_VERSION_FOR_PATCHING, _patch_model, ) -from ..generation.modeling import get_float_type -from ..utils.constant import _TASK_ALIASES from ..utils.import_utils import is_ipex_version, is_transformers_version -from ..utils.modeling_utils import recursive_to_device logger = logging.getLogger(__name__) @@ -78,38 +71,6 @@ def _is_patched_with_ipex(model, task, use_cache: bool = True): return model.config.model_type in _IPEX_SUPPORT_MODEL_TYPES -def _prepare_inputs_for_ipex_model(model, task, use_cache): - task = _TASK_ALIASES.get(task, task) - signature = inspect.signature(model.forward) if hasattr(model, "forward") else inspect.signature(model.__call__) - if _is_patched_with_ipex(model, task, use_cache) and model.config.model_type in ipex_onnx_config: - onnx_config_class = make_backend_config_constructor_for_task( - ipex_onnx_config[model.config.model_type], task=task - ) - else: - onnx_config_class = TasksManager.get_exporter_config_constructor(model=model, exporter="onnx", task=task) - float_dtype = get_float_type(model.dtype) - if "text-generation" in task: - onnx_config = onnx_config_class( - model.config, use_past=use_cache, use_past_in_inputs=use_cache, float_dtype=float_dtype - ) - else: - onnx_config = onnx_config_class(model.config) - - dummy_inputs = onnx_config.generate_dummy_inputs(framework="pt") - - # Check attention_mask shape - if _is_patched_with_ipex(model, task, use_cache) and model.config.model_type in ipex_onnx_config: - past_len = dummy_inputs["past_key_values"][0][0].shape[-2] - input_len = dummy_inputs["input_ids"].shape[-1] - attention_len = dummy_inputs["attention_mask"].shape[-1] - if attention_len != input_len + past_len: - dummy_inputs["attention_mask"] = torch.ones([dummy_inputs["input_ids"].shape[0], input_len + past_len]).to( - dummy_inputs["input_ids"].dtype - ) - - return {key: dummy_inputs[key] for key in signature.parameters if dummy_inputs.get(key, None) is not None} - - class IPEXModel(OptimizedModel): auto_model_class = AutoModel export_feature = "feature-extraction" @@ -123,7 +84,6 @@ def __init__( config: PretrainedConfig = None, export: bool = False, model_save_dir: Optional[Union[str, Path, TemporaryDirectory]] = None, - warmup: bool = True, **kwargs, ): config = config or model.config @@ -143,8 +103,6 @@ def __init__( AutoConfig.register(self.base_model_prefix, AutoConfig) if hasattr(self.auto_model_class, "register"): self.auto_model_class.register(AutoConfig, self.__class__) - if warmup: - self._init_warmup() @classmethod def _from_transformers(cls, *args, **kwargs): @@ -233,39 +191,10 @@ def _from_pretrained( return cls(model, config=config, export=True, **kwargs) def _save_pretrained(self, save_directory: Union[str, Path]): - if getattr(self.config, "torchscript", None): - output_path = os.path.join(save_directory, WEIGHTS_NAME) - torch.jit.save(self.model, output_path) - else: - logger.warning("The module is not a torchscript model, will be treated as a transformers model.") - self.model.save_pretrained(save_directory, safe_serialization=False) - - def forward( - self, - input_ids: torch.Tensor, - attention_mask: torch.Tensor, - token_type_ids: torch.Tensor = None, - position_ids: torch.Tensor = None, - **kwargs, - ): - inputs = { - "input_ids": input_ids, - "attention_mask": attention_mask, - } + self.model.save_pretrained(save_directory, safe_serialization=False) - if "token_type_ids" in self.input_names: - inputs["token_type_ids"] = token_type_ids - - if "position_ids" in self.input_names: - inputs["position_ids"] = position_ids - - outputs = self._call_model(**inputs) - if isinstance(outputs, dict): - model_output = ModelOutput(**outputs) - else: - model_output = ModelOutput() - model_output[self.output_name] = outputs[0] - return model_output + def forward(self, *args, **kwargs): + return self.model(*args, **kwargs) def eval(self): self.model.eval() @@ -291,28 +220,12 @@ def add_patch(self) -> bool: return self._add_patch def to(self, device: Union[torch.device, str]): - self.model.to(self.device) + self.model.to(device) return self def can_generate(self): return isinstance(self, GenerationMixin) - def _call_model(self, *args, **kwargs): - out = self.model(*args, **kwargs) - return out - - def _init_warmup(self): - # warmup, the first 2 forwards of an IPEX model include some preprocessing steps and - # the results of the compute are unpredictable - # TODO : add warmup for IPEX exported model - if not self._add_patch: - # use_cache = "past_key_values" in self.input_names - dummy_inputs = _prepare_inputs_for_ipex_model(self, self.export_feature, self.use_cache) - if self.device.type != "cpu": - dummy_inputs = recursive_to_device(value=dummy_inputs, device=self.device) - for _ in range(2): - self(**dummy_inputs) - class IPEXModelForSequenceClassification(IPEXModel): auto_model_class = AutoModelForSequenceClassification @@ -336,64 +249,16 @@ class IPEXModelForImageClassification(IPEXModel): auto_model_class = AutoModelForImageClassification export_feature = "image-classification" - def forward( - self, - pixel_values: torch.Tensor, - **kwargs, - ): - inputs = { - "pixel_values": pixel_values, - } - - outputs = self._call_model(**inputs) - return ModelOutput(**outputs) if isinstance(outputs, dict) else ModelOutput(logits=outputs[0]) - class IPEXModelForAudioClassification(IPEXModel): auto_model_class = AutoModelForAudioClassification export_feature = "audio-classification" - def forward( - self, - input_values: torch.Tensor, - attention_mask: torch.Tensor = None, - **kwargs, - ): - inputs = { - "input_values": input_values, - } - - if "attention_mask" in self.input_names: - inputs["attention_mask"] = attention_mask - - outputs = self._call_model(**inputs) - return ModelOutput(**outputs) if isinstance(outputs, dict) else ModelOutput(logits=outputs[0]) - class IPEXModelForQuestionAnswering(IPEXModel): auto_model_class = AutoModelForQuestionAnswering export_feature = "question-answering" - def forward( - self, - input_ids: torch.Tensor, - attention_mask: torch.Tensor, - token_type_ids: torch.Tensor = None, - **kwargs, - ): - inputs = { - "input_ids": input_ids, - "attention_mask": attention_mask, - } - - if "token_type_ids" in self.input_names: - inputs["token_type_ids"] = token_type_ids - - outputs = self._call_model(**inputs) - start_logits = outputs["start_logits"] if isinstance(outputs, dict) else outputs[0] - end_logits = outputs["end_logits"] if isinstance(outputs, dict) else outputs[1] - return ModelOutput(start_logits=start_logits, end_logits=end_logits) - class IPEXModelForCausalLM(IPEXModel, GenerationMixin): auto_model_class = AutoModelForCausalLM @@ -406,13 +271,9 @@ def __init__( export: bool = False, model_save_dir: Optional[Union[str, Path, TemporaryDirectory]] = None, use_cache: bool = True, - warmup: bool = True, **kwargs, ): - # Perform the initial warmup at the end of __init__ - super().__init__( - model, config, export=export, model_save_dir=model_save_dir, warmup=False, use_cache=use_cache - ) + super().__init__(model, config, export=export, model_save_dir=model_save_dir, use_cache=use_cache) self._supports_cache_class = getattr(model, "_supports_cache_class", None) self._supports_sdpa = getattr(model, "_supports_sdpa", None) @@ -442,50 +303,14 @@ def __init__( self._convert_to_standard_cache = self.model_cls._convert_to_standard_cache if hasattr(self.model_cls, "_convert_to_bloom_cache"): self._convert_to_bloom_cache = self.model_cls._convert_to_bloom_cache - if warmup: - self._init_warmup() def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.FloatTensor] = None, - past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, - position_ids: Optional[torch.FloatTensor] = None, **kwargs, ) -> CausalLMOutputWithPast: - # 1. Prepare model inputs - if attention_mask is None: - attention_mask = torch.ones_like(input_ids) - - inputs = { - "input_ids": input_ids, - "attention_mask": attention_mask, - } - - if "position_ids" in self.input_names or not self.input_names: - inputs["position_ids"] = position_ids - - if self.use_cache: - if past_key_values is None and self._add_patch: - max_length = self.config.max_length + input_ids.shape[1] - batch_size = input_ids.shape[0] - past_key_values = IPEXPagedCache( - self.config, batch_size, max_length, input_ids.device, dtype=self.dtype - ) - inputs["past_key_values"] = past_key_values - - # 2. Model forward - outputs = self._call_model(**inputs) - - # 3. Process model outputs - if isinstance(outputs, (list, tuple)): - logits = outputs[0] - past_key_values = outputs[1] if self.use_cache else None - else: - logits = outputs["logits"] - past_key_values = outputs["past_key_values"] if self.use_cache else None - - return CausalLMOutputWithPast(logits=logits, past_key_values=past_key_values) + return self.model(input_ids=input_ids, attention_mask=attention_mask, **kwargs) def _prepare_generation_config( self, generation_config: Optional[GenerationConfig], **kwargs: Dict diff --git a/tests/ipex/test_modeling.py b/tests/ipex/test_modeling.py index 866fc296be..8fe33a3b5b 100644 --- a/tests/ipex/test_modeling.py +++ b/tests/ipex/test_modeling.py @@ -223,10 +223,11 @@ def test_compare_to_transformers(self, model_arch): dtype = torch.float32 if IS_XPU: dtype = torch.float16 - ipex_model = IPEXModelForCausalLM.from_pretrained(model_id, export=True, torch_dtype=dtype) + # Test model forward do not need cache. + ipex_model = IPEXModelForCausalLM.from_pretrained(model_id, export=True, torch_dtype=dtype, use_cache=False) device = ipex_model.device self.assertIsInstance(ipex_model.config, PretrainedConfig) - self.assertTrue(ipex_model.use_cache) + self.assertFalse(ipex_model.use_cache) tokenizer = AutoTokenizer.from_pretrained(model_id) tokens = tokenizer( "This is a sample", @@ -238,18 +239,20 @@ def test_compare_to_transformers(self, model_arch): self.assertIsInstance(outputs.logits, torch.Tensor) - transformers_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype).to(device) + transformers_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, use_cache=False).to( + device + ) with torch.no_grad(): transformers_outputs = transformers_model(**tokens) # Test re-load model with tempfile.TemporaryDirectory() as tmpdirname: ipex_model.save_pretrained(tmpdirname) - loaded_model = self.IPEX_MODEL_CLASS.from_pretrained(tmpdirname, torch_dtype=dtype) + loaded_model = self.IPEX_MODEL_CLASS.from_pretrained(tmpdirname, torch_dtype=dtype, use_cache=False) loaded_model_outputs = loaded_model(**inputs) # Test init method - init_model = self.IPEX_MODEL_CLASS(transformers_model, export=True) + init_model = self.IPEX_MODEL_CLASS(transformers_model, export=True, use_cache=False) init_model_outputs = init_model(**inputs) # Compare tensor outputs From 51030e527a91d2bddbd4937f69049f4952729426 Mon Sep 17 00:00:00 2001 From: kaixuanliu Date: Wed, 27 Nov 2024 09:29:30 +0800 Subject: [PATCH 24/29] nice code (#1035) Signed-off-by: Liu, Kaixuan --- optimum/exporters/ipex/modeling_utils.py | 2 +- optimum/intel/ipex/modeling_base.py | 20 ++++++++++++-------- tests/ipex/test_modeling.py | 7 ++----- tests/ipex/test_pipelines.py | 3 +++ 4 files changed, 18 insertions(+), 14 deletions(-) diff --git a/optimum/exporters/ipex/modeling_utils.py b/optimum/exporters/ipex/modeling_utils.py index f9039fa790..c6c1e56e04 100755 --- a/optimum/exporters/ipex/modeling_utils.py +++ b/optimum/exporters/ipex/modeling_utils.py @@ -507,7 +507,7 @@ def __init__(self, module, config) -> None: super().__init__() _setattr_from_module(self, module) self.config = config - self.module_device = next(module.parameters()).device.type + self.module_device = next(module.parameters()).device self.num_groups = self.num_heads // self.num_key_value_heads self.kv_head_mapping = torch.arange( 0, self.num_key_value_heads, dtype=torch.int32, device=self.module_device diff --git a/optimum/intel/ipex/modeling_base.py b/optimum/intel/ipex/modeling_base.py index 139c4cba51..68a293ff96 100644 --- a/optimum/intel/ipex/modeling_base.py +++ b/optimum/intel/ipex/modeling_base.py @@ -13,7 +13,6 @@ # limitations under the License. -import copy import inspect import logging import warnings @@ -331,8 +330,7 @@ def prepare_inputs_for_generation(self, *args, **kwargs): return self.model.prepare_inputs_for_generation(*args, **kwargs) def generate(self, *args, **kwargs): - new_kwargs = copy.deepcopy(kwargs) - if is_ipex_version("<", "2.4.0") and self._add_patch and new_kwargs.get("assistant_model", None): + if is_ipex_version("<", "2.4.0") and self._add_patch and kwargs.get("assistant_model", None): raise ValueError( f"Assisted decoding is not supported for patched models if ipex < 2.4, support methods are {_IPEX_EXPORTED_GENERATION_METHODS}" ) @@ -343,25 +341,31 @@ def generate(self, *args, **kwargs): if is_transformers_version(">=", "4.45.0"): if "ipex_paged" not in transformers.generation.configuration_utils.ALL_CACHE_IMPLEMENTATIONS: transformers.generation.configuration_utils.ALL_CACHE_IMPLEMENTATIONS.append("ipex_paged") - if new_kwargs.get("generation_config", None): - new_kwargs["generation_config"].cache_implementation = "ipex_paged" + if kwargs.get("generation_config", None): + # Change cache implementation temporarily + orig_cache_implementation = kwargs["generation_config"].cache_implementation + kwargs["generation_config"].cache_implementation = "ipex_paged" - if self._add_patch and new_kwargs.get("assistant_model", None): + if self._add_patch and kwargs.get("assistant_model", None): transformers.generation.utils._crop_past_key_values = _ipex_crop_past_key_values elif self._add_patch: transformers.generation.candidate_generator._crop_past_key_values = _ipex_crop_past_key_values try: - result = super().generate(*args, **new_kwargs) + result = super().generate(*args, **kwargs) except Exception as e: transformers.generation.utils._crop_past_key_values = _crop_past_key_values transformers.generation.candidate_generator._crop_past_key_values = _crop_past_key_values raise e - if self._add_patch and new_kwargs.get("assistant_model", None): + if self._add_patch and kwargs.get("assistant_model", None): transformers.generation.utils._crop_past_key_values = _crop_past_key_values transformers.generation.candidate_generator._crop_past_key_values = _crop_past_key_values + # change back cache_implementation + if self._add_patch and kwargs.get("generation_config", None): + kwargs["generation_config"].cache_implementation = orig_cache_implementation + return result diff --git a/tests/ipex/test_modeling.py b/tests/ipex/test_modeling.py index 8fe33a3b5b..77a43f5340 100644 --- a/tests/ipex/test_modeling.py +++ b/tests/ipex/test_modeling.py @@ -49,6 +49,7 @@ SEED = 42 +torch.use_deterministic_algorithms(True) class Timer(object): @@ -104,7 +105,7 @@ def test_compare_to_transformers(self, model_arch): # Compare tensor outputs for output_name in {"logits", "last_hidden_state"}: if output_name in transformers_outputs: - self.assertTrue(torch.allclose(outputs[output_name], transformers_outputs[output_name], atol=1e-4)) + self.assertTrue(torch.allclose(outputs[output_name], transformers_outputs[output_name], atol=1e-3)) self.assertTrue(torch.allclose(outputs[output_name], loaded_model_outputs[output_name])) self.assertTrue(torch.allclose(outputs[output_name], init_model_outputs[output_name])) @@ -205,10 +206,7 @@ class IPEXModelForCausalLMTest(unittest.TestCase): "gpt_neo", "gpt_neox", "mistral", - # "llama", "llama2", - # "phi", - # "distilgpt2", "mpt", "opt", ) @@ -431,7 +429,6 @@ class IPEXModelForImageClassificationIntegrationTest(unittest.TestCase): IPEX_MODEL_CLASS = IPEXModelForImageClassification SUPPORTED_ARCHITECTURES = ( "beit", - # "levit", "mobilenet_v1", "mobilenet_v2", "mobilevit", diff --git a/tests/ipex/test_pipelines.py b/tests/ipex/test_pipelines.py index 4580303469..5b203b742f 100644 --- a/tests/ipex/test_pipelines.py +++ b/tests/ipex/test_pipelines.py @@ -34,6 +34,9 @@ from optimum.intel.pipelines import pipeline as ipex_pipeline +torch.use_deterministic_algorithms(True) + + class PipelinesIntegrationTest(unittest.TestCase): COMMON_SUPPORTED_ARCHITECTURES = ( "albert", From 587837eb46d996dae774e10773d82172018677a8 Mon Sep 17 00:00:00 2001 From: kaixuanliu Date: Wed, 27 Nov 2024 09:45:26 +0800 Subject: [PATCH 25/29] Paged attn (#1036) * nice code * device type adjustment Signed-off-by: Liu, Kaixuan --- optimum/exporters/ipex/modeling_utils.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/optimum/exporters/ipex/modeling_utils.py b/optimum/exporters/ipex/modeling_utils.py index c6c1e56e04..da7a42715b 100755 --- a/optimum/exporters/ipex/modeling_utils.py +++ b/optimum/exporters/ipex/modeling_utils.py @@ -602,11 +602,11 @@ def __init__(self, module, config) -> None: self.q_slice = self.q_proj.out_features self.k_slice = self.q_slice + self.k_proj.out_features self.v_slice = self.k_slice + self.v_proj.out_features - if self.module_device == "cpu": + if self.module_device.type == "cpu": if module.o_proj.__class__.__name__ not in ["LinearAllreduce"]: self.mha_linear_add = LinearAdd(module.o_proj) - elif self.module_device == "xpu": + elif self.module_device.type == "xpu": if module.o_proj.__class__.__name__ not in ["LinearAllreduce"]: self.mha_linear_add = XPULinearAdd(module.o_proj) From 6ddf93e7d603becbbaf01728db913710d3a85705 Mon Sep 17 00:00:00 2001 From: jiqing-feng Date: Wed, 27 Nov 2024 16:51:12 +0800 Subject: [PATCH 26/29] Enable torch.compile for non-generation tasks in CPU (#1037) * enable compile for non-generation tasks * add no_grad in forward * warmup compiled model * disable compile not ready models * set system level optimize for torch.compile * fix typo * add comments * set torch minimum version for compiling Signed-off-by: jiqing-feng --- optimum/exporters/ipex/model_patcher.py | 10 +-- optimum/intel/generation/modeling.py | 2 + optimum/intel/ipex/modeling_base.py | 100 ++++++++---------------- 3 files changed, 40 insertions(+), 72 deletions(-) diff --git a/optimum/exporters/ipex/model_patcher.py b/optimum/exporters/ipex/model_patcher.py index 89cc528e08..c1074c9359 100644 --- a/optimum/exporters/ipex/model_patcher.py +++ b/optimum/exporters/ipex/model_patcher.py @@ -75,7 +75,7 @@ def patch_op(m, target_m, new_op_name, new_op): def _patch_llama_model(model): """ Patch llama model: - 1. Use IPEX Rope and Paged cache + 1. Use IPEX rope and paged cache 2. Linear fusion with (2 Linears + Silu + Mul) and (Linear + Add) """ convert_functions(model, LlamaModel, "forward", _llama_model_forward) @@ -87,9 +87,8 @@ def _patch_llama_model(model): def _patch_falcon_model(model): """ Patch falcon model: - 1. Disable SDPA so the attention mask will be compatible to ipex attention. - 2. Use IPEX Rope and paged cache - 3. Linear fusion with (Linear + Gelu) and (Linear + Add + Add) + 1. Use IPEX rope and paged cache + 2. Linear fusion with (Linear + Gelu) and (Linear + Add + Add) """ num_key_value_heads = ( model.config.num_kv_heads if (model.config.new_decoder_architecture or not model.config.multi_query) else 1 @@ -104,8 +103,7 @@ def _patch_falcon_model(model): def _patch_gpt2_model(model): """ Patch gpt2 model: - 1. Disable SDPA so the attention mask will be compatible to ipex attention. - 2. Use IAKV cache + 1. Use IPEX paged attention """ num_key_value_heads = model.config.num_attention_heads setattr(model.config, "num_key_value_heads", num_key_value_heads) diff --git a/optimum/intel/generation/modeling.py b/optimum/intel/generation/modeling.py index 22a4745f0c..a6e8a76f4f 100644 --- a/optimum/intel/generation/modeling.py +++ b/optimum/intel/generation/modeling.py @@ -373,6 +373,7 @@ def _from_pretrained( file_name: Optional[str] = WEIGHTS_NAME, local_files_only: bool = False, use_cache: bool = True, + subfolder: str = None, **kwargs, ): if use_auth_token is not None: @@ -402,6 +403,7 @@ def _from_pretrained( cache_dir=cache_dir, force_download=force_download, local_files_only=local_files_only, + subfolder=subfolder, ) model_save_dir = Path(model_cache_path).parent model = cls.load_model(model_cache_path) diff --git a/optimum/intel/ipex/modeling_base.py b/optimum/intel/ipex/modeling_base.py index 68a293ff96..4b2786cd85 100644 --- a/optimum/intel/ipex/modeling_base.py +++ b/optimum/intel/ipex/modeling_base.py @@ -15,14 +15,13 @@ import inspect import logging -import warnings +import os from pathlib import Path from tempfile import TemporaryDirectory from typing import Dict, Optional, Tuple, Union import torch import transformers -from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE from transformers import ( AutoConfig, AutoModel, @@ -42,7 +41,6 @@ from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.models.auto.auto_factory import _get_model_class as get_model_class -from optimum.exporters import TasksManager from optimum.modeling_base import OptimizedModel from optimum.utils import NormalizedConfigManager @@ -52,6 +50,7 @@ _IPEX_MINIMUM_VERSION_FOR_PATCHING, _patch_model, ) +from ..generation.modeling import TSModelForCausalLM, prepare_jit_inputs from ..utils.import_utils import is_ipex_version, is_transformers_version @@ -60,6 +59,9 @@ _IPEX_SUPPORT_MODEL_TYPES = ("llama", "bert", "vit", "falcon", "gpt2") _IPEX_EXPORTED_GENERATION_METHODS = ("sample", "greedy_search", "beam_sample", "beam_search", "assisted_generation") +_IPEX_MINIMUM_VERSION_FOR_COMPILE = "2.5.0" +# TODO: Already fixed in torch 2.6, will enable when torch upgrading to 2.6 +_COMPILE_NOT_READY_MODEL_TYPES = ("electra", "roformer", "beit") def _is_patched_with_ipex(model, task, use_cache: bool = True): @@ -103,6 +105,26 @@ def __init__( if hasattr(self.auto_model_class, "register"): self.auto_model_class.register(AutoConfig, self.__class__) + # Non-generation tasks can use torch.compile to get acceleration. + if ( + model.device.type == "cpu" + and self.export_feature not in _IPEX_EXPORTED_GENERATION_TASKS + and config.model_type not in _COMPILE_NOT_READY_MODEL_TYPES + and is_ipex_version(">=", _IPEX_MINIMUM_VERSION_FOR_COMPILE) + ): + from torch._inductor import config + + # System level optimization + torch._inductor.config.cpp_wrapper = True + os.environ["TORCHINDUCTOR_FREEZING"] = "1" + logger.info("Enable torch.compile optimization, start warm up") + self.model.forward = torch.compile(self.model.forward) + inputs = prepare_jit_inputs(model, self.export_feature, False) + with torch.no_grad(): + self.model(**inputs) + self.model(**inputs) + logger.info("Warm up end") + @classmethod def _from_transformers(cls, *args, **kwargs): return cls._from_pretrained(*args, **kwargs) @@ -112,15 +134,6 @@ def _from_pretrained( cls, model_id: Union[str, Path], config: PretrainedConfig, - use_auth_token: Optional[Union[bool, str]] = None, - token: Optional[Union[bool, str]] = None, - revision: Optional[str] = None, - force_download: bool = False, - cache_dir: Union[str, Path] = HUGGINGFACE_HUB_CACHE, - subfolder: str = "", - local_files_only: bool = False, - torch_dtype: Optional[Union[str, "torch.dtype"]] = None, - trust_remote_code: bool = False, **kwargs, ): """ @@ -132,66 +145,20 @@ def _from_pretrained( Can be either: - The model id of a pretrained model hosted inside a model repo on huggingface.co. - The path to a directory containing the model weights. - use_auth_token (Optional[Union[bool, str]], defaults to `None`): - Deprecated. Please use `token` instead. - token (Optional[Union[bool, str]], defaults to `None`): - The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated - when running `huggingface-cli login` (stored in `~/.huggingface`). - revision (`str`, *optional*): - The specific model version to use. It can be a branch name, a tag name, or a commit id. - force_download (`bool`, defaults to `False`): - Whether or not to force the (re-)download of the model weights and configuration files, overriding the - cached versions if they exist. - cache_dir (`Union[str, Path]`, *optional*): - The path to a directory in which a downloaded pretrained model configuration should be cached if the - standard cache should not be used. - subfolder (`str`, *optional*) - In case the relevant files are located inside a subfolder of the model repo either locally or on huggingface.co, you can specify the folder name here. - local_files_only (`bool`, *optional*, defaults to `False`): - Whether or not to only look at local files (i.e., do not try to download the model). - torch_dtype (`Optional[Union[str, "torch.dtype"]]`, *optional*) - float16 or bfloat16 or float32: load in a specified dtype, ignoring the model config.torch_dtype if one exists. If not specified, the model will get loaded in float32. - trust_remote_code (`bool`, *optional*) - Allows to use custom code for the modeling hosted in the model repository. This option should only be set for repositories you trust and in which you have read the code, as it will execute on your local machine arbitrary code present in the model repository. """ - if use_auth_token is not None: - warnings.warn( - "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", - FutureWarning, + if getattr(config, "torchscript", False): + logger.warning( + "IPEXModel will not support torch script model in the future, fallback to TSModelForCausalLM" ) - if token is not None: - raise ValueError( - "Both the arguments `use_auth_token` and `token` were specified, which is not supported. Please specify only `token`." - ) - token = use_auth_token - - commit_hash = kwargs.pop("_commit_hash", None) - - model_kwargs = { - "revision": revision, - "token": token, - "cache_dir": cache_dir, - "subfolder": subfolder, - "local_files_only": local_files_only, - "force_download": force_download, - } - - task = cls.export_feature - model = TasksManager.get_model_from_task( - task, - model_id, - library_name="transformers", - trust_remote_code=trust_remote_code, - torch_dtype=torch_dtype, - _commit_hash=commit_hash, - **model_kwargs, - ) - config = model.config - return cls(model, config=config, export=True, **kwargs) + return TSModelForCausalLM.from_pretrained(model_id, **kwargs) + + model = cls.auto_model_class.from_pretrained(model_id, **kwargs) + return cls(model, config=model.config, export=True, **kwargs) def _save_pretrained(self, save_directory: Union[str, Path]): self.model.save_pretrained(save_directory, safe_serialization=False) + @torch.no_grad() def forward(self, *args, **kwargs): return self.model(*args, **kwargs) @@ -303,6 +270,7 @@ def __init__( if hasattr(self.model_cls, "_convert_to_bloom_cache"): self._convert_to_bloom_cache = self.model_cls._convert_to_bloom_cache + @torch.no_grad() def forward( self, input_ids: torch.LongTensor = None, From 4737459d48a7e74b5a3e0c9a191fa4cf50c6ed09 Mon Sep 17 00:00:00 2001 From: jiqing-feng Date: Mon, 2 Dec 2024 13:01:38 +0800 Subject: [PATCH 27/29] Fix ipex upload and update readme. (#1045) * fix readme and push to hub support Signed-off-by: jiqing-feng * rm export in tests Signed-off-by: jiqing-feng * test with torch 2.5.* Signed-off-by: jiqing-feng --------- Signed-off-by: jiqing-feng --- .github/workflows/test_ipex.yml | 2 +- docs/source/ipex/inference.mdx | 6 ++--- optimum/intel/ipex/modeling_base.py | 17 +++++++------- tests/ipex/test_modeling.py | 36 ++++++++++++++--------------- tests/ipex/test_pipelines.py | 4 ++-- 5 files changed, 32 insertions(+), 33 deletions(-) diff --git a/.github/workflows/test_ipex.yml b/.github/workflows/test_ipex.yml index a8d7863827..de933e3795 100644 --- a/.github/workflows/test_ipex.yml +++ b/.github/workflows/test_ipex.yml @@ -19,7 +19,7 @@ jobs: fail-fast: false matrix: transformers-version: ["4.46.0", "4.46.3"] - torch-version: ["2.4.0", "2.5.0"] + torch-version: ["2.4.0", "2.5.*"] runs-on: ubuntu-22.04 diff --git a/docs/source/ipex/inference.mdx b/docs/source/ipex/inference.mdx index c712275e42..9b289b33bb 100644 --- a/docs/source/ipex/inference.mdx +++ b/docs/source/ipex/inference.mdx @@ -14,8 +14,8 @@ Optimum Intel can be used to load models from the [Hub](https://huggingface.co/m ## Loading -You can load your model and apply IPEX optimizations (including weight prepacking and graph mode). For supported architectures like LLaMA, BERT and ViT, further optimizations will be applied by patching the model to use custom operators. -For now, support is only enabled for CPUs and the original model will be exported via TorchScript. In the future `torch.compile` will be used and model exported via TorchScript will get deprecated. +You can load your model and apply IPEX optimizations (apply torch.compile for non-generation tasks). For supported architectures like LLaMA, BERT and ViT, further optimizations will be applied by patching the model to use custom operators. +For now, support is enabled for Intel CPU/GPU. The TorchScript is deprecated. ```diff import torch @@ -25,7 +25,7 @@ For now, support is only enabled for CPUs and the original model will be exporte model_id = "gpt2" - model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16) -+ model = IPEXModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, export=True) ++ model = IPEXModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained(model_id) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) results = pipe("He's a dreadful magician and") diff --git a/optimum/intel/ipex/modeling_base.py b/optimum/intel/ipex/modeling_base.py index 4b2786cd85..8611bddd21 100644 --- a/optimum/intel/ipex/modeling_base.py +++ b/optimum/intel/ipex/modeling_base.py @@ -50,7 +50,7 @@ _IPEX_MINIMUM_VERSION_FOR_PATCHING, _patch_model, ) -from ..generation.modeling import TSModelForCausalLM, prepare_jit_inputs +from ..generation.modeling import prepare_jit_inputs from ..utils.import_utils import is_ipex_version, is_transformers_version @@ -83,7 +83,6 @@ def __init__( self, model, config: PretrainedConfig = None, - export: bool = False, model_save_dir: Optional[Union[str, Path, TemporaryDirectory]] = None, **kwargs, ): @@ -147,17 +146,18 @@ def _from_pretrained( - The path to a directory containing the model weights. """ if getattr(config, "torchscript", False): - logger.warning( - "IPEXModel will not support torch script model in the future, fallback to TSModelForCausalLM" - ) - return TSModelForCausalLM.from_pretrained(model_id, **kwargs) + raise ValueError("IPEXModel is no longer support torchscript models.") model = cls.auto_model_class.from_pretrained(model_id, **kwargs) - return cls(model, config=model.config, export=True, **kwargs) + return cls(model, config=model.config, **kwargs) def _save_pretrained(self, save_directory: Union[str, Path]): self.model.save_pretrained(save_directory, safe_serialization=False) + def push_to_hub(self, *args, **kwargs): + kwargs["safe_serialization"] = False + return self.model.push_to_hub(*args, **kwargs) + @torch.no_grad() def forward(self, *args, **kwargs): return self.model(*args, **kwargs) @@ -234,12 +234,11 @@ def __init__( self, model, config: PretrainedConfig = None, - export: bool = False, model_save_dir: Optional[Union[str, Path, TemporaryDirectory]] = None, use_cache: bool = True, **kwargs, ): - super().__init__(model, config, export=export, model_save_dir=model_save_dir, use_cache=use_cache) + super().__init__(model, config, model_save_dir=model_save_dir, use_cache=use_cache) self._supports_cache_class = getattr(model, "_supports_cache_class", None) self._supports_sdpa = getattr(model, "_supports_sdpa", None) diff --git a/tests/ipex/test_modeling.py b/tests/ipex/test_modeling.py index 77a43f5340..4bf81b2a49 100644 --- a/tests/ipex/test_modeling.py +++ b/tests/ipex/test_modeling.py @@ -80,7 +80,7 @@ class IPEXModelTest(unittest.TestCase): def test_compare_to_transformers(self, model_arch): model_id = MODEL_NAMES[model_arch] set_seed(SEED) - ipex_model = self.IPEX_MODEL_CLASS.from_pretrained(model_id, export=True) + ipex_model = self.IPEX_MODEL_CLASS.from_pretrained(model_id) if model_arch in self.IPEX_PATCHED_SUPPORTED_ARCHITECTURES: self.assertTrue(ipex_model.add_patch) device = ipex_model.device @@ -99,7 +99,7 @@ def test_compare_to_transformers(self, model_arch): loaded_model = self.IPEX_MODEL_CLASS.from_pretrained(tmpdirname) loaded_model_outputs = loaded_model(**tokens) # Test init method - init_model = self.IPEX_MODEL_CLASS(transformers_model, export=True) + init_model = self.IPEX_MODEL_CLASS(transformers_model) init_model_outputs = init_model(**tokens) # Compare tensor outputs @@ -112,7 +112,7 @@ def test_compare_to_transformers(self, model_arch): @parameterized.expand(SUPPORTED_ARCHITECTURES) def test_pipeline(self, model_arch): model_id = MODEL_NAMES[model_arch] - model = self.IPEX_MODEL_CLASS.from_pretrained(model_id, export=True) + model = self.IPEX_MODEL_CLASS.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) pipe = pipeline(self.IPEX_MODEL_CLASS.export_feature, model=model, tokenizer=tokenizer) text = "This restaurant is awesome" @@ -147,7 +147,7 @@ class IPEXModelForQuestionAnsweringTest(unittest.TestCase): def test_compare_to_transformers(self, model_arch): model_id = MODEL_NAMES[model_arch] set_seed(SEED) - ipex_model = IPEXModelForQuestionAnswering.from_pretrained(model_id, export=True) + ipex_model = IPEXModelForQuestionAnswering.from_pretrained(model_id) device = ipex_model.device self.assertIsInstance(ipex_model.config, PretrainedConfig) transformers_model = AutoModelForQuestionAnswering.from_pretrained(model_id).to(device) @@ -165,7 +165,7 @@ def test_compare_to_transformers(self, model_arch): loaded_model_outputs = loaded_model(**tokens) # Test init method - init_model = self.IPEX_MODEL_CLASS(transformers_model, export=True) + init_model = self.IPEX_MODEL_CLASS(transformers_model) init_model_outputs = init_model(**tokens) self.assertIn("start_logits", outputs) @@ -181,7 +181,7 @@ def test_compare_to_transformers(self, model_arch): @parameterized.expand(SUPPORTED_ARCHITECTURES) def test_pipeline(self, model_arch): model_id = MODEL_NAMES[model_arch] - model = IPEXModelForQuestionAnswering.from_pretrained(model_id, export=True) + model = IPEXModelForQuestionAnswering.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) pipe = pipeline("question-answering", model=model, tokenizer=tokenizer) question = "What's my name?" @@ -222,7 +222,7 @@ def test_compare_to_transformers(self, model_arch): if IS_XPU: dtype = torch.float16 # Test model forward do not need cache. - ipex_model = IPEXModelForCausalLM.from_pretrained(model_id, export=True, torch_dtype=dtype, use_cache=False) + ipex_model = IPEXModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, use_cache=False) device = ipex_model.device self.assertIsInstance(ipex_model.config, PretrainedConfig) self.assertFalse(ipex_model.use_cache) @@ -250,7 +250,7 @@ def test_compare_to_transformers(self, model_arch): loaded_model_outputs = loaded_model(**inputs) # Test init method - init_model = self.IPEX_MODEL_CLASS(transformers_model, export=True, use_cache=False) + init_model = self.IPEX_MODEL_CLASS(transformers_model, use_cache=False) init_model_outputs = init_model(**inputs) # Compare tensor outputs @@ -266,7 +266,7 @@ def test_pipeline(self, model_arch): dtype = torch.float16 model_id = MODEL_NAMES[model_arch] tokenizer = AutoTokenizer.from_pretrained(model_id) - model = IPEXModelForCausalLM.from_pretrained(model_id, export=True, torch_dtype=dtype) + model = IPEXModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype) model.config.encoder_no_repeat_ngram_size = 0 # model.to("cpu") pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) @@ -285,7 +285,7 @@ def test_assisted_decoding(self, model_arch): if IS_XPU: dtype = torch.float16 tokenizer = AutoTokenizer.from_pretrained(model_id) - ipex_model = IPEXModelForCausalLM.from_pretrained(model_id, export=True, torch_dtype=dtype) + ipex_model = IPEXModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype) device = ipex_model.device transformers_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype).to(device) tokens = tokenizer("This is a sample input", return_tensors="pt").to(device) @@ -318,7 +318,7 @@ def test_ipex_beam_search(self, test_name, model_arch, use_cache): dtype = torch.float32 if IS_XPU: dtype = torch.float16 - model = IPEXModelForCausalLM.from_pretrained(model_id, export=True, use_cache=use_cache, torch_dtype=dtype) + model = IPEXModelForCausalLM.from_pretrained(model_id, use_cache=use_cache, torch_dtype=dtype) if use_cache and model_arch in self.IPEX_PATCHED_SUPPORTED_ARCHITECTURES: self.assertTrue(model.add_patch) device = model.device @@ -346,7 +346,7 @@ def test_ipex_beam_search(self, test_name, model_arch, use_cache): self.assertTrue(torch.equal(outputs, transformers_outputs)) def test_compare_with_and_without_past_key_values(self): - model_id = "Intel/tiny_random_llama2" + model_id = "Intel/tiny_random_llama2_ipex_model" dtype = torch.float32 if IS_XPU: dtype = torch.float16 @@ -389,7 +389,7 @@ def _generate_random_audio_data(self): @parameterized.expand(SUPPORTED_ARCHITECTURES) def test_compare_to_transformers(self, model_arch): model_id = MODEL_NAMES[model_arch] - ipex_model = self.IPEX_MODEL_CLASS.from_pretrained(model_id, export=True) + ipex_model = self.IPEX_MODEL_CLASS.from_pretrained(model_id) device = ipex_model.device self.assertIsInstance(ipex_model.config, PretrainedConfig) transformers_model = self.IPEX_MODEL_CLASS.auto_model_class.from_pretrained(model_id).to(device) @@ -406,7 +406,7 @@ def test_compare_to_transformers(self, model_arch): loaded_model_outputs = loaded_model(**inputs) # Test init method - init_model = self.IPEX_MODEL_CLASS(transformers_model, export=True) + init_model = self.IPEX_MODEL_CLASS(transformers_model) init_model_outputs = init_model(**inputs) # Compare tensor outputs @@ -417,7 +417,7 @@ def test_compare_to_transformers(self, model_arch): @parameterized.expand(SUPPORTED_ARCHITECTURES) def test_pipeline(self, model_arch): model_id = MODEL_NAMES[model_arch] - model = self.IPEX_MODEL_CLASS.from_pretrained(model_id, export=True) + model = self.IPEX_MODEL_CLASS.from_pretrained(model_id) preprocessor = AutoFeatureExtractor.from_pretrained(model_id) pipe = pipeline("audio-classification", model=model, feature_extractor=preprocessor) outputs = pipe([np.random.random(16000)]) @@ -441,7 +441,7 @@ class IPEXModelForImageClassificationIntegrationTest(unittest.TestCase): def test_compare_to_transformers(self, model_arch): model_id = MODEL_NAMES[model_arch] set_seed(SEED) - ipex_model = self.IPEX_MODEL_CLASS.from_pretrained(model_id, export=True) + ipex_model = self.IPEX_MODEL_CLASS.from_pretrained(model_id) if model_arch in self.IPEX_PATCHED_SUPPORTED_ARCHITECTURES: self.assertTrue(ipex_model.add_patch) device = ipex_model.device @@ -462,7 +462,7 @@ def test_compare_to_transformers(self, model_arch): loaded_model_outputs = loaded_model(**inputs) # Test init method - init_model = self.IPEX_MODEL_CLASS(transformers_model, export=True) + init_model = self.IPEX_MODEL_CLASS(transformers_model) init_model_outputs = init_model(**inputs) self.assertIn("logits", outputs) @@ -474,7 +474,7 @@ def test_compare_to_transformers(self, model_arch): @parameterized.expand(SUPPORTED_ARCHITECTURES) def test_pipeline(self, model_arch): model_id = MODEL_NAMES[model_arch] - model = self.IPEX_MODEL_CLASS.from_pretrained(model_id, export=True) + model = self.IPEX_MODEL_CLASS.from_pretrained(model_id) preprocessor = AutoFeatureExtractor.from_pretrained(model_id) pipe = pipeline("image-classification", model=model, feature_extractor=preprocessor) outputs = pipe("http://images.cocodataset.org/val2017/000000039769.jpg") diff --git a/tests/ipex/test_pipelines.py b/tests/ipex/test_pipelines.py index 5b203b742f..403f248f06 100644 --- a/tests/ipex/test_pipelines.py +++ b/tests/ipex/test_pipelines.py @@ -194,7 +194,7 @@ def test_image_classification_pipeline_inference(self, model_arch): @parameterized.expand(COMMON_SUPPORTED_ARCHITECTURES) def test_pipeline_load_from_ipex_model(self, model_arch): model_id = MODEL_NAMES[model_arch] - model = IPEXModelForSequenceClassification.from_pretrained(model_id, export=True) + model = IPEXModelForSequenceClassification.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) ipex_generator = ipex_pipeline("text-classification", model, tokenizer=tokenizer, accelerator="ipex") inputs = "This restaurant is awesome" @@ -206,7 +206,7 @@ def test_pipeline_load_from_ipex_model(self, model_arch): @parameterized.expand(COMMON_SUPPORTED_ARCHITECTURES) def test_pipeline_load_from_jit_model(self, model_arch): model_id = MODEL_NAMES[model_arch] - model = IPEXModelForSequenceClassification.from_pretrained(model_id, export=True) + model = IPEXModelForSequenceClassification.from_pretrained(model_id) save_dir = TemporaryDirectory().name model.save_pretrained(save_dir) tokenizer = AutoTokenizer.from_pretrained(model_id) From b84274cfbf4e27a2391efbeb3f34a77b3db10b23 Mon Sep 17 00:00:00 2001 From: jiqing-feng Date: Tue, 3 Dec 2024 15:11:58 +0800 Subject: [PATCH 28/29] Fix tests (#1047) * fix tests * fix typo * add patched tests * change forward to generate * fix tests * fix test model name --------- Signed-off-by: jiqing-feng --- docs/source/ipex/inference.mdx | 2 +- tests/ipex/test_modeling.py | 99 +++++++++++++++++++++++----------- tests/ipex/test_pipelines.py | 11 ++-- tests/ipex/utils_tests.py | 13 +++-- 4 files changed, 81 insertions(+), 44 deletions(-) diff --git a/docs/source/ipex/inference.mdx b/docs/source/ipex/inference.mdx index 9b289b33bb..54b586924d 100644 --- a/docs/source/ipex/inference.mdx +++ b/docs/source/ipex/inference.mdx @@ -15,7 +15,7 @@ Optimum Intel can be used to load models from the [Hub](https://huggingface.co/m ## Loading You can load your model and apply IPEX optimizations (apply torch.compile for non-generation tasks). For supported architectures like LLaMA, BERT and ViT, further optimizations will be applied by patching the model to use custom operators. -For now, support is enabled for Intel CPU/GPU. The TorchScript is deprecated. +For now, support is enabled for Intel CPU/GPU. Previous models converted to TorchScript will be deprecated in v1.22. ```diff import torch diff --git a/tests/ipex/test_modeling.py b/tests/ipex/test_modeling.py index 4bf81b2a49..a342fb2091 100644 --- a/tests/ipex/test_modeling.py +++ b/tests/ipex/test_modeling.py @@ -45,7 +45,7 @@ IPEXModelForTokenClassification, ) from optimum.utils.testing_utils import grid_parameters -from utils_tests import MODEL_NAMES, IS_XPU +from utils_tests import MODEL_NAMES, IS_XPU_AVAILABLE SEED = 42 @@ -191,6 +191,18 @@ def test_pipeline(self, model_arch): self.assertGreaterEqual(outputs["score"], 0.0) self.assertIsInstance(outputs["answer"], str) + def test_patched_model(self): + ipex_model = IPEXModelForQuestionAnswering.from_pretrained("Intel/tiny-random-bert_ipex_model") + transformers_model = AutoModelForQuestionAnswering.from_pretrained("hf-internal-testing/tiny-random-bert") + tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert") + inputs = "This is a sample input" + tokens = tokenizer(inputs, return_tensors="pt") + with torch.no_grad(): + transformers_outputs = transformers_model(**tokens) + outputs = ipex_model(**tokens) + self.assertTrue(torch.allclose(outputs.start_logits, transformers_outputs.start_logits, atol=1e-4)) + self.assertTrue(torch.allclose(outputs.end_logits, transformers_outputs.end_logits, atol=1e-4)) + class IPEXModelForCausalLMTest(unittest.TestCase): IPEX_MODEL_CLASS = IPEXModelForCausalLM @@ -206,7 +218,10 @@ class IPEXModelForCausalLMTest(unittest.TestCase): "gpt_neo", "gpt_neox", "mistral", + "llama", "llama2", + # "phi", + "distilgpt2", "mpt", "opt", ) @@ -218,52 +233,50 @@ class IPEXModelForCausalLMTest(unittest.TestCase): def test_compare_to_transformers(self, model_arch): model_id = MODEL_NAMES[model_arch] set_seed(SEED) - dtype = torch.float32 - if IS_XPU: - dtype = torch.float16 + dtype = torch.float16 if IS_XPU_AVAILABLE else torch.float32 # Test model forward do not need cache. - ipex_model = IPEXModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, use_cache=False) + ipex_model = IPEXModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype) device = ipex_model.device self.assertIsInstance(ipex_model.config, PretrainedConfig) - self.assertFalse(ipex_model.use_cache) tokenizer = AutoTokenizer.from_pretrained(model_id) tokens = tokenizer( "This is a sample", return_tensors="pt", return_token_type_ids=False if model_arch in ("llama", "llama2") else None, ).to(device) - inputs = ipex_model.prepare_inputs_for_generation(**tokens) - outputs = ipex_model(**inputs) + outputs = ipex_model.generate(**tokens, max_new_tokens=1, return_dict_in_generate=True, output_logits=True) - self.assertIsInstance(outputs.logits, torch.Tensor) + self.assertIsInstance(outputs.logits[0], torch.Tensor) - transformers_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, use_cache=False).to( - device - ) + transformers_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype).to(device) with torch.no_grad(): - transformers_outputs = transformers_model(**tokens) + transformers_outputs = transformers_model.generate( + **tokens, max_new_tokens=1, return_dict_in_generate=True, output_logits=True + ) # Test re-load model with tempfile.TemporaryDirectory() as tmpdirname: ipex_model.save_pretrained(tmpdirname) - loaded_model = self.IPEX_MODEL_CLASS.from_pretrained(tmpdirname, torch_dtype=dtype, use_cache=False) - loaded_model_outputs = loaded_model(**inputs) + loaded_model = self.IPEX_MODEL_CLASS.from_pretrained(tmpdirname, torch_dtype=dtype) + loaded_model_outputs = loaded_model.generate( + **tokens, max_new_tokens=1, return_dict_in_generate=True, output_logits=True + ) # Test init method - init_model = self.IPEX_MODEL_CLASS(transformers_model, use_cache=False) - init_model_outputs = init_model(**inputs) + init_model = self.IPEX_MODEL_CLASS(transformers_model) + init_model_outputs = init_model.generate( + **tokens, max_new_tokens=1, return_dict_in_generate=True, output_logits=True + ) # Compare tensor outputs - self.assertTrue(torch.allclose(outputs.logits, transformers_outputs.logits, atol=1e-4)) + self.assertTrue(torch.allclose(outputs.logits[0], transformers_outputs.logits[0], atol=1e-4)) # To avoid float pointing error - self.assertTrue(torch.allclose(outputs.logits, loaded_model_outputs.logits, atol=1e-7)) - self.assertTrue(torch.allclose(outputs.logits, init_model_outputs.logits, atol=1e-7)) + self.assertTrue(torch.allclose(outputs.logits[0], loaded_model_outputs.logits[0], atol=1e-7)) + self.assertTrue(torch.allclose(outputs.logits[0], init_model_outputs.logits[0], atol=1e-7)) @parameterized.expand(SUPPORTED_ARCHITECTURES) def test_pipeline(self, model_arch): - dtype = torch.float32 - if IS_XPU: - dtype = torch.float16 + dtype = torch.float16 if IS_XPU_AVAILABLE else torch.float32 model_id = MODEL_NAMES[model_arch] tokenizer = AutoTokenizer.from_pretrained(model_id) model = IPEXModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype) @@ -281,9 +294,7 @@ def test_assisted_decoding(self, model_arch): if model_arch in self.IPEX_PATCHED_SUPPORTED_ARCHITECTURES: return model_id = MODEL_NAMES[model_arch] - dtype = torch.float32 - if IS_XPU: - dtype = torch.float16 + dtype = torch.float16 if IS_XPU_AVAILABLE else torch.float32 tokenizer = AutoTokenizer.from_pretrained(model_id) ipex_model = IPEXModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype) device = ipex_model.device @@ -315,9 +326,7 @@ def test_assisted_decoding(self, model_arch): def test_ipex_beam_search(self, test_name, model_arch, use_cache): model_id = MODEL_NAMES[model_arch] set_seed(SEED) - dtype = torch.float32 - if IS_XPU: - dtype = torch.float16 + dtype = torch.float16 if IS_XPU_AVAILABLE else torch.float32 model = IPEXModelForCausalLM.from_pretrained(model_id, use_cache=use_cache, torch_dtype=dtype) if use_cache and model_arch in self.IPEX_PATCHED_SUPPORTED_ARCHITECTURES: self.assertTrue(model.add_patch) @@ -347,9 +356,7 @@ def test_ipex_beam_search(self, test_name, model_arch, use_cache): def test_compare_with_and_without_past_key_values(self): model_id = "Intel/tiny_random_llama2_ipex_model" - dtype = torch.float32 - if IS_XPU: - dtype = torch.float16 + dtype = torch.float16 if IS_XPU_AVAILABLE else torch.float32 model_with_pkv = IPEXModelForCausalLM.from_pretrained(model_id, use_cache=True, torch_dtype=dtype) device = model_with_pkv.device tokenizer = AutoTokenizer.from_pretrained(model_id) @@ -371,6 +378,22 @@ def test_compare_with_and_without_past_key_values(self): self.assertEqual(outputs_model_with_pkv.shape[1], self.GENERATION_LENGTH + tokens.input_ids.shape[1]) self.assertEqual(outputs_model_without_pkv.shape[1], self.GENERATION_LENGTH + tokens.input_ids.shape[1]) + @parameterized.expand(IPEX_PATCHED_SUPPORTED_ARCHITECTURES) + def test_patched_model(self, model_arch): + model_id = MODEL_NAMES[model_arch] + patched_model_id = MODEL_NAMES["patched_" + model_arch] + ipex_model = IPEXModelForCausalLM.from_pretrained(model_id, export=True) + exported_model = IPEXModelForCausalLM.from_pretrained(patched_model_id) + tokenizer = AutoTokenizer.from_pretrained(model_id) + tokens = tokenizer("This is a sample", return_tensors="pt") + ipex_outputs = ipex_model.generate( + **tokens, max_new_tokens=1, return_dict_in_generate=True, output_logits=True + ) + exported_outputs = exported_model.generate( + **tokens, max_new_tokens=1, return_dict_in_generate=True, output_logits=True + ) + self.assertTrue(torch.allclose(ipex_outputs.logits[0], exported_outputs.logits[0], atol=1e-7)) + class IPEXModelForAudioClassificationTest(unittest.TestCase): IPEX_MODEL_CLASS = IPEXModelForAudioClassification @@ -481,3 +504,15 @@ def test_pipeline(self, model_arch): self.assertEqual(pipe.device, model.device) self.assertGreaterEqual(outputs[0]["score"], 0.0) self.assertTrue(isinstance(outputs[0]["label"], str)) + + def test_patched_model(self): + ipex_model = IPEXModelForImageClassification.from_pretrained("Intel/tiny-random-vit_ipex_model") + transformers_model = self.IPEX_MODEL_CLASS.from_pretrained("hf-internal-testing/tiny-random-vit") + preprocessor = AutoFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-vit") + url = "http://images.cocodataset.org/val2017/000000039769.jpg" + image = Image.open(requests.get(url, stream=True).raw) + inputs = preprocessor(images=image, return_tensors="pt") + with torch.no_grad(): + transformers_outputs = transformers_model(**inputs) + outputs = ipex_model(**inputs) + self.assertTrue(torch.allclose(outputs.logits, transformers_outputs.logits, atol=1e-4)) diff --git a/tests/ipex/test_pipelines.py b/tests/ipex/test_pipelines.py index 403f248f06..77790e19f4 100644 --- a/tests/ipex/test_pipelines.py +++ b/tests/ipex/test_pipelines.py @@ -20,7 +20,7 @@ from parameterized import parameterized from transformers import AutoTokenizer from transformers.pipelines import pipeline as transformers_pipeline -from utils_tests import IS_XPU, MODEL_NAMES +from utils_tests import IS_XPU_AVAILABLE, MODEL_NAMES from optimum.intel.ipex.modeling_base import ( IPEXModelForAudioClassification, @@ -59,6 +59,7 @@ class PipelinesIntegrationTest(unittest.TestCase): "gpt2", "gpt_neo", "gpt_neox", + "llama", "llama2", "mistral", "mpt", @@ -132,16 +133,14 @@ def test_fill_mask_pipeline_inference(self, model_arch): @parameterized.expand(TEXT_GENERATION_SUPPORTED_ARCHITECTURES) def test_text_generation_pipeline_inference(self, model_arch): model_id = MODEL_NAMES[model_arch] - dtype = torch.float32 - if IS_XPU: - dtype = torch.float16 + dtype = torch.float16 if IS_XPU_AVAILABLE else torch.float32 transformers_generator = transformers_pipeline("text-generation", model_id, torch_dtype=dtype) ipex_generator = ipex_pipeline("text-generation", model_id, accelerator="ipex", torch_dtype=dtype) inputs = "Describe a real-world application of AI." with torch.inference_mode(): - transformers_output = transformers_generator(inputs, max_new_tokens=10) + transformers_output = transformers_generator(inputs, do_sample=False, max_new_tokens=10) with torch.inference_mode(): - ipex_output = ipex_generator(inputs, max_new_tokens=10) + ipex_output = ipex_generator(inputs, do_sample=False, max_new_tokens=10) self.assertTrue(isinstance(ipex_generator.model, IPEXModelForCausalLM)) self.assertEqual(transformers_output[0]["generated_text"], ipex_output[0]["generated_text"]) diff --git a/tests/ipex/utils_tests.py b/tests/ipex/utils_tests.py index a16f91dc04..e92ef37fd6 100644 --- a/tests/ipex/utils_tests.py +++ b/tests/ipex/utils_tests.py @@ -14,7 +14,7 @@ from transformers import is_torch_xpu_available -IS_XPU = is_torch_xpu_available(check_device=True) +IS_XPU_AVAILABLE = is_torch_xpu_available(check_device=True) MODEL_NAMES = { "albert": "hf-internal-testing/tiny-random-albert", @@ -28,18 +28,18 @@ "codegen": "hf-internal-testing/tiny-random-CodeGenForCausalLM", "convnext": "hf-internal-testing/tiny-random-convnext", "distilbert": "hf-internal-testing/tiny-random-distilbert", - "distilgpt2": "Jiqing/tiny_random_distilgpt2", + "distilgpt2": "Intel/tiny-random-distilgpt2", "electra": "hf-internal-testing/tiny-random-electra", "flaubert": "hf-internal-testing/tiny-random-flaubert", - "falcon": "Intel/tiny_random_falcon", + "falcon": "Intel/tiny-random-falcon", "gpt_bigcode": "hf-internal-testing/tiny-random-GPTBigCodeModel", - "gpt2": "Intel/tiny_random_gpt2", + "gpt2": "Intel/tiny-random-gpt2", "gpt_neo": "hf-internal-testing/tiny-random-GPTNeoModel", "gpt_neox": "hf-internal-testing/tiny-random-GPTNeoXForCausalLM", "gptj": "hf-internal-testing/tiny-random-GPTJModel", "levit": "hf-internal-testing/tiny-random-LevitModel", "llama": "fxmarty/tiny-llama-fast-tokenizer", - "llama2": "Intel/tiny_random_llama2", + "llama2": "Intel/tiny-random-llama2", "marian": "sshleifer/tiny-marian-en-de", "mbart": "hf-internal-testing/tiny-random-mbart", "mistral": "echarlaix/tiny-random-mistral", @@ -59,4 +59,7 @@ "vit": "hf-internal-testing/tiny-random-vit", "wav2vec2": "anton-l/wav2vec2-random-tiny-classifier", "xlm": "hf-internal-testing/tiny-random-xlm", + "patched_falcon": "Intel/tiny-random-falcon_ipex_model", + "patched_gpt2": "Intel/tiny-random-gpt2_ipex_model", + "patched_llama2": "Intel/tiny-random-llama2_ipex_model", } From d8251d169b0aaa2e2ec5e6818a19616ed29d8ce7 Mon Sep 17 00:00:00 2001 From: jiqing-feng Date: Thu, 5 Dec 2024 10:44:31 +0800 Subject: [PATCH 29/29] Patch gpt2 block forward for passing input_lens. (#1050) * fix forward without pkv * patch gpt2 block forward * fix typo * revert causal lm tests Signed-off-by: jiqing-feng --- optimum/exporters/ipex/model_patcher.py | 4 +- optimum/exporters/ipex/modeling_utils.py | 75 ++++++++++++++++++++++-- tests/ipex/test_modeling.py | 28 ++++----- 3 files changed, 84 insertions(+), 23 deletions(-) diff --git a/optimum/exporters/ipex/model_patcher.py b/optimum/exporters/ipex/model_patcher.py index c1074c9359..03937754a6 100644 --- a/optimum/exporters/ipex/model_patcher.py +++ b/optimum/exporters/ipex/model_patcher.py @@ -14,7 +14,7 @@ from transformers.models.bert.modeling_bert import BertIntermediate from transformers.models.falcon.modeling_falcon import FalconDecoderLayer, FalconModel -from transformers.models.gpt2.modeling_gpt2 import GPT2Attention, GPT2Model +from transformers.models.gpt2.modeling_gpt2 import GPT2Attention, GPT2Block, GPT2Model from transformers.models.llama.modeling_llama import ( LlamaDecoderLayer, LlamaModel, @@ -28,6 +28,7 @@ from .modeling_utils import ( _IPEX_MINIMUM_VERSION_FOR_PATCHING, _falcon_model_forward, + _gpt2_block_forward, _gpt2_model_forward, _ipex_rms_layer_norm_forward, _IPEXFalconDecoderLayer, @@ -108,6 +109,7 @@ def _patch_gpt2_model(model): num_key_value_heads = model.config.num_attention_heads setattr(model.config, "num_key_value_heads", num_key_value_heads) convert_functions(model, GPT2Model, "forward", _gpt2_model_forward) + convert_functions(model, GPT2Block, "forward", _gpt2_block_forward) convert_class(model, GPT2Attention, _IPEXGPT2Attention, model.config) return model diff --git a/optimum/exporters/ipex/modeling_utils.py b/optimum/exporters/ipex/modeling_utils.py index da7a42715b..ccd98ce2e9 100755 --- a/optimum/exporters/ipex/modeling_utils.py +++ b/optimum/exporters/ipex/modeling_utils.py @@ -208,7 +208,6 @@ def _llama_model_forward( hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) input_lens = attention_mask.cumsum(-1)[:, -1].to(torch.int32) - setattr(past_key_values, "input_lens", input_lens) for idx, decoder_layer in enumerate(self.layers): if output_hidden_states: @@ -222,6 +221,7 @@ def _llama_model_forward( output_attentions=output_attentions, use_cache=use_cache, position_embeddings=position_embeddings, + input_lens=input_lens, ) hidden_states = layer_outputs[0] @@ -322,7 +322,6 @@ def _falcon_model_forward( else: hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) input_lens = attention_mask.cumsum(-1)[:, -1].to(torch.int32) - setattr(past_key_values, "input_lens", input_lens) next_decoder_cache = None all_self_attentions = () if output_attentions else None @@ -343,6 +342,7 @@ def _falcon_model_forward( alibi=None, cache_position=cache_position, position_embeddings=position_embeddings, + input_lens=input_lens, ) hidden_states = outputs[0] @@ -445,8 +445,6 @@ def _gpt2_model_forward( hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) input_lens = attention_mask.cumsum(-1)[:, -1].to(torch.int32) - if past_key_values is not None: - setattr(past_key_values, "input_lens", input_lens) presents = None all_self_attentions = () if output_attentions else None @@ -465,6 +463,7 @@ def _gpt2_model_forward( encoder_attention_mask=encoder_attention_mask, use_cache=use_cache, output_attentions=output_attentions, + input_lens=input_lens, ) hidden_states = outputs[0] @@ -502,6 +501,72 @@ def _gpt2_model_forward( ) +# To pass input_lens, adapted from https://github.com/huggingface/transformers/blob/v4.46.3/src/transformers/models/gpt2/modeling_gpt2.py#L602 +def _gpt2_block_forward( + self, + hidden_states: Optional[Tuple[torch.FloatTensor]], + layer_past: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = False, + output_attentions: Optional[bool] = False, + **kwargs, +) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]: + residual = hidden_states + hidden_states = self.ln_1(hidden_states) + attn_outputs = self.attn( + hidden_states, + layer_past=layer_past, + attention_mask=attention_mask, + head_mask=head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + **kwargs, + ) + attn_output = attn_outputs[0] # output_attn: a, present, (attentions) + outputs = attn_outputs[1:] + # residual connection + hidden_states = attn_output + residual + + if encoder_hidden_states is not None: + # add one self-attention block for cross-attention + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with " + "cross-attention layers by setting `config.add_cross_attention=True`" + ) + residual = hidden_states + hidden_states = self.ln_cross_attn(hidden_states) + cross_attn_outputs = self.crossattention( + hidden_states, + attention_mask=attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + **kwargs, + ) + attn_output = cross_attn_outputs[0] + # residual connection + hidden_states = residual + attn_output + outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights + + residual = hidden_states + hidden_states = self.ln_2(hidden_states) + feed_forward_hidden_states = self.mlp(hidden_states) + # residual connection + hidden_states = residual + feed_forward_hidden_states + + if use_cache: + outputs = (hidden_states,) + outputs + else: + outputs = (hidden_states,) + outputs[1:] + + return outputs # hidden_states, present, (attentions, cross_attentions) + + class _IPEXAttention(nn.Module): def __init__(self, module, config) -> None: super().__init__() @@ -535,7 +600,7 @@ def forward( ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: if past_key_value is None and kwargs.get("layer_past", None) is not None: past_key_value = kwargs.pop("layer_past", None) - input_lens = getattr(past_key_value, "input_lens", None) + input_lens = kwargs.pop("input_lens", None) past_len = 0 if past_key_value is not None: past_len = past_key_value.get_seq_length() diff --git a/tests/ipex/test_modeling.py b/tests/ipex/test_modeling.py index a342fb2091..7f1104d7f7 100644 --- a/tests/ipex/test_modeling.py +++ b/tests/ipex/test_modeling.py @@ -236,43 +236,37 @@ def test_compare_to_transformers(self, model_arch): dtype = torch.float16 if IS_XPU_AVAILABLE else torch.float32 # Test model forward do not need cache. ipex_model = IPEXModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype) - device = ipex_model.device self.assertIsInstance(ipex_model.config, PretrainedConfig) tokenizer = AutoTokenizer.from_pretrained(model_id) tokens = tokenizer( "This is a sample", return_tensors="pt", return_token_type_ids=False if model_arch in ("llama", "llama2") else None, - ).to(device) - outputs = ipex_model.generate(**tokens, max_new_tokens=1, return_dict_in_generate=True, output_logits=True) + ) + inputs = ipex_model.prepare_inputs_for_generation(**tokens) + outputs = ipex_model(**inputs) - self.assertIsInstance(outputs.logits[0], torch.Tensor) + self.assertIsInstance(outputs.logits, torch.Tensor) - transformers_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype).to(device) + transformers_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype) with torch.no_grad(): - transformers_outputs = transformers_model.generate( - **tokens, max_new_tokens=1, return_dict_in_generate=True, output_logits=True - ) + transformers_outputs = transformers_model(**tokens) # Test re-load model with tempfile.TemporaryDirectory() as tmpdirname: ipex_model.save_pretrained(tmpdirname) loaded_model = self.IPEX_MODEL_CLASS.from_pretrained(tmpdirname, torch_dtype=dtype) - loaded_model_outputs = loaded_model.generate( - **tokens, max_new_tokens=1, return_dict_in_generate=True, output_logits=True - ) + loaded_model_outputs = loaded_model(**inputs) # Test init method init_model = self.IPEX_MODEL_CLASS(transformers_model) - init_model_outputs = init_model.generate( - **tokens, max_new_tokens=1, return_dict_in_generate=True, output_logits=True - ) + init_model_outputs = init_model(**inputs) # Compare tensor outputs - self.assertTrue(torch.allclose(outputs.logits[0], transformers_outputs.logits[0], atol=1e-4)) + self.assertTrue(torch.allclose(outputs.logits, transformers_outputs.logits, atol=1e-4)) # To avoid float pointing error - self.assertTrue(torch.allclose(outputs.logits[0], loaded_model_outputs.logits[0], atol=1e-7)) - self.assertTrue(torch.allclose(outputs.logits[0], init_model_outputs.logits[0], atol=1e-7)) + self.assertTrue(torch.allclose(outputs.logits, loaded_model_outputs.logits, atol=1e-7)) + self.assertTrue(torch.allclose(outputs.logits, init_model_outputs.logits, atol=1e-7)) @parameterized.expand(SUPPORTED_ARCHITECTURES) def test_pipeline(self, model_arch):