Skip to content

TypeError: unsupported operand type(s) for *: 'Parameter' and 'NoneType' #1721

@misonsky

Description

@misonsky

System Info

Adalora

def update_ipt(self, model):
    # Update the sensitivity and uncertainty for every weight
    for n, p in model.named_parameters():
        if "lora_" in n and self.adapter_name in n:
            if n not in self.ipt:
                self.ipt[n] = torch.zeros_like(p)
                self.exp_avg_ipt[n] = torch.zeros_like(p)
                self.exp_avg_unc[n] = torch.zeros_like(p)
            with torch.no_grad():
                self.ipt[n] = (p * p.grad).abs().detach()
                # Sensitivity smoothing
                self.exp_avg_ipt[n] = self.beta1 * self.exp_avg_ipt[n] + (1 - self.beta1) * self.ipt[n]
                # Uncertainty quantification
                self.exp_avg_unc[n] = (
                    self.beta2 * self.exp_avg_unc[n] + (1 - self.beta2) * (self.ipt[n] - self.exp_avg_ipt[n]).abs()
                )

When using adalora peft, the classification header layer includes:

base_model.model.classifier.original_module.dense.base_layer.weight
base_model.model.classifier.original_module.dense.base_layer.bias
base_model.model.classifier.original_module.dense.lora_A.default
base_model.model.classifier.original_module.dense.lora_B.default
base_model.model.classifier.original_module.dense.lora_E.default
base_model.model.classifier.original_module.dense.ranknum.default
base_model.model.classifier.original_module.out_proj.weight
base_model.model.classifier.original_module.out_proj.bias
base_model.model.classifier.modules_to_save.default.dense.base_layer.weight
base_model.model.classifier.modules_to_save.default.dense.base_layer.bias
base_model.model.classifier.modules_to_save.default.dense.lora_A.default
base_model.model.classifier.modules_to_save.default.dense.lora_B.default
base_model.model.classifier.modules_to_save.default.dense.lora_E.default
base_model.model.classifier.modules_to_save.default.dense.ranknum.default
base_model.model.classifier.modules_to_save.default.out_proj.weight
base_model.model.classifier.modules_to_save.default.out_proj.bias

But for layers

base_model.model.classifier.original_module.dense.lora_A.default
base_model.model.classifier.original_module.dense.lora_B.default
base_model.model.classifier.original_module.dense.lora_E.default

after checking, there is no gradient. In other words, the requires_grad attribute is False, but the inclulde "lora_" string. I think gradient checking should be added to the update_ipt function.

This error occurs when calling model.update_and_allocate(global_step).

Who can help?

No response

Information

  • The official example scripts
  • My own modified scripts

Tasks

  • An officially supported task in the examples folder
  • My own task or dataset (give details below)

Reproduction

This error occurs when calling model.update_and_allocate(global_step).

the config is:

peft_config = AdaLoraConfig(
            peft_type="ADALORA", 
            task_type="SEQ_CLS", 
            r=rank, 
            lora_alpha=32, 
            lora_dropout=0.01)

the model is RoBERTa.

Expected behavior

I think gradient checking should be added to the update_ipt function.

def update_ipt(self, model):
    # Update the sensitivity and uncertainty for every weight
    for n, p in model.named_parameters():
        if not p.requires_grad: continue
        if "lora_" in n and self.adapter_name in n:
            if n not in self.ipt:
                self.ipt[n] = torch.zeros_like(p)
                self.exp_avg_ipt[n] = torch.zeros_like(p)
                self.exp_avg_unc[n] = torch.zeros_like(p)
            with torch.no_grad():
                self.ipt[n] = (p * p.grad).abs().detach()
                # Sensitivity smoothing
                self.exp_avg_ipt[n] = self.beta1 * self.exp_avg_ipt[n] + (1 - self.beta1) * self.ipt[n]
                # Uncertainty quantification
                self.exp_avg_unc[n] = (
                    self.beta2 * self.exp_avg_unc[n] + (1 - self.beta2) * (self.ipt[n] - self.exp_avg_ipt[n]).abs()
                )

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions