-
Notifications
You must be signed in to change notification settings - Fork 27.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Create model cards for indonesian models (#6522)
* added model cards for indonesian gpt2-small, bert-base and roberta-base models * removed bibtex entries
- Loading branch information
1 parent
48c6c61
commit 72911c8
Showing
3 changed files
with
195 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
--- | ||
language: "id" | ||
license: "mit" | ||
datasets: | ||
- Indonesian Wikipedia | ||
widget: | ||
- text: "Ibu ku sedang bekerja [MASK] supermarket." | ||
--- | ||
|
||
# Indonesian BERT base model (uncased) | ||
|
||
## Model description | ||
It is BERT-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This | ||
model is uncased: it does not make a difference between indonesia and Indonesia. | ||
|
||
This is one of several other language models that have been pre-trained with indonesian datasets. More detail about | ||
its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers) | ||
|
||
## Intended uses & limitations | ||
|
||
### How to use | ||
You can use this model directly with a pipeline for masked language modeling: | ||
```python | ||
>>> from transformers import pipeline | ||
>>> unmasker = pipeline('fill-mask', model='cahya/bert-base-indonesian-522M') | ||
>>> unmasker("Ibu ku sedang bekerja [MASK] supermarket") | ||
|
||
[{'sequence': '[CLS] ibu ku sedang bekerja di supermarket [SEP]', | ||
'score': 0.7983310222625732, | ||
'token': 1495}, | ||
{'sequence': '[CLS] ibu ku sedang bekerja. supermarket [SEP]', | ||
'score': 0.090003103017807, | ||
'token': 17}, | ||
{'sequence': '[CLS] ibu ku sedang bekerja sebagai supermarket [SEP]', | ||
'score': 0.025469014421105385, | ||
'token': 1600}, | ||
{'sequence': '[CLS] ibu ku sedang bekerja dengan supermarket [SEP]', | ||
'score': 0.017966199666261673, | ||
'token': 1555}, | ||
{'sequence': '[CLS] ibu ku sedang bekerja untuk supermarket [SEP]', | ||
'score': 0.016971781849861145, | ||
'token': 1572}] | ||
``` | ||
Here is how to use this model to get the features of a given text in PyTorch: | ||
```python | ||
from transformers import BertTokenizer, BertModel | ||
|
||
model_name='cahya/bert-base-indonesian-522M' | ||
tokenizer = BertTokenizer.from_pretrained(model_name) | ||
model = BertModel.from_pretrained(model_name) | ||
text = "Silakan diganti dengan text apa saja." | ||
encoded_input = tokenizer(text, return_tensors='pt') | ||
output = model(**encoded_input) | ||
``` | ||
and in Tensorflow: | ||
```python | ||
from transformers import BertTokenizer, TFBertModel | ||
|
||
model_name='cahya/bert-base-indonesian-522M' | ||
tokenizer = BertTokenizer.from_pretrained(model_name) | ||
model = TFBertModel.from_pretrained(model_name) | ||
text = "Silakan diganti dengan text apa saja." | ||
encoded_input = tokenizer(text, return_tensors='tf') | ||
output = model(encoded_input) | ||
``` | ||
|
||
## Training data | ||
|
||
This model was pre-trained with 522MB of indonesian Wikipedia. | ||
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are | ||
then of the form: | ||
|
||
```[CLS] Sentence A [SEP] Sentence B [SEP]``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
--- | ||
language: "id" | ||
license: "mit" | ||
datasets: | ||
- Indonesian Wikipedia | ||
widget: | ||
- text: "Pulau Dewata sering dikunjungi" | ||
--- | ||
|
||
# Indonesian GPT2 small model | ||
|
||
## Model description | ||
It is GPT2-small model pre-trained with indonesian Wikipedia using a causal language modeling (CLM) objective. This | ||
model is uncased: it does not make a difference between indonesia and Indonesia. | ||
|
||
This is one of several other language models that have been pre-trained with indonesian datasets. More detail about | ||
its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers) | ||
|
||
## Intended uses & limitations | ||
|
||
### How to use | ||
You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, | ||
we set a seed for reproducibility: | ||
```python | ||
>>> from transformers import pipeline, set_seed | ||
>>> generator = pipeline('text-generation', model='cahya/gpt2-small-indonesian-522M') | ||
>>> set_seed(42) | ||
>>> generator("Kerajaan Majapahit adalah", max_length=30, num_return_sequences=5, num_beams=10) | ||
|
||
[{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini berdiri pada abad ke-14'}, | ||
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-16. Kerajaan ini berdiri pada abad ke-14'}, | ||
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini berdiri pada abad ke-15'}, | ||
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-16. Kerajaan ini berdiri pada abad ke-15'}, | ||
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini merupakan kelanjutan dari Kerajaan Majapahit yang'}] | ||
|
||
``` | ||
Here is how to use this model to get the features of a given text in PyTorch: | ||
```python | ||
from transformers import GPT2Tokenizer, GPT2Model | ||
|
||
model_name='cahya/gpt2-small-indonesian-522M' | ||
tokenizer = GPT2Tokenizer.from_pretrained(model_name) | ||
model = GPT2Model.from_pretrained(model_name) | ||
text = "Silakan diganti dengan text apa saja." | ||
encoded_input = tokenizer(text, return_tensors='pt') | ||
output = model(**encoded_input) | ||
``` | ||
and in Tensorflow: | ||
```python | ||
from transformers import GPT2Tokenizer, TFGPT2Model | ||
|
||
model_name='cahya/gpt2-small-indonesian-522M' | ||
tokenizer = GPT2Tokenizer.from_pretrained(model_name) | ||
model = TFGPT2Model.from_pretrained(model_name) | ||
text = "Silakan diganti dengan text apa saja." | ||
encoded_input = tokenizer(text, return_tensors='tf') | ||
output = model(encoded_input) | ||
``` | ||
|
||
## Training data | ||
|
||
This model was pre-trained with 522MB of indonesian Wikipedia. | ||
The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and | ||
a vocabulary size of 52,000. The inputs are sequences of 128 consecutive tokens. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
--- | ||
language: "id" | ||
license: "mit" | ||
datasets: | ||
- Indonesian Wikipedia | ||
widget: | ||
- text: "Ibu ku sedang bekerja <mask> supermarket." | ||
--- | ||
|
||
# Indonesian RoBERTa base model (uncased) | ||
|
||
## Model description | ||
It is RoBERTa-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This | ||
model is uncased: it does not make a difference between indonesia and Indonesia. | ||
|
||
This is one of several other language models that have been pre-trained with indonesian datasets. More detail about | ||
its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers) | ||
|
||
## Intended uses & limitations | ||
|
||
### How to use | ||
You can use this model directly with a pipeline for masked language modeling: | ||
```python | ||
>>> from transformers import pipeline | ||
>>> unmasker = pipeline('fill-mask', model='cahya/roberta-base-indonesian-522M') | ||
>>> unmasker("Ibu ku sedang bekerja <mask> supermarket") | ||
|
||
``` | ||
Here is how to use this model to get the features of a given text in PyTorch: | ||
```python | ||
from transformers import RobertaTokenizer, RobertaModel | ||
|
||
model_name='cahya/roberta-base-indonesian-522M' | ||
tokenizer = RobertaTokenizer.from_pretrained(model_name) | ||
model = RobertaModel.from_pretrained(model_name) | ||
text = "Silakan diganti dengan text apa saja." | ||
encoded_input = tokenizer(text, return_tensors='pt') | ||
output = model(**encoded_input) | ||
``` | ||
and in Tensorflow: | ||
```python | ||
from transformers import RobertaTokenizer, TFRobertaModel | ||
|
||
model_name='cahya/roberta-base-indonesian-522M' | ||
tokenizer = RobertaTokenizer.from_pretrained(model_name) | ||
model = TFRobertaModel.from_pretrained(model_name) | ||
text = "Silakan diganti dengan text apa saja." | ||
encoded_input = tokenizer(text, return_tensors='tf') | ||
output = model(encoded_input) | ||
``` | ||
|
||
## Training data | ||
|
||
This model was pre-trained with 522MB of indonesian Wikipedia. | ||
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are | ||
then of the form: | ||
|
||
```<s> Sentence A </s> Sentence B </s>``` |