diff --git a/docs/source/en/index.md b/docs/source/en/index.md index 3401736fa19ca2..0d24a355f76082 100644 --- a/docs/source/en/index.md +++ b/docs/source/en/index.md @@ -190,7 +190,7 @@ Flax), PyTorch, and/or TensorFlow. | [Megatron-BERT](model_doc/megatron-bert) | ✅ | ❌ | ❌ | | [Megatron-GPT2](model_doc/megatron_gpt2) | ✅ | ✅ | ✅ | | [MGP-STR](model_doc/mgp-str) | ✅ | ❌ | ❌ | -| [Mistral](model_doc/mistral) | ✅ | ❌ | ❌ | +| [Mistral](model_doc/mistral) | ✅ | ❌ | ✅ | | [Mixtral](model_doc/mixtral) | ✅ | ❌ | ❌ | | [mLUKE](model_doc/mluke) | ✅ | ❌ | ❌ | | [MMS](model_doc/mms) | ✅ | ✅ | ✅ | diff --git a/docs/source/en/model_doc/mistral.md b/docs/source/en/model_doc/mistral.md index 8e4d75ef2382c3..31b5deaf9dd63b 100644 --- a/docs/source/en/model_doc/mistral.md +++ b/docs/source/en/model_doc/mistral.md @@ -149,3 +149,13 @@ Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Sin [[autodoc]] MistralForSequenceClassification - forward + +## FlaxMistralModel + +[[autodoc]] FlaxMistralModel + - __call__ + +## FlaxMistralForCausalLM + +[[autodoc]] FlaxMistralForCausalLM + - __call__ diff --git a/src/transformers/__init__.py b/src/transformers/__init__.py index d6bd14fccd4289..cdeee7b99d2dff 100644 --- a/src/transformers/__init__.py +++ b/src/transformers/__init__.py @@ -4678,6 +4678,13 @@ "FlaxMBartPreTrainedModel", ] ) + _import_structure["models.mistral"].extend( + [ + "FlaxMistralForCausalLM", + "FlaxMistralModel", + "FlaxMistralPreTrainedModel", + ] + ) _import_structure["models.mt5"].extend(["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"]) _import_structure["models.opt"].extend( [ @@ -8830,6 +8837,11 @@ FlaxMBartModel, FlaxMBartPreTrainedModel, ) + from .models.mistral import ( + FlaxMistralForCausalLM, + FlaxMistralModel, + FlaxMistralPreTrainedModel, + ) from .models.mt5 import ( FlaxMT5EncoderModel, FlaxMT5ForConditionalGeneration, diff --git a/src/transformers/modeling_flax_pytorch_utils.py b/src/transformers/modeling_flax_pytorch_utils.py index 6c13ba9619f424..aceb462d12a8d0 100644 --- a/src/transformers/modeling_flax_pytorch_utils.py +++ b/src/transformers/modeling_flax_pytorch_utils.py @@ -255,7 +255,10 @@ def convert_pytorch_sharded_state_dict_to_flax(shard_filenames, flax_model): # load using msgpack utils weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {} pt_state_dict = torch.load(shard_file, **weights_only_kwarg) - pt_state_dict = {k: v.numpy() for k, v in pt_state_dict.items()} + weight_dtypes = {k: v.dtype for k, v in pt_state_dict.items()} + pt_state_dict = { + k: v.numpy() if v.dtype != torch.bfloat16 else v.float().numpy() for k, v in pt_state_dict.items() + } model_prefix = flax_model.base_model_prefix @@ -278,6 +281,7 @@ def convert_pytorch_sharded_state_dict_to_flax(shard_filenames, flax_model): # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): pt_tuple_key = tuple(pt_key.split(".")) + is_bfloat_16 = weight_dtypes[pt_key] == torch.bfloat16 # remove base model prefix if necessary has_base_model_prefix = pt_tuple_key[0] == model_prefix @@ -314,11 +318,15 @@ def convert_pytorch_sharded_state_dict_to_flax(shard_filenames, flax_model): continue # also add unexpected weight so that warning is thrown - flax_state_dict[("params",) + flax_key] = jnp.asarray(flax_tensor) + flax_state_dict[("params",) + flax_key] = ( + jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16) + ) else: # also add unexpected weight so that warning is thrown - flax_state_dict[flax_key] = jnp.asarray(flax_tensor) + flax_state_dict[flax_key] = ( + jnp.asarray(flax_tensor) if not is_bfloat_16 else jnp.asarray(flax_tensor, dtype=jnp.bfloat16) + ) return unflatten_dict(flax_state_dict) diff --git a/src/transformers/models/auto/modeling_flax_auto.py b/src/transformers/models/auto/modeling_flax_auto.py index bf7d87e4e2dbd4..3438e1c7bc7d9f 100644 --- a/src/transformers/models/auto/modeling_flax_auto.py +++ b/src/transformers/models/auto/modeling_flax_auto.py @@ -47,6 +47,7 @@ ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), + ("mistral", "FlaxMistralModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), @@ -148,6 +149,7 @@ ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("llama", "FlaxLlamaForCausalLM"), + ("mistral", "FlaxMistralForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), diff --git a/src/transformers/models/mistral/__init__.py b/src/transformers/models/mistral/__init__.py index 2f308031dda77d..34727d98cf05af 100644 --- a/src/transformers/models/mistral/__init__.py +++ b/src/transformers/models/mistral/__init__.py @@ -13,11 +13,7 @@ # limitations under the License. from typing import TYPE_CHECKING -from ...utils import ( - OptionalDependencyNotAvailable, - _LazyModule, - is_torch_available, -) +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _import_structure = { @@ -38,6 +34,18 @@ "MistralForSequenceClassification", ] +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_flax_mistral"] = [ + "FlaxMistralForCausalLM", + "FlaxMistralModel", + "FlaxMistralPreTrainedModel", + ] + if TYPE_CHECKING: from .configuration_mistral import MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP, MistralConfig @@ -55,6 +63,18 @@ MistralPreTrainedModel, ) + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_flax_mistral import ( + FlaxMistralForCausalLM, + FlaxMistralModel, + FlaxMistralPreTrainedModel, + ) + else: import sys diff --git a/src/transformers/models/mistral/modeling_flax_mistral.py b/src/transformers/models/mistral/modeling_flax_mistral.py new file mode 100644 index 00000000000000..3480fc7214a84a --- /dev/null +++ b/src/transformers/models/mistral/modeling_flax_mistral.py @@ -0,0 +1,741 @@ +# coding=utf-8 +# Copyright 2024 Mistral AI and the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Flax Mistral model.""" +from typing import Optional, Tuple + +import flax.linen as nn +import jax +import jax.numpy as jnp +import numpy as np +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.linen import combine_masks, make_causal_mask +from flax.linen.attention import dot_product_attention_weights +from flax.traverse_util import flatten_dict, unflatten_dict +from jax import lax + +from ...modeling_flax_outputs import ( + FlaxBaseModelOutput, + FlaxBaseModelOutputWithPast, + FlaxCausalLMOutput, + FlaxCausalLMOutputWithCrossAttentions, +) +from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, logging +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward +from .configuration_mistral import MistralConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "MistralConfig" +_REAL_CHECKPOINT_FOR_DOC = "mistralai/Mistral-7B-v0.1" +_CHECKPOINT_FOR_DOC = "ksmcg/Mistral-tiny" + +MISTRAL_START_DOCSTRING = r""" + + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a Flax Linen + [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a + regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. + + Finally, this model supports inherent JAX features such as: + + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`MistralConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. + dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): + The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16`, or + `jax.numpy.bfloat16`. + + This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If + specified all the computation will be performed with the given `dtype`. + + **Note that this only specifies the dtype of the computation and does not influence the dtype of model + parameters.** + + If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and + [`~FlaxPreTrainedModel.to_bf16`]. +""" + +MISTRAL_INPUTS_DOCSTRING = r""" + Args: + input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): + Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast + auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaRMSNorm with Llama->Mistral +class FlaxMistralRMSNorm(nn.Module): + config: MistralConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.epsilon = self.config.rms_norm_eps + self.weight = self.param("weight", lambda _, shape: jnp.ones(shape), self.config.hidden_size) + + def __call__(self, hidden_states): + variance = jnp.asarray(hidden_states, dtype=jnp.float32) + variance = jnp.power(variance, 2) + variance = variance.mean(-1, keepdims=True) + # use `jax.numpy.sqrt` as `jax.lax.rsqrt` does not match `torch.rsqrt` + hidden_states = hidden_states / jnp.sqrt(variance + self.epsilon) + + return self.weight * jnp.asarray(hidden_states, dtype=self.dtype) + + +# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaRotaryEmbedding with Llama->Mistral +class FlaxMistralRotaryEmbedding(nn.Module): + config: MistralConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + head_dim = self.config.hidden_size // self.config.num_attention_heads + self.sincos = create_sinusoidal_positions(self.config.max_position_embeddings, head_dim) + + def __call__(self, key, query, position_ids): + sincos = self.sincos[position_ids] + sin_pos, cos_pos = jnp.split(sincos, 2, axis=-1) + + key = apply_rotary_pos_emb(key, sin_pos, cos_pos) + query = apply_rotary_pos_emb(query, sin_pos, cos_pos) + + key = jnp.asarray(key, dtype=self.dtype) + query = jnp.asarray(query, dtype=self.dtype) + + return key, query + + +# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaMLP with Llama->Mistral +class FlaxMistralMLP(nn.Module): + config: MistralConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + embed_dim = self.config.hidden_size + inner_dim = self.config.intermediate_size if self.config.intermediate_size is not None else 4 * embed_dim + + kernel_init = jax.nn.initializers.normal(self.config.initializer_range) + self.act = ACT2FN[self.config.hidden_act] + + self.gate_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init) + self.down_proj = nn.Dense(embed_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init) + self.up_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init) + + def __call__(self, hidden_states): + up_proj_states = self.up_proj(hidden_states) + gate_states = self.act(self.gate_proj(hidden_states)) + + hidden_states = self.down_proj(up_proj_states * gate_states) + return hidden_states + + +# Copied from transformers.models.llama.modeling_flax_llama.apply_rotary_pos_emb +def apply_rotary_pos_emb(tensor, sin_pos, cos_pos): + return (tensor * cos_pos) + (rotate_half(tensor) * sin_pos) + + +# Copied from transformers.models.llama.modeling_flax_llama.create_sinusoidal_positions +def create_sinusoidal_positions(num_pos, dim): + inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim)) + freqs = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32") + + emb = np.concatenate((freqs, freqs), axis=-1) + out = np.concatenate((np.sin(emb)[:, None, :], np.cos(emb)[:, None, :]), axis=-1) + return jnp.array(out[:, :, :num_pos]) + + +# Copied from transformers.models.llama.modeling_flax_llama.rotate_half +def rotate_half(tensor): + """Rotates half the hidden dims of the input.""" + rotate_half_tensor = jnp.concatenate( + (-tensor[..., tensor.shape[-1] // 2 :], tensor[..., : tensor.shape[-1] // 2]), axis=-1 + ) + return rotate_half_tensor + + +class FlaxMistralAttention(nn.Module): + config: MistralConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + config = self.config + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.hidden_size // self.num_heads + self.num_key_value_heads = config.num_key_value_heads + self.num_key_value_groups = self.num_heads // self.num_key_value_heads + self.max_position_embeddings = config.max_position_embeddings + self.attention_softmax_in_fp32 = self.dtype is not jnp.float32 + self.rope_theta = config.rope_theta + if (self.head_dim * self.num_heads) != self.hidden_size: + raise ValueError( + f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" + f" and `num_heads`: {self.num_heads})." + ) + self.q_proj = nn.Dense(self.num_heads * self.head_dim, use_bias=False, dtype=self.dtype) + self.k_proj = nn.Dense(self.num_key_value_heads * self.head_dim, use_bias=False, dtype=self.dtype) + self.v_proj = nn.Dense(self.num_key_value_heads * self.head_dim, use_bias=False, dtype=self.dtype) + self.o_proj = nn.Dense(self.hidden_size, use_bias=False, dtype=self.dtype) + casual_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool") + self.causal_mask = jnp.triu(casual_mask, k=-config.sliding_window) + self.rotary_emb = FlaxMistralRotaryEmbedding(config, dtype=self.dtype) + + def _split_heads(self, hidden_states, num_heads): + return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim)) + + def _merge_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.hidden_size,)) + + @nn.compact + # Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoSelfAttention._concatenate_to_cache + def _concatenate_to_cache(self, key, value, query, attention_mask): + """ + This function takes projected key, value states from a single input token and concatenates the states to cached + states from previous steps. This function is slighly adapted from the official Flax repository: + https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 + """ + # detect if we're initializing by absence of existing cache data. + is_initialized = self.has_variable("cache", "cached_key") + cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) + cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) + cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) + + if is_initialized: + *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape + # update key, value caches with our new 1d spatial slices + cur_index = cache_index.value + indices = (0,) * len(batch_dims) + (cur_index, 0, 0) + key = lax.dynamic_update_slice(cached_key.value, key, indices) + value = lax.dynamic_update_slice(cached_value.value, value, indices) + cached_key.value = key + cached_value.value = value + num_updated_cache_vectors = query.shape[1] + cache_index.value = cache_index.value + num_updated_cache_vectors + # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. + pad_mask = jnp.broadcast_to( + jnp.arange(max_length) < cur_index + num_updated_cache_vectors, + tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), + ) + attention_mask = combine_masks(pad_mask, attention_mask) + return key, value, attention_mask + + def __call__( + self, + hidden_states: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + position_ids: Optional[jnp.ndarray] = None, + deterministic: bool = True, + output_attentions: bool = False, + init_cache: bool = False, + ) -> Tuple[jnp.ndarray, jnp.ndarray]: + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = self._split_heads(query_states, self.num_heads) + key_states = self._split_heads(key_states, self.num_key_value_heads) + value_states = self._split_heads(value_states, self.num_key_value_heads) + + key_states, query_states = self.rotary_emb(key_states, query_states, position_ids) + query_length, key_length = query_states.shape[1], key_states.shape[1] + if self.has_variable("cache", "cached_key"): + mask_shift = self.variables["cache"]["cache_index"] + max_decoder_length = self.variables["cache"]["cached_key"].shape[1] + causal_mask = lax.dynamic_slice( + self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) + ) + else: + causal_mask = self.causal_mask[:, :, :query_length, :key_length] + + batch_size = hidden_states.shape[0] + causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) + attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) + attention_mask = combine_masks(attention_mask, causal_mask) + + if self.has_variable("cache", "cached_key") or init_cache: + key_states, value_states, attention_mask = self._concatenate_to_cache( + key_states, value_states, query_states, attention_mask + ) + key_states = jnp.repeat(key_states, self.num_key_value_groups, axis=2) + value_states = jnp.repeat(value_states, self.num_key_value_groups, axis=2) + + attention_bias = lax.select( + attention_mask > 0, + jnp.full(attention_mask.shape, 0.0).astype(self.dtype), + jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), + ) + + # usual dot product attention + attention_dtype = jnp.float32 if self.attention_softmax_in_fp32 else self.dtype + attn_weights = dot_product_attention_weights( + query_states, + key_states, + bias=attention_bias, + deterministic=deterministic, + dropout_rate=self.config.attention_dropout, + dtype=attention_dtype, + ) + + if self.attention_softmax_in_fp32: + attn_weights = attn_weights.astype(self.dtype) + + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + attn_output = self._merge_heads(attn_output) + attn_output = self.o_proj(attn_output) + + outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) + return outputs + + +# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaDecoderLayer with Llama->Mistral +class FlaxMistralDecoderLayer(nn.Module): + config: MistralConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.input_layernorm = FlaxMistralRMSNorm(self.config, dtype=self.dtype) + self.self_attn = FlaxMistralAttention(self.config, dtype=self.dtype) + self.post_attention_layernorm = FlaxMistralRMSNorm(self.config, dtype=self.dtype) + self.mlp = FlaxMistralMLP(self.config, dtype=self.dtype) + + def __call__( + self, + hidden_states, + attention_mask=None, + position_ids=None, + deterministic: bool = True, + init_cache: bool = False, + output_attentions: bool = False, + ): + residual = hidden_states + hidden_states = self.input_layernorm(hidden_states) + outputs = self.self_attn( + hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + deterministic=deterministic, + init_cache=init_cache, + output_attentions=output_attentions, + ) + # residual connection + attn_output = outputs[0] + hidden_states = residual + attn_output + + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + # residual connection + hidden_states = residual + hidden_states + + return (hidden_states,) + outputs[1:] + + +# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoPreTrainedModel with GPTNeo->Mistral, GPT_NEO->MISTRAL, transformer->model +class FlaxMistralPreTrainedModel(FlaxPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = MistralConfig + base_model_prefix = "model" + module_class: nn.Module = None + + def __init__( + self, + config: MistralConfig, + input_shape: Tuple = (1, 1), + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + **kwargs, + ): + module = self.module_class(config=config, dtype=dtype, **kwargs) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + input_ids = jnp.zeros(input_shape, dtype="i4") + attention_mask = jnp.ones_like(input_ids) + position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape) + params_rng, dropout_rng = jax.random.split(rng) + rngs = {"params": params_rng, "dropout": dropout_rng} + + random_params = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + def init_cache(self, batch_size, max_length): + r""" + Args: + batch_size (`int`): + batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. + max_length (`int`): + maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized + cache. + """ + # init input variables to retrieve cache + input_ids = jnp.ones((batch_size, max_length)) + attention_mask = jnp.ones_like(input_ids) + position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape) + + init_variables = self.module.init( + jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True + ) + return unfreeze(init_variables["cache"]) + + @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) + def __call__( + self, + input_ids, + attention_mask=None, + position_ids=None, + params: dict = None, + past_key_values: dict = None, + dropout_rng: jax.random.PRNGKey = None, + train: bool = False, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + batch_size, sequence_length = input_ids.shape + + if position_ids is None: + if past_key_values is not None: + raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.") + + position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + + if attention_mask is None: + attention_mask = jnp.ones((batch_size, sequence_length)) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxMistralAttention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + outputs = self.module.apply( + inputs, + jnp.array(input_ids, dtype="i4"), + jnp.array(attention_mask, dtype="i4"), + jnp.array(position_ids, dtype="i4"), + not train, + False, + output_attentions, + output_hidden_states, + return_dict, + rngs=rngs, + mutable=mutable, + ) + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs, past_key_values = outputs + outputs["past_key_values"] = unfreeze(past_key_values["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs, past_key_values = outputs + outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] + + return outputs + + +# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaLayerCollection with Llama->Mistral +class FlaxMistralLayerCollection(nn.Module): + config: MistralConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.blocks = [ + FlaxMistralDecoderLayer(self.config, dtype=self.dtype, name=str(i)) + for i in range(self.config.num_hidden_layers) + ] + + def __call__( + self, + hidden_states, + attention_mask=None, + position_ids=None, + deterministic: bool = True, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = False, + ): + all_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + + for block in self.blocks: + if output_hidden_states: + all_hidden_states += (hidden_states,) + layer_outputs = block( + hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + deterministic=deterministic, + init_cache=init_cache, + output_attentions=output_attentions, + ) + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions += (layer_outputs[1],) + + # this contains possible `None` values - `FlaxMistralModule` will filter them out + outputs = (hidden_states, all_hidden_states, all_attentions) + + return outputs + + +# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaModule with Llama->Mistral +class FlaxMistralModule(nn.Module): + config: MistralConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.hidden_size = self.config.hidden_size + embedding_init = jax.nn.initializers.normal(stddev=self.config.initializer_range) + self.embed_tokens = nn.Embed( + self.config.vocab_size, + self.hidden_size, + embedding_init=embedding_init, + dtype=self.dtype, + ) + self.layers = FlaxMistralLayerCollection(self.config, dtype=self.dtype) + self.norm = FlaxMistralRMSNorm(self.config, dtype=self.dtype) + + def __call__( + self, + input_ids, + attention_mask=None, + position_ids=None, + deterministic=True, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + input_embeds = self.embed_tokens(input_ids.astype("i4")) + + outputs = self.layers( + input_embeds, + position_ids=position_ids, + attention_mask=attention_mask, + deterministic=deterministic, + init_cache=init_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + hidden_states = self.norm(hidden_states) + + if output_hidden_states: + all_hidden_states = outputs[1] + (hidden_states,) + outputs = (hidden_states, all_hidden_states) + outputs[2:] + else: + outputs = (hidden_states,) + outputs[1:] + + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutput( + last_hidden_state=hidden_states, + hidden_states=outputs[1], + attentions=outputs[-1], + ) + + +@add_start_docstrings( + "The bare Mistral Model transformer outputting raw hidden-states without any specific head on top.", + MISTRAL_START_DOCSTRING, +) +class FlaxMistralModel(FlaxMistralPreTrainedModel): + module_class = FlaxMistralModule + + +append_call_sample_docstring( + FlaxMistralModel, + _CHECKPOINT_FOR_DOC, + FlaxBaseModelOutputWithPast, + _CONFIG_FOR_DOC, + real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, +) + + +# Copied from transformers.models.llama.modeling_flax_llama.FlaxLlamaForCausalLMModule with Llama->Mistral +class FlaxMistralForCausalLMModule(nn.Module): + config: MistralConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.model = FlaxMistralModule(self.config, dtype=self.dtype) + self.lm_head = nn.Dense( + self.config.vocab_size, + use_bias=False, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + + def __call__( + self, + input_ids, + attention_mask=None, + position_ids=None, + deterministic: bool = True, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + outputs = self.model( + input_ids, + position_ids=position_ids, + attention_mask=attention_mask, + deterministic=deterministic, + init_cache=init_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + lm_logits = self.lm_head(hidden_states) + + if not return_dict: + return (lm_logits,) + outputs[1:] + + return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) + + +@add_start_docstrings( + """ + The Mistral Model transformer with a language modeling head (linear layer) on top. + """, + MISTRAL_START_DOCSTRING, +) + +# Copied from transformers.models.gptj.modeling_flax_gptj.FlaxGPTJForCausalLM with GPTJ->Mistral +class FlaxMistralForCausalLM(FlaxMistralPreTrainedModel): + module_class = FlaxMistralForCausalLMModule + + def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): + # initializing the cache + batch_size, seq_length = input_ids.shape + + past_key_values = self.init_cache(batch_size, max_length) + # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. + # But since Mistral uses a causal mask, those positions are masked anyways. + # Thus we can create a single static attention_mask here, which is more efficient for compilation + extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") + if attention_mask is not None: + position_ids = attention_mask.cumsum(axis=-1) - 1 + extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) + else: + position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) + + return { + "past_key_values": past_key_values, + "attention_mask": extended_attention_mask, + "position_ids": position_ids, + } + + def update_inputs_for_generation(self, model_outputs, model_kwargs): + model_kwargs["past_key_values"] = model_outputs.past_key_values + model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1 + return model_kwargs + + +append_call_sample_docstring( + FlaxMistralForCausalLM, + _CHECKPOINT_FOR_DOC, + FlaxCausalLMOutputWithCrossAttentions, + _CONFIG_FOR_DOC, + real_checkpoint=_REAL_CHECKPOINT_FOR_DOC, +) diff --git a/src/transformers/utils/dummy_flax_objects.py b/src/transformers/utils/dummy_flax_objects.py index ecf17e711556cb..1a3109e28321b4 100644 --- a/src/transformers/utils/dummy_flax_objects.py +++ b/src/transformers/utils/dummy_flax_objects.py @@ -898,6 +898,27 @@ def __init__(self, *args, **kwargs): requires_backends(self, ["flax"]) +class FlaxMistralForCausalLM(metaclass=DummyObject): + _backends = ["flax"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["flax"]) + + +class FlaxMistralModel(metaclass=DummyObject): + _backends = ["flax"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["flax"]) + + +class FlaxMistralPreTrainedModel(metaclass=DummyObject): + _backends = ["flax"] + + def __init__(self, *args, **kwargs): + requires_backends(self, ["flax"]) + + class FlaxMT5EncoderModel(metaclass=DummyObject): _backends = ["flax"] diff --git a/tests/models/mistral/test_modeling_flax_mistral.py b/tests/models/mistral/test_modeling_flax_mistral.py new file mode 100644 index 00000000000000..047bf4c6d433d0 --- /dev/null +++ b/tests/models/mistral/test_modeling_flax_mistral.py @@ -0,0 +1,243 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import unittest + +import numpy as np + +from transformers import MistralConfig, is_flax_available, is_tokenizers_available +from transformers.testing_utils import require_flax, slow + +from ...generation.test_flax_utils import FlaxGenerationTesterMixin +from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor + + +if is_flax_available(): + import jax.numpy as jnp + + from transformers.models.mistral.modeling_flax_mistral import ( + FlaxMistralForCausalLM, + FlaxMistralModel, + ) + + +if is_tokenizers_available(): + from transformers import LlamaTokenizerFast + + +class FlaxMistralModelTester: + def __init__( + self, + parent, + batch_size=2, + seq_length=7, + is_training=True, + use_input_mask=True, + use_token_type_ids=False, + use_labels=True, + vocab_size=99, + hidden_size=32, + num_hidden_layers=2, + num_attention_heads=4, + num_key_value_heads=2, + intermediate_size=37, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=512, + window_size=7, + initializer_range=0.02, + ): + self.parent = parent + self.batch_size = batch_size + self.seq_length = seq_length + self.is_training = is_training + self.use_input_mask = use_input_mask + self.use_token_type_ids = use_token_type_ids + self.use_labels = use_labels + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.num_key_value_heads = num_key_value_heads + self.intermediate_size = intermediate_size + self.hidden_act = hidden_act + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.window_size = window_size + self.initializer_range = initializer_range + self.scope = None + self.bos_token_id = vocab_size - 1 + self.eos_token_id = vocab_size - 1 + self.pad_token_id = vocab_size - 1 + + def prepare_config_and_inputs(self): + input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) + + input_mask = None + if self.use_input_mask: + input_mask = np.tril(np.ones((self.batch_size, self.seq_length))) + + config = MistralConfig( + vocab_size=self.vocab_size, + hidden_size=self.hidden_size, + num_hidden_layers=self.num_hidden_layers, + num_attention_heads=self.num_attention_heads, + num_key_value_heads=self.num_key_value_heads, + intermediate_size=self.intermediate_size, + hidden_act=self.hidden_act, + hidden_dropout_prob=self.hidden_dropout_prob, + attention_probs_dropout_prob=self.attention_probs_dropout_prob, + max_position_embeddings=self.max_position_embeddings, + use_cache=True, + is_decoder=False, + initializer_range=self.initializer_range, + sliding_window=self.window_size, + ) + config.pad_token_id = config.eos_token_id + + return (config, input_ids, input_mask) + + # Copied from tests.models.gpt_neo.test_modeling_flax_gpt_neo.FlaxGPTNeoModelTester.prepare_config_and_inputs_for_common + def prepare_config_and_inputs_for_common(self): + config_and_inputs = self.prepare_config_and_inputs() + config, input_ids, attention_mask = config_and_inputs + inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask} + return config, inputs_dict + + # Copied from tests.models.gpt_neo.test_modeling_flax_gpt_neo.FlaxGPTNeoModelTester.check_use_cache_forward + def check_use_cache_forward(self, model_class_name, config, input_ids, attention_mask): + max_decoder_length = 20 + model = model_class_name(config) + + past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length) + attention_mask = jnp.ones((input_ids.shape[0], max_decoder_length), dtype="i4") + + position_ids = jnp.broadcast_to( + jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) + ) + outputs_cache = model( + input_ids[:, :-1], + attention_mask=attention_mask, + past_key_values=past_key_values, + position_ids=position_ids, + ) + + position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") + outputs_cache_next = model( + input_ids[:, -1:], + attention_mask=attention_mask, + past_key_values=outputs_cache.past_key_values, + position_ids=position_ids, + ) + + outputs = model(input_ids) + + diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) + self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") + + # Copied from tests.models.gpt_neo.test_modeling_flax_gpt_neo.FlaxGPTNeoModelTester.check_use_cache_forward_with_attn_mask + def check_use_cache_forward_with_attn_mask(self, model_class_name, config, input_ids, attention_mask): + max_decoder_length = 20 + model = model_class_name(config) + + attention_mask_cache = jnp.concatenate( + [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))], + axis=-1, + ) + + past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length) + position_ids = jnp.broadcast_to( + jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1) + ) + + outputs_cache = model( + input_ids[:, :-1], + attention_mask=attention_mask_cache, + past_key_values=past_key_values, + position_ids=position_ids, + ) + position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4") + outputs_cache_next = model( + input_ids[:, -1:], + past_key_values=outputs_cache.past_key_values, + attention_mask=attention_mask_cache, + position_ids=position_ids, + ) + + outputs = model(input_ids, attention_mask=attention_mask) + + diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) + self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}") + + +@require_flax +class FlaxMistralModelTest(FlaxModelTesterMixin, FlaxGenerationTesterMixin, unittest.TestCase): + all_model_classes = (FlaxMistralModel, FlaxMistralForCausalLM) if is_flax_available() else () + all_generative_model_classes = (FlaxMistralForCausalLM,) if is_flax_available() else () + + def setUp(self): + self.model_tester = FlaxMistralModelTester(self) + + def test_use_cache_forward(self): + for model_class_name in self.all_model_classes: + config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs() + self.model_tester.check_use_cache_forward(model_class_name, config, input_ids, attention_mask) + + def test_use_cache_forward_with_attn_mask(self): + for model_class_name in self.all_model_classes: + config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs() + self.model_tester.check_use_cache_forward_with_attn_mask( + model_class_name, config, input_ids, attention_mask + ) + + @slow + def test_model_from_pretrained(self): + for model_class_name in self.all_model_classes: + model = model_class_name.from_pretrained("mistralai/Mistral-7B-v0.1", from_pt=True) + outputs = model(np.ones((1, 1))) + self.assertIsNotNone(outputs) + + +@slow +@require_flax +class FlaxMistralIntegrationTest(unittest.TestCase): + def setUp(self): + self.model_id = "mistralai/Mistral-7B-v0.1" + self.model = FlaxMistralForCausalLM.from_pretrained(self.model_id, from_pt=True) + self.test_batch = jnp.arange(32).reshape(4, 8) + 1911 + + def test_model_logits(self): + input_ids = jnp.array([[1, 306, 4658, 278, 6593, 310, 2834, 338]]) + EXPECTED_MEAN = np.array([[-2.5548, -2.5737, -3.0600, -2.5906, -2.8478, -2.8118, -2.9325, -2.7694]]) + EXPECTED_SLICE = np.array([-5.8781,-5.8616,-0.1052,-4.7200,-5.8781,-5.8774,-5.8773,-5.8777,-5.8781,-5.8780,-5.8781,-5.8779,-1.0787,1.7583,-5.8779,-5.8780,-5.8783,-5.8778,-5.8776,-5.8781,-5.8784,-5.8778,-5.8778,-5.8777,-5.8779,-5.8778,-5.8776,-5.8780,-5.8779,-5.8781]) # fmt: skip + + flax_logits = self.model(input_ids).logits + diff_mean = jnp.abs(flax_logits.mean(-1) - EXPECTED_MEAN).max() + diff_slice = jnp.abs(flax_logits[0, 0, :30] - EXPECTED_SLICE).max() + + self.assertAlmostEqual(diff_mean, 0, places=3) + self.assertAlmostEqual(diff_slice, 0, places=3) + + def test_generated_text(self): + tokenizer = LlamaTokenizerFast.from_pretrained(self.model_id) + tokenizer.pad_token_id = 2 + EXPECTED_TEXT_COMPLETION = """My favourite condiment is 100% ketchup. I love it on everything. I’m not a big""" + prompt = "My favourite condiment is " + inputs = tokenizer(prompt, return_tensors="np", truncation=True, padding=True) + generated_ids = self.model.generate(**inputs, max_new_tokens=20, temperature=0).sequences + generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) + self.assertEqual(generated_text, EXPECTED_TEXT_COMPLETION) diff --git a/utils/check_docstrings.py b/utils/check_docstrings.py index f63ca3aba92c6e..8a4394f6afb384 100644 --- a/utils/check_docstrings.py +++ b/utils/check_docstrings.py @@ -239,6 +239,8 @@ "FlaxMBartModel", "FlaxMarianMTModel", "FlaxMarianModel", + "FlaxMistralForCausalLM", + "FlaxMistralModel", "FlaxOPTForCausalLM", "FlaxPegasusForConditionalGeneration", "FlaxPegasusModel",