-
Notifications
You must be signed in to change notification settings - Fork 27.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Create model cards for indonesian models #6522
Merged
Merged
Changes from 1 commit
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,81 @@ | ||
--- | ||
language: "id" | ||
license: "mit" | ||
datasets: | ||
- Indonesian Wikipedia | ||
widget: | ||
- text: "Ibu ku sedang bekerja [MASK] supermarket." | ||
--- | ||
|
||
# Indonesian BERT base model (uncased) | ||
|
||
## Model description | ||
It is BERT-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This | ||
model is uncased: it does not make a difference between indonesia and Indonesia. | ||
|
||
This is one of several other language models that have been pre-trained with indonesian datasets. More detail about | ||
its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers) | ||
|
||
## Intended uses & limitations | ||
|
||
### How to use | ||
You can use this model directly with a pipeline for masked language modeling: | ||
```python | ||
>>> from transformers import pipeline | ||
>>> unmasker = pipeline('fill-mask', model='cahya/bert-base-indonesian-522M') | ||
>>> unmasker("Ibu ku sedang bekerja [MASK] supermarket") | ||
|
||
[{'sequence': '[CLS] ibu ku sedang bekerja di supermarket [SEP]', | ||
'score': 0.7983310222625732, | ||
'token': 1495}, | ||
{'sequence': '[CLS] ibu ku sedang bekerja. supermarket [SEP]', | ||
'score': 0.090003103017807, | ||
'token': 17}, | ||
{'sequence': '[CLS] ibu ku sedang bekerja sebagai supermarket [SEP]', | ||
'score': 0.025469014421105385, | ||
'token': 1600}, | ||
{'sequence': '[CLS] ibu ku sedang bekerja dengan supermarket [SEP]', | ||
'score': 0.017966199666261673, | ||
'token': 1555}, | ||
{'sequence': '[CLS] ibu ku sedang bekerja untuk supermarket [SEP]', | ||
'score': 0.016971781849861145, | ||
'token': 1572}] | ||
``` | ||
Here is how to use this model to get the features of a given text in PyTorch: | ||
```python | ||
from transformers import BertTokenizer, BertModel | ||
|
||
model_name='cahya/bert-base-indonesian-522M' | ||
tokenizer = BertTokenizer.from_pretrained(model_name) | ||
model = BertModel.from_pretrained(model_name) | ||
text = "Silakan diganti dengan text apa saja." | ||
encoded_input = tokenizer(text, return_tensors='pt') | ||
output = model(**encoded_input) | ||
``` | ||
and in Tensorflow: | ||
```python | ||
from transformers import BertTokenizer, TFBertModel | ||
|
||
model_name='cahya/bert-base-indonesian-522M' | ||
tokenizer = BertTokenizer.from_pretrained(model_name) | ||
model = TFBertModel.from_pretrained(model_name) | ||
text = "Silakan diganti dengan text apa saja." | ||
encoded_input = tokenizer(text, return_tensors='tf') | ||
output = model(encoded_input) | ||
``` | ||
|
||
## Training data | ||
|
||
This model was pre-trained with 522MB of indonesian Wikipedia. | ||
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are | ||
then of the form: | ||
|
||
```[CLS] Sentence A [SEP] Sentence B [SEP]``` | ||
|
||
## BibTeX entry and citation info | ||
|
||
```bibtex | ||
@inproceedings{..., | ||
year={2020} | ||
} | ||
``` | ||
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
--- | ||
language: "id" | ||
license: "mit" | ||
datasets: | ||
- Indonesian Wikipedia | ||
widget: | ||
- text: "Pulau Dewata sering dikunjungi" | ||
--- | ||
|
||
# Indonesian GPT2 small model | ||
|
||
## Model description | ||
It is GPT2-small model pre-trained with indonesian Wikipedia using a causal language modeling (CLM) objective. This | ||
model is uncased: it does not make a difference between indonesia and Indonesia. | ||
|
||
This is one of several other language models that have been pre-trained with indonesian datasets. More detail about | ||
its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers) | ||
|
||
## Intended uses & limitations | ||
|
||
### How to use | ||
You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, | ||
we set a seed for reproducibility: | ||
```python | ||
>>> from transformers import pipeline, set_seed | ||
>>> generator = pipeline('text-generation', model='cahya/gpt2-small-indonesian-522M') | ||
>>> set_seed(42) | ||
>>> generator("Kerajaan Majapahit adalah", max_length=30, num_return_sequences=5, num_beams=10) | ||
|
||
[{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini berdiri pada abad ke-14'}, | ||
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-16. Kerajaan ini berdiri pada abad ke-14'}, | ||
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini berdiri pada abad ke-15'}, | ||
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-16. Kerajaan ini berdiri pada abad ke-15'}, | ||
{'generated_text': 'Kerajaan Majapahit adalah sebuah kerajaan yang pernah berdiri di Jawa Timur pada abad ke-14 hingga abad ke-15. Kerajaan ini merupakan kelanjutan dari Kerajaan Majapahit yang'}] | ||
|
||
``` | ||
Here is how to use this model to get the features of a given text in PyTorch: | ||
```python | ||
from transformers import GPT2Tokenizer, GPT2Model | ||
|
||
model_name='cahya/gpt2-small-indonesian-522M' | ||
tokenizer = GPT2Tokenizer.from_pretrained(model_name) | ||
model = GPT2Model.from_pretrained(model_name) | ||
text = "Silakan diganti dengan text apa saja." | ||
encoded_input = tokenizer(text, return_tensors='pt') | ||
output = model(**encoded_input) | ||
``` | ||
and in Tensorflow: | ||
```python | ||
from transformers import GPT2Tokenizer, TFGPT2Model | ||
|
||
model_name='cahya/gpt2-small-indonesian-522M' | ||
tokenizer = GPT2Tokenizer.from_pretrained(model_name) | ||
model = TFGPT2Model.from_pretrained(model_name) | ||
text = "Silakan diganti dengan text apa saja." | ||
encoded_input = tokenizer(text, return_tensors='tf') | ||
output = model(encoded_input) | ||
``` | ||
|
||
## Training data | ||
|
||
This model was pre-trained with 522MB of indonesian Wikipedia. | ||
The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and | ||
a vocabulary size of 52,000. The inputs are sequences of 128 consecutive tokens. | ||
|
||
## BibTeX entry and citation info | ||
|
||
```bibtex | ||
@inproceedings{..., | ||
year={2020} | ||
} | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
--- | ||
language: "id" | ||
license: "mit" | ||
datasets: | ||
- Indonesian Wikipedia | ||
widget: | ||
- text: "Ibu ku sedang bekerja <mask> supermarket." | ||
--- | ||
|
||
# Indonesian RoBERTa base model (uncased) | ||
|
||
## Model description | ||
It is RoBERTa-base model pre-trained with indonesian Wikipedia using a masked language modeling (MLM) objective. This | ||
model is uncased: it does not make a difference between indonesia and Indonesia. | ||
|
||
This is one of several other language models that have been pre-trained with indonesian datasets. More detail about | ||
its usage on downstream tasks (text classification, text generation, etc) is available at [Transformer based Indonesian Language Models](https://github.com/cahya-wirawan/indonesian-language-models/tree/master/Transformers) | ||
|
||
## Intended uses & limitations | ||
|
||
### How to use | ||
You can use this model directly with a pipeline for masked language modeling: | ||
```python | ||
>>> from transformers import pipeline | ||
>>> unmasker = pipeline('fill-mask', model='cahya/roberta-base-indonesian-522M') | ||
>>> unmasker("Ibu ku sedang bekerja <mask> supermarket") | ||
|
||
``` | ||
Here is how to use this model to get the features of a given text in PyTorch: | ||
```python | ||
from transformers import RobertaTokenizer, RobertaModel | ||
|
||
model_name='cahya/roberta-base-indonesian-522M' | ||
tokenizer = RobertaTokenizer.from_pretrained(model_name) | ||
model = RobertaModel.from_pretrained(model_name) | ||
text = "Silakan diganti dengan text apa saja." | ||
encoded_input = tokenizer(text, return_tensors='pt') | ||
output = model(**encoded_input) | ||
``` | ||
and in Tensorflow: | ||
```python | ||
from transformers import RobertaTokenizer, TFRobertaModel | ||
|
||
model_name='cahya/roberta-base-indonesian-522M' | ||
tokenizer = RobertaTokenizer.from_pretrained(model_name) | ||
model = TFRobertaModel.from_pretrained(model_name) | ||
text = "Silakan diganti dengan text apa saja." | ||
encoded_input = tokenizer(text, return_tensors='tf') | ||
output = model(encoded_input) | ||
``` | ||
|
||
## Training data | ||
|
||
This model was pre-trained with 522MB of indonesian Wikipedia. | ||
The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are | ||
then of the form: | ||
|
||
```<s> Sentence A </s> Sentence B </s>``` | ||
|
||
## BibTeX entry and citation info | ||
|
||
```bibtex | ||
@inproceedings{..., | ||
year={2020} | ||
} | ||
``` |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
You may want to get rid of these if you don't have one.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Ok, it's removed.