Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Develop #7

Merged
merged 3 commits into from
Nov 7, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -467,6 +467,6 @@ def forward(self, input_ids, token_type_ids, attention_mask, start_positions=Non
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
return total_loss, (start_logits, end_logits)
return total_loss
else:
return start_logits, end_logits
28 changes: 13 additions & 15 deletions run_classifier.py
Original file line number Diff line number Diff line change
Expand Up @@ -458,7 +458,6 @@ def main():
raise ValueError("Task not found: %s" % (task_name))

processor = processors[task_name]()

label_list = processor.get_labels()

tokenizer = tokenization.FullTokenizer(
Expand Down Expand Up @@ -515,23 +514,21 @@ def main():
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

model.train()
for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
for _ in trange(int(args.num_train_epochs), desc="Epoch"):
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, (input_ids, input_mask, segment_ids, label_ids) in enumerate(tqdm(train_dataloader, desc="Iteration")):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)

loss, _ = model(input_ids, segment_ids, input_mask, label_ids)
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids = batch
loss = model(input_ids, segment_ids, input_mask, label_ids)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
loss.backward()

if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step() # We have accumulated enought gradients
model.zero_grad()
Expand Down Expand Up @@ -567,7 +564,8 @@ def main():
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)

tmp_eval_loss, logits = model(input_ids, segment_ids, input_mask, label_ids)
with torch.no_grad():
tmp_eval_loss, logits = model(input_ids, segment_ids, input_mask, label_ids)

logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
Expand All @@ -579,13 +577,13 @@ def main():
nb_eval_examples += input_ids.size(0)
nb_eval_steps += 1

eval_loss = eval_loss / nb_eval_steps #len(eval_dataloader)
eval_accuracy = eval_accuracy / nb_eval_examples #len(eval_dataloader)
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples

result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy,
'global_step': global_step,
'loss': tr_loss/nb_tr_steps}#'loss': loss.item()}
'loss': tr_loss/nb_tr_steps}

output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
Expand Down
24 changes: 6 additions & 18 deletions run_squad.py
Original file line number Diff line number Diff line change
Expand Up @@ -743,7 +743,7 @@ def main():
type=int,
default=1,
help="Number of updates steps to accumualte before performing a backward/update pass.")

args = parser.parse_args()

if args.local_rank == -1 or args.no_cuda:
Expand Down Expand Up @@ -855,22 +855,15 @@ def main():
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

model.train()
for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
for _ in trange(int(args.num_train_epochs), desc="Epoch"):
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, start_positions, end_positions = batch
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
start_positions = start_positions.to(device)
end_positions = start_positions.to(device)

start_positions = start_positions.view(-1, 1)
end_positions = end_positions.view(-1, 1)

loss, _ = model(input_ids, segment_ids, input_mask, start_positions, end_positions)
loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.

if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step() # We have accumulated enought gradients
Expand Down Expand Up @@ -911,24 +904,19 @@ def main():
for input_ids, input_mask, segment_ids, example_indices in tqdm(eval_dataloader, desc="Evaluating"):
if len(all_results) % 1000 == 0:
logger.info("Processing example: %d" % (len(all_results)))

input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)

with torch.no_grad():
batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask)

for i, example_index in enumerate(example_indices):
start_logits = batch_start_logits[i].detach().cpu().tolist()
end_logits = batch_end_logits[i].detach().cpu().tolist()

eval_feature = eval_features[example_index.item()]
unique_id = int(eval_feature.unique_id)
all_results.append(RawResult(unique_id=unique_id,
start_logits=start_logits,
end_logits=end_logits))

output_prediction_file = os.path.join(args.output_dir, "predictions.json")
output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json")
write_predictions(eval_examples, eval_features, all_results,
Expand Down