diff --git a/model_cards/Ogayo/Hel-ach-en/README.md b/model_cards/Ogayo/Hel-ach-en/README.md new file mode 100644 index 00000000000000..bd38761483d9dc --- /dev/null +++ b/model_cards/Ogayo/Hel-ach-en/README.md @@ -0,0 +1,48 @@ +--- +language: +- ach +- en +tags: +- translation +license: cc-by-4.0 +datasets: +- JW300 +metrics: +- bleu +--- + +# HEL-ACH-EN + +## Model description + +MT model translating Acholi to English initialized with weights from [opus-mt-luo-en](https://huggingface.co/Helsinki-NLP/opus-mt-luo-en) on HuggingFace. + +## Intended uses & limitations +Machine Translation experiments. Do not use for sensitive tasks. +#### How to use + +```python +# You can include sample code which will be formatted +from transformers import AutoTokenizer, AutoModelForSeq2SeqLM + +tokenizer = AutoTokenizer.from_pretrained("Ogayo/Hel-ach-en") + +model = AutoModelForSeq2SeqLM.from_pretrained("Ogayo/Hel-ach-en") + +``` + +#### Limitations and bias + +Trained on Jehovah Witnesses data so contains theirs and Christian views. + +## Training data +Trained on OPUS JW300 data. +Initialized with weights from [opus-mt-luo-en](https://huggingface.co/Helsinki-NLP/opus-mt-luo-en?text=Bed+gi+nyasi+mar+chieng%27+nyuol+mopong%27+gi+mor%21#model_card) + +## Training procedure + +Remove duplicates and rows with no alphabetic characters. Used GPU +## Eval results +testset | BLEU +--- | --- +JW300.luo.en| 46.1