diff --git a/docs/source/dataset_formats.mdx b/docs/source/dataset_formats.mdx
index 148d9c9571..a6dbf11d04 100644
--- a/docs/source/dataset_formats.mdx
+++ b/docs/source/dataset_formats.mdx
@@ -77,6 +77,18 @@ This guide provides an overview of the dataset formats and types supported by ea
"label": False}
+
+
Stepwise supervision |
+
+ {"prompt": "Which number is larger, 9.8 or 9.11?",
+ "completions": ["The fractional part of 9.8 is 0.8.",
+ "The fractional part of 9.11 is 0.11.",
+ "0.11 is greater than 0.8.",
+ "Hence, 9.11 > 9.8."],
+ "labels": [True, True, False, False]}
+ |
+ |
+
### Formats
@@ -87,9 +99,11 @@ The standard dataset format typically consists of plain text strings. The column
```python
# Language modeling
-example = {"text": "The sky is blue."}
+language_modeling_example = {"text": "The sky is blue."}
# Preference
-example = {"chosen": "The sky is blue.", "rejected": "The sky is green."}
+preference_example = {"prompt": "The sky is", "chosen": " blue.", "rejected": " green."}
+# Unpaired preference
+unpaired_preference_example = {"prompt": "The sky is", "completion": " blue.", "label": True}
```
#### Conversational
@@ -104,18 +118,17 @@ messages = [
]
```
-Just like standard datasets, the columns in conversational datasets vary depending on the task. For instance, a preference dataset would include columns like `"chosen"` and `"rejected"` to compare responses:
+Just like standard datasets, the columns in conversational datasets vary depending on the task. Below are examples of conversational dataset formats for different tasks:
```python
-example = {
- "chosen": [
- {"role": "user", "content": "What color is the sky?"},
- {"role": "assistant", "content": "It is blue."},
- ],
- "rejected": [
- {"role": "user", "content": "What color is the sky?"},
- {"role": "assistant", "content": "It is green."},
- ],
+# Prompt-completion
+prompt_completion_example = {"prompt": [{"role": "user", "content": "What color is the sky?"}],
+ "completion": [{"role": "assistant", "content": "It is blue."}]}
+# Preference
+preference_example = {
+ "prompt": [{"role": "user", "content": "What color is the sky?"}],
+ "chosen": [{"role": "assistant", "content": "It is blue."}],
+ "rejected": [{"role": "assistant", "content": "It is green."}],
}
```
@@ -128,7 +141,13 @@ Conversational datasets are useful for training chat models, but must be convert
A language modeling dataset consists of a column `"text"` (or `"messages"` for conversational datasets) containing a full sequence of text.
```python
+# Standard format
language_modeling_example = {"text": "The sky is blue."}
+# Conversational format
+language_modeling_example = {"messages": [
+ {"role": "user", "content": "What color is the sky?"},
+ {"role": "assistant", "content": "It is blue."}
+]}
```
#### Prompt-only
@@ -136,7 +155,10 @@ language_modeling_example = {"text": "The sky is blue."}
In a prompt-only dataset, only the initial prompt (the question or partial sentence) is provided under the key `"prompt"`. The training typically involves generating the completion based on this prompt, where the model learns to continue or complete the given input.
```python
+# Standard format
prompt_only_example = {"prompt": "The sky is"}
+# Conversational format
+prompt_only_example = {"prompt": [{"role": "user", "content": "What color is the sky?"}]}
```
@@ -170,7 +192,11 @@ apply_chat_template(lm_example, tokenizer)
A prompt-completion dataset includes a `"prompt"` and a `"completion"`.
```python
+# Standard format
prompt_completion_example = {"prompt": "The sky is", "completion": " blue."}
+# Conversational format
+prompt_completion_example = {"prompt": [{"role": "user", "content": "What color is the sky?"}],
+ "completion": [{"role": "assistant", "content": "It is blue."}]}
```
#### Preference
@@ -179,10 +205,22 @@ A preference dataset is used for tasks where the model is trained to choose betw
Some dataset may not include the `"prompt"` column, in which case the prompt is implicit and directly included in the `"chosen"` and `"rejected"` completions. We recommend using explicit prompts whenever possible.
```python
-# explicit prompt
-preference_example = {"prompt": "The sky is", "chosen": " blue.", "rejected": " green."} # recommended
-# implicit prompt
+# Standard format
+## Explicit prompt (recommended)
+preference_example = {"prompt": "The sky is", "chosen": " blue.", "rejected": " green."}
+# Implicit prompt
preference_example = {"chosen": "The sky is blue.", "rejected": "The sky is green."}
+
+# Conversational format
+## Explicit prompt (recommended)
+preference_example = {"prompt": [{"role": "user", "content": "What color is the sky?"}],
+ "chosen": [{"role": "assistant", "content": "It is blue."}],
+ "rejected": [{"role": "assistant", "content": "It is green."}]}
+## Implicit prompt
+preference_example = {"chosen": [{"role": "user", "content": "What color is the sky?"},
+ {"role": "assistant", "content": "It is blue."}],
+ "rejected": [{"role": "user", "content": "What color is the sky?"},
+ {"role": "assistant", "content": "It is green."}]}
```
Some preference datasets can be found with [the tag `dpo` on Hugging Face Hub](https://huggingface.co/datasets?other=dpo). You can also explore the [librarian-bots' DPO Collections](https://huggingface.co/collections/librarian-bots/direct-preference-optimization-datasets-66964b12835f46289b6ef2fc) to identify preference datasets.
@@ -192,7 +230,24 @@ Some preference datasets can be found with [the tag `dpo` on Hugging Face Hub](h
An unpaired preference dataset is similar to a preference dataset but instead of having `"chosen"` and `"rejected"` completions for the same prompt, it includes a single `"completion"` and a `"label"` indicating whether the completion is preferred or not.
```python
+# Standard format
unpaired_preference_example = {"prompt": "The sky is", "completion": " blue.", "label": True}
+# Conversational format
+unpaired_preference_example = {"prompt": [{"role": "user", "content": "What color is the sky?"}],
+ "completion": [{"role": "assistant", "content": "It is blue."}],
+ "label": True}
+```
+
+#### Stepwise supervision
+
+A stepwise (or process) supervision dataset is similar to an [unpaired preference](#unpaired-preference) dataset but includes multiple steps of completions, each with its own label. This structure is useful for tasks that need detailed, step-by-step labeling, such as reasoning tasks. By evaluating each step separately and providing targeted labels, this approach helps identify precisely where the reasoning is correct and where errors occur, allowing for targeted feedback on each part of the reasoning process.
+
+```python
+stepwise_example = {
+ "prompt": "Which number is larger, 9.8 or 9.11?",
+ "completions": ["The fractional part of 9.8 is 0.8, while the fractional part of 9.11 is 0.11.", "Since 0.11 is greater than 0.8, the number 9.11 is larger than 9.8."],
+ "labels": [True, False]
+}
```
## Which dataset type to use?
@@ -224,12 +279,12 @@ For more information on how to work with conversational datasets, refer to the [
## Working with conversational datasets in TRL
-Conversational datasets are increasingly common, especially for training chat models. However, TRL trainers (except [`SFTTrainer`]) don't support conversational datasets in their raw format. These datasets must first be converted into a standard format.
+Conversational datasets are increasingly common, especially for training chat models. However, some TRL trainers don't support conversational datasets in their raw format. (For more information, see [issue #2071](https://github.com/huggingface/trl/issues/2071).) These datasets must first be converted into a standard format.
Fortunately, TRL offers tools to easily handle this conversion, which are detailed below.
### Converting a conversational dataset into a standard dataset
-TRL trainers do not support conversational datasets in their raw format. To use them, you need to convert them into a standard dataset format using a chat template. This template is provided by the tokenizer of the model you use.
+To convert a conversational dataset into a standard dataset, you need to _apply a chat template_ to the dataset. A chat template is a predefined structure that typically includes placeholders for user and assistant messages. This template is provided by the tokenizer of the model you use.
For detailed instructions on using chat templating, refer to the [Chat templating section in the `transformers` documentation](https://huggingface.co/docs/transformers/en/chat_templating).
@@ -338,14 +393,15 @@ This section provides example code to help you convert between different dataset
For simplicity, some of the examples below do not follow this recommendation and use the standard format. However, the conversions can be applied directly to the conversational format without modification.
-| From \ To | Language modeling | Prompt-completion | Prompt-only | Preference with implicit prompt | Preference | Unpaired preference |
-| ------------------------------- | ----------------------------------------------------------------------- | ----------------------------------------------------------------------- | ----------------------------------------------------------------- | --------------------------------------------------------- | --------------------------------------------------------- | ------------------------------------------------------------------------- |
-| Language modeling | N/A | N/A | N/A | N/A | N/A | N/A |
-| Prompt-completion | [🔗](#from-prompt-completion-to-language-modeling-dataset) | N/A | [🔗](#from-prompt-completion-to-prompt-only-dataset) | N/A | N/A | N/A |
-| Prompt-only | N/A | N/A | N/A | N/A | N/A | N/A |
-| Preference with implicit prompt | [🔗](#from-preference-with-implicit-prompt-to-language-modeling-dataset) | [🔗](#from-preference-with-implicit-prompt-to-prompt-completion-dataset) | [🔗](#from-preference-with-implicit-prompt-to-prompt-only-dataset) | N/A | [🔗](#from-implicit-to-explicit-prompt-preference-dataset) | [🔗](#from-preference-with-implicit-prompt-to-unpaired-preference-dataset) |
-| Preference | [🔗](#from-preference-to-language-modeling-dataset) | [🔗](#from-preference-to-prompt-completion-dataset) | [🔗](#from-preference-to-prompt-only-dataset) | [🔗](#from-explicit-to-implicit-prompt-preference-dataset) | N/A | [🔗](#from-preference-to-unpaired-preference-dataset) |
-| Unpaired preference | [🔗](#from-unpaired-preference-to-language-modeling-dataset) | [🔗](#from-unpaired-preference-to-prompt-completion-dataset) | [🔗](#from-unpaired-preference-to-prompt-only-dataset) | N/A | N/A | N/A |
+| From \ To | Language modeling | Prompt-completion | Prompt-only | Preference with implicit prompt | Preference | Unpaired preference | Stepwise supervision |
+| ------------------------------- | ----------------------------------------------------------------------- | ----------------------------------------------------------------------- | ----------------------------------------------------------------- | --------------------------------------------------------- | --------------------------------------------------------- | ------------------------------------------------------------------------- | -------------------- |
+| Language modeling | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
+| Prompt-completion | [🔗](#from-prompt-completion-to-language-modeling-dataset) | N/A | [🔗](#from-prompt-completion-to-prompt-only-dataset) | N/A | N/A | N/A | N/A |
+| Prompt-only | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
+| Preference with implicit prompt | [🔗](#from-preference-with-implicit-prompt-to-language-modeling-dataset) | [🔗](#from-preference-with-implicit-prompt-to-prompt-completion-dataset) | [🔗](#from-preference-with-implicit-prompt-to-prompt-only-dataset) | N/A | [🔗](#from-implicit-to-explicit-prompt-preference-dataset) | [🔗](#from-preference-with-implicit-prompt-to-unpaired-preference-dataset) | N/A |
+| Preference | [🔗](#from-preference-to-language-modeling-dataset) | [🔗](#from-preference-to-prompt-completion-dataset) | [🔗](#from-preference-to-prompt-only-dataset) | [🔗](#from-explicit-to-implicit-prompt-preference-dataset) | N/A | [🔗](#from-preference-to-unpaired-preference-dataset) | N/A |
+| Unpaired preference | [🔗](#from-unpaired-preference-to-language-modeling-dataset) | [🔗](#from-unpaired-preference-to-prompt-completion-dataset) | [🔗](#from-unpaired-preference-to-prompt-only-dataset) | N/A | N/A | N/A | N/A |
+| Stepwise supervision | [🔗](#from-stepwise-supervision-to-language-modeling-dataset) | [🔗](#from-stepwise-supervision-to-prompt-completion-dataset) | [🔗](#from-stepwise-supervision-to-prompt-only-dataset) | N/A | N/A | [🔗](#from-stepwise-supervision-to-unpaired-preference-dataset) | N/A |
### From prompt-completion to language modeling dataset
@@ -720,6 +776,107 @@ dataset = dataset.remove_columns(["completion", "label"])
{'prompt': 'The sky is'}
```
+### From stepwise supervision to language modeling dataset
+
+To convert a stepwise supervision dataset into a language modeling dataset, concatenate the prompt and the completions into the `"text"` column.
+
+```python
+from datasets import Dataset
+
+dataset = Dataset.from_dict({
+ "prompt": ["Blue light", "Water"],
+ "completions": [[" scatters more in the atmosphere,", " so the sky is green."],
+ [" forms a less dense structure in ice,", " which causes it to expand when it freezes."]],
+ "labels": [[True, False], [True, True]],
+})
+
+def concatenate_prompt_completions(example):
+ completion = "".join(example["completions"])
+ return {"text": example["prompt"] + completion}
+
+dataset = dataset.map(concatenate_prompt_completions, remove_columns=["prompt", "completions", "labels"])
+```
+
+```python
+>>> dataset[0]
+{'text': 'Blue light scatters more in the atmosphere, so the sky is green.'}
+```
+
+### From stepwise supervision to prompt completion dataset
+
+To convert a stepwise supervision dataset into a prompt-completion dataset, join the completions and remove the labels.
+
+```python
+from datasets import Dataset
+
+dataset = Dataset.from_dict({
+ "prompt": ["Blue light", "Water"],
+ "completions": [[" scatters more in the atmosphere,", " so the sky is green."],
+ [" forms a less dense structure in ice,", " which causes it to expand when it freezes."]],
+ "labels": [[True, False], [True, True]],
+})
+
+def join_completions(example):
+ completion = "".join(example["completions"])
+ return {"completion": completion}
+
+dataset = dataset.map(join_completions, remove_columns=["completions", "labels"])
+```
+
+```python
+>>> dataset[0]
+{'prompt': 'Blue light', 'completion': ' scatters more in the atmosphere, so the sky is green.'}
+```
+
+### From stepwise supervision to prompt only dataset
+
+To convert a stepwise supervision dataset into a prompt-only dataset, remove the completions and the labels.
+
+```python
+from datasets import Dataset
+
+dataset = Dataset.from_dict({
+ "prompt": ["Blue light", "Water"],
+ "completions": [[" scatters more in the atmosphere,", " so the sky is green."],
+ [" forms a less dense structure in ice,", " which causes it to expand when it freezes."]],
+ "labels": [[True, False], [True, True]],
+})
+
+dataset = dataset.remove_columns(["completions", "labels"])
+```
+
+```python
+>>> dataset[0]
+{'prompt': 'Blue light'}
+```
+
+### From stepwise supervision to unpaired preference dataset
+
+To convert a stepwise supervision dataset into an unpaired preference dataset, join the completions and merge the labels.
+
+The method for merging the labels depends on the specific task. In this example, we use the logical AND operation. This means that if the step labels indicate the correctness of individual steps, the resulting label will reflect the correctness of the entire sequence.
+
+```python
+from datasets import Dataset
+
+dataset = Dataset.from_dict({
+ "prompt": ["Blue light", "Water"],
+ "completions": [[" scatters more in the atmosphere,", " so the sky is green."],
+ [" forms a less dense structure in ice,", " which causes it to expand when it freezes."]],
+ "labels": [[True, False], [True, True]],
+})
+
+def merge_completions_and_labels(example):
+ return {"prompt": example["prompt"], "completion": "".join(example["completions"]), "label": all(example["labels"])}
+
+dataset = dataset.map(merge_completions_and_labels, remove_columns=["completions", "labels"])
+```
+
+```python
+>>> dataset[0]
+{'prompt': 'Blue light', 'completion': ' scatters more in the atmosphere, so the sky is green.', 'label': False}
+```
+
## Vision datasets
Some trainers also support fine-tuning vision-language models (VLMs) using image-text pairs. In this scenario, it's recommended to use a conversational format, as each model handles image placeholders in text differently.
diff --git a/examples/datasets/prm800k.py b/examples/datasets/prm800k.py
new file mode 100644
index 0000000000..244257912c
--- /dev/null
+++ b/examples/datasets/prm800k.py
@@ -0,0 +1,118 @@
+# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+from dataclasses import dataclass
+from typing import Optional
+
+from datasets import load_dataset
+from transformers import HfArgumentParser
+
+
+@dataclass
+class ScriptArguments:
+ r"""
+ Arguments for the script.
+
+ Args:
+ push_to_hub (`bool`, *optional*, defaults to `False`):
+ Whether to push the dataset to the Hugging Face Hub.
+ repo_id (`str`, *optional*, defaults to `"trl-lib/prm800k"`):
+ Hugging Face repository ID to push the dataset to.
+ dataset_num_proc (`Optional[int]`, *optional*, defaults to `None`):
+ Number of workers to use for dataset processing.
+ """
+
+ push_to_hub: bool = False
+ repo_id: str = "trl-lib/prm800k"
+ dataset_num_proc: Optional[int] = None
+
+
+def process_example(example):
+ outputs = []
+ prompt = example["question"]["problem"]
+
+ # Iterate through each step
+ previous_completions = []
+ previous_labels = []
+ for step in example["label"]["steps"]:
+ if step["completions"] is None and step["human_completion"] is None and step["chosen_completion"] is None:
+ # happens sometimes
+ break
+ # Loop through completions
+ for completion_idx, completion in enumerate(step["completions"]):
+ # For every completion that are not chosen, we are in a terminal state, so we can add it to the list of outputs.
+ if completion_idx != step["chosen_completion"]:
+ content = completion["text"]
+ completions = previous_completions[:] + [content]
+ label = completion["rating"] == 1
+ labels = previous_labels[:] + [label]
+ outputs.append({"prompt": prompt, "completions": completions, "labels": labels})
+
+ # Now, exapand the previous completions and labels
+ if step["chosen_completion"] is not None:
+ chosen_completion = step["completions"][step["chosen_completion"]]
+ label = chosen_completion["rating"] == 1
+ elif step["human_completion"] is not None:
+ chosen_completion = step["human_completion"]
+ label = True
+ else:
+ break
+ content = chosen_completion["text"]
+ previous_completions.append(content)
+ previous_labels.append(label)
+
+ # Last step: we are in a terminal state, so we can add it to the list of outputs
+ outputs.append({"prompt": prompt, "completions": previous_completions, "labels": previous_labels})
+ return outputs
+
+
+def process_batch(examples):
+ outputs = []
+ batch_size = len(examples["label"])
+ for idx in range(batch_size):
+ example = {k: v[idx] for k, v in examples.items()}
+ outputs.extend(process_example(example))
+ # list of dict to dict of list
+ outputs = {k: [v[k] for v in outputs] for k in outputs[0]}
+ return outputs
+
+
+if __name__ == "__main__":
+ parser = HfArgumentParser(ScriptArguments)
+ script_args = parser.parse_args_into_dataclasses()[0]
+
+ data_files = {
+ "train": "https://github.com/openai/prm800k/raw/refs/heads/main/prm800k/data/phase1_train.jsonl",
+ "test": "https://github.com/openai/prm800k/raw/refs/heads/main/prm800k/data/phase1_test.jsonl",
+ }
+ dataset = load_dataset("json", data_files=data_files)
+
+ dataset = dataset.map(
+ process_batch,
+ batched=True,
+ batch_size=10,
+ remove_columns=[
+ "labeler",
+ "timestamp",
+ "generation",
+ "is_quality_control_question",
+ "is_initial_screening_question",
+ "question",
+ "label",
+ ],
+ num_proc=script_args.dataset_num_proc,
+ )
+
+ if script_args.push_to_hub:
+ dataset.push_to_hub(script_args.repo_id)
diff --git a/examples/datasets/zen.py b/examples/datasets/zen.py
index a1c5d206dd..7aa9b64ea7 100644
--- a/examples/datasets/zen.py
+++ b/examples/datasets/zen.py
@@ -307,6 +307,74 @@ def main(test_size, push_to_hub, repo_id):
if push_to_hub:
standard_unpaired_preference_dataset.push_to_hub(repo_id, config_name="standard_unpaired_preference")
+ standard_step_dataset = Dataset.from_dict({
+ "prompt": [
+ "Beautiful is better than",
+ "Explicit is better than",
+ "Simple is better than",
+ "Complex is better than",
+ "Flat is better than",
+ "Sparse is better than",
+ "Readability counts",
+ "Special cases aren't special enough",
+ "Although practicality beats",
+ "Errors should never pass",
+ "In the face of ambiguity, refuse",
+ "There should be one-- and preferably only one --",
+ "Although that way may not be",
+ "Now is better than",
+ "Never is often better than",
+ "If the implementation is hard to explain, it's",
+ "If the implementation is easy to explain, it",
+ "Namespaces are one",
+ "Although practicality sometimes beats purity,",
+ ],
+ "completions":[
+ [", let me think...", " ugly."],
+ [", of course,", " implicit.", " because clarity matters."],
+ ["... let's keep it basic,", " complex."],
+ [" when needed,", " complicated."],
+ [" in terms of structure,", " nested."],
+ ["... especially for readability."],
+ [" especially when others read it."],
+ [", unless...", " they follow the rules."],
+ [" some theoretical elegance,", " purity."],
+ [" silently,", " unless explicitly silenced."],
+ [" the temptation to guess."],
+ [" way to do it,"," but sometimes it's not obvious.", " especially when there's more than one possibility."],
+ [" clear at first,", " it will eventually emerge."],
+ [" later."],
+ [" problematic fixes."],
+ [" likely because it's too complicated."],
+ [" might be a good design."],
+ [" of those great ideas,", " that solve many problems."],
+ [" the code should still aim for balance."],
+ ],
+ "label": [
+ [False, True],
+ [False, True, False],
+ [False, True],
+ [True, True],
+ [True, False],
+ [True],
+ [False],
+ [True, False],
+ [False, False],
+ [False, False],
+ [True],
+ [True, True, False],
+ [True, True],
+ [False],
+ [True], [False],
+ [False],
+ [True, True],
+ [False]
+ ]
+ })
+ standard_step_dataset = standard_step_dataset.train_test_split(test_size=test_size)
+ if push_to_hub:
+ standard_step_dataset.push_to_hub(repo_id, config_name="standard_step")
+
conversational_language_modeling_dataset = Dataset.from_dict({
"messages": [
[{"role": "user", "content": "What is better than ugly?"}, {"role": "assistant", "content": "Beautiful."},],