Youngjoong Kwon; · Baole Fang* · Yixing Lu* · Haeoye Dong · Cheng Zhang · Francisco Vicente Carrasco · Albert Mosella-Montoro · Jianjin Xu · Shingo Takagi · Daeil Kim · Aayush Prakash · Fernando de la Torre
*Equal contribution.
Project Page | Video | Paper
News
08/26/2024
To make the comparison with our GHG easier, we provide the evaluation results in this link.08/26/2024
The evaluation code and pretrained model of GHG are now released!
Instructions on downloading the dataset and pretrained model weights, and installing the dependencies can be found in INSTALL.md.
If you want to try GHG on your own dataset, please refer to the CUSTOM_DATASET.md.
```
CUDA_VISIBLE_DEVICES=0 python train_nightly_ver.py
```
We provide detailed information about the evaluation protocol in PROTOCOL.md. To make the comparison with our Generalizable Human Gaussians easier, we provide the evaluation results in this link.
- Please download the pretrained weights following the instructions in INSTALL.md.
- Generate the predictions.
The results will be saved at
CUDA_VISIBLE_DEVICES=0 python eval.py --test_data_root datasets/THuman/val --regressor_path weights/model_gaussian.pth --inpaintor_path weights/model_inpaint.pth
$ROOT/outputs/eval/{$exp_name}
. - Compute the metrics.
python metrics/compute_metrics.py
If you find this code useful for your research, please cite it using the following BibTeX entry.
@article{kwon2024ghg,
title={Generalizable Human Gaussians for Sparse View Synthesis},
author={Youngjoong Kwon, Baole Fang, Yixing Lu, Haoye Dong, Cheng Zhang, Francisco Vicente Carrasco, Albert Mosella-Montoro, Jianjin Xu, Shingo Takagi, Daeil Kim, Aayush Prakash, Fernando De la Torre},
journal={European Conference on Computer Vision},
year={2024}
}