From 8abe7a96fcd6b61566754554acda8ffb6830a1c1 Mon Sep 17 00:00:00 2001 From: sebastienlanglois Date: Mon, 3 Jun 2024 16:51:19 -0400 Subject: [PATCH 01/14] add elevation and slope properties --- docs/notebooks/gis.ipynb | 194 +++++++++++++++++++-------------------- src/xhydro/gis.py | 103 +++++++++++++++++++++ 2 files changed, 199 insertions(+), 98 deletions(-) diff --git a/docs/notebooks/gis.ipynb b/docs/notebooks/gis.ipynb index af35e0c7..4bbe256d 100644 --- a/docs/notebooks/gis.ipynb +++ b/docs/notebooks/gis.ipynb @@ -16,7 +16,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -31,6 +31,27 @@ "from xhydro.indicators import get_yearly_op" ] }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "module 'xhydro.gis' has no attribute 'elevation_properties'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[3], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mxhgis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43melevation_properties\u001b[49m\n", + "\u001b[0;31mAttributeError\u001b[0m: module 'xhydro.gis' has no attribute 'elevation_properties'" + ] + } + ], + "source": [ + "xhgis.elevation_properties" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -47,13 +68,13 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "662b6c13c9d946e5bb38e980ccb0ef88", + "model_id": "f78388c3bbf14245b832dda302953115", "version_major": 2, "version_minor": 0 }, @@ -61,7 +82,7 @@ "Map(center=[48.63, -74.71], controls=(ZoomControl(options=['position', 'zoom_in_text', 'zoom_in_title', 'zoom_…" ] }, - "execution_count": 18, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -81,7 +102,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -111,7 +132,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -133,81 +154,27 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 5, "metadata": {}, "outputs": [ { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
HYBAS_IDUpstream Area (sq. km).geometrycategorycolor
0712003433087595.8POLYGON ((-74.37864 48.88141, -74.37452 48.886...3#41b6c4
17120398781144026.8POLYGON ((-80.07991 46.77860, -80.08529 46.782...5#081d58
2712038286023717.7POLYGON ((-73.77437 43.36757, -73.77557 43.388...1#ffffd9
\n", - "
" - ], - "text/plain": [ - " HYBAS_ID Upstream Area (sq. km). \\\n", - "0 7120034330 87595.8 \n", - "1 7120398781 144026.8 \n", - "2 7120382860 23717.7 \n", - "\n", - " geometry category color \n", - "0 POLYGON ((-74.37864 48.88141, -74.37452 48.886... 3 #41b6c4 \n", - "1 POLYGON ((-80.07991 46.77860, -80.08529 46.782... 5 #081d58 \n", - "2 POLYGON ((-73.77437 43.36757, -73.77557 43.388... 1 #ffffd9 " - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" + "ename": "OSError", + "evalue": "GZipCodec failed: incorrect data check", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[5], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m gdf \u001b[38;5;241m=\u001b[39m \u001b[43mxhgis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwatershed_delineation\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcoordinates\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlng_lat\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mmap\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mm\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m gdf\n", + "File \u001b[0;32m~/mambaforge/envs/xhydro-dev/lib/python3.12/site-packages/xhydro/gis.py:88\u001b[0m, in \u001b[0;36mwatershed_delineation\u001b[0;34m(coordinates, map)\u001b[0m\n\u001b[1;32m 85\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39misfile(polygon_path):\n\u001b[1;32m 86\u001b[0m urllib\u001b[38;5;241m.\u001b[39mrequest\u001b[38;5;241m.\u001b[39murlretrieve(url, polygon_path)\n\u001b[0;32m---> 88\u001b[0m gdf_hydrobasins \u001b[38;5;241m=\u001b[39m \u001b[43mgpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_parquet\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpolygon_path\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 90\u001b[0m \u001b[38;5;66;03m# compute watershed boundaries\u001b[39;00m\n\u001b[1;32m 91\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m coordinates \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "File \u001b[0;32m~/mambaforge/envs/xhydro-dev/lib/python3.12/site-packages/geopandas/io/arrow.py:604\u001b[0m, in \u001b[0;36m_read_parquet\u001b[0;34m(path, columns, storage_options, **kwargs)\u001b[0m\n\u001b[1;32m 602\u001b[0m path \u001b[38;5;241m=\u001b[39m _expand_user(path)\n\u001b[1;32m 603\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124muse_pandas_metadata\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[0;32m--> 604\u001b[0m table \u001b[38;5;241m=\u001b[39m \u001b[43mparquet\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_table\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcolumns\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcolumns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfilesystem\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfilesystem\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 606\u001b[0m \u001b[38;5;66;03m# read metadata separately to get the raw Parquet FileMetaData metadata\u001b[39;00m\n\u001b[1;32m 607\u001b[0m \u001b[38;5;66;03m# (pyarrow doesn't properly exposes those in schema.metadata for files\u001b[39;00m\n\u001b[1;32m 608\u001b[0m \u001b[38;5;66;03m# created by GDAL - https://issues.apache.org/jira/browse/ARROW-16688)\u001b[39;00m\n\u001b[1;32m 609\u001b[0m metadata \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "File \u001b[0;32m~/mambaforge/envs/xhydro-dev/lib/python3.12/site-packages/pyarrow/parquet/core.py:1811\u001b[0m, in \u001b[0;36mread_table\u001b[0;34m(source, columns, use_threads, schema, use_pandas_metadata, read_dictionary, memory_map, buffer_size, partitioning, filesystem, filters, use_legacy_dataset, ignore_prefixes, pre_buffer, coerce_int96_timestamp_unit, decryption_properties, thrift_string_size_limit, thrift_container_size_limit, page_checksum_verification)\u001b[0m\n\u001b[1;32m 1799\u001b[0m \u001b[38;5;66;03m# TODO test that source is not a directory or a list\u001b[39;00m\n\u001b[1;32m 1800\u001b[0m dataset \u001b[38;5;241m=\u001b[39m ParquetFile(\n\u001b[1;32m 1801\u001b[0m source, read_dictionary\u001b[38;5;241m=\u001b[39mread_dictionary,\n\u001b[1;32m 1802\u001b[0m memory_map\u001b[38;5;241m=\u001b[39mmemory_map, buffer_size\u001b[38;5;241m=\u001b[39mbuffer_size,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1808\u001b[0m page_checksum_verification\u001b[38;5;241m=\u001b[39mpage_checksum_verification,\n\u001b[1;32m 1809\u001b[0m )\n\u001b[0;32m-> 1811\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mdataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcolumns\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcolumns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43muse_threads\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_threads\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1812\u001b[0m \u001b[43m \u001b[49m\u001b[43muse_pandas_metadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_pandas_metadata\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/mambaforge/envs/xhydro-dev/lib/python3.12/site-packages/pyarrow/parquet/core.py:1454\u001b[0m, in \u001b[0;36mParquetDataset.read\u001b[0;34m(self, columns, use_threads, use_pandas_metadata)\u001b[0m\n\u001b[1;32m 1446\u001b[0m index_columns \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 1447\u001b[0m col \u001b[38;5;28;01mfor\u001b[39;00m col \u001b[38;5;129;01min\u001b[39;00m _get_pandas_index_columns(metadata)\n\u001b[1;32m 1448\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(col, \u001b[38;5;28mdict\u001b[39m)\n\u001b[1;32m 1449\u001b[0m ]\n\u001b[1;32m 1450\u001b[0m columns \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 1451\u001b[0m \u001b[38;5;28mlist\u001b[39m(columns) \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mset\u001b[39m(index_columns) \u001b[38;5;241m-\u001b[39m \u001b[38;5;28mset\u001b[39m(columns))\n\u001b[1;32m 1452\u001b[0m )\n\u001b[0;32m-> 1454\u001b[0m table \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_table\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1455\u001b[0m \u001b[43m \u001b[49m\u001b[43mcolumns\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcolumns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mfilter\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_filter_expression\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1456\u001b[0m \u001b[43m \u001b[49m\u001b[43muse_threads\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_threads\u001b[49m\n\u001b[1;32m 1457\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1459\u001b[0m \u001b[38;5;66;03m# if use_pandas_metadata, restore the pandas metadata (which gets\u001b[39;00m\n\u001b[1;32m 1460\u001b[0m \u001b[38;5;66;03m# lost if doing a specific `columns` selection in to_table)\u001b[39;00m\n\u001b[1;32m 1461\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m use_pandas_metadata:\n", + "File \u001b[0;32m~/mambaforge/envs/xhydro-dev/lib/python3.12/site-packages/pyarrow/_dataset.pyx:562\u001b[0m, in \u001b[0;36mpyarrow._dataset.Dataset.to_table\u001b[0;34m()\u001b[0m\n", + "File \u001b[0;32m~/mambaforge/envs/xhydro-dev/lib/python3.12/site-packages/pyarrow/_dataset.pyx:3804\u001b[0m, in \u001b[0;36mpyarrow._dataset.Scanner.to_table\u001b[0;34m()\u001b[0m\n", + "File \u001b[0;32m~/mambaforge/envs/xhydro-dev/lib/python3.12/site-packages/pyarrow/error.pxi:154\u001b[0m, in \u001b[0;36mpyarrow.lib.pyarrow_internal_check_status\u001b[0;34m()\u001b[0m\n", + "File \u001b[0;32m~/mambaforge/envs/xhydro-dev/lib/python3.12/site-packages/pyarrow/error.pxi:91\u001b[0m, in \u001b[0;36mpyarrow.lib.check_status\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mOSError\u001b[0m: GZipCodec failed: incorrect data check" + ] } ], "source": [ @@ -224,7 +191,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -248,7 +215,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -307,7 +274,7 @@ "2 042103 579.479614 POLYGON ((-78.49014 46.64514, -78.49010 46.645..." ] }, - "execution_count": 23, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -351,7 +318,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -427,7 +394,7 @@ "2 (-78.37036445281987, 46.48287117609677) " ] }, - "execution_count": 24, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -445,7 +412,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -822,9 +789,9 @@ " area (Station) float64 24B 2.187e+07 1.571e+07 5.795e+08\n", " perimeter (Station) float64 24B 2.719e+04 2.026e+04 2.838e+05\n", " gravelius (Station) float64 24B 1.64 1.442 3.325\n", - " centroid (Station) object 24B (-72.48631199105834, 46.22277542928622) ....
    • Station
      PandasIndex
      PandasIndex(Index(['031501', '031502', '042103'], dtype='object', name='Station'))
  • " ], "text/plain": [ " Size: 120B\n", @@ -838,7 +805,7 @@ " centroid (Station) object 24B (-72.48631199105834, 46.22277542928622) ...." ] }, - "execution_count": 25, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -849,6 +816,37 @@ ")" ] }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "ename": "AttributeError", + "evalue": "module 'xhydro.gis' has no attribute 'elevation_properties'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[32], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mxhgis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43melevation_properties\u001b[49m(gdf)\n", + "\u001b[0;31mAttributeError\u001b[0m: module 'xhydro.gis' has no attribute 'elevation_properties'" + ] + } + ], + "source": [ + "xhgis.elevation_properties(gdf)" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "xhgis.elevation_properties(\n", + " gdf[[\"Station\", \"geometry\"]], output_format='xarray', unique_id='Station')" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -859,13 +857,13 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "54df940baa5e4a08bbb00d204929cf6d", + "model_id": "6b6a149ccead450296cc5cf79d7714d9", "version_major": 2, "version_minor": 0 }, @@ -970,7 +968,7 @@ "042103 0.000021 0.000162 3.780111e-07 " ] }, - "execution_count": 26, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -982,12 +980,12 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 11, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwcAAAJ/CAYAAAAtXq9XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAABM5AAATOQGPwlYBAAEAAElEQVR4nOydd5wdVfn/P8/2lt3NprfNpvceIJRAAAENglhAwAIKiEaqit2v2FB/ipAgYAQBBSkiGgtBekIvSUghvW02bTfZbLK97/n9MXfuzp07vd+7z/v12tfeqefMmZkzz3POU0gIAYZhGIZhGIZhmIywK8AwDMMwDMMwTDRg5YBhGIZhGIZhGACsHDAMwzAMwzAME4OVA4ZhGIZhGIZhALBywDAMwzAMwzBMDFYOGIZhGIZhGIYBwMoBwzAMwzAMwzAxWDlgGIZhGIZhGAYAKwcMwzAMwzAMw8Rg5YBhGIZhGIZhGACsHDAMwzAMwzAME4OVA4ZhGIZhGIZhAKSBckBEgohE2PWwChEtitX5kbDrEjZEVBFri1Vh10UPIloVq2OFxrYriGgtEbXE9qmMrb89tnx1wNU1hIiujtXr9rDr4hVEVJlK738UIaKPE9FqIqonoobY74/bOP6Lcj9MRN/V2F5KRFcS0eNEtIWImomokYjeJaKbiShb57yTiOhWInqSiPYoyhjq5TUR0WgiupOIXiOiA0TURkRNRLSOiH5ARAVW24JhGCYdSHnlgGHCgIhOAvAYgMkAXgDwZwB/D7lOj8SEp0Vh1iMVCVtxCuveEdFNAP4D4DQAbwF4BcBJAP4T22Z2/EAAdwIwUtC+BeCvAD4LoCVW3nsAZgG4G8ArOgL41wD8LnbcGGtX5OiaZgD4BoAJAHYC+CeANwCMBfBzAO8QUanV8hmGYVKdrLArwDAR54sACgAcVK2/CJJyfaMQ4iHVtt8DeBLAYf+rZ4t/AngHQG3YFWHCh4gmQhLs2wGcLYR4W7H+LQB3EtFzQoidBqe5C0ARJOH/8zr7NAG4A8B9Qoj4e0REEwC8BOAMAD8E8H3VcZsA/BqSIvE+gNcBjPbhmtYCmC6E2Kw6VzGAfwA4F8B3Y38MwzBpD88cMIwBQogqIcQ2IUSnatPI2P89GsfUxo6p97+G1hFC1MfqxcoBAwA3Qxog+oMsRAOAEGIHgF/EtunOHhDReZAUgp8D2K23nxDiV0KIHygVg9j6negVuK/QOO5PQojvCiH+IYTY79c1CSEOqxWD2PoGAD+OLZ5jsXyGYZiUp08pB0Q0jIi+HbM/PUhEHURUTUT/iJmJaB0Tt2kmomuJaCMRtcaOW6433Ryzp3+CiI7F7FffIqILHdTZ0C5fz76diAYQ0R1EtDlWfj0R7SCivxDRyRrnGUREvyWi7TGb2+NE9BwRnemgzkREnyOil2PX3xazGX6ciE63cHweEV1DRP+KHddKRCdiNsGX6xyTTUTXE9F7RFRLkh9AJRH9V30MERUS0XeIaH3svE1EtJuIniaiC1T7JvgcyOYnAL4U2+VV6rWFvjq2j67PQayeS4jozVjZLbH78gARTXfaBrE6XaVRp6S6k4bpDBEVENGPiOjDWFn1Ju3t6L0ICiK6kIgeIqKtJNmcNxPRBiL6PhHlqvZdBeDh2OKPVW13tWrfGUT0V5L6j3YiOkRED5O2TwoR0eWxdqyOvQf7ieglIvq6Yj/Te+cTsg2+ljnc07H/F2kdSET5AP4AYCuA37iow4bY/+EuzqHE8TXp0B373+G4RgzDMClGXzMr+gSkaepdkKasGwCMB/BJAB8noo8LIV7QOpCI/h+kUan3AfwPkj3rVwBMIaKzhBBCse84SFPYgwHsALAOks3sfyB9UH2FiIogmY+Mh2RD+3xsUzmkEbo9kKbq5f0nQ5reHwFpBHAlgAGQRsvOJ6IvCCEet1h2JiSTms9Amtp/A5IZSzmkdu4A8KbJaSoAPAigBsC2WF2HQmrzhUQ0WQhxu+qYRyHZJtdCavuW2PUshGT28KSifi/EznUAwKpYnUZCEiya0dteWuyC5F9wBoBxsX2rFdt0IaJCAM/F6tQEyUyiEdKzcTUk06UPHbaBXp0QK8uoXv0AvApgHoCjAP4LoBDS/V9IRAuEELfoHGv5vQiYP0G6hs2Q3vViACdDGj0+l4jOF0LIgt//IPWFp0MSVtcrzhO/p0T0aQCPA8iBZIryFqT2vhrARbHrVY5A/xLAdyDd4zcAnAAwDJKt/XgA98b2c3zvnBJT3spjix+otwshDhBRLYDRRFSiMQv2E0g2+YuEEB1E5LQqY2P/qw33soAH16Q+XwGAH8QWn3NbP4ZhmJRBCJHSf5Ac4YTFfWcAmKmx/gJIguwuAKTaVhkr4xCA2Yr1AyEJ3gLAOapjno+tvxdAhmL9tXJ9ATxisc4Vsf1X6Wy/Pbb9asW6q2PrlmnsPxiSfa28nAlJeBKQpttJsW0OJGG7CcBgi/X9YexcGwGMVm0rA3C62bVBUkzOV7ZdbP0YAHshjeZVaJznPQB5qmPyAZyqWF4U23eFxvlLAMxTrVsV279Ctf6R2PpFVu5JbP2DsfWvABig2jZCWbbdNjCrk+q5uF21/p7Y+hcBFCnWT4aknAgAi92+F378yfXQWH8JgELVun6QFHQB4ItW2kbV7s2QBPwzVdu+KD9/inV5ANpi96pMtX+WxjkM750P7TYzVl6dwT4fxPaZoVo/G0AngIc0nvnv2qzHi9Dpq/TuNYChXl9TbFv/2H14BMCzkPo+ua/ID+K+8B//8R//ReGvT5kVCSE2CSE2aqx/HtKU8zgA05MOlPiREGK94phaAPfHFuOmN7FZg/MBHAfwbSFEj+KYByGNNvrN4Nj/V9QbhBBHhBAfKlZdBOmanxBCLBNCCMW+HwD4GaQRWD1nwzhElAPgm5A+qF8WQuxTlV0nhDCbNYAQ4pgQ4gVl28XW74U08puBRNMA+XrfEkK0qY5pFQrbY8W+qzTOXy+EWGtWPycQ0TBIAmgrJMH0mKrsg8qyHbSB03oVArgGQA+AJUKI+Ei1EGIbJHtyQN/23NJ7ETRCiBVCiGbVukYAt8YWP2HzlDdDckz/thDiNdV5/wJJgDyJiObGVhcDyAWwQQhRp9q/S32OECiK/W8x2EduP3lfeebtAQD1AG5zUwEi+iqAj0BSuH7l5lwxHF2TgkJI5l1XAVgMSUH/O4CvCCFaPagfwzBMStDXzIoQszf+KCQTg0GQTAQAaVYBkMLZbdI4VMvcaEfs/zDFOtmmfqVaOInxJCTTCz+Rhcw7iKgLwEtqoVnBebH/K3S2vxH7r+mToWI+gFIAa4UQayzsbwgRnQFppH8EpJFYQm9bT1Dsug3SR/9LRLQZwD/UwreC9ZAE4duIqBrAszGh0W/OhjRLs1IIccDqQTbawCnzIM2uvCO0o9I8CmAZgNOJiJTKYwyr70XgkBQNZzEkE55CSAqVbP9it+3k9+RfOtvfgDRbcRKAdUKII0R0AMCFRHQbgL8KIQ7ZLNNP5HYwMvvSshW6GdJ7/mWDd8y8cKKzACxF70CCF23j9Jqkg6T3kkiykRoJ6Z7/AsBGIloshFjnQR0ZhmEiT59SDohoBoB/QzJD0aOfznotgU4eZVU6OMqOdVU659Fb7xlCiJeJ6C4At0Ayo+ggovWQBLk/CSEqFbtXxP4/RURPGZx2oIWiR8X+60YusQIRlUAKIWgUISR+n4QQDUR0HYA/xv6WE9F2SHb0fxFCvKPYd0dMWPsVgCcAdBPRh5B8Lh4WGlFLPMJW29htAxfIz2ul1kYhxAkiqodkclUMacRYidX3QhfSTgi4QgixwsrxGucjAL+FNEugJwzabbuK2P9qE/t65XtyFaTBgP8H4P8R0V4ArwF4XOj4NtmFpKRjk1WrtwkhzEbiZYW40GAfOfdAU6ys0QB+CukaHrFX016IaCakwYgcADcJIf7p9FwqbF+TFjEFeD+Ah4hoIyT/rYeJaLaGcswwDJN29BnlICYw/A3SR/4Psb89AJqEEIKI7gDwPegIEzY+ClZGr7xE0zRMCPENIloOyXziXEgzGicD+DYRfVYheGXG/j8H4IhBOdts1Mnttf8aklD8GoD/g+Ske0II0U1E50Py6Ui4T0KIJ4joJUjXez6AsyAlUfoaEf1GCPFtxb6/I6KnIY30ngfJQfibAG4lopuEEPfCP6y2je02CKBeSft4JCxdpbGuEvqzWWZ8FlJSqwOQFOS3ARwVQnTGTN/aYb/tMiFd/19M9osrl0KIV4hoPCRH949CeiavAnAVEf1NCPFZm3XQQj6vktUwN9ORByn6E1GhziznSNW+Z0MSvAdDiqqk3Lci9v8rRPRRAG8IIX6oPmHM7PJ5SDOMtwsh7jGppx2cXJMhQog1sYGGmZD8TpJCFzMMw6QbfUY5gDS6NhnAGiHE1zS2j9VY5wR5eny0zvZynfV6yCH0tGxkgd4R6SSEENvRO2qZB+DrkEZUl6NX8JJHfv8ghPi3zbqpkWORj3d5nk9Ccri9WCRHFNG9T0KIo5Ccfh+MKYMXAHgKkgnRI0KILYp990NyxL2HiLIAXA4pnOXviOivQogTLq9Bjd22cdQGDpCfV80MtLEZjBJIZlu+mF8JIbxUcgCp7QDga0KI/6q2OW27A5B8km4SUvx7S8T2fTz2ByJaAMm/6bLYM+kqCo4QYpHD404QURWk/mgOes0HEavnSEizIFUaz5/cl2oxJvZ3Qr2BiIZDckAeCmCpEOInTuquh8trMkLOCzIIrBwwDNMH6EsOyf1j/5PMIIioP3ptit0iO9wujjl7qtGMG29ALaTIIGNiQmyc2CioetRQEyFEmxDiTkhZewcTkeyY+1Ls/yU266XFGkhCwVwimufiPP0BNOp8wC+zcgIh8T9IUUcAfUdz2UH0MUjhOHMATLRZXyusgiTsLyaiERb2d9IGsiJpR+lfC8lJ+uSYjb4a2RH9jRQyqZDfda3EWU7bzpP3JGbi9mhscYZik5N75xb53fiMxrZLY//jypUQ4hEhBGn9QQptCgDfi627RHmyWB/7PCTF4WH0OoZ7ja1rMoOkLMlzIM0a7XVXNYZhmNSgLykHuyA5op6jFIJiI+p/gBRm0zVCiF0AXoYkoPyKiOJtTERfgk1nZCFEBySb1zJII//yubIB3AWNEV8iuiQ2QqlePwfAEEgjwMdjq/8OyWToapISg2Wrjskhok/F/DWs1PUuSCYbfyKihFkNIiojC0nQIDm0lhJRgtkFEd0KybQh6bpidVTXvT+AU2KLVbF1ZxPRR5T3JbZ+NIApkIQAyw7DVok5XP4FkvPvI0SU8LwR0XBFpBvAZhvEkGcBJtmoVzOAhyD1BfcqFVoimggpNC0gzbKkCrJD9FdIYftCRAuhH2HHrO3uhKRE3UVESVGiYs/2EpKSg4GIyklKOleg2i8XvfdPadpi+955wFJICutXlf1FrH/8QWzbMreFxNpgJSQF/W8ArvNR0bR9TbH7NlOj3iMgzfj0gxS4wMjskmEYJm1IG7MiInrHYPNdQoiniOhPAK4DsIGIXoH0sV8IyZ74EUihJr3ga5BmEG4AcB4RyUnQToGkiHzV5vl+CmnU7e6YsFgNKcpMAaQESmqb7UUAbiaig5DiejdAcjw9A5IQ+CMhRCcgjZoT0Sdj5/9V7LiNsWNGQTIfKIVkqqEVxUnNHZBG2i4BsJOIXkdvErS5kMx8zMKZ/hLAYwCeJCmT7AFIiaMmQ1I+1KOOowE8A6CeiNZAap9SSPe2GMA/FU7Js2LnOEpEawEcg2QucCakaEB3+xhV5ubYNXwEQGWsbZog2WvPhRQZRY6IYrcNAMn5/P8A3ElE56HXHOI7JpFlvgdgAaTZsz1EtBq9SdDyIMWgf9bg+KixDNK7vATAotjzPALS838ngG9pHPMOJJ+bz5CUMXkPpMGEh4QQbwkhdhLR5yHdk3/H7NC3QlKERwOYCmnW6XFI/UoZpBHye2PP5AFIbXoapOftPUgO5zJO751jhBDbSXLO/x2A14noRUgzGOdDUmK/ETNNdMsvID1f3QC6IA0caNXnauVyTFm+T7FKjn71LBF1xn4/KKQQ0W6u6TJI92kLpIGSTkh93zxITvWbISX2YxiG6RuICCRbcPOH3qRiRn+3xPbNhOSouBnSB7wa0sd+NPQTV1VCJ8kaehNqPaKxbSwkQbgOkr32OwAuNjrG5DovhCRQtEESaJ+CJFQm1RtSkqLfxvaviR1TCSkM4yKd8/cH8GNIoT6bYnXeFTvmaiiSY1moawaAL0HKAFwfa+s9sbZWJiSrgE6CN0ghKN+GpKQch2SrfJZW+0GyYf4BpBmb/ZAcTqtj5X8RQJZi3/GQcje8AWm0th2S4PYCgEs06rEKHiVBi23LheQk+76inbdD8gOZ5rQNFMdcCclUqAW9z39FbNvV0En0BUlw/T9I70ZbrMzXAVyhc48r4eC98OH916wHpFmgf0N6/pshKV3XKfqMSo1j5seegxOQFAOt/mACJAV/d6ydTgDYAmn25ULEkghCGm3+JiQzl72Q3oGjkN7JG6GRVMvo3vnchhdBcnxvjP29DsnXxc455Gc+KQma4l0x/DN4joz+kp5lu9cUu29/ij37dZCUg1pI7/6NUCVW5D/+4z/+S/c/+UPGMAzDMAzDMEwfpy/5HDAMwzAMwzAMYwArBwzDMAzDMAzDAGDlgGEYhmEYhmGYGKwcMAzDMAzDMAwDgJUDhmEYhmEYhmFisHLAMAzDMAzDMAwAVg4YhmEYhmEYhonhKEMyEZUDGOhxXRiGYRiGsUatEKIq7Er4TUjyRp9oW4bRw3YSNCIqz8jO3NfT2e1TlRiGYRiGMaEFwJR0FmKJqDy3oGBfe0tL0EWnfdsyjBFOZg4G9nR244b7H8OICVPiKx9/8kbvasWkJFdefk/Sur72XOQO/Z7utvbqXwZYE8boXsjwPQmWW17aCQC4+yMTQq5JatNa24RdKzYWQBpRT2cBdmB7S0uSvOEnB3duxe+/9vm+0LYMo4sjsyIAWL32PvzgM2/Gl4tWl3hSIcY5eeX3oa1qSWjl/3v1D3HzTSvjy0uXLUbRsL71XOSVT9fdlk3JbaFuL8Y7jO4FALRVLUF2H3s+AemZC+tZm5SXg9sunYmikOvhBvmdTcW6pyojJkzBmFlzw64Gw/QZXDkkc+cYHfLK7wu7Cgnws2GOUjHoi+X7TZiKcpTbNqh3M6/8vqR+6bZLZ8Z/L19RGUg9zDC7VzfftDLhz+pxDMMwqYrjmQMZvz80PLJqjbaqJfGPcZhCUV++R24VtCBHUuX3Si3g9KX7J98vP96XvtSOWlh5F8Lsp+wi30/1+5Kqsx8MwzBGRDqUKY/MMKmGG4EnaMWgL9BWtSSlhNCg8PMZUCoGbVVLIv+8mb13RttZMWAYJh1xPXNgFS/sNOVRGp5N0IcFofCQ2155D/RGp70UmLRGafk5iBZRHGH2ok5aM5Xq5182H/JzpiYovL6H7L/AMEwU8XTmQE/g8dJOU2tal5HQEkC5fcLFz5FrLZtu5TY9li5brCmMpIuAIreLURvI9yWVBVU36D0DTLDwPWAYJoo4yXMwF8DaGdeelhSJxmgUxK5ts9aoltV16Y6e0KMl6PDIVLRxen+s+jf0NeFX3S6yL456HRMc3P7e03S4HpsefAsA5gkh1oVdH7+Q5Y1fvrQ2sGhFezesw/c+Mg9I87ZlGCM8NSvSE3C8Gr3WG+1kAVgfpSMdt0/08POeKIUwu/dfbTeeCmgpTFGL4tUX0VLQGIZhmOjiq89B0CYtQfoihCFsu/nAsmKQPjiJBONUMbBDmDblXkTH+c3TGxNCbYZJuo22KxWEsCOqOSVV680wDGOXwByS1ZgJ11EWZtVhIP2uqx0zIqbv4fVzoBTkrJ5b+YxGTYiyUpffPL0xgJo4J2pt6pZUu55UV2wYhmHs4GsoUz0zoCAE/3RxxPV7Oj5d2qmvENSIsh1n3bDNecwcj60SlVkDmXRzmE7la0nlujMMw9gl0JkDt0pB+4lWHHhjF5oPN6B03CCMWDgOmdmZHtXOOupwql4Rhl0u+2xEA74HzvDqnYmiYqD1O9VJZfMi9p1gGKav4LtyoCfs2BGCWuuacWD1LtRXHouvO7LhAI5sOICyiYPxn8zf4iNXXY/8on4Jx/nlgxD2aLvXH1RZQWCn5XAxa3uvBBOv77MsNPkt6NmtdyoJnn2VVFQQGIZh0p1IZ0gGgK62Tmz+87sJioGSjoNdWHn/7/CNBZPw4iN/0D2PlzH/ZdOoMGKFG32c3FyfV9fiZU4LxhgngorSX0br/ji9Z0EoBnZgIS414PtkDM9UMAwTBpFWDjpbOrD+/tcT1pWOHYhxF81AZk7ypMdffnILHv7ujTi4Y6vuOaMssBp9KGX7Y7P6y0Kf2mk6SMIuPxWxopgpE3e5UQyUZSrX5ZXfF+mZI626abUFC5xMOsCKAcMwYRFatCIr7HtxW8LytC+cjPyBRQCA4tFlqN10COXFJ2HDK/+L7/Pef5/Be/99Bvd8sA9Z2dma5w0y5Kld1HatbkJSagnofl+vWuAMqn3DDKOZKpjdiyi3XdTeUxk2xXNOlJ83hmGYvkykZw5O7KmN/y6bNCSuGABAZnYmhswdha8uewhf/PndaGquQ1FhWXz7gW2bLZURxZFtp6PDVkyDgrjeMMytGGek230KWuBMt/YLEh4Ztwa3E8MwQRPpmQMlFedP1lwvj1SPmTkXP7n4zPj6UVOmG+4v/wb61uif19dpNEsQZJvyKGTfhu8/wzAMw3hDZGcOhBCgTAIA5A8sQkaWccjSY4cPAACamuuw+Ku3IjOrV+/Rch5W/7Y6oh6FmQajOljxSWAYL0kXH5O88vt4lNZn2PzPGurnkJ9NhmGCJLIzB211LRDdAgCQXZBjuO/SZYtR+eJWNDXXAQA+rPkP9ix71XaZVmYQ9LYHHafezLlUD6/rp5x9Yfo2qTwDF+UMz+lIugm6QSg9/EwyDBMUkVQOhBDY9/L2+HJGlvkER/uJ1vjvgkFFBnsaC8hOBRxlrgA75bnB7nn9FNxSVSgMgnQXNv1KChgU6SaoRhGtNvbqnQh7NoKfH4Zh0o1IKgettU1oOngivjzyzPGmx7QcbQIA5PTLtV2el9F1tAQlr0dUjRLL6QlpLLyHRzorBjJRf760BEgjoS7dFbogufmmlVi+ojJhnV7bas2I6qFleuPnPVNHkfNLKfBTkWIYhrFC5HwO8srvQ79JyxLWZWQb+xt0NLWju70LAEBEvtXNbHRU/pBpfdCCGlkNKzkbk7p4/WxGbRZBbTJk1X6b7by9YemyxQnCrZGgq+cXFjZaioif52cYhgmTyM0c9HR14MSOdxPW1e+pxaCZI3SPObB6Z/x3v1H9bZfpJHeA2XFhxfvXqwvD+E3QfjdmpILA1ZdmKKxep5vnJ+z2dFO+3vPaV54PhmGiQ+gzB0IINB48gf2rd2Ljg2/hrdtmYvujtyTsk1dWYHiO1rrmhOXOlg6vqwkg+aPlZibBC6yWzzBGePWchDFj5fXovlZ+Eb+VjFRQYtwStdmkKGGkFLBiwDBMGIQ+c3DorT04/N4+3e3jLpyOfiONZwMKhxSjtVZSEGo3H0b93mOYdtUpyMrTzpAcJGEK6MrwkqwoMOmGWYQhedkLG24/nV77ggA4cuFI4NKZnp7TT7t/J2gplX3h3jIMk36ErhzUbj6suy1/YCGGfeTvAIw/oOXnTkLL0Ua0HJGckjtbOnDorb0oP2ei7jGiR6DxwHFkZGUib0ABMrIykZFpfSJFGZ0oLMHbKKyq37MWfYUgo0+ZwUpeL2qh0I4QZmXfqAmeRmiZc0XNxOs2jxUDGasO5kGjVxerdWSlgmGYMAndrKhgUD/N9QNnfwJzv/d+fNmoU83IzMDky+ejbNLg+LojGw5g+98/QGdzO4QQqFlXhb3Pb0HLkUYAwJbH3sOOZ9Zj21Nrsf6+1/HBvavRXN1gWl+1w1xUPr5qeBrfP/RC1vpNVJ+1sDETpGTzDCtmGsr7qnWc1wKoX0JglPKPBCW0sxkOwzCMN4Q+c1Bx/mTs/s+HaDpcn7C+cd+HoIxE3cVoaj8jMwOjFk3Eid216Onqkc6x/zh2/WsjRI+Ihzo9tqUaGZkZ6OnuSThedAtsfWINhi8Yg+GnjjGsc5SFtKg4QQdBECPpepGn0r1tUwWvhUGj+xplwTPqz6M6DGi6YqYIWZmRSuf2YRgmNQh95iC7MBeTL5+HsR+blrBedB/U7ST1nBCzC3Iw8yuno2zSYBQVlqGosAzUlI2MlhwUFZbF91MqBrnFeQnnOPTOXmx57D10t3ehvvIY2htaE7ZHYSTOjCjPaHhJ1My5GHPCmnXpi0S1H4iS+Y9VrAjsbkzdGIZhokToMwcyZZOHYP/qnfFIQx0NbRBCGB6jNZOQlZuNsYuno7zrdLzw0L3Gx5cVYPpVC9DR1I5ND74JubiWo0344L7X4vsNmDIUFedPBmVkRCpEqRZRqw+T/li1b/dSKWDBK3Ww478RZQHbCz8UnjVgGCYVCH3mQMnoj0xKWF5796toPbrf9DitDnfiKacnrSsqLMP0q07BkHmjUH72BEz74ikAgJyiXMy9+WwU6+RIOLa1Gnuf26K5zYnAI4+e8igqk04YPctRVqhTnVRoTyv+AFr9eNRmGaz6rrCQzzBMKhOZmQMAKB03CKPPnYR9L2+Pr1t7x3k4+advIadfmcGRyWx+/RUAQFNzXXxdUWEZutq6MOrMCUn7ExEmfmYOjm48mFC+TN2OIxgw9RhKxgxw5Own26lrHROmDbufIRqZvgfn3mD0kEN7ymahVqNGRRW9mQQjc1iz8zEMw0SBSM0cAMDAGcPRf+LghHXVr15ta9Tp5ptWorO9DQASfA0AYPFHfmh4nkEzR2D21xZi3EUzMHvJQvQfPyi+beeKDQmhV63Y9CpnB8xGVpX7+T2joPbbiNoIXRTgNunlN09vxG+e3pi0Xv2cGr0TrBgw6YbWd8nJDAgrBgzDRAlfZg7cxNgmIoy7cDpqhu3H/tU7AQC1Hx7C4NkjLdt8Ll22GCfN/CLeePqxpG3b330DN//AuH5ZedlxpWDM4mk4ce9qiG7JIaHyha1oqKpLcqCW0YuLb1XYV+7n14wCC73mcBslohWnXksx0IKVAkbG6L3qywIyJ0xjGCZK+Dpz4GYEfNDM4fGkZOqwo3ooPzynXvJZfO4nv03aR55RkOtnRkZmBmZ/dWHCurptNVh3zypTh2k75fhxLOMMPxSDdFI2tN5rtQIgzyCwYsDIaGUQ7gs4vU7u+xmGCQtfZg7UNvlORsAzsjJRNLIUDfvq0FbXgiMbDmDwLPPZA3kEhohwxqevxHt7HsHu/2xCTx0BAOae//GE/a3ULTMnC3NvWoR1y1bF1/V09aCtrgX5AwptXZcWWj4MqSRUWfn4BT0qFrWRuCjVxQ3qZ5RzPjB28CuZXJgor0npU2H3eCWsGDAMEyaeKQd+CAkjF47DtoMn0NPVg/2rdqJoeAkKBvWzZF4k1+Ubt72Au3M+hgvPuB0lg4bgiRVLMO2Ms23XPSMzA1OunI+tj6+JrxM9yTMHVp2VtcpLZyErSGFdbvvlK+yX2VeSNTlFa4bALlFT3JhgSSfFQIkXoU6V6L1beeX3oVN8COAiz8piGIZR4plZ0fIVlUnr3Aq7BYP6YdjJowFIgviWx96PbzMSLpQd9NJli0FEmDDvFAwur9D1CTCj5WhTgmIAAPkD9WcNvBb0vXJS1vt4uRHWvArt95unN3o+YubmY52uQoySvnCNTLRIZ8XQaqhT5f5apPNAEcMw0ccz5cCsM3Qq9A2eW56wXL+31nKZbsuWBfIbb/gv2j4QCZGPJn56NojI8Hi5g9fq6IOeNjab6g5TSLyh/Px4JJyRC0d6dt7rL6kAwAqCEWEIaqkmHMrvjl1zEa/hvCjuCPo+ys+5H897e/UvPT8nwzCMjO+hTN2OgGRmZyK3ND++vHNFYjhFZQdstxM2c5iUt/3u6k/hSOXueM6EHzzxEorLyywlM7MTqcgKURYOnH4Ef1/1AgDgwOsHNKPi2IWdYRmv0AtLGbSSEOX33glBKohhKnVeXKey/mySxzBMELhWDuwmAnPC9KsWJCzXba9BT1d3fFnZWcpKgtq0yKmg+Lvfno8Nr/8vIZlaQXGJ7WtRlu9WcE0VQcHOFPttl870VZhP9xkAhkk1ghBy9ZKUBSVge6WY+DkLwTAMo8YTh2SzvAZuR88pg5CRmREPabpn5WYAQP/xgzD249M1zXuMOlE7QmhGdiZyivPQ0dAbAvWXl12Amx54ClNOXWhwZCJuHbaVbZgKI+L8EdMnle5jXyYqzumpMhgQNdRCeRgR07yA+1KGYYLG9cyBUsDx8yM28dI5SeuO7zqKtXe/iq62Tktlq0fstTpv9XmICJMunYt+I0oT1i+77rPo6UnMv2BkWuSFIBiEqYyZmZQZRqNyYUzvt1UtseV7oK671x9mFvRSg6goBmpYoXRGVBUDntFkGCaK+O5zIGM1xKceRcNKMO2Lp2DYKRXI61+QsG39/a/jP7//jeWkZAASbDi16qkktzgPky6bi7k3npWw/r3//iNp36gKf1ZNfPxQ9sJ25AR6nZOtYDfiCJOe8DPABEHYfSPDMIwaT5QDu6NZToXO/AGFGHHaWEy76hSUnzMxvr6osAwr/3AXjm8/Yuk8Zp2x3uh5RlYm5px1YXy5pnJ3/HdLQz22vv062pqbI6sgyGgJPMp1RlGWvCg7aGVBOeMS9ofYz7ZlvCOqSkHU+5aoEOZ7HnYfwzAM4xbPZw6MPl5ejUoTEQbPGonpX0p0VJ49/lOOzyljVq+9B96NOydvO/4cTtRU4zdf+AS+edoULLvus7j9ooW489fnhfoRt2o+YzRC7qXwqixHWbeglYSoCHysGHiP1rOULkKaOpiBHqw4SITta+CEdHlWGYZJDzxTDsIQePJKC5CVnx1fLuxfZrC3M9Qf3Pb61ni+gwvP+T9879y52PNBb3K2+iPV2PXoZvzvgXvQ1d7peX3M0DOXigpaCklQdY1qmzDmqIV/LQHQb3+RMFA6r/d1pTIKuSbM4JwqDMOkA66VA3XIUL195P28tmmffbpk5tPUXIdXXr4He/+3BQff3G3of+BGOJ0w6fT473u/9nnNfZqa6/DXO27D+vteR9uJFsvn7mukg/DG+I/8fqpDFts5NlXp6wqBTDoI3ezLxDBMquDJzIG68zWLdmPng2c2WrRlw0sAJL+Dg2/uwbGt1Wjc3IhBJ2ZYLsOoburlxuIDmseN+8JUfP/pF5DfrzhhfeX/tjqqh1NSLR52ULHOoyIgMM5Ilec5TIKKHMe4R09J4H6KYZgo4JlZkVlYUHVHaDV6kdkI/4RPzUZTc11CkrKm5jr875Fl+MqXnzI8v53IPTIDJg/F6E9PwOd/eifOuuJLKJ3bHxOuno7s/Bz848VvY9SlozHmY1N763K4HqLHehQlK1j58KeScBCk4MdCZurh5p6p/Vz6CjzjEC30nmE9M8u++Mwy0YaIBBHdHmL5i2J1WBRWHfoSrpUDPaHfaB+jfc1Qd5rZBTmYpJEDAQC+sWASXvrLHy2fyyr5Awpx+qeuQE2/DzB0/mhk5vTmksvIykRxeaLvw9qlr2L/qp3oagvOB4GFg0R4Op9Jd9zkJ7FKGIKrF+UFVWe3iqwSVhBSD4UAK//1ENFxInqRiM4Lu34MYxVPZg7UgpcdwdRK9mSzTrPfyP6YvWQhJn56NqZ+7qSEbc/8v9tx7VWPGx6vVScgMaSpso5m9c0uyEHBoKKEdTUf7MfGB95EZ3O74bFWsTIjEoSwEHXyyu9jpcBjlKZ+LMBEBz+dloO8126frzDedy/aR+v4MKO7Ma74E4AvAPgSgKUApgP4HxF9JNRaMYxFfEuC5reCoCYrNxvF5WUoGNwPEz41K2Fbdk5u0v5KJ0cj0yW1Ha9VJWHK507CqDPHJ6zr6erBtifXGl6HFawKAX09wgl/SLVx2y6sbPUt9IRWP94vrzILB/mM6kXOsuuArOdwbxapi4kk7wghHhNC/FkIcTuAj0CSt24Nt1oMYw1fMyRbEfqV+5phtZPtbOwdnR8zax5y8vMtn+/6Sypw800rLflEGNWZiDBkXjnm3XI2pn6+dzajvaEN7Q1tptcgozd74YS+NovAQqw2XrQLR17pGwQpiPpdlt/n9/K9Uv9mUhshxGYAtQDiI4ZEtJCIHieivUTURkS1RPQMEU1SHx8zUXqMiM4ioneJqJWI9hHRjRr7ZhHRT4noQGy/tUS0mIgeIaJKjf1PI6KVMfOnNiJaT0RXmV0TEZUR0a+J6AMiqleUlRTGMVa2IKLBsd/HiaiRiJ4iov4a+y9SXOcBIvoFgGz1fox/+KocAOHYvrcdl8KHNjXX4UTW3uTtFjtdL0beiQgFg/olrDu6QTvikV4d3KBUCMKeRZDrEpSS4kQY4Kl76/Q1ZbOvkU6Kgd/l+CnEq2cUWGEIjMlENFf1N8zJiYioFEB/AMcUqy8DMBzAnwHcCOB+AAsBvEFEgzVOMxPA3wG8BOCbAPYBWEZE56r2uw/AjwBsAPAtAC8DeBLAXI16XQJgNYABAO6InbcGwCNE9G2TyxoL4MrY8d8D8H0ALQAeJaIv6xzzLICi2L4PAfg0gGWqOp0G4HlIbfMLAHcDuATAr03qw3hIlvku7lGOxLvFSsdYXF6G6jVVAID9r+3Cb3/1EWQX5Lgq12wWxOga1TkX+pUnKcqWUSZFsrKflfoFTVTqoYUc3UYrtj6TekRN0YuSsm5Eqo/iA73vrlbmbK/e61RwdE4Hulf9Fd17XwumrH375Z9/1dj8EwC3WzhNERENhDQAOwbAzwBkAnhCsc93hRDNyoOI6FEAmwBcA+CXqnNOB3CKEOL92L5/AlAF4HpICgCIaDqA6wA8LYS4THHelwH8D5JCIa/LB/BAbP3FoldQuZeI/g7gdiL6oxDihM41bgJQIYToVpzzbkjKy3cgCf9q3hFC3KjYXwC4gYi+LoRoiK3+HYBOAKcKIQ7E9lsOYKNOPRgf8H3mwCvsjFIWjy5D8ejeiEHbnlyD7s5ugyOMy5U/4sqPudaH3Wod1dGMzPBCiFAqN2GN+Jpdhxej9jfftDJyAmG6EmXh1k/cOMvKs5F9te2AaChsqRQBiQmNzwGYp/pbbvHYuwAchTQK/w6A0yGN5v9e3kGpGBBRERENAFAHYDuAxMgqEu/KikHs+PbYuccp9vm4onwo9n0ewBbV+c4DMBDAwwAGENFA+Q/SCH9+rN6aCCHaZcWAiHKIqAzSDMRLACYSUbHGYb9XLa+GpDSNjp1nMIBTADwhKwaxshphve0ZDwhEOfBauLXCuAunIytfMlFrr2/Dnmc/dFyuXdT1JCJkZGfGlzf/5V3DDM5eoRZCtJScKOClKc/yFZXxc9opm6PvMFaxk13dTpSzqGD1HUj10Wyv3vdUbwdGl21CiHWqv8MWj/0dJOH7IgD/D0AugHzF6DyIaBgR/ZmI6gA0QvJJOApgBoBSjXNWaqw7DkA52lgR+79dY98dquXJsf/PxMpV/smj/lrmTXL9iYhuIaJtANogmUwdhWSeBIvXcDz2X76GsbH/2zSODTajbB8nZWYOAHtCbWZuFqZ+7iTk9MsDANTvPYamw/WOyrViCqAWxNWCQNmkIfHfbXUt2P3vTb4qCFFTAIzQi9Lh9bmjil9CY6oIo06xo9B5rfRZfa7MZhtTFbfvVSq8l0bwIAJjwlYhxEtCiP8KIb4Dadbg+0T0cQAgogxIdvUXQRrl/zSACyApFJuhLZvpmT+Qzm8z5DK+FitX6+95g+O/BanuawBcBeBjsWPkWQsn1yD/1xKO7Fwb4xLHPgdXXn4PxsyaG+oHz8yOPqdfHkrHDsSRmAPwtqfWYt7NZ4NI/xnTmqFQRi7SK0/vGJnysyeg9sND8eUTe2qx9u5XkT+gEJSZga6WDlAGYej80SgcXpzkxKysV6oIGVoh/vTwSliwkxHXqlDppyDjpy+In89JmD4sdgQz9Sh/qgulfuOX0Ks8r1dRfezsm4qOyExa8TsAXwXwGyJaCWl2YAaALwkhHlHuGDPPqXVYjhyBZRKAt1XbJqqWd8b+nxBCvOSgrCsBrBZCJEQn0nCQtsOe2P8pGtsma6xjfMLxzMHjTyZF0AoFs9HRUYsm9C4IoL39atPRRiOhR8tuX6sO6nUZWZmYf+s5qDg/8ZlvPdaMliON6GhqR3tDG/a9sh3bnlyLlqNNmvVKF8VADs0a1ghcVEb+UuV+MowSq7H31c79bjMIhx2tJyqmh1defk/YVWBsEPMP+B0kAfcy9I6gJ4xUxkKIOoqIFOPZ2P9bVOe9AMBU1b7PQ/Jx+CERFam2gYgGkdFIqnQN6voPguRM7QghRA2A9wBcQUQjFeftB8nxmgmISJsVeWEWQRmE/AGF8eWjH7wQ/+22ozfLPaClSAycNgxlk3TN+ABIydK2PPae43qFjVoY0PuY2/UPcFoXrWglfpQRFcHBb4xmDfTawOm7rHVcFEZr+8J9toLyfuu9Z2YCfRACv9H5nc40Bvkccrb7tOABSHb5P4DkE7ANwJ1EdDsRXU9ED0EyydljcA5DhBCbIPkLXEZEzxLR14no1wD+Bim6kFDs2wTgy5BmFLYS0c+I6Foi+j4RPQ3gACRnYT1WADgzlqvhOiL6MaTwqfsNjrHCNwHkAHibiH5ARN+C5Hh93PgwxktcKQfLV1T6kjJeiZUkZGadJmX0Krc17/wVPZ3tCduD+NAr6zh28XTMu+VsTLvqFOQPLEJe/wJkF+SgaFhJwjGH3knO0ZAK2P3YB/GRdXqP5bopFT31h1pd/3QXHJ3MdtgNKGDHhC4MZUGZqCpd8MMvI2ylQF2eE6Kk9MvvRVRm7hnrCCFaIEXrmQ4pqtDHAbwB4CYAvwUwCsA5cC9cfxVSfoDZAO6MnfNSSA7Jrao6/QvAqQDeBfAVSDkSvg7Jmfgb0PcRAIBfAfgpgNMA3APgckjOyK6mtYQQbwD4KIDDkHw1boWkiHzHzXkZe7hSDoKyHXWrIIxcOD5huW7rmxZr5xzZBEivXkSE/LJCTPvCyZh+9QLMuv4MTL58HirO6zWrO/T23nhCNyD1HUy16n/9JRWa+/lxrW4+8maRnoJUEMKepbByb7TqZkepMNs3CsJ5OikGWkRNeA/jedcr0+t2iYrywbhDCLFKCEFCiAd1tt8e2/5PIcRuIcTFQogyIUQ/IcR5Qoj1QohFQohFquNIbdsfW3+1EKJCta5TCPFDIcQIIUSeEOIkIcQLkPwQkhQPIcRaIcRnhBBDhBA5sePOE0Lcq4yuFKvD7YrlLiHEj4UQFbFypgghfi+EeCS2b6WqniSE6NJpr1Wq9a8IIU6OnXeEEOIHQogXtfZl/METsyK/OjarNvZm+xWPLkNOUW58ufa9n3mWol4vXKgVPwQtBk4fjqy8Xj/xHX//wHGOBi/xIuSn+h5df0lF0rqwnK61ngG950J5j5WKjNKMyi+hKgpChNG90bpuv5TadBfOg8TIZMbqM+32fgSZGM1sXdCoky+q4fwYjFViyc3U6xZDmrF4OfgaMamIa+XA7KNxQ/n5kZiWzenXqxzU7+3NYO51IiMrwq1ZmTOuPR35AyX/oI6mdmx97D30dPcklREkXgu8Wu0X9nXZGf03ewZSfZbHDepnxUuBpi+3a1A4iSoWBQHba8KaNQj7W8mkPEuI6FUi+l7Ml+E+SGY5+8CJxBiLOA5lapUHcYmr470SBvpPGoKmw1J2bjnngN0Qd0ZmQlrb9GYPzISlzOxMTPz0bGxY/oZUzxOtWLdsFe44egYKhxZbFrb8CDfp9YcxLGHPzXUoHS21CGp0z2iUPl1HGNP1usLEbphRP0KD2jmf2fvntJwwhXI5zC4rBowHvA/gQkg+A6WQwqI+DuCHQghnyZ6YPofv0YrCHlE68NourLnrFexftTO+LrsoJ/7biYJgZZuVKEZGZBfkYOj88oR1Va/uSLtRaaO8EWHNJBjh1pbeLXqzHOr2SrfnxCtY+ErEaf4BP03ojM7pRjHQI+yZbT+TQDJ9DyHEa0KIc4QQg4QQ2UKIYTGb/wNh141JHXyfOVDiJAmRU8FL9Ai0HG1E9dqqpG2lYwcmLHttLmNFKLMyqj9y4Xgc33kE7fVtAIDm6gZ88NJzeG2LtWAAqTDKajQTE2Wi5AirzuAdZoIyJjzsCvpRVpSiWje/3ntWEBiGiRKRdkiWsTsC2t3ehQ8ffhtbH1+juT2vrFBzvVd46TimTpr2x1uuQUdjmyfnjgJa7eS27fx0CA47CZMapRkRKwTW8GOkWOmcnoozNlF5pq1EoXITkpRhGIYxx5OZAzudtZPZA7tUvrgV7Q3JAnT+wCKMv2iGpXO4qac8cuuFsNZvZH/Mu3kR1i5dFV+38cG3QBmEivMmY8BUN8kUo0HUhFojUzP1KH1YWAnvm6potb0ffYaXfVHUZmzMri1qgrLf3xAvrjcqChTDMIzfRDpDsozdD27LkcaE5WEnjZaSjn3hZOSWJkX50sTth8DL0UPKyMCky+YiIysDTc11ACSzqb3Pb0VnS0dSmak0cplKdZVxovj5NaIc1oxB0PfNr2SLXgrJUVEM7MJCL8MwDKMkEOUg6I+PbKMPAPNuORsjzhgHIjI4wj5aQoWfTqH9RpRixjWnYfipYxLWb1j+RjzMqVmirjBJFd8Cs/vlpr5eXmsYSoHyeTYr281zb+aMGiRhO6taRauOZvWOmomcn/SV62QYhvGCUGYOAv3YCvNdnGKUsEaJVwpCdkEOhi8Yg1nXn5Gwvvr9fZ6c3y/CmtFwIhAYCb1m9TdSBr2caQhztkXtcK8VvteL+nmhIMj7etHfWD2HUZJAJ4kEjWY8nCYkTFVlxy2sIDAMw1gjMOXAToIpt+QW58V/b/jjG1BkAPcEIwEwiNH77IIczPjyqfHlGo2ITFFC2S5RMSOyI+zJ2Mkv4RajBGth+zpoKb9aswpu28GLXBRe9jNm5zJKZmUm5Budz8skWX6EAg2DVFBwvKIvXSvDMNEgJXwO7DL2wunx312tndi1YqOnCoJV4cxPRSG3JB/ZhVK+hu6ObrSdaPG8DK+JWkSdVDEZkQlbMQCSn2UzhdgLBUFLkPUqmZWZkGx1UMOJ8K+1n95sgJezH6muGLghVa89lfophmFSn8DyHOhNs/vRWRcOLcb5X7wBL/zl9wCA+spj2PrX9/G7F3ehsKTUUwHL7BrslmU1VrnoEehs7nVG7unotlUOk3pETTHQ2hZEHY1mBaz2J3r7aflUmCVKDEpwS+cZA2X91HX1un29zEQcRLtG9Z4xDJO+hDJzEERn9/nbf4PScb3JzlqONuG7n56uK7zYHUVWXoOXHy+r522uaUhYpsy0nAQKBLvmInpE0XwqCnjlg+BVv2GmzGv1EX5lAw6CVBp11hK2tdrc7X3w+n6mUhszDMOYEYrPQRAd6bJ7LsT4i2di4qdmx9ed2F2L+spjnpXhp4Jg9uHKzM5MWN78l3fR2dzuWR28JNUEZa/uZapdt1eor1vP3EjLmdktQQtpURcKo14/LYL0T/MSL8LtOnUyZxiG8RJflAMnEUX8onh0GUacNja+vPOfGzSFkLaqJbj+kgrb5w9rRDF/YBGGzi9PWLfhj2/ig3tfw7Yn12L9H17HlsffR3N1g84ZgiNscxirWHEOZRLREvKV99vMFCmVswoDbPLhNVbaM6w2dxNdyslx3OcwDBMWnikHVhzowurUh51SAQAoKixDUWEZ7vj+GcYHpAgjF45H4dDihHXdHV1oOlyPrtZOtNQ0YusTa9DV1hlSDcPH6jPn9WxB1Jyv/ULvOs2uXSujsJX28rMPcaKgsADnnrDb0G52Zq/QmiVQDjax4skwTFh4OnMQhoJg9YM+fEFFPLvwoef2J0T3kTtoo2grURrZVNZlyhXzMe6iGRg0cwQydPwO1t//elBV8xWnU+5B2hX3FaXADDvvi902c3s/9Z4ht/ctFYS5sAVxJ0S1Xc2c1O1GsIrqdTIM0/fwPVqRVjQfv6JQGDH0pNE4/N4+NDXXoaiwDLv+tRHTr1pgWld10qcooBZi+o8fhP7jB2H0uZPQWteM1qNNaK9vxcE398T3ET0ClOFtluggMVI83XxUjY41muo3O66vf+itZFB2I4yH0Yeo0RPwoi6A8/PJMAzDGOHZzIFZdAmzY/QwGym2KmBkZGVi+pd6E4dlteehq70zqR56I4qpMhqcX1aIsklDMOzkivi6zJystFIM3GL1uXOCXcEraopnWITRDlEX4vsaYSgsTjNM6x1j5kxt9TiGYZgw8dSsyMloXpA24bnFeSgaURo3L/rsxUt9KytshOidKejpTt0cCHYTSOkhO5zLz5sbm16j46yeM5WdcGXc1F8rmZqT83lhYuQFUZjJ8BO/ntd0bS8lRnk5GIZhokggoUyD6hStfLxKxw6I/3796cd090v1jpyIkJElhTvNLsgNuTbOcHIPvJhlAoyVBy+fjVSZkdJCGW3ILVbOobePF8qaXbwya2PCIehwoUYzBvz8MAwTNXzxOQhrFM2KoDVw+nAceH03mprr8PyjSzHzK2ck5QxIh866s7kd3R1dAKQZk1Qj1ZWzvoIy6ZsbRcfqsXrlGPU5fvdHXtrwR3UGwi8l1omJnxvFLArtmg7fF4Zh0pvAkqA57ZS9TjSWlZeNQTOGAwC6O7pRu/GgZlmpTld7l+bvqMGmCumBXeHRLzOVIGZ7zMr3wlzNz74olfo5r7KX293XLXptnEptzzBM3yUw5SBKjDhjHAAp70HW0RIIIVIiyogtRO/PtuPNnp3WS4Eur/w+LF9RGdnMoGahChnnOFEmrAYGUA8oeClgWsHJ+VJdaAzi3XVrgpPqbcwwDBMUvuY5iCpZednoP34QmprrcLRqLwYcm5qwPWpCqhMyc3pNpQqHFBvsaY+gbORT4UOufkZS3cE4aOw8S1b2daNg2j027BkKp/jxXvl5zcoAAl6eLwxSoU9jGIYBfIpWBHibRl45YuTVh2joyaMBApqa6/DWP55Ac02DpbrYIczR8M6W3qzI7fWtgZcfZfyaqfBa2PWCdIiKZAWvM9dawSxsZRB1sIPfwmkYioeTMoPKQMzOxgzDpCq+mRVpdYxRGlUrHFKMgdOHx5ePba7WTdaWiuSW9Doh93T1hFgTbaL0LOjhZz6EoAR2Ozk6UuGe6OH1u2p3FsFN2wXRz6jL8Pr58+sa5BDEMl5HiVL7efgh0Kfyd4RhmL6J7z4HTjpGs0QxXgkxg6YNQ1FhGQCgZVdLvAz1B8KL8pTnsCJ4uP14124+HP/d7aFDclAj0V7M2uhhR2n18sMut10UR/I5Frs2eu2RSqaHymdYfv6imPndDl6+l1oKgdPzc5IzhmHSgUAckr0UtM1Gdux88AqGFscTogHAuXO+lXS8l0JTkAJFflmBb+dO5dj8egSlIASJ1XchXWL2uxHwzPJamJmiKQcVomROolUP+f1NhfdY+QzL7R6VttVD/YykihLJMAwjE1i0IqsKghcdv1WhiIgw+txJACTfg3u/9nl0tLW5Lt8L3H64swsTE591tna4Op9MEAKFFx/TKAoQSqHMjrkPYx2r910vU7bd5yaMBGxW0Zox8LscvwhjlsOL7NvKwSUvlYbcod9zVTeGYRgjQgll6ufHRBa6rH5MBs0cgabmurh50dr//Tu+zSj5TtTJzEnMb/fhQ2+jo6k9pNoEi5Xnyy//EjMhLEiFoK8qH1bND6Mai94v5ViZsC5VTIrk/nz5isqwq+IZaqXB7rEMwzB+E6hyEOR0ux3BaMi8UWhqrkNTcx3+/P9u8KwOWtf6szvP8Oz8RmT3S5w56O7oRv2e2kDKVhNVJcvMBMSOWY58TX1VIE9V3ArJUciRoMZqH5tKSkIYBNVP2Y2cFpX+k2GY9CWSSdCCHrnLH1AU/918uAH1lcd097XbMavtkG+7dGZ8vZ9kZGZg8mfnJqyrWrUDnc3uZg/sCBNm0+pBYFcA8kJYUisIUXZETiW8CkGrfPf0lDk772eUQh478ccK8rl0WlYYszlR8x9hpYBhmKAIXTlQO5yF0QGWTRqcsLzznxtQ++Eh3z4MQX1sioaXYvLl8+LLolug8eAJV+dMxbCYbvIP2FWGjM4ZxVmFKN0nI7Tq6XcmYjvvf6q0o0xYz2IU3wEr+BEdKUqKB8MwjJLQlQOtj0XQYRUzsjIx89rTkKeI8HNk/YFAyraCm5G9I+v2JyyXjB4Q/916rBn7Xt6OXf/aiD0rN5smS7M6+h22oKQs364worw+5bFuP+KpKhSlE07voVNBLuj3wKh+Sgd42SeLn0ljfvP0Rt/OrexLrTxfYfepDMP0LUJXDpRoZUIOqlPM6ZeHIbNHxZdbaps090ulkZ624y2o23Ekvjz+EzORmdvrqLztyTU4uvEgTuypxYk9R7HjmQ/Q3eFdToRURa0gpLo5kN6MXKoIHG6dNr0coY1SyFI39XAzQ9ZXuO3Smb4pCHrRylLlnWQYJr3JMt8leNQZR/PK7wvkI5zgxCuAzpYOZBfkaO4bVJ3c0FzdkLDcUtOI4tFlyMjMQMvRJnR3dMe39XT2oL2+DbWbDmHIvHLdc0ZxtFGpUHpxT9TXGMVrZrQJI2eDmxkJp8Kg0zL1nuUgnnFZAUml90mpINx26ZKEPsYvQd5KlK326npfymYYhgEiNnOgRBmHPChKxw5MWBY9IrCy/aDfyNKE5UPv7MW6Zauw5q5XsOWx9zSPydJRhuwQtNKUV34fbr5pJa6/pCJhvZPRUDczBVFXFpX4EWXHj0SBds7ph7Dm9FmwUpeojBJzeF1j5CASQOI7bvaNctIfmB2TSn0MwzCpi2Pl4MrL7/GyHpqEoSAMmDI0/vvoxoNJ5asFF78/8EbCiZngktMvD3NuOAtFI0otlZWRmYHScQN1t5t92MM0TdCapncqiDiNYBMVYU+NltmJ1rU4fc+CGkG1Y5Nt91pSyazGy/4w1RSDsIRjpYKgRJ1MT23mpVVfs+8GKwAMw4SNq5mDID+oQUUyGjx7ZPz34Xcr0XKkEYC5YBJGiE4rZGZnYvJlczHti6ckzSTkDyxEbkl+fHnEGWOTkqeFTZAfSi+e56gqCGa4aWc/7O+DnjHw0txGrk8qC3l+hN8NKxpdGFhpP3VbpEKwB4Zh+gauzYqCUhDaqpbg+ksqEjpdPzrKwqHFGHZKRXy5RhHtJ8yIEm4/1PkDCjHp0rmYf+s58b9pXzgFOcV58X06WzohhEgoz87MhZfRfZTniGLiPCP0noOojU5bEeqDHgDQQ8ucQ++YsIVys5HjVEDPYdYpXjxHqdCWv3l6I37z9EaMXDgy/ufUvEjvOFYQGIbxG1fKgdcfECvlySxfUenbx0KpHLQea9bcJ6yOWxbYvWr3HIUTdvX7+7D9gQ2YUfbp+DorpkTyh99PQdLpyHRYH1KtUdJUtLfWi6gSVrumgoDoJ06v3+ngglfP7PIVla6OTxWB+LZLZ+K2S2fiwOtSKOx93/wWAGvfCy1/J73jcod+z4vqMiFDRIuISBDRohDrcHWsDhVh1YGJHo6Vg8efvNHLelgmCIXk6IaD8d9uMwr7gZdJtcrPmYSCwUUJ657+1Y+wafVLhsepP2Jex01PFyEwrMzQQWD1mrxWGlPJXjtq950zdQfD0mWLcdulMzH6zt+a7muWlyUKYXMZexBRKRH9HxGtJaJ6Imonoj1E9DARnRJ2/RjGjMhGK7KCXx/e/at3xn/nDygy2FMbJ/Uyy66rt+yWzOxMTLnyJEy6bC4AoKm5DgBw39e/mGBi5AS/P2Zm5iXyPlER0KNQB6/x6nrMzpOK7RalOsuDKnL/oZztY2XBP9SRjvSEfKvPinx8e/UvPasj4y1ENAPAJgA/ArATwA8BLAHwJIDTAbxDRFPDqyHDmJOyyoEV+3+nH2dlorDS8frRe7zGSEFQftS9+qDL5yAi/PDXb+HO1dtQVFgW377tnTdCy6RqJOw7PY8bZcUPx8woCY9+IIeYZZxjlujM7nOkvB9h5B1wkxMinXCjIDDRhYj6Afg3gEIApwohLhdC3COE+JMQ4vsApgC4Jcw6MowVUlY5MMJpnHSZ4Qsq4r/VicTcnNctSiXB7Qdda+TwiRVLcM4Xrovvs+y6z+Lgjq2mAl7Qvid2pti9Eirk6/NaSFEqCkErDF7NCBllX16+otJ3R2+9egWN8v45uY92sy87KcPrmUirgxVemMX0BeG5LwwapDlfAVAB4DYhxBr1RiFEtxBiqRBii9FJiGgCEf2NiGqJqI2INhHR1zX2qySiRzTW305ESYmaiOgzRLQxds7dRHQrANLYr4KIHiWiAzGTqGoiepmIzjG8eiZtSEvlwIrwYrRt4PTh8d/HtlSjtbbJu8rp4Pbj6XZGQRYS9ok3E9b//FPnYsubqzVHHJXH6RGEaZGVtgtbcLRDUAKCG8HQatQuK+2ebsKQU8UgKLxS5u30A16RTsKzlZnvdLrePsIlANoB/NXpCYhoHIB3AHwUwB8B3AbgKIDfE9GdLs57KYC/AciCZOr0EIBbAdyo2i8bwAsAzgPwIICvAbgLwAkAc52Wz6QWaaEcuI0Prd6WmZOVkAys8sVtCdmSw+6sjWKyO8nwqzxfdkEOyj85Pu57AAD3XH8Fvn3WTFz3pSdDEQjckkqKgUzQdXaiVIahkHllbhYllHUP0gcgVd7fdMbqcxv2N6ePMpmI5qr+hpkcMxXAdiFEm4ty7wDQH8D5QojvCyHuAfARACsB3EpEk+2ekIgyIQn4BwAsEEL8VgjxCwALAIzXuIYJAG4SQtwuhHhICPFrIcSnhRDmHvZMWhB6xqu88vtcf9j1IjzYTaSkrMfYxdOw7p7VACTToqpXd2D0uZPi55aPsXo+v1E7Gip/a7WPrERohRgsGFSEGV8+FR8+8g4K8/sDABqP1WLvhrWYdsbZuufsK9h9ttwQlM+H0zLUbWE3AVhUhR4/r8PonKn0XqVSXaOM1f4k6G9KlBj22KMYnZcTSFltbR3yT63R/58AuN3g8GIA2rbIFogJ8RcCeFUI8Y68XgjRQ0S/BrAYwMUAttk89XwAIwD8UAgRr58Q4hARPQ7gesW+9bH/HyOi/yn3Z/oOaTFzoIcb59WMrExM/fxJoEzJHO/oxoOoWVuVdP6oddZ6SoLeaOT1l1Rors8tycecG85CU3NdfBahdPBQzX054om3KJ+pqApgynuufgf8eifCeNesCm1eojQRTNX3KlXrnSpwnoNA+ByAeaq/5SbHNADo56LMQZCcmbV8EuR1YxycVz5GS6nYqlwQQlQC+DWAqwDUEtEbRPQjIlLPMDBpTOjKQZAffLsf+oJB/TByYe/7sP+1XZp5D/Ts3oMeFVXOFFgRKvX2k4WSjMwMFA4rBiCFOH3gni9oHmNWntN7HNVR5b6O0YyUn++zHdNAL+211TMjbuzBrWSjVr9PeoJ21AYmvMBKm6b6dWs9q3aO5X4xMLYJIdap/g6bHLMFkjlSno/1Ejq/lWSqlmWnY639kxyShRDfBTAJwHcB1AL4DoDNRPQ5e1VlUpXQlQMlQXd66vK0zIWGzBmF/IG9uQ5q1u43PGeYCoKTSCTqDMfqGYfBs0bGl+u21ziuW6plODYiinUKCrPwl2G2jVJgt5IDwwjl8WEJo1Yik0Vx9rKvYVdg5/uV1qwAkAvgSofHHwXQDMnuX82U2P+9inXHIfknqBmrWt6jOocSTR8GIcROIcTvhBCXABgFYD8kfwimD+CZcpAKApORwGDUYY//RG8im+q1VWg91py0TypNo2vVVa/+Of1y47+P7zzqumwn2T6j9Gz1dSFAb5bI6YimX21kty5az79Xir7Va4yqCVkY71+U3nkjUqWeTGD8EUAlgN8QUVJkHyLKIKIb9ZKgCSG6AfwXwNlEdLLyOADfhjTy/x/FITsBnEpE+Yp9KyBFTVKyBsAhANcTUbFi3+FQKTJEVBKLWKSs1/HYdQ3QqjeTfkRq5gDwvrPV+zDbGRnMLc7DsFMq4svVa/aZlimfM2wBUSuBmvq3vJ/yv0zBkOKE5doPD3lWt1RTEOzWIQp1DpJUH8XWU5DdmHJEYQbCC+y0gRdO9FFRGs1wO0PFpBdCiEZIDsOtAN4loseJ6AYiuoaIfg5gM4ClJqf5AaSwoS8R0S+I6EZIoUU/DuAuIYTSb+B+SH4KLxHREiL6MYB3kexH0A3gG5BmAN4hom8R0fchhUzdpSr/bAD7ieheIrqJiL5CRH8FcC6Ax+y1CJOqeKYcuOnMlR+eIG2WtYQZvfKHzi+P/z6+/UjS9qDtr71EjlykVhCWLluMzOxMlJ8zMb5v5YvbsPbuV1C72cz00hqp0kZRIcgZKjt29VH2K7FSN60ZEa9mCpxmMJbrFSRWZlD8xK/kb14eHwTcL6YuQohNAGYA+Dkkk51fArgP0gj9WwBONkqCJoTYDSnE6PMAvgrgtwCGQspH8C3VvqsALAEwHFKo0ksB3ABp9kF93qcAfBZAD4BfALgWwN0A7lHtugFSluePQDIj+i2AaZAyO99g3gJMOhCZmQM/O0Mvzp2Z0xv1tae7Bw1VdUn7RNm0yCg3gtl6pd8BAAgBVL6wFU2H6tWHOSJVkphZqaOf9VTO+qQDqSCkOUHruvSigqkJ27RIr3w7z7Vf1+DFu+XHO+r2fOrZpSj0dYw7hBDHhRA/EULMFUL0E0LkCiHGCiGuUWZOFkKsEkJQTMhXHr9DCHGpEGJA7NjpQojfCyGSHIqFEPcLIcYo9ns6lp9Ay9H4b7F95Pr8TgjxcKwOlbF99gohviKEmCSEKBJCFAshZscyO3d531pMFImMcgAEIwBaHQXV2q//hEHx3zueWY+24y0J24P4sLuNVuG0jlMun5fgmA0ARzYccFwPLVItNn7QH3F5dDuo50wmlYSVsIQrrTLldVYVg6iTSs9B0Lh97lgpYBgmSkRKOYg6Yz6a6EP04SPvoLsjHEXaiZJgFP3ETOAsHFaCaV84GZMunRNfV7fNefQiPYyErCjgxKE6FQnzOr0aIQ4CPf8i+bdZdKd0xctQsn2VdO9jGIaJLn1GOfDCcSwjKxMzrzs9Yd0H976G4zuSfRCijtMR6LyywoTl9fe/jqbD9RBCeGbuohRMo64sqPEqrn5fEKr8vLdaWZu9Rq/+UX4+g0Av54QX9LW25eeJYZgwcKwcXHm52ofFOanU+eUU5WLq509OWLf72Q/RXNMYSPlht1V2QQ5GnjEuvtzV1oltT67Fpj+9jd/deUGINQuHsO9HOuJ3yNCg8EpZTiUfE7NEdX1B6WUYhkl1HCsHjz95o5f1CAS7woPeh6xgUBGmf2lBwrqtj7+PjsY2x3Wzg9Xr8EuoGDhjeNK6jsY21O+p9aW8qONH6NqoCbp+4dd1uh1xjVKW3nQzSXKjIKSCcsFKEMMwqU6fMStS4kV8/bzSAsy9aVHCuq1PrEFnSwdq1u1HzQf70dXW6aaapli5Dj8UhKy8bEy4ZBaGnTw6YT1RUnCEPkUYQoE6XwWTiJ/Raay2e7oJ916g26+mga9CX1HsGYZJX/qccuBlx52RmYFxF82IL3c2d2DD8jewf/VO7F+1Ezv/sd6zstSE/QEqGTMAg+eOSlhXXFEWUm3Cx0thJuyZoTBJJaHQSOjviyZFXqPlu6D3Ox2UCiPC7u8ZhulbBKIcpOIHzmpnXDp2IDKyMzW3tdY1e1mlyNFQ2ZvroWBwv4RcEEGQjsKAUyEgFd8xIFhlwKoAabTd6v0xigxmh1SbdfAypKeVZGha90p9n9XKg5/PnLpcL2EFgWGYoOhzMwdeQxmEmdeeprltyJxRmuuDwu+Y+NmFOfHfLUca0dPV7VtZRjj9CEdNubD78Vfe21QTIsPAi4hljDGykuplYjCjdWaYmS95jZcCfNjZqhmG6bsEMtQrCy555felVOemlwxNTVZeNqZcMR9bn4gnPsSoM8cnmd2kG8XlZcgpykVHUzsAYN09qzHr+jOQXZBjcqT36D1b6mReeiONYT+XTstnpcAeZu80Kw3O0MrnoPdMR6GNnSZctHKc8hlz27fcfNPKhDaNQtsxDJP++D5zoBz9CFsAc4qVDvnwu5Xx35k5mRgyr7xPOOgqfS4AoGZtVUg1MTcfYKEwWKyYOoUR3SmofkhPcUtHJ3LlLKV8fXrXGGTsfnU5dsrWG0hwcpxTWPlnGCYMfJ856Cudm9LvoLsjHPOaMCgcWozJl8/DtifXAgCq11ShbNIQFAzu52u5URPmZYHDjYmTW4FJLtuO+YxfQpp6xNOsDl7lNrj5ppVYvqLS0nWp29zLZ8rO9acDypkDtZJgtR3Us3xaqJ8VqyP5TrHzXhuZMDmpQ196fhiGiRbsc2CC1Y9D2eQhCcuH3tnrW52iRtGwkgRToi1/fR/dnamnIIXtg2C3fOXIrF70lr7G0mWLHQuMdgU4o9F/LcFOS4BOF7y4Jq9zhbhFWQ+jjO1BvmtRaRuGYdIbVg5sYPQRKB07MGH50Nt70dPdE0S1PMWpuYPavOiD369Gd3tXwrojGw6g6tUd6GzpcFy/IHDzoffi421XuE/3pFJ+Yfdeub23UVcItEzy3ET5caIwWIlQFCWiVh+GYRgv6NPKgdWO3apQMOfrZyYsH9ty2HadUpWi4SWY9sVTEtZ9cN9r6GzpQFtdM6pW7UDVKztwZP0BbFj+Buq216D1WHqGejUaZbSL1jOqNNfoy8KJ16OoToTfdMGKfX0URq2DqIMdnxA3/gtuaK/+pafnYxiGUUJCCHsHEM0FsHbGtaehaFiJP7UKCD+i1BzdeBD7Xt4eX55/6zment9PlB9Ep4JP06F6bHtqra1jplwxH4VDi20d48XHNghBwyuhwCwSkxfnt2sm4zV2r0fv/lmxc9fax0r5yjKD8ivwUkjXq7Pdaw8Tq+1hdH/U29TPvpv76kWeDDOaDtdj04NvAcA8IcQ6T04aQWR5408VgzApL5goeNvbOnBN5VEgzduWYYzo0zMHgPcjOgNnDE9YPvD6Lk/P7xQtwU/rg+jWdrhoeAmGnVJh65itT6zB0U0HHZdplyCjpXiFlqmHEcrZCyszGWbncxJhx87+Qc+AeCHUp9LMgdH9C8J8zUu8eHfVTtPKdfJ6P4hKGzIMwxjhOFpR7tDvIa98umdCVhix5t1ESdGDiECZBNEtzchUr6nCgClDkT+wSPMjFBRBllk6dmBCaFcAyOtfgEEzhmPwnFFob2jFkXUHcGTDgfj2fS9tx4ldtZjwyVm+1i0dnjErZcqonzmj+ixfUZl0vPIcdlm6bHEoz3xUhXYnMw1ePTt699aL84cdmUnv27F8RaXpd8WPemsFsQijH2AYhnGKr6FMrQr8YXaafgiLc284Cx/c+xp6uiSH5GNbqzFy4fjICS1e10cpCE7+7Fy0n2hF6fhByMxJfMzySgtQfs5EDD9tDNbf/3p8fX3lMbTXtyK3JN/TesnIpjNWr9tMsA1D8LUTmtQozrzW+fTeBTfXpxyhNTpP2MKT32VHMa+BlnmO03YI+l2wUlcn1yMrtF5ch1aOBYZhmFSgz5sV+QFlZGDSZXPjy3Xba0KsTTgUDS/FgKnDkhQDJVl52Zh3y9mG53ETLUWLMBS0MIQCq/4jXjpPG+FHuwcdrjWdhTt1GNFUNL3TI2qO5jyDwDBM1PFVObD6cQnrQ+RnJ61MAtbR2A67jt9B4PVoppOPKhGhuLx/fHnHM+vjoU6dZij16nlK5Xj0XviP+IFZ9lwrWLm3XmchdusEHCZ23yN1fH/1cXrHevGs2emT/U6A5hdhz5IxDMOY4XuG5Kjid+dMRAnLbceakT+wyNcynaIeZXYTtcjK/upMvvkDitBQdRwA0F7fiu1/W4dpV52ie7weVmKkey0sREX4jqIQpIWT9lIKU1YTZdkpJyjb8Cg8K1rXZtfcTj6PX6Fk7Zxbvl9Gx6TKu8EwDBMVImdW5NRUwM4xQY3aDF8wJv5786PvRW72QEsRCGKUU/2xHn762MTtx1vQUHlM93in+SnSUTHwe9bNyfPg1TOkvDb1dSrLcDNL4GekHq9nLwBvn2Flm7p5972aoXJzbddfUuG6/KDh2QOGYaKKZ8qBlwKBU+wKjX6PKKlDenbUt/lanhvUH3elI6kfKNs+MzsT8245G4VDek2xDryxx9H9UQtkQdnUm+F1Hfy6JrXQ7VTos/vcWDV9Ud5fZTI4rxQ1oz7EjjDnZdx8t2g9J1oRdYyOD+r9cVJO2O+2Xfwe/GIYhnGLK+VAK+ShF6NlQSoIfkIZiaZFzdUNvpdpF1mwUgpagL5w55eyQEQYNGtkfLm1tgmAPb8VGXW8cj9GcJ3ixXMnn8PLa/OyfewK63qmLlptpafEythtD6P74eZe+WF/79Wzo6UYhB2OVImT67RS96j0AUqiOOPNMAzj2cyB0gEy7I9MlDrRrLxet449z21G9Zp9IdYmEa3RTSvJ0vz6yIrunvjvAVOHxn+bCQvq7L5aPhNhP5NKvBDy/LgHYYx2O3lXlf2MUkFy2iZGI+tucNIfGl2HWydupT+Fut316qi3v532iZJQ7mciP4ZhmHTBsUNye/UvkT2sxMu6uELtSGjXYc6vJGwTPzMXWx57L7584PXd6D9xMHKL/YnlbxUzQVA9g2CkIHglRHY2d8R/H9tSDdEjMPZj0wyP0XOmVMZdtxprP5Xw8jqsxKgPsu3svIfq59TpvdZzRA46soxRna0k9TJCT9D3av8oEyUhn6MVMQwTdQJxSA6rIww6DroWBYOKMOOa0xLWbfrT2yHVphct86EwMzgDwOA5IxMSoNVtq0HToXrd/e2EtIyScAAEZydtNLJu1Wbfj7YL4t2Mgh+UH+WG3afZJWoKedT6Aqt+H1b3ZRiGcUtg0YqC6NS0otNEwVkttzgPEz8zJ2Hd3ue3uIpe5IVwpVQQrHww/f7IZ+VlY+rnT0pY11wj+WkoHYuV99WKKYzaByHVcXrftWaHrNzTqAl3Wvhlzig/L1HpS9yg9Q755XMRZew8J1F69tPhGWQYJjUIJM+BlVjUfpQpE2S5ehSP6p+wfGxLNQoG98OQOaNcndfttRnlNbDia6C3v9OPamZOFoqGl8RnDPav2onswhyUTRyie4zVstR1jdKH3y/0rtHu9QfZVl68r2Y29ErUZh5h9xVKtExQolS/VKEvvOsMwzBeEdjMQVCjHlrlaGX5DIO5Ny1CdkFOfHn/qp3o6ep2dU67fhVaWB09NosU45XzrxypSGbPs5tR9eoO0+PaG1rR1daJn31rATa/uQo93b1tq6XERNXkyAgvsz+HSZCjoPLAhN7zb9QfhN1OSvxsM713gEernZNK/QrDMIwSsmvaQkRzAaydce1pKIqQQ7IdtEYmg5pd6Onqxoblb6K7oyu+bvpVpyCvrDBpX9HTg46GdggI5JbkJ2VdtoPdkdEw47QfensvDr2zN2l96biBGH/xzKT1QgjsX7UTR9YfiK8rKizDjEXnY8nvH9F1VjbD72t2oqSqIzO5zWgdFayOjjvJ5KvGzH67LwjDeu+AnkO3UTsyyfj9TjYdrsemB98CgHlCiHWeFxARZHnjTxWDMCkvx3R/L9je1oFrKo8Cad62DGNE5DIkpzsZWZmY8KlZCes+/PO7OLrxII6sP4COpnZ0tXVi+98/wNqlq7Dp4bfx4cPvYOMf38SJ3UfR3Wl/psGKEKpOLqUkaIFz+KljMPfGszD1c4n+Byd212LHP9YnrKvbUYMP7lmdpBgAwKZVL6ClMTm3hN3Qkn7hZUhTv5PW+YXapl9rpFo9u+M2pKfW71TBq1nPVFUi/SbV3h+GYRg/6LPKgdWMrH5QNKwEky6bm7Bu38vbUfXqDmx84E2sv/91NO4/nrC9s6UDu/69CR/8fjWO7zxiqRyrTstGOQLCEiIysjJRMLgf5t96TkLOg4Z9dajbXgMAaNx/HHue3YweRX4EAGhqrov//uNDn3VcB7WgEJVIIXrx8726X15ep5lJjx2HaLfRtNTJ44z28YKoJadTI7fj8hWVWL6iUrfMqDz3RnjVTn46tXtJ7tDveX5OhmEYmcgoB1EIOxok/UaUomBwkaNjd//3Q3Q0tRvuY9SWqdbOYy6YCigsqo5trQYAHHxrT3yWAADGXTQDc288C0CvgqBnimUnQZVydDtstJJXeS3Q+HWdbp47pwkWrUTlUe6nRZRGk7XMIZ22q/q6Nj7YG2I51WYWgq5vlJ4JhmEYr4mEcqBOXtZXmHLFSZhy5XyMXDgOZRMHI69/AQqHFiMjU7otQ+eXY/6t52D+redg9LmTEo798JG3IXp6tE5rCWU7q7NbB2miohRujO79xE/Ojv+u33sMh97ek5ADYe5Ni9B//CBQhqQMyErD17+6wrQORoKn37MnUVA4gOCEHT/fbyfXoGfGZPQ7DJ8V5QyM18nJ2qqW4PpLKjDz2lM9OV+6E4VIZ+3Vvwy1fIZh0htXyoF61Er9AfNiNsAPYSIqAhllEAqHFGPo/NEYe+F0TL96AaZcMR+zlyzEjC+dipELx8f3HTRzBGZdf0Z8uaezB+vvfx31e4/5UjcnQrEbAdPMITx/cBFyinLjy4feqYz/7j9hcFyhSphiAPDSX/5oqx7K6w5bANBDfidSbfTS7XtndL12BDYrz7aRn4PVcpxEwlL3mUuXLXbUB1op2yz6mFwfJ2WnM1aeHTv76x3HMAwTFo6VA6XNo/KDZjXBjhL1vurz+YFZuNMwycjKRG5pftL67IIcTL58HmRLme6ObuxcsSFuZqPET0FMDz+F6ez8HNy9eg9KSoegqLAs/tfUXIehJ42O70cZhLKJg+PL/7r7Dtyw5N+2y4uqYqDEizr6nRVb3RfYfS7Vo/V6mZ7tmIe5weo5nJSlN4Oql7jMqC3dJLiz+ixoKQ4s4LqD249hmCgQiFmR05CNTC9yGxYNK8G0L56C/IG9/gp7/7cFx7YcTsq47CZGuVfCopcfu4ce+wLuWVeJT9/2Y2TmSGHtCof0i/tuyGWNWjQh4bjX//aoZ3XwGqczY25n5ZRKQVRzPdhxjvc7w7edLNtOw1iGmVMgFZThVCUqoZMZhmGs4qlyEJVkY+mAkY1xXlkhpn4+Mczn3ue3Yu3dr6LpcH3SubRGHoMSQow+eE6eDyLC5vp/YcwVE/CVux7Enc/vxC03P5ewz7e+9zLmfewT8eWn7vgBmmsabZUTRWHZS6IU+lTLhMdoRkPPHMaJkqOX9dvNiLrZ+b0kiknKWMhlGIZJbRwrB+3Vv7QlbJoJgn1FkTDKymvFT0PeRkSYc8NZSdu3PbnWu8o6xK5ApH5+jI6XBY+s3Gy8tvX3KCwpjW9bvqIyfuzVdyxLOO6wRlI1PaIgMFvF7exB2P4VWkqAUZ2szHTYuX/qJHJm57Dri+Onf4LfWHm2tKJn9XXctkHUngOGYfoeWUEW5rcfgVuCqJfaPEEZX9wumdmZmL1kIQ6+vhtHNx2Kr+/p6kZGVqabarrC6sdRr72dOPD1OjRL67Kys3Hn29vwzVMnAwBO7Km1dE67dYgCXmT3DisCix9lmpkfaW3XMmFy64+h5Uxs5iegRRD3xo2S6XV2+aCy1TMMwzDaRCKUqRq/PwxRmaVYumyx62vNys3G6I9MRmZOrzIgeoTBEc6JUlIn9XnkdlQKUXmFiXkkuto7LZ07lRQDGScRwtQj9F6OWNqpi1MHYzVOHHCNIsvYnSWQr1VOKmZHMVDWxSi8qh+jylHpD5VEsU5BEsWZJIZh+g6+zhzIH7godvRao1NRGrHSqofS90C9vbujO/676pUdGPPRqZ7XyY3Q7GVUHKshGm++aSUK+5eh5sAuAMChN/eg/JxJRoemDXafZT8Sqdl5790KQm7No/TMi+yijjJktw5665XCopczCV71zV72nXafnShix4GdYRgmagQyc2DmqOzmg+oGTWffkD9KRv4bRm0zcuG4+O9jW6vReqzZ87q5we9kYnqOpd9/+oX48tEPD6Gnuye+fzqOzil9gMK+Piu+SE5jwnuF1bwWeg7TRnjZ9uoZDa0cM3bxq69T5uEIuz+NAnZ9VJxmA2cYryGi24nIH1MEJtKEZlak9dEIUjE4tfawbl2C/qDZiQGvJ3ANnT86YdmujX0qYSeSzKN/uxYZ2ZLJlegWqH5/X3z/KEXs0cOL6FJRvj7APBmXUpGTR83DFJysJgtTzkbYSUimdYxy5k0r8aReHYJErbC48aeSz8cwqQYRTSaiR4loFxG1EdFRIlpDRHcR0bCw62cGEb1KRCvCrgcTLpHNc+AnbVVL8PZA83c0yHp7oRgVDi2O/84vK3B9PrtE7T7LDJzae69bVCFN1c6nURKk7SbqU2+PimmDlehTRgK/l4qA03YwU2CM7pXdZ0vLxMmqQmT1HfT7XfXSXCmq/QrDqCGiBQA+APARAE8DuBHAnQB2ALgOQKTtWomoP4AzAPwntuoOAP3CqxETFr4qB2cX/AiAvlATRCZkJ6izNacKzdUN8d8lYwcGWnbQo5dmjqVKlI7IBUO0+7mwQ3qmOkb33QslxUtfFS/MrbSO15rlCWKWw2n2aYZhPOdHALoBnCSE+J4Q4gEhxK+EEFcCGApJcYgyiyHJhf8FACFEhxCiKdwqMWHg+8zB2QU/MhQcopLER+vDHoV6WUXtY0BEvpWljozjt0JgJea8ngAmenpQt60mvjx4zkjvKxggRs+knmmL8r8fBKkYmoUhtRslyUtlxciPxWqGZyvZl7Xyyyj/p1tOmVTqh5m0YjIRzVX9mZkcjAOwSwhxQL1BCNEkhKgHACK6mogEEV1ARD8kov0xE6Q3iWiW+lgiGkpEDxLRYSJqJ6KdRPR/RJSt2Oe62DmnKdbNia3brzrfd2Prh6qKuhjAe0KImth+mj4HRDSDiP5GREdi9d5DRH8kon6q/a4ioveIqJmIGonoRSI61aQNmQjge56DtwcOw6m1hzXNeMLs9JWRlOwmcIvix+rIB73vfkaWfzqfmWDhV9sYRWgxFHxVSpLo6gFyvayZfxg9m3qRwNQzcXnl97m2/VbiJlKOm9F6ZbnKdtGrj14oUC9Rl+1V8ivHz3qMKPZPdkmHiEWMd1xTeTSMYv+qse4nAG43OGYvgLOJ6DQhxFsWyvh57P/vAOQB+BaAFUQ0QQjRBcRNfd4GMALA/QC2QzJb+gmAmQA+EzvHqtj/RQA2K373ABhJROOFELsU67cLIarlisQUjQsA/NqowkS0EMDzANoAPABgN4CRAD4FYACAxth+vwXwDQDPAPgzgAIAXwawiojOFUK8Yd48TFj4OnMgKwR69v1Bjj7rYXckVl4fNVvY9hOt8d8jF44PsSbe48pxWDXmkZETaN4/15g57uvNvPllsqcWTpVlWCnHixkMK4K/st2s+DzYxY6SZGWGwmmEGrvvRBh9VpT6SadEyReJCYzPAZin+ltucswdADIBvElEHxDRPUT0OSIarLN/JoDThBB3CSF+CeAaABUAzlfs893Yui8IIW4WQtwnhPgUgD8A+DQRXQAAQoidAA4BOEtx7CIAzwJoiv0GEWUBOB29yoTMWQBK0OtvkAQRZQD4E4B2AHOEEN8RQvxRCPF/QojpAPbF9jsJwDcBfFsIcakQ4l4hxG8AnATgMIDf6JXBRAPflAN1eFKjqfAoYVfw19s/SOWhp6sbzUd6HW37TxgUSLkyTu+j0yRZdqCMxJmD7jZridCihJU2CtM8z2q5TgRxZYQiILkt9ByDteoUlj+JXaGf/V6iB9+TPsk2IcQ61d9howOEEK8DOBXAU5AE+hsAPAbgIBEtU5oBxVguhFB+lFbH/o9TrLsYwG4hxFOqY38Z+/8J1fFnAXFBfiGAlwC8iZhyAEnJKVKUpSxnrxDiQ4NLnA1gAoB7hRD71BuFEPJw3BUAOgE8RUQD5T9IsyMvAThFbYLERIvQQplqfbzDisvu1UyA1nmCUBBq1u5Hd3sXACArPxvZhf7ZzRiF1rQqJAapOPX2VRLZRSliU2SCXvtpCcd+tnWQColW36A1gq8XtcmrnApB91Fmzt526hPlgRk9lNcvhPAtA3zYpMMMCwMIIdYIIS4HUAYpOtESSCPqNwL4nmr3StWxx2M/yxSrxwDYqlFOFaQZgTGK1asADCaiqQBmAegP4FVIisCi2D6LFPsquQjAv/WvDICkGADABpP9JgPIBlAF4Kjq7xoABCDYqCmMLUJTDmTaqpbg1NrDuP6Sivi6ID++QXTIfpdRX3ks/nvUmcGZFLl13rY72u1EmDvw2q7476LhJb46agdFWH4fbnGrFNrJb2FlvzAjJ9nB6/upVBAiExDieAva6prR1doZV+jVdTu25TDW3v0q1i59Fcd3Hgmrqr7CCkL6ICR2CCHuB3AKgHoAV6l269Y53M6HSqkty7MBZ0FSAo4B+BCSIjCCiMbHtu1QzoIQ0UxIMx1myoFVMgC0ADjP4K9a92gmdHwxwLbbwb3a8jPMRO+H2quPrxWb66BGWK04PjulTRGpqKerx5cy1LhpK7vt4PR5aD3WjJp1vY7aIwNUnLxGfn60ZqWcZNQOGnW9ndZNy9/AroKgTi7mxM6fzUy8Y9/L23F048GEdYNnjcSRDQdQNKwEI8+8EoXDSrDvle3x7bv/+yGGzi/HkLmjkF2Y62v/qoWfz0DQ18L4jxDiGBHtBjDNdOdk9gKYol5JRKMgmQftVZSznYgOQ1IM8gCsFkIIIloDSVg/F5K/gdpE6SIAJwC8ZlKXnbH/syDlcTDa7wIAHyqdnpnUwdeZA6NRqZtvWomzC34U/5PxWjG4Fiscn0PLTyKKlJ/bm1el6tUdIdYkeIxGfw++uTv+O7c0PyFJXCoSdlZxKwTte+Nl/gOv9ktF/H6O9J6BrvbOJMUAAI5skCJBNh2ux7an1uHA6l3o6Uwc+KheU4XD70lmz6msGEQtuAXjHCL6CBFlaqwfC0nATzIPssC/AIwjos+o1n9XsV2J7HewEJJJEWJ+DW8BuAVAMZJNii4G8D85QpIB6yEldPt6TDlJgHqn5h+P/b+DNKbrDRy0mYjgeObgysvvwb9X/zBpvdUIKctXVAKKKEZvWwi3qHZyNtsHAB7EJcgrv8TWx8OLkdggO/vS8b0OyKJH4EtX/hkPP66evXSPckRLOYpt5b5YxcsPb1drr5/XkLmj0sKkCIieQqDE6kyc/CyZ3W+7NvVWUCdlM1pWE7VZg6jVxypCCDTuP47d/zXyfeyl5oP9muvbVPld7OBmhN6Ldk8FZZ+xzd0ASonoX5DMeboATIRkTpQDIFloMufXAD4L4HEiOgOScH4OgE8DeEYI8YJq/9UALo/9XqVYvwq9oVPjzsixXAcnxepuiBCih4iuhRTKdD0RyaFMh0MKZfoJAJVCiLeJ6P8B+DaAqbH2qAUwCtKsBkFSXpiI4lg5ePzJG1E0rER3u9fCcRDCtpcdc5BxujMyM5Bbkof2+jYAQE3lbpMjnGGlfbyYEndiKqLFwGnD0HSoHgBwYPUuDJw+HBmZobvZpDx+hEiVFQA3fgV2ytJLDmcUqtWL8qxgVKZRO7nF7z5L2TccensvDr9bmbB9xpdPRXZRLpoO1SMjMwPHdx1BzdpkpWDaF07G5kffAwA07D+OthMtyCst8K3eWrhpf7NgAkxK801IQvJZAK6EZPZzBJK5zp1CiLftnlAIcZyIToMk2MuOzlUAfozeiEVKVsX+16I33wHQqxDsEkIop+suguT78JzF+rweS2T2YwDXASgEcBDAi7Ey5f2+EzNn+jqkWY4cSGFM3wfwiJWymPBw5XOgHNHz0hzIbPQxVTrRIOuZW1KA9vo2FBWW4T+v/h8yc/2N5+/XB07vOXKidAycPhyVL24DAPR096CjoQ15/YMVItIZLxRBeWbAjxmCqKC8NqPnW2udVuQlZVQ3r5UEpwqCup5GOWJa9lyfpBgUl/dHbkm+9HtUfwBSAIH+Ewbj8LuVEF09KBxWjKLhJcgfWISs3Cx0xSK0ffjwOxh/8QzkFOcjf0BhUvhiLeXMa8d4t6TKN40xRgjxPKRRdbP9HoGOgCyESJrijjkPX2OxDtug4dAcSzqmNX1+MYDXhBAnNI65HRpJ34QQGyApQWZ1eRrGvglMRHFlVhQ0djMZ9xVaa5vQUFUHAMgoE74qBkZt7NcHTl2m1ZHYm29aia8+PgjNNVIOiMycJFNQxgFe32e9UXy/sFqOWU4FJ2Wqn12zPktPQfALLxQDvXV55feh/Xg11t2TGF590MwRGLVoQtL+AFA0rAQTLpmVtH7wnJE49E5lfHnXvzcBALILcjDr+jPi69UKp5ZPjB/9lrocrchuffV7xUSO1yGN5jNMnMini5VHssIaWXFatt4oqB8f9saDJ+K/+0/0x88nDKVAqwy5Xa2MnC5dthgFNADNaERRYRmy8nN8ryfTi99mKlqCtp/Pop8mPUYE1f95pRho0XS4HlufOBnN1Q0J62d95XRHeVmGnVKRoBzIdLZ04MNH3sH0qxfYPqdXWJ0FsrOdYfxCCPH/wq4DEz0irxwAqTflqqUY+ClQHN/RG/NbPaXuJ0EJLGrFwCp122twtLoSAJA9Ist220Txgx21+tjBrxkHJX7fM7fvcVSdh+0qBnbaWCtUKQCMXTzNccJGysjAvFvORvPhBuz853p0d/SGi2873oI1d72CwbNGovLs9aiYMTuh3l4GUFBix9TSiQLBMAwTFJ4qB16NEup1kmb+B35M17rprIOwoxY9PWg8cCK+XDSy1NF5zEZFlW0b5AfMaVmN+49jz8peX6yh88ptHa+OxBSVj3ZUBYiwcy7kld+HU2sP49WWn3l+bmXdvY4OZDaarMaP6EReKwbKOvZ092gqBhXnT0HZpCFJ9bDznBARioaXYM7Xz4IQAhsfeBOdzR3x7Uc2HMCPLl6Az/3gt7bq7xQ7GeKNtkXx/WYYpm/hOHTL40/eCEAKSbp8RaUv0Ym0Ej6lAupkS1rJl7xCGa4ThHjUDtHTgxN7atHR2GbpPEuXLbYkdBh9uPxWhCzX8UQLtv/9g/jy4FkjTHMcyM+bHzHH09XR1ipBmZ15rRho5TcJcuRfq93CnnmwMou3dNli9HR1Y89zm7Fu2aqEbfNuORtn3LUNIz/2z4T1SmXcTHjWgogw/uKZSeuLCsvwr7vv0D1fGFhNyskwDBMWrmYOlmvkJvA647AThz21n0IYikUQIRkBaQpdZvCskejp7kF3Rxd2/2sjmg5L9r0Dpw3D4Dmj8L2fvearcOHk3MpINV6ELwWA/at2xn+XjBmAUWdPtF0vNW5G9PpyJtWo1s+u/4BTBc+s7zFrn7CSkxnVw6gthBCo/fAQ9r20PWnb1OseQP7o3tDmdvtls/0LhxZjzg1nQfT0oLu1C5sefhtNzVKghq62TmTlZdsqz0+i8I1iGIbRw1efA68VBT1SQUjyC6W/QcuRxqSROgCo3XwYtZsP4889t0AMEoH6JZjhdaQa0SNQv/dYfLnivMmWkp8FmZfCC1KprulA2CP2XmPn+dELp6rm2qsex7c+NjE+KKFk/MUzUDbVXs4jJ8JzZnYmgMykd/7opkMYdtJo2+X6iZZJrJKwHOAZhmECywilNUXvd3leEWVBrOVIY/y3nPBLj5ce/wPOmPRVv6sUKrWbD8V/5xbn2XJ4NLKXj5LyGSVzOz/MsJxgNrKv3u6nqZ8SZUZxrT8nBNHmZnWU26/laBMOv1uJKf0uwrdOnxpXDIoKy1A6diBmXnc65t96DoaebS/UuVUzIy262jvxwb2vJa5r6dDZ2zu8fJb6uikiwzDh4unMgRV7dPmjEgWBwgpqx1SZqAiLBYOLNUfqAKBs4mB0NLaj6bCkNBQVluH+b38RM687PcgqGmLlubDT1sqMqoNmj9Tcx2hkUD3bFZX7bAe/orEYlaNcF0abWRldVddNmVDMz9FZr9vD7fncmjrJ7VW7+TAqX9gKAHj0rVvj2/MHFmHE2aPRb2R/S+V5SVdrJ9b/4fWk9YNmDA+sDl7BMwYMw4SFq5kDqx8p5SiIXyMiRhk5/SovCgrOyLPGJywPX1CBGdechvm3noOxF07H5MvnYdoXTgYANDXXoaOpHT3dPWFU1RQv7qHSB0MrQpGesme0X1TutR5GMwlh1DuKbaWnfFp1ck8XjMJt2pnN+MxH74wrBmomXzbXsWLgdpaues2+hOXBs0Zi/q3nIK+s0FYd7Nbb6+9aX3omGYaJHq6UA2X4wiiMsNqJM+13mUGRkZmBcRfNQL+RpRhxxjgMP3UscovzACA+Kpo/sAi5pfnxY45vr3FdbtjXbYXW2ibD7alwDVYJWoGxqlz5Vbad8/cVEw2n12m3f6zctB4//9S5mtvGXjjNUoZ2LWXErXPusS2HUb2mKr5cNLwEo87WzrzsNX1NyWQYJr1xrBzkDv2e5X2D7Djt2mOng+DQf/wgTLp0bpLDnbLd+40oja/vUMQCd4rXCtfNN620HPPd6J5VnDc5/rtm3f6k7VbqHfQslJ9cf0mF5+cMsx3cvN+yMJqK99EKdkMROxnUaT3WjF9fsTgeBSi3NB9zb1qECZfMxNTPnYSyiUN0j9VSCKzOdJnV8/iuo9j7fOJMxvhLZloKRqBH1GcMGYZh/MJTh2QzQTsoJcFOp+42tr9cXpTQug8N++riv1uPNiZtTyWM7ln+gF7zgeM7j+juJxMFMxy/8EMxCBO7fj+ybbxeJmXGHt2d3TjxWq/DMQBM/fzJyMjMQMmYgSgY3C/pGL17pNVH6/kbqZ26tdj9n00Jy7O/uhBZufqhS9NhUIhhGMYvXDskR8GcyC/MHDujlj1XRksYGn7a2LiNcN32Ixg8ux65/fORnZ8TdPUMcTuym5nfKxB0d3RbOsZJrPdUIcxsul46JzsJCGCU7buvKwd274sQAnuf24yuo5K/UlNzHWZed3osdKj18tw6Q+tRMLgILUckM8Kxn/wxiiZdYXg+NgFiGIbRJ7BQpnaJih+DEUHUT/YbcMvAacPivggAsO2ptdjwhzdwZP0BCCFcn98p8siu8mPtKsxjLEO0TMtRY78Dq0T9WQyCsJybnUYKU783ahMjO8emE06e5bptNTixuxZNzXVoaq7DrK+cjpwi8zDBVkOSuu3vZQdoAKjb8kZS+Xbo64ojwzCMp8qB1dGYVO581UKD30Kjl/HYRyvs8WWqXt2BtXe/isPvJ0b5SNV7pFZ0sguTZ0bs3rNUVAzSwaTITVhb+X1x+t7wyHIiB9/aE/89eNZIy/lDrGSA9uL9Gjq/NzJZ/a41Cf1AqvZlDMMwYRHKzIHRx0ArgkVYwllUZi+MBBV5ZsGKEFRcXoZRZ2lH7zj4xm7Uba9B+4lW5AxfGlh2azuY1aOrrRO7/91re1w6fhCyC7TNpqze2yjcf7+x+vykUlso35kgchmkPQqdWx0+2QwrOUXccPNNK/HN774UX6aMJkeOyOrZjaj0/wzDMEETWbMiNXay16qd2LxELWA4GZns6erGkfUHcHzHEcsmPXqCjV0n7yFzR2HeLWdj7o1nYfiCioRte1ZuxqaH38baX5yMrvbOhG1RUBCM7mVXWye2PPY+Tuypja8bfkqFq7JYMEgklU00+opi4EeEna72TnQ0tgEASscNREZmeJ8NrWtbumwxfvy1ufHl4lH9k/Zxcl6/w/EyDMNEFce9fHv1L10JT1rHWpmCVmNmx+o3ToSOqld3oOrVHdj97IfY+c8NniQls1MPIkJGViaGnzo2IcSpTPuJVtRtrY4vGwnKUQj3J4TA1sffjwswgORjoRU9RU26KgDLV1Ri+YpK0/2CSFDoFC2l3wl9STEAvH+mG/efiP/2wofHqeJt1M+c2N07KDBw+jBP2sCvvsFqIkaGYZiwiMzMgduOOJWEvJaa3lCiDfvqcGD1rtDqMmrRBBQM6YeCQUUJ6wuHlZgeazfmvBuM7m9rbTPa63sVg1lfOR0V50/x5NypjBOnW68VhLDaVr6OvqIYKPH6XWw6eCL+u6OhzXYAA7Oob3bOoXd8Q1VvqOYMixGUlKjDpQbx3KZrv8MwTOoTCeXATidp1Hl73ak7EZSsHJOjiBoEAEc2HEBPd08oI7cFg/th6pUnYernT0bpuIHx9Q2VdbrHBJ0kTH1P1bMV+QMSIxRZdZZMZ9xE49HalmqjnH0pY61fs3fyczBk7qiE9Uc3HHRULz+F4f4TBsd/a81uWGmfIIT1VHuPGIbpm0RCOXBKUJGCnNJc04DtT6/D2qWvYtd/NqHpUD1qPzyEeoVdvMyB13aFLswMmjE8/tssgZiXMez10FL2tD6uVvMZ9BWsJO2zYnKkxEn0IyfPh1IxCUqwTEVkwdsvpUAZ7SmnXx6mXHlSfES+6tUdaK01Ni8yCj/rdBDE6BnIV8x8dtS3Ojp/kPDzzDBMlAlVOYiyXahbjm48iK2Pr0HjgRMQPQIndh3FtqfWovLFbZBn5YuG95ruHFl/AGvuegXNh+sDrafyI37o7b3x3wVDzO31tRQEP0cwtcoHks0Iulo7tXY3RB0hy0r5qY5dBcEJfgmwSuE4Cn4vXmHlOvy+VnmQQjn7UjikX8IMwr6XtsXrYpTpWEvBtzsIYjYQ0dnakdB3lU0eEjnn+XR6RhmGSX88UQ7cCk9R6DS96rx/c8e5OLrxIPa9vD1hfVFhWfwPAIafOgYTPz076fitT67FwTd3x+16/RZMT2y8Gh2NbTjwxm40K3whhp1coXuMOsypWgDw835qKSMZmRkJCZk2PfQW2o63eFamnjCjdua1e6/stJNXZnTqMq06LS9fUWnb/M/ucyDPaJgJnFHoL/zE7fU5HTBRzhZoPfPNh3oHLrKLEk0jtZxsvRq4MfQ3OtaMDX94A93tXQCA4vL+GHDKX22dA/B3JtRpEj+GYZiwcKwcXHn5PfHfZiNBeoJTFD/yburUcrQJm//8TpJiMOeGs9D/pAEAgOy8PCy56y8YvmAMMrIyMfO605POc/i9fdj+1Dp0t3d5amqkvAdCCFSt2oEPH34HGx98C9WKJGijzhqP3JJ8w3MF4fMBJAos8m+tMuRRzaLCMuRnl2DHM+vR0dRuuRwnwqfy3ihHWf1S6JT+NkYzHTJevF/qNrd6j6P4bkedMNtMqRBo9TmipwcN+4/Hl4dphAn22wxM673a/Jd3E5YnX/vfpBwHYeYzYcWAYZhUxFezIqVAF7Y9vRledNr7XtyaZP8++bPzkJmdiSFzRuEXL76PO15ai1MvuSzeNjlFuZh70yJMufKkhOOaDtfjg/tew5ENByyXbzb7Id+Dnu4efHDvahz5IPncg2eNxJC55UnrtfD7Q6cUBsyen8FzRsVnZQAgp6cAWx9/35MwsXbx+ll3MjugNZKr92wsX1EZ6vvJJhfJ90Zr2a82MksQ19nagQ3L34wv5xTlJkU38wKz61Mr32oTzJnXnY6cftIgjNWoQ0E9d5w3hWGYVCLL6YGPP3kjinTCXdoR6tKFnu6eBLOcsYunoXBoccIIfNmwEUnHyR/mwiH9MO+WszG5YDH+esdt8e1Vr+zAgClDkZljfqusmHKIHoFtT6xBT2ei0Dxg6lCMOmsCsvKyk+pmVqaVdW5Yumyx6Wg8ZRDueGkt/vG7n2HV0w+hqLAMnc0daKg8htJxgwAAx7ZWY+//tiQcN2jGcIw6e6Kn9Y0adu3YzWZA7ApUdvOTmJ3DiclS2DgZVXd6jVZMZOR328o7XvXyDnS19frxjP/ETMP6OX3/rRynnEn8wTUz4+tHnDYWxVP/5EuZTvEr7wTDMIzfeD5zoBYojIS6qHWabkZ3uts6E0auyyYNSTLNMbJdv/mmlSAibG99Dss31CRsb6iss2yqYiQ4tdU1Y8Mf30gI9Vd+zkTM/tpCjLlgaoJiYFRfr7HrVKq331/+dg2aRlYCAJqa61BUWBZPjlRfeSxJMQCAo5sOofKFrZbLiCp2/QG0UM8gWE2kZhe3ykXQoXTdYjYr4OZcTjFTuGvWVWHNXa9gx98/SIhcNuGTsywlF/QCMz+e5sMN8d8lU78b/x32d4VnwhiGSXUczxzIGHXeVkZ8U3EUUIus/Gw0NffmBmitbUL+wMSpdyMTK2U7PfDIFRgydxRq1u0HALQcbbQlqGt9HDsa27Dl8TXo6ew1exp97iQMmpk8myHXJyqzPrZt+AmAkBSE1p1ZqDh/CmrWVOnufmLXUfR0dSAjK8ddRX3AbydgNVqjzkoFwYvzM/5i55lRv+MtRxqx5a/vx5eVfgYjzxyPkgrJbMfrWQM1amd/ZT17urvxi0vPxzFFFvfsov6elq+FlRkZ9jFgGCYdcD1zoCdAGjm3aWFHaAg7tKRW+ZSRkRD+s1pDGDVKzKRe329U//jvtjr3kXf2v7YrrhhQZglGnD5WVzHQqk9QaJm3qNFzzAWkezP9i6fEl7s7uvD1r/0rQciZ8/UzMfmz85A/oBAA0NPVg7e/uxBVLzzguN5OohX5gbo91G2ldCzWQ2/k0+wd1bsnypkhLcdmoxm7VBGu9Ga/rMxyeKUw2Zn51FL+dz/7YYJioCSnKBdD5ozS3Ga3bCt1U7J02WLkld+HzpYOfOMT43DV+ELs+KDXB2LgtGHIgvVoQ07bmxUDhmH6Cp6YFWkJvVEQlIJGmUSso6HN1bk6m3sj7ZSMHZiwzYkg2lzdOwU/7/v/xJjPROf+WP2IWlFYli5bjMaDJxLW/fJ7C+O/88oKkJmThaLhJQntKrrrsf+FB1G/54PefW0IEU4y8vrlpGjVGdMOVhQDs2UtxcRK1CU79XCC17kSrJzP7nWbYfccSTMGR5twfMeRhHUlFWUoHtUfhUOLUXHBFFCGFAUoSCF46bLFyB11Lw6uegwblr+BoxsTszP3Hz8IFedPSYpQpIeWo74VzPpbVgwYhkknPPU5cCIgAe4/bG5wosTolT9g6rD479xS41CgZjQpY4oXJpq72Ln+zAF3YPd/P0xUVpp+DsB/Ew8vzu/kXnc2dyQs73hmfTzHRMnoAfH1w08dkxCSUXTXY9M9V6DtWKIAEiZRt1+2MurvhT8EEG2TJKvhMrVygoSV10BJR2PiYMasr5yOCZ+cjYmfmYMpV8xHcXmvP5XXio0ReeX3Yfff78Def/08YX1WXhYmfno2xl00w9a5jJaN0OqH0i0BH8MwjEyoGZKVeOl74PWokFWUmXndmgId29JrT7vznxsSnIgBnVjkQqD9RCuaqxsghEDd9hq8+6MFCQ6FpbHRcvmjHlTCMjsjqer97Cqdg2YMR2ZOZtL65tbjGKzI8pqRmYERp43F7K8uRE6/3iRqm++/ONDQg1ZHzL2+V0Fcn5syUm30NQzzKK/Oq/RFGr5gDLILc5P2UT+DViIiGfWtnc3tqPlgPw6+sRvVa6vQ3dEV36Z854+8/2zCcTO+dCpmf+3MBIXFDHW9vXy/U+05ZRiGMcO1Q3Iq47XpU3ZBNrLystHV1ommw/WorzwWd+Czy5iPTk2IrrPlsfcw9fMnoWBQP3Q0taNmbRXajregs7kdbXUt6OlKDE064rSxOLatGhCJ5x193uSkstyE3LOaWVRW/oyEC68UxOzCXMxecia6Wjqw618b4yFmP/n1H6Iq682k/bPyszH1Cydj/X2vA5CyrrbXt5omggO8c9xWKmt67am22/cCI6XMzrFe4kXoUy20nnM/lGOrz3EUZgxk6vcei//uN7I0abvXZjNd7Z3Y9NDbCf3Wobf34s87mhP2Ez09ED29isv4T8y0PSvrdXI2+R3Um0Hx4z1lGIYJEl9mDvzOFGsFrQ+vOgKG11BGBkrG9ioDu/+zCUIIgyP0GTBlKGZdfwby+hfE12157H3UrNuPjQ+8iZp1+1G/9xhajjQlKQYAcPCtPQmzF4NnjcCfthxHdkGviZKbj5ee86XbkKRefVCJCNmFuZj02XkYccY4nHThp3DxTd/Rve9ZudkoV+Q7OPT2XkvlWFUMerq6cWTDAVSv2Ye24/qzSm1VSyCEwPGdR3BsWzV6uroTtvkZ3SuqwozWqK/X55XP7Qd++ZV4iTLyjzIYgrpMu5GQ9N6PI+sOJPVbPZ3d+OFHF+CamSWoemU72o63YOvyRRDdvSaWJWOcDbYAwTzffjiaMwzDBE1kzIoA7zpvrfOoR3j9cqAetWhC/HdPVw+q39vn+FzZBTmYcuX8hHX7V++0fZ6MrAyUnzMJ9z/w6aRtTuzCnWZv1Ytko1cns3LVaN3DjMwMDDtpNBpH7EFmVpahMD9o5ghk5Uu5Ho5trUZ7fatheVboaGzDnpWbse6e1ah6ZQcOvL4bm//yboLyIXoEjmw4gDV3vYK1y17F2rtfxe7/foi9z23BB/e9hqpXtic4lNu5V2qF2EpoYaNoUGZl+Tkg4MbWPQxBLUjTNLcUKiKtKZ81wPrsoBKz56B6jXa/uG/7enQ0tuPIhoP48JF3UBdzks7IysDky+eBiBIGIZz2O04xm9lTl8swDJOKkN2RbSKaC2DtjGtP082QLGMU1z8qOK1jd0cXRnYtwOsvPoSiESUYMncUKEPStVqONGLrE2sgegQyczIx87rTLWU41qPqle04siHZSbb8nInIzs9Bv/L+8QRmDfuPY8ffeyPuZOVlYeSZEzBw2rCk492iNtOwO31vZ3+vTQP0qHplB45sOBBfnnvTImRk2tehO1s6ULNuP6rf11cOp39pAeq21ViepcgtzcfAacPQf+Jg5JUWJG3XMpvxKlu5VQEx6HfeidCvNfsSxrWpn2mr1+Ll89/d0QXRI7D+/tfj6wbPGYnyRRMNjnLPmrteif+ecsV8bH1ije6+lEGYfPk8FA4ptj3bGJR5T1D9k0zT4XpsevAtAJgnhFjne4EhIcsbIRWf1m3LMEYEohwA/gkLdmy+vbIP727vwrEXT6Du0IF44rPBs0ai/JzeD+rh9ypx8M09AIDc4jzMuOY0V2XW7zuGA6/tRmttE7ILczDhEmuZSoUQlsP8ucHpqJlVfwer53d7j1uONmLLY72x3sd9fDr6TxhseExPVzc6mzuw/el16GhsN9zXDjn9cnXPN+eGs1C76RByS/LQb2R/ZOZKyqdRe0YpsZ1XeDEjYPVZ9bL9tIRJq6PgXnFk/X5UvZo8Eznmo1MxYMpQz8pRc/CtPTj8biUAacZiypUnoeVII6rf34e8sgL0nzAYddtqULN+PzJzsjDu4zNQNLzEkWJgto9bwpotYOUgENK6bRnGiJRxSNYbAVL7N8jLXW2dyMjKQEZWctQapzQfrkfL0SZUr9mH9vo2FBX2Rss4suEABk4fFhfYB80aEVcO2hvaXDknA0DJ6AEo+cKAuA+DVYFfuV8UZ3KsfkzVI6tmz4MRRkJDwaB+GL6gAofeqQQAHN95RFc5aD/Rip0rNhj6EFAmoWziEBQNL0H/iYNR/d4+VK/VztY8ZO4oDJk7Cl2tncgfVAQighACu/+zCSd21ybs+8HvVycsF5f3R8UFUwGD9ozSfU9FnLSfG/8bPzn09l4ceid5xqq4vAxlk4ckrfdKMerp6o4rBgAw/LSxAICCwf0w9sLp8fUjzijCsFPHAJBMA60oBso+IZ0VA4ZhGL/xTTkIYtZAjRACF5z8fSy77TNoOlSPzNwsTLp0bjwTrtN6NOw/jsNv701KrpWdl4cilMVnD7b89X3MvfEsZGRlIis3G8Wjy9CwT9q2858bMOZjUzFgsrsRuSBmAZzgp6OsnTLMhBgth0H1R71sylCFcnAUna0dyM6XHLl7urrRdLgBe1duRmdLh35FCBi5cLyUvTVm8gUAw08fi8zcLBx8S1Ics/KzUXH+lHiIWQDI6ZfXexoijL94JpqrG3B040HUbj6sWVxD1XFs/vM7mP21hXHzNj2USmKqzyZY8WEJC79Cz7q9Zz3dPahZl6ig9h8/CINmjdAMD+rlM7Ln2c3x31l52YYDJkbmfE79kryElQGGYdIVx2ZFv3xpLf69+oe6+4UxSj1n6BV44qffiQvrMiMXjsOgmSNAmRkQXT1xEwwzhBA48Nou1Kzbr7n9xt8/gVlnX4Brp/V+UAfOGI6Kj0yGEAIN++qw858b4tsogzD3pkWRFfC9wu9RO6v2vVpCjZ7woD7PpoffRvsJ6w7J2QU5EEKg4rzJKK4YYMlPwYnJV+PBE9j9n00JOTWUFI8uw4RLZsWz2QZFlJQMOwJiEM+olTpYzQHiBftX74z3afkDizD1cycF8ry01jZh86PvxZdHnTUBQxR5R/SwMkJvNLOgN8to1I9EPRQpmxUFQlq3LcMY4WrmwEwBCFJY6Onuwf8eWAYAKCosS1AQDry+Gwde3x1fHjxrBMrPmaR7rrptNejp7kHb8ZYExSAjKwM9XT0oGlaMsslDcdLiS0BEmPjp2djxzHoAQO2mQxhx+lgcemsvjm5MdCLOKc5DX8LvD6xdxcAIZV1vvmklftvyEWz601uaYWKV5JbmY+zHpqFwaLHlsmTsKAZy/fqNKMXsry5MUCyaqxuw858b0NXWiYZ9ddj+4AZkDiKMOGMsCgYZ+6V0tnbg8LuVyMzOxPBTxzoWEv1+1608S1GZNfCyHn68P/V7JBM1ImDip4JRJBv3H8d2ZaCE3CxfFQPlNifHGB0bBFFXThiGSW9cKQdGAkHQo4gN++qwf9emuGJQcd5kVL64TXPfll2t6D6jSzOCUO3mw6h8YSsAJPgUlE0agrGLpyXsu+yeCwFIdrqyCVFRYRk2/OENzXLLz5mYlrMG6pkC5Uio/JGz+rGzIgxYOY9T+/C2qiVYumwxvvXdl/DTmlNw+L1KoD4zeTbqjHEYPGekpz4tdlA+R4VDizH58nnY8uh76OnukeraDNRXSomtisv7Y9iCMeg3ojThHEII7P7XRjQdlkJXHn5vHyrOm4wBU4faMk1SrvPjvQ8ioVhYGD3LXgqHXW2d2PnPDQlhSguHlWhmQvYaIQT2Pr81Yd3Ez8wxPc7tfdfbZtTHROE5ioJywjDpBhFdDeBhAGOEEJXh1ib6OFYOHn/yRtNoRX6jFEZkJ7em5joMmDoUA6cPR7+R/dFe34razYfjo6oyx3ce1Qzvqfx4NjVLwn7mIMKosyck7auk4vwp2PjAm0lCpEzBkH6a9rzpgFFoSGUscifmRl6bKNnxjSgZMyCedKmjsQ2UmZGQRC5oDM0g+hdg8uXzsHPFBnQ2J/pCNFQdR0PVcQDAgsWX4fwvLcGE+Qvwk1tOjisGMpUvbkPli9sw5fJ5KIy930IIiB6RYCqlpQSEaVYUhM+LVbyoi5dC4dGNB7Hv5e1J64tHB9MfNeyrQ0djGwAgMycTU648KSG5o9co29+OT4qfDsZm/ZhyEIVJXYhoEYBXVaubAVQB+BuAO4UQjQFXi2FskzLRiowQQqD1aFN8WRZickvzkVuaH/8Ith5rxua/vAsAaN7Yiv4TkmcPMnOz4rMPA2cMx/fvfRWDRo02FXxu+/7L+Nmac3Fox9a4gjB0XrnkzFqQI+VBSMNZAxm9j57WB8/JiFiQ8cq1HD+VTsJhoBWtSU1eOXDSnC40bL4WO59Zj/aGtqR93ln5N3y4+iUASFBkKZMgunv9j7Y9tRZDTxoN0S1wdNNBdHd0o2ziYIw+fwoys/2fLfEqf0FYuKmL1ZwLZn1S24kWHHhtV1KkK5lBM4YD8N9H6Piuo/HfEz89B6WzHumto4uEYmYzA04Vg6AzZVupF88gpBx/ArAq9rsYwJkAfgzgNADnh1QnhrGM5xmSrWat9BIiQpHCZEI9GiqTP6AQpWMHoqm5Dq2NDTjy7FGoHbIHZU+MC03DF4zB4//8muV6fP9vz2PwmcMwdH45Jl8+DyPPHI8xF0zFyIXjA5m+TyWcPCN2jzF7Fo0+uOoQuVHAioCQkZmF0pmPYMY1p2HezYsw/hMzk/Zpaq5LUAzKJg/BvJvOxpQr5qNouDxbIJkZVa+tQndHNwCgbscRrL//NXS1SrNwrbVNSe+PFzjtP6KiGNhB6xmVl/WePSvPZMvRJnz48DtJisGI08Zi+KljMGfJmb71Scrraa5pQO2mQwAAyizBgJMfS9pX7/pl7PoMmNXJ7bmslqf8MyvbLFN9Kj7bfZx3hBCPxf7uE0JcDuAZAOcRkXHiHBsQkXmyowAgohwiCm9anfEcT5WDoDuwpcsW4+tf+xcOv1eJhqpeYaf/+EG6x4xa1GseVH+0BicUo1oAsGVNb+bO7MLEZ93oo7x02WL8/r6LUTZ5CEYuHB+6yVWUsPLBs6pUeq1UtFUtSfqTSVUFAZCumTIyUDp2IObfeg7m3bwIYxdPQ15pfsJ+g2ePxJgLpgIAvn/HG5j82XkYtWgCMnO0ZwdEt8D6P7yOHf9Yj82PvodND76Fhqo6dHd0ubswRb3VqO9LquC2zlozA1b9Oo5phLydvWQhhp1SgeELxiQlzfOavPL70NPVjZ3/WN+70mDm1GoUMas49SPw4zmTn1+1wqA3K+DUz4qJPPJLGbf7JKLRRHQPEW0moqbY3+tE9DH1wUS0iogOENFEIvovEdUDeE2x/TQiWklEx4mojYjWE9FVVitHRPNiZbQS0REi+gMRzSAiEbPXl/e7OrZuMRH9goj2A2gFMDW2fQIR/Y2IamP12EREX9cor5KIHtFYfzsRCdU6+drLiWgFETUSUV2sjkmjHET0GSLaGCt/NxHdCiB9TTd8IGXNim6+aSWaThzH/33sVBzcvSe+vmBQEYbHkudokVuSjxGnjY3Hmc/YKFA6flDc5EceJQUACAAUjNNluqP3sfZLOFHfJ6fleJkRN+gPvLJMyshA2aQhKJs0BN2d3ehq6UB2Ua6mH8GQOaPQf/wg1O04gp6ObpRNGYKmAyc0Hfw7mtrjkbrGLp6GsknJCbTcYDfTthu8NuHww6zIam6KIxsPxH8Xj+qPsRdNR1Zub74Nr+zr1c+18rwNVcfR1darNA6dW6Jr6pNuwq9VkyYr1621z5WX34PvPTjPWeUYq0zWMAU+LITQTjaTSBERyclrigCcDuAqACuEECcU+50E4DwA/wKwB5IJ0hcAPEtE5wkhXladtwDAy7G/byMmwxHRJQCeBrAOwB0AWgBcDOARIhoihPh/RpUlokmQfCU6AfwGQC2ASwH82eCwX8f2vxuStFRHROMAvAMgG8DvISlEnwTweyIaK4T4plE9TMgH8AqA1QBuA7AAwPUAjgL4keJaLgXwFIBtAH4IIBfArbFrYiySssoBANx5+wU4Xn0ovlw0vAQTLplletywUypwbMthtJ1oRUPV8XgW3AOv7Yrvo541YLzDjj22OuOp/Nvso6oWnsKyR7dbbyvYtb9W75+ZnYnMknzN/WVy+uWh4pP/jS+XzgRKx12Hqle3o37vsUQlOsaelZvRf+Jgz3xrghQYtRTWqAqsZopB7ebDCf4jZpGB3CgGyv/q85zY0/strjh/imYACCdJ7Mz28WK2wS+MnKXt1OXxJ2/0tF5R57nvTsWM8sJAytpU1YyP/WoLAPxVY/NPANxu4TR3xf6U/AvA51TrVgoh/q5cQUTLAKyHJPyrlYP+AO4WQvxUsX8+gAcA/A/AxaLX1vNeIvo7gNuJ6I8qpUTNzwEUApgthNgUO+99SHauVpIB4DQhRNy5jYieitXxNCHEO7F19wL4D4BbiegBIYR2GElzygDcIYS4M7b8ByIqhaQg/ChWViakdj8AYIEQoiG2/mFIygJjEcdmRVdefk9g5hZdrZ1oqKrDnpWbseOZ9Tiy/gCWLluM7rbOuO108aj+mPzZeZYTnA2ZVx7/vefZzdj9703xnAZFhWUYvmBMUvxvu2YmYZujhOH/YRW7piLq/Z06rCrxu22CbHuj9vTKFKto0gOY+tXXMHvJmZh/6zmY8eVTMeqs8Qn77PrXRtRuPoymw/W2/RGi9qxG8f25+aaVhv1KfeWxeChmACipSI5I5KcpkUx3ewvqtlYb1sNtGVpEMWO2ll9BVBVPJoHPAZin+ltu8djfQZoROA/AJyApFecA+IfSNl8I0SL/JqI8IhoAoB8kZ+aTdM59j2r5PAADIYXpHEBEA+U/AM9CGnE/Xa+iMYH6YwBekhWDWN26ACwzuMYHVIpBJoALAbwqKwax8/RAmmUgSLMZThEA1C/0agCDFL4X8wGMALBcVgxidTgE4HEXZfc5XPscOBWArXx4e7q6selPb0k2zs+sR932GjRU1aHq1R1Yc9crCbGzh8wzT6ijpP+ERJ8g5SjX5FPPxE//+IH6EADWzUzCVgyUROEDqYfdxFZK3wAnwltQH2WrMda9xgsFwWzf/NH3I6/8PpTMeBhD5pZj2lWnICNL6krq90rC6bYn12L9fa/ZyjKtJMj7ZHa92pGh/FEctK5b2Zdsf+8tHNyxNWkfmfo9iTPnQ+aWJyzrmRN53V8de+/L8QSCZZOHWHJ+NjN10vNH0fpt9/741Q5MSrNNCLFO9WfFpAgAtgohXor9/VsIcTuA6wBcAODL8k5ElE1EPyWiSkh2+7WQzGS+CqBU47x1QojjqnWTY/+fiR2r/Hsots3ICXoQpFmD5HjHwA6D43arluXzbNHYV16nb/NtTo0QQv1BkdtCHn2Qz681S6DfcTJJeOKQbNShOv2AdrZ2YN09qzXDMarJH1iEfjZzCGTlZ2v6JoxaNAE3P/AkMgySQMl2v6lE1BUEJ8Kg2+OiFPrSDerRZL128SsqS35ZISZdOjce6Uimu6Mbmx5+G9ueXItjW6sNZxJS9T4EVe+bb1qJ8q7T8fPPnoNfXv4xtDdoK12drZ3x3+MunG6Yy8DJu6N+zrRo3fc11HzQm1m+dMxAzf1knCpoeu+vmwEDP/zJeKaAifF87P85inV3Q7KLfxbAlQA+Cmkm4HFoO9BqvfiysPI19M5WqP+e1zhOxqkdqJORH6HzW4lerOxkW9ZeSPVf69zskGwDx8qBVZtHKyPDWp355kfeSVjOLc3H6HMnJURRoQzC8AUVmHTpnATHSiOUH7fhC8Zg9LmTAEimREXDijF49khPPxBmZgBBkQofpzDqGHa7eDECvXTZYssKq5UQi07apHBoMSZdNhczvnQqKs6fkrCt6XA99v5vC2rWVunWx235WngplAUdClNGvqd3L/0YXnjoXhQVlqG7owMdje2a+x/fcST+u3RCYtQ2o3p61efVvPZZrL37VdTvPRZfl93PfshUMxNCvQg/bhSDKPTTTFojRwRQhh+9EsBfhBBfF0I8IYR4XgjxEuzJZjtj/08oZivUf4cMjj8CyYF5ksa2iTbqcRRSwrepGtvkj8JexbrjkPwT1Iy1UaYaOTrNFI1tkzXWMTq4ckh2G+pRN3HW8ZaEKBdjPzYNZZOlKCiDZo5A48ET6OnsRvHoMsvOj8o6KqN9DJw+HF3tXZg54SJcfOO38adHPw/A/GNpZXvYH5tUHBkPW1gPAtlJ2Ot7E3YULSKKJx4sGTsANWv34+iGA715ErYfwdD5o+P7exkxxwg/2trKOe0KrFrXL9/Tq694BDfeLbVdUWEZGvYeQz9FbhdAMsNUouwbvbp+LUd/mfq9tdi5YmPC9rKJg1E0rFj3fFYEf6NtXoYsDfv9YdKeS2L/lTbL3VCNaMciB10C6zwPoA7AD4nov0KIJuVGIhoEoFboTN0KIbqJ6DkAnySiGQqH5CwAlj3fY+f5L4DLiOhkIcR7sfNkQHKuFpAck2V2AjibiPJlcyEiqoC9a1ezBsAhANcT0T0Kh+ThkBQxxiKe5TnwUhBWjjBmF+TEFQOZfiNKUVIxwFZUFL2OnzIIw04ajaOlG+OKgVWiMitgBE9ph4NdX4owsCqEmT1DWteSnZ+DkWeMw+wlZ8bXtRxpRFd7Z9K+ZnUxIqwRfTt48f498sTVyMrLjmdvP/z+PnR36s+yFwxJzI0URB+g9AEDgAmfmoWxF04H6ZhoulUMzM7l5DwM4xELiOjzsb+vENEfANwLKbSn0sl3BYDPE9F9RHQdEf0SwLuwYR8fUwa+DGmUfysR/YyIriWi7xPR05Ai95iltf8RJDOhVUT0EyK6CVKkogK5GIvV+QGAEwBeiuVAuBHACwA+DuAuVaSi+yH5KbxEREuI6Mewee1qhBDdAL4BYBSAd4joW0T0fUjhVXcZHswk4GkoU7sjdHqhHesre6ekp33xFMPj5XKtoBzNd5uvwIpSYDUmOWOdqIeZVGL1fQjrWsxCq9ox3dA7FxEhIzsTPTFBtrm6ASWjB2ie36ieTvFKQdBLTBVU/goiwvhLZmLbk2vj69bf/xrGfXwGSsdKNv09nT3xbVk5yV27VzMoct+n7NeEEBDdveXPu+VsW4M3Zo70XigGUegzlN8N/i6kNdfE/gBpduAwgEcB3C6EqFbsdwskofxTAL4EyZH2ekhmMcYxiBUIIf5FRKcC+B6Ar0Ay1zkKyRH4GzC214cQYisRnQ3gt5BG+Rsh5U14FMDbsOhfIITYTUQLAPwCklN1EaQZghshKUfKfVcR0ZJYeXfF9rsBwDRIkaEcIYR4KpZE7f9i9TgIybfjOHodtBkTPM2QbGcUXa+j7unuSbCnzcrP1txPeQ51vG2ZKIQiTPUPQBTaUEmqORJbEUiMIhu5uU43ZTs5r965Bk0fHv9ds3a/5j56RP0+e+kfYYY667roFtjz7Idorm6A6BFo2NebJT5/UJEn9bJKT0d33HzsrM98ybNcF25RBh8IA/U7LPsHpfp3gdFGCLFKCEGqvywhxCghxDVCiP2q/ZuEEDcKIUYIIfKFEHOEEE8JIW4XQpBq30VCiJEGZa8VQnxGCDFECJETO+d5Qoh79UyKVMe/L4Q4K1aPwUKIr0MKCwoA+xX7PRK7rpd0zrNDCHGpEGKAECJXCDFdCPF7rToIIe4XQoxR7Pe0nWtX1KVStf5vsfPlCiHGCiF+J4R4WGtfRhtPlQPAvRmL2m62fq+1pHZGI3jqzln53+h8evSV0R+txFBOjvWDIBWEsEau3bxHerHVvYpiZLVubcdbkJHd280oR5f1MHOYTnf0zBW1zIh6unqw9Yk1WLv0Vex5bnN8fen4QUn7Av6Nnh/bJg2GFhWW4cMtz5nubyfZmZtZgzCfITf9J8METSyZmnI5G9Ksw3FImZeZPoTnyoEd1J1+Z3M7Nv7xzYR1J3ZrKwfyx9PqyJCWgqDcpuUcqdeh95WRH70Y4lEhinVyg10bbLPz2DHBcqogqP+UHFl/AJv/8i4Ov7cvvs5sRDudhCiv/JFkZeGIIjxodmEO+k/UDl2elZeVFFYW6O3n3Ebo0er76rb3Rkk6tqUajQfUodiN0Zr1BYJ/x730IVO+E07zsjBMgGwnomVE9FUi+h6A9wCcBuAnQgjt8GhM2uKpcuBWYK6vrIsnzpEZNGuEzt7JEYiUOIl/rTXS4zT8X7p8BNzkEkinNvAb5fNmJdyo2XnCpuaD/ah6dQdET+JMcrFBPpKo1F2N0/uv7B/snENr8KG9pQU4lBdfnnTpXIz92DSMWjQB+QMK4+uz8rMx7uKZSWY9epGh9Powu8EWMjKl8uSM9Qff3GO0uyW8eO+iMICgVBAA67PSDBMw/4aUKfl3kByUuwFcJYRYGmqtmFDwRDmwE2fdiJaaxvjv/IFFmHfL2SgY1M/giESsxnlX76/nbOikHOU2HilivMDOc6R+bu0oGV4+qyd2Hk1YHjhtGMZeOA0lYwb4XnaqYUWA/etPvo2De7egqLAMQ+eVI69/ASiDMGTOKEz74imYf+s5mHfL2Zj1ldOTQpyq0eoDlchBFIwGP9Tbys+ZhIEK3xInKOsVllDv54ywlWe8L8xIM9FECHGDEGKCEKIg9jdfCPGXsOvFhEOoZkUycQGmrCC+rrW2CTD3oYmj/pjZ/bg4TaJjdj69cwY5QsSjUemB22fTipLgxfPf09WNxoMn4svTv7QAFedPQdnEIZFxVE0Vbr5pJdpbWvD+s/9AUWEZmtuOY9iCCs19iUgzbKjde2omoKoHQAAgr38Bys+Z2FuXDOP7HITwH4VZAyXyLOz1l1SEXRWGYRhDImNW1Fa1BAOnD0tYV/3+Pp29rZ/TCLP66h1vZUTt5ptWRubjFNZoVFSuPyz8GA2P4mxUT3cP6nbUYM1dr2DNXa9g3T2r49uy8rKQXWg/Q25U8PsZNjv/ty+bhFtOHg9AMtkZOq8cmRphSu1ix7RFvSz3J2rTS6VC0HjghGkd9HJpRO35DgMe0GEYJkxCnzlQfggysjJRpJgSP7a1Rvc4qwKv2mbeSlx3t9PbylwKeqE3+8r0cV8RkIFgo+wYleNWoLVT/7rtNVh/32vY8+xmze3jPzELmdlm+Xeig19hL7Vs/o3KaTnSiHXLVqFxSyOamuvQ1FwHyiQMmqUbydARWv2Qcp2dPC1EhKy83tDTLUebkvZRC73K/tHLdyfIgQm7grzSBFd5zX0lCh7DMNHH8RDUlZffgzGz5saXnXRmWhEpOhp6c220HW9xWr0kgvxYaCU/6+uj6H4Q5YRoQYdZtZOwzAw77blnZbJSkJGdgZ7OHpRNHqIZNcdtmUqiqCSq0XMGltESwHeu2ICeWNhXOSvypEvnIqfI/iyMm+AAWv26XrCHtqolKBjSL55v4dA7ezH+ohmm59OqrxWicu+dfPu0IuaxQsAwTFQIfeZASWdze0ICtDEfm2q4vx+dqVeCJnf0vXj9EQ96VNDqyKDberkZtbbrtOxFGzZU1SUsT7hkFmZ/dSHm3rAIc29ahDEfNX5/vcCvkX4vzms1NK26r+jp7kFncweKCnsjO835+plJSdDs4FUbmT1jIxeOj/8+seso9v5vC7raOz1/h6Kc38AOyjDAfT2/B8Mw0SE05UDzw1mXOFNQNnFIUNVJrEcaheEMG78EeTOHby8JStHzQjBQnkPvXHYFK7Vg193ehcoXtmLHM+vj60rHD0LJmAHxjOYZmRmOnY+1bN7NhMsws+BqoTZNtFM/ORFkU3MdBpZXYOwVkz3xM/A6W7DWeQoGFSFDYUZ2bGs1dv15M7591kzs/d8WNNc0JB0T9gxg2MEh2L+AYZio4Vg5ePzJGw23OxFyClUmCE2HTtg+h1cEYXfsF1H82Phx7WoFwY8y7CoGURFQvRxZVbZBd3sXdvxjPWo3H07Yp+K8yfYqaBErYTWVuBWAvbR5d1oHQq9SlZWdg5x+eQZ7B4u6fbXae9ZXTk867nDVDhzbWo2dz6xHZ0uHqzqY3SO7bR/FWV4enGIYJkxczRzIH22tztWsc1YnhgGAzqbEJHy5pQWwglowtJvAxy7y+aMmhJvVKawPjp+julERxpVEbRTbKzqa2rHlr++hubp39LdgcD/MvO70BEdUtygjfqn/23nnjLI3R5nM3Czk9Zf6vl0b30HT4fqQa2SPzJwszL/1HIz7+HSAehOjAUBXexcOvb03vux0dkuPVLrPMrKPmtUcJVH77jAMk36E6nOg7gx7OrsTls2c78xGi/3uRMMacdK7bqWipnXtqfjhtEIqCoCpRk9XN7Y8+h7a69vi66Z+7iRM/dxJjpxktdAKmWn0PKczZZN7TSrbjjWHWBPnbd9/wmDMv+UczL3xLMy8rnc2oaHymOFxRn26UYQur95/L581vWhEarxIIsowDOMV7g1ZY3gRhq211ruPYBCCu91r9lJ4NTpXFKfJ+yLp5LvS1dqJrrbOhHW7/rMJpWMGYtTZEzxJbqb33CoVhDCf7SAz+Iqe3gSQwkYySKto1V/uz/Ta2Er7a50jIysTOUW9fgiZFmaZtOoX1Lvk1zNmdl5llDsjPwzu3xmG8RvPZg7kDstVx+VR8lStMHFeEnbnzCPkfRc7I6RunhP1O5PTLy8pelhHQxuObDiAuq3Vuufw8t1z+95ZbTu9UJ1m+3hJZ7Nkl19UWIb8AUUJ2/waYdYzEfWiv1NGtsotzU/YZud5DmKW0IlDvB5O/R94JpRhmDCJTIZkAMguyIn/9tKG2Q/CVhCY1CEM23e1w6gT1ALwgMlDMe/ms+P28DJ7n9+K1trkhFd65wkbO/dCT8Hx+z42H66P5zcoHNovvj7M2RMrpi96Ckb93l5TooFTh8V/q33PovCs+KUgsdkQwzCpQqTyHJzYXQvKlCIWlYwd4Nl5rX7InWS6TCWb6FSooxlREB7soPXseTGib1fo14owY6c8GcogTLlyPkYtmpCwfvOj76HpUGo5zuphJKgGpeB1NLWjqbkOuSX5oAypm47C+6slJFupV3d7V/x3Xpm1QBNahJELwCtlzMp5Uq1/YxgmPYmMctDR2IaaD/ZDdEsChjLhTxQ+ikZEQUEI2zk7SNLhA+rViL5d5cNJmer2zszJwpA5ozDslIqE9dueWou67TWaZUXxnpnNCKjbKqhZn672zrgwnVvcG8bUTkjXoLDaryh9KNT5bKxi5IwcBl4qKpz8jGGYKOGZQ7Jbdv1nU/x3waAiDJwxPL6s9UEMO6a9eno/7I+2MsMmO7GlDm6dltXPYZACxojTxkJ096B6TVV83Z6Vm9HZ0oHBs0eCiFLGbvpnd56B2y6dmbQ+jPq3H2+N/87u500kKD+wqhjcfNNKfGu1NNNUVFiGrlb7eQ6ioBiona31yla+k0bvo9YMVaq8LwzDpDehzhx0NLWjoaoOQgi01DTG10+6bK5p9JOgOlG9zt2OsK0cYQpCeAtyFMrLcqy0URQd9dzOyrgZzVfbgds1NbJTntbfyIXjMe2qUxL23b9qJzYsfwPVa/ahvb5V54zR4zdPbwy7CgASkz9m5Ubb90rG6B24666PJpic5ap8VmTsZkoOux/QyndjlpNDb6ZP/kunGV6GYVIXz5QDs4gOPd09Ccvt9a3Y9Ke3sOOZ9dj+t3WJlcoyr5Zfwq/ZddjtvK1EPrF6HruZQVNtmjpV6x5mvgu35XshYOWXFWLO189EbkmvCUxXaycOvL4bHz78Nmo/PJR0TNAKsxW0Zg7CoP1Er0KV2z/fYM/o03KkEeuWrUpInPfFLy63fZ6wFQEZOcyo1TDW119SgbaqJfH/gPEAB8/wMgwTBTwPZaqk5Ugj9r28HWvuegXrlq3ChuVvoKu9E611zdj00NtxO1S1I6PsgBcGRna98nSxF9mR7QhEyn2tHBfkh9TPsqIkOPqNG/8Dt21kNZu5EZk5WZjx5dMw5fJ56DeyNL5eCKDyxW2ot5D4yul1ODlWvf+PvvmGo7L9oKOxN1P8wTd2o6OxzWDvaKDVZ3a1dWLrE2sS1pVPnYnhEyYbnsvqvfTi2bfblzspT53p2wuuvPwez87FMAyjhuwm2CGiuQDWzrj2tASnYQC4Ycm/8X/Xz0XTwROo237EUYXGXDAFAxSh7vQII7yg0uZUK5urHm7tZdXH2z0uKqNudnB6zW7KcyOg2z1WL+GUG2HHbRuZtbmde9JypBFVr+5A06HekJwTPzUbxaPLdM9ndF4vFSArduBhUretBnue2wxAstEfOnYCSj9SGHKt9NELr3p00yHse2lbfHnMBVNQNmUobrn5OUvPfVD3zCz5mxZa77yVMK9e0XS4HpsefAsA5gkh1pntn6rI8sZz352KGeXBvAObqprxsV9tAdK8bRnGCE+H6O+/8WrUvVtrSzHIUTjcDTt5tCXFICi0RqaUyd7cJn6zKvA4tbOPon2+VcKouxsB1MkoZtRMCLTMHtT+DOq49HoUDO6HSZfNRWZOFpqapQRYO/6xXjeakfr8XhM1EyYjyiYPwZQr5seXq/fsTDA10iJMW3Wt57izpSNBMRh/8QwMmDpMUzHQwk7ELbf31EkUKKuKQRQjTDEMw5jhmXLQ1daJza+/gqbmOhQV9o4O9hvVHxXnTcawk0fH1xUNK0HFeZMxZ8mZmHnt6Zh53emYftUpGHH6OFd1sPLx13Iis4PWjIHZ+ZwIPEbObKkg4HhFUEqCV2VYvTd6AoObZGlePBfqcpXPt/xMWq0bEWHip2cnJDRUmxBaUTaCfN6NyhJCoLuzG+0NrWg8cBzr//A6Nj74FrY9tRbHdx2F3VlYIwqHFgNAXLE656RbDPePkgDa092DDctVZlqxABNBRZ7zEjvfC73rW76i0tJ1skMywzBRwLNQppSZEf+QNTXXoXTsQAyZOwr9RvWP76Mn/OcU5QKwF7LPaQhIOx9RpcCinnpW+h+o1xmdy4ryYlRPt6Ev7cJh9uzjxkRJiRNl0KuytbBqOqcsv3BoMWZedxrW3bMagOSorCZqz5VWG7adaMH2p9ahs0UdhrMTHY1taDq0CaMWTcCQOaM8qUNrXTNAAITUn5ZPm4U3d3pyat9Zt2xVwnLp2IEoqbCe1NIod0cY5qRm2DExNSNKSh7DMH0Xz2YOMrMzAUg2skWFZfjIJ25MUAz0cDNSovdR8MN8QG962G6uA7MpcbdT7l4S9RE9r3Harn7fD7vndxIJyOg9tGIaYTTjoQww0FbXbKk+UWPLY+9rKAaJ7F+1E2vuegVNh7UzRbcdb8H6P7yOtUtfxcYH30Td9hq01jYl7NPd0QXR04O6bTVAbCKiaHgJBpdXeHEZvlO9Zl/C8rCTRmP8J2aCMoxDU4eBF6P06nN4PYPMMAwTBp4mQRu7eBqOrD4MAHjxn0sx4ZOzTY9xO1IS9Ei6jJ8jPGGPHum1p5+j0qmOemTT67Zy85xbdUw3mvlyStuJFmx7vDdiTW5p6oXmbDnSiJ7O7oR1JRUDkFdWgKIRpah6ZTs6m3sVh21PrsWwk0cnzJS2HmvG5r+8G1/uaGzHnpWS07E843Dw/7N33mFyFGf+/9bMbM45J+2utMoRgQQIBBiwMDZgY4ITjhzYpLvz+bjzndPvjH0JJGxhnH0GjLGNwdjYREkgEBLKaVdarTZoc85xZur3R8/09vR2z3T3dPd0z9TnefbZ6VRdnaret+oN755H1/4WECcB9cybKJVvXWzUpekKpRTtbzfxy65EF0ouC20qalRuDr1Q8k0E20eLci8+Tvztz9GTAG5UVS6DwWAoRfPMQULhwwvWZS3Ox/jEIPfXOaKrDW40Y6cRejvVlRFIsGen1XEyWJnu6TnUP30Q7hk3vy5zUa7qc0RaIb2wZ96eJ391KTY8dBVqb16NsitqkVWThxWf3YTU4sDIbV0HWjHUyAVmoJSi+W+n5cvf3YhDO3aha38Lt7+HBvhtTXSNyhxpLUZbBwOWV//d5RGqiTLCUYSlZgj0mLEWh62WK3Om+5GwzsNgMBjB0DxzMNP9COJEoUyFWY09sx6c/OV7KL20GlmL87XXMAzYSLc27OD4bNVna+RMlh7PRc/wtqFmSTr3NcMzyykGzgQXCjeUI3tpoWRZoZJKqbmvSuzT1YTGFLZr/Sc7Uby5KsDJ2hnnRN1t6+H1eNH819O8UtD055NY9smNmB6cwGTvfAb4iquWYG5qFsNNfZjs5cyKhDMFwLwjsjPeiZTiDFNmE8P9ptrfPsf/Ltm8KGSWe7VYrT0S+ocFq1uo+6okuSWDwWCYie7ZxrJq8/jfM8NTaPrLSbS83mDoLIKdQ3bqid6dZzCfjkgTy89b7trV3BO9n6F4hNPr8aL3aDs/Ar76S5eiaGNlSIFRDzNDqd/hUHL5vGmM1+NFw28PLcj4DgAOpwPVH1oRkP+l+W+n4Z4OdMLOWpKP4kuqsOwTG5G9pGBBOXkri+FwOhCfmoCld16E5LxUXa4jGHq8Dw6Xk/+du0L/kNTBHJXNxj/TJlYMQvnBSc0MCBH67rB+jcFgRArdlYOyK2oDRtUAoP9EJy7sjkyoDblOLxxnNOGxWsoxqtE3YtTaTKfvaMGMTj2YgqD0/HrMQMgx1jbIJz8DODv8ppdOoO9Ep+RAgVHx4PVQpFIK0lH9oRUgTk6xmR6cRN+xdtn9a29eDWc8Nyk71T+OznfOB2xvebWe/1153VLUfGQVyrcuxqJty7Hu/itRcU0dfnFmDCu/sBmJWcmK6xkOeryzcSnx/O+JnrEge+qHldqhUN+kEOEMHlMEGAyG1dBdOYhPS8Saey7HmnsC7U17j7ZjottY21k1I91aBRG/MhAq9rWS2NhGKQh2KNMqWCGuuF4CjpYytJ471Dvh9VBeMQCAyb5xDJ3rQ+vrDTj02C7JkXc9CHUtQlMoNWTV5mPpHRfxyyPnB2T3dSa4sPzTG+GM50bShT4XADApEJwdTgcyF+Uif00pspcUwOHkmuTHf3ij7mY5eiF374T+JMJkd3pixdlMpYJ9OAqAFdopBoMRO+iuHPhxJcZh/YNbA9bV/+YgpgaMDWXob3zvvqmS/9MTJUqFmoZcbYcRTgK3cJCrp5ZOOZxr0HOk0AodrtjMQM/y1B6n9i/Y+TOqcpC1OB9y8u3hHbvRc7gNPYfaMNzUp6nOwa5F6newdUqIS56fEZ3sGw+yJzdIsuyTG5GQnrhgW97qEk3nD4VZo+hy7VVKUQZvRiaO7mQGVppFECIcUBKipt2PdAQ7BoMRWximHACcI9/Kz24KWNd3vMPIUwLgGl1xY6pHpyF0QDPKDMKOqL23Vrl3/npYQUkI16xAeLwVhCSH04HqG1Zg3QNbsf5B7i9/bWnAPhf2nMOFt87h3J9O6J7/wIh7EJcyn6jRPT0H6qVBz5GQkYS6OzYsMA3yuo2ZNfETqWfvmXXzs0XxaQuVonBQYtev9RtS8v2ryWcgRpwsU+vsFYPBYJiFocoBwMU1L76kil/uPdoOj06jSqEaaL2E0GAj3aESo6kh1KhsqOzJkURt0i2t51AjANip81VbVz1HxPVG+C4kVTwBQggIISi/cjHSZRIjnvzVfkNMjfR08AxotwhAvVx9g933uOR41N2xHpk1XKCGxKxkZFQpzxaslUi8C8JEZ2K/MyMJ97lqzWOgdAZUj/whVhjAYDAYsYPhygEAFG6sCFg+8oM9mJuYCatMualaKfR09lIzgqSmQxB35nKCthUVAzFGjIxpKVPpM7fDPRWj1MbZCgiVhZqbV6NgbRkyqnLgSgiMpHx4x26c+vUB9J3ogHtmTqY05Wh12pZ7x869cIz/nVmVGxCdJxiuhDjU3LgSGx66CivuuiQgmlE0MdU/P/vjcIXuWtQKvOLZA72deEdaBjBQ380rfcEQthlqrkOrGSaDwWCYiSnKgcPpQN3t6wPWnX3+mMze1kPYEZgtSAo7E6POrdZHQmqdsKPe1N8VIMybMasQiwTLoGpVkqt+hLIra1F702qsuXcLKq9dGrB9qn8cra+fwclfvIfxzpGAbWZm0l0QYnJwAmPtw/xy6ZaasMqPRoS5HNr3NmHonL6+JEoyfGuBUoojP9yDxj8eQ/PfTuPC7nOo/81BnPzVezj91AF0HWgJ61zhmC76Zx3sOIDBYDDsS1gZktUIJKlFGai7bV5BmOofh0cUxUMpeo+kGDEyo7Yx12sUTK2zr5oZGD/B6jrddi/25crHOA8nOo7WJGB2UUzCvS9y262G8HnkLi/C4o+uWbCPe2oODb89BOo1Nsu60uRUwkhrrgQXMlf/0pCZsXCI9LMWZ4lu/uupoM9PbRspd4+8Hi96DrXhy1cW4+Cjb+Lgo2+i8Y9HQ/qxeD1eeD1e1D9zEJ7ZeZOx3mNcZL3pwUlM9o2j453z6HinSXPdhW2s8HtV8ryE57FDG8ZgMKIDU2YO/KQUpQcsj3UM61JuuMK9P5FNsBFuqdEbPWxJxYTbwfvro+WeqFUsxIKp/95FMma3XRQBP3Lxz+2KGvt+/7NKL8/G+ge2ouTSRQtMbj5w0dcWlK8Eve9jmsBXwj3jxmRPs67lRwPZSwqw6Ibl/LLX7eWzRRtJ2xtncOGtcxhtnQ+dO9IyiJO/2i97zMzoFE798j0c3rE7YMZDjp7DFwKWQ2X0DoXa9tHu7QKDwbAXpioH4pkCqrMD4vD5fvSf7NRkr6xFSDNqqjeYgKUkrKRQQQhl0iOn9ARDaUcldx3hRuUJFp5WanZB64xDpNAr74AZilIoZUCpkkAcBEUbK1F3+3pUfqAOAJCako1zh/aHFQIyFErvT3xaYkC0pcZnv61bHfQk0qZm2YsLAiLUdb7XLJn0Ti/c03PoP9Ulu73l1XocfOxNHH58N0ZaudwU1OvFiZ/tw8zoNB96VYq8lcVITclGako2khMyAUgPoAQbVAlXiRAS6ZkhBoMRO4StHKjpgMQRLFpea9B0TqlGdripD+dePI6W1xpwdOfbGG0bVN0paVEQzMw7EKw+UgqCms5Iyb5CYVOLH0EkZxSsrCDopTyFe2+NzNSqdBYhsXwnkgvmZxj/9uPt+LcvrcH99/0lZHlq677AryDE9ZdcWs3/HmvZp8hx1Qz8bZBVHFfjMxIDskmfe/F4WApCsG92bmI2YHnl5zcjs3o+GVv/qS6AcrMYjc8fw2TfGD+jIMzgnVaaibIrawEAeatKsP6Breg70clvX3nFByTvr9I2likGDAbDTpg6cwAAyz99Mf/bM+PWbFMsFn7F2ZfP/uEoGv94DNNDk4rKm+wdw3jXSFAFQdg5iHMeGI0SoVZKYFczkui/Di22wP6yje7EzI5OZTZy9TZa8BOf1whFQWlZSTkpSMpN4QWz/nd78b+f/ajkDIK4nqESoIVTN2dcYHSinrduV3ysHucPhvCbjfS7TwhBwdoyfnmkeQBtb5zRVFaoZ5iYnRyQaO7ci8dRuKFCdv/TT72PmeGp+eOzkrH+wa1Ycus6FKwtw4aHrkLF1UtAHIQvd3xiECf2vIZ/unI1r+QI2/1gfQBzJGYwGHbEdOVgXORn0Pp6g2bHZD/bd2zDSPPAgvWjrYM4+cv3FtiLLqhT1wjqn3kfDc8ewrEf78VY/ecDtvs7qEhGLVKL1hFyuetSWp5ZI/NahGUrzx4AwYW6SL5vSp129YI4CBZ/bC3SSjMxPjGI8YlBHN3zMj5VlYizzx9Fz5ELsiPRekU0UqIYUYOTmSlFKKRaZfagYF1ZwLJU+xwKJe8WISQgEt5U/zgSc5KDHDHP9V96AMs/czGITBrv9IpAk6Ox/j488ZW7wspjo3abVZ4nI/IQQu4ihFBCSKVg3S8JIS2RqxUjWjFVORhs6EGraASp/1QXTj/zvuYESP6GenZcPm/ChT2NvPPz3OQsxjuHA87Xe/gC/LLG3MQsmv58ElMt92iqjxFoFcD0sjmXKyOYX4RRaI0vLsaqCoJVCRZlRc17pkR4TyzfibikeCz+6FqkFAYGMRhtHcSF3Y04+sTbinyLQtVL7exIakkm/zs5Py3io/RirDJoEZeSgPUPbuWXZ8dndEt+KXUuoSDvmXaj+saVAfuklwcK+p//7o/wkfu/JqsYAEDZlbUouoibhfArqfte/i36TnSqMpPyP5PptnuDJi/0/2cKgX0hhFzpE+CFf+OEkNOEkG8SQtJMqMPfE0LuMvo8jOjGVOVAzsRnZngKZ39/BO5p9Y7Eg2d6cOzHe+Gemj+25sMrkbs8MJzmmecO8zMJDb89jMM7dqPveAdGWgYweFYUUWPEia4XujB5/m5+VTAhQ+/G3KyIO1LnkVqnNlmUmai991YT5uxGsBC2WsoIpmASBzcqXHp5NZyihGmeGTeO7nxbsk2RiqLlZ7R1kAtaoKGt8Xq8cE/N27gPn+9XXYZZWOE9J4TwwjUADNZ3qzpejWmbP6kmcRK4kuORVZOH9Q9ciZWf34z1D1yJ2ltWo+62dVi0bTlWffFSXHlH6BkAh8uJksuqsf7BrQFhWltfb8BAECdoKYTtlNh3KxhWUfYYqvkZgE/5/v4JwHEA3wDwhzDKfApAGoDWEPv9PYC7wjgPg6FdOZjpfkT1qFvB+jLkrykFIZxdcVxyPL9tvHOEGw1U2GlTrxfdB1tx/uVTC5zS0sqyUHntUtR8ZFXA+rPPHw0wYWp94wwa/7gwGdv4xCA6WxvQ/Ld6RTb7RjXgRioJYtvsUOcKFT0pWPl6I7bxFfuChFIYQpkX2S0cqh2Q8xeQw7+NEILCDRVYc8/lWPuVKxaYq5z85Xto/ONRDJzuQue+ZvQebceh7bvQ/tY5TJ6/O+AcY+1DOPv8UbS81oATP9+navR3rH0Ih3fsxvTgvDKiJAuwHGaMDltBQchdVcL/HjitTqAW4r8Wqe/bPT3HZ2fOqMjhfUOIw4GE9EQQhwOEEKQWZyJ7SQG++i9vqGqzCSGouKYuYN1k77iq+is533TbvWzWIHp4j1L6lO9vJ6X0dnCKwQcIIflaCqSUuiml49TI8F8aIISkRroODP1xhd5FP5zxLpRvXYzyrYv5dV37m9Hx7nzM8KNPvI31D24NOt0LAEPn+tD+dtOC9TlLC+GM5y4rrSQTccnxmJucXbCfHBmV2Rhp4Rwhhxp70XO4DQUIVBD06HTlyjFaKNWj/nLT42YTjomRkmtQOoNiZyIVGUltiEdCCJxxTpRdUYuEzCS0vXmW3zbSMsh/s366D7Wh+1Abqq5bimx6DwghASEvPTNutLxaj8oPLAVxEMxNzKBtVyNGWwfgSo5H4YZy5K3kBFv31BzO/O5IQPlJuanIrMnTdO2hrlnJN2pWAIBwESYPc0+H51vGXet8QjHepHRs3qQ0KSclZDlaBnOSclKw9I4NqP/NQaSmZGNuckZTnhthu2OFNpRhKv4GiBdICCHfBPANSmmAwOPzK2gG8FlK6S996+4C8AsAVZTSFqkTEEL8ikOJ4HcrpbRSrlKEkMsB3ANgE4AiAOMA9gD4F0rpGdG+FMDTvr9vAVgJ4EkAD/q2fwbAlwEsB+AF8B6Af6eU7hOUkQ3gawCuBbAIQDyA0wAepZQ+JVdPhrmY7pAspujiKiy+ZU3Ausme0ElpBk4vnKKuuHoJKq9dyi///VdfRd0dG1D5gTpkLQ5U1pNyUpC7ogh5q0qQUpCGtLIsLLl1LWpvDqzLhT3n0Hu0HdPD3IihXoKxHuYZRpxfvM2OHZjSDttMwcqO91FvhKO+/tkfLVF28leXYsVnLkbO0sKQ+za/Uo+OvU2glC5oMwZOd+PUr/djuKkPx378DoYae+GZ9WBmeAqtr5/BaBuncPhNVvzU3rIayz+1MWDmM1JY+b2aHp7EYEMPv5y/pjTI3tqZGZmPPtT1fmvA7LPScNRK9rnlw9/jl12JcYbNGDNTIstQRwhZJ/orCn0YACCVEJLr+6skhHwCwGcAvEApHTauyvgUgCEADZg3a3owxDEfB1AM4FcA7gPwBIDLAeyVmeVYB+A3AN4EcD+AXQBACPlvcMpLKzhTqm8DKAWwmxBymeD4RQDuBKeAPAzgXwBMAvg1IeRzqq6WYRimzhwIEQoJvcfa+fXEQRCfkSh3GADOqdjTOz+z5nA5UHvLGqQJnAX9ZSekJyJhRTFyVxQDN3D+DXAACelJsuWvuOsSnPzle/zy4IF+DB7oR/UnlyEuOV53oVJ4L8wklKIjHOHSojCYObrpj9Sixz00KqqRVHlG3hsrRWcSJuYL9pyU3o/E7BRUXb8MRRdXouWVesSlJmB2bBqzY9NIyknBaNsQv2/3wTZ0H2yTPt/gJM796YTktrN/OIrSy6oD8hlkLspFRkWOojoGI9Q9CDV7YJXZu2BMdI4ELCdkJIFSGnJWWCn+e5iYFRidqP2tc/wgkZL3SWmb0ds2P8OdqGCGQgtMMZDmd+NfxdsjS0w5V/f4GQCfBbjRcTHfAvBNBcU86vsT8iKAT4RTt1BQSp8ihHwPQI+KUfh/ppROCFcQQn4N4ASAzwN4RLT/UgBXUErfEux/EYB/APBVSul/C9Y/AeAkgP8CNzMBX7mVlFKPYL/HALwObkbh5wrrzTCQiM0c+EcN+453YLhp3rEvZ1kh4pKCj8j5909Nycambbdh3X1XLlAM5EjITAqqGABc7OvVX7qUd4L0x1tPulCs6BxBy1Zgz26mwBippFdGwDpWdUTqGekZcjMxKxl1t69H9YdWYOkdG7D6S5dh8UfXYs29l8ses/xTGwPCXwrLWn33ZQERktr3NgWYPaaWZCw4Tguh3lUlz8bqJkWO+MCxp8YXjuHQY7vQ/X4of0p5pHILJOWkoPTy+QR1/ae7AnIZaEHq/SxaVMv/XrfsY5rL1iPhIcMUPgFgvejvSYXH/i+AD/j+PgJOqbgKwPOEkMhPOQoQKgaEkFRCSA6AQQBnAFwkccgxoWLg4w4AcwB+K5gxyQWQCE7ov9gfqYlSOuNXDAgh8T4zoxzffosJIelgRBxTZg6Eo2TCRtc9O4sHNtYE7Cv0R5BjrH1+VHDjh27BO41Kv1flxKUkYOkdG9B/shPdB9swPjGI915+DsWDlSjetEhTmWInYH/HIL43Rgu5YptXYQe1qb8Lu0R1lUqQpdReP9KdXzg+FkYlANPLbyXUeayA3Dtt9DvuSojDis9egu73WzFyfgBzk7MgToLiS6qQlMv5zy3/1Ea0vt6A8a5RpJdnoeam1XA4HSi8qAJNL0nPJigdhBBj1DOXKlPLDJpes27+sgDg0UevhyspLiCSHMApXAP13Vj2qY2aZhGE9RxrH8J45whyVxSj90g7F9KaAu6pWSRkBh8EUnoO/7I/dO74xCDe+NWTqLp9SciBJjms9p0yJGmglB7WeGw9pfR1wfKfCCH1AJ4F8DkAPwq7djrhM5X6HoAbAWSJNkuFZFvo7AnUAYgDID1Fy5ELYIxwH/0DAP4OwGIA4kYgE8AoGBHFFOVASjEY6evFkw9+Hl63G6kp2ZglE1j1xUsDjpPrsIhj/l1afvlV2PDBjxgibHztG7sBAN+8bwOa/nwSAND5XgsKNlQsyJZqB4Rx6qUUlcTyndiXWwS0hTZtCGZmpDSWfbAy9cKKnbDZdZJS5sKpgxolNpKJuRIzk1H5gaWglGJ6aBKuxLgAP4Gk3FTU3b4B7pk5uBLi+PVZNXmovXk1Wl9rCMifEpcSj6R8bWHKzX7mwrZTqaKul4LgL8PhdGDpnRfh9K8PwDMb6Iw8NTCB6aFJJGWrN88ZvTCE/uMdACEYPMP5NHS8cz5gH5fIH0SPgRfhOzI+MYgTP9uHzEW5qLx+acA2tfi/TyMHDRiW4BXf/6swrxzIRR4yRcAghDjA1asUnBnUKXAOyV4Aj0HaukRqWs4Bzm/gI0FO53f6+kcA/wnObOs/APQBcAPYBuAhmXMyTCYiPgfDPd14+Op1/PLkzDCWfWojvywOTSlu0B3O+XdncnQEP/75bYbVdfuObcisyUNSbgofLu/Mbw+h7o4NAfUIhVy4T2FnIBSk1NoUaxXWg01xK+2ohKZKWhUDNcfrjZ6jplZF7/uq5n4JBwcicZ8JIUGFUCnBLqMyhx+sGGsfwvTgJDKqclR985HGf7+VPnsjns0/ff1NTD4wih/uuAnxaYk48sM98MxypsaT3aOqlQPPrBtnf38k6D5FF1ciIUP7rIEYoXK17JMbcfqpA/y24fP96D/RicINFXKHK8IOPiSMsPE3NMIRhiEAIIRkUUqHBOu1mSdwqAl1utL3x0dF8uMz91GazKURwHUATlJKQyU0uRPAHkrpJ0Xnu1rhuRgmEFZPp2ZEULhv07GDAdtSU3LhmQnMnim0LRXjSpzvzP+8838U10EtfmGdEIIlt66DwzdbMNk3jsM7duPsH45iql9dvGsx4g5BL4faYAmEjDT5CbeDi1QHyeKLh0YYbUjL/bKrApZWmoW8VSWITwseKMEqaL3PRnwD23dsw09+cTt/74QRprRkTO473hF0e+FFFSjeVCVZDz1IzkvF4o+uCVg3MzItua+S/DFClISvZQqErbnJ91+o3Tb6/l/lXyEwu9HKBBaaB8nh/wjFoVQ/Ay6sqVKe8f3/LpGwFRRFPfJInC8PnPMzwyKEpRz4hWc1ncr2HduwdNMWFFbP+xaMjvSi/pn3cfYPR1H/7EHcf105vB6vbIOeu3LeMfjQ317UfgEhEF7XP/zTa6i9eXXA9tG2QZz69QE0v3I6ZFlaBHEzHJP1LlMPR0qzO0G7Cq1GI/6upZxBY4VoF8rMep7plfORnobPKc8wPXphCAcffVMyt01CZhLWfnkL1j+4FaWXVcv6MWi9RnG7ljPFRc1JTclGakq27GySXiGhmVJgSy4hhHzS9/clQsiPAPwQXK6DHYL9XgNnw/9TQsjXCSH3gQsNqilRmo+DAFYSQr5BCLmDEHJjkH0bfH//Qwj5JiHkbkLIz8GZGJ0PclwAvjwG/wkuzNM+QsjDhJAvEkK+TQh5C4GZoV8AsIUQ8oxvn28AOAbggqqrZBiKLjMHoRpd8X7Jaen4xou78T/7GuAqmjetG20bxETXKIbO9mKosVdW8UjISOIjCI1N9IZzCSERCkRpJZkoWF+2YJ+B0904+OibuPBWI591dXp4EjOjgSNKUiP6oQRlPYV4ozMuqw1xqmeZDP2R+q7FIUkZHFZ7V6X8vJRg9DMVOnSPtg0u8EXwuj3ofK8ZZ58/iglfvpvR1sEFpkRJuamIS+H8CgrWlsEZ7wo7RKqSax9s6MG+l38LgPM7SM7IRO4K6QHWB+5/WbOCIJcojfkk2IbPA/i1728ngBt8vy8Wmt1QSt3gZhSOAfg6gH/z/b4rjHM/DOBv4EKLPgPgcbkdfef/EIC94HIW/DeAMnAzGaqEdUrp18DlTJgG8M/glKBPglOIvivY9XvgciBs9tXtdt922XoyzIeozcRNCFkH4NDKL2zGvz7yDgD1yoHQ9phSip7DF9D+1rkFx62553K4EuMW2CpP9Iyi/hkuU6U3eRbLPrlxwbF6EMxGun1vk2RIPuIkcCXGYW5iFgCQt6oE5Vct1tRxSTkVClHbUQSLQBQOWjswvabbYxErOC/Ggq+GUkJ9W5G6V2odcc2ImCb0O1h8yxokF6Sh7c2zvHOxkJJLFy1wNk7KTUXtTasQl5oAAEHbVr2/k+M/eYd3Us9fW4riTVX4h6++Zsj9Ctbmj3eN4MRP3wWA9WFE1LE8fnnjc1/5BQpLTMpz0HEGP//BZ4Eov7cMRjDCNitS2igKnW2FxxBCULCuDMkFC6OAyCUu6jk8r9AWrFs4kq8Xwa6Nur3S6z2UVwwAzkZ2+Fxf2OcXzzqE0+FFWqj0o+Ra1NY1Vkazp9vujfi1yn0fka5XpLHSLIIWodVoJaboknmfgO73W9H00glJxQBYGIUod2Uxln9qI+LTEkEIUTTootez8Hq8AdGreo+0Y6J71JSIXEblo2EwGAwpTA29IdfpEEKw9PYNWP6pwBkAz/R8fOwH7n8ZEz2jOPGLfRhs4DoST+IMcpaF9plR2nCr6UQya/OQkcU511VdtxRlW2pk9xVma9UTtUKIWZ2Lls5Yr7pF60i234xHb3Meo5xQraggWEloNxMtkaWMJH91Cf97sneMNx8KRXJeKsoul29npdCzzXM4HchZNu9QnZqSjcbnj6Hl1Xr8139cFeRIbYgHT5gpH4PBMIuwzYr0DlN46tf7+ZChaSWZ+LdfvY2Cqmr8y6eWB2QqBYDSy6pReFHwEHLCxjRY/ZRG8BFOU3s9XhACEAenY1FK0X+iE1MDEyBOgp5DC032ii6uRPGmqrDtY61mi6pX3gItpk9WMLFhBGJWQj8lyCkEer8zRpnt2Q1xXyD1Lpz8xT5MS2Qxzl5SgMzqXJx/+dSCbUs+thZpZUqDsBgDpRStb5xB/4nOgPVxyfFYffdlhp1X3I8xsyLjYGZFDEaYeQ6Ejb1/tDBcYSCrJo9XDsY6hvGdm7ciPjEJA32BgrYrwRVSMRDWS45wRhLFUSqSKp5AWQUnGEwNTEgqB137WzBQ342s2jwUXlSBuCT1mdSV5Ewwg1AKlZY6CeN9KzleznFPWB7DfKygFJiN2nc3mgk1wu1KjgcklINF25YD4BJd+hNPAkBWbT5SNWan1hNCCCqvqUPu8iI0PHuIXz83OYvp4UkkZiYbct5Y/J4YDEbk0NWsSI8GrHjTIhRfUslnQaZe7wLFICEzCcvvukRVvaTqptcUrdhcIbF8J5JyUmRHuWZHp9Fz6AKa/xo6BGqw81iFYHXSUmc1fhVKlYdoxoxrjMS7x0wolGGFdkFs8iIeOBK3vxXX1EmW45/JzqrNx4aHruL/qj+0gu8TtNZPT1KLMrDu/iuRmDWvDEx0jep6DimYaRGDwTADXTIk621CULxpEQrWlaP/dBcu7G7k16cUpWPp7Rt0OQfA1VdLeLlQ6/wsvmUNRpr7Mdo6hPx1peg92o6B093wzHDh+2YkRs7UnDvSqMnqaeRIqlQ9YnnU1ggicT/1ak8ikX3WbP8eK73vwRJY+knKkc6MPNkzhpTCdMPqpCcOpwPpFdmYHpoEAAyd7Q1I8sZgMBh2xZQ8B1pwJrhQsLYMqUXzHUX+6lLdz6MULY6/xEGQWZ2H8qsWIzEzGeVXLkbh+nJ+v4T0+Yyr4QovkRIO1JzXSAFNr0hOdiTWrlcvjHofzX4eRp9PycyEf3Yg3FHt4fPKE6OpRe8R9+mhSfQebeeXh8/348xzh0G90pHs9CAWExAyGAzzCdusyD/NaVSDteiGFchdXoTCiyqQWZOne/nhOM1KjVaHKk/Y+U0NTCwoN5jtvFTZVhOGxXWxUt0Y9kdvAU9PBSGxfCfuvqlSt/KUYIZioDfBnuHQWX2TWorPJXdute/VZO8YTv7yvQXrxzqGMdk3rqosLSQUPmz4ORgMRuyiWTm483ZlyeyUNrpy+8WnJaLy2qUovawazjin5D7hEm62YjUCeuW1S/nfc5OzaNt1dsE+wTpkLSPkRtski++f3P2MlKJgBZvsaCHS99LKo6ZmKwZmo+S5q3k+SbmpC9aF41cgxt+nhFIQhPsp6a/mJmdx+un3ZbdLXReDwWDYCVPyHFjFgcov2GgJuynerlVASspJQdkV87G6B+u7+fKtYB6glWCKgFVmN6ymIAjfR6vVLZbQ694zk4/QCGeZpaI5Tw1MwC3IbxMuYsdo/385xUEOr9uDtl1ncer/9uPYk3sl90lNyUZqSvaCKHZSWKVPZDAYDCl0UQ6CdYjbd2zDky+0yG4P12/Bjo1swbpyvgNxz7hR/5uDoN7AfBN6Coti4dzM6DZM8JVGrXO7lbCCoqc3Wu69XZ6XGsTtqRGKvX+EPrU4c8E2Z4ILUDh5oKTtFyojUuavoZYBwDPrxuHH96D3aPsCU9DqG1YELGcXK/OLY0okg8GwMmEpB8KRsmBTsnp0LmqUALlssuHWQ09hYMmta/nfE92jfFIdsRBvhJIQjcJdMKxwvUqUJSvUMxR2qKNW1ETeCpVfw67ICa1GZDD/7z82omhjBeLTE+FwOZC3shjLP30xXAlxisuT63eE64TPSGowyt+PyV174/PHJNc7XA5kLc7H4o+uAQCMTwzCWzAhuS+DwWDYCc3KwTPP3hewrHVK3Q4jKMEUE62dZkpRBhZ9cDm/fOGtRox1DGsqy+pYQaCMRaXIKthpdk9LTo5YQW8FgRCCkkurserzm7HuvitRcU0d4lMTVM86ivsQqfdNSkEQbpM7z3jXCMa7RhasdyW6UHfbegBAenk2Kq6pQ/Ellchfa05EvZnuR0w5D4PBiE10yXMALEzvLpcQR3xMOMqBnNAhPL94Stkf81xN3H1xHfXqJLPrCjAzOoWOd87D6/ai52Ab0gzKAmpGxla5Dtbq2WKNrp9VR5eNjDJm5jn0Pl+o98HK77JSzPomxW20v20WPyMts2lyoVOFbb7ccVJI3ZPW1xsCltc/uBWzo9NwJrjgSpyf4chbWSxbTwaDwbAbhjgkq7UFVYLcvsHWSzmjBUPpaJVewl5i+U7krpjvVOKm0nQpN9j5jMSOQlMo85BwTbvkklQpnckwwm9DGH44VjKu2vHdNBK5+yFljqkV8QCRODma2ORT6i8Uofzd/GUD4H3fpPwq5EhITwpYbvrTCcSnJ8KVGMf8qRgMRtRim2hFUo2w2hFCfz38nUGwht1oBcF/vMM1/whWb73OkHP5sUOiNK0Y9Y6Fi5J3TQ6jBA+xoGbUyH4klA69riVWhT6934VQ75fRyqlQQdAyG1SwoTxgefh8Px9hjsFgMKIVU5QDQHp6WSnCjjqc0RrhOSMRwUeK3iPzGTbPdL4BwJj8ANE8chqOcKE0hK3ejuGhsHM0IyF28CmSw47322oE+zalAlpo/ZbVPCs1TtdpJZlYeucGxKfNZ7NvfqUe450jGD/zxZDfcizMyjEYjOhDV+UglCAgbCi1NJqR7Kz1Pvd0272glKLj3fP8uoyKbFPObSSRSHym5+h3MOVT63NQcw/E59crv0YksLNiwAgftd9lON+xmm9Mbd+TUpCOVV/YjNwVRfy6ht8ewtEfvY2Dj76Jg4+9if5TXfB6vAuOZd8Ag8GwI7opB0obwXDzGkQKYdZfvSLfjJ/5YsBynGB0ysrRdayUw0APswSp+yx3beEoCKFmq+TOF6shaIOh5Zmz+6cMs9tmM5PHhXOeR35zAnUbtizcQIGWV+txeMduNL+ZiunpuyLeLjIYDEY46G5WJOUILF6npmPXexQ3nLL0Fi5cSYHxvKnEyJMRZi16E8p3Q0oI1kuxMFqwMOK+K811IKUQaH0H1WaEjSWY8rUQuw3eqEEc5UhqgEFSUU9Nxb889wr+/id/RGqK9Czv4Mk9OPXj+zDeXm+JwRMGg8HQgmE+B1JCm9oOR9ywigUnu0MIQVJuCr882TcuuZ8awcWMDkmpwCo1Si6nKEQataY/ahBeu5JjjRBUhQ7I0aAgGGV+whSF2CFU4k6p75UQgrXXfBBPnOzEzxtGsObey1F7y2q+HaeeEVDPCI7+z82YarkHgLUHdhgMBkMK3fIcKEGtSZFw1DxcxUAudGqoUW+jhYSE9CRM9XNZNQfru5FelqWpnGB26kag1JHXCk7fSvELBEZgpWuP5lFhJSh9zkxBMA+z82GoDYgh9S7sfPJmuBLikFGRg4xP5YB6vTi0fTe/fbxjGMSxMK+OXHhjBoPBsAqmhTINxxlZjxkDPRIjqVmvBEoppgYn+GXhLIKaepmtGITCCnXQit6zU1ZSCqyCFWYu7PyORiNWVFjVviPE4UD51sX88mjbIF9OtM16MxiM6Ma0UKZCzO4IggkjasJKim3l5RxIlTrszgxPYWZ4il8WJkQzgwfuf9lU4TXYvbaSEB2qIzeic48lU5ZgGdPNRHjPrfT+xTJWUByFyL0fcu9wZnUu/3vs1BhuveGxoOUyGAyGFTFdOYjECFGocwYTzJTMGARTBIIm3hHMGqQWZ+Dv//HVoPWULCOMTmb7jm388XpmRg2GnWy6hdP/WurMBE57ECpLttWxa72lsPIMgjjDsxRf/dc3eQVhfGIQX/vAKsyOTYd1/ljJYs5gMKyDKcqBFRt8KdQKgEKhcVN/l+rzDTf187/z15SqPl5YDz9KMjtLKTJKOj69sYOCoAW9nKytLvRZvX5KUBJO1g7Ytd52QawgyLF9xzZUXrd0fgUF6n9zMKxzmxnqlcFgMIAIzBzYYQRETWQgP7smv6NKWZibmkX/KW4fZ7wTmTV5hofkDCUIRaIDsqqCoNXcJNaEND2v1+z3z4wwyWZgl5k4tdjtOfhxxrtQee28gjA3MQtKaQRrxGAwGOoISzlQKugLoxRFwt8gEgqJX1mQYnZ8Bsd/8g6/XHRxJRzO8PQ0pdGDrIzVhYFgwqTW2YJQSojV7onUtxQto+8MayD267JS0sVQTA1M4NBju9Dyan3AekJIhGrEYDAY6jE1lKlShAKIPy67FqXC7PB4wRDWpflvp0E93EiSM8GFnGVFup5LLvSeVRUEYWhJM8LHqsWoOoVyfOZnn5L/Dbsmv6PrubWGU5T7noxKFgcY895aXci0I3q0t0qSA1qZzveaF6xb/XeXRaAmDAaDoZ2IRCsSIjUSKc6mHE3mLnMTMxi7MMQvV9+wAnHJ8Yacy2j0nJER+03YUXhT668CBFc89FYI5M4vN0oLhE4UJYfeGczt+D5EkkiYwxmVYM8uioHX48VwU1/AuqzafMQl2bN9ZzAYsUtYyoEeQrtcGXo4yIZbPz1tef118bq9Aeu79rfoUn4kECtx4WLlSEZKhSfxbECwKFhKZiT25XKzSkabxsmF5Q23TD3NQcxSEKz4/qlFTUI/PaM16TWQY+W2QA735Cw/I5xekY2629dj0bblqspgijCDwbACEZ85CIZVTIL06qAeuP9lJGQkYcmta/l1Yx3DcM/M6VK+VqwkFPixolAQTFgJphQoOSYY+3KL8OQLLcorqhA5AUy4PpSfkJbwrloULfHx4byzsSJ8afmGIn1v7KYQCHEJZoBHWweRWpQB4lDuayAOj81gMBiRwjDlQBw33yqCvlb0sOH334O00iykFKbz60/+fB+8bk9Y9YvGzsQu1yR+D0LVW40A5N9PS6hcNRg9UiscydYaLphhDGrfX6XYITKdnoiDSnS/3yq5nxKnfgaDwYgkmpWDO29/PGBZqAyIGz+7KwZShCuslG6p4X+7p91ofOG45H5aO41ImBToTbB7bHYUKi3hbcXHaxVyrS4YK42UpaeQr7UcJYpbrGHUtx+N7X4oSjYv4n+3723CuT8dh3s6cGY4Fu8Lg8GwF7pFK/I3eEIHYitFC5JCbf30FBzSSjJRuL4c3YfaAABjF4bQ8mp9QHxsvSL4yI3YWlEhkELq+v3Oj1Z6x8J5TqFG1Y10TjYCo6M7GUGsKQbi7z/Wrl8t4ih6UhRdXInpoUkM1HcD4BJdtrxSj5qPrDKljgwGg6EHmmcOnnn2Psn1wkbTKkKbHEIlJhJT4CWXVwdkRu4/1YWBhm7JfbWOeNpFAQjFA/e/LJm0zagIKWKkYvmLo/zoIVyFel6xZqphBlY3WzKqfRLOZln5+q2Cv70J1a9VXb8MiVnJ/LIj3hmybCkfJeaczGAwIkVEHJKtKODoEZ9bbUNOCEH51sXIXJTLr2v+62n+d7gj/cH2t9Oo4d03VfIOuVLXZHYIRbHjoB73TmkZVle4AWu/S1auGyM6mJucxfTQJACAEKDsilpFxwmVNHFoZwaDwTATw5UDodAWqRH6UBiRuEfNdVZ9cFnAcs/hC/xvM0wp7CAwTbfdi7tvqpTdbpTQrDT/gprQkcHOZYdnwZjHjMy9kcgszwgNpRTD5/sxUN+NualZAMDs2DSOPbmX3yerNl9zHhumIDAYjEhh6VCmdkCsBPgb8WCZZMUNvSPOiewlBfzywGntkWmUCJh2C5mnR86LcAh2P5WELDWSSJseCM9vtnJjt/eYYS6eOQ/GOoZDRoLTmo+j71gHzr14HM1/O41jP9qLkZYBtLzaELBPyWXVIc8dDDZYwGAwIoGuyoG4cQ02eq50FiHSwo+eyAkzhBCUX72YX3a4Am1U1Ya99P+WsikOdi+tOrMjJFKdpdVH9aPlG1GK2N9DuC4UVn6ODP04/+cTOPPcYRx+fA9GWgcUH6f4PRqcCFhueukEXMlxAeviUhNUn0fcBitpuxkMBkNPdFMOEst34u6bKoN2vMLp8VBT5WKlwKoNo1RyqmDOq3KcE4QyTc5PW7DdSOHUTAXM6spHKKzmxBlp04NIKmt6HK9HFDC5ZUZkmewd5383Pn8MYx3DupY/Oz4TsOx1ezHY0BOwbuC0dIAJILjQL6UgWKG9YTAYsYFuyoG/4RLmOpBTANQoBeLy7YCamPj+ax3vHOHXK4luYQRmmO2YFV3IDKwiDCr1izDy/JH4PuVmx9QcrxbhvWUCm7VxiWz9G/9wFJN9Ywv2k3p/5L4hr8eL3qPtaHj2IIab+kPWIT5NfubAf24x4nY4WtpLBoNhH3RTDvRqwPTIRGwWUoKC1ghD6WVZ/O/u91sXJM4xGn+9zVIQwsUqgrlV6iFGqx11LKH23jD7cHsxOzodsOz1eHH6qfdx9vmj6Hj3/IKRfzn8fdsD97+MvmMdaNt1FuNdowH75K0sXnBc7vIiZFTmBC1b7p0ShwRnCgKDwTAT3ZKgCQm3MfNHfrF6Z6s1262UOUL1h7+EIz98i1/X+noDqj+0Muw6Kq2T3YjUO2JVQTtUtCQ7fE92wE6DF7EG9VK4p2YRl5IASik8s25+W1JuKqb6OTOj0dZBjLYOovdIO6quX4rM6jx+v2Aj+dt3bIMjTjSrS4AND14FACjcWIkLu87CPTWL0i01SCnKCFnnaAphzJiHEJIJ4H4AHwFQAyARQAeAPQB+RCndH7naMRih0WXmwK8I6JkZORo6XHEUl2B2zik1P8bSOy/il4ca+9B/stOcitoYM4V1qyoGfqLhmwkHo0dXld5fNsprPtTrxdnnj+LYj9/BwUffxKHHdvHbXIkuLLl1LXKWFQYI955ZN869dAIXdjfCM+OWKnYBI+cDTYnW3rOF/52Qnoiaj6xC3e0bkFqcCUJImFclHyr3ztsfD7tshjEQQlYCOAHg3wA0Avg6gHsBPAvgUgDvEUKWyZfAYEQeXZQDoVIghdWFKqNQa5OcUpCGjKr5aeiW1xqC7G08VhZyIu2srodDqxFYrT5mYpXRVavUI5boO96JsQtDkttqb1kDV2Icqq5bhjX3XI6ld2xA9uJ8biMFeo5cwPm/nlJ0nmGBclBxzRI4EwyZfOeR8yd65tn7DD0vQxuEkDQAfwKQAmATpfR2SunjlNKfUUr/BcBSAA+GKMNJCEkyvrYMhjy6tWxSHaLflEEPgUU8O2F3pCJVJJbvRM2H78Gh7fOjXoNnepC1OF+XUSjhecXnZoRGbLpjVUHcLmZ5YszO2q1H4joxQoU6WtoqOyCOEgQADqcDi25YjpSC9IB1KYXpqNq2HCnFGbiwuxEAMNI8gJmRKSRkyMtk08OTAcuJWck61V4dieU7Md71iYicmxGSLwGoBPAFSulB8UZKqQfAdv8yIeRKALt8x6WBm2GoBPAxAC8QQgoB/D8ANwDIBtAG4NcAHqGUzgnK+SWAzwAoBfC/AK4DQAD8GcBDlNJewb65AL4J4EMAigCMAjgDYDul9HdhXj8jSjA0CZrenXs0drbie0QcBCkF86FMz798Coce2wXqpYadmykJ6rCD0G2HOobCjPdSb2WZZTOODMIADgXry7Dskxux9r4rAvwJhBBCULC2DPmrS/l1o22DQc8xOxbowByfmhhGjZVjpdDJjJDcBGAGwNMqj7sfnGLwMwAPAGghhGQB2Afg0wCeA/AQOHOlbwH4jUw5fwGQDOBfATwF4HYArxJChKG7fu8r81nfOb8HoBnAZpV1ZkQxxs6J+tDDB0Hs5CwsT878Re059ahnuCSW70TZ1k+g/a1zAeFNuw60oPiSKlPrEul7EQwjRn2VnpdhLHbNneDHyuZ40UpcagKmh7iR/ayafCTnpSo6LrUkA73H2gEAM0NTQfdNSA9UBhIyw7P8UDK7J+6TWPtjKnUSM/ZdlNKuIMcsA3CGUjodZB8pigAsppTyGioh5PvgZhFup5T+1rd6JyHkCQB/Rwi5jlL6iqicM5TS2wRlNADYAeDzAJ4ghGQAuALA1yil/6myjowYglCqbkSaELIOwKGVX9iMVAXRGPRE3OmKFYRgCoQR6G26IXRgBoBzfzoeEEu77rb1SC3O0FWJEZ8z0uVoPW8kzs3QFyPeIa3fSqj3Skm5VhhsiBVGmgfQ+MIxAEBGVQ5qb1qt6LjJ3jGcfvp9fnn5Zy5GUnZKwD6UUoy3DyMuNQGnfr0f1MP1mevuu2JBNnslaHnPxf1b87HDePia9QCwnlJ6WHUlbIJf3oh0PQR8i1L6TbmNhJA5AO9RSi9XUpjArGg7pfRB0bZ6AHGU0hrR+nIArQCeoJTe61v3S3BmRZsppfsE+yYA6AfwNqV0m28GYQzAmwA+IzQ3YjCE6DZzIOwIgwno4g5T6eiJsDy5kTkzR+zMGLWu+fAqNP7xKEZauMGEht8eQmpKNr71+hVobTqCuclZJGYno+TSamTV5MHr8WKwvhtxqQkB8bX999gz68ZY+zCGGnuxuPIKdHuOo6Q8cJ9wiZStO1MMogO9R++NEs6VlMsUA2OQEq7TK7P5cKUjzQMYax9CWmmWXBE8SXmpSMxK5mcdTv3ffqx/YCsIIaCUovW1BvSfkh4onh2bCcvvQE1bKQynCgDjXSPBdmfowycAiKOCBJs1ADj7/bQQ+0jRJLGuCsBr4pWU0jZCyLhvu5gzon1nCCEt/n0ppbOEkH8A55fQRQg5DOB1AM9SSo9pqDcjStEtlKk4aYuS/cSNYyjh3q8YRNquN5Ri4M8QrRa/Xamw/KoPLud/p6ZkAwDOndiPuclZ7pjBSTS9dAINzx3G4cd3o+W1BjT+8RgOPvomzv/lJLweL1fu0CROP3UA5148joHT3dj38m/R/Eo9Tj95BajXq+i6lNTdbMw+73/97rhp54o19HyOerYRzCfHmgifCyEEeavmE5H1HetQVAYhBEs+vm5+BQUOPbYL/ae6cPIX78kqBrkrijUrBiwohG1ooJQeFv2FUg5OgzNHUuuQEtymTRops4+QpiCU0h8AWATgK+CUkrsBHCGEfE1DHRhRimEZkv2ds9LwpsGEaaUdvXg/rUK6UuSEGeEMilYlwY8rMQ6rvnhpyGPGO4YXNAuDZ3sx2jIAAGh78wxmRhaaQQ429ODc09fxy+F2VtE8gv/A/S/jq7euUryv0e8fgxGLyAnX2XUF/O/Bs72KR9fjkuNRdd3SgHUtr9ZjZmShvOZKdKHi6iWouGaJ2moHwJyMo5YXACQAuFOHsprBhT4NgBBSBiDVt11MnWjfBHB+CwH7UkrbKaVPUEpvB1AC4F0A3/Htz2Dol+dATngXKgj+fdTaXArT1werg1x99BbSQjXqUknhwiE+NQEbHroKPzzejsWfX4X1D27F+ge3YuXnNyNnWWHQYyf7xjE7PoPRC0NITclGako28lYWI70im9+n5/AFnP7Jg2HVMRZQMxLtfweZaQmDoT9SCoIrIS5AQTj7uyOY6BlTVF7OsiLkry2V3OZKdGHtV67Ahoeuwpp7tiBvVYluoaUZUcePAbQA+C+fv0QAhBAHIeQ+hUnQXgRQTQj5mGj9Pwu2i3lQtPwlcIrEn33nTyaEBEx5UUqnwJlPxUGbSRQjCjElWhGgX8QiO6G33bPD4YDDOa/PJaQnouq6ZZgb44R/AFi0bTmGGvsw1Mj5GXXua+Yc7HyzCtPeMSy+ciWSFz2Jrr3PoekP/w4AGDz9N4y1nkBaxUpbxshnMBixhVTEsoqrl2BuYhZjF4bg9Xhx5reHsPyuSxZEGvIjHKgqv3IxCjdUoPfIBThcDs53qyoX8alsMJWhDErpGCHkwwD+CmA/IeR34Eblp8DZ/X8UwBIAKxQU930AtwF4hhByGYCzAK7ylfEHSumrEscsIYS85Dv/MgD3gAt/+jPf9sUAdhNC/gDgFDgfifUAPgvgFUpp/8IiGbGIoXkO/MiNoAob9mB+CnrVIVIYfQ21H12D6htXYsVdlyB7SQEW3bAcWbXz8b2b/nKS91dwT82hcx83w1h02cchHAA79titmOxtAcBsYRkMIex7sCbiXC3OeBcWf3QNUou4xGdejxcDp0OZic8Tn5qA0strULxpEfJWljDFgKEaSukJACvBJS+rA/AIgJ3gTI3eBbCRUnpaQTlD4HIP/BpcvoLHAKwB8A0Ad8gcdgOASd85/fkRPkAp9SfpuADgVwA2+srZDuBKAN8Gp3QwGABMUg7EyNmMKsldEA5m2X8HM3EyAkIIsmryeAc5QggWbVsBZzwXZs+vGIxPDCI1JRvuqTn+GWz+71NILZ4PSXv4kesxfOwuNnPAiGmk3n89FQTmi6IfYjNPQggSMuctJ4I5DjO7f4YRUEqHKKXfopSuo5SmUUoTKKWLKKWfF2ZOppTuppQSSulPZcrp8h1TSCmNp5TWUEq/LcyOLKKHUnobpTSDUppOKb2DUtojKG+AUvoApXSlb58USulSX10ndL4NDBsTEeUgFGIfAy3CtVTna/bsQbiOyeFAHAQlly4CwCkF4xOD/O/UkkwAXMc4034fam9ejeT8+aRBHe9IRVWLLInlO5mDL8NUzBAa7TwIYmXmJuazGTP/AAaDwVCHqcqBsNMSRmtILN+pyMRIK5EwKbKCf0T+mjKs/Owm1N68GtmL85FVm4/Ka5cucGJ2xruw5NZ536mhxj5M9o2bXV0e//sg/AOAJ19oscR9ZcQuRpgX6S3Ms28EyF9bxv/u2Hc+gjVhMBgM+2GqciCVEA2QntoNp4OL1MhZqPNGol4JmUnIqMzBohtWoPpDK5C7vEhyJC2l5sfIXTkfJ/zci5GJ589suxlWQqpt0uMdVZIXhqGd+LR5X4HpwcmAbeLBKCvAZnsYDIaVMEQ5UNPQ6ZHfQOq4SGHnRr744kr+9+zYNMY7zc3CGarDjkXbYDu/T4zg6BHBjQFQb2CCl9mxaZx+6n1+OaVgPjqjsI1hCgIjWqCU3uXzXXBHui6M6EB35UDcwAWzE4/GjlFudiQSMe/Vdjbpy3/OOzEDwPTQZJC9A9E6Gic2HZIiVp0GleT3YJiD+B3Ue/aAoY32t8/hyA/3oOOdJlCvF1MDEzj+03cD9qm9eU1kKqcAYf/I3gcGg2EVDMlzIG7k9Gr0tIy0mdngWr1xDyXQUK+X/02cBJk1uZrOoVSQF9dHGLc8FpUBMXol0WPoh/AdZflAIgulFD2HL4B6KboOtKLrQOuCfepuWwdXUhy/bLXn5U8SavW+g8FgxBa6zxyoDUeqNutssNFU8ShMpBpcYd0i2eiLzx2qY5zqbYZn1gMASEhLhCshLuj+asoWI1QMhKOysTpLEAyrCw5KZn+iCb1nEBjaIIQsMCny43A5kL+6BKnFmeZWCupnUa3+fTMYjNhDs3KQUPiw4gZQr5FP4QiLVINqhUbWCiFUtTI9OJ8saHp4CpRKd7yyx6sQ7IXRqhjRQ6wIy0xBsAZV1y9bsC6jMgfLP3MJyq9aEoEasQEOBoNhfyyZ5yAUoZyYI4F/1sI/Y6FGITJTuBAK5eIOzOn+WcDyzPCUafVi2Bfhe8SEIoaZZNcVILM60PxxamAcCemJEaoRg8Fg2B/NPgcz3Y8greJpflnsVKXGtEaJQ5bV7a61+FlYwb5eeO6EzCQ4XA543ZzvwWjbYNDsotGI2c9E/F7bZZaJMf+O+M1ImGIkjZE29YQQVN+4Er1H2nFhTyMAYHZsBg3PHsSS29azBGgMBoOhgbBmDoSdodbGXygcKVEAosV5y6qmCEWCcKajbUORq0iEMeP5WF3hVUMsC8ZCJYERiBkRtwghKFhXhpqPrOLXjXeNYrxj2LBzMhgMRjSjm1mRHuFKg+0bzNfAblhZiMiozOF/z45Ej1mRUuFEaG5llqPtky+04MkXWgw9hxkwBcG4b9vKbUYw/O21Ge935qJA86LEnBTDz8lgMBjRiC7KgVRuA7XHKRH6o0ExAILb/Uea+PRERONMvNp3J1LPJZpmE2IVIwR5q7UTati+Y5uh9aeUwuvhTCGTclP59a5E5dHWGAwGgzFPWMqB2FdArd2933k3WoR+qxAs8VwoXIlxSC3NAgBM9o1j6GyvLnWK9MhnuEK3EfXfvmNbwIiq/3c4z48ROVgEI3NxT8+h8YVjOPTYLhx+fDd6j7UjIWPeEbnpTyciVzkGg8GwMWEpB0KhXvw7HB8EJhiFh9J7L3efsxfn87+b/nISLa83qA5rKkZu5NCs+Phq38dICXdMWbY3YrM0hnE0/+00RpoHuAUKtL15FsNN/fz24fP98Mx5IlQ7BoPBsC8RCWUqpwDEahp5IxSicMy0clcUIbkgjV/uP9GJcy8eD1tBsIOwJFRWjArRKefLoIeDP8MaGG0GJPUtxdKgykjLwLxiEITpwUkTasNgMBjRRcTyHIiFHynFIJY6OytBHA4svmVNgIIw0jyA7oNtYZU73XavpFBjNXtqozI2x1IWYYb8+64X4rJjRaGkXorGPx7jlxMyk5BSmC6571TfmFnVYjAYjKghIsqBnGIQar9oxYqmJK7EOCy78yKUXVnLr+vY2wRA3xkAKyoGRhDqnlntPjD0wajnKldutA+oUEpxaPuugHVL79iApXdsQM2HVyJ/TSlSijhFwZngQoYoghGDwWAwQmOpDMlWE5DDIVgnbafR4/w1pQHLo22DALRfAxOCpTErbKrViXbhVk+kviW12dmtjvh7aHqJczJOTckGABRuKOejEmVW56F862IsvX0DVn5+E1Z98VLEJcebW+EQqPm+o+k5MhgMe2EZ5cAqioHf/j/chjnY9dhJQCaEICl3Pl74uRePY+jMexGsESNaMSNhViwQTQqCsK2c7B3DcFM/rxis23ojSi+vkTwuIT0JzjinKXVUgxpTM6v0iQwGI/awhHIQrBFUm0E5HIR+D6xhnqf25jVISOdCBHrdXpz+yWcxsP8TmsuLxdFxpQqhnRRHPVGb88SKhHqvzXzv7XoPgzE7PsMrBgDwwE9/G8HaaMdoXxQGg8EIF6I2Ag0hZB2AQyu/sBn/+sg7/Hq9O6MH7n85Kjs4O9P6xhn0He8AwPkkrLnn8rDKSyzfGVPCMPM7kMfukcqkIlzFOnrck57DF3BhTyOc8U6kFKTDOzifofGJk50ArP3OGKX0jneN4MRP3wWA9ZTSw7oVbDH88kaETh/V95bBCIZLj0LCafTklIBQZQoFLdYhh0YPZavsylpeOXBPz8Ez64YzXvsrFGvPTWrEMNbugRxWFvAY5kO9FOf/eopPwuiZ9WD0whAABMweWB32XjMYDDsSdhK0cBs///FyJkPRYjsbSfS6hw6nA/mr5x2Uew5f0KVcOaLRQZcpA9GH2nc02t5pOdS+65RSNP/tNI79eC+O/eht2ezs4xODGJ8Y5POusD6CwWAw9EWXmQM9kFMy5NbHspCldtZEz9GrpLx55+TOfc0ovqRKt7JjBTPeXWaWZw7MnCg4au7LVN84Buq7JbfV3bYOXftbMdIyn/js0f+9Hn//D6+EXUcGg8FgBGIZ5YAhjZQZSiQFkXu/9hy+s28rv8yEUGvCnol1iSVFQo3ylJCZtGBdyeZFyF1VjLikeNTenImewxcw2NCN7LoCOOOclnrPo8GpnsFgMIAwlIOEwoeRWL4iwI46ljo9M7CiffoT990V6SowGJbBCt+kHVASfMAZ70LV9cvQ/LfT/DpHnBNxSfO5CgrWlaFgXZlh9QwHphAwGIxoIexQpkIBVpjIKRrtxc3GP0sQ6dkCIf0XWvnfDz/HpvQZ+mFke2Hl9siq9dIDYbul5Dpzlhai4uol/PKFPY2Y6B41pG52gflUMBgMszE8z0GkFAUrCwNWJ1giuPGJQf73cy8+aOhomVUUIoY5xGr892h/z/3Xp/Q681aVIKMyh1+u/81BdO1vMaJqtoDNSDAYDLPRrBzMdD+iekRbjcAe7miJlUbb7UQwu9np4UkA89FCiNP4HHrsGcYesaggxAJqnmvZ1tqA5Y53z+PCW416V4nBYDAYEujikGzEiJ8VRkti2ZdC6v73Hm7nf2fV5MGVGGdmlRgxgFHfmr+NsqIfTyyg9j4nZiZj3f1XovtAKzrfawYA9By6AFdiHIo2VhpQQwaDwWD40W3oV419vF1GBs0UHIyyK5UzDwqGnGI22TcGgMuOvOhDK8Kum1UIZkbFiG7s0hbFIg6nA8WbqgJMjDreOR/BGjEYDEZsQPyJZBQf4EtnvvILm5FalCG7n5JO1+6jdrEUxnNuahbHf/IOqIcipSgdS2/fEHaZSiKYMBh6EqxdYu+iNaGU4tBju/jltV+5As44ZwRrZC5Spp4fvuL/4eFr1gPAekrp4cjUzHj88kaETh/V95bBCIZhRuPM5t9ehBo57znYBurhFMnMqtygZek1GstG8q1LNEYks8K1RON9lcMz50H/qS5MD05gdnwGcgNV1Bu4PlYVA/8yaxcZDIbRhOVzoGTkPFgoO7uPHEfTrEHI5zg0yf/ufK8ZRRdXyu+r8ZlKdXqxNDtjV+zkm2P1iEj+e+hXEOxwT9VAKcX04CScCS60v30Ogw09/DbiJCjbUoO81aUghMyvJ1IlMRgMBsMowlIO1AptUh1zNHaA0Uju8iIMN/UD4Ebyxi4MIa0sS7fyg42Gibc9+UIL7r6pEoD1FLRYeJ/lhGvhejveA7PqrOQdsVJd9GKsfQhnfndEdjv1ULTtakTPkXYsvXMDXAlcwAPimJ/gTpTIomx1/O2XlrZq+45tkm3jM8/eF3a9GAwGQw5dohWpwa4KQqyPYGdW5wUsj7QM6KIcqJ0if/KFFky33YvtO6xhBiLEavXRGzXXZ+VvWm72wMp1NhIjr3tmdBo3XfcfeOGVfwmqGAQcMzyFU7/aj5Wf3wyH04HZsWl+m3vabUg9rUws9zsMBiMyGB+oXgIzO2C9BDbWQANlV87HHieO8Of6776pEk++0IInX2gJup9/+/Yd2wLeHSsLcnorCpG2M9ZyPbFiO68WK7+3ejLRNYITP3sX3/n4Vpz42T7Z/ZZ/5mJseOgqLP/Mxfy6uYlZnPzFe5gensTUwAS/3j09h9nxGUPrrTfbd2xj/QeDwbAVps8c+DHL9jdWOmIz8EzP8b/HLgzDPT2nKteB1PS63zxIjF8h8D+/7TtUVjZCGPW+2Um4sLpdPxCZ2QMr+mYYVZe5iRnUPysdZKbutnVILc4E9XoBQnj/gqTsFNTevBqNfzwGAJgdm8bJX7yH0i01cDgd8Hq8AIDjP3kHAOBwOZBalIGyqxYjKTsl4ByxOgvEYDAYehCRmQM/rPG2FxM9Y/zv8a4RdOxt0lROqFFwv+mQ3d4Pq9VXz9kGNXlM/Pv7sdMMgtWeoRA73ceRlsGAZUcc19Wkl2UhtTgTAOdLQETexhmVOVh992VIypkX9tvfOscrBkK8bi9GLwzh1K/24+wfjsAz5+G3Wfk5MhgMhtWJqHIA2CvkaaRNOyJNanFgXou+E53wzCq3AVY6+m2X90EvjHqv5JwZ9SDYM7LiCLkaYimcqFHEpyYELK+9dwuWfXIjam9ZHfLYuOR4LP3ERcheUhCwvuq6pYCMNeNo2xCO/GAPhs/3SyoSSlD6vGO9H2AwGNFPxJUDO2En0w4jKLyoAmklmQHrxrtGVJXhv4fR3MH6hQylwoaR71U4ZYcjJAtDcQrDc1odqWAJeqHXQIgd7mNaeRYcLq57cSa4QBwOJOelBkQeCkZy1Y+w9O7dIM75AYnWN85gzT2Xo+r6ZchfXYrSy6uRtTg/4LhzLx7H4R27MXSuT1O97XBvGQwGw2hsoRxEsyBpN6aH5/MdZC8p4E0E9MDvnBwtz9tqI+d6j4YruT4jhe1wsEo9ohVCCO+P5JlxY7J3LMQR0mVs/PZrvILgdXsx0tQPZ4ILyfmpyF9TiuobVqD2ltVwxge6zzW9dCL8i5DBSGXen+SMJTtjMBiRxBbKAcAUBCtAvRRzE7MAgJxlhVi0bbmmbKVS0TuEEYuM7HzNcoK3mmIQLnLOu4zIYId7n103bxZ05neHMaFylhEA4pLTkbl4PopR8yv1OPficbS81oDDj+/BeNcIMipysOaey7H4o2sCjh1rjubLMgAAZldJREFUH9JU70ialMX67HSsQAi5ixBCCSGVEazDbkLIbruUG80QQq70vQ9XRroufmyjHDCshcOlXilQwt03VRquCDKbcmUIFRypqFJKlSA7J0ezW32tRPGmKmQv4cx+PLMe1D97CJN946rLqbvrP5FSvEZyW8OzhzDc1AfiIEgvz0beqhJ+25nfHcHw+X5NdQfUKWB6tlks9Kl9EQh5Un/qX36GJSCErCOEfDMcZY4Q4vCVcZN+NTMOzcpBQuHDAUKWGYIWmz2ILMKRv7jkeF3LvvumygABNFTGZK3vgligZUpCcPz3K5iwoiaKEUMb4nfUDvfa4XKi6oPLed8DAGj47cGQfkria53r/nus+cffoOzKWl7ZENL6xhm4p7gwy+VXLUbu8iJ+27kXj2O4SZn/QTj3VG9hnvV1tudnAD4l+vt8RGvECId1AL4BoDKMMhy+Mm6S2PY2gDTff0tgWJ6DUHGmtY4mxnqm4kgyfG5+FC6lKD3s8rRG09Hj+dvJSVYrkbg2seJlRULVS2l7pDYqkxIBP1S7aQelQAghBCs+uwnnXz6F8Y5heOe8aHz+GJZ+YgMSM5MD9hU7sAuZufBlFKwtA9aWYdE2wOvx4uzvj2C8cwRzE7M49+JxLPn4OhAHQflVizE7No3RNs6s6NyfTmDDQ1cpqq9eOTqkcrr4UdL3GRlpjGEK71FKn4p0JRj2gFLqAWCpmSXdzYqUjMSqdVKUEwaNdtxiTmGBCMOWdh1oxfTQZJC9leGfQpf6MwOrCVtGvdP+6zTzeq06o2B2feTaRKn1fuFUalbWavdRKfGpCVhy61oUrCsDwLUjne+eD9hHbYQvh9OB2lvW8MvjXSM4tH0X+k92wjvnBXFq79rCfW+F3y7rQxhqIIRsIIS8TAgZIYRMEULeJ4TcJrPvHb7tU779XyaErJPYL5kQ8ighpIcQMkkIeYsQclGQOnyIELKHEDLm2/9dQsgN4ZYrOvYBn6nVJRLb1vm2fVWwzkkIeYgQcpwQMk0IGSKE/JEQslTi+GpCyJ8IIeO+/Z4lhBT6yvymaN+Q5fqO+YlvcZfATOwu3/bLCSHPEEKafWX0E0L+QAhZIiijEoA/i+xnBGXs9m2X9DkghNQSQp7zlTlNCDlBCPmyxDXvJoS0E0LKCSEv+J7dICHkR4SQBPH+StB15kBJw661o5MaSfE7scpl2Q0XNkMRSN6qEgye6YHX7cV4xzBO//oAyq6sxdTAhC9yUUboQiyIlYQuPd858XVF8jqNOHc4s4hyI8RG1FNulkruXOK6Wen91AohBKVbatBz+AIAYPBMLxaF+ao745yovnFlQGSiltcagNcaAvbLFoU7NRpxXyV+R8XPU+69YP1PxKkTJ+kD0EUp7VJwbCohJFe0bpxSOi13ACFkE4A3AQwD+F8AowA+AeBZQkg+pfRxwb4P+fY5BOBfAKQD+DsAewkhV1JKDwiK/i2AD/n+vwVgFYBXAQwAaBfV4SsAHgfwGoB/A0AB3AHgJULInZTSZ7WUK8GzAP7Hd33vibbd6Tvvb0T73wTg1wB2AsgBcC+AfYSQiyiljb7654IzzcnyXUcrgOsByGnoSsp9HkApOLOw7wKo9x37ru//xwEUA/gVgA4A5QDuBvcsllNKewH0AfiMb5+3AfzYd2yP3A0ihFT77k0cgB8A6AJwM4AfEEIWUUr/QXRIErj3Zw+ArwK4xFePPnDPUhWGmRUF6/j0PIdVTReikZTCdCy98yKc+r/9ALip/dY3zgAAeo+2o/SyahReVBHJKjIYighX+BYeH8oUSMt5Iq0QKL0mNRBCkJCRhJmRKQDA4JkePtGZ1nNl1eSh5iOr0HWgBRNdowu2560sRvGmKu2VDhMlAr64H7P7TJERrPzCZqQWmTP4NN41ghM/fRcAnpbY/C0A31RQzKO+PyH3gRPy5HgMnFC8iVLaAgCEkCcA7APwPULIU5TSIUJINoD/AHAEwGV+hYMQ8n8ATgHYDmCTb9314AT47ZTSB/0nIoScArADAiGeEFICTmD/IaX0K4L1PwAnCP83IeQ5SqlXTblSUEp7CCGvA7iNEPIQpdTtO94B4HYAeyil7b51twL4GIBbKaW/F5zrlwBOA/g2OAUGAL4GoAjADZRSv0LwQ0LIMwDWCuugtFxK6XFCyHvglIPXKKW7RZfzz5TSCVHZvwZwwnfMI5TSCV8dfgXgvEKTs++CU3I2U0rf85X7QwAvAXiIEPITSqlwJCQbwHcppf/jW/4RISQTnIKgWjnQ3azIDDMCccduhDMYmwqWJiknBau+eCkSMpIWbGvf2xSQB4HBMArhrIGWAQI7+EZEGiOCTVReW8f/bn7lNNzTc0H2VkbmolwsvX0Dlt6xAQmZXLtECFB1/TJUXFOHuBRNs+phoaRPYv2M5fkEgPWivycVHvu/AD4g+ntBbmdCSAGAjQB+41cMAMAn+D8KINlXBnz/kwA8KpyJoJQ2gxsJv4QQ4p8u+4jv/3+JTvkkuJkJIR8FEA/gl4SQXP8fOAH1LwBKAPjNbdSUK8fTAPIAXCNYd4XvPELF7A5wo+a7RfWaATeyLjz+RgBnBIqBH7GiprZcWYSKASEklRCSA2AQwBkAisysxBBCnABuALDLrxj4zuUF8H1wueI/LK4KuNkPIXsA5BFC0tTWIayZA72VAKVmAnffVIntO4wZ3QKsO51rFWfs+NQErLjrYnTtb0Xne80B29xTcxgbH8Lc+CwGz/ZgvGMYcamJqPnIKiSkJ0aoxoxoQ6wYGNUWKCHaRniNVJbSSrOQUZWDkeYBUA9F3/EOFG2s1KXslMJ0rPzsJnhm3PDMuhGfFtn2JlRbLdweCwESbEgDpfSwxmPrKaWvq9jfP711WmLbadE+Svft9f0fp5R2CHeilM4SQs6LjvVr7u8HqWc+uNkJNeXK8UcAk+CUsL/51n0CnHD+e8F+deBmA2TDjhFCHD7BuRKcaZOYsxLr1JQrCyGkCMD3wCkmWaLNWmMp5wFIgbL3wU8PpXRKtM6f7CUbgKpMlIaZFalFieC7fce2BUJAtNnmBkOtYmDk9DRxOFC8qQqZNbmof/p9UMqtP/uHo/DOeQL2dU+Po+u9ZlReu8B3KOphJgLWxW/OofbZRLsAp/W+KKXy2qU49uReAEDHO+d1Uw78OBNccCZYpmtThVBJiKW+jaEIqmFfEuQ4sUOF35LkFsgLksc0lCtdQUrHCSF/AnATISQZgAfc7MVfKKXDono1A/hSsOJCnU5iXdjl+sygXgHnk/AoOMVpHIAXnJmYkbnExHXzSO7FoeiZCNHcgs50P4I4k2wAhQgbSeZzII9Z9yU5Lw3JBemY6OZmEsWKgZ/+U13werwo2bxI0iSJwbALsdDuaBVGlSjD4hwpI839yKgS+25GN3LmRHIDQGyQIerxT8Evk9i2VLSPcN9DMvu2+P6fB3AtIaREOMpPCIkHN/J8RHBso+9/l9CURQY15QbjKXA+Bh8GN2OQiYW+Ho0ArgTnhxDKDrEFwGKJ9Usk1qkpV05JWOn7+yyl9JfCDT7fEOHMgRrlrg/ABJS9D4YQVhI0PQkn6ogfpdGSoj1DrlSoWCOvNWdpYcBywboyFF1ciarrlyEpN5VfP9jQgxM/34eDj76J9rfPhe2fYKfnZ6e62gk9wqVGe3tgJuKRb7l76oyfz7DevrfJlLopJbF8p6G+AFJli8M3y73P7B2NTiilPQD2A7idEMJH9fCFoXwQnPmN30zpNQBTAB4Uhqn0HXc7gH2+CDkA8Cfffz4sqI+7wUU4EvJ7cOE2v00IiRPXUeDHoLbcYLwCToD+hO9vBJx/g5BnAKQC+FepAkT1+jOAJYQQsUD5kMShasr1+xWIzYb8o6EBI/OEkM+AM1ni8eUymJEoYwG+ff8MYCshZKOgXAeAfwKnaLwUqpxwCGvuNZJ2vnJYsU5WIdi9CZa0JxR5q0uQUpSO+NSEBc5/mdW5aPrTCYxeGApY332wDd0H25C/ugRlV9aCOBwYvTCElr+dxuz4DNJKMlHzkVVBzQOEI7hWfebMltheGBF5SG+s4nskh1T0nQWmSoIQkXmrSsyuYkSRenZS7W8szFAxAngIXCjKfb4oRWPgBOZ1AO6nlA4BAKV0kBDyr+CcnvcSQp4Gl133XnBC6oP+AimlfyWE/BXAA4SQQnAOqqsB3AYgQCunlLb6QqQ+DuAYIeRZAJ3gwnReAmA5gAq15QaDUuomhDwH4IvgBO2nKaUzot2eBecA/Q1fuNfXfPemAlyY0tMAPunb9z999+z3vihLLQA+6LsGIHD0Xk25/hmah30RgKbAKXMNvr//8SlnXQAuBhceVcr34iCAawgh/wguolMvpfRNmdvzrwCuBfA6IeRxAN2++l4N4H9FkYp0x0h7KFWEM1KjZ0cdDdEjgo2mSnU24V4zIQQpBemSUUGc8S7UfnQNln1yIzIXLTQd6D3Wgc59zRg+34+zvz+C2XGuXRjrGMaRnW+h51BbWHWzClZVXvTGbiPwsfJczEaYdE8qAZ8zbn7mIBLRhILhj4Cn9j0O571XmviRva/RC6V0H4At4Oz6vwrgEXDC/h3CHAe+fR8FJwQTcM6wXwVwFMDlohwHABeucweAq8CFKl0GTuhcEG6UUvpDcNGQWsEpGT8E8AUAbgD/rLXcEDwNLpZ/IiTCx1JK/bkW/g6c2dE3wSlGt4K7VzsF+/aCu4dvAvgyuJCvY+ByEQCcUK+l3EYAXwGXB+En4HIwXOELwfohAHsB3A/gvwGU+e7JBYlrvQecovEtXxn/LndTKKVN4JSyV3x1/G8AheBC4v6j3HF6QShVYwbFZa8DcGjD119CWsUKANZosCRHp2T2k8J/TLDkNXZFSfKlcGYO1OB1ezA1MIkLu89ivHMk9AEEWP7JjQHmSUKY0552jJh1UZroy0qYlQxND6w+a6CUg4+9yY/hLf7oGqSXZ0e2QmFiZDsk9Z0KYvGvDyOijuXxyxsRynMQ1fc2liCErAc3an8npfQ3ofZn6DRzYIWRQuHoVLj1UTqKYxeU2GSbdc0OlxMpBWmou209siQyl2bV5qH25tXzK6gv66kMVhXirI5R36w4YID4nFZoK+yCVBz8aGmX0svmzW5diQvMmy2D0vdV6SytFszIHcRgRAuEkCTRMgFnp+8BZ/7EUIBm5WCm+xE962EZoqXzBeaFC7+AYTX796rrl/EZUv1UXrcMGZU5WP/AVjic3Os50T2Kg4++iXMvnUDf8Y4F5bDO01rIPQ+rvX92IRpMHcUkZqfwv11J1lUO1Aw2Cd97Yf6NcIjGZ89gGMxuQshPCSFf9tn27wZnVvQ4pbQzslWzD5bxOTALoT1+tAuUQkVHrCBYAYfTgUXblmPpnReh4polWPXFS3lbZOIgKN4cmONj+FwfWt84g1O/PsD7JjDCw+j3QU64sYqCYJV6SCGezYsmQZE45x2Sj//0XcO/53CesxalVq/vKpoGqxgMk/gzgE3gfDH+H4BcAP8A4O8jWSm7odnnQGgDGMrO39+pHf/pPuzLLTJcINma/G+mnMcIImVTrNT+3CzfBD/DTX1ofqUenhn3gm3ZSwpQeW0dHC6nxJEMRmhC+SAxjGF2fAbHf/JOwLrqG1ZImhrqQbD2TamfjFofHTk/BD3a0Fixi2c+BwxGZNBl5kCpPfuqL2zS43Qh2ZfLhZeVi8xj5RE4PYTuULbdwe5BqNExs/0xMqvzsPbeLVh33xULtg2e6cGRnW9hdmzatPrYHfHzVfMtMJ8BayE2G7QT8akJqPpgYH6fpr+cxMyoMd9ysJliKd+YYPvp4dOmFTs+awaDYT90c0hW0mBu37HN9BG5aBRmlHYQcs9FLOBLJU2zGg6XE+sf2IqaD68MWE89FB3vSIUTnsfKQq2ZdZN7F9QQTSPqVn0n1OB/fv42wU7CY05dIepuWxew7sTP3gX1qpvN1oNgzvNSCd2UvDvBEnRqVRCYmRGDwTADXX0O9BR0jBoRs3skIqEQoMf9sZOARBwEmdV5WPWFzcionA99GMo0zsoCrdlOuuHcCyvfRy0oHUmOBOK2VC6rrv+/8Ld/fzsoDKnFmQtmBc/96Tio12t6XaR80ezUPjIYDIZeGGJWpEeDqpcQf/dNlWGXYSWUJspR6nRtBUFILfFpiUjMmo92klWTp+g4ufcykgKAmee26rOOpPBqVEz6cPF/u34l4ckXWlQdL6UwWBWHy4nam+bDF480D6BrfysAYHp40jBTo2DoFbBCHMGIKRsMBsMO6OKQbDVCOUhHE1ocmKWOsVPyKs+sGyd+tg/u6Tk4E1xY83eXgThC67lS74URicDUwhK5RQdGPUcrvKNmMD00idNPHYDXzc0axKcm8FGMXAkuJOenIbU0E7Oj0xg+3w9XUhwqrqlDWkmm4XULlihP6fPR8/2IFadZ5pDMYEQGy4Yy1TqaGC0jM2JnQ7n7sX3HNllTIznTI6uPJIZi+Fwf3NNzAICUwnRFigGwMGa5Vd6VWAiry1CGlJNxrLwfiVnJWLRtOeCLcioMb+qecWP0whA69zWj/1QX3FNzmB6cxNk/HMFYx7DhdZOLciRuT4LNDsTCM2QwGNGBJZWDcMJ5+s2I7GBvGwy/WYBQ+A+2rxC/cKHmHtoq/4NjPkZ6fHqiqkODJeeKNFaph1qsomRFEr3uQbC8BnZty9SQWZ2H6htWwBkfGJ44LiU+IDeCH+qhOPficdMUBKXto5ySYIv2lcFgxDyWVA7CHdmOFgXBj9L7IdzPLvbGWkgrzeJ/95/o1JRAKVZMNeTQ2+E/VhUEo+zI5b5bu7dlSsiqzceKz25C9uJ8ZFTlYPXdl2H1ly7D2i9fgRV3XYKVn9+M9Q9uRXYdl13dM+NG4/NHMdIyYFodY7XdYDAYsYElfA70TqwVjaY0sYISoZ1SikOP7QpYV3ZFLfLXlCg2MYp1Est38kp0uN+G2JY6VhSvYEpBtF+7FfB6vGj522kMnu3l11VdtxQ5y4oUHa+Hb5pSxVDv9yFW7OKZzwGDERkiLkkpUQzsmuzHbtEphDazka53sHoQQlDzkVUB6y7sacSxJ/fiwp5G3h+BERy1EXAY84T6PiL9/cQCDqcDVduWI600k1/X/Eq94qSIekUjUrIuWKQ09q4wGAyrobtyICXAB2sA1YQsVbOf8E8JVlI+wqmHmmOF12yVDkppx5q5KBdr7r0cOUsL+XXuaTd6Dl/AuReOh8x9IMYqz94s/LbPes+o+UdjhWE4GQythPoupQYK6n9zEO4ZfQYIlLQjcgpCsMRq4mPZd8JgMKyE7sqBEaZBRiUuE89IRNL0SCo6kVKBVS5KUbDjrXDNcigd0XMlxKHq+mVYeudFSC+b90MY7xpB62sN8Lo9is9pxftgF6wYHtZolDqlMsInVFvmjHdhycfnMy3PTcxi5Hz4/geDZ3pw6LFdOPjom+jc1xxUUZBLnKZksIM5KTMYDKthis+B2vjO4UQrUoPRArKZ+RaE90ysWCnBauH3gsUVl2NqYAKn/m8/v5ycl4olt62HM84Z5CiGXtgpV4ZehFIAYuEeGIlYKZBrz9rePIveY+388srPbUJCRpLm8w40dKP5r6cD1iVmJyOrNh/5q0sQl5IgeVyob0BLuyZFrNjFM58DBiMyaJ45uPP2xxXva9UQmUbNSGhFOOKv1sxFrBjodV2RGv3U8q4k5aQgZ9m8mdFk3zgGTnfpWa2owCgTKrXhcK1gdhTu+a3YrkUzcu9uUm5KwLJfMXDPzGFmdJof9Z8dn0Hf8Q6c+f0RnH7qADwz7oDjhs724uCjby5QDABgenASXftbcOzH76DpzydBvQsH1sTvQywqzAwGw/64tB74zLP3GaLJx5rttxxahXupcKbhYiczkcprlyK1KAOtb5wBAIy2DCJ/dWmEaxWdhDszJk5KZybi5FWxFGXJTgjzvPh/+5eHe3vwv9/4IBKzU9B3onPBse7pORx94u2g5R/90dso2bwIWUvyMXCqG53vNSuq11BjLw5t78WyT1yE5Py0BduFvgShvhMzZ5gZDAZDCZqVAzF6mgJZaTQ/HNQ2+JG8biXT38GEJ7WmY0rrpFZgI4Qgd2UxrxwMn+/HwUffBHESVH9oJTIX5epSN7tjluleKCIhFBmhkCj5fqyOHYRU/zt7zbqv4nuf+qDsfkONvWj688mQ5VEvRfveJrTvbVqwLTErGTU3rUJiZjIAzmyxY28Ths/38/uc+f0RrPr8ZjgTpLtSsWO+3P1liimDwbASujgk6znabwWBRSl6CwBWipgUzFxCfN2hwvSFuk96XzMhBIUbygPWUQ/FuT8dj8kwp+L7r9c3Fk2CjN7Cmd3MjfzXb0WlRmgyyc8iPPgxpKZkS+6fu6IopGKQvTgfjiC+SMs/czE2/PthXjEAOLPFmo+swoq7LuHXeWbcOP/XU5ibnJUtS/guWPH+MhgMhpiwZw6sHPXGDKJ9yljO9EOJA7Oa65YbydZ674o3L8J4xzDGu0bnV1Kg70Qnii6q0FSmHREKfcJ7GWvfq7+dCpbbwc7fabhE0sRLCeL3NSk3BYNnegPWfeyhb+FU90uo/83BgPWll1WjwDdY4Jl2w5UUB4ALUzraMojhpj4Mn+9HekU24lMSkL+uDHHJ8bJ1ScxKRkphOia6ubZlpHkAx57ci9V3Xxb0OLl7LDZBEq5jMBiMSBDxJGjB0GNE2ciReLuNDmpFyTWGcy+McAx3OB2ou30Dlty6FgXry/j1HXubcPDRN3H66QMYOturOh+CnbGy8GcGYsVAqyIbrYTbnpk561nxgaULTAR//+g3FigGtbesRuFFFSCEgBDCKwYAN8OYUZWDimvqsPpLl6HqumUouaw6qIDvp/Lahec/+cv3MDs+E/Q4OZNMpbOxDAaDYQZhzxwYOQIZbtmRtqtWO2sQiw7Efox6VmmlWUjOT0PPoQsB6yd7x9H0l5PIW1WCiquX6H5eq2L3maxwUJrNlqGOSJhCOuOcqP7wSrS+fgb9Jxc6IwNAyeZFyKjICes8ct+L38RoZnQKJ362DwBnYtTyt9NY/LG1YZ0TkE6Oxt5VBoNhFqbkOVCK2YJLNApKRnYmVsuFoIa5qVkc+9FeyW3rH9gK4iAm18h8ovF9Z0QWpYqBkYM0U4MTOPficcwMT/HrCjeUo/TymrDKVTrI0vp6Q0C0pLVfuUJRbhUl7alcKNRYicXP8hwwGJHB0mZFZmBErHUrxG83AzuZVcUlxWPd/Vdi5ec2Yf2DWwO2DTX2yhwVXdjlWTHsQzChX7jNyNmFpOwUrLjrEuStLAYIkLU4X1YxUFMPpe1bckFgKNPzfz6hyFxRnBNE6nzsm2UwGJHAUsqBuCE0ero62AiNVqJZKVCb5MpqOJwOJGQkgRCC1OL5UShXYlyQoxgMhlr8ioFZCgIhBBXX1GHDg1eh+oYVsuczYgYjd3lxQHS0kZZBnFcQRlVIsPbUzm0ug8GwJ5ZSDsSEasitNkJvhlOZ0g42VjsSJeFTKaWYGeFMEJzxTqSVZQUtc7J3DJ3vNWN6aFLXutoZK4XdZVgDKYXAvyzO4O7HyHfILH8z4iAovbwGZVfW8uuGzvVJZlBWg7Ats1I/x2Awoh9LKwdKCafh1HNUxgyBXNzhSdmkxrJiEGzZDyEEnlkPAMAz68GFPY3wzHkk9+073oHTT7+Pzn3NaHrphL4VtjGxFgqVIY1QuBcGFQgm9AfkK4iS92h6aBIXdjfOryCA1+MNr8woSKzHYDDsiW4ZkiOB1WNzA+qdQNVE7ZGLYc8ITU5dAe9E2Hu0Hf2nOlFx1RLkLCsCwHX2bW+exWjbIH/M1MAE3NNzzAzJR7QIdgztaHkHhAqE1nfIahHZxtqHApbzV5UockoOhTBqkVWulcFgRD+2Vg782L3RFHaSTODSjlhZDPZelF+9BBM9Y5jsHQMAeOe8aH6lHhPdY0gtzsD5v56SPO7oE2+j4qolyF1ZHBMRjhgMpYjbMTmbfz1nDawiNKcUBkbSKd68KKzyxIqTFa6RwWDEDrZXDlijyWGVTtIuEEJQfcMKdLzbFJBptfdYO3qPtQc9tvXNM5gamED5VYuNrqaliXQeEYa1kPI1kNtPia9BsPdLKnjF9h3bItYODjZ0ByyPtAwgp65Qc3ni6xbeL/bNMRgMo7G9cmA1tJg6BWvsjZg+j9aORm2Oh4TMJCzatgJVH6Roe+NMQKxyAEivyEb1jSvhcDnQe6QdF/bM2xT3HmtH3qpiJOWm6ncBNiOa3h2GuSh5d9S8X37FADBmoMQ9PYfZ0WkQpwMNvz0Ez4wbqcUZKNpYAUe8C90H2/h9HXFOpJVkLigj3BkT9r0xGAyzsJxDcjRGZgjXYVrvMqPZhEmLQzYhBOVXL+FnAhxxTpRdWYvFt6yBM84JQggK1pVh5ec2BRw3UN8tVVzMwqIXMayCnv3I9PAkjj7xNk4//T5O/d9+eGbcAIDxzhE0vnAcZ54LzJO14q5LEJ+WuKAcYdQmtURjW81gMKyL5WYOmGmM9HS6ngpTtApx4bw7hBDkry5F/upS2X0SMpKQWZOH4XN9AMBHPGLErokRM+ezDlKztno8H2Hm5VDkLi9CfGpCWOdjMBiMSGOpmYNomzHQit8m1/+ntHNTOloWzghWrJMuyInQd7wDg2d6FGVDjWbklM1oVUKFMMXAXELl15B6HuHOIqSXZyFn2UL/gbxVJUjITIIjbr4bLd5Upfk8DAaDYRUsoxxE8wiclusSC+9qyhB3hCxhlX7kLCuEK3F+wu38y6dw6LFdOPjom5joGY1gzSKHlLIZqzMJkSSWvvFQCoKckqAF4nCg6rplKBFFIBpq7EXltUux5p4tWHHXJVj/wFZJcyIGg8GwG5ZRDoxUDMIZNQqnw9WakEwuSVA4CgJDH5zxLiz5+HrJbef/ctLk2liXWFYMIiWkx8I9F2db1qIkaKXo4krU3rSaX3ZPzeHMc4cxfK4PiVnJikIbR6NPHYPBiD6IWpMIQsg6AIdWfmEzUosyQu4fSSKVKCeSsyBWSw4UrUx0j6L+NwcD1qWVZmLJresiVCOGEaiNgMUwFqkszGYrRZ5ZN0787F24p938uqKNFSi6pAoOpznjbeNdIzjx03cBYD2l9HCo/e1KJOSNWLm3DEYwLOeQrCex2JnH4jVHAldiHIiTgHrmlevam1cHOYJhN6J1hDdSQrUeCOss9M0Kta+eOONdWPmFS3HkB3v4dV0HWuGZ8cR87hMGgxEdRLVyoAY9RwiZgB79dL3fwisGrqQ4LP/URjhcTt3PIxZQ2bsVOaLFLyrSI+96ojShmt4445xY/8BWdB1oQee+ZgDAaOuAbuXLKabR8P4xGAzrYxmfAyWE6gTCzSegt42qFvw2qcw21dok580nPyu6uBJxKVz4Qq/bg9HWQcxNzepyHvH7yN4J84h0W2A0LGpZeBAHQVppJr/siNNvcMCI/DYMBoOhFEOUA6NGckJlEo6GzlzNNQin1GMpUokVSCvP5n9f2N2Iqf5xjHeN4PAP9uDs80dx+v8OYLRtENQbfphTsdLKBATz0KtNsYvSL2xH7BLlTKzkKFV6wnkWnjkPjv7obZz53RF+XUZVjqay1GLl94fBYEQHupsVRaIzibbGUo1AIsx2HA1mAsGwkgKYlJ0SkBDt1K8PBGyfm5zF2T8cRUJGImo+shpJOSlhn9N/7dH2vlsdI945K73LQsRCthWRC5MrV18jkkq2vtYA99RcwDqW44DBYEQLhswcmN2pWMEcKBLI2dvaZcRPDWqSwZlF1XVLEZ8ePK75zMg02nad1fW8VrsPjNCInxl7hupQ2qaJ91Eys6pFUXAmLBxXa3rpJKjXq7osOdg7Yi8IIVTh3+5I15XBCIXuMwdWGG2KpQRMUtE7zHbSMyN8qhWfpzPehdqbVqP5r6fgdXuRWpIJZ7wTBevKMNIyiNbXGwAAE10jEa4pwwowYU87Sr9/8X5i52s51M7klG6pgcPlQM/hC/y64fP9OLR9N6o/tAJZtfmKy2JEDZ8SLd8C4GYA/wigR7C+BwyGxWHRimxAqI5LqAwJFYRwz+lHaacprqfUiFw4ApKRphha71lSTgqWfXLjgvVpZZn8b6/bi4meMaQUpIVTRYZKrGq6wwgPLd+pVMZ5cfuk5n1xxjlRdkUtyq6oxeDZHpz/yyl+W9Of55MhphSmo/am1XAlxamuM8NeUEqfEi4TQmrAKQcvUkrPyR1HCCEAkimlEwZXkcFQjOHRiiJh3mLFUeZwCeXMKLzPely/0uhNUvUxyunSTjMT4rCm9c+8D8+cR9dzmI3wuVrdsRaQFgAZ+hANpotS7YmW9yV7cYHkAAHAJUs8/cz7GO8cUR2cgIUzjT4IIZU+06L/Rwj5NCHkBIAZAF/0bXcSQh4ihBwnhEwTQoYIIX8khCyVKCuZEPItQsgZQsgMIaSXEPJ/hJBS0X65hJAfEEJafPv1EUL2EkJuNeeqGXbE0JmDWDLvMZJQQo7QjCjSTslMGOOIT01AwbqyALODia4RpAuiHNkVuz1jNoOgP6xdDyQ5LxXrH9yK/uOd6NzfjLmJWaSmZGN8YhCzo9No+O0huBJcKN1Sg9wVxSHLs9s3FqXUcYP6AXRRSrt0KPvDAAoB7ATQBcDvmPYsgJsA/Nq3LQfAvQD2EUIuopQ2AgAhJB7AawDWAvgZgBMAygF8GcCVhJB1lNJ+X5m/B7DOV14jgEwAawBsBvA7Ha6FEYUYqhywDkQ/Qgk3QrMiM1ETQSfWBLTizYsClAM9IhZFEjuOxMfaO2cXrDJwJH6nw3lfCCHIW12C3JVFmOwdB3ESnP3DGBIdaRifGIR7xo2W1xqQvbQQDqetUgxFnITCh5FYvsKUc83RkwBuBICnJTZ/C8A3dThNHYBlQnMj30j+xwDcSin9vWD9LwGcBvBtAHf4Vj8AYCOALZTSfYJ9fw/gIIB/APAwISQDwBUAvkYp/U8d6s2IEQxRDuw+UqdntuRYIZTgGJP3kQaaEeiZJMkq2P1bj1b09vcxCisoCXorvcThQEphOgBg+acvxnBTP8ZfH+S3n3vxOPJWFqP3aDtmhqcwOz6DnKWFKLqkEomZyYbUiaGJTwBoEK3TY9YAAF6W8EO4w1f+bkJIrmD9DID3AFwj2vcQgEbRvu3gZgeuAfAwgCkAswC2EkJ+SSnt1an+jChHV+VA2JiFimBjhU5BDjlbVCt2rlaCdWiBOOMDP6/Bhh5kLcmHK8Ec50QjokjpOdLKMBcrtWGRmumUQqrf8hPu/YpLjkfeSs6MyB+9bLR1EKOtgwH7DdR3Y6x9GCvuupj3V2LtacRpoJQeNqjsJol1dQCKAPTJHUQIcVBKvb59k4Ls2wYAlNJZQsg/APhfAF2EkMMAXgfwLKX0WBj1Z0Q5pkUrigbnNSYUaSOW71Vyfhome8cAAK1vnEHrG2eQvaQAldctVWRaoFfkKb0VBIa1YYKltcheko+u/S2YHZuW3Wd2bBpNfz6J2ptW8+tY4sOoZUpinQNAM4AvBTmOCvbdB+DfZfbjXzRK6Q8IIS+As5W6AsDdAL5GCHmYUvp9lfVmxAi6KgdaOyS9I+2YgZVG4ayEHYQSM/Iy+Ekvz+KVAz+DZ3oQn5aA0strQh5vl+/BCpj5XO2AHb7FSGLGvfH3E854F5Z98iKcf/kUJrpGQJwOpJVmouTSajjjnTj243cAABNdo5LlsHc6JmgEcCWAPZTSOQX7ZlNKX1dSMKW0HcATAJ4ghCSBc2b+DiHkMUrpTBh1ZkQpus8cKHGcFY6GSmW0tKpAxBpoZQiFEivfMy11VHtMyWXVcCa4MHy+P6Dj7z7Ypkg5CAcr33sj8L93THFnKCGY8qTX++M/x3TbvXAlxmHxLWsW7CMMceqengOlFBJRchjRzzMAPgTgXyHh9EwIyRf4DDwD4LuEkLsopb8U7UcA5FJK+wghyQBAKZ30b6eUThFCGgBcCiANnE8DgxGAaWZF4ky+ctsAaysIDHujZrRQrAiIbZOVCBCEEBRtrETRxkpQrxeHtu/mt53/y0kUbapCUrb+UYxi/RuyqoJg1XrFKuKkjUY8m1BlzowGWpgcemwXknJSEJ+WgJLLapCcl6p7nRiW5FkAHwHwDULIJnCj+2MAKgBcDy5i0Sd9+/4vgA8C+AUh5AYAewHMAajylfEcgK8DWAzOwfkPAE4BGAWwHsBnAbwiCHfKYAQQ8XhqUgJMLAs10YKSBGpWIFgdhUqB2N9Ey7URhwPVH5oPxzd4thenfrUfXo9XdVmhCPYNhZPAzAhTDD0TqoXK0B1JhAnkogl/QrRo8CsLhlHXl5CRhIT0xIB1UwMTGGkZxOmnDqD/ZKch52VYC0opBReF6O/A5SL4Jjgl4FYAx8DlKfDvOwPgAwD+GZwC8D3f3w0AXgWnaADABQC/Ahf29BsAtoMzXfo2gI8aekEMWxNx5YBhD6Kh8wcCBQC9lBc1wm1WbT4yKnMC1o13DOtSD6VYTWnT2+lS7fWFyj6uF1a773oQTptgxD03so0yatCKEIIVn9uErJo8ye0trzXg4KNvYrxrxJDzM4yBUvpNSikRhiyllLb41n1d5hhKKX2SUnoxpTSVUppCKa2llH6WUvquaN8ZSun3KaWrKaVJlNJ0SukySulXKKUnffsMUEofoJSupJRm+MpbSin9FqV0wtg7wLAzEVEO5DoEuYbdbkJptI0MhovVnl84sxrBjhMKmcEEn4yqQOUgKdd8swEjrl8PIv3tmKEgaL2HWoRppefSUrbfdE34pxTxuYINPqgZmNAiwIcq34z2ixCC6htXYs29l2Ptl7dg8UfXLNin4dlD6DvRYXhdGAwGI2IzB1IdUbSYE0VzlBAt12XX56r0WtUKe93vt/K/c5YWIi45XtXx0YjeSocaIdwIEzgjBUo5QV7rOc1sq+TqHky5UKt4qCVY+Wrv6WTfGNrfPoeRlgFQURJEJbgS4uCMdyG9PBtrv7wFeatKAra3vn4G08OTMkczGAyGPhC1DRghZB2AQyu/sBmpRRmKjvE3sP4GWO9EMwxjET+/WEBLhtlgx8yOz+DC7rMYaR6A1835GCRkJGLFZzfZKjJJNDvU2iGPid5tp9nXbMe2X6lz/8zoFE7+8j1QD9en1nx4JTKrpU2F1OB1e3D48T38cvnWxUguSMOJn74LAOsNTNQVcfzyxoavv4S0ihUh99eDsdaTOPj/bgSi/N4yGMEwJVqRuGGN5pH1aCMWFQMplAgxwfZpf+schhoDk1lmVOXaSjEA7CHM6YUVw/GK20696qj0+HDbAzX1NKrtcU/NYaR1AIQQZFbn8hmJ5eoQ6vwzI1NofePMgqzH/Se7dFEOHC4nlnx8Hc48x8mp1Kt/AAMGg8EQYloo02AIOzjxyKQdE6RFE7F8z9UKXMEEicEzPYErCJC3slhr1SKCFYVlvRAPVlh58CKc0LrByguFXsK6/zsJJXjr3fZQStH25ln0HZ+3289fU4ryrYs112GwoQfn/3pKctvw+X7MjEwhISNJW4V9eD1eNP/1NL8cl5oQVnkMBoMRioj5HIg7JLkQhFqc3RgMrWhNohXMNrn1jTMBy9l1Bai5cWVEHJEZ6rCyIqSHr4SW47X4Nojb9EgEKRis7w5QDAAsyF6uFM+MGx3vNC1QDAo3lAcsd77XjLnJWcyOTWs6D8D5KAmPz6jK1VwWg8FgKCEiMwf+ESNxx6TXSBiDoYVwRovllFfPnCdAICnZXIWii6sWnFPqXbfaN2ClupiBXa7X6HqKBXmpUf9gswBSkYkiQf+prgXrxjtHMNE9ipTC9KDHeuY8GG7qw2TPGPpOdIB6aEBm47jkeKy46xI4E1zIWlyA+mfeBwAMnO7GwOluAEByfioqr12K5Lw02fMMnetD3/EOJGQkoXRLDRwuR0D7UXntUjjj5M2gGAwGQw9MVw78HYNUhyPGasIRIzKYke3XKMdM75wnYLlgQ0XAst+UTk4xsco3EM0mRdGEEXb6wpF+f7mhstyHKs9svG4PJnpG+eWUwnRMdHPL9c8eRMHaMpRuqZH0Aep4pwldB1oXrAcAZ7wLxZuqkL+2lD925Hyf5L6TveNo+O1hrPvKFZLbR1oG0PTSCX6573gH0suzMDcxy50rwYXc5UUKrpbBYDDCwxI+B8xkiBEMM98PNXHhlew/PTCfZya7rgAO50JLPjs46EezUiAVQcfqz0OO7Tu2aTaNC1WuVvz1UKu46DEoQCnFRPcomv92Gt45zpE3e0k+Kq9dijPPHcZEzxhAgZ7DFzDZN44lH1vLH+t1e3D2+WOSSQpdSXHIX1OK/LWlSK39Cb9+uu1e5K8rw0TPGEaaBxYc553zYGpwAknZKQHrZ8dn0PjHYwv2H20b4n97ZtyglNouiAGDwbAfpisH/sZequG3c6fMsDfhJKYKdmzHvmb+d0ZFtmznLnz3o1kQV4IZM0VA8NCz0fAMrDLrBGib0Qj3HXBPz+HoE28HrItLjkf5VUvgcDlRd/t6dLxzHt0H2wAAY+2cID43MYOOd85joKGbD0sKcMkKy66oQVxyPBKzU5BU+YTkeV0Jcai9aXXAutbXG9B3ohMAMN4xEqAcuGfmcO7FQMXAmeCCZ8YduC7eyRQDBoNhChGbOZBr+IURi5QqCnaMnc2IHoIJYTND8wmLml+px4W3ziF7cT7iUhOQt7IErqQ4fjt7bzkirRjYHWHbaQUFwSxlT0zraw0L1lXfuAKuRO6bIw4HSi+v4ZUDUGCybxyNfzzKm/IAXD6SRTesQErBvF+C2vcnqzafVw6EoUgppTj3x+OY7B3n15VeXo2C9eWYHpgAcRDMjs9gpGUA2bX5Cq+cwWAwwsMSZkViwhm9i3RHyIgNpOLNS717eatL0CmYPXBPzaH3GOdgODc+i/Kr5MMoRiuREhaFxNIsZaQVhEg969mJGf536eXVyFtdKunMSwjgzwXa+PxRzE36bPzjXciuK0DxpqqALOZa7ufM6BT/e7RtCLMj0xjvHIZ7ag7Tw/Pb6m5bj3/93jvYvmMbH80sMTsF6eXZqs7HYDAY4RCxUKZ64g/pZ0YHGKlIGwz9COYArAapaFvicosvqUL1jSuRXrGwc5/oHoHXE35CI7sJuZFWDPwI241oG1QIFgkuGpFql/3RhOJS4lG4oUI2yk9S3nxI4bnJWaSmZCM+LQGr774UFVcvCVsx4Coz/3P4XB+6D7VhvGs0QDGovHYpUoszLPN9MBiM2MVw5UAYnSgaBGvWcDOEKBEUsmrysPiWNVh3/5XIXTGf+GyiZwyHd+xG25tnNCkJeik5DIaVkYtwJ0Qqd8JkD5fDYG5iFgcffRM9h9okj5Uala/+0Eo89Pev8Mvh+gM5E+Un6VMK0rDkY2tZJCIGg2EZDDcrEgrTZoWjjLZRQIa1UWpi5HA6UPmBOnjn3Bg808uv7z3WAeqlKL28Bs4ES1r6MRgRQy58qhR+kzX39NyCbRfeOoeMRblIzEoOWJ+/pnTe7wBASmYW/uW7e/nIT0D4fUpWbT6qPkgx1j4MAiC1OAPpFdlwJsZJRjBjMBiMSKJbq6RkVsDImQOmGJiPf+SajV4HEuodrLi6DiWXVcMlGE3sO9GJIzvfwuHHd2O8izM36ninCcd/8g6632/FRPcoKJ23TWD3nBGKaDctkupP/AqEM8GF1KKFic36fU7BQuLTElFx9RKkl2chpTAdn/v+Tl0VAwAghCCnrhCV19Sh4po65CwrQlxKAlMMGAyGJdFtmFLJqI7RMwdMMYgMRoUBNQph4jG9zi+MshUKZ4ILRRdVoOiiCpz9/RGMXpiPZe51e9Hw7KGA/dv3NgEAcpcXoeIDdZLhDCPtdGoFhMIiM/+LHGoTCqpxUJd6xlLHE0JQ+9G1oAkPwRGfiMOPXA8A6D7UhoL1ZYhLSQjYP29VCfJWlQAAXjv0fcV1ZzAYjGgkamwYWEPOUIP/fdFbQVBDYvlO1H1xAKef+CDGu0ZD7t9/qguFF1UsMIvQcu5o5MkXWnD3TZVMMQhCqNFwJZnrtZwv2DnDRa6OKdVPAgCo14OE7BrMDJ4DADT/rR6LP7rGkLowGAxGNGDanCbrsKOPcKO8WEGgNaIOSs2tptvuRXxaDtb80wFc9mgD1n55C5LzUwP2Kb28OmB5vHNEshy9sLvpSbS3M2pN+dS+G9t3bFtwD8VBJbSah8rVW21itCdfaJE8Rq4c4nBiyUcL+OXZ8WnF5zOTaAjYwWAwogNbzhzINaLRJBhY1UyE+XYoR8k9Es5gXJP5LTju/DYmukbhdXuQVpaFgdPdYZ+DER2IBWul36LwHfMvB2tfhO2rFlOtUDkktLYhoRQiuSzM0233YrJnfmYuLikeDAaDwZDHlsqBVNg6QP8p8Ugh1wlGUmGQEkxC1cWqCo7RBBOO5Oyrp9vuxS5wttKpxRn8emE2VQDIqs3j9zcCOz8vO9ddCcLrC2eGR5g9WVyuXogVEi2E8kUQKwNy3xUQOONWsKFcc52MxK79FYPBiD4MNSsSToHrba7gn/6W+vNjp9wK4vsj1WELO1yzowSJk0UpUQyE/62O3u+J3P1RKwDkLC3kfxMHgUMmkZMemPWs7PJNWhk9k7eJn7ueQmo49ZMaBAp1zXLv1twEl9wMALrfbw2I/BUK9r4yGIxYIyzlQEpItUJ4S7GSYIU6SSHnrKfUTEBchlnobQ5gNaxS38TynUhe9OT8CgLJSEV6YdbIuxVGSO00cBAJ9MxPI/deKfnO/ArCA/e/zJej5dl9/Ivf53+Pd45gTBAhTEkdGAwGI5bQzazIKgKVEKs36uE681rxntsVvxCyfcc2yXsbKZMVz8wk/zslP82w8xhpAmZFPxWrtw3RRLjtlFBBULKvH6EyAQC//reH+NkD99TCJGkMBoPB4GAZWGyMXmYFRmOHOgKBZgzie2u2IuY/X/euT/DrMqvzTK2DXljx+cfirEGw5yAXRUgPJUrteUOhtk7+68jakI3xiUHur2Nh1C8Gg8FgcJjqkGz0aKyaZDoMY7GiQKgFsZ+HcJ1R+EfxZ0am0PxKPQCAECC9Msewcxp9TXZ5H+Qi3jDk0TrrpOYYudClwjCrwZ7ZWMcwLuw5xy8P1Heh/KrFKmrLYDAYsUNEZw709gNgHTojXJS8Q0bOIiSW78Tk+bvR8mo9Tvx83/z6nFQk56UGOdLaWM0EThy4QG5brBCu8qYkp4cav6pQZYsjFAmzJX/5nhcxUN+N7oOtaH/7HA4++ibOPHc44PjcFcUhzxuLs0sMBoMBhDFzkFD4MIDwQtYxu3kGI5Dptntx7sXjGG0LdJis+fDKCNVIP6wa2lZP51urY4Q/jZrjQzkni7erDbu6fcc2nP3DUYy2Dcruk5SbitItNSHrquZdsKJfDYPBYGhFF7MicXIdOYKF59Qbq48GWlVQMhu5iE1Ww6y6jbQOLFAMqm9YgYSMJFPObxSReLbsG5NGyaBMpEw0xUK2lsEnKcUgPi0R6eVZKN68CPGpCYrKUXMP2HvGYDCiibCVA7nG3GpYyR9BOBpm1ftlFkJBJdrvR6jra3vzLHqPtfPLrqQ4LPvkRsXCDGMeqTwb0fxuaSHY/TC7rQzl/K/12eWvLkHuimIk5aWqDgNslf6CwWAwzCZsnwOjI+ZojUcuZ5NqBZiQEojVFUs9kRJ8vG4PWl6tD1AMAGDp7RuYYqCCUPlMmAmjPQinHXBPC0KUEqD8qiVIzk8zND8Ig8FgRBumRivSQjhCvRUVAz+xIAirQW7kMBrvk3AGYbJvDA3PHoLX7eW3l29djNyVxXA4WaRhNSgxl4n22Sml+O+VmffCqO/6vq/8Gd/6ykXoO9GBsfZhfr0Sp2MGg8FgLCQs5YB1sgxGeLS+fiZAMSi7ogb5a0ojWCNp7CJURzp7uJ2I5PPU03ToH2+uRd/xjgXrizZWaCqPwWAwYh3NysFM9yOIK8rQsy4MBoDY8UPwzHkw0T3KLy/7xEVINjALcjgIHUPt8jzsUk+9/aGs+oxCORdrVRgmuhYmNEstzkBCur2d+BkMBiNSMLsFhiWJ5hFg/7XNTczw69Irsi2rGAiRSgrHCA+9zR6VmldF6vkpVVyU7hefnsj/rrp+GepuX4/aW9ZY+h21ar0YDAYDsIHPASN2CSeHhpWQioE+2TuG+t8c5JfHLgwtOM7KWHFk2q4YFUlNPIOgNL+BmTH7wzkHpRQAMDs6Pb/O40WqxWe0w50VfeD+l/EfD1+qd7UYDAaDhykHDMtjZ0HUM+NG0zPXweP2oGBtGRIykjDeNYKGZw8F7Fe8qSpCNWREGiMUA60JJq2siLtn5tD5bjM8M27MDE9hXMKcKDE7hf8dqXZDGF1P72fLsjYzGAwzYGZFDFsSKmylVejYdx5d77ei90g7Tvx8HwYautH+1rmAfQo3lKPwIuY8aUes8v5JCY1i4ViJsGymOZ9a4b37QCt6j7ZjoL5bUjHIrM5FanHkZw2279jGKwVyz0VrCHBh2QwGg2EUlp45sFLiMqtg5pQ/IzzGu0bQeyQwd0HzX08HLK+7/0oWstSmKDEPMep79beNakeSxc7+oepmVPhRLWVND08BAFJTsjE+wWVBdiXFwT01h6KLKlB86SLd6qcHrO9iMBh2xdLKgXj0hTW281g1IolZWP3ap/rHF5gOiSnaWMEUgyghlH2/Ud9rOG2iX1EQ1k3KL8EqsyNxyfEAgPGJQSz/9MVIykkJcQSDwWAwtGAp5UBsqykeFWMzCfqH+dQz3jhjnt6jgTMGlR+ogys5Hhd2ncXM2DQ30rnZWiOd4RCLyqpYGdBDiJYazR+o78ZkzxgoKLKXFCClID2scwjLFoeolXqGej3XcGdRiHM+y7F7ahYAUw4YDAbDCCylHAgVAis6XllFANJrNC9YvHErXKddoV6KvhOd/HLRxZXIWVYE4iDIqMoB9dKomzFg70v4CL/HqcEJtL1+BmMdwwH79B5pR/WKjfjvmWsQlxSv27n1HGSQKyucc3jmPAEmenYI+8tgMBh2xVLKAbDQlEgOoc2tWbMJVhGAjJjml0pyZZS9cbTTeyxw1iCjKgfEwY16EkICRkD92Fkh07PuseRTMzc5i7mJWSTnpQKYv2b31BxO/Wq/7HFNJw+gIn8J8laXgFKKwfpuDJzuRmJ2MlKKMpBckIYkQdQeM96tUI7M4Z5/sKE7YNkZb7mui8FgMKKGiLewUmHf5BQDoRLg/x1pMyOzhbpwFAOxsG+kCUEorGoipsfz7NzXHLCcUhieGUgsYmdlSYz/OrweLyZ7RjE1MIHW18/w24s2VqDk0mr+mkea+0OWSVzczFPzy6cweLYXADB6YQg41gEAyF9divKrFgecPxzkvlep9eLBBT3OPzc+y/9OyGCZjxkMBsNITFUOQvkUSG2zogApRG3H5xcAtHac/mO1nFdYhpHnUloPqecfyeethy+H1+OFZ8bNL5dvXQzq8QIOBz97IIWdBWG9o9hYxQFWDXL1nm67lxvdP9OD9j3nMDc5u2CfrgOtmB5bgsTs76HrnTcXbF//4FZMD00GzCY4450YaR3gFQMxvcfakbuyCMl5+pjfyH2Xwb5Xvd4LSik635tXuMMJV/rA/S/jyRdabPm9CdtLlgTNehBCbgTwJwAPUEp3iLZ9A8A3AfyOUvpx0barAbwO4GFK6fcUnutzANIppY/pUHUGYwERmTlQMuqvh5Bo5dFpQHvnqfY4f4eo5VgjOtHptnux3dd0SjmdA5FREvRw9qZeCofLAa/bCwBo23UWbbvOIi4lHktuXYfErGRd6xyNRIuCMN12L7weL5r+dBwjLYNBjx0+ux/UszB2f+mWGnS8cx7d77fOrySAI96JxueP8asyqnKQv7oUjS/Mr4tLSQhZZ8+sG8Pn+uCemsPc5Cymh6cQn5qAgnVluo7Qq2mLqZdidmwaE92j6Dl8ARPdowHb08qyNNdj+45ttny3AOsPlDHwNgAvgC0Adoi2bQHgBnC5xHFbfP/fUnGuzwEoBfCYuioyGMowTTmIlNBnNQVBSgA10oQisXynZsXACMR1ED+bSD+vUM8j1HvsjHNi2Sc34uQv3wtYPzcxi6GzPSi6ODATcjSZz+hJqHtiF9+E9j2NAYpBUk4KEjKSkJSbgpTCdHS/34rxrtEAxSApNxW5y4uQu7IYzjgnDj46P5vgTHCh+JKqAMUgvTwbtTetBvXSgHMfe3IvAGD1ly4NUBSmhycx1TuOqYFxdL7XIlnv3qPtyF9TivzVJQFZh2dGptD4x2OYHZ+Gd86LxMwkzE7MIiE9EQXry5G7vEjbjQI329H25tmg+2QuykXOskLN5wCs/84w7AmldJgQcgIiBYAQEgfgEgBPA/gMIWQxpVT4om8BMAngfdMqKwMhhABIppRORLoujMhi+syBmcKflZQCIVKJiBgcVnhmwYQHJSOPiVnJWHPP5Wh/uwn9J+ejFjnipD83uwi6VmLi3JfQc6gNEz1jSCvNRO6KYrgS4yJdrQWMXhjif5dvXYz8NaX8cmL5ThRuBfr3fwJd+1uQVZuPrMX5cMY5A8pIL8viy/HMuHFhTyO/zeFyoOr6pQAA4iBwxrvgmXUHHH/sx+/wyfba3jy7wGFejt6j7eg92o645Hgk5aXCleBaYMbkT0w2NTCBllfr0fJqPZIL0lB8cSUyq/MAcGZBob7rvhOdIRWDsi01KFhfrqjuahAq/FI+cAyGCt4CcB8hpI5S2uBbtwFAMrhR/o+DUwbOAgAhJB7AxQD2ASgmhPwjgKsAVPiOPQLgu5TSv/pPQAhp8W8nhPAjApRSItjnQwC+CmAdACeAowD+g1L6F8E+lQCaAfyHrz5fBbAEwD+BzUjEPKYpB2oaWikFIphAZkehSmyCYMQIMlM8jEHJc3IlxqHyA3VIKUxH6+tcHzHeOYyCdWWSZYmTUYVCKllVrOCensPpp9/H7Og0AGCkeQDdB1qRs7wIDpcDo21DmOgeRVxKPJzxLmTXFaDo4kq4p+b4RFpK6D/Vha79LXDEObFo23Ik5aSAUgpucE0ZWTV56DrAmQR1HWhB7ooiOFyc8O9vA1KLMlB702rZMkour8HoMwsHFZ3x3CyVcFag4pol6H6/FZN94wH7Dp3tBXEQWcWgfOtipJZkwjPrRsvfTmPGd28BX1Sl1uBmUUIme8Zw7k8nFqzPXpKP8quXwJUQqMRRr5f/Rvh9F+fDPe1GwboypBSl66L4yQ1MKY2Qx4g56iS+9S5KaVeQY/YAuA+cAuB/qbcAGABwDMAB3/JPfdsuApDkO+4iAB8A8CKA8wDSAXwKwF8IIR+glL7hO+ZBAN8HkA3gIXEFCCFfAfA4gNcA/BsACuAOAC8RQu6klD4rOuTDAAoB7ATQBZ/iwohtCKU09F7CAwhZB+DQyi9sRmqRdscwNSgRcu0qHGkV8kKNNsey8GglZsdncPwn7wAAUlOyUfPp5boIOnZOXhdu3c/+/kjAiLwaMipzkFGVjamBSQw19iIxMwllV9QiuTAdhBBM9o1jvGMYPUcuYMY3Ki4kISMJ1R9aIRtnX2wq6HV7cPjxPfx2sYmPUs7/9RQGG3r45ZxlhSi5tBrxqfJlnf/LSX6knxBA3NRfeevn0DaxH9lLChYc65lx4/xfT2GkeUCy7LTSTNR8ZBUAwOv2YvBMD/qOdWB6aDLktWRW56L4kiok5aWCEILW1xsC8oL4ZzkY8ox3jeDET98FgPWU0sORro9R+OWNQ4cOYd26daac8/Dhw1i/fr3c5m9RSr8pt5EQkgegF8DTlNJP+tb9BcAcpfQmQsh3AHyKUlrp2/YwgO8C2ArgAKV0UlReArhR/zZK6XWC9XsBlPrLEawvAadY/IRS+hXBeieAdwGUACinlHoFMwdzAJZRSs8FuS2MGEPzzEFC4cNILF9hikAi5aBoxsi7VRFfN8O6UJ9jsp8btnwDrxz4btjlhoorbzXk6qjlmxUqBks+vg79JzoxUN8d5Ih5RloGMNIyL/COT82h/tlDSMxMQukVtWj68wlQj/yAyczIFE4/zY3ix6clIjk/FcWbqvioQNNt98I9NYfxxi8CAM48d4Q/NrU4Q5NiAAAV19SBOAhmR6dRcukipBZnhjymdEsNhpsH4J3zBCgGCRmJWHHXJow7WvCt+w9JjqY7E1yovWk1pgcnMNI6iPiUBMyMToF6vEivzEFyfho/g+KMBwrWliF/TSlmx2YwNzGD9j2NGO8aXVAuAAw39WO4qR/Zi/ORv64sQDGo/EBdTCoGakwLE8t3Yo6eBHCjwbWKeT6B+dF/P8FmDUAp7SOE1MPnZEwIcQC4FMB3fLu8DeDrhJBySmmbb79ZAO9RSvnpOkJIIrgU4ATAbgC3KazzRwHEA/glISRXtO0vAL4FYCmAU4L1LzPFgCEmbLMiJSEy9fYzCDZabjcFQa2SYwdBkDFP96E2/vf4xCB+9/t/RHp5tq7nMPud1/Kd6RWBaOhcH/87pTAdaSWZSCvJRPnVSzB8rg+zY9NIzkuDI84BEALvnActr9ZjbmJhCNGA+g1P4dyLxyW3ESeRVBhmx6YxOzaN4aZ+rL77MjjinDi6860FjsF+8teWSq5XgjPOiarrlqk6Jj4tEbUfWYWzzx8NqFP1jav4sLqh2uXE7JQAh+RgEEKQkJ6IhPRE1N2+gTfB8nq8cE/OovtQW0CW48GzvQE+DDUfXsn7KcQSzOfIsjRonJV5C8DdvpH5LAAZ4JQCgPMt8ADYQgj5DYDN4GYMpn2Oy/8G4NOY9znwo9TEo873P5hzcz4ClYMmhWUzYghdfQ7khAajHLukBI5oaGjlrkHOVCiU0GXne2EFwlE6C9aXoe94B7/c9NJJLP7YGqQUxF5itHDfw7nJWbS8cppfFvpvOOOcyFkqHcVmxV2XYKJ7FAOnuzHRM4rUogyklWYiPi0RYx3D6NrfskCgTy3JRMGaUmTWcsLqeMcwHHFOdL3XgtHWQTgTXXBPz/FKgz8ykBxZtfnIqBIP5BlPWlkWam5ahb6jHciqzUP20kLFPhPB3nslZov+8zicDsSnJaL8ysUo2bwIp586gJmR6QX7x6clKqpXtKA1A/10272Y6V4Y9pZhGfYAuBvcrEAWuEhEhwGAUjpGCDnm21YPzq/Ab3f4GIB7ADwBYC+AQXCKxGcB3Knw3P5pt1sAjMnsc0y0vNB+khHzRDxDslLkHDflBGQ7zSJIXYOSLKP+axQrSZv6u7AvV3tIQbVEOvyoUegx0p2YmYy1X96CIz/kQlh7Zt0YqO+OSeUgXIYae+GZ9fDLmdW5Ad+53DfvjHchvTxbcsYmrSwL6eXZaPjtIX5dSkEalty6NkCITivlYuv77ewBYGZ0Cqd+tZ/PaSHGlehCcl4aKq9bGlHBN6MiBxkVOaqPUzPbo3RQxhnvwsrPbcZY+xDOv3yKn9FxxDkRl6LcWVwtVmyj7NI/MVTjF/b9ysE+SqkwhNjbAK4HpxwA8/kN7gTwf5TSLwsLI4R8XuIccjMJ/lBmXZTS92T2YTBCortxp9FmL3LKgLCh9QvMdkMvcyIzFQNA+cyQMBqInSKDyClm/r9QOONdKFg/P8ptliN/tJFSkM5Z4Po4/mPO0Vvpc5AjtTgD6+67AlXXL0PxJVWo/vAqRaPrCelJWPyxtUjMDEwWVnLpImx46CqsuWcLFn9sbcyMiKtpc9NKs7Dqi5ei7vb1qLpuKZbevl6zP0YorKgYMKIXSmknOFOdLQAuw7xJkZ+94EKGfgxcYrR3fes9CGjhAELIEgA3SZxmAkCmxPrfg3Mw/rbPTCkAQki+wstgxDiW8fxS08HLdUJ2VQr8yJlIhUIoaN99U6WeVdINO3bQwd4nsUNwqGcltFlPKVQ+axCLPiZyimNKYToWXb+cX3bPuNG19zldzulwcWZJxZuqgkYAEpNalIEVn92EpXdehLxVJSi7ohaFF4nNhc0nXIXJT6i2VvinFkIIUosykLOsCEm5qeFWVRa7tTuMqOAtALXg7PvFyoF/eTOAw5RSf9zhFwB8khCykxDyRULIIwD2Y36GQchBABmEkO2EkDsJIbcDAKW0FVx402sAHCOE/Dsh5Au+/y/DAonWGPZAd7MiLZ2EXPSdYGXZWQmQIxqvyY+4g47GDjuYKZt7ct4h1qUi1r4VMfI9DTWjlF1XgOHmfj6s5/kX/gcFl9wMhyuyCdBSCtKQUrAkonUAjFUmlfo4WQE7DkYwooo94HwF3AACzHsopT2EkEZwysNbgk0PgrP/v8V3bAM434WlANaKyv8vADXg8iDcB27G4Vlf+T8khDQA+EdfmSkAesCFRP1nfS6PEe1oznOw4esvIa1ixYLt4QgOesbmV+pzYBUHZqn6qkn8JhSqnnyhRXY/O6HVYc9MlIboPPuHIxht40JwrvzsJiSITFEYyvF6vDi8Yze/XHX9MpRc9zyAyL4nVvJzslJdGPrD8hwYhyDPQVTfWwYjGLqaFYXbGfmP39QfNJRwSPwCm/C/1Ue7pO6deF2wKXz/KNmTL7Tg7psqsam/y3LCQTh+BlZ/fqGYHZsBADjiHIhP52zQ1fgt6EW457LCc3A4HSi9vJpf9szMWeJd1ytcqxCt5VnhfgDWeF8YDAaDoQ7LRCvyTwNPt92LfSLhPpyY6tES5lNtPfflFgFtofczGzXT/XZIdKdUIPRnjnXGuUAcBBM9Y+h45zpk1uQj56JfG11NAAuVZq330grPQegwPNHNRezTIzGc3Oyd0uuVS9iolUjfZz1g2doZDAbDXmieOZjpfiRgOZwG3z+i7P+vxrxGjmjogNQKJsd/ug+b+rv4/1Zj+45tqiMbiaNQWREljpnEyQmz7uk5TPaNof6Z99F1oBX1z7yPwUOfDlq+3s6ldnfcBwLj+E32jQdsUxPYwIj3K1xH3WhC6h7YYSaXwWAwYpmwZg70mkYXCozCGQS9R439ZRhty67VGU6oDGgZ3d01+R0klu/Epv4u7Jr8TugDLIzw/tlNwJKqb1pxJkYvDIF6KU4/FRgwon1PI2o/ukY2fKae5ip63ctIjwY7453875y6Av63Uh8QpdsY+qDHgI8cVvEbYzAYjGghLJ8DI0Z/tu/YJjuDoAdmjFiFGyUjnM5uuu1erPrCprDObyX0yIdghZwKxZcukt02emEIg/XdQY8PlqnWCqOwZtfBGT8/riF07pYKsRmuWQ8TOvXHKCWVwWAwGOGjeeYgofBh/reRnWc4o6Zyx7LOPrLICetSSpUe4QjlypBTwoywqU8tykDltUvRd6IDCelJyF1RhKmBCVzYzSW0bH6lHn3HO5FRnYucugJbJs6KVHQp4gidsExMqNk9FgrT+tghmhmDwWDYEV2iFRkxevPA/S8HzCBobfyjIXOyWqwu1KjxOwg26h/Oeyc2WTMjclDu8iIsvX0DFm1bjvTybOStKkF6WRa/fbxrBB17m3D2+aOKyovlUVOHa77p8sy4+d9i/yU5Qr2DVv+GYh2mGDAYDIZxWCZDshCxD0K4xIpSYGfEz1zJc9cyq6RUATBD8HY4Haj96BqUXl4dYCYzPTgJz5zH8PNrQel3ZPT9c7jmfQ7Gu0YDtgkVhFDvkRVMzhjqYIoBg8FgGItlQpmK8QuLduy8mYOceoRmHGqVQyuE1tQKIQSFGyqQmJWMc386wa93OEObykTqmpUqZYZ+B4LbM9Y2yP9WO+Lv93GKtpkCM78JM9s7phgwGAyG8Vhy5kCIHTttf6elZvTUaiYikUjQJUaJiYiae61llsEs5iZm+d9lV9aCOKz9aaoRzPR+l7rfb8XZPxzllzOr8wBoH0iwYxujBKu1KXrCFAMGg8EwDl0kELUNtdjGO9if3thxJiISiBNKyT2PcJ6RUCgL5YwcSkGIJmFBaGIUbYTzXc+Oz+Dci8fRvreJX5dZk8dHglIj5Eez4AyYKzyb9f2ZNUMR7e8Gg8FghCLsPAdajzNa8JcTFMIZJYxG84NgqDUf8R+jBCkTIjH+5xnJe26WecZI8wD/W0v0nUigZYZMKyMtA2j847GAdSWXVaPoogrNZdrZHC0YVs8qHg5mXEs03S8Gg8HQAqGUht5LeAAh6wAcWvmFzUgtygjr5Mw2fx47h1wNNyGWWUpXOCFxjcQ9NYejP3qbX177lSvgjHMGOcKaqL2/Su+r1+3BkZ1vgXrm26pF25aj+AN/sM03wpgn2hSWSDDeNYITP30XANZTSg9Huj5G4Zc3Dh06hHXr1plyzsOHD2P9+vVAlN9bBiMYETNsfuD+l6POHCRWCfcZSikGVjL/MnpkvOdwG/87a3G+YYqB0ddh1Lc8Oz7DKwapKdlY9cVLkb2Ey4qsh/mh0e+ald5lK8DafAaDwbA2lvF69IcdjNWO1G4dpvg5+etv5evQI2OuEYy2DfG/y6+sNeQcfgHajgrC7Og0/3t8YhD5k6sw2Tem2/M0etYqlkwRGQwGg2F/TFEOpASScHMZxLIiYQWkBB4pIc2qEWSsoih4PV5MdM/H6Z8ZnYZaUz8lWE15U1OP1OIMOOPnZ1Nef/oJ1D/9Pia6RjSfnzmdMhgMBoMhjeHKgdoRS6VC4fYd26JuRM4qgpue6PGMjFYCldx3o4TJmZGpgOWGZw/h0GO7cOIX+wKclPXArPdL7/M4XE4s++RGJGQk8esoBdr2NBqiSGmBKRsMBoPBiBYsYVbkF/TVCJLRPmtgpqKg1G47UvfcDCUwUopZQnqi5PqZ4Sk0vXQCc1OzktuDQSnFRM8YRlq5CD/HfrwXZ35/BJTSoM+Qer2Y6h/XReAONSujVphOyEjC8s9cjNpbVvPrJrpGMd4xrLl+emGWyRaDwWAwGGZgqHIg7iz17Dz9mU2jjUiYuigNSWmEkG6EQKXVSTUS997hcqLEF6dfjNfjxbEf7cXsGGdzP9Y+hLO/P4LGF45hanBCtsyOd86j/pn30fj8MYy0DGBuYhZjF4bQ8mo9KKWywn/zX0/j1K8PoO2NM+FfmAE4nA5kVOSg8tql/Lqpfvn7EA1EYxvHYDAYDGtjSLYls0bQos2syApEIrysnucUx3jXUq5ReTjkKNpYify1ZTjygz2S24//9F2kFKYH+CaMNA+gcH05SrfULNh/WkZxGDjdjU8v4kxz8teUonzr4vljhicxeLYXANB3ohMZVTlIr8iGwxVe5CQj7qXX7eF/t+06i5zlRREN/WpkvgfWxjHEJJbvxBw9CeDGSFeFwWBEKYbMHAidPcWjsWzq3ZqIBWiznpPeo/VSZWmdRdCjHKU445xY83eXI29VCYo2VqD6hhUB24WKgZ/uQ204/5eTC2YC0suz+d/EmQHiXJiPZKixN+C44XN9AdvP/ekEDj++B61vnIFn1q3pmkIhNMdRM9uTVpYV4KB85Ad70LbrbIDSEOq8RjzLaPQZYlgL1n8yGAwziIjPgV4NnFCoUCtgMKyF3gqCHtGIzFYQXElxqLh6CUourUbW4nws+dhaEAeBKzEOxJc0WSj4A8Dg2V6cf/kUv+yZccMhGEWvvOEr2Pyf+1D9se8EHJdZnQdC5jMxz47PSNap73gHjvzwLfQebdfsixDsOWjJrp2UnYLam9cErOs92o62XY1BjxO3D3ZtK4TXYcVrsGKdogF2XxkMhlkYYlYkhRFT70KTBf9vNnqnHbPNacxC73fCLNOrtLIsrH9gKwDwgjkhBJRS9J/oRKvPN2DobC+813vRe7Qd7W+dCyjDPTWGmfavIKsMqLimDq2vNwAA0suzAvbzTM/PDiTlpMCVHI+xC/P5F9p2nUXbrrMou6IGidkpAOEUFaGCEQ5q72VqcQZWfm4TWl5r4OsprK9S7Nhm+L9ToYJgt2tgqEf4jGe6tYfxZTAYjFCYphz40bsTE5bHOsjwYfcwkGAKk9FCmdAZVWh7TghBzvIiXjkAgMM7dkuWkZT+FgButqFrfwu/PjErOWC/OcHMQcH6cuQuL8LM6DSa/3Y6ICLQhT3zykfZFbUoWFem+Hr0Vj4TMpJQe/Nq/todGv0O7C5cW63uVqtPMCLhY8VgMBhWx3CzIpasjGF39AzJqYZgIX4dTgcK15cHPb5oY0WAGZI/6hEAnPndEUwNzDsue91e/ndCJue0nJCeiLqPr0PtzatBnAtnCLoPtoJ6vQvWK0EvHxfv7LyfwVT/OCb7xiX38ysA0SIEWiWJX7Sg1iSVmbAyGIxoxnDlwC/cMAWBEQorvyNWFMJKLq/G4lvWBKxzJcZhzT2XY/mnL0bJpdUB24SKgnt6Dq2vNfDOxglZ8wnGRkXJ1zIqc7D+/q2ovXk18lYW8+vnJmZxaPtuHPnhHgyd61OkKAgFWj0UBGdi4ORn/dMHMNEzFrRcsVBt5LNlAqT+6DngpPYdZEoBg8GIBdjMgYmwTiUQcUfrHyG36vuixKnWTAghSK/IxqIPLufXLf3ERXAlxiEpJ2XB/otuWI68VSX88njXCI788C24p+dQetm8ItF3okPyfBmVOai4pg51t60LWO+Z9aDppRM4/pN3MT08qeoawhXSCSGouHoJv0wpMNzIhWQNJcjJjbzrEdyACZHGkFi+E0++0IInX2gxpHyj3gcGg8GwE6bNHADWFfrMIlodfrUi56Ru5djuVpxByK4rwIaHrsKGh66SzbgMcLMKFVcvQd3t6wPWH33ibRz78Tv8sns6eOjS1OJMrPz8pgXr5yZncfIX7+H8X0+BetVHNtL6beStKsHKz83XZ6KXmznQYnajJXqSkjLZdx8+RibV1IIV2wIGg8HQA1NmDgBrC3xmojRqU6Q7PrMQ3g+7XLPZIU71JrUoAyvuukR2e1xyfMgyEtKTsOGhq7D2y1sWJGIbbOjBoe270PbmWfSf6goZAlWcB0WTeVHCvHnRaOtggH+FGiVBqy2/1cOLMuQJ9cyZEsBgMGINQ5UDv2IgVhBY56msw4mV+8QcK80nMSsZKz5zMXKWFQasdyW4UH3jCpmjFuKMd6FwfTnWP7B1gSlT77F2tLxaj469Terrp/LdJ05HQGK04z99F01/Pgn39Jzqc4eDXL3Z+x0+kbyHYvM39jwZDEY0Y6hyIJwtEJsUxYrgq4ZYvyesw9WfYKZ8idkpqLpuGW+StOGhq7Dm3i1ILc5UfR7iIFj+6YtRfEnVgm3dB9vgmZPOXjwzOo2u91tx6sf3o/mlHXBPB0YbGjzbg9Y3zsgmafPjjHOi8rplAeuGGnvRf6JT5ZXoTyTeazvNxKlBzcyOkutXY+rKlAIGgxErmJIhWS4cIyMQYXKjWO+IolGwMYJQ98nsSGHFm6qw7v4rseTWtUjKTeXXt77WAPcUN4pPKYXX48VwUx9OP3UAHXubMHx2Pzr3PI39X78axx//PKb62tB5pAbn/3IKfcc7cOJn78r6MVBKcfqpA2h66cSCbWbPHIiJ9Dcczd+RUgVB7h48cP/LQfulWPeRYzAYsYvhSdDUKgV2T0gULtF87aE6Y7sgJWxE8rmF+mbMvucOpwNppVlYtG05Tv3ffgDA4JkeDJ7p4bd7PQvDnlIPl/V19Pw7OPz9W/llAKBeiq4DLZIzEyPNA7L5DTKqcsK+nlBY0ZRIj4z0dv5elVx3qGuz67Uz/n979x5jxVnGcfz7LJdlWe67CdttpVxagdrSEGxFbHRpinhJtFUTkVJLraJio/yhFawFGmvUxBpjmxJSGwtpsGq1gBG1prbGC6maaq8rpbKCpWzTQgss0IXC6x8zZx1m5+ye29zO/j7JZPfMzJl553Jm3mfey4hItRIpOQgb6MYVfHpez0+9hqJybrZ5CpLSzgSGG/QmZbDfaFNLM9M/8DYahp99mQkHBq0Xt9M+vwUbNr5vXDAwKHhpZxd7H9nFmTfPrqJ06lh0laNhjcMZe97EQbcjDkm0KSrlGlnNuZnXzHHUey1ERKR0iQYHpRbTppXZEcmzOHvLiQrYS8l0TZo5mUtuXMCIZq8HpKaWZsa0j2fSrMm0z5/K7E+8namLZnHO5VO5aOlM2jtW9FtGc9s4rMF7Q/MrT+2nc8vf6T1yom/68cBLz6YsvJC5N72HeasWMnfluyve3ihRmfFqS5Fqcax0jSxOgYGISPlir1YUFHwSFa5fX1AoytZFPVqei/rrQZYzYsH3aNS6el6xd3SUso4Ro0dy6YorBp2vqXUMTa0v0D73SkZMvoPe/as43fsmI5ob6XnpMHt2PMvJo29w4uAxnr53J/NWLeTk0V4OPtcNQOP4UbReci4Nw5J55lFtYFDL45OH6phJpjHr+0JEJMsSKzmIKjUodgFXQ7Bo1e4X7dfqZK2tQZRgNaNaBzJJNpIf1tjE6OkbGdHcCMCY9vH93sx89MXXObL3YF81pXPeMS2RwCArVR7TrFJWCQUGIiL5kFhwMNDT7qibWr1kZLOSkYBs1iHOyr4pV9Z7k4orQEjTyLGjuODDc/o+7/v9LnoP//9lZ82Tx8a6/mA3mlHHvtLzodprXZbPw6zI4u+gXu5xIlJ/UmmQHBTOxBS6Pc1iRrZUcTeorqebSl4yNuXWtc+CvKQzSrHgZvy0FhrHjfLmOXSc7r/t7ZvWMDLRWpL9XoxVqahrXbm/8awHq1mQpQc1kM2HNSIikIHgoN7EXfUk74FT3uUtA5a39AZFBQhmxvQPXgx29rwTZrT2BQ31QL/x2slSQBDlS1/cUVcPfEQk/zIRHNTTU684t0MZhoHFmQmox2o6Sao08xP1e2puG8e0xRcxvHE41mBMmNHqBQwJK5wL9XLtGgoGOlaFTHrhXM1aSYOISFKSLYcXiVGhR504Mmt56A0miwq9a1UT2AaPa+Fvy+w2Wma34ZzDzAZfSAx0PuTLYMer8Dbx8LlaLAis5cvvNm79T9nfERGJi4KDmNRLxiGPde3jMJS3vRq1yPSE398QDNTSCgzSoJKKypSzv8rtOKMWCr8RPYAQkazIRLWiehPHBT4PdVKzUASvm+vAqjlGlXy3FsejVg1/805V27JvKJ+fAmbWYWbOH94fMX25P+2qGq/XBYYzZva6mT1nZpvNbHGVy55kZuvNrKM2qZU8UHCQE2m1NyjWHqSUN8VKNlValzrNjE8wY1zshWxDSZa2v17r5pfbba0CAwn5RsLr+wtwHfBJYDXwa+CdwG/M7JdmNrrC5U4C1gEdtUik5IOqFUlJigUIeqqbL3k+RsG3qkP/82+wz/Uma9tXz9We4gwG4mwrJal5AphnZtc45x5KaJ1dzrn7gyPM7Ct4QcrXgA3A9QmlRXJOJQdSkfCNTDc2SUJUo9CBnlyn8UQ7ySqAWXhqX+yYpKHSfZ/2PpS6cy+wD7jNSmgYZWZtZvZDMztgZr1mttvM1prZiGoS4Zw745y7BXgMWGZmMwLr/JCZbTWz//rr7DazTWbWHpinA9jtf1wXqLp0nz/9fDO708yeNbMef/hjVJUqyReVHEjFFBBIGor1GpOl8zGq15s4lbIPwp0L1LKzgTSrfeWhPdZgVHpQd07iPbG/B/g48ECxGc1sIrATOBfv6f4u4CrgNmAO8LEapOdHeNWC3uuvA+BTeHnAjcDLwCzgM8B8M7vUOfcG0Al8Gfgu8BDwC/+7//b/XgYsArYBe4BxeFWbfmVmi5xzj9Qg7ZKCioODE6/21DIdIiIV6TlwbdHxjW1rgJX0dn8rsfR8c827WLrkTnoOHK75sgvb2ti2pm+bvG309Hb3X2dh+qm9zwTGruz3uRb7qJC+YsckDl1PPhFKw9n7ILh/gMjtPOWeIenzJCoNUccvylC7/3Z2dqaxrlkRD/0POOcOlLio+4CvAuvN7GfOudNF5lsNTAWWOOd+4o+728w2AJ8zs8XOud+Wmv4invb/XhgYd61z7lhwJjPbjlfKcA3wY+fcy2a2DS84eCpcbQnY4Zx7MLSMHwD/BG4GFBzklXOurAGYAhwDnAYNGjRo0KAhleEYMKXce3ieBtLLb5wsMn79IOnt8Of7tP95mf/5ev/zcv/zVYHvdAIvFNl2B9xdwn5ywP0DTL/An+eeiGmG98S/1R9eA74X8d3Btn0U0OIvYwNwKO3zR0PlQ9klB865fWY22z8BREREJHmvOuf2pZ2IOKWY32gAzkSML7XUoGALsAZYa2ZbiswzDfhdeKS/7T3+9GqN9f8eKYwws7cC38arFjQmNP+EUhbqt4m4Fa+HpPNDk10lCZVsqKhakX9BquuLkoiIiKQrz/kN59wZM1sP/BSvjn9vJYupQVLm+H93A5jZWOAPwCm8tg27geP+uh6g9M5qvg98Hq+k4E/AIeA0cAOwtAbplpSoQbKIiIhIPB4EngS+DtweMb0LmB0eaWZvwXui31WDNCzHKwl52P98JdAGLHTOPRZYZxMwMfTdgYKTpcBm59wXgiPN7MYq0yspU1emIiIiIjFwXoX8tcB5wIqIWbYBM8ws3CvR6sD0iphZg5ndjtcWYpNzbo8/qdA4Otzi+mb65wsLjZbDQUNhOWctw8xmAldXmGTJCJUciIiIiMTEObfdzP4KXB4x+Tt43Z1uMbMrgOfxnux/FPi5c+7hiO9EmWZmy/z/m/EaEl/t/90OBJ/u/xl4BdhsZncBR/11XgYcDKW928xeBJaY2fP+9C7n3OPAVuAGMzsG/AOYjlfNqBOYW2K6JYMUHIiIiIjE61agX5ekzrnXzGwBXpWjJcAkvDYW64By+tZd4A8O6AH2470/4SYX6grVX+f78LoovQWvBOBRvBKGRyOWfZ0/7x1AI7AJeBxYBZwAPoLXzuBfwGfxqkkpOMgx80q8RERERERkqFObAxERERERARQciIiIiIiIT8GBiIiIiIgACg5ERERERMSn4EBERERERAAFByIiIiIi4lNwICIiIiIigIIDERERERHxKTgQERERERFAwYGIiIiIiPgUHIiIiIiICKDgQEREREREfAoOREREREQEUHAgIiIiIiI+BQciIiIiIgLA/wDOQsb9NQTxswAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwcAAAJ/CAYAAAAtXq9XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAABM5AAATOQGPwlYBAAEAAElEQVR4nOydd5wdVfn/P8/2lt3NprfNpvceIJRAAAENglhAwAIKiEaqit2v2FB/ipAgYAQBBSkiGgtBekIvSUghvW02bTfZbLK97/n9MXfuzp07vd+7z/v12tfeqefMmZkzz3POU0gIAYZhGIZhGIZhmIywK8AwDMMwDMMwTDRg5YBhGIZhGIZhGACsHDAMwzAMwzAME4OVA4ZhGIZhGIZhALBywDAMwzAMwzBMDFYOGIZhGIZhGIYBwMoBwzAMwzAMwzAxWDlgGIZhGIZhGAYAKwcMwzAMwzAMw8Rg5YBhGIZhGIZhGACsHDAMwzAMwzAME4OVA4ZhGIZhGIZhAKSBckBEgohE2PWwChEtitX5kbDrEjZEVBFri1Vh10UPIloVq2OFxrYriGgtEbXE9qmMrb89tnx1wNU1hIiujtXr9rDr4hVEVJlK738UIaKPE9FqIqonoobY74/bOP6Lcj9MRN/V2F5KRFcS0eNEtIWImomokYjeJaKbiShb57yTiOhWInqSiPYoyhjq5TUR0WgiupOIXiOiA0TURkRNRLSOiH5ARAVW24JhGCYdSHnlgGHCgIhOAvAYgMkAXgDwZwB/D7lOj8SEp0Vh1iMVCVtxCuveEdFNAP4D4DQAbwF4BcBJAP4T22Z2/EAAdwIwUtC+BeCvAD4LoCVW3nsAZgG4G8ArOgL41wD8LnbcGGtX5OiaZgD4BoAJAHYC+CeANwCMBfBzAO8QUanV8hmGYVKdrLArwDAR54sACgAcVK2/CJJyfaMQ4iHVtt8DeBLAYf+rZ4t/AngHQG3YFWHCh4gmQhLs2wGcLYR4W7H+LQB3EtFzQoidBqe5C0ARJOH/8zr7NAG4A8B9Qoj4e0REEwC8BOAMAD8E8H3VcZsA/BqSIvE+gNcBjPbhmtYCmC6E2Kw6VzGAfwA4F8B3Y38MwzBpD88cMIwBQogqIcQ2IUSnatPI2P89GsfUxo6p97+G1hFC1MfqxcoBAwA3Qxog+oMsRAOAEGIHgF/EtunOHhDReZAUgp8D2K23nxDiV0KIHygVg9j6negVuK/QOO5PQojvCiH+IYTY79c1CSEOqxWD2PoGAD+OLZ5jsXyGYZiUp08pB0Q0jIi+HbM/PUhEHURUTUT/iJmJaB0Tt2kmomuJaCMRtcaOW6433Ryzp3+CiI7F7FffIqILHdTZ0C5fz76diAYQ0R1EtDlWfj0R7SCivxDRyRrnGUREvyWi7TGb2+NE9BwRnemgzkREnyOil2PX3xazGX6ciE63cHweEV1DRP+KHddKRCdiNsGX6xyTTUTXE9F7RFRLkh9AJRH9V30MERUS0XeIaH3svE1EtJuIniaiC1T7JvgcyOYnAL4U2+VV6rWFvjq2j67PQayeS4jozVjZLbH78gARTXfaBrE6XaVRp6S6k4bpDBEVENGPiOjDWFn1Ju3t6L0ICiK6kIgeIqKtJNmcNxPRBiL6PhHlqvZdBeDh2OKPVW13tWrfGUT0V5L6j3YiOkRED5O2TwoR0eWxdqyOvQf7ieglIvq6Yj/Te+cTsg2+ljnc07H/F2kdSET5AP4AYCuA37iow4bY/+EuzqHE8TXp0B373+G4RgzDMClGXzMr+gSkaepdkKasGwCMB/BJAB8noo8LIV7QOpCI/h+kUan3AfwPkj3rVwBMIaKzhBBCse84SFPYgwHsALAOks3sfyB9UH2FiIogmY+Mh2RD+3xsUzmkEbo9kKbq5f0nQ5reHwFpBHAlgAGQRsvOJ6IvCCEet1h2JiSTms9Amtp/A5IZSzmkdu4A8KbJaSoAPAigBsC2WF2HQmrzhUQ0WQhxu+qYRyHZJtdCavuW2PUshGT28KSifi/EznUAwKpYnUZCEiya0dteWuyC5F9wBoBxsX2rFdt0IaJCAM/F6tQEyUyiEdKzcTUk06UPHbaBXp0QK8uoXv0AvApgHoCjAP4LoBDS/V9IRAuEELfoHGv5vQiYP0G6hs2Q3vViACdDGj0+l4jOF0LIgt//IPWFp0MSVtcrzhO/p0T0aQCPA8iBZIryFqT2vhrARbHrVY5A/xLAdyDd4zcAnAAwDJKt/XgA98b2c3zvnBJT3spjix+otwshDhBRLYDRRFSiMQv2E0g2+YuEEB1E5LQqY2P/qw33soAH16Q+XwGAH8QWn3NbP4ZhmJRBCJHSf5Ac4YTFfWcAmKmx/gJIguwuAKTaVhkr4xCA2Yr1AyEJ3gLAOapjno+tvxdAhmL9tXJ9ATxisc4Vsf1X6Wy/Pbb9asW6q2PrlmnsPxiSfa28nAlJeBKQpttJsW0OJGG7CcBgi/X9YexcGwGMVm0rA3C62bVBUkzOV7ZdbP0YAHshjeZVaJznPQB5qmPyAZyqWF4U23eFxvlLAMxTrVsV279Ctf6R2PpFVu5JbP2DsfWvABig2jZCWbbdNjCrk+q5uF21/p7Y+hcBFCnWT4aknAgAi92+F378yfXQWH8JgELVun6QFHQB4ItW2kbV7s2QBPwzVdu+KD9/inV5ANpi96pMtX+WxjkM750P7TYzVl6dwT4fxPaZoVo/G0AngIc0nvnv2qzHi9Dpq/TuNYChXl9TbFv/2H14BMCzkPo+ua/ID+K+8B//8R//ReGvT5kVCSE2CSE2aqx/HtKU8zgA05MOlPiREGK94phaAPfHFuOmN7FZg/MBHAfwbSFEj+KYByGNNvrN4Nj/V9QbhBBHhBAfKlZdBOmanxBCLBNCCMW+HwD4GaQRWD1nwzhElAPgm5A+qF8WQuxTlV0nhDCbNYAQ4pgQ4gVl28XW74U08puBRNMA+XrfEkK0qY5pFQrbY8W+qzTOXy+EWGtWPycQ0TBIAmgrJMH0mKrsg8qyHbSB03oVArgGQA+AJUKI+Ei1EGIbJHtyQN/23NJ7ETRCiBVCiGbVukYAt8YWP2HzlDdDckz/thDiNdV5/wJJgDyJiObGVhcDyAWwQQhRp9q/S32OECiK/W8x2EduP3lfeebtAQD1AG5zUwEi+iqAj0BSuH7l5lwxHF2TgkJI5l1XAVgMSUH/O4CvCCFaPagfwzBMStDXzIoQszf+KCQTg0GQTAQAaVYBkMLZbdI4VMvcaEfs/zDFOtmmfqVaOInxJCTTCz+Rhcw7iKgLwEtqoVnBebH/K3S2vxH7r+mToWI+gFIAa4UQayzsbwgRnQFppH8EpJFYQm9bT1Dsug3SR/9LRLQZwD/UwreC9ZAE4duIqBrAszGh0W/OhjRLs1IIccDqQTbawCnzIM2uvCO0o9I8CmAZgNOJiJTKYwyr70XgkBQNZzEkE55CSAqVbP9it+3k9+RfOtvfgDRbcRKAdUKII0R0AMCFRHQbgL8KIQ7ZLNNP5HYwMvvSshW6GdJ7/mWDd8y8cKKzACxF70CCF23j9Jqkg6T3kkiykRoJ6Z7/AsBGIloshFjnQR0ZhmEiT59SDohoBoB/QzJD0aOfznotgU4eZVU6OMqOdVU659Fb7xlCiJeJ6C4At0Ayo+ggovWQBLk/CSEqFbtXxP4/RURPGZx2oIWiR8X+60YusQIRlUAKIWgUISR+n4QQDUR0HYA/xv6WE9F2SHb0fxFCvKPYd0dMWPsVgCcAdBPRh5B8Lh4WGlFLPMJW29htAxfIz2ul1kYhxAkiqodkclUMacRYidX3QhfSTgi4QgixwsrxGucjAL+FNEugJwzabbuK2P9qE/t65XtyFaTBgP8H4P8R0V4ArwF4XOj4NtmFpKRjk1WrtwkhzEbiZYW40GAfOfdAU6ys0QB+CukaHrFX016IaCakwYgcADcJIf7p9FwqbF+TFjEFeD+Ah4hoIyT/rYeJaLaGcswwDJN29BnlICYw/A3SR/4Psb89AJqEEIKI7gDwPegIEzY+ClZGr7xE0zRMCPENIloOyXziXEgzGicD+DYRfVYheGXG/j8H4IhBOdts1Mnttf8aklD8GoD/g+Ske0II0U1E50Py6Ui4T0KIJ4joJUjXez6AsyAlUfoaEf1GCPFtxb6/I6KnIY30ngfJQfibAG4lopuEEPfCP6y2je02CKBeSft4JCxdpbGuEvqzWWZ8FlJSqwOQFOS3ARwVQnTGTN/aYb/tMiFd/19M9osrl0KIV4hoPCRH949CeiavAnAVEf1NCPFZm3XQQj6vktUwN9ORByn6E1GhziznSNW+Z0MSvAdDiqqk3Lci9v8rRPRRAG8IIX6oPmHM7PJ5SDOMtwsh7jGppx2cXJMhQog1sYGGmZD8TpJCFzMMw6QbfUY5gDS6NhnAGiHE1zS2j9VY5wR5eny0zvZynfV6yCH0tGxkgd4R6SSEENvRO2qZB+DrkEZUl6NX8JJHfv8ghPi3zbqpkWORj3d5nk9Ccri9WCRHFNG9T0KIo5Ccfh+MKYMXAHgKkgnRI0KILYp990NyxL2HiLIAXA4pnOXviOivQogTLq9Bjd22cdQGDpCfV80MtLEZjBJIZlu+mF8JIbxUcgCp7QDga0KI/6q2OW27A5B8km4SUvx7S8T2fTz2ByJaAMm/6bLYM+kqCo4QYpHD404QURWk/mgOes0HEavnSEizIFUaz5/cl2oxJvZ3Qr2BiIZDckAeCmCpEOInTuquh8trMkLOCzIIrBwwDNMH6EsOyf1j/5PMIIioP3ptit0iO9wujjl7qtGMG29ALaTIIGNiQmyc2CioetRQEyFEmxDiTkhZewcTkeyY+1Ls/yU266XFGkhCwVwimufiPP0BNOp8wC+zcgIh8T9IUUcAfUdz2UH0MUjhOHMATLRZXyusgiTsLyaiERb2d9IGsiJpR+lfC8lJ+uSYjb4a2RH9jRQyqZDfda3EWU7bzpP3JGbi9mhscYZik5N75xb53fiMxrZLY//jypUQ4hEhBGn9QQptCgDfi627RHmyWB/7PCTF4WH0OoZ7ja1rMoOkLMlzIM0a7XVXNYZhmNSgLykHuyA5op6jFIJiI+p/gBRm0zVCiF0AXoYkoPyKiOJtTERfgk1nZCFEBySb1zJII//yubIB3AWNEV8iuiQ2QqlePwfAEEgjwMdjq/8OyWToapISg2Wrjskhok/F/DWs1PUuSCYbfyKihFkNIiojC0nQIDm0lhJRgtkFEd0KybQh6bpidVTXvT+AU2KLVbF1ZxPRR5T3JbZ+NIApkIQAyw7DVok5XP4FkvPvI0SU8LwR0XBFpBvAZhvEkGcBJtmoVzOAhyD1BfcqFVoimggpNC0gzbKkCrJD9FdIYftCRAuhH2HHrO3uhKRE3UVESVGiYs/2EpKSg4GIyklKOleg2i8XvfdPadpi+955wFJICutXlf1FrH/8QWzbMreFxNpgJSQF/W8ArvNR0bR9TbH7NlOj3iMgzfj0gxS4wMjskmEYJm1IG7MiInrHYPNdQoiniOhPAK4DsIGIXoH0sV8IyZ74EUihJr3ga5BmEG4AcB4RyUnQToGkiHzV5vl+CmnU7e6YsFgNKcpMAaQESmqb7UUAbiaig5DiejdAcjw9A5IQ+CMhRCcgjZoT0Sdj5/9V7LiNsWNGQTIfKIVkqqEVxUnNHZBG2i4BsJOIXkdvErS5kMx8zMKZ/hLAYwCeJCmT7AFIiaMmQ1I+1KOOowE8A6CeiNZAap9SSPe2GMA/FU7Js2LnOEpEawEcg2QucCakaEB3+xhV5ubYNXwEQGWsbZog2WvPhRQZRY6IYrcNAMn5/P8A3ElE56HXHOI7JpFlvgdgAaTZsz1EtBq9SdDyIMWgf9bg+KixDNK7vATAotjzPALS838ngG9pHPMOJJ+bz5CUMXkPpMGEh4QQbwkhdhLR5yHdk3/H7NC3QlKERwOYCmnW6XFI/UoZpBHye2PP5AFIbXoapOftPUgO5zJO751jhBDbSXLO/x2A14noRUgzGOdDUmK/ETNNdMsvID1f3QC6IA0caNXnauVyTFm+T7FKjn71LBF1xn4/KKQQ0W6u6TJI92kLpIGSTkh93zxITvWbISX2YxiG6RuICCRbcPOH3qRiRn+3xPbNhOSouBnSB7wa0sd+NPQTV1VCJ8kaehNqPaKxbSwkQbgOkr32OwAuNjrG5DovhCRQtEESaJ+CJFQm1RtSkqLfxvaviR1TCSkM4yKd8/cH8GNIoT6bYnXeFTvmaiiSY1moawaAL0HKAFwfa+s9sbZWJiSrgE6CN0ghKN+GpKQch2SrfJZW+0GyYf4BpBmb/ZAcTqtj5X8RQJZi3/GQcje8AWm0th2S4PYCgEs06rEKHiVBi23LheQk+76inbdD8gOZ5rQNFMdcCclUqAW9z39FbNvV0En0BUlw/T9I70ZbrMzXAVyhc48r4eC98OH916wHpFmgf0N6/pshKV3XKfqMSo1j5seegxOQFAOt/mACJAV/d6ydTgDYAmn25ULEkghCGm3+JiQzl72Q3oGjkN7JG6GRVMvo3vnchhdBcnxvjP29DsnXxc455Gc+KQma4l0x/DN4joz+kp5lu9cUu29/ij37dZCUg1pI7/6NUCVW5D/+4z/+S/c/+UPGMAzDMAzDMEwfpy/5HDAMwzAMwzAMYwArBwzDMAzDMAzDAGDlgGEYhmEYhmGYGKwcMAzDMAzDMAwDgJUDhmEYhmEYhmFisHLAMAzDMAzDMAwAVg4YhmEYhmEYhonhKEMyEZUDGOhxXRiGYRiGsUatEKIq7Er4TUjyRp9oW4bRw3YSNCIqz8jO3NfT2e1TlRiGYRiGMaEFwJR0FmKJqDy3oGBfe0tL0EWnfdsyjBFOZg4G9nR244b7H8OICVPiKx9/8kbvasWkJFdefk/Sur72XOQO/Z7utvbqXwZYE8boXsjwPQmWW17aCQC4+yMTQq5JatNa24RdKzYWQBpRT2cBdmB7S0uSvOEnB3duxe+/9vm+0LYMo4sjsyIAWL32PvzgM2/Gl4tWl3hSIcY5eeX3oa1qSWjl/3v1D3HzTSvjy0uXLUbRsL71XOSVT9fdlk3JbaFuL8Y7jO4FALRVLUF2H3s+AemZC+tZm5SXg9sunYmikOvhBvmdTcW6pyojJkzBmFlzw64Gw/QZXDkkc+cYHfLK7wu7Cgnws2GOUjHoi+X7TZiKcpTbNqh3M6/8vqR+6bZLZ8Z/L19RGUg9zDC7VzfftDLhz+pxDMMwqYrjmQMZvz80PLJqjbaqJfGPcZhCUV++R24VtCBHUuX3Si3g9KX7J98vP96XvtSOWlh5F8Lsp+wi30/1+5Kqsx8MwzBGRDqUKY/MMKmGG4EnaMWgL9BWtSSlhNCg8PMZUCoGbVVLIv+8mb13RttZMWAYJh1xPXNgFS/sNOVRGp5N0IcFofCQ2155D/RGp70UmLRGafk5iBZRHGH2ok5aM5Xq5182H/JzpiYovL6H7L/AMEwU8XTmQE/g8dJOU2tal5HQEkC5fcLFz5FrLZtu5TY9li5brCmMpIuAIreLURvI9yWVBVU36D0DTLDwPWAYJoo4yXMwF8DaGdeelhSJxmgUxK5ts9aoltV16Y6e0KMl6PDIVLRxen+s+jf0NeFX3S6yL456HRMc3P7e03S4HpsefAsA5gkh1oVdH7+Q5Y1fvrQ2sGhFezesw/c+Mg9I87ZlGCM8NSvSE3C8Gr3WG+1kAVgfpSMdt0/08POeKIUwu/dfbTeeCmgpTFGL4tUX0VLQGIZhmOjiq89B0CYtQfoihCFsu/nAsmKQPjiJBONUMbBDmDblXkTH+c3TGxNCbYZJuo22KxWEsCOqOSVV680wDGOXwByS1ZgJ11EWZtVhIP2uqx0zIqbv4fVzoBTkrJ5b+YxGTYiyUpffPL0xgJo4J2pt6pZUu55UV2wYhmHs4GsoUz0zoCAE/3RxxPV7Oj5d2qmvENSIsh1n3bDNecwcj60SlVkDmXRzmE7la0nlujMMw9gl0JkDt0pB+4lWHHhjF5oPN6B03CCMWDgOmdmZHtXOOupwql4Rhl0u+2xEA74HzvDqnYmiYqD1O9VJZfMi9p1gGKav4LtyoCfs2BGCWuuacWD1LtRXHouvO7LhAI5sOICyiYPxn8zf4iNXXY/8on4Jx/nlgxD2aLvXH1RZQWCn5XAxa3uvBBOv77MsNPkt6NmtdyoJnn2VVFQQGIZh0p1IZ0gGgK62Tmz+87sJioGSjoNdWHn/7/CNBZPw4iN/0D2PlzH/ZdOoMGKFG32c3FyfV9fiZU4LxhgngorSX0br/ji9Z0EoBnZgIS414PtkDM9UMAwTBpFWDjpbOrD+/tcT1pWOHYhxF81AZk7ypMdffnILHv7ujTi4Y6vuOaMssBp9KGX7Y7P6y0Kf2mk6SMIuPxWxopgpE3e5UQyUZSrX5ZXfF+mZI626abUFC5xMOsCKAcMwYRFatCIr7HtxW8LytC+cjPyBRQCA4tFlqN10COXFJ2HDK/+L7/Pef5/Be/99Bvd8sA9Z2dma5w0y5Kld1HatbkJSagnofl+vWuAMqn3DDKOZKpjdiyi3XdTeUxk2xXNOlJ83hmGYvkykZw5O7KmN/y6bNCSuGABAZnYmhswdha8uewhf/PndaGquQ1FhWXz7gW2bLZURxZFtp6PDVkyDgrjeMMytGGek230KWuBMt/YLEh4Ztwa3E8MwQRPpmQMlFedP1lwvj1SPmTkXP7n4zPj6UVOmG+4v/wb61uif19dpNEsQZJvyKGTfhu8/wzAMw3hDZGcOhBCgTAIA5A8sQkaWccjSY4cPAACamuuw+Ku3IjOrV+/Rch5W/7Y6oh6FmQajOljxSWAYL0kXH5O88vt4lNZn2PzPGurnkJ9NhmGCJLIzB211LRDdAgCQXZBjuO/SZYtR+eJWNDXXAQA+rPkP9ix71XaZVmYQ9LYHHafezLlUD6/rp5x9Yfo2qTwDF+UMz+lIugm6QSg9/EwyDBMUkVQOhBDY9/L2+HJGlvkER/uJ1vjvgkFFBnsaC8hOBRxlrgA75bnB7nn9FNxSVSgMgnQXNv1KChgU6SaoRhGtNvbqnQh7NoKfH4Zh0o1IKgettU1oOngivjzyzPGmx7QcbQIA5PTLtV2el9F1tAQlr0dUjRLL6QlpLLyHRzorBjJRf760BEgjoS7dFbogufmmlVi+ojJhnV7bas2I6qFleuPnPVNHkfNLKfBTkWIYhrFC5HwO8srvQ79JyxLWZWQb+xt0NLWju70LAEBEvtXNbHRU/pBpfdCCGlkNKzkbk7p4/WxGbRZBbTJk1X6b7by9YemyxQnCrZGgq+cXFjZaioif52cYhgmTyM0c9HR14MSOdxPW1e+pxaCZI3SPObB6Z/x3v1H9bZfpJHeA2XFhxfvXqwvD+E3QfjdmpILA1ZdmKKxep5vnJ+z2dFO+3vPaV54PhmGiQ+gzB0IINB48gf2rd2Ljg2/hrdtmYvujtyTsk1dWYHiO1rrmhOXOlg6vqwkg+aPlZibBC6yWzzBGePWchDFj5fXovlZ+Eb+VjFRQYtwStdmkKGGkFLBiwDBMGIQ+c3DorT04/N4+3e3jLpyOfiONZwMKhxSjtVZSEGo3H0b93mOYdtUpyMrTzpAcJGEK6MrwkqwoMOmGWYQhedkLG24/nV77ggA4cuFI4NKZnp7TT7t/J2gplX3h3jIMk36ErhzUbj6suy1/YCGGfeTvAIw/oOXnTkLL0Ua0HJGckjtbOnDorb0oP2ei7jGiR6DxwHFkZGUib0ABMrIykZFpfSJFGZ0oLMHbKKyq37MWfYUgo0+ZwUpeL2qh0I4QZmXfqAmeRmiZc0XNxOs2jxUDGasO5kGjVxerdWSlgmGYMAndrKhgUD/N9QNnfwJzv/d+fNmoU83IzMDky+ejbNLg+LojGw5g+98/QGdzO4QQqFlXhb3Pb0HLkUYAwJbH3sOOZ9Zj21Nrsf6+1/HBvavRXN1gWl+1w1xUPr5qeBrfP/RC1vpNVJ+1sDETpGTzDCtmGsr7qnWc1wKoX0JglPKPBCW0sxkOwzCMN4Q+c1Bx/mTs/s+HaDpcn7C+cd+HoIxE3cVoaj8jMwOjFk3Eid216Onqkc6x/zh2/WsjRI+Ihzo9tqUaGZkZ6OnuSThedAtsfWINhi8Yg+GnjjGsc5SFtKg4QQdBECPpepGn0r1tUwWvhUGj+xplwTPqz6M6DGi6YqYIWZmRSuf2YRgmNQh95iC7MBeTL5+HsR+blrBedB/U7ST1nBCzC3Iw8yuno2zSYBQVlqGosAzUlI2MlhwUFZbF91MqBrnFeQnnOPTOXmx57D10t3ehvvIY2htaE7ZHYSTOjCjPaHhJ1My5GHPCmnXpi0S1H4iS+Y9VrAjsbkzdGIZhokToMwcyZZOHYP/qnfFIQx0NbRBCGB6jNZOQlZuNsYuno7zrdLzw0L3Gx5cVYPpVC9DR1I5ND74JubiWo0344L7X4vsNmDIUFedPBmVkRCpEqRZRqw+T/li1b/dSKWDBK3Ww478RZQHbCz8UnjVgGCYVCH3mQMnoj0xKWF5796toPbrf9DitDnfiKacnrSsqLMP0q07BkHmjUH72BEz74ikAgJyiXMy9+WwU6+RIOLa1Gnuf26K5zYnAI4+e8igqk04YPctRVqhTnVRoTyv+AFr9eNRmGaz6rrCQzzBMKhOZmQMAKB03CKPPnYR9L2+Pr1t7x3k4+advIadfmcGRyWx+/RUAQFNzXXxdUWEZutq6MOrMCUn7ExEmfmYOjm48mFC+TN2OIxgw9RhKxgxw5Own26lrHROmDbufIRqZvgfn3mD0kEN7ymahVqNGRRW9mQQjc1iz8zEMw0SBSM0cAMDAGcPRf+LghHXVr15ta9Tp5ptWorO9DQASfA0AYPFHfmh4nkEzR2D21xZi3EUzMHvJQvQfPyi+beeKDQmhV63Y9CpnB8xGVpX7+T2joPbbiNoIXRTgNunlN09vxG+e3pi0Xv2cGr0TrBgw6YbWd8nJDAgrBgzDRAlfZg7cxNgmIoy7cDpqhu3H/tU7AQC1Hx7C4NkjLdt8Ll22GCfN/CLeePqxpG3b330DN//AuH5ZedlxpWDM4mk4ce9qiG7JIaHyha1oqKpLcqCW0YuLb1XYV+7n14wCC73mcBslohWnXksx0IKVAkbG6L3qywIyJ0xjGCZK+Dpz4GYEfNDM4fGkZOqwo3ooPzynXvJZfO4nv03aR55RkOtnRkZmBmZ/dWHCurptNVh3zypTh2k75fhxLOMMPxSDdFI2tN5rtQIgzyCwYsDIaGUQ7gs4vU7u+xmGCQtfZg7UNvlORsAzsjJRNLIUDfvq0FbXgiMbDmDwLPPZA3kEhohwxqevxHt7HsHu/2xCTx0BAOae//GE/a3ULTMnC3NvWoR1y1bF1/V09aCtrgX5AwptXZcWWj4MqSRUWfn4BT0qFrWRuCjVxQ3qZ5RzPjB28CuZXJgor0npU2H3eCWsGDAMEyaeKQd+CAkjF47DtoMn0NPVg/2rdqJoeAkKBvWzZF4k1+Ubt72Au3M+hgvPuB0lg4bgiRVLMO2Ms23XPSMzA1OunI+tj6+JrxM9yTMHVp2VtcpLZyErSGFdbvvlK+yX2VeSNTlFa4bALlFT3JhgSSfFQIkXoU6V6L1beeX3oVN8COAiz8piGIZR4plZ0fIVlUnr3Aq7BYP6YdjJowFIgviWx96PbzMSLpQd9NJli0FEmDDvFAwur9D1CTCj5WhTgmIAAPkD9WcNvBb0vXJS1vt4uRHWvArt95unN3o+YubmY52uQoySvnCNTLRIZ8XQaqhT5f5apPNAEcMw0ccz5cCsM3Qq9A2eW56wXL+31nKZbsuWBfIbb/gv2j4QCZGPJn56NojI8Hi5g9fq6IOeNjab6g5TSLyh/Px4JJyRC0d6dt7rL6kAwAqCEWEIaqkmHMrvjl1zEa/hvCjuCPo+ys+5H897e/UvPT8nwzCMjO+hTN2OgGRmZyK3ND++vHNFYjhFZQdstxM2c5iUt/3u6k/hSOXueM6EHzzxEorLyywlM7MTqcgKURYOnH4Ef1/1AgDgwOsHNKPi2IWdYRmv0AtLGbSSEOX33glBKohhKnVeXKey/mySxzBMELhWDuwmAnPC9KsWJCzXba9BT1d3fFnZWcpKgtq0yKmg+Lvfno8Nr/8vIZlaQXGJ7WtRlu9WcE0VQcHOFPttl870VZhP9xkAhkk1ghBy9ZKUBSVge6WY+DkLwTAMo8YTh2SzvAZuR88pg5CRmREPabpn5WYAQP/xgzD249M1zXuMOlE7QmhGdiZyivPQ0dAbAvWXl12Amx54ClNOXWhwZCJuHbaVbZgKI+L8EdMnle5jXyYqzumpMhgQNdRCeRgR07yA+1KGYYLG9cyBUsDx8yM28dI5SeuO7zqKtXe/iq62Tktlq0fstTpv9XmICJMunYt+I0oT1i+77rPo6UnMv2BkWuSFIBiEqYyZmZQZRqNyYUzvt1UtseV7oK671x9mFvRSg6goBmpYoXRGVBUDntFkGCaK+O5zIGM1xKceRcNKMO2Lp2DYKRXI61+QsG39/a/jP7//jeWkZAASbDi16qkktzgPky6bi7k3npWw/r3//iNp36gKf1ZNfPxQ9sJ25AR6nZOtYDfiCJOe8DPABEHYfSPDMIwaT5QDu6NZToXO/AGFGHHaWEy76hSUnzMxvr6osAwr/3AXjm8/Yuk8Zp2x3uh5RlYm5px1YXy5pnJ3/HdLQz22vv062pqbI6sgyGgJPMp1RlGWvCg7aGVBOeMS9ofYz7ZlvCOqSkHU+5aoEOZ7HnYfwzAM4xbPZw6MPl5ejUoTEQbPGonpX0p0VJ49/lOOzyljVq+9B96NOydvO/4cTtRU4zdf+AS+edoULLvus7j9ooW489fnhfoRt2o+YzRC7qXwqixHWbeglYSoCHysGHiP1rOULkKaOpiBHqw4SITta+CEdHlWGYZJDzxTDsIQePJKC5CVnx1fLuxfZrC3M9Qf3Pb61ni+gwvP+T9879y52PNBb3K2+iPV2PXoZvzvgXvQ1d7peX3M0DOXigpaCklQdY1qmzDmqIV/LQHQb3+RMFA6r/d1pTIKuSbM4JwqDMOkA66VA3XIUL195P28tmmffbpk5tPUXIdXXr4He/+3BQff3G3of+BGOJ0w6fT473u/9nnNfZqa6/DXO27D+vteR9uJFsvn7mukg/DG+I/8fqpDFts5NlXp6wqBTDoI3ezLxDBMquDJzIG68zWLdmPng2c2WrRlw0sAJL+Dg2/uwbGt1Wjc3IhBJ2ZYLsOoburlxuIDmseN+8JUfP/pF5DfrzhhfeX/tjqqh1NSLR52ULHOoyIgMM5Ilec5TIKKHMe4R09J4H6KYZgo4JlZkVlYUHVHaDV6kdkI/4RPzUZTc11CkrKm5jr875Fl+MqXnzI8v53IPTIDJg/F6E9PwOd/eifOuuJLKJ3bHxOuno7s/Bz848VvY9SlozHmY1N763K4HqLHehQlK1j58KeScBCk4MdCZurh5p6p/Vz6CjzjEC30nmE9M8u++Mwy0YaIBBHdHmL5i2J1WBRWHfoSrpUDPaHfaB+jfc1Qd5rZBTmYpJEDAQC+sWASXvrLHy2fyyr5Awpx+qeuQE2/DzB0/mhk5vTmksvIykRxeaLvw9qlr2L/qp3oagvOB4GFg0R4Op9Jd9zkJ7FKGIKrF+UFVWe3iqwSVhBSD4UAK//1ENFxInqRiM4Lu34MYxVPZg7UgpcdwdRK9mSzTrPfyP6YvWQhJn56NqZ+7qSEbc/8v9tx7VWPGx6vVScgMaSpso5m9c0uyEHBoKKEdTUf7MfGB95EZ3O74bFWsTIjEoSwEHXyyu9jpcBjlKZ+LMBEBz+dloO8126frzDedy/aR+v4MKO7Ma74E4AvAPgSgKUApgP4HxF9JNRaMYxFfEuC5reCoCYrNxvF5WUoGNwPEz41K2Fbdk5u0v5KJ0cj0yW1Ha9VJWHK507CqDPHJ6zr6erBtifXGl6HFawKAX09wgl/SLVx2y6sbPUt9IRWP94vrzILB/mM6kXOsuuArOdwbxapi4kk7wghHhNC/FkIcTuAj0CSt24Nt1oMYw1fMyRbEfqV+5phtZPtbOwdnR8zax5y8vMtn+/6Sypw800rLflEGNWZiDBkXjnm3XI2pn6+dzajvaEN7Q1tptcgozd74YS+NovAQqw2XrQLR17pGwQpiPpdlt/n9/K9Uv9mUhshxGYAtQDiI4ZEtJCIHieivUTURkS1RPQMEU1SHx8zUXqMiM4ioneJqJWI9hHRjRr7ZhHRT4noQGy/tUS0mIgeIaJKjf1PI6KVMfOnNiJaT0RXmV0TEZUR0a+J6AMiqleUlRTGMVa2IKLBsd/HiaiRiJ4iov4a+y9SXOcBIvoFgGz1fox/+KocAOHYvrcdl8KHNjXX4UTW3uTtFjtdL0beiQgFg/olrDu6QTvikV4d3KBUCMKeRZDrEpSS4kQY4Kl76/Q1ZbOvkU6Kgd/l+CnEq2cUWGEIjMlENFf1N8zJiYioFEB/AMcUqy8DMBzAnwHcCOB+AAsBvEFEgzVOMxPA3wG8BOCbAPYBWEZE56r2uw/AjwBsAPAtAC8DeBLAXI16XQJgNYABAO6InbcGwCNE9G2TyxoL4MrY8d8D8H0ALQAeJaIv6xzzLICi2L4PAfg0gGWqOp0G4HlIbfMLAHcDuATAr03qw3hIlvku7lGOxLvFSsdYXF6G6jVVAID9r+3Cb3/1EWQX5Lgq12wWxOga1TkX+pUnKcqWUSZFsrKflfoFTVTqoYUc3UYrtj6TekRN0YuSsm5Eqo/iA73vrlbmbK/e61RwdE4Hulf9Fd17XwumrH375Z9/1dj8EwC3WzhNERENhDQAOwbAzwBkAnhCsc93hRDNyoOI6FEAmwBcA+CXqnNOB3CKEOL92L5/AlAF4HpICgCIaDqA6wA8LYS4THHelwH8D5JCIa/LB/BAbP3FoldQuZeI/g7gdiL6oxDihM41bgJQIYToVpzzbkjKy3cgCf9q3hFC3KjYXwC4gYi+LoRoiK3+HYBOAKcKIQ7E9lsOYKNOPRgf8H3mwCvsjFIWjy5D8ejeiEHbnlyD7s5ugyOMy5U/4sqPudaH3Wod1dGMzPBCiFAqN2GN+Jpdhxej9jfftDJyAmG6EmXh1k/cOMvKs5F9te2AaChsqRQBiQmNzwGYp/pbbvHYuwAchTQK/w6A0yGN5v9e3kGpGBBRERENAFAHYDuAxMgqEu/KikHs+PbYuccp9vm4onwo9n0ewBbV+c4DMBDAwwAGENFA+Q/SCH9+rN6aCCHaZcWAiHKIqAzSDMRLACYSUbHGYb9XLa+GpDSNjp1nMIBTADwhKwaxshphve0ZDwhEOfBauLXCuAunIytfMlFrr2/Dnmc/dFyuXdT1JCJkZGfGlzf/5V3DDM5eoRZCtJScKOClKc/yFZXxc9opm6PvMFaxk13dTpSzqGD1HUj10Wyv3vdUbwdGl21CiHWqv8MWj/0dJOH7IgD/D0AugHzF6DyIaBgR/ZmI6gA0QvJJOApgBoBSjXNWaqw7DkA52lgR+79dY98dquXJsf/PxMpV/smj/lrmTXL9iYhuIaJtANogmUwdhWSeBIvXcDz2X76GsbH/2zSODTajbB8nZWYOAHtCbWZuFqZ+7iTk9MsDANTvPYamw/WOyrViCqAWxNWCQNmkIfHfbXUt2P3vTb4qCFFTAIzQi9Lh9bmjil9CY6oIo06xo9B5rfRZfa7MZhtTFbfvVSq8l0bwIAJjwlYhxEtCiP8KIb4Dadbg+0T0cQAgogxIdvUXQRrl/zSACyApFJuhLZvpmT+Qzm8z5DK+FitX6+95g+O/BanuawBcBeBjsWPkWQsn1yD/1xKO7Fwb4xLHPgdXXn4PxsyaG+oHz8yOPqdfHkrHDsSRmAPwtqfWYt7NZ4NI/xnTmqFQRi7SK0/vGJnysyeg9sND8eUTe2qx9u5XkT+gEJSZga6WDlAGYej80SgcXpzkxKysV6oIGVoh/vTwSliwkxHXqlDppyDjpy+In89JmD4sdgQz9Sh/qgulfuOX0Ks8r1dRfezsm4qOyExa8TsAXwXwGyJaCWl2YAaALwkhHlHuGDPPqXVYjhyBZRKAt1XbJqqWd8b+nxBCvOSgrCsBrBZCJEQn0nCQtsOe2P8pGtsma6xjfMLxzMHjTyZF0AoFs9HRUYsm9C4IoL39atPRRiOhR8tuX6sO6nUZWZmYf+s5qDg/8ZlvPdaMliON6GhqR3tDG/a9sh3bnlyLlqNNmvVKF8VADs0a1ghcVEb+UuV+MowSq7H31c79bjMIhx2tJyqmh1defk/YVWBsEPMP+B0kAfcy9I6gJ4xUxkKIOoqIFOPZ2P9bVOe9AMBU1b7PQ/Jx+CERFam2gYgGkdFIqnQN6voPguRM7QghRA2A9wBcQUQjFeftB8nxmgmISJsVeWEWQRmE/AGF8eWjH7wQ/+22ozfLPaClSAycNgxlk3TN+ABIydK2PPae43qFjVoY0PuY2/UPcFoXrWglfpQRFcHBb4xmDfTawOm7rHVcFEZr+8J9toLyfuu9Z2YCfRACv9H5nc40Bvkccrb7tOABSHb5P4DkE7ANwJ1EdDsRXU9ED0EyydljcA5DhBCbIPkLXEZEzxLR14no1wD+Bim6kFDs2wTgy5BmFLYS0c+I6Foi+j4RPQ3gACRnYT1WADgzlqvhOiL6MaTwqfsNjrHCNwHkAHibiH5ARN+C5Hh93PgwxktcKQfLV1T6kjJeiZUkZGadJmX0Krc17/wVPZ3tCduD+NAr6zh28XTMu+VsTLvqFOQPLEJe/wJkF+SgaFhJwjGH3knO0ZAK2P3YB/GRdXqP5bopFT31h1pd/3QXHJ3MdtgNKGDHhC4MZUGZqCpd8MMvI2ylQF2eE6Kk9MvvRVRm7hnrCCFaIEXrmQ4pqtDHAbwB4CYAvwUwCsA5cC9cfxVSfoDZAO6MnfNSSA7Jrao6/QvAqQDeBfAVSDkSvg7Jmfgb0PcRAIBfAfgpgNMA3APgckjOyK6mtYQQbwD4KIDDkHw1boWkiHzHzXkZe7hSDoKyHXWrIIxcOD5huW7rmxZr5xzZBEivXkSE/LJCTPvCyZh+9QLMuv4MTL58HirO6zWrO/T23nhCNyD1HUy16n/9JRWa+/lxrW4+8maRnoJUEMKepbByb7TqZkepMNs3CsJ5OikGWkRNeA/jedcr0+t2iYrywbhDCLFKCEFCiAd1tt8e2/5PIcRuIcTFQogyIUQ/IcR5Qoj1QohFQohFquNIbdsfW3+1EKJCta5TCPFDIcQIIUSeEOIkIcQLkPwQkhQPIcRaIcRnhBBDhBA5sePOE0Lcq4yuFKvD7YrlLiHEj4UQFbFypgghfi+EeCS2b6WqniSE6NJpr1Wq9a8IIU6OnXeEEOIHQogXtfZl/METsyK/OjarNvZm+xWPLkNOUW58ufa9n3mWol4vXKgVPwQtBk4fjqy8Xj/xHX//wHGOBi/xIuSn+h5df0lF0rqwnK61ngG950J5j5WKjNKMyi+hKgpChNG90bpuv5TadBfOg8TIZMbqM+32fgSZGM1sXdCoky+q4fwYjFViyc3U6xZDmrF4OfgaMamIa+XA7KNxQ/n5kZiWzenXqxzU7+3NYO51IiMrwq1ZmTOuPR35AyX/oI6mdmx97D30dPcklREkXgu8Wu0X9nXZGf03ewZSfZbHDepnxUuBpi+3a1A4iSoWBQHba8KaNQj7W8mkPEuI6FUi+l7Ml+E+SGY5+8CJxBiLOA5lapUHcYmr470SBvpPGoKmw1J2bjnngN0Qd0ZmQlrb9GYPzISlzOxMTPz0bGxY/oZUzxOtWLdsFe44egYKhxZbFrb8CDfp9YcxLGHPzXUoHS21CGp0z2iUPl1HGNP1usLEbphRP0KD2jmf2fvntJwwhXI5zC4rBowHvA/gQkg+A6WQwqI+DuCHQghnyZ6YPofv0YrCHlE68NourLnrFexftTO+LrsoJ/7biYJgZZuVKEZGZBfkYOj88oR1Va/uSLtRaaO8EWHNJBjh1pbeLXqzHOr2SrfnxCtY+ErEaf4BP03ojM7pRjHQI+yZbT+TQDJ9DyHEa0KIc4QQg4QQ2UKIYTGb/wNh141JHXyfOVDiJAmRU8FL9Ai0HG1E9dqqpG2lYwcmLHttLmNFKLMyqj9y4Xgc33kE7fVtAIDm6gZ88NJzeG2LtWAAqTDKajQTE2Wi5AirzuAdZoIyJjzsCvpRVpSiWje/3ntWEBiGiRKRdkiWsTsC2t3ehQ8ffhtbH1+juT2vrFBzvVd46TimTpr2x1uuQUdjmyfnjgJa7eS27fx0CA47CZMapRkRKwTW8GOkWOmcnoozNlF5pq1EoXITkpRhGIYxx5OZAzudtZPZA7tUvrgV7Q3JAnT+wCKMv2iGpXO4qac8cuuFsNZvZH/Mu3kR1i5dFV+38cG3QBmEivMmY8BUN8kUo0HUhFojUzP1KH1YWAnvm6potb0ffYaXfVHUZmzMri1qgrLf3xAvrjcqChTDMIzfRDpDsozdD27LkcaE5WEnjZaSjn3hZOSWJkX50sTth8DL0UPKyMCky+YiIysDTc11ACSzqb3Pb0VnS0dSmak0cplKdZVxovj5NaIc1oxB0PfNr2SLXgrJUVEM7MJCL8MwDKMkEOUg6I+PbKMPAPNuORsjzhgHIjI4wj5aQoWfTqH9RpRixjWnYfipYxLWb1j+RjzMqVmirjBJFd8Cs/vlpr5eXmsYSoHyeTYr281zb+aMGiRhO6taRauOZvWOmomcn/SV62QYhvGCUGYOAv3YCvNdnGKUsEaJVwpCdkEOhi8Yg1nXn5Gwvvr9fZ6c3y/CmtFwIhAYCb1m9TdSBr2caQhztkXtcK8VvteL+nmhIMj7etHfWD2HUZJAJ4kEjWY8nCYkTFVlxy2sIDAMw1gjMOXAToIpt+QW58V/b/jjG1BkAPcEIwEwiNH77IIczPjyqfHlGo2ITFFC2S5RMSOyI+zJ2Mkv4RajBGth+zpoKb9aswpu28GLXBRe9jNm5zJKZmUm5Budz8skWX6EAg2DVFBwvKIvXSvDMNEgJXwO7DL2wunx312tndi1YqOnCoJV4cxPRSG3JB/ZhVK+hu6ObrSdaPG8DK+JWkSdVDEZkQlbMQCSn2UzhdgLBUFLkPUqmZWZkGx1UMOJ8K+1n95sgJezH6muGLghVa89lfophmFSn8DyHOhNs/vRWRcOLcb5X7wBL/zl9wCA+spj2PrX9/G7F3ehsKTUUwHL7BrslmU1VrnoEehs7nVG7unotlUOk3pETTHQ2hZEHY1mBaz2J3r7aflUmCVKDEpwS+cZA2X91HX1un29zEQcRLtG9Z4xDJO+hDJzEERn9/nbf4PScb3JzlqONuG7n56uK7zYHUVWXoOXHy+r522uaUhYpsy0nAQKBLvmInpE0XwqCnjlg+BVv2GmzGv1EX5lAw6CVBp11hK2tdrc7X3w+n6mUhszDMOYEYrPQRAd6bJ7LsT4i2di4qdmx9ed2F2L+spjnpXhp4Jg9uHKzM5MWN78l3fR2dzuWR28JNUEZa/uZapdt1eor1vP3EjLmdktQQtpURcKo14/LYL0T/MSL8LtOnUyZxiG8RJflAMnEUX8onh0GUacNja+vPOfGzSFkLaqJbj+kgrb5w9rRDF/YBGGzi9PWLfhj2/ig3tfw7Yn12L9H17HlsffR3N1g84ZgiNscxirWHEOZRLREvKV99vMFCmVswoDbPLhNVbaM6w2dxNdyslx3OcwDBMWnikHVhzowurUh51SAQAoKixDUWEZ7vj+GcYHpAgjF45H4dDihHXdHV1oOlyPrtZOtNQ0YusTa9DV1hlSDcPH6jPn9WxB1Jyv/ULvOs2uXSujsJX28rMPcaKgsADnnrDb0G52Zq/QmiVQDjax4skwTFh4OnMQhoJg9YM+fEFFPLvwoef2J0T3kTtoo2grURrZVNZlyhXzMe6iGRg0cwQydPwO1t//elBV8xWnU+5B2hX3FaXADDvvi902c3s/9Z4ht/ctFYS5sAVxJ0S1Xc2c1O1GsIrqdTIM0/fwPVqRVjQfv6JQGDH0pNE4/N4+NDXXoaiwDLv+tRHTr1pgWld10qcooBZi+o8fhP7jB2H0uZPQWteM1qNNaK9vxcE398T3ET0ClOFtluggMVI83XxUjY41muo3O66vf+itZFB2I4yH0Yeo0RPwoi6A8/PJMAzDGOHZzIFZdAmzY/QwGym2KmBkZGVi+pd6E4dlteehq70zqR56I4qpMhqcX1aIsklDMOzkivi6zJystFIM3GL1uXOCXcEraopnWITRDlEX4vsaYSgsTjNM6x1j5kxt9TiGYZgw8dSsyMloXpA24bnFeSgaURo3L/rsxUt9KytshOidKejpTt0cCHYTSOkhO5zLz5sbm16j46yeM5WdcGXc1F8rmZqT83lhYuQFUZjJ8BO/ntd0bS8lRnk5GIZhokggoUyD6hStfLxKxw6I/3796cd090v1jpyIkJElhTvNLsgNuTbOcHIPvJhlAoyVBy+fjVSZkdJCGW3ILVbOobePF8qaXbwya2PCIehwoUYzBvz8MAwTNXzxOQhrFM2KoDVw+nAceH03mprr8PyjSzHzK2ck5QxIh866s7kd3R1dAKQZk1Qj1ZWzvoIy6ZsbRcfqsXrlGPU5fvdHXtrwR3UGwi8l1omJnxvFLArtmg7fF4Zh0pvAkqA57ZS9TjSWlZeNQTOGAwC6O7pRu/GgZlmpTld7l+bvqMGmCumBXeHRLzOVIGZ7zMr3wlzNz74olfo5r7KX293XLXptnEptzzBM3yUw5SBKjDhjHAAp70HW0RIIIVIiyogtRO/PtuPNnp3WS4Eur/w+LF9RGdnMoGahChnnOFEmrAYGUA8oeClgWsHJ+VJdaAzi3XVrgpPqbcwwDBMUvuY5iCpZednoP34QmprrcLRqLwYcm5qwPWpCqhMyc3pNpQqHFBvsaY+gbORT4UOufkZS3cE4aOw8S1b2daNg2j027BkKp/jxXvl5zcoAAl6eLwxSoU9jGIYBfIpWBHibRl45YuTVh2joyaMBApqa6/DWP55Ac02DpbrYIczR8M6W3qzI7fWtgZcfZfyaqfBa2PWCdIiKZAWvM9dawSxsZRB1sIPfwmkYioeTMoPKQMzOxgzDpCq+mRVpdYxRGlUrHFKMgdOHx5ePba7WTdaWiuSW9Doh93T1hFgTbaL0LOjhZz6EoAR2Ozk6UuGe6OH1u2p3FsFN2wXRz6jL8Pr58+sa5BDEMl5HiVL7efgh0Kfyd4RhmL6J7z4HTjpGs0QxXgkxg6YNQ1FhGQCgZVdLvAz1B8KL8pTnsCJ4uP14124+HP/d7aFDclAj0V7M2uhhR2n18sMut10UR/I5Frs2eu2RSqaHymdYfv6imPndDl6+l1oKgdPzc5IzhmHSgUAckr0UtM1Gdux88AqGFscTogHAuXO+lXS8l0JTkAJFflmBb+dO5dj8egSlIASJ1XchXWL2uxHwzPJamJmiKQcVomROolUP+f1NhfdY+QzL7R6VttVD/YykihLJMAwjE1i0IqsKghcdv1WhiIgw+txJACTfg3u/9nl0tLW5Lt8L3H64swsTE591tna4Op9MEAKFFx/TKAoQSqHMjrkPYx2r910vU7bd5yaMBGxW0Zox8LscvwhjlsOL7NvKwSUvlYbcod9zVTeGYRgjQgll6ufHRBa6rH5MBs0cgabmurh50dr//Tu+zSj5TtTJzEnMb/fhQ2+jo6k9pNoEi5Xnyy//EjMhLEiFoK8qH1bND6Mai94v5ViZsC5VTIrk/nz5isqwq+IZaqXB7rEMwzB+E6hyEOR0ux3BaMi8UWhqrkNTcx3+/P9u8KwOWtf6szvP8Oz8RmT3S5w56O7oRv2e2kDKVhNVJcvMBMSOWY58TX1VIE9V3ArJUciRoMZqH5tKSkIYBNVP2Y2cFpX+k2GY9CWSSdCCHrnLH1AU/918uAH1lcd097XbMavtkG+7dGZ8vZ9kZGZg8mfnJqyrWrUDnc3uZg/sCBNm0+pBYFcA8kJYUisIUXZETiW8CkGrfPf0lDk772eUQh478ccK8rl0WlYYszlR8x9hpYBhmKAIXTlQO5yF0QGWTRqcsLzznxtQ++Eh3z4MQX1sioaXYvLl8+LLolug8eAJV+dMxbCYbvIP2FWGjM4ZxVmFKN0nI7Tq6XcmYjvvf6q0o0xYz2IU3wEr+BEdKUqKB8MwjJLQlQOtj0XQYRUzsjIx89rTkKeI8HNk/YFAyraCm5G9I+v2JyyXjB4Q/916rBn7Xt6OXf/aiD0rN5smS7M6+h22oKQs364worw+5bFuP+KpKhSlE07voVNBLuj3wKh+Sgd42SeLn0ljfvP0Rt/OrexLrTxfYfepDMP0LUJXDpRoZUIOqlPM6ZeHIbNHxZdbaps090ulkZ624y2o23Ekvjz+EzORmdvrqLztyTU4uvEgTuypxYk9R7HjmQ/Q3eFdToRURa0gpLo5kN6MXKoIHG6dNr0coY1SyFI39XAzQ9ZXuO3Smb4pCHrRylLlnWQYJr3JMt8leNQZR/PK7wvkI5zgxCuAzpYOZBfkaO4bVJ3c0FzdkLDcUtOI4tFlyMjMQMvRJnR3dMe39XT2oL2+DbWbDmHIvHLdc0ZxtFGpUHpxT9TXGMVrZrQJI2eDmxkJp8Kg0zL1nuUgnnFZAUml90mpINx26ZKEPsYvQd5KlK326npfymYYhgEiNnOgRBmHPChKxw5MWBY9IrCy/aDfyNKE5UPv7MW6Zauw5q5XsOWx9zSPydJRhuwQtNKUV34fbr5pJa6/pCJhvZPRUDczBVFXFpX4EWXHj0SBds7ph7Dm9FmwUpeojBJzeF1j5CASQOI7bvaNctIfmB2TSn0MwzCpi2Pl4MrL7/GyHpqEoSAMmDI0/vvoxoNJ5asFF78/8EbCiZngktMvD3NuOAtFI0otlZWRmYHScQN1t5t92MM0TdCapncqiDiNYBMVYU+NltmJ1rU4fc+CGkG1Y5Nt91pSyazGy/4w1RSDsIRjpYKgRJ1MT23mpVVfs+8GKwAMw4SNq5mDID+oQUUyGjx7ZPz34Xcr0XKkEYC5YBJGiE4rZGZnYvJlczHti6ckzSTkDyxEbkl+fHnEGWOTkqeFTZAfSi+e56gqCGa4aWc/7O+DnjHw0txGrk8qC3l+hN8NKxpdGFhpP3VbpEKwB4Zh+gauzYqCUhDaqpbg+ksqEjpdPzrKwqHFGHZKRXy5RhHtJ8yIEm4/1PkDCjHp0rmYf+s58b9pXzgFOcV58X06WzohhEgoz87MhZfRfZTniGLiPCP0noOojU5bEeqDHgDQQ8ucQ++YsIVys5HjVEDPYdYpXjxHqdCWv3l6I37z9EaMXDgy/ufUvEjvOFYQGIbxG1fKgdcfECvlySxfUenbx0KpHLQea9bcJ6yOWxbYvWr3HIUTdvX7+7D9gQ2YUfbp+DorpkTyh99PQdLpyHRYH1KtUdJUtLfWi6gSVrumgoDoJ06v3+ngglfP7PIVla6OTxWB+LZLZ+K2S2fiwOtSKOx93/wWAGvfCy1/J73jcod+z4vqMiFDRIuISBDRohDrcHWsDhVh1YGJHo6Vg8efvNHLelgmCIXk6IaD8d9uMwr7gZdJtcrPmYSCwUUJ657+1Y+wafVLhsepP2Jex01PFyEwrMzQQWD1mrxWGlPJXjtq950zdQfD0mWLcdulMzH6zt+a7muWlyUKYXMZexBRKRH9HxGtJaJ6Imonoj1E9DARnRJ2/RjGjMhGK7KCXx/e/at3xn/nDygy2FMbJ/Uyy66rt+yWzOxMTLnyJEy6bC4AoKm5DgBw39e/mGBi5AS/P2Zm5iXyPlER0KNQB6/x6nrMzpOK7RalOsuDKnL/oZztY2XBP9SRjvSEfKvPinx8e/UvPasj4y1ENAPAJgA/ArATwA8BLAHwJIDTAbxDRFPDqyHDmJOyyoEV+3+nH2dlorDS8frRe7zGSEFQftS9+qDL5yAi/PDXb+HO1dtQVFgW377tnTdCy6RqJOw7PY8bZcUPx8woCY9+IIeYZZxjlujM7nOkvB9h5B1wkxMinXCjIDDRhYj6Afg3gEIApwohLhdC3COE+JMQ4vsApgC4Jcw6MowVUlY5MMJpnHSZ4Qsq4r/VicTcnNctSiXB7Qdda+TwiRVLcM4Xrovvs+y6z+Lgjq2mAl7Qvid2pti9Eirk6/NaSFEqCkErDF7NCBllX16+otJ3R2+9egWN8v45uY92sy87KcPrmUirgxVemMX0BeG5LwwapDlfAVAB4DYhxBr1RiFEtxBiqRBii9FJiGgCEf2NiGqJqI2INhHR1zX2qySiRzTW305ESYmaiOgzRLQxds7dRHQrANLYr4KIHiWiAzGTqGoiepmIzjG8eiZtSEvlwIrwYrRt4PTh8d/HtlSjtbbJu8rp4Pbj6XZGQRYS9ok3E9b//FPnYsubqzVHHJXH6RGEaZGVtgtbcLRDUAKCG8HQatQuK+2ebsKQU8UgKLxS5u30A16RTsKzlZnvdLrePsIlANoB/NXpCYhoHIB3AHwUwB8B3AbgKIDfE9GdLs57KYC/AciCZOr0EIBbAdyo2i8bwAsAzgPwIICvAbgLwAkAc52Wz6QWaaEcuI0Prd6WmZOVkAys8sVtCdmSw+6sjWKyO8nwqzxfdkEOyj85Pu57AAD3XH8Fvn3WTFz3pSdDEQjckkqKgUzQdXaiVIahkHllbhYllHUP0gcgVd7fdMbqcxv2N6ePMpmI5qr+hpkcMxXAdiFEm4ty7wDQH8D5QojvCyHuAfARACsB3EpEk+2ekIgyIQn4BwAsEEL8VgjxCwALAIzXuIYJAG4SQtwuhHhICPFrIcSnhRDmHvZMWhB6xqu88vtcf9j1IjzYTaSkrMfYxdOw7p7VACTToqpXd2D0uZPi55aPsXo+v1E7Gip/a7WPrERohRgsGFSEGV8+FR8+8g4K8/sDABqP1WLvhrWYdsbZuufsK9h9ttwQlM+H0zLUbWE3AVhUhR4/r8PonKn0XqVSXaOM1f4k6G9KlBj22KMYnZcTSFltbR3yT63R/58AuN3g8GIA2rbIFogJ8RcCeFUI8Y68XgjRQ0S/BrAYwMUAttk89XwAIwD8UAgRr58Q4hARPQ7gesW+9bH/HyOi/yn3Z/oOaTFzoIcb59WMrExM/fxJoEzJHO/oxoOoWVuVdP6oddZ6SoLeaOT1l1Rors8tycecG85CU3NdfBahdPBQzX054om3KJ+pqApgynuufgf8eifCeNesCm1eojQRTNX3KlXrnSpwnoNA+ByAeaq/5SbHNADo56LMQZCcmbV8EuR1YxycVz5GS6nYqlwQQlQC+DWAqwDUEtEbRPQjIlLPMDBpTOjKQZAffLsf+oJB/TByYe/7sP+1XZp5D/Ts3oMeFVXOFFgRKvX2k4WSjMwMFA4rBiCFOH3gni9oHmNWntN7HNVR5b6O0YyUn++zHdNAL+211TMjbuzBrWSjVr9PeoJ21AYmvMBKm6b6dWs9q3aO5X4xMLYJIdap/g6bHLMFkjlSno/1Ejq/lWSqlmWnY639kxyShRDfBTAJwHcB1AL4DoDNRPQ5e1VlUpXQlQMlQXd66vK0zIWGzBmF/IG9uQ5q1u43PGeYCoKTSCTqDMfqGYfBs0bGl+u21ziuW6plODYiinUKCrPwl2G2jVJgt5IDwwjl8WEJo1Yik0Vx9rKvYVdg5/uV1qwAkAvgSofHHwXQDMnuX82U2P+9inXHIfknqBmrWt6jOocSTR8GIcROIcTvhBCXABgFYD8kfwimD+CZcpAKApORwGDUYY//RG8im+q1VWg91py0TypNo2vVVa/+Of1y47+P7zzqumwn2T6j9Gz1dSFAb5bI6YimX21kty5az79Xir7Va4yqCVkY71+U3nkjUqWeTGD8EUAlgN8QUVJkHyLKIKIb9ZKgCSG6AfwXwNlEdLLyOADfhjTy/x/FITsBnEpE+Yp9KyBFTVKyBsAhANcTUbFi3+FQKTJEVBKLWKSs1/HYdQ3QqjeTfkRq5gDwvrPV+zDbGRnMLc7DsFMq4svVa/aZlimfM2wBUSuBmvq3vJ/yv0zBkOKE5doPD3lWt1RTEOzWIQp1DpJUH8XWU5DdmHJEYQbCC+y0gRdO9FFRGs1wO0PFpBdCiEZIDsOtAN4loseJ6AYiuoaIfg5gM4ClJqf5AaSwoS8R0S+I6EZIoUU/DuAuIYTSb+B+SH4KLxHREiL6MYB3kexH0A3gG5BmAN4hom8R0fchhUzdpSr/bAD7ieheIrqJiL5CRH8FcC6Ax+y1CJOqeKYcuOnMlR+eIG2WtYQZvfKHzi+P/z6+/UjS9qDtr71EjlykVhCWLluMzOxMlJ8zMb5v5YvbsPbuV1C72cz00hqp0kZRIcgZKjt29VH2K7FSN60ZEa9mCpxmMJbrFSRWZlD8xK/kb14eHwTcL6YuQohNAGYA+Dkkk51fArgP0gj9WwBONkqCJoTYDSnE6PMAvgrgtwCGQspH8C3VvqsALAEwHFKo0ksB3ABp9kF93qcAfBZAD4BfALgWwN0A7lHtugFSluePQDIj+i2AaZAyO99g3gJMOhCZmQM/O0Mvzp2Z0xv1tae7Bw1VdUn7RNm0yCg3gtl6pd8BAAgBVL6wFU2H6tWHOSJVkphZqaOf9VTO+qQDqSCkOUHruvSigqkJ27RIr3w7z7Vf1+DFu+XHO+r2fOrZpSj0dYw7hBDHhRA/EULMFUL0E0LkCiHGCiGuUWZOFkKsEkJQTMhXHr9DCHGpEGJA7NjpQojfCyGSHIqFEPcLIcYo9ns6lp9Ay9H4b7F95Pr8TgjxcKwOlbF99gohviKEmCSEKBJCFAshZscyO3d531pMFImMcgAEIwBaHQXV2q//hEHx3zueWY+24y0J24P4sLuNVuG0jlMun5fgmA0ARzYccFwPLVItNn7QH3F5dDuo50wmlYSVsIQrrTLldVYVg6iTSs9B0Lh97lgpYBgmSkRKOYg6Yz6a6EP04SPvoLsjHEXaiZJgFP3ETOAsHFaCaV84GZMunRNfV7fNefQiPYyErCjgxKE6FQnzOr0aIQ4CPf8i+bdZdKd0xctQsn2VdO9jGIaJLn1GOfDCcSwjKxMzrzs9Yd0H976G4zuSfRCijtMR6LyywoTl9fe/jqbD9RBCeGbuohRMo64sqPEqrn5fEKr8vLdaWZu9Rq/+UX4+g0Av54QX9LW25eeJYZgwcKwcXHm52ofFOanU+eUU5WLq509OWLf72Q/RXNMYSPlht1V2QQ5GnjEuvtzV1oltT67Fpj+9jd/deUGINQuHsO9HOuJ3yNCg8EpZTiUfE7NEdX1B6WUYhkl1HCsHjz95o5f1CAS7woPeh6xgUBGmf2lBwrqtj7+PjsY2x3Wzg9Xr8EuoGDhjeNK6jsY21O+p9aW8qONH6NqoCbp+4dd1uh1xjVKW3nQzSXKjIKSCcsFKEMMwqU6fMStS4kV8/bzSAsy9aVHCuq1PrEFnSwdq1u1HzQf70dXW6aaapli5Dj8UhKy8bEy4ZBaGnTw6YT1RUnCEPkUYQoE6XwWTiJ/Raay2e7oJ916g26+mga9CX1HsGYZJX/qccuBlx52RmYFxF82IL3c2d2DD8jewf/VO7F+1Ezv/sd6zstSE/QEqGTMAg+eOSlhXXFEWUm3Cx0thJuyZoTBJJaHQSOjviyZFXqPlu6D3Ox2UCiPC7u8ZhulbBKIcpOIHzmpnXDp2IDKyMzW3tdY1e1mlyNFQ2ZvroWBwv4RcEEGQjsKAUyEgFd8xIFhlwKoAabTd6v0xigxmh1SbdfAypKeVZGha90p9n9XKg5/PnLpcL2EFgWGYoOhzMwdeQxmEmdeeprltyJxRmuuDwu+Y+NmFOfHfLUca0dPV7VtZRjj9CEdNubD78Vfe21QTIsPAi4hljDGykuplYjCjdWaYmS95jZcCfNjZqhmG6bsEMtQrCy555felVOemlwxNTVZeNqZcMR9bn4gnPsSoM8cnmd2kG8XlZcgpykVHUzsAYN09qzHr+jOQXZBjcqT36D1b6mReeiONYT+XTstnpcAeZu80Kw3O0MrnoPdMR6GNnSZctHKc8hlz27fcfNPKhDaNQtsxDJP++D5zoBz9CFsAc4qVDvnwu5Xx35k5mRgyr7xPOOgqfS4AoGZtVUg1MTcfYKEwWKyYOoUR3SmofkhPcUtHJ3LlLKV8fXrXGGTsfnU5dsrWG0hwcpxTWPlnGCYMfJ856Cudm9LvoLsjHPOaMCgcWozJl8/DtifXAgCq11ShbNIQFAzu52u5URPmZYHDjYmTW4FJLtuO+YxfQpp6xNOsDl7lNrj5ppVYvqLS0nWp29zLZ8rO9acDypkDtZJgtR3Us3xaqJ8VqyP5TrHzXhuZMDmpQ196fhiGiRbsc2CC1Y9D2eQhCcuH3tnrW52iRtGwkgRToi1/fR/dnamnIIXtg2C3fOXIrF70lr7G0mWLHQuMdgU4o9F/LcFOS4BOF7y4Jq9zhbhFWQ+jjO1BvmtRaRuGYdIbVg5sYPQRKB07MGH50Nt70dPdE0S1PMWpuYPavOiD369Gd3tXwrojGw6g6tUd6GzpcFy/IHDzoffi421XuE/3pFJ+Yfdeub23UVcItEzy3ET5caIwWIlQFCWiVh+GYRgv6NPKgdWO3apQMOfrZyYsH9ty2HadUpWi4SWY9sVTEtZ9cN9r6GzpQFtdM6pW7UDVKztwZP0BbFj+Buq216D1WHqGejUaZbSL1jOqNNfoy8KJ16OoToTfdMGKfX0URq2DqIMdnxA3/gtuaK/+pafnYxiGUUJCCHsHEM0FsHbGtaehaFiJP7UKCD+i1BzdeBD7Xt4eX55/6zment9PlB9Ep4JP06F6bHtqra1jplwxH4VDi20d48XHNghBwyuhwCwSkxfnt2sm4zV2r0fv/lmxc9fax0r5yjKD8ivwUkjXq7Pdaw8Tq+1hdH/U29TPvpv76kWeDDOaDtdj04NvAcA8IcQ6T04aQWR5408VgzApL5goeNvbOnBN5VEgzduWYYzo0zMHgPcjOgNnDE9YPvD6Lk/P7xQtwU/rg+jWdrhoeAmGnVJh65itT6zB0U0HHZdplyCjpXiFlqmHEcrZCyszGWbncxJhx87+Qc+AeCHUp9LMgdH9C8J8zUu8eHfVTtPKdfJ6P4hKGzIMwxjhOFpR7tDvIa98umdCVhix5t1ESdGDiECZBNEtzchUr6nCgClDkT+wSPMjFBRBllk6dmBCaFcAyOtfgEEzhmPwnFFob2jFkXUHcGTDgfj2fS9tx4ldtZjwyVm+1i0dnjErZcqonzmj+ixfUZl0vPIcdlm6bHEoz3xUhXYnMw1ePTt699aL84cdmUnv27F8RaXpd8WPemsFsQijH2AYhnGKr6FMrQr8YXaafgiLc284Cx/c+xp6uiSH5GNbqzFy4fjICS1e10cpCE7+7Fy0n2hF6fhByMxJfMzySgtQfs5EDD9tDNbf/3p8fX3lMbTXtyK3JN/TesnIpjNWr9tMsA1D8LUTmtQozrzW+fTeBTfXpxyhNTpP2MKT32VHMa+BlnmO03YI+l2wUlcn1yMrtF5ch1aOBYZhmFSgz5sV+QFlZGDSZXPjy3Xba0KsTTgUDS/FgKnDkhQDJVl52Zh3y9mG53ETLUWLMBS0MIQCq/4jXjpPG+FHuwcdrjWdhTt1GNFUNL3TI2qO5jyDwDBM1PFVObD6cQnrQ+RnJ61MAtbR2A67jt9B4PVoppOPKhGhuLx/fHnHM+vjoU6dZij16nlK5Xj0XviP+IFZ9lwrWLm3XmchdusEHCZ23yN1fH/1cXrHevGs2emT/U6A5hdhz5IxDMOY4XuG5Kjid+dMRAnLbceakT+wyNcynaIeZXYTtcjK/upMvvkDitBQdRwA0F7fiu1/W4dpV52ie7weVmKkey0sREX4jqIQpIWT9lIKU1YTZdkpJyjb8Cg8K1rXZtfcTj6PX6Fk7Zxbvl9Gx6TKu8EwDBMVImdW5NRUwM4xQY3aDF8wJv5786PvRW72QEsRCGKUU/2xHn762MTtx1vQUHlM93in+SnSUTHwe9bNyfPg1TOkvDb1dSrLcDNL4GekHq9nLwBvn2Flm7p5972aoXJzbddfUuG6/KDh2QOGYaKKZ8qBlwKBU+wKjX6PKKlDenbUt/lanhvUH3elI6kfKNs+MzsT8245G4VDek2xDryxx9H9UQtkQdnUm+F1Hfy6JrXQ7VTos/vcWDV9Ud5fZTI4rxQ1oz7EjjDnZdx8t2g9J1oRdYyOD+r9cVJO2O+2Xfwe/GIYhnGLK+VAK+ShF6NlQSoIfkIZiaZFzdUNvpdpF1mwUgpagL5w55eyQEQYNGtkfLm1tgmAPb8VGXW8cj9GcJ3ixXMnn8PLa/OyfewK63qmLlptpafEythtD6P74eZe+WF/79Wzo6UYhB2OVImT67RS96j0AUqiOOPNMAzj2cyB0gEy7I9MlDrRrLxet449z21G9Zp9IdYmEa3RTSvJ0vz6yIrunvjvAVOHxn+bCQvq7L5aPhNhP5NKvBDy/LgHYYx2O3lXlf2MUkFy2iZGI+tucNIfGl2HWydupT+Fut316qi3v532iZJQ7mciP4ZhmHTBsUNye/UvkT2sxMu6uELtSGjXYc6vJGwTPzMXWx57L7584PXd6D9xMHKL/YnlbxUzQVA9g2CkIHglRHY2d8R/H9tSDdEjMPZj0wyP0XOmVMZdtxprP5Xw8jqsxKgPsu3svIfq59TpvdZzRA46soxRna0k9TJCT9D3av8oEyUhn6MVMQwTdQJxSA6rIww6DroWBYOKMOOa0xLWbfrT2yHVphct86EwMzgDwOA5IxMSoNVtq0HToXrd/e2EtIyScAAEZydtNLJu1Wbfj7YL4t2Mgh+UH+WG3afZJWoKedT6Aqt+H1b3ZRiGcUtg0YqC6NS0otNEwVkttzgPEz8zJ2Hd3ue3uIpe5IVwpVQQrHww/f7IZ+VlY+rnT0pY11wj+WkoHYuV99WKKYzaByHVcXrftWaHrNzTqAl3Wvhlzig/L1HpS9yg9Q755XMRZew8J1F69tPhGWQYJjUIJM+BlVjUfpQpE2S5ehSP6p+wfGxLNQoG98OQOaNcndfttRnlNbDia6C3v9OPamZOFoqGl8RnDPav2onswhyUTRyie4zVstR1jdKH3y/0rtHu9QfZVl68r2Y29ErUZh5h9xVKtExQolS/VKEvvOsMwzBeEdjMQVCjHlrlaGX5DIO5Ny1CdkFOfHn/qp3o6ep2dU67fhVaWB09NosU45XzrxypSGbPs5tR9eoO0+PaG1rR1daJn31rATa/uQo93b1tq6XERNXkyAgvsz+HSZCjoPLAhN7zb9QfhN1OSvxsM713gEernZNK/QrDMIwSsmvaQkRzAaydce1pKIqQQ7IdtEYmg5pd6Onqxoblb6K7oyu+bvpVpyCvrDBpX9HTg46GdggI5JbkJ2VdtoPdkdEw47QfensvDr2zN2l96biBGH/xzKT1QgjsX7UTR9YfiK8rKizDjEXnY8nvH9F1VjbD72t2oqSqIzO5zWgdFayOjjvJ5KvGzH67LwjDeu+AnkO3UTsyyfj9TjYdrsemB98CgHlCiHWeFxARZHnjTxWDMCkvx3R/L9je1oFrKo8Cad62DGNE5DIkpzsZWZmY8KlZCes+/PO7OLrxII6sP4COpnZ0tXVi+98/wNqlq7Dp4bfx4cPvYOMf38SJ3UfR3Wl/psGKEKpOLqUkaIFz+KljMPfGszD1c4n+Byd212LHP9YnrKvbUYMP7lmdpBgAwKZVL6ClMTm3hN3Qkn7hZUhTv5PW+YXapl9rpFo9u+M2pKfW71TBq1nPVFUi/SbV3h+GYRg/6LPKgdWMrH5QNKwEky6bm7Bu38vbUfXqDmx84E2sv/91NO4/nrC9s6UDu/69CR/8fjWO7zxiqRyrTstGOQLCEiIysjJRMLgf5t96TkLOg4Z9dajbXgMAaNx/HHue3YweRX4EAGhqrov//uNDn3VcB7WgEJVIIXrx8726X15ep5lJjx2HaLfRtNTJ44z28YKoJadTI7fj8hWVWL6iUrfMqDz3RnjVTn46tXtJ7tDveX5OhmEYmcgoB1EIOxok/UaUomBwkaNjd//3Q3Q0tRvuY9SWqdbOYy6YCigsqo5trQYAHHxrT3yWAADGXTQDc288C0CvgqBnimUnQZVydDtstJJXeS3Q+HWdbp47pwkWrUTlUe6nRZRGk7XMIZ22q/q6Nj7YG2I51WYWgq5vlJ4JhmEYr4mEcqBOXtZXmHLFSZhy5XyMXDgOZRMHI69/AQqHFiMjU7otQ+eXY/6t52D+redg9LmTEo798JG3IXp6tE5rCWU7q7NbB2miohRujO79xE/Ojv+u33sMh97ek5ADYe5Ni9B//CBQhqQMyErD17+6wrQORoKn37MnUVA4gOCEHT/fbyfXoGfGZPQ7DJ8V5QyM18nJ2qqW4PpLKjDz2lM9OV+6E4VIZ+3Vvwy1fIZh0htXyoF61Er9AfNiNsAPYSIqAhllEAqHFGPo/NEYe+F0TL96AaZcMR+zlyzEjC+dipELx8f3HTRzBGZdf0Z8uaezB+vvfx31e4/5UjcnQrEbAdPMITx/cBFyinLjy4feqYz/7j9hcFyhSphiAPDSX/5oqx7K6w5bANBDfidSbfTS7XtndL12BDYrz7aRn4PVcpxEwlL3mUuXLXbUB1op2yz6mFwfJ2WnM1aeHTv76x3HMAwTFo6VA6XNo/KDZjXBjhL1vurz+YFZuNMwycjKRG5pftL67IIcTL58HmRLme6ObuxcsSFuZqPET0FMDz+F6ez8HNy9eg9KSoegqLAs/tfUXIehJ42O70cZhLKJg+PL/7r7Dtyw5N+2y4uqYqDEizr6nRVb3RfYfS7Vo/V6mZ7tmIe5weo5nJSlN4Oql7jMqC3dJLiz+ixoKQ4s4LqD249hmCgQiFmR05CNTC9yGxYNK8G0L56C/IG9/gp7/7cFx7YcTsq47CZGuVfCopcfu4ce+wLuWVeJT9/2Y2TmSGHtCof0i/tuyGWNWjQh4bjX//aoZ3XwGqczY25n5ZRKQVRzPdhxjvc7w7edLNtOw1iGmVMgFZThVCUqoZMZhmGs4qlyEJVkY+mAkY1xXlkhpn4+Mczn3ue3Yu3dr6LpcH3SubRGHoMSQow+eE6eDyLC5vp/YcwVE/CVux7Enc/vxC03P5ewz7e+9zLmfewT8eWn7vgBmmsabZUTRWHZS6IU+lTLhMdoRkPPHMaJkqOX9dvNiLrZ+b0kiknKWMhlGIZJbRwrB+3Vv7QlbJoJgn1FkTDKymvFT0PeRkSYc8NZSdu3PbnWu8o6xK5ApH5+jI6XBY+s3Gy8tvX3KCwpjW9bvqIyfuzVdyxLOO6wRlI1PaIgMFvF7exB2P4VWkqAUZ2szHTYuX/qJHJm57Dri+Onf4LfWHm2tKJn9XXctkHUngOGYfoeWUEW5rcfgVuCqJfaPEEZX9wumdmZmL1kIQ6+vhtHNx2Kr+/p6kZGVqabarrC6sdRr72dOPD1OjRL67Kys3Hn29vwzVMnAwBO7Km1dE67dYgCXmT3DisCix9lmpkfaW3XMmFy64+h5Uxs5iegRRD3xo2S6XV2+aCy1TMMwzDaRCKUqRq/PwxRmaVYumyx62vNys3G6I9MRmZOrzIgeoTBEc6JUlIn9XnkdlQKUXmFiXkkuto7LZ07lRQDGScRwtQj9F6OWNqpi1MHYzVOHHCNIsvYnSWQr1VOKmZHMVDWxSi8qh+jylHpD5VEsU5BEsWZJIZh+g6+zhzIH7godvRao1NRGrHSqofS90C9vbujO/676pUdGPPRqZ7XyY3Q7GVUHKshGm++aSUK+5eh5sAuAMChN/eg/JxJRoemDXafZT8Sqdl5790KQm7No/TMi+yijjJktw5665XCopczCV71zV72nXafnShix4GdYRgmagQyc2DmqOzmg+oGTWffkD9KRv4bRm0zcuG4+O9jW6vReqzZ87q5we9kYnqOpd9/+oX48tEPD6Gnuye+fzqOzil9gMK+Piu+SE5jwnuF1bwWeg7TRnjZ9uoZDa0cM3bxq69T5uEIuz+NAnZ9VJxmA2cYryGi24nIH1MEJtKEZlak9dEIUjE4tfawbl2C/qDZiQGvJ3ANnT86YdmujX0qYSeSzKN/uxYZ2ZLJlegWqH5/X3z/KEXs0cOL6FJRvj7APBmXUpGTR83DFJysJgtTzkbYSUimdYxy5k0r8aReHYJErbC48aeSz8cwqQYRTSaiR4loFxG1EdFRIlpDRHcR0bCw62cGEb1KRCvCrgcTLpHNc+AnbVVL8PZA83c0yHp7oRgVDi2O/84vK3B9PrtE7T7LDJzae69bVCFN1c6nURKk7SbqU2+PimmDlehTRgK/l4qA03YwU2CM7pXdZ0vLxMmqQmT1HfT7XfXSXCmq/QrDqCGiBQA+APARAE8DuBHAnQB2ALgOQKTtWomoP4AzAPwntuoOAP3CqxETFr4qB2cX/AiAvlATRCZkJ6izNacKzdUN8d8lYwcGWnbQo5dmjqVKlI7IBUO0+7mwQ3qmOkb33QslxUtfFS/MrbSO15rlCWKWw2n2aYZhPOdHALoBnCSE+J4Q4gEhxK+EEFcCGApJcYgyiyHJhf8FACFEhxCiKdwqMWHg+8zB2QU/MhQcopLER+vDHoV6WUXtY0BEvpWljozjt0JgJea8ngAmenpQt60mvjx4zkjvKxggRs+knmmL8r8fBKkYmoUhtRslyUtlxciPxWqGZyvZl7Xyyyj/p1tOmVTqh5m0YjIRzVX9mZkcjAOwSwhxQL1BCNEkhKgHACK6mogEEV1ARD8kov0xE6Q3iWiW+lgiGkpEDxLRYSJqJ6KdRPR/RJSt2Oe62DmnKdbNia3brzrfd2Prh6qKuhjAe0KImth+mj4HRDSDiP5GREdi9d5DRH8kon6q/a4ioveIqJmIGonoRSI61aQNmQjge56DtwcOw6m1hzXNeMLs9JWRlOwmcIvix+rIB73vfkaWfzqfmWDhV9sYRWgxFHxVSpLo6gFyvayZfxg9m3qRwNQzcXnl97m2/VbiJlKOm9F6ZbnKdtGrj14oUC9Rl+1V8ivHz3qMKPZPdkmHiEWMd1xTeTSMYv+qse4nAG43OGYvgLOJ6DQhxFsWyvh57P/vAOQB+BaAFUQ0QQjRBcRNfd4GMALA/QC2QzJb+gmAmQA+EzvHqtj/RQA2K373ABhJROOFELsU67cLIarlisQUjQsA/NqowkS0EMDzANoAPABgN4CRAD4FYACAxth+vwXwDQDPAPgzgAIAXwawiojOFUK8Yd48TFj4OnMgKwR69v1Bjj7rYXckVl4fNVvY9hOt8d8jF44PsSbe48pxWDXmkZETaN4/15g57uvNvPllsqcWTpVlWCnHixkMK4K/st2s+DzYxY6SZGWGwmmEGrvvRBh9VpT6SadEyReJCYzPAZin+ltucswdADIBvElEHxDRPUT0OSIarLN/JoDThBB3CSF+CeAaABUAzlfs893Yui8IIW4WQtwnhPgUgD8A+DQRXQAAQoidAA4BOEtx7CIAzwJoiv0GEWUBOB29yoTMWQBK0OtvkAQRZQD4E4B2AHOEEN8RQvxRCPF/QojpAPbF9jsJwDcBfFsIcakQ4l4hxG8AnATgMIDf6JXBRAPflAN1eFKjqfAoYVfw19s/SOWhp6sbzUd6HW37TxgUSLkyTu+j0yRZdqCMxJmD7jZridCihJU2CtM8z2q5TgRxZYQiILkt9ByDteoUlj+JXaGf/V6iB9+TPsk2IcQ61d9howOEEK8DOBXAU5AE+hsAPAbgIBEtU5oBxVguhFB+lFbH/o9TrLsYwG4hxFOqY38Z+/8J1fFnAXFBfiGAlwC8iZhyAEnJKVKUpSxnrxDiQ4NLnA1gAoB7hRD71BuFEPJw3BUAOgE8RUQD5T9IsyMvAThFbYLERIvQQplqfbzDisvu1UyA1nmCUBBq1u5Hd3sXACArPxvZhf7ZzRiF1rQqJAapOPX2VRLZRSliU2SCXvtpCcd+tnWQColW36A1gq8XtcmrnApB91Fmzt526hPlgRk9lNcvhPAtA3zYpMMMCwMIIdYIIS4HUAYpOtESSCPqNwL4nmr3StWxx2M/yxSrxwDYqlFOFaQZgTGK1asADCaiqQBmAegP4FVIisCi2D6LFPsquQjAv/WvDICkGADABpP9JgPIBlAF4Kjq7xoABCDYqCmMLUJTDmTaqpbg1NrDuP6Sivi6ID++QXTIfpdRX3ks/nvUmcGZFLl13rY72u1EmDvw2q7476LhJb46agdFWH4fbnGrFNrJb2FlvzAjJ9nB6/upVBAiExDieAva6prR1doZV+jVdTu25TDW3v0q1i59Fcd3Hgmrqr7CCkL6ICR2CCHuB3AKgHoAV6l269Y53M6HSqkty7MBZ0FSAo4B+BCSIjCCiMbHtu1QzoIQ0UxIMx1myoFVMgC0ADjP4K9a92gmdHwxwLbbwb3a8jPMRO+H2quPrxWb66BGWK04PjulTRGpqKerx5cy1LhpK7vt4PR5aD3WjJp1vY7aIwNUnLxGfn60ZqWcZNQOGnW9ndZNy9/AroKgTi7mxM6fzUy8Y9/L23F048GEdYNnjcSRDQdQNKwEI8+8EoXDSrDvle3x7bv/+yGGzi/HkLmjkF2Y62v/qoWfz0DQ18L4jxDiGBHtBjDNdOdk9gKYol5JRKMgmQftVZSznYgOQ1IM8gCsFkIIIloDSVg/F5K/gdpE6SIAJwC8ZlKXnbH/syDlcTDa7wIAHyqdnpnUwdeZA6NRqZtvWomzC34U/5PxWjG4Fiscn0PLTyKKlJ/bm1el6tUdIdYkeIxGfw++uTv+O7c0PyFJXCoSdlZxKwTte+Nl/gOv9ktF/H6O9J6BrvbOJMUAAI5skCJBNh2ux7an1uHA6l3o6Uwc+KheU4XD70lmz6msGEQtuAXjHCL6CBFlaqwfC0nATzIPssC/AIwjos+o1n9XsV2J7HewEJJJEWJ+DW8BuAVAMZJNii4G8D85QpIB6yEldPt6TDlJgHqn5h+P/b+DNKbrDRy0mYjgeObgysvvwb9X/zBpvdUIKctXVAKKKEZvWwi3qHZyNtsHAB7EJcgrv8TWx8OLkdggO/vS8b0OyKJH4EtX/hkPP66evXSPckRLOYpt5b5YxcsPb1drr5/XkLmj0sKkCIieQqDE6kyc/CyZ3W+7NvVWUCdlM1pWE7VZg6jVxypCCDTuP47d/zXyfeyl5oP9muvbVPld7OBmhN6Ldk8FZZ+xzd0ASonoX5DMeboATIRkTpQDIFloMufXAD4L4HEiOgOScH4OgE8DeEYI8YJq/9UALo/9XqVYvwq9oVPjzsixXAcnxepuiBCih4iuhRTKdD0RyaFMh0MKZfoJAJVCiLeJ6P8B+DaAqbH2qAUwCtKsBkFSXpiI4lg5ePzJG1E0rER3u9fCcRDCtpcdc5BxujMyM5Bbkof2+jYAQE3lbpMjnGGlfbyYEndiKqLFwGnD0HSoHgBwYPUuDJw+HBmZobvZpDx+hEiVFQA3fgV2ytJLDmcUqtWL8qxgVKZRO7nF7z5L2TccensvDr9bmbB9xpdPRXZRLpoO1SMjMwPHdx1BzdpkpWDaF07G5kffAwA07D+OthMtyCst8K3eWrhpf7NgAkxK801IQvJZAK6EZPZzBJK5zp1CiLftnlAIcZyIToMk2MuOzlUAfozeiEVKVsX+16I33wHQqxDsEkIop+suguT78JzF+rweS2T2YwDXASgEcBDAi7Ey5f2+EzNn+jqkWY4cSGFM3wfwiJWymPBw5XOgHNHz0hzIbPQxVTrRIOuZW1KA9vo2FBWW4T+v/h8yc/2N5+/XB07vOXKidAycPhyVL24DAPR096CjoQ15/YMVItIZLxRBeWbAjxmCqKC8NqPnW2udVuQlZVQ3r5UEpwqCup5GOWJa9lyfpBgUl/dHbkm+9HtUfwBSAIH+Ewbj8LuVEF09KBxWjKLhJcgfWISs3Cx0xSK0ffjwOxh/8QzkFOcjf0BhUvhiLeXMa8d4t6TKN40xRgjxPKRRdbP9HoGOgCyESJrijjkPX2OxDtug4dAcSzqmNX1+MYDXhBAnNI65HRpJ34QQGyApQWZ1eRrGvglMRHFlVhQ0djMZ9xVaa5vQUFUHAMgoE74qBkZt7NcHTl2m1ZHYm29aia8+PgjNNVIOiMycJFNQxgFe32e9UXy/sFqOWU4FJ2Wqn12zPktPQfALLxQDvXV55feh/Xg11t2TGF590MwRGLVoQtL+AFA0rAQTLpmVtH7wnJE49E5lfHnXvzcBALILcjDr+jPi69UKp5ZPjB/9lrocrchuffV7xUSO1yGN5jNMnMini5VHssIaWXFatt4oqB8f9saDJ+K/+0/0x88nDKVAqwy5Xa2MnC5dthgFNADNaERRYRmy8nN8ryfTi99mKlqCtp/Pop8mPUYE1f95pRho0XS4HlufOBnN1Q0J62d95XRHeVmGnVKRoBzIdLZ04MNH3sH0qxfYPqdXWJ0FsrOdYfxCCPH/wq4DEz0irxwAqTflqqUY+ClQHN/RG/NbPaXuJ0EJLGrFwCp122twtLoSAJA9Ist220Txgx21+tjBrxkHJX7fM7fvcVSdh+0qBnbaWCtUKQCMXTzNccJGysjAvFvORvPhBuz853p0d/SGi2873oI1d72CwbNGovLs9aiYMTuh3l4GUFBix9TSiQLBMAwTFJ4qB16NEup1kmb+B35M17rprIOwoxY9PWg8cCK+XDSy1NF5zEZFlW0b5AfMaVmN+49jz8peX6yh88ptHa+OxBSVj3ZUBYiwcy7kld+HU2sP49WWn3l+bmXdvY4OZDaarMaP6EReKwbKOvZ092gqBhXnT0HZpCFJ9bDznBARioaXYM7Xz4IQAhsfeBOdzR3x7Uc2HMCPLl6Az/3gt7bq7xQ7GeKNtkXx/WYYpm/hOHTL40/eCEAKSbp8RaUv0Ym0Ej6lAupkS1rJl7xCGa4ThHjUDtHTgxN7atHR2GbpPEuXLbYkdBh9uPxWhCzX8UQLtv/9g/jy4FkjTHMcyM+bHzHH09XR1ipBmZ15rRho5TcJcuRfq93CnnmwMou3dNli9HR1Y89zm7Fu2aqEbfNuORtn3LUNIz/2z4T1SmXcTHjWgogw/uKZSeuLCsvwr7vv0D1fGFhNyskwDBMWrmYOlmvkJvA647AThz21n0IYikUQIRkBaQpdZvCskejp7kF3Rxd2/2sjmg5L9r0Dpw3D4Dmj8L2fvearcOHk3MpINV6ELwWA/at2xn+XjBmAUWdPtF0vNW5G9PpyJtWo1s+u/4BTBc+s7zFrn7CSkxnVw6gthBCo/fAQ9r20PWnb1OseQP7o3tDmdvtls/0LhxZjzg1nQfT0oLu1C5sefhtNzVKghq62TmTlZdsqz0+i8I1iGIbRw1efA68VBT1SQUjyC6W/QcuRxqSROgCo3XwYtZsP4889t0AMEoH6JZjhdaQa0SNQv/dYfLnivMmWkp8FmZfCC1KprulA2CP2XmPn+dELp6rm2qsex7c+NjE+KKFk/MUzUDbVXs4jJ8JzZnYmgMykd/7opkMYdtJo2+X6iZZJrJKwHOAZhmECywilNUXvd3leEWVBrOVIY/y3nPBLj5ce/wPOmPRVv6sUKrWbD8V/5xbn2XJ4NLKXj5LyGSVzOz/MsJxgNrKv3u6nqZ8SZUZxrT8nBNHmZnWU26/laBMOv1uJKf0uwrdOnxpXDIoKy1A6diBmXnc65t96DoaebS/UuVUzIy262jvxwb2vJa5r6dDZ2zu8fJb6uikiwzDh4unMgRV7dPmjEgWBwgpqx1SZqAiLBYOLNUfqAKBs4mB0NLaj6bCkNBQVluH+b38RM687PcgqGmLlubDT1sqMqoNmj9Tcx2hkUD3bFZX7bAe/orEYlaNcF0abWRldVddNmVDMz9FZr9vD7fncmjrJ7VW7+TAqX9gKAHj0rVvj2/MHFmHE2aPRb2R/S+V5SVdrJ9b/4fWk9YNmDA+sDl7BMwYMw4SFq5kDqx8p5SiIXyMiRhk5/SovCgrOyLPGJywPX1CBGdechvm3noOxF07H5MvnYdoXTgYANDXXoaOpHT3dPWFU1RQv7qHSB0MrQpGesme0X1TutR5GMwlh1DuKbaWnfFp1ck8XjMJt2pnN+MxH74wrBmomXzbXsWLgdpaues2+hOXBs0Zi/q3nIK+s0FYd7Nbb6+9aX3omGYaJHq6UA2X4wiiMsNqJM+13mUGRkZmBcRfNQL+RpRhxxjgMP3UscovzACA+Kpo/sAi5pfnxY45vr3FdbtjXbYXW2ibD7alwDVYJWoGxqlz5Vbad8/cVEw2n12m3f6zctB4//9S5mtvGXjjNUoZ2LWXErXPusS2HUb2mKr5cNLwEo87WzrzsNX1NyWQYJr1xrBzkDv2e5X2D7Djt2mOng+DQf/wgTLp0bpLDnbLd+40oja/vUMQCd4rXCtfNN620HPPd6J5VnDc5/rtm3f6k7VbqHfQslJ9cf0mF5+cMsx3cvN+yMJqK99EKdkMROxnUaT3WjF9fsTgeBSi3NB9zb1qECZfMxNTPnYSyiUN0j9VSCKzOdJnV8/iuo9j7fOJMxvhLZloKRqBH1GcMGYZh/MJTh2QzQTsoJcFOp+42tr9cXpTQug8N++riv1uPNiZtTyWM7ln+gF7zgeM7j+juJxMFMxy/8EMxCBO7fj+ybbxeJmXGHt2d3TjxWq/DMQBM/fzJyMjMQMmYgSgY3C/pGL17pNVH6/kbqZ26tdj9n00Jy7O/uhBZufqhS9NhUIhhGMYvXDskR8GcyC/MHDujlj1XRksYGn7a2LiNcN32Ixg8ux65/fORnZ8TdPUMcTuym5nfKxB0d3RbOsZJrPdUIcxsul46JzsJCGCU7buvKwd274sQAnuf24yuo5K/UlNzHWZed3osdKj18tw6Q+tRMLgILUckM8Kxn/wxiiZdYXg+NgFiGIbRJ7BQpnaJih+DEUHUT/YbcMvAacPivggAsO2ptdjwhzdwZP0BCCFcn98p8siu8mPtKsxjLEO0TMtRY78Dq0T9WQyCsJybnUYKU783ahMjO8emE06e5bptNTixuxZNzXVoaq7DrK+cjpwi8zDBVkOSuu3vZQdoAKjb8kZS+Xbo64ojwzCMp8qB1dGYVO581UKD30Kjl/HYRyvs8WWqXt2BtXe/isPvJ0b5SNV7pFZ0sguTZ0bs3rNUVAzSwaTITVhb+X1x+t7wyHIiB9/aE/89eNZIy/lDrGSA9uL9Gjq/NzJZ/a41Cf1AqvZlDMMwYRHKzIHRx0ArgkVYwllUZi+MBBV5ZsGKEFRcXoZRZ2lH7zj4xm7Uba9B+4lW5AxfGlh2azuY1aOrrRO7/91re1w6fhCyC7TNpqze2yjcf7+x+vykUlso35kgchmkPQqdWx0+2QwrOUXccPNNK/HN774UX6aMJkeOyOrZjaj0/wzDMEETWbMiNXay16qd2LxELWA4GZns6erGkfUHcHzHEcsmPXqCjV0n7yFzR2HeLWdj7o1nYfiCioRte1ZuxqaH38baX5yMrvbOhG1RUBCM7mVXWye2PPY+Tuypja8bfkqFq7JYMEgklU00+opi4EeEna72TnQ0tgEASscNREZmeJ8NrWtbumwxfvy1ufHl4lH9k/Zxcl6/w/EyDMNEFce9fHv1L10JT1rHWpmCVmNmx+o3ToSOqld3oOrVHdj97IfY+c8NniQls1MPIkJGViaGnzo2IcSpTPuJVtRtrY4vGwnKUQj3J4TA1sffjwswgORjoRU9RU26KgDLV1Ri+YpK0/2CSFDoFC2l3wl9STEAvH+mG/efiP/2wofHqeJt1M+c2N07KDBw+jBP2sCvvsFqIkaGYZiwiMzMgduOOJWEvJaa3lCiDfvqcGD1rtDqMmrRBBQM6YeCQUUJ6wuHlZgeazfmvBuM7m9rbTPa63sVg1lfOR0V50/x5NypjBOnW68VhLDaVr6OvqIYKPH6XWw6eCL+u6OhzXYAA7Oob3bOoXd8Q1VvqOYMixGUlKjDpQbx3KZrv8MwTOoTCeXATidp1Hl73ak7EZSsHJOjiBoEAEc2HEBPd08oI7cFg/th6pUnYernT0bpuIHx9Q2VdbrHBJ0kTH1P1bMV+QMSIxRZdZZMZ9xE49HalmqjnH0pY61fs3fyczBk7qiE9Uc3HHRULz+F4f4TBsd/a81uWGmfIIT1VHuPGIbpm0RCOXBKUJGCnNJc04DtT6/D2qWvYtd/NqHpUD1qPzyEeoVdvMyB13aFLswMmjE8/tssgZiXMez10FL2tD6uVvMZ9BWsJO2zYnKkxEn0IyfPh1IxCUqwTEVkwdsvpUAZ7SmnXx6mXHlSfES+6tUdaK01Ni8yCj/rdBDE6BnIV8x8dtS3Ojp/kPDzzDBMlAlVOYiyXahbjm48iK2Pr0HjgRMQPQIndh3FtqfWovLFbZBn5YuG95ruHFl/AGvuegXNh+sDrafyI37o7b3x3wVDzO31tRQEP0cwtcoHks0Iulo7tXY3RB0hy0r5qY5dBcEJfgmwSuE4Cn4vXmHlOvy+VnmQQjn7UjikX8IMwr6XtsXrYpTpWEvBtzsIYjYQ0dnakdB3lU0eEjnn+XR6RhmGSX88UQ7cCk9R6DS96rx/c8e5OLrxIPa9vD1hfVFhWfwPAIafOgYTPz076fitT67FwTd3x+16/RZMT2y8Gh2NbTjwxm40K3whhp1coXuMOsypWgDw835qKSMZmRkJCZk2PfQW2o63eFamnjCjdua1e6/stJNXZnTqMq06LS9fUWnb/M/ucyDPaJgJnFHoL/zE7fU5HTBRzhZoPfPNh3oHLrKLEk0jtZxsvRq4MfQ3OtaMDX94A93tXQCA4vL+GHDKX22dA/B3JtRpEj+GYZiwcKwcXHn5PfHfZiNBeoJTFD/yburUcrQJm//8TpJiMOeGs9D/pAEAgOy8PCy56y8YvmAMMrIyMfO605POc/i9fdj+1Dp0t3d5amqkvAdCCFSt2oEPH34HGx98C9WKJGijzhqP3JJ8w3MF4fMBJAos8m+tMuRRzaLCMuRnl2DHM+vR0dRuuRwnwqfy3ihHWf1S6JT+NkYzHTJevF/qNrd6j6P4bkedMNtMqRBo9TmipwcN+4/Hl4dphAn22wxM673a/Jd3E5YnX/vfpBwHYeYzYcWAYZhUxFezIqVAF7Y9vRledNr7XtyaZP8++bPzkJmdiSFzRuEXL76PO15ai1MvuSzeNjlFuZh70yJMufKkhOOaDtfjg/tew5ENByyXbzb7Id+Dnu4efHDvahz5IPncg2eNxJC55UnrtfD7Q6cUBsyen8FzRsVnZQAgp6cAWx9/35MwsXbx+ll3MjugNZKr92wsX1EZ6vvJJhfJ90Zr2a82MksQ19nagQ3L34wv5xTlJkU38wKz61Mr32oTzJnXnY6cftIgjNWoQ0E9d5w3hWGYVCLL6YGPP3kjinTCXdoR6tKFnu6eBLOcsYunoXBoccIIfNmwEUnHyR/mwiH9MO+WszG5YDH+esdt8e1Vr+zAgClDkZljfqusmHKIHoFtT6xBT2ei0Dxg6lCMOmsCsvKyk+pmVqaVdW5Yumyx6Wg8ZRDueGkt/vG7n2HV0w+hqLAMnc0daKg8htJxgwAAx7ZWY+//tiQcN2jGcIw6e6Kn9Y0adu3YzWZA7ApUdvOTmJ3DiclS2DgZVXd6jVZMZOR328o7XvXyDnS19frxjP/ETMP6OX3/rRynnEn8wTUz4+tHnDYWxVP/5EuZTvEr7wTDMIzfeD5zoBYojIS6qHWabkZ3uts6E0auyyYNSTLNMbJdv/mmlSAibG99Dss31CRsb6iss2yqYiQ4tdU1Y8Mf30gI9Vd+zkTM/tpCjLlgaoJiYFRfr7HrVKq331/+dg2aRlYCAJqa61BUWBZPjlRfeSxJMQCAo5sOofKFrZbLiCp2/QG0UM8gWE2kZhe3ykXQoXTdYjYr4OZcTjFTuGvWVWHNXa9gx98/SIhcNuGTsywlF/QCMz+e5sMN8d8lU78b/x32d4VnwhiGSXUczxzIGHXeVkZ8U3EUUIus/Gw0NffmBmitbUL+wMSpdyMTK2U7PfDIFRgydxRq1u0HALQcbbQlqGt9HDsa27Dl8TXo6ew1exp97iQMmpk8myHXJyqzPrZt+AmAkBSE1p1ZqDh/CmrWVOnufmLXUfR0dSAjK8ddRX3AbydgNVqjzkoFwYvzM/5i55lRv+MtRxqx5a/vx5eVfgYjzxyPkgrJbMfrWQM1amd/ZT17urvxi0vPxzFFFvfsov6elq+FlRkZ9jFgGCYdcD1zoCdAGjm3aWFHaAg7tKRW+ZSRkRD+s1pDGDVKzKRe329U//jvtjr3kXf2v7YrrhhQZglGnD5WVzHQqk9QaJm3qNFzzAWkezP9i6fEl7s7uvD1r/0rQciZ8/UzMfmz85A/oBAA0NPVg7e/uxBVLzzguN5OohX5gbo91G2ldCzWQ2/k0+wd1bsnypkhLcdmoxm7VBGu9Ga/rMxyeKUw2Zn51FL+dz/7YYJioCSnKBdD5ozS3Ga3bCt1U7J02WLkld+HzpYOfOMT43DV+ELs+KDXB2LgtGHIgvVoQ07bmxUDhmH6Cp6YFWkJvVEQlIJGmUSso6HN1bk6m3sj7ZSMHZiwzYkg2lzdOwU/7/v/xJjPROf+WP2IWlFYli5bjMaDJxLW/fJ7C+O/88oKkJmThaLhJQntKrrrsf+FB1G/54PefW0IEU4y8vrlpGjVGdMOVhQDs2UtxcRK1CU79XCC17kSrJzP7nWbYfccSTMGR5twfMeRhHUlFWUoHtUfhUOLUXHBFFCGFAUoSCF46bLFyB11Lw6uegwblr+BoxsTszP3Hz8IFedPSYpQpIeWo74VzPpbVgwYhkknPPU5cCIgAe4/bG5wosTolT9g6rD479xS41CgZjQpY4oXJpq72Ln+zAF3YPd/P0xUVpp+DsB/Ew8vzu/kXnc2dyQs73hmfTzHRMnoAfH1w08dkxCSUXTXY9M9V6DtWKIAEiZRt1+2MurvhT8EEG2TJKvhMrVygoSV10BJR2PiYMasr5yOCZ+cjYmfmYMpV8xHcXmvP5XXio0ReeX3Yfff78Def/08YX1WXhYmfno2xl00w9a5jJaN0OqH0i0BH8MwjEyoGZKVeOl74PWokFWUmXndmgId29JrT7vznxsSnIgBnVjkQqD9RCuaqxsghEDd9hq8+6MFCQ6FpbHRcvmjHlTCMjsjqer97Cqdg2YMR2ZOZtL65tbjGKzI8pqRmYERp43F7K8uRE6/3iRqm++/ONDQg1ZHzL2+V0Fcn5syUm30NQzzKK/Oq/RFGr5gDLILc5P2UT+DViIiGfWtnc3tqPlgPw6+sRvVa6vQ3dEV36Z854+8/2zCcTO+dCpmf+3MBIXFDHW9vXy/U+05ZRiGMcO1Q3Iq47XpU3ZBNrLystHV1ommw/WorzwWd+Czy5iPTk2IrrPlsfcw9fMnoWBQP3Q0taNmbRXajregs7kdbXUt6OlKDE064rSxOLatGhCJ5x193uSkstyE3LOaWVRW/oyEC68UxOzCXMxecia6Wjqw618b4yFmP/n1H6Iq682k/bPyszH1Cydj/X2vA5CyrrbXt5omggO8c9xWKmt67am22/cCI6XMzrFe4kXoUy20nnM/lGOrz3EUZgxk6vcei//uN7I0abvXZjNd7Z3Y9NDbCf3Wobf34s87mhP2Ez09ED29isv4T8y0PSvrdXI2+R3Um0Hx4z1lGIYJEl9mDvzOFGsFrQ+vOgKG11BGBkrG9ioDu/+zCUIIgyP0GTBlKGZdfwby+hfE12157H3UrNuPjQ+8iZp1+1G/9xhajjQlKQYAcPCtPQmzF4NnjcCfthxHdkGviZKbj5ee86XbkKRefVCJCNmFuZj02XkYccY4nHThp3DxTd/Rve9ZudkoV+Q7OPT2XkvlWFUMerq6cWTDAVSv2Ye24/qzSm1VSyCEwPGdR3BsWzV6uroTtvkZ3SuqwozWqK/X55XP7Qd++ZV4iTLyjzIYgrpMu5GQ9N6PI+sOJPVbPZ3d+OFHF+CamSWoemU72o63YOvyRRDdvSaWJWOcDbYAwTzffjiaMwzDBE1kzIoA7zpvrfOoR3j9cqAetWhC/HdPVw+q39vn+FzZBTmYcuX8hHX7V++0fZ6MrAyUnzMJ9z/w6aRtTuzCnWZv1Ytko1cns3LVaN3DjMwMDDtpNBpH7EFmVpahMD9o5ghk5Uu5Ho5trUZ7fatheVboaGzDnpWbse6e1ah6ZQcOvL4bm//yboLyIXoEjmw4gDV3vYK1y17F2rtfxe7/foi9z23BB/e9hqpXtic4lNu5V2qF2EpoYaNoUGZl+Tkg4MbWPQxBLUjTNLcUKiKtKZ81wPrsoBKz56B6jXa/uG/7enQ0tuPIhoP48JF3UBdzks7IysDky+eBiBIGIZz2O04xm9lTl8swDJOKkN2RbSKaC2DtjGtP082QLGMU1z8qOK1jd0cXRnYtwOsvPoSiESUYMncUKEPStVqONGLrE2sgegQyczIx87rTLWU41qPqle04siHZSbb8nInIzs9Bv/L+8QRmDfuPY8ffeyPuZOVlYeSZEzBw2rCk492iNtOwO31vZ3+vTQP0qHplB45sOBBfnnvTImRk2tehO1s6ULNuP6rf11cOp39pAeq21ViepcgtzcfAacPQf+Jg5JUWJG3XMpvxKlu5VQEx6HfeidCvNfsSxrWpn2mr1+Ll89/d0QXRI7D+/tfj6wbPGYnyRRMNjnLPmrteif+ecsV8bH1ije6+lEGYfPk8FA4ptj3bGJR5T1D9k0zT4XpsevAtAJgnhFjne4EhIcsbIRWf1m3LMEYEohwA/gkLdmy+vbIP727vwrEXT6Du0IF44rPBs0ai/JzeD+rh9ypx8M09AIDc4jzMuOY0V2XW7zuGA6/tRmttE7ILczDhEmuZSoUQlsP8ucHpqJlVfwer53d7j1uONmLLY72x3sd9fDr6TxhseExPVzc6mzuw/el16GhsN9zXDjn9cnXPN+eGs1C76RByS/LQb2R/ZOZKyqdRe0YpsZ1XeDEjYPVZ9bL9tIRJq6PgXnFk/X5UvZo8Eznmo1MxYMpQz8pRc/CtPTj8biUAacZiypUnoeVII6rf34e8sgL0nzAYddtqULN+PzJzsjDu4zNQNLzEkWJgto9bwpotYOUgENK6bRnGiJRxSNYbAVL7N8jLXW2dyMjKQEZWctQapzQfrkfL0SZUr9mH9vo2FBX2Rss4suEABk4fFhfYB80aEVcO2hvaXDknA0DJ6AEo+cKAuA+DVYFfuV8UZ3KsfkzVI6tmz4MRRkJDwaB+GL6gAofeqQQAHN95RFc5aD/Rip0rNhj6EFAmoWziEBQNL0H/iYNR/d4+VK/VztY8ZO4oDJk7Cl2tncgfVAQighACu/+zCSd21ybs+8HvVycsF5f3R8UFUwGD9ozSfU9FnLSfG/8bPzn09l4ceid5xqq4vAxlk4ckrfdKMerp6o4rBgAw/LSxAICCwf0w9sLp8fUjzijCsFPHAJBMA60oBso+IZ0VA4ZhGL/xTTkIYtZAjRACF5z8fSy77TNoOlSPzNwsTLp0bjwTrtN6NOw/jsNv701KrpWdl4cilMVnD7b89X3MvfEsZGRlIis3G8Wjy9CwT9q2858bMOZjUzFgsrsRuSBmAZzgp6OsnTLMhBgth0H1R71sylCFcnAUna0dyM6XHLl7urrRdLgBe1duRmdLh35FCBi5cLyUvTVm8gUAw08fi8zcLBx8S1Ics/KzUXH+lHiIWQDI6ZfXexoijL94JpqrG3B040HUbj6sWVxD1XFs/vM7mP21hXHzNj2USmKqzyZY8WEJC79Cz7q9Zz3dPahZl6ig9h8/CINmjdAMD+rlM7Ln2c3x31l52YYDJkbmfE79kryElQGGYdIVx2ZFv3xpLf69+oe6+4UxSj1n6BV44qffiQvrMiMXjsOgmSNAmRkQXT1xEwwzhBA48Nou1Kzbr7n9xt8/gVlnX4Brp/V+UAfOGI6Kj0yGEAIN++qw858b4tsogzD3pkWRFfC9wu9RO6v2vVpCjZ7woD7PpoffRvsJ6w7J2QU5EEKg4rzJKK4YYMlPwYnJV+PBE9j9n00JOTWUFI8uw4RLZsWz2QZFlJQMOwJiEM+olTpYzQHiBftX74z3afkDizD1cycF8ry01jZh86PvxZdHnTUBQxR5R/SwMkJvNLOgN8to1I9EPRQpmxUFQlq3LcMY4WrmwEwBCFJY6Onuwf8eWAYAKCosS1AQDry+Gwde3x1fHjxrBMrPmaR7rrptNejp7kHb8ZYExSAjKwM9XT0oGlaMsslDcdLiS0BEmPjp2djxzHoAQO2mQxhx+lgcemsvjm5MdCLOKc5DX8LvD6xdxcAIZV1vvmklftvyEWz601uaYWKV5JbmY+zHpqFwaLHlsmTsKAZy/fqNKMXsry5MUCyaqxuw858b0NXWiYZ9ddj+4AZkDiKMOGMsCgYZ+6V0tnbg8LuVyMzOxPBTxzoWEv1+1608S1GZNfCyHn68P/V7JBM1ImDip4JRJBv3H8d2ZaCE3CxfFQPlNifHGB0bBFFXThiGSW9cKQdGAkHQo4gN++qwf9emuGJQcd5kVL64TXPfll2t6D6jSzOCUO3mw6h8YSsAJPgUlE0agrGLpyXsu+yeCwFIdrqyCVFRYRk2/OENzXLLz5mYlrMG6pkC5Uio/JGz+rGzIgxYOY9T+/C2qiVYumwxvvXdl/DTmlNw+L1KoD4zeTbqjHEYPGekpz4tdlA+R4VDizH58nnY8uh76OnukeraDNRXSomtisv7Y9iCMeg3ojThHEII7P7XRjQdlkJXHn5vHyrOm4wBU4faMk1SrvPjvQ8ioVhYGD3LXgqHXW2d2PnPDQlhSguHlWhmQvYaIQT2Pr81Yd3Ez8wxPc7tfdfbZtTHROE5ioJywjDpBhFdDeBhAGOEEJXh1ib6OFYOHn/yRtNoRX6jFEZkJ7em5joMmDoUA6cPR7+R/dFe34razYfjo6oyx3ce1Qzvqfx4NjVLwn7mIMKosyck7auk4vwp2PjAm0lCpEzBkH6a9rzpgFFoSGUscifmRl6bKNnxjSgZMyCedKmjsQ2UmZGQRC5oDM0g+hdg8uXzsHPFBnQ2J/pCNFQdR0PVcQDAgsWX4fwvLcGE+Qvwk1tOjisGMpUvbkPli9sw5fJ5KIy930IIiB6RYCqlpQSEaVYUhM+LVbyoi5dC4dGNB7Hv5e1J64tHB9MfNeyrQ0djGwAgMycTU648KSG5o9co29+OT4qfDsZm/ZhyEIVJXYhoEYBXVaubAVQB+BuAO4UQjQFXi2FskzLRiowQQqD1aFN8WRZickvzkVuaH/8Ith5rxua/vAsAaN7Yiv4TkmcPMnOz4rMPA2cMx/fvfRWDRo02FXxu+/7L+Nmac3Fox9a4gjB0XrnkzFqQI+VBSMNZAxm9j57WB8/JiFiQ8cq1HD+VTsJhoBWtSU1eOXDSnC40bL4WO59Zj/aGtqR93ln5N3y4+iUASFBkKZMgunv9j7Y9tRZDTxoN0S1wdNNBdHd0o2ziYIw+fwoys/2fLfEqf0FYuKmL1ZwLZn1S24kWHHhtV1KkK5lBM4YD8N9H6Piuo/HfEz89B6WzHumto4uEYmYzA04Vg6AzZVupF88gpBx/ArAq9rsYwJkAfgzgNADnh1QnhrGM5xmSrWat9BIiQpHCZEI9GiqTP6AQpWMHoqm5Dq2NDTjy7FGoHbIHZU+MC03DF4zB4//8muV6fP9vz2PwmcMwdH45Jl8+DyPPHI8xF0zFyIXjA5m+TyWcPCN2jzF7Fo0+uOoQuVHAioCQkZmF0pmPYMY1p2HezYsw/hMzk/Zpaq5LUAzKJg/BvJvOxpQr5qNouDxbIJkZVa+tQndHNwCgbscRrL//NXS1SrNwrbVNSe+PFzjtP6KiGNhB6xmVl/WePSvPZMvRJnz48DtJisGI08Zi+KljMGfJmb71Scrraa5pQO2mQwAAyizBgJMfS9pX7/pl7PoMmNXJ7bmslqf8MyvbLFN9Kj7bfZx3hBCPxf7uE0JcDuAZAOcRkXHiHBsQkXmyowAgohwiCm9anfEcT5WDoDuwpcsW4+tf+xcOv1eJhqpeYaf/+EG6x4xa1GseVH+0BicUo1oAsGVNb+bO7MLEZ93oo7x02WL8/r6LUTZ5CEYuHB+6yVWUsPLBs6pUeq1UtFUtSfqTSVUFAZCumTIyUDp2IObfeg7m3bwIYxdPQ15pfsJ+g2ePxJgLpgIAvn/HG5j82XkYtWgCMnO0ZwdEt8D6P7yOHf9Yj82PvodND76Fhqo6dHd0ubswRb3VqO9LquC2zlozA1b9Oo5phLydvWQhhp1SgeELxiQlzfOavPL70NPVjZ3/WN+70mDm1GoUMas49SPw4zmTn1+1wqA3K+DUz4qJPPJLGbf7JKLRRHQPEW0moqbY3+tE9DH1wUS0iogOENFEIvovEdUDeE2x/TQiWklEx4mojYjWE9FVVitHRPNiZbQS0REi+gMRzSAiEbPXl/e7OrZuMRH9goj2A2gFMDW2fQIR/Y2IamP12EREX9cor5KIHtFYfzsRCdU6+drLiWgFETUSUV2sjkmjHET0GSLaGCt/NxHdCiB9TTd8IGXNim6+aSWaThzH/33sVBzcvSe+vmBQEYbHkudokVuSjxGnjY3Hmc/YKFA6flDc5EceJQUACAAUjNNluqP3sfZLOFHfJ6fleJkRN+gPvLJMyshA2aQhKJs0BN2d3ehq6UB2Ua6mH8GQOaPQf/wg1O04gp6ObpRNGYKmAyc0Hfw7mtrjkbrGLp6GsknJCbTcYDfTthu8NuHww6zIam6KIxsPxH8Xj+qPsRdNR1Zub74Nr+zr1c+18rwNVcfR1darNA6dW6Jr6pNuwq9VkyYr1621z5WX34PvPTjPWeUYq0zWMAU+LITQTjaTSBERyclrigCcDuAqACuEECcU+50E4DwA/wKwB5IJ0hcAPEtE5wkhXladtwDAy7G/byMmwxHRJQCeBrAOwB0AWgBcDOARIhoihPh/RpUlokmQfCU6AfwGQC2ASwH82eCwX8f2vxuStFRHROMAvAMgG8DvISlEnwTweyIaK4T4plE9TMgH8AqA1QBuA7AAwPUAjgL4keJaLgXwFIBtAH4IIBfArbFrYiySssoBANx5+wU4Xn0ovlw0vAQTLplletywUypwbMthtJ1oRUPV8XgW3AOv7Yrvo541YLzDjj22OuOp/Nvso6oWnsKyR7dbbyvYtb9W75+ZnYnMknzN/WVy+uWh4pP/jS+XzgRKx12Hqle3o37vsUQlOsaelZvRf+Jgz3xrghQYtRTWqAqsZopB7ebDCf4jZpGB3CgGyv/q85zY0/strjh/imYACCdJ7Mz28WK2wS+MnKXt1OXxJ2/0tF5R57nvTsWM8sJAytpU1YyP/WoLAPxVY/NPANxu4TR3xf6U/AvA51TrVgoh/q5cQUTLAKyHJPyrlYP+AO4WQvxUsX8+gAcA/A/AxaLX1vNeIvo7gNuJ6I8qpUTNzwEUApgthNgUO+99SHauVpIB4DQhRNy5jYieitXxNCHEO7F19wL4D4BbiegBIYR2GElzygDcIYS4M7b8ByIqhaQg/ChWViakdj8AYIEQoiG2/mFIygJjEcdmRVdefk9g5hZdrZ1oqKrDnpWbseOZ9Tiy/gCWLluM7rbOuO108aj+mPzZeZYTnA2ZVx7/vefZzdj9703xnAZFhWUYvmBMUvxvu2YmYZujhOH/YRW7piLq/Z06rCrxu22CbHuj9vTKFKto0gOY+tXXMHvJmZh/6zmY8eVTMeqs8Qn77PrXRtRuPoymw/W2/RGi9qxG8f25+aaVhv1KfeWxeChmACipSI5I5KcpkUx3ewvqtlYb1sNtGVpEMWO2ll9BVBVPJoHPAZin+ltu8djfQZoROA/AJyApFecA+IfSNl8I0SL/JqI8IhoAoB8kZ+aTdM59j2r5PAADIYXpHEBEA+U/AM9CGnE/Xa+iMYH6YwBekhWDWN26ACwzuMYHVIpBJoALAbwqKwax8/RAmmUgSLMZThEA1C/0agCDFL4X8wGMALBcVgxidTgE4HEXZfc5XPscOBWArXx4e7q6selPb0k2zs+sR932GjRU1aHq1R1Yc9crCbGzh8wzT6ijpP+ERJ8g5SjX5FPPxE//+IH6EADWzUzCVgyUROEDqYfdxFZK3wAnwltQH2WrMda9xgsFwWzf/NH3I6/8PpTMeBhD5pZj2lWnICNL6krq90rC6bYn12L9fa/ZyjKtJMj7ZHa92pGh/FEctK5b2Zdsf+8tHNyxNWkfmfo9iTPnQ+aWJyzrmRN53V8de+/L8QSCZZOHWHJ+NjN10vNH0fpt9/741Q5MSrNNCLFO9WfFpAgAtgohXor9/VsIcTuA6wBcAODL8k5ElE1EPyWiSkh2+7WQzGS+CqBU47x1QojjqnWTY/+fiR2r/Hsots3ICXoQpFmD5HjHwA6D43arluXzbNHYV16nb/NtTo0QQv1BkdtCHn2Qz681S6DfcTJJeOKQbNShOv2AdrZ2YN09qzXDMarJH1iEfjZzCGTlZ2v6JoxaNAE3P/AkMgySQMl2v6lE1BUEJ8Kg2+OiFPrSDerRZL128SsqS35ZISZdOjce6Uimu6Mbmx5+G9ueXItjW6sNZxJS9T4EVe+bb1qJ8q7T8fPPnoNfXv4xtDdoK12drZ3x3+MunG6Yy8DJu6N+zrRo3fc11HzQm1m+dMxAzf1knCpoeu+vmwEDP/zJeKaAifF87P85inV3Q7KLfxbAlQA+Cmkm4HFoO9BqvfiysPI19M5WqP+e1zhOxqkdqJORH6HzW4lerOxkW9ZeSPVf69zskGwDx8qBVZtHKyPDWp355kfeSVjOLc3H6HMnJURRoQzC8AUVmHTpnATHSiOUH7fhC8Zg9LmTAEimREXDijF49khPPxBmZgBBkQofpzDqGHa7eDECvXTZYssKq5UQi07apHBoMSZdNhczvnQqKs6fkrCt6XA99v5vC2rWVunWx235WngplAUdClNGvqd3L/0YXnjoXhQVlqG7owMdje2a+x/fcST+u3RCYtQ2o3p61efVvPZZrL37VdTvPRZfl93PfshUMxNCvQg/bhSDKPTTTFojRwRQhh+9EsBfhBBfF0I8IYR4XgjxEuzJZjtj/08oZivUf4cMjj8CyYF5ksa2iTbqcRRSwrepGtvkj8JexbrjkPwT1Iy1UaYaOTrNFI1tkzXWMTq4ckh2G+pRN3HW8ZaEKBdjPzYNZZOlKCiDZo5A48ET6OnsRvHoMsvOj8o6KqN9DJw+HF3tXZg54SJcfOO38adHPw/A/GNpZXvYH5tUHBkPW1gPAtlJ2Ot7E3YULSKKJx4sGTsANWv34+iGA715ErYfwdD5o+P7exkxxwg/2trKOe0KrFrXL9/Tq694BDfeLbVdUWEZGvYeQz9FbhdAMsNUouwbvbp+LUd/mfq9tdi5YmPC9rKJg1E0rFj3fFYEf6NtXoYsDfv9YdKeS2L/lTbL3VCNaMciB10C6zwPoA7AD4nov0KIJuVGIhoEoFboTN0KIbqJ6DkAnySiGQqH5CwAlj3fY+f5L4DLiOhkIcR7sfNkQHKuFpAck2V2AjibiPJlcyEiqoC9a1ezBsAhANcT0T0Kh+ThkBQxxiKe5TnwUhBWjjBmF+TEFQOZfiNKUVIxwFZUFL2OnzIIw04ajaOlG+OKgVWiMitgBE9ph4NdX4owsCqEmT1DWteSnZ+DkWeMw+wlZ8bXtRxpRFd7Z9K+ZnUxIqwRfTt48f498sTVyMrLjmdvP/z+PnR36s+yFwxJzI0URB+g9AEDgAmfmoWxF04H6ZhoulUMzM7l5DwM4xELiOjzsb+vENEfANwLKbSn0sl3BYDPE9F9RHQdEf0SwLuwYR8fUwa+DGmUfysR/YyIriWi7xPR05Ai95iltf8RJDOhVUT0EyK6CVKkogK5GIvV+QGAEwBeiuVAuBHACwA+DuAuVaSi+yH5KbxEREuI6Mewee1qhBDdAL4BYBSAd4joW0T0fUjhVXcZHswk4GkoU7sjdHqhHesre6ekp33xFMPj5XKtoBzNd5uvwIpSYDUmOWOdqIeZVGL1fQjrWsxCq9ox3dA7FxEhIzsTPTFBtrm6ASWjB2ie36ieTvFKQdBLTBVU/goiwvhLZmLbk2vj69bf/xrGfXwGSsdKNv09nT3xbVk5yV27VzMoct+n7NeEEBDdveXPu+VsW4M3Zo70XigGUegzlN8N/i6kNdfE/gBpduAwgEcB3C6EqFbsdwskofxTAL4EyZH2ekhmMcYxiBUIIf5FRKcC+B6Ar0Ay1zkKyRH4GzC214cQYisRnQ3gt5BG+Rsh5U14FMDbsOhfIITYTUQLAPwCklN1EaQZghshKUfKfVcR0ZJYeXfF9rsBwDRIkaEcIYR4KpZE7f9i9TgIybfjOHodtBkTPM2QbGcUXa+j7unuSbCnzcrP1txPeQ51vG2ZKIQiTPUPQBTaUEmqORJbEUiMIhu5uU43ZTs5r965Bk0fHv9ds3a/5j56RP0+e+kfYYY667roFtjz7Idorm6A6BFo2NebJT5/UJEn9bJKT0d33HzsrM98ybNcF25RBh8IA/U7LPsHpfp3gdFGCLFKCEGqvywhxCghxDVCiP2q/ZuEEDcKIUYIIfKFEHOEEE8JIW4XQpBq30VCiJEGZa8VQnxGCDFECJETO+d5Qoh79UyKVMe/L4Q4K1aPwUKIr0MKCwoA+xX7PRK7rpd0zrNDCHGpEGKAECJXCDFdCPF7rToIIe4XQoxR7Pe0nWtX1KVStf5vsfPlCiHGCiF+J4R4WGtfRhtPlQPAvRmL2m62fq+1pHZGI3jqzln53+h8evSV0R+txFBOjvWDIBWEsEau3bxHerHVvYpiZLVubcdbkJHd280oR5f1MHOYTnf0zBW1zIh6unqw9Yk1WLv0Vex5bnN8fen4QUn7Av6Nnh/bJg2GFhWW4cMtz5nubyfZmZtZgzCfITf9J8METSyZmnI5G9Ksw3FImZeZPoTnyoEd1J1+Z3M7Nv7xzYR1J3ZrKwfyx9PqyJCWgqDcpuUcqdeh95WRH70Y4lEhinVyg10bbLPz2DHBcqogqP+UHFl/AJv/8i4Ov7cvvs5sRDudhCiv/JFkZeGIIjxodmEO+k/UDl2elZeVFFYW6O3n3Ebo0er76rb3Rkk6tqUajQfUodiN0Zr1BYJ/x730IVO+E07zsjBMgGwnomVE9FUi+h6A9wCcBuAnQgjt8GhM2uKpcuBWYK6vrIsnzpEZNGuEzt7JEYiUOIl/rTXS4zT8X7p8BNzkEkinNvAb5fNmJdyo2XnCpuaD/ah6dQdET+JMcrFBPpKo1F2N0/uv7B/snENr8KG9pQU4lBdfnnTpXIz92DSMWjQB+QMK4+uz8rMx7uKZSWY9epGh9Powu8EWMjKl8uSM9Qff3GO0uyW8eO+iMICgVBAA67PSDBMw/4aUKfl3kByUuwFcJYRYGmqtmFDwRDmwE2fdiJaaxvjv/IFFmHfL2SgY1M/giESsxnlX76/nbOikHOU2HilivMDOc6R+bu0oGV4+qyd2Hk1YHjhtGMZeOA0lYwb4XnaqYUWA/etPvo2De7egqLAMQ+eVI69/ASiDMGTOKEz74imYf+s5mHfL2Zj1ldOTQpyq0eoDlchBFIwGP9Tbys+ZhIEK3xInKOsVllDv54ywlWe8L8xIM9FECHGDEGKCEKIg9jdfCPGXsOvFhEOoZkUycQGmrCC+rrW2CTD3oYmj/pjZ/bg4TaJjdj69cwY5QsSjUemB22fTipLgxfPf09WNxoMn4svTv7QAFedPQdnEIZFxVE0Vbr5pJdpbWvD+s/9AUWEZmtuOY9iCCs19iUgzbKjde2omoKoHQAAgr38Bys+Z2FuXDOP7HITwH4VZAyXyLOz1l1SEXRWGYRhDImNW1Fa1BAOnD0tYV/3+Pp29rZ/TCLP66h1vZUTt5ptWRubjFNZoVFSuPyz8GA2P4mxUT3cP6nbUYM1dr2DNXa9g3T2r49uy8rKQXWg/Q25U8PsZNjv/ty+bhFtOHg9AMtkZOq8cmRphSu1ix7RFvSz3J2rTS6VC0HjghGkd9HJpRO35DgMe0GEYJkxCnzlQfggysjJRpJgSP7a1Rvc4qwKv2mbeSlx3t9PbylwKeqE3+8r0cV8RkIFgo+wYleNWoLVT/7rtNVh/32vY8+xmze3jPzELmdlm+Xeig19hL7Vs/o3KaTnSiHXLVqFxSyOamuvQ1FwHyiQMmqUbydARWv2Qcp2dPC1EhKy83tDTLUebkvZRC73K/tHLdyfIgQm7grzSBFd5zX0lCh7DMNHH8RDUlZffgzGz5saXnXRmWhEpOhp6c220HW9xWr0kgvxYaCU/6+uj6H4Q5YRoQYdZtZOwzAw77blnZbJSkJGdgZ7OHpRNHqIZNcdtmUqiqCSq0XMGltESwHeu2ICeWNhXOSvypEvnIqfI/iyMm+AAWv26XrCHtqolKBjSL55v4dA7ezH+ohmm59OqrxWicu+dfPu0IuaxQsAwTFQIfeZASWdze0ICtDEfm2q4vx+dqVeCJnf0vXj9EQ96VNDqyKDberkZtbbrtOxFGzZU1SUsT7hkFmZ/dSHm3rAIc29ahDEfNX5/vcCvkX4vzms1NK26r+jp7kFncweKCnsjO835+plJSdDs4FUbmT1jIxeOj/8+seso9v5vC7raOz1/h6Kc38AOyjDAfT2/B8Mw0SE05UDzw1mXOFNQNnFIUNVJrEcaheEMG78EeTOHby8JStHzQjBQnkPvXHYFK7Vg193ehcoXtmLHM+vj60rHD0LJmAHxjOYZmRmOnY+1bN7NhMsws+BqoTZNtFM/ORFkU3MdBpZXYOwVkz3xM/A6W7DWeQoGFSFDYUZ2bGs1dv15M7591kzs/d8WNNc0JB0T9gxg2MEh2L+AYZio4Vg5ePzJGw23OxFyClUmCE2HTtg+h1cEYXfsF1H82Phx7WoFwY8y7CoGURFQvRxZVbZBd3sXdvxjPWo3H07Yp+K8yfYqaBErYTWVuBWAvbR5d1oHQq9SlZWdg5x+eQZ7B4u6fbXae9ZXTk867nDVDhzbWo2dz6xHZ0uHqzqY3SO7bR/FWV4enGIYJkxczRzIH22tztWsc1YnhgGAzqbEJHy5pQWwglowtJvAxy7y+aMmhJvVKawPjp+julERxpVEbRTbKzqa2rHlr++hubp39LdgcD/MvO70BEdUtygjfqn/23nnjLI3R5nM3Czk9Zf6vl0b30HT4fqQa2SPzJwszL/1HIz7+HSAehOjAUBXexcOvb03vux0dkuPVLrPMrKPmtUcJVH77jAMk36E6nOg7gx7OrsTls2c78xGi/3uRMMacdK7bqWipnXtqfjhtEIqCoCpRk9XN7Y8+h7a69vi66Z+7iRM/dxJjpxktdAKmWn0PKczZZN7TSrbjjWHWBPnbd9/wmDMv+UczL3xLMy8rnc2oaHymOFxRn26UYQur95/L581vWhEarxIIsowDOMV7g1ZY3gRhq211ruPYBCCu91r9lJ4NTpXFKfJ+yLp5LvS1dqJrrbOhHW7/rMJpWMGYtTZEzxJbqb33CoVhDCf7SAz+Iqe3gSQwkYySKto1V/uz/Ta2Er7a50jIysTOUW9fgiZFmaZtOoX1Lvk1zNmdl5llDsjPwzu3xmG8RvPZg7kDstVx+VR8lStMHFeEnbnzCPkfRc7I6RunhP1O5PTLy8pelhHQxuObDiAuq3Vuufw8t1z+95ZbTu9UJ1m+3hJZ7Nkl19UWIb8AUUJ2/waYdYzEfWiv1NGtsotzU/YZud5DmKW0IlDvB5O/R94JpRhmDCJTIZkAMguyIn/9tKG2Q/CVhCY1CEM23e1w6gT1ALwgMlDMe/ms+P28DJ7n9+K1trkhFd65wkbO/dCT8Hx+z42H66P5zcoHNovvj7M2RMrpi96Ckb93l5TooFTh8V/q33PovCs+KUgsdkQwzCpQqTyHJzYXQvKlCIWlYwd4Nl5rX7InWS6TCWb6FSooxlREB7soPXseTGib1fo14owY6c8GcogTLlyPkYtmpCwfvOj76HpUGo5zuphJKgGpeB1NLWjqbkOuSX5oAypm47C+6slJFupV3d7V/x3Xpm1QBNahJELwCtlzMp5Uq1/YxgmPYmMctDR2IaaD/ZDdEsChjLhTxQ+ikZEQUEI2zk7SNLhA+rViL5d5cNJmer2zszJwpA5ozDslIqE9dueWou67TWaZUXxnpnNCKjbKqhZn672zrgwnVvcG8bUTkjXoLDaryh9KNT5bKxi5IwcBl4qKpz8jGGYKOGZQ7Jbdv1nU/x3waAiDJwxPL6s9UEMO6a9eno/7I+2MsMmO7GlDm6dltXPYZACxojTxkJ096B6TVV83Z6Vm9HZ0oHBs0eCiFLGbvpnd56B2y6dmbQ+jPq3H2+N/87u500kKD+wqhjcfNNKfGu1NNNUVFiGrlb7eQ6ioBiona31yla+k0bvo9YMVaq8LwzDpDehzhx0NLWjoaoOQgi01DTG10+6bK5p9JOgOlG9zt2OsK0cYQpCeAtyFMrLcqy0URQd9dzOyrgZzVfbgds1NbJTntbfyIXjMe2qUxL23b9qJzYsfwPVa/ahvb5V54zR4zdPbwy7CgASkz9m5Ubb90rG6B24666PJpic5ap8VmTsZkoOux/QyndjlpNDb6ZP/kunGV6GYVIXz5QDs4gOPd09Ccvt9a3Y9Ke3sOOZ9dj+t3WJlcoyr5Zfwq/ZddjtvK1EPrF6HruZQVNtmjpV6x5mvgu35XshYOWXFWLO189EbkmvCUxXaycOvL4bHz78Nmo/PJR0TNAKsxW0Zg7CoP1Er0KV2z/fYM/o03KkEeuWrUpInPfFLy63fZ6wFQEZOcyo1TDW119SgbaqJfH/gPEAB8/wMgwTBTwPZaqk5Ugj9r28HWvuegXrlq3ChuVvoKu9E611zdj00NtxO1S1I6PsgBcGRna98nSxF9mR7QhEyn2tHBfkh9TPsqIkOPqNG/8Dt21kNZu5EZk5WZjx5dMw5fJ56DeyNL5eCKDyxW2ot5D4yul1ODlWvf+PvvmGo7L9oKOxN1P8wTd2o6OxzWDvaKDVZ3a1dWLrE2sS1pVPnYnhEyYbnsvqvfTi2bfblzspT53p2wuuvPwez87FMAyjhuwm2CGiuQDWzrj2tASnYQC4Ycm/8X/Xz0XTwROo237EUYXGXDAFAxSh7vQII7yg0uZUK5urHm7tZdXH2z0uKqNudnB6zW7KcyOg2z1WL+GUG2HHbRuZtbmde9JypBFVr+5A06HekJwTPzUbxaPLdM9ndF4vFSArduBhUretBnue2wxAstEfOnYCSj9SGHKt9NELr3p00yHse2lbfHnMBVNQNmUobrn5OUvPfVD3zCz5mxZa77yVMK9e0XS4HpsefAsA5gkh1pntn6rI8sZz352KGeXBvAObqprxsV9tAdK8bRnGCE+H6O+/8WrUvVtrSzHIUTjcDTt5tCXFICi0RqaUyd7cJn6zKvA4tbOPon2+VcKouxsB1MkoZtRMCLTMHtT+DOq49HoUDO6HSZfNRWZOFpqapQRYO/6xXjeakfr8XhM1EyYjyiYPwZQr5seXq/fsTDA10iJMW3Wt57izpSNBMRh/8QwMmDpMUzHQwk7ELbf31EkUKKuKQRQjTDEMw5jhmXLQ1daJza+/gqbmOhQV9o4O9hvVHxXnTcawk0fH1xUNK0HFeZMxZ8mZmHnt6Zh53emYftUpGHH6OFd1sPLx13Iis4PWjIHZ+ZwIPEbObKkg4HhFUEqCV2VYvTd6AoObZGlePBfqcpXPt/xMWq0bEWHip2cnJDRUmxBaUTaCfN6NyhJCoLuzG+0NrWg8cBzr//A6Nj74FrY9tRbHdx2F3VlYIwqHFgNAXLE656RbDPePkgDa092DDctVZlqxABNBRZ7zEjvfC73rW76i0tJ1skMywzBRwLNQppSZEf+QNTXXoXTsQAyZOwr9RvWP76Mn/OcU5QKwF7LPaQhIOx9RpcCinnpW+h+o1xmdy4ryYlRPt6Ev7cJh9uzjxkRJiRNl0KuytbBqOqcsv3BoMWZedxrW3bMagOSorCZqz5VWG7adaMH2p9ahs0UdhrMTHY1taDq0CaMWTcCQOaM8qUNrXTNAAITUn5ZPm4U3d3pyat9Zt2xVwnLp2IEoqbCe1NIod0cY5qRm2DExNSNKSh7DMH0Xz2YOMrMzAUg2skWFZfjIJ25MUAz0cDNSovdR8MN8QG962G6uA7MpcbdT7l4S9RE9r3Harn7fD7vndxIJyOg9tGIaYTTjoQww0FbXbKk+UWPLY+9rKAaJ7F+1E2vuegVNh7UzRbcdb8H6P7yOtUtfxcYH30Td9hq01jYl7NPd0QXR04O6bTVAbCKiaHgJBpdXeHEZvlO9Zl/C8rCTRmP8J2aCMoxDU4eBF6P06nN4PYPMMAwTBp4mQRu7eBqOrD4MAHjxn0sx4ZOzTY9xO1IS9Ei6jJ8jPGGPHum1p5+j0qmOemTT67Zy85xbdUw3mvlyStuJFmx7vDdiTW5p6oXmbDnSiJ7O7oR1JRUDkFdWgKIRpah6ZTs6m3sVh21PrsWwk0cnzJS2HmvG5r+8G1/uaGzHnpWS07E843Dw/7N33mFyFGf+/9bMbM45J+2utMoRgQQIBBiwMDZgY4ITjhzYpLvz+bjzndPvjH0JJGxhnH0GjLGNwdjYREkgEBLKaVdarTZoc85xZur3R8/09vR2z3T3dPd0z9TnefbZ6VRdnaret+oN755H1/4WECcB9cybKJVvXWzUpekKpRTtbzfxy65EF0ouC20qalRuDr1Q8k0E20eLci8+Tvztz9GTAG5UVS6DwWAoRfPMQULhwwvWZS3Ox/jEIPfXOaKrDW40Y6cRejvVlRFIsGen1XEyWJnu6TnUP30Q7hk3vy5zUa7qc0RaIb2wZ96eJ391KTY8dBVqb16NsitqkVWThxWf3YTU4sDIbV0HWjHUyAVmoJSi+W+n5cvf3YhDO3aha38Lt7+HBvhtTXSNyhxpLUZbBwOWV//d5RGqiTLCUYSlZgj0mLEWh62WK3Om+5GwzsNgMBjB0DxzMNP9COJEoUyFWY09sx6c/OV7KL20GlmL87XXMAzYSLc27OD4bNVna+RMlh7PRc/wtqFmSTr3NcMzyykGzgQXCjeUI3tpoWRZoZJKqbmvSuzT1YTGFLZr/Sc7Uby5KsDJ2hnnRN1t6+H1eNH819O8UtD055NY9smNmB6cwGTvfAb4iquWYG5qFsNNfZjs5cyKhDMFwLwjsjPeiZTiDFNmE8P9ptrfPsf/Ltm8KGSWe7VYrT0S+ocFq1uo+6okuSWDwWCYie7ZxrJq8/jfM8NTaPrLSbS83mDoLIKdQ3bqid6dZzCfjkgTy89b7trV3BO9n6F4hNPr8aL3aDs/Ar76S5eiaGNlSIFRDzNDqd/hUHL5vGmM1+NFw28PLcj4DgAOpwPVH1oRkP+l+W+n4Z4OdMLOWpKP4kuqsOwTG5G9pGBBOXkri+FwOhCfmoCld16E5LxUXa4jGHq8Dw6Xk/+du0L/kNTBHJXNxj/TJlYMQvnBSc0MCBH67rB+jcFgRArdlYOyK2oDRtUAoP9EJy7sjkyoDblOLxxnNOGxWsoxqtE3YtTaTKfvaMGMTj2YgqD0/HrMQMgx1jbIJz8DODv8ppdOoO9Ep+RAgVHx4PVQpFIK0lH9oRUgTk6xmR6cRN+xdtn9a29eDWc8Nyk71T+OznfOB2xvebWe/1153VLUfGQVyrcuxqJty7Hu/itRcU0dfnFmDCu/sBmJWcmK6xkOeryzcSnx/O+JnrEge+qHldqhUN+kEOEMHlMEGAyG1dBdOYhPS8Saey7HmnsC7U17j7ZjottY21k1I91aBRG/MhAq9rWS2NhGKQh2KNMqWCGuuF4CjpYytJ471Dvh9VBeMQCAyb5xDJ3rQ+vrDTj02C7JkXc9CHUtQlMoNWTV5mPpHRfxyyPnB2T3dSa4sPzTG+GM50bShT4XADApEJwdTgcyF+Uif00pspcUwOHkmuTHf3ij7mY5eiF374T+JMJkd3pixdlMpYJ9OAqAFdopBoMRO+iuHPhxJcZh/YNbA9bV/+YgpgaMDWXob3zvvqmS/9MTJUqFmoZcbYcRTgK3cJCrp5ZOOZxr0HOk0AodrtjMQM/y1B6n9i/Y+TOqcpC1OB9y8u3hHbvRc7gNPYfaMNzUp6nOwa5F6newdUqIS56fEZ3sGw+yJzdIsuyTG5GQnrhgW97qEk3nD4VZo+hy7VVKUQZvRiaO7mQGVppFECIcUBKipt2PdAQ7BoMRWximHACcI9/Kz24KWNd3vMPIUwLgGl1xY6pHpyF0QDPKDMKOqL23Vrl3/npYQUkI16xAeLwVhCSH04HqG1Zg3QNbsf5B7i9/bWnAPhf2nMOFt87h3J9O6J7/wIh7EJcyn6jRPT0H6qVBz5GQkYS6OzYsMA3yuo2ZNfETqWfvmXXzs0XxaQuVonBQYtev9RtS8v2ryWcgRpwsU+vsFYPBYJiFocoBwMU1L76kil/uPdoOj06jSqEaaL2E0GAj3aESo6kh1KhsqOzJkURt0i2t51AjANip81VbVz1HxPVG+C4kVTwBQggIISi/cjHSZRIjnvzVfkNMjfR08AxotwhAvVx9g933uOR41N2xHpk1XKCGxKxkZFQpzxaslUi8C8JEZ2K/MyMJ97lqzWOgdAZUj/whVhjAYDAYsYPhygEAFG6sCFg+8oM9mJuYCatMualaKfR09lIzgqSmQxB35nKCthUVAzFGjIxpKVPpM7fDPRWj1MbZCgiVhZqbV6NgbRkyqnLgSgiMpHx4x26c+vUB9J3ogHtmTqY05Wh12pZ7x869cIz/nVmVGxCdJxiuhDjU3LgSGx66CivuuiQgmlE0MdU/P/vjcIXuWtQKvOLZA72deEdaBjBQ380rfcEQthlqrkOrGSaDwWCYiSnKgcPpQN3t6wPWnX3+mMze1kPYEZgtSAo7E6POrdZHQmqdsKPe1N8VIMybMasQiwTLoGpVkqt+hLIra1F702qsuXcLKq9dGrB9qn8cra+fwclfvIfxzpGAbWZm0l0QYnJwAmPtw/xy6ZaasMqPRoS5HNr3NmHonL6+JEoyfGuBUoojP9yDxj8eQ/PfTuPC7nOo/81BnPzVezj91AF0HWgJ61zhmC76Zx3sOIDBYDDsS1gZktUIJKlFGai7bV5BmOofh0cUxUMpeo+kGDEyo7Yx12sUTK2zr5oZGD/B6jrddi/25crHOA8nOo7WJGB2UUzCvS9y262G8HnkLi/C4o+uWbCPe2oODb89BOo1Nsu60uRUwkhrrgQXMlf/0pCZsXCI9LMWZ4lu/uupoM9PbRspd4+8Hi96DrXhy1cW4+Cjb+Lgo2+i8Y9HQ/qxeD1eeD1e1D9zEJ7ZeZOx3mNcZL3pwUlM9o2j453z6HinSXPdhW2s8HtV8ryE57FDG8ZgMKIDU2YO/KQUpQcsj3UM61JuuMK9P5FNsBFuqdEbPWxJxYTbwfvro+WeqFUsxIKp/95FMma3XRQBP3Lxz+2KGvt+/7NKL8/G+ge2ouTSRQtMbj5w0dcWlK8Eve9jmsBXwj3jxmRPs67lRwPZSwqw6Ibl/LLX7eWzRRtJ2xtncOGtcxhtnQ+dO9IyiJO/2i97zMzoFE798j0c3rE7YMZDjp7DFwKWQ2X0DoXa9tHu7QKDwbAXpioH4pkCqrMD4vD5fvSf7NRkr6xFSDNqqjeYgKUkrKRQQQhl0iOn9ARDaUcldx3hRuUJFp5WanZB64xDpNAr74AZilIoZUCpkkAcBEUbK1F3+3pUfqAOAJCako1zh/aHFQIyFErvT3xaYkC0pcZnv61bHfQk0qZm2YsLAiLUdb7XLJn0Ti/c03PoP9Ulu73l1XocfOxNHH58N0ZaudwU1OvFiZ/tw8zoNB96VYq8lcVITclGako2khMyAUgPoAQbVAlXiRAS6ZkhBoMRO4StHKjpgMQRLFpea9B0TqlGdripD+dePI6W1xpwdOfbGG0bVN0paVEQzMw7EKw+UgqCms5Iyb5CYVOLH0EkZxSsrCDopTyFe2+NzNSqdBYhsXwnkgvmZxj/9uPt+LcvrcH99/0lZHlq677AryDE9ZdcWs3/HmvZp8hx1Qz8bZBVHFfjMxIDskmfe/F4WApCsG92bmI2YHnl5zcjs3o+GVv/qS6AcrMYjc8fw2TfGD+jIMzgnVaaibIrawEAeatKsP6Breg70clvX3nFByTvr9I2likGDAbDTpg6cwAAyz99Mf/bM+PWbFMsFn7F2ZfP/uEoGv94DNNDk4rKm+wdw3jXSFAFQdg5iHMeGI0SoVZKYFczkui/Di22wP6yje7EzI5OZTZy9TZa8BOf1whFQWlZSTkpSMpN4QWz/nd78b+f/ajkDIK4nqESoIVTN2dcYHSinrduV3ysHucPhvCbjfS7TwhBwdoyfnmkeQBtb5zRVFaoZ5iYnRyQaO7ci8dRuKFCdv/TT72PmeGp+eOzkrH+wa1Ycus6FKwtw4aHrkLF1UtAHIQvd3xiECf2vIZ/unI1r+QI2/1gfQBzJGYwGHbEdOVgXORn0Pp6g2bHZD/bd2zDSPPAgvWjrYM4+cv3FtiLLqhT1wjqn3kfDc8ewrEf78VY/ecDtvs7qEhGLVKL1hFyuetSWp5ZI/NahGUrzx4AwYW6SL5vSp129YI4CBZ/bC3SSjMxPjGI8YlBHN3zMj5VlYizzx9Fz5ELsiPRekU0UqIYUYOTmSlFKKRaZfagYF1ZwLJU+xwKJe8WISQgEt5U/zgSc5KDHDHP9V96AMs/czGITBrv9IpAk6Ox/j488ZW7wspjo3abVZ4nI/IQQu4ihFBCSKVg3S8JIS2RqxUjWjFVORhs6EGraASp/1QXTj/zvuYESP6GenZcPm/ChT2NvPPz3OQsxjuHA87Xe/gC/LLG3MQsmv58ElMt92iqjxFoFcD0sjmXKyOYX4RRaI0vLsaqCoJVCRZlRc17pkR4TyzfibikeCz+6FqkFAYGMRhtHcSF3Y04+sTbinyLQtVL7exIakkm/zs5Py3io/RirDJoEZeSgPUPbuWXZ8dndEt+KXUuoSDvmXaj+saVAfuklwcK+p//7o/wkfu/JqsYAEDZlbUouoibhfArqfte/i36TnSqMpPyP5PptnuDJi/0/2cKgX0hhFzpE+CFf+OEkNOEkG8SQtJMqMPfE0LuMvo8jOjGVOVAzsRnZngKZ39/BO5p9Y7Eg2d6cOzHe+Gemj+25sMrkbs8MJzmmecO8zMJDb89jMM7dqPveAdGWgYweFYUUWPEia4XujB5/m5+VTAhQ+/G3KyIO1LnkVqnNlmUmai991YT5uxGsBC2WsoIpmASBzcqXHp5NZyihGmeGTeO7nxbsk2RiqLlZ7R1kAtaoKGt8Xq8cE/N27gPn+9XXYZZWOE9J4TwwjUADNZ3qzpejWmbP6kmcRK4kuORVZOH9Q9ciZWf34z1D1yJ2ltWo+62dVi0bTlWffFSXHlH6BkAh8uJksuqsf7BrQFhWltfb8BAECdoKYTtlNh3KxhWUfYYqvkZgE/5/v4JwHEA3wDwhzDKfApAGoDWEPv9PYC7wjgPg6FdOZjpfkT1qFvB+jLkrykFIZxdcVxyPL9tvHOEGw1U2GlTrxfdB1tx/uVTC5zS0sqyUHntUtR8ZFXA+rPPHw0wYWp94wwa/7gwGdv4xCA6WxvQ/Ld6RTb7RjXgRioJYtvsUOcKFT0pWPl6I7bxFfuChFIYQpkX2S0cqh2Q8xeQw7+NEILCDRVYc8/lWPuVKxaYq5z85Xto/ONRDJzuQue+ZvQebceh7bvQ/tY5TJ6/O+AcY+1DOPv8UbS81oATP9+navR3rH0Ih3fsxvTgvDKiJAuwHGaMDltBQchdVcL/HjitTqAW4r8Wqe/bPT3HZ2fOqMjhfUOIw4GE9EQQhwOEEKQWZyJ7SQG++i9vqGqzCSGouKYuYN1k77iq+is533TbvWzWIHp4j1L6lO9vJ6X0dnCKwQcIIflaCqSUuiml49TI8F8aIISkRroODP1xhd5FP5zxLpRvXYzyrYv5dV37m9Hx7nzM8KNPvI31D24NOt0LAEPn+tD+dtOC9TlLC+GM5y4rrSQTccnxmJucXbCfHBmV2Rhp4Rwhhxp70XO4DQUIVBD06HTlyjFaKNWj/nLT42YTjomRkmtQOoNiZyIVGUltiEdCCJxxTpRdUYuEzCS0vXmW3zbSMsh/s366D7Wh+1Abqq5bimx6DwghASEvPTNutLxaj8oPLAVxEMxNzKBtVyNGWwfgSo5H4YZy5K3kBFv31BzO/O5IQPlJuanIrMnTdO2hrlnJN2pWAIBwESYPc0+H51vGXet8QjHepHRs3qQ0KSclZDlaBnOSclKw9I4NqP/NQaSmZGNuckZTnhthu2OFNpRhKv4GiBdICCHfBPANSmmAwOPzK2gG8FlK6S996+4C8AsAVZTSFqkTEEL8ikOJ4HcrpbRSrlKEkMsB3ANgE4AiAOMA9gD4F0rpGdG+FMDTvr9vAVgJ4EkAD/q2fwbAlwEsB+AF8B6Af6eU7hOUkQ3gawCuBbAIQDyA0wAepZQ+JVdPhrmY7pAspujiKiy+ZU3Ausme0ElpBk4vnKKuuHoJKq9dyi///VdfRd0dG1D5gTpkLQ5U1pNyUpC7ogh5q0qQUpCGtLIsLLl1LWpvDqzLhT3n0Hu0HdPD3IihXoKxHuYZRpxfvM2OHZjSDttMwcqO91FvhKO+/tkfLVF28leXYsVnLkbO0sKQ+za/Uo+OvU2glC5oMwZOd+PUr/djuKkPx378DoYae+GZ9WBmeAqtr5/BaBuncPhNVvzU3rIayz+1MWDmM1JY+b2aHp7EYEMPv5y/pjTI3tqZGZmPPtT1fmvA7LPScNRK9rnlw9/jl12JcYbNGDNTIstQRwhZJ/orCn0YACCVEJLr+6skhHwCwGcAvEApHTauyvgUgCEADZg3a3owxDEfB1AM4FcA7gPwBIDLAeyVmeVYB+A3AN4EcD+AXQBACPlvcMpLKzhTqm8DKAWwmxBymeD4RQDuBKeAPAzgXwBMAvg1IeRzqq6WYRimzhwIEQoJvcfa+fXEQRCfkSh3GADOqdjTOz+z5nA5UHvLGqQJnAX9ZSekJyJhRTFyVxQDN3D+DXAACelJsuWvuOsSnPzle/zy4IF+DB7oR/UnlyEuOV53oVJ4L8wklKIjHOHSojCYObrpj9Sixz00KqqRVHlG3hsrRWcSJuYL9pyU3o/E7BRUXb8MRRdXouWVesSlJmB2bBqzY9NIyknBaNsQv2/3wTZ0H2yTPt/gJM796YTktrN/OIrSy6oD8hlkLspFRkWOojoGI9Q9CDV7YJXZu2BMdI4ELCdkJIFSGnJWWCn+e5iYFRidqP2tc/wgkZL3SWmb0ds2P8OdqGCGQgtMMZDmd+NfxdsjS0w5V/f4GQCfBbjRcTHfAvBNBcU86vsT8iKAT4RTt1BQSp8ihHwPQI+KUfh/ppROCFcQQn4N4ASAzwN4RLT/UgBXUErfEux/EYB/APBVSul/C9Y/AeAkgP8CNzMBX7mVlFKPYL/HALwObkbh5wrrzTCQiM0c+EcN+453YLhp3rEvZ1kh4pKCj8j5909Nycambbdh3X1XLlAM5EjITAqqGABc7OvVX7qUd4L0x1tPulCs6BxBy1Zgz26mwBippFdGwDpWdUTqGekZcjMxKxl1t69H9YdWYOkdG7D6S5dh8UfXYs29l8ses/xTGwPCXwrLWn33ZQERktr3NgWYPaaWZCw4Tguh3lUlz8bqJkWO+MCxp8YXjuHQY7vQ/X4of0p5pHILJOWkoPTy+QR1/ae7AnIZaEHq/SxaVMv/XrfsY5rL1iPhIcMUPgFgvejvSYXH/i+AD/j+PgJOqbgKwPOEkMhPOQoQKgaEkFRCSA6AQQBnAFwkccgxoWLg4w4AcwB+K5gxyQWQCE7ov9gfqYlSOuNXDAgh8T4zoxzffosJIelgRBxTZg6Eo2TCRtc9O4sHNtYE7Cv0R5BjrH1+VHDjh27BO41Kv1flxKUkYOkdG9B/shPdB9swPjGI915+DsWDlSjetEhTmWInYH/HIL43Rgu5YptXYQe1qb8Lu0R1lUqQpdReP9KdXzg+FkYlANPLbyXUeayA3Dtt9DvuSojDis9egu73WzFyfgBzk7MgToLiS6qQlMv5zy3/1Ea0vt6A8a5RpJdnoeam1XA4HSi8qAJNL0nPJigdhBBj1DOXKlPLDJpes27+sgDg0UevhyspLiCSHMApXAP13Vj2qY2aZhGE9RxrH8J45whyVxSj90g7F9KaAu6pWSRkBh8EUnoO/7I/dO74xCDe+NWTqLp9SciBJjms9p0yJGmglB7WeGw9pfR1wfKfCCH1AJ4F8DkAPwq7djrhM5X6HoAbAWSJNkuFZFvo7AnUAYgDID1Fy5ELYIxwH/0DAP4OwGIA4kYgE8AoGBHFFOVASjEY6evFkw9+Hl63G6kp2ZglE1j1xUsDjpPrsIhj/l1afvlV2PDBjxgibHztG7sBAN+8bwOa/nwSAND5XgsKNlQsyJZqB4Rx6qUUlcTyndiXWwS0hTZtCGZmpDSWfbAy9cKKnbDZdZJS5sKpgxolNpKJuRIzk1H5gaWglGJ6aBKuxLgAP4Gk3FTU3b4B7pk5uBLi+PVZNXmovXk1Wl9rCMifEpcSj6R8bWHKzX7mwrZTqaKul4LgL8PhdGDpnRfh9K8PwDMb6Iw8NTCB6aFJJGWrN88ZvTCE/uMdACEYPMP5NHS8cz5gH5fIH0SPgRfhOzI+MYgTP9uHzEW5qLx+acA2tfi/TyMHDRiW4BXf/6swrxzIRR4yRcAghDjA1asUnBnUKXAOyV4Aj0HaukRqWs4Bzm/gI0FO53f6+kcA/wnObOs/APQBcAPYBuAhmXMyTCYiPgfDPd14+Op1/PLkzDCWfWojvywOTSlu0B3O+XdncnQEP/75bYbVdfuObcisyUNSbgofLu/Mbw+h7o4NAfUIhVy4T2FnIBSk1NoUaxXWg01xK+2ohKZKWhUDNcfrjZ6jplZF7/uq5n4JBwcicZ8JIUGFUCnBLqMyhx+sGGsfwvTgJDKqclR985HGf7+VPnsjns0/ff1NTD4wih/uuAnxaYk48sM98MxypsaT3aOqlQPPrBtnf38k6D5FF1ciIUP7rIEYoXK17JMbcfqpA/y24fP96D/RicINFXKHK8IOPiSMsPE3NMIRhiEAIIRkUUqHBOu1mSdwqAl1utL3x0dF8uMz91GazKURwHUATlJKQyU0uRPAHkrpJ0Xnu1rhuRgmEFZPp2ZEULhv07GDAdtSU3LhmQnMnim0LRXjSpzvzP+8838U10EtfmGdEIIlt66DwzdbMNk3jsM7duPsH45iql9dvGsx4g5BL4faYAmEjDT5CbeDi1QHyeKLh0YYbUjL/bKrApZWmoW8VSWITwseKMEqaL3PRnwD23dsw09+cTt/74QRprRkTO473hF0e+FFFSjeVCVZDz1IzkvF4o+uCVg3MzItua+S/DFClISvZQqErbnJ91+o3Tb6/l/lXyEwu9HKBBaaB8nh/wjFoVQ/Ay6sqVKe8f3/LpGwFRRFPfJInC8PnPMzwyKEpRz4hWc1ncr2HduwdNMWFFbP+xaMjvSi/pn3cfYPR1H/7EHcf105vB6vbIOeu3LeMfjQ317UfgEhEF7XP/zTa6i9eXXA9tG2QZz69QE0v3I6ZFlaBHEzHJP1LlMPR0qzO0G7Cq1GI/6upZxBY4VoF8rMep7plfORnobPKc8wPXphCAcffVMyt01CZhLWfnkL1j+4FaWXVcv6MWi9RnG7ljPFRc1JTclGakq27GySXiGhmVJgSy4hhHzS9/clQsiPAPwQXK6DHYL9XgNnw/9TQsjXCSH3gQsNqilRmo+DAFYSQr5BCLmDEHJjkH0bfH//Qwj5JiHkbkLIz8GZGJ0PclwAvjwG/wkuzNM+QsjDhJAvEkK+TQh5C4GZoV8AsIUQ8oxvn28AOAbggqqrZBiKLjMHoRpd8X7Jaen4xou78T/7GuAqmjetG20bxETXKIbO9mKosVdW8UjISOIjCI1N9IZzCSERCkRpJZkoWF+2YJ+B0904+OibuPBWI591dXp4EjOjgSNKUiP6oQRlPYV4ozMuqw1xqmeZDP2R+q7FIUkZHFZ7V6X8vJRg9DMVOnSPtg0u8EXwuj3ofK8ZZ58/iglfvpvR1sEFpkRJuamIS+H8CgrWlsEZ7wo7RKqSax9s6MG+l38LgPM7SM7IRO4K6QHWB+5/WbOCIJcojfkk2IbPA/i1728ngBt8vy8Wmt1QSt3gZhSOAfg6gH/z/b4rjHM/DOBv4EKLPgPgcbkdfef/EIC94HIW/DeAMnAzGaqEdUrp18DlTJgG8M/glKBPglOIvivY9XvgciBs9tXtdt922XoyzIeozcRNCFkH4NDKL2zGvz7yDgD1yoHQ9phSip7DF9D+1rkFx62553K4EuMW2CpP9Iyi/hkuU6U3eRbLPrlxwbF6EMxGun1vk2RIPuIkcCXGYW5iFgCQt6oE5Vct1tRxSTkVClHbUQSLQBQOWjswvabbYxErOC/Ggq+GUkJ9W5G6V2odcc2ImCb0O1h8yxokF6Sh7c2zvHOxkJJLFy1wNk7KTUXtTasQl5oAAEHbVr2/k+M/eYd3Us9fW4riTVX4h6++Zsj9Ctbmj3eN4MRP3wWA9WFE1LE8fnnjc1/5BQpLTMpz0HEGP//BZ4Eov7cMRjDCNitS2igKnW2FxxBCULCuDMkFC6OAyCUu6jk8r9AWrFs4kq8Xwa6Nur3S6z2UVwwAzkZ2+Fxf2OcXzzqE0+FFWqj0o+Ra1NY1Vkazp9vujfi1yn0fka5XpLHSLIIWodVoJaboknmfgO73W9H00glJxQBYGIUod2Uxln9qI+LTEkEIUTTootez8Hq8AdGreo+0Y6J71JSIXEblo2EwGAwpTA29IdfpEEKw9PYNWP6pwBkAz/R8fOwH7n8ZEz2jOPGLfRhs4DoST+IMcpaF9plR2nCr6UQya/OQkcU511VdtxRlW2pk9xVma9UTtUKIWZ2Lls5Yr7pF60i234xHb3Meo5xQraggWEloNxMtkaWMJH91Cf97sneMNx8KRXJeKsoul29npdCzzXM4HchZNu9QnZqSjcbnj6Hl1Xr8139cFeRIbYgHT5gpH4PBMIuwzYr0DlN46tf7+ZChaSWZ+LdfvY2Cqmr8y6eWB2QqBYDSy6pReFHwEHLCxjRY/ZRG8BFOU3s9XhACEAenY1FK0X+iE1MDEyBOgp5DC032ii6uRPGmqrDtY61mi6pX3gItpk9WMLFhBGJWQj8lyCkEer8zRpnt2Q1xXyD1Lpz8xT5MS2Qxzl5SgMzqXJx/+dSCbUs+thZpZUqDsBgDpRStb5xB/4nOgPVxyfFYffdlhp1X3I8xsyLjYGZFDEaYeQ6Ejb1/tDBcYSCrJo9XDsY6hvGdm7ciPjEJA32BgrYrwRVSMRDWS45wRhLFUSqSKp5AWQUnGEwNTEgqB137WzBQ342s2jwUXlSBuCT1mdSV5Ewwg1AKlZY6CeN9KzleznFPWB7DfKygFJiN2nc3mgk1wu1KjgcklINF25YD4BJd+hNPAkBWbT5SNWan1hNCCCqvqUPu8iI0PHuIXz83OYvp4UkkZiYbct5Y/J4YDEbk0NWsSI8GrHjTIhRfUslnQaZe7wLFICEzCcvvukRVvaTqptcUrdhcIbF8J5JyUmRHuWZHp9Fz6AKa/xo6BGqw81iFYHXSUmc1fhVKlYdoxoxrjMS7x0wolGGFdkFs8iIeOBK3vxXX1EmW45/JzqrNx4aHruL/qj+0gu8TtNZPT1KLMrDu/iuRmDWvDEx0jep6DimYaRGDwTADXTIk621CULxpEQrWlaP/dBcu7G7k16cUpWPp7Rt0OQfA1VdLeLlQ6/wsvmUNRpr7Mdo6hPx1peg92o6B093wzHDh+2YkRs7UnDvSqMnqaeRIqlQ9YnnU1ggicT/1ak8ikX3WbP8eK73vwRJY+knKkc6MPNkzhpTCdMPqpCcOpwPpFdmYHpoEAAyd7Q1I8sZgMBh2xZQ8B1pwJrhQsLYMqUXzHUX+6lLdz6MULY6/xEGQWZ2H8qsWIzEzGeVXLkbh+nJ+v4T0+Yyr4QovkRIO1JzXSAFNr0hOdiTWrlcvjHofzX4eRp9PycyEf3Yg3FHt4fPKE6OpRe8R9+mhSfQebeeXh8/348xzh0G90pHs9CAWExAyGAzzCdusyD/NaVSDteiGFchdXoTCiyqQWZOne/nhOM1KjVaHKk/Y+U0NTCwoN5jtvFTZVhOGxXWxUt0Y9kdvAU9PBSGxfCfuvqlSt/KUYIZioDfBnuHQWX2TWorPJXdute/VZO8YTv7yvQXrxzqGMdk3rqosLSQUPmz4ORgMRuyiWTm483ZlyeyUNrpy+8WnJaLy2qUovawazjin5D7hEm62YjUCeuW1S/nfc5OzaNt1dsE+wTpkLSPkRtski++f3P2MlKJgBZvsaCHS99LKo6ZmKwZmo+S5q3k+SbmpC9aF41cgxt+nhFIQhPsp6a/mJmdx+un3ZbdLXReDwWDYCVPyHFjFgcov2GgJuynerlVASspJQdkV87G6B+u7+fKtYB6glWCKgFVmN6ymIAjfR6vVLZbQ694zk4/QCGeZpaI5Tw1MwC3IbxMuYsdo/385xUEOr9uDtl1ncer/9uPYk3sl90lNyUZqSvaCKHZSWKVPZDAYDCl0UQ6CdYjbd2zDky+0yG4P12/Bjo1swbpyvgNxz7hR/5uDoN7AfBN6Coti4dzM6DZM8JVGrXO7lbCCoqc3Wu69XZ6XGsTtqRGKvX+EPrU4c8E2Z4ILUDh5oKTtFyojUuavoZYBwDPrxuHH96D3aPsCU9DqG1YELGcXK/OLY0okg8GwMmEpB8KRsmBTsnp0LmqUALlssuHWQ09hYMmta/nfE92jfFIdsRBvhJIQjcJdMKxwvUqUJSvUMxR2qKNW1ETeCpVfw67ICa1GZDD/7z82omhjBeLTE+FwOZC3shjLP30xXAlxisuT63eE64TPSGowyt+PyV174/PHJNc7XA5kLc7H4o+uAQCMTwzCWzAhuS+DwWDYCc3KwTPP3hewrHVK3Q4jKMEUE62dZkpRBhZ9cDm/fOGtRox1DGsqy+pYQaCMRaXIKthpdk9LTo5YQW8FgRCCkkurserzm7HuvitRcU0d4lMTVM86ivsQqfdNSkEQbpM7z3jXCMa7RhasdyW6UHfbegBAenk2Kq6pQ/Ellchfa05EvZnuR0w5D4PBiE10yXMALEzvLpcQR3xMOMqBnNAhPL94Stkf81xN3H1xHfXqJLPrCjAzOoWOd87D6/ai52Ab0gzKAmpGxla5Dtbq2WKNrp9VR5eNjDJm5jn0Pl+o98HK77JSzPomxW20v20WPyMts2lyoVOFbb7ccVJI3ZPW1xsCltc/uBWzo9NwJrjgSpyf4chbWSxbTwaDwbAbhjgkq7UFVYLcvsHWSzmjBUPpaJVewl5i+U7krpjvVOKm0nQpN9j5jMSOQlMo85BwTbvkklQpnckwwm9DGH44VjKu2vHdNBK5+yFljqkV8QCRODma2ORT6i8Uofzd/GUD4H3fpPwq5EhITwpYbvrTCcSnJ8KVGMf8qRgMRtRim2hFUo2w2hFCfz38nUGwht1oBcF/vMM1/whWb73OkHP5sUOiNK0Y9Y6Fi5J3TQ6jBA+xoGbUyH4klA69riVWhT6934VQ75fRyqlQQdAyG1SwoTxgefh8Px9hjsFgMKIVU5QDQHp6WSnCjjqc0RrhOSMRwUeK3iPzGTbPdL4BwJj8ANE8chqOcKE0hK3ejuGhsHM0IyF28CmSw47322oE+zalAlpo/ZbVPCs1TtdpJZlYeucGxKfNZ7NvfqUe450jGD/zxZDfcizMyjEYjOhDV+UglCAgbCi1NJqR7Kz1Pvd0272glKLj3fP8uoyKbFPObSSRSHym5+h3MOVT63NQcw/E59crv0YksLNiwAgftd9lON+xmm9Mbd+TUpCOVV/YjNwVRfy6ht8ewtEfvY2Dj76Jg4+9if5TXfB6vAuOZd8Ag8GwI7opB0obwXDzGkQKYdZfvSLfjJ/5YsBynGB0ysrRdayUw0APswSp+yx3beEoCKFmq+TOF6shaIOh5Zmz+6cMs9tmM5PHhXOeR35zAnUbtizcQIGWV+txeMduNL+ZiunpuyLeLjIYDEY46G5WJOUILF6npmPXexQ3nLL0Fi5cSYHxvKnEyJMRZi16E8p3Q0oI1kuxMFqwMOK+K811IKUQaH0H1WaEjSWY8rUQuw3eqEEc5UhqgEFSUU9Nxb889wr+/id/RGqK9Czv4Mk9OPXj+zDeXm+JwRMGg8HQgmE+B1JCm9oOR9ywigUnu0MIQVJuCr882TcuuZ8awcWMDkmpwCo1Si6nKEQataY/ahBeu5JjjRBUhQ7I0aAgGGV+whSF2CFU4k6p75UQgrXXfBBPnOzEzxtGsObey1F7y2q+HaeeEVDPCI7+z82YarkHgLUHdhgMBkMK3fIcKEGtSZFw1DxcxUAudGqoUW+jhYSE9CRM9XNZNQfru5FelqWpnGB26kag1JHXCk7fSvELBEZgpWuP5lFhJSh9zkxBMA+z82GoDYgh9S7sfPJmuBLikFGRg4xP5YB6vTi0fTe/fbxjGMSxMK+OXHhjBoPBsAqmhTINxxlZjxkDPRIjqVmvBEoppgYn+GXhLIKaepmtGITCCnXQit6zU1ZSCqyCFWYu7PyORiNWVFjVviPE4UD51sX88mjbIF9OtM16MxiM6Ma0UKZCzO4IggkjasJKim3l5RxIlTrszgxPYWZ4il8WJkQzgwfuf9lU4TXYvbaSEB2qIzeic48lU5ZgGdPNRHjPrfT+xTJWUByFyL0fcu9wZnUu/3vs1BhuveGxoOUyGAyGFTFdOYjECFGocwYTzJTMGARTBIIm3hHMGqQWZ+Dv//HVoPWULCOMTmb7jm388XpmRg2GnWy6hdP/WurMBE57ECpLttWxa72lsPIMgjjDsxRf/dc3eQVhfGIQX/vAKsyOTYd1/ljJYs5gMKyDKcqBFRt8KdQKgEKhcVN/l+rzDTf187/z15SqPl5YDz9KMjtLKTJKOj69sYOCoAW9nKytLvRZvX5KUBJO1g7Ytd52QawgyLF9xzZUXrd0fgUF6n9zMKxzmxnqlcFgMIAIzBzYYQRETWQgP7smv6NKWZibmkX/KW4fZ7wTmTV5hofkDCUIRaIDsqqCoNXcJNaEND2v1+z3z4wwyWZgl5k4tdjtOfhxxrtQee28gjA3MQtKaQRrxGAwGOoISzlQKugLoxRFwt8gEgqJX1mQYnZ8Bsd/8g6/XHRxJRzO8PQ0pdGDrIzVhYFgwqTW2YJQSojV7onUtxQto+8MayD267JS0sVQTA1M4NBju9Dyan3AekJIhGrEYDAY6jE1lKlShAKIPy67FqXC7PB4wRDWpflvp0E93EiSM8GFnGVFup5LLvSeVRUEYWhJM8LHqsWoOoVyfOZnn5L/Dbsmv6PrubWGU5T7noxKFgcY895aXci0I3q0t0qSA1qZzveaF6xb/XeXRaAmDAaDoZ2IRCsSIjUSKc6mHE3mLnMTMxi7MMQvV9+wAnHJ8Yacy2j0nJER+03YUXhT668CBFc89FYI5M4vN0oLhE4UJYfeGczt+D5EkkiYwxmVYM8uioHX48VwU1/AuqzafMQl2bN9ZzAYsUtYyoEeQrtcGXo4yIZbPz1tef118bq9Aeu79rfoUn4kECtx4WLlSEZKhSfxbECwKFhKZiT25XKzSkabxsmF5Q23TD3NQcxSEKz4/qlFTUI/PaM16TWQY+W2QA735Cw/I5xekY2629dj0bblqspgijCDwbACEZ85CIZVTIL06qAeuP9lJGQkYcmta/l1Yx3DcM/M6VK+VqwkFPixolAQTFgJphQoOSYY+3KL8OQLLcorqhA5AUy4PpSfkJbwrloULfHx4byzsSJ8afmGIn1v7KYQCHEJZoBHWweRWpQB4lDuayAOj81gMBiRwjDlQBw33yqCvlb0sOH334O00iykFKbz60/+fB+8bk9Y9YvGzsQu1yR+D0LVW40A5N9PS6hcNRg9UiscydYaLphhDGrfX6XYITKdnoiDSnS/3yq5nxKnfgaDwYgkmpWDO29/PGBZqAyIGz+7KwZShCuslG6p4X+7p91ofOG45H5aO41ImBToTbB7bHYUKi3hbcXHaxVyrS4YK42UpaeQr7UcJYpbrGHUtx+N7X4oSjYv4n+3723CuT8dh3s6cGY4Fu8Lg8GwF7pFK/I3eEIHYitFC5JCbf30FBzSSjJRuL4c3YfaAABjF4bQ8mp9QHxsvSL4yI3YWlEhkELq+v3Oj1Z6x8J5TqFG1Y10TjYCo6M7GUGsKQbi7z/Wrl8t4ih6UhRdXInpoUkM1HcD4BJdtrxSj5qPrDKljgwGg6EHmmcOnnn2Psn1wkbTKkKbHEIlJhJT4CWXVwdkRu4/1YWBhm7JfbWOeNpFAQjFA/e/LJm0zagIKWKkYvmLo/zoIVyFel6xZqphBlY3WzKqfRLOZln5+q2Cv70J1a9VXb8MiVnJ/LIj3hmybCkfJeaczGAwIkVEHJKtKODoEZ9bbUNOCEH51sXIXJTLr2v+62n+d7gj/cH2t9Oo4d03VfIOuVLXZHYIRbHjoB73TmkZVle4AWu/S1auGyM6mJucxfTQJACAEKDsilpFxwmVNHFoZwaDwTATw5UDodAWqRH6UBiRuEfNdVZ9cFnAcs/hC/xvM0wp7CAwTbfdi7tvqpTdbpTQrDT/gprQkcHOZYdnwZjHjMy9kcgszwgNpRTD5/sxUN+NualZAMDs2DSOPbmX3yerNl9zHhumIDAYjEhh6VCmdkCsBPgb8WCZZMUNvSPOiewlBfzywGntkWmUCJh2C5mnR86LcAh2P5WELDWSSJseCM9vtnJjt/eYYS6eOQ/GOoZDRoLTmo+j71gHzr14HM1/O41jP9qLkZYBtLzaELBPyWXVIc8dDDZYwGAwIoGuyoG4cQ02eq50FiHSwo+eyAkzhBCUX72YX3a4Am1U1Ya99P+WsikOdi+tOrMjJFKdpdVH9aPlG1GK2N9DuC4UVn6ODP04/+cTOPPcYRx+fA9GWgcUH6f4PRqcCFhueukEXMlxAeviUhNUn0fcBitpuxkMBkNPdFMOEst34u6bKoN2vMLp8VBT5WKlwKoNo1RyqmDOq3KcE4QyTc5PW7DdSOHUTAXM6spHKKzmxBlp04NIKmt6HK9HFDC5ZUZkmewd5383Pn8MYx3DupY/Oz4TsOx1ezHY0BOwbuC0dIAJILjQL6UgWKG9YTAYsYFuyoG/4RLmOpBTANQoBeLy7YCamPj+ax3vHOHXK4luYQRmmO2YFV3IDKwiDCr1izDy/JH4PuVmx9QcrxbhvWUCm7VxiWz9G/9wFJN9Ywv2k3p/5L4hr8eL3qPtaHj2IIab+kPWIT5NfubAf24x4nY4WtpLBoNhH3RTDvRqwPTIRGwWUoKC1ghD6WVZ/O/u91sXJM4xGn+9zVIQwsUqgrlV6iFGqx11LKH23jD7cHsxOzodsOz1eHH6qfdx9vmj6Hj3/IKRfzn8fdsD97+MvmMdaNt1FuNdowH75K0sXnBc7vIiZFTmBC1b7p0ShwRnCgKDwTAT3ZKgCQm3MfNHfrF6Z6s1262UOUL1h7+EIz98i1/X+noDqj+0Muw6Kq2T3YjUO2JVQTtUtCQ7fE92wE6DF7EG9VK4p2YRl5IASik8s25+W1JuKqb6OTOj0dZBjLYOovdIO6quX4rM6jx+v2Aj+dt3bIMjTjSrS4AND14FACjcWIkLu87CPTWL0i01SCnKCFnnaAphzJiHEJIJ4H4AHwFQAyARQAeAPQB+RCndH7naMRih0WXmwK8I6JkZORo6XHEUl2B2zik1P8bSOy/il4ca+9B/stOcitoYM4V1qyoGfqLhmwkHo0dXld5fNsprPtTrxdnnj+LYj9/BwUffxKHHdvHbXIkuLLl1LXKWFQYI955ZN869dAIXdjfCM+OWKnYBI+cDTYnW3rOF/52Qnoiaj6xC3e0bkFqcCUJImFclHyr3ztsfD7tshjEQQlYCOAHg3wA0Avg6gHsBPAvgUgDvEUKWyZfAYEQeXZQDoVIghdWFKqNQa5OcUpCGjKr5aeiW1xqC7G08VhZyIu2srodDqxFYrT5mYpXRVavUI5boO96JsQtDkttqb1kDV2Icqq5bhjX3XI6ld2xA9uJ8biMFeo5cwPm/nlJ0nmGBclBxzRI4EwyZfOeR8yd65tn7DD0vQxuEkDQAfwKQAmATpfR2SunjlNKfUUr/BcBSAA+GKMNJCEkyvrYMhjy6tWxSHaLflEEPgUU8O2F3pCJVJJbvRM2H78Gh7fOjXoNnepC1OF+XUSjhecXnZoRGbLpjVUHcLmZ5YszO2q1H4joxQoU6WtoqOyCOEgQADqcDi25YjpSC9IB1KYXpqNq2HCnFGbiwuxEAMNI8gJmRKSRkyMtk08OTAcuJWck61V4dieU7Md71iYicmxGSLwGoBPAFSulB8UZKqQfAdv8yIeRKALt8x6WBm2GoBPAxAC8QQgoB/D8ANwDIBtAG4NcAHqGUzgnK+SWAzwAoBfC/AK4DQAD8GcBDlNJewb65AL4J4EMAigCMAjgDYDul9HdhXj8jSjA0CZrenXs0drbie0QcBCkF86FMz798Coce2wXqpYadmykJ6rCD0G2HOobCjPdSb2WZZTOODMIADgXry7Dskxux9r4rAvwJhBBCULC2DPmrS/l1o22DQc8xOxbowByfmhhGjZVjpdDJjJDcBGAGwNMqj7sfnGLwMwAPAGghhGQB2Afg0wCeA/AQOHOlbwH4jUw5fwGQDOBfATwF4HYArxJChKG7fu8r81nfOb8HoBnAZpV1ZkQxxs6J+tDDB0Hs5CwsT878Re059ahnuCSW70TZ1k+g/a1zAeFNuw60oPiSKlPrEul7EQwjRn2VnpdhLHbNneDHyuZ40UpcagKmh7iR/ayafCTnpSo6LrUkA73H2gEAM0NTQfdNSA9UBhIyw7P8UDK7J+6TWPtjKnUSM/ZdlNKuIMcsA3CGUjodZB8pigAsppTyGioh5PvgZhFup5T+1rd6JyHkCQB/Rwi5jlL6iqicM5TS2wRlNADYAeDzAJ4ghGQAuALA1yil/6myjowYglCqbkSaELIOwKGVX9iMVAXRGPRE3OmKFYRgCoQR6G26IXRgBoBzfzoeEEu77rb1SC3O0FWJEZ8z0uVoPW8kzs3QFyPeIa3fSqj3Skm5VhhsiBVGmgfQ+MIxAEBGVQ5qb1qt6LjJ3jGcfvp9fnn5Zy5GUnZKwD6UUoy3DyMuNQGnfr0f1MP1mevuu2JBNnslaHnPxf1b87HDePia9QCwnlJ6WHUlbIJf3oh0PQR8i1L6TbmNhJA5AO9RSi9XUpjArGg7pfRB0bZ6AHGU0hrR+nIArQCeoJTe61v3S3BmRZsppfsE+yYA6AfwNqV0m28GYQzAmwA+IzQ3YjCE6DZzIOwIgwno4g5T6eiJsDy5kTkzR+zMGLWu+fAqNP7xKEZauMGEht8eQmpKNr71+hVobTqCuclZJGYno+TSamTV5MHr8WKwvhtxqQkB8bX999gz68ZY+zCGGnuxuPIKdHuOo6Q8cJ9wiZStO1MMogO9R++NEs6VlMsUA2OQEq7TK7P5cKUjzQMYax9CWmmWXBE8SXmpSMxK5mcdTv3ffqx/YCsIIaCUovW1BvSfkh4onh2bCcvvQE1bKQynCgDjXSPBdmfowycAiKOCBJs1ADj7/bQQ+0jRJLGuCsBr4pWU0jZCyLhvu5gzon1nCCEt/n0ppbOEkH8A55fQRQg5DOB1AM9SSo9pqDcjStEtlKk4aYuS/cSNYyjh3q8YRNquN5Ri4M8QrRa/Xamw/KoPLud/p6ZkAwDOndiPuclZ7pjBSTS9dAINzx3G4cd3o+W1BjT+8RgOPvomzv/lJLweL1fu0CROP3UA5148joHT3dj38m/R/Eo9Tj95BajXq+i6lNTdbMw+73/97rhp54o19HyOerYRzCfHmgifCyEEeavmE5H1HetQVAYhBEs+vm5+BQUOPbYL/ae6cPIX78kqBrkrijUrBiwohG1ooJQeFv2FUg5OgzNHUuuQEtymTRops4+QpiCU0h8AWATgK+CUkrsBHCGEfE1DHRhRimEZkv2ds9LwpsGEaaUdvXg/rUK6UuSEGeEMilYlwY8rMQ6rvnhpyGPGO4YXNAuDZ3sx2jIAAGh78wxmRhaaQQ429ODc09fxy+F2VtE8gv/A/S/jq7euUryv0e8fgxGLyAnX2XUF/O/Bs72KR9fjkuNRdd3SgHUtr9ZjZmShvOZKdKHi6iWouGaJ2moHwJyMo5YXACQAuFOHsprBhT4NgBBSBiDVt11MnWjfBHB+CwH7UkrbKaVPUEpvB1AC4F0A3/Htz2Dol+dATngXKgj+fdTaXArT1werg1x99BbSQjXqUknhwiE+NQEbHroKPzzejsWfX4X1D27F+ge3YuXnNyNnWWHQYyf7xjE7PoPRC0NITclGako28lYWI70im9+n5/AFnP7Jg2HVMRZQMxLtfweZaQmDoT9SCoIrIS5AQTj7uyOY6BlTVF7OsiLkry2V3OZKdGHtV67Ahoeuwpp7tiBvVYluoaUZUcePAbQA+C+fv0QAhBAHIeQ+hUnQXgRQTQj5mGj9Pwu2i3lQtPwlcIrEn33nTyaEBEx5UUqnwJlPxUGbSRQjCjElWhGgX8QiO6G33bPD4YDDOa/PJaQnouq6ZZgb44R/AFi0bTmGGvsw1Mj5GXXua+Yc7HyzCtPeMSy+ciWSFz2Jrr3PoekP/w4AGDz9N4y1nkBaxUpbxshnMBixhVTEsoqrl2BuYhZjF4bg9Xhx5reHsPyuSxZEGvIjHKgqv3IxCjdUoPfIBThcDs53qyoX8alsMJWhDErpGCHkwwD+CmA/IeR34Eblp8DZ/X8UwBIAKxQU930AtwF4hhByGYCzAK7ylfEHSumrEscsIYS85Dv/MgD3gAt/+jPf9sUAdhNC/gDgFDgfifUAPgvgFUpp/8IiGbGIoXkO/MiNoAob9mB+CnrVIVIYfQ21H12D6htXYsVdlyB7SQEW3bAcWbXz8b2b/nKS91dwT82hcx83w1h02cchHAA79titmOxtAcBsYRkMIex7sCbiXC3OeBcWf3QNUou4xGdejxcDp0OZic8Tn5qA0strULxpEfJWljDFgKEaSukJACvBJS+rA/AIgJ3gTI3eBbCRUnpaQTlD4HIP/BpcvoLHAKwB8A0Ad8gcdgOASd85/fkRPkAp9SfpuADgVwA2+srZDuBKAN8Gp3QwGABMUg7EyNmMKsldEA5m2X8HM3EyAkIIsmryeAc5QggWbVsBZzwXZs+vGIxPDCI1JRvuqTn+GWz+71NILZ4PSXv4kesxfOwuNnPAiGmk3n89FQTmi6IfYjNPQggSMuctJ4I5DjO7f4YRUEqHKKXfopSuo5SmUUoTKKWLKKWfF2ZOppTuppQSSulPZcrp8h1TSCmNp5TWUEq/LcyOLKKHUnobpTSDUppOKb2DUtojKG+AUvoApXSlb58USulSX10ndL4NDBsTEeUgFGIfAy3CtVTna/bsQbiOyeFAHAQlly4CwCkF4xOD/O/UkkwAXMc4034fam9ejeT8+aRBHe9IRVWLLInlO5mDL8NUzBAa7TwIYmXmJuazGTP/AAaDwVCHqcqBsNMSRmtILN+pyMRIK5EwKbKCf0T+mjKs/Owm1N68GtmL85FVm4/Ka5cucGJ2xruw5NZ536mhxj5M9o2bXV0e//sg/AOAJ19oscR9ZcQuRpgX6S3Ms28EyF9bxv/u2Hc+gjVhMBgM+2GqciCVEA2QntoNp4OL1MhZqPNGol4JmUnIqMzBohtWoPpDK5C7vEhyJC2l5sfIXTkfJ/zci5GJ589suxlWQqpt0uMdVZIXhqGd+LR5X4HpwcmAbeLBKCvAZnsYDIaVMEQ5UNPQ6ZHfQOq4SGHnRr744kr+9+zYNMY7zc3CGarDjkXbYDu/T4zg6BHBjQFQb2CCl9mxaZx+6n1+OaVgPjqjsI1hCgIjWqCU3uXzXXBHui6M6EB35UDcwAWzE4/GjlFudiQSMe/Vdjbpy3/OOzEDwPTQZJC9A9E6Gic2HZIiVp0GleT3YJiD+B3Ue/aAoY32t8/hyA/3oOOdJlCvF1MDEzj+03cD9qm9eU1kKqcAYf/I3gcGg2EVDMlzIG7k9Gr0tIy0mdngWr1xDyXQUK+X/02cBJk1uZrOoVSQF9dHGLc8FpUBMXol0WPoh/AdZflAIgulFD2HL4B6KboOtKLrQOuCfepuWwdXUhy/bLXn5U8SavW+g8FgxBa6zxyoDUeqNutssNFU8ShMpBpcYd0i2eiLzx2qY5zqbYZn1gMASEhLhCshLuj+asoWI1QMhKOysTpLEAyrCw5KZn+iCb1nEBjaIIQsMCny43A5kL+6BKnFmeZWCupnUa3+fTMYjNhDs3KQUPiw4gZQr5FP4QiLVINqhUbWCiFUtTI9OJ8saHp4CpRKd7yyx6sQ7IXRqhjRQ6wIy0xBsAZV1y9bsC6jMgfLP3MJyq9aEoEasQEOBoNhfyyZ5yAUoZyYI4F/1sI/Y6FGITJTuBAK5eIOzOn+WcDyzPCUafVi2Bfhe8SEIoaZZNcVILM60PxxamAcCemJEaoRg8Fg2B/NPgcz3Y8greJpflnsVKXGtEaJQ5bV7a61+FlYwb5eeO6EzCQ4XA543ZzvwWjbYNDsotGI2c9E/F7bZZaJMf+O+M1ImGIkjZE29YQQVN+4Er1H2nFhTyMAYHZsBg3PHsSS29azBGgMBoOhgbBmDoSdodbGXygcKVEAosV5y6qmCEWCcKajbUORq0iEMeP5WF3hVUMsC8ZCJYERiBkRtwghKFhXhpqPrOLXjXeNYrxj2LBzMhgMRjSjm1mRHuFKg+0bzNfAblhZiMiozOF/z45Ej1mRUuFEaG5llqPtky+04MkXWgw9hxkwBcG4b9vKbUYw/O21Ge935qJA86LEnBTDz8lgMBjRiC7KgVRuA7XHKRH6o0ExAILb/Uea+PRERONMvNp3J1LPJZpmE2IVIwR5q7UTati+Y5uh9aeUwuvhTCGTclP59a5E5dHWGAwGgzFPWMqB2FdArd2933k3WoR+qxAs8VwoXIlxSC3NAgBM9o1j6GyvLnWK9MhnuEK3EfXfvmNbwIiq/3c4z48ROVgEI3NxT8+h8YVjOPTYLhx+fDd6j7UjIWPeEbnpTyciVzkGg8GwMWEpB0KhXvw7HB8EJhiFh9J7L3efsxfn87+b/nISLa83qA5rKkZu5NCs+Phq38dICXdMWbY3YrM0hnE0/+00RpoHuAUKtL15FsNN/fz24fP98Mx5IlQ7BoPBsC8RCWUqpwDEahp5IxSicMy0clcUIbkgjV/uP9GJcy8eD1tBsIOwJFRWjArRKefLoIeDP8MaGG0GJPUtxdKgykjLwLxiEITpwUkTasNgMBjRRcTyHIiFHynFIJY6OytBHA4svmVNgIIw0jyA7oNtYZU73XavpFBjNXtqozI2x1IWYYb8+64X4rJjRaGkXorGPx7jlxMyk5BSmC6571TfmFnVYjAYjKghIsqBnGIQar9oxYqmJK7EOCy78yKUXVnLr+vY2wRA3xkAKyoGRhDqnlntPjD0wajnKldutA+oUEpxaPuugHVL79iApXdsQM2HVyJ/TSlSijhFwZngQoYoghGDwWAwQmOpDMlWE5DDIVgnbafR4/w1pQHLo22DALRfAxOCpTErbKrViXbhVk+kviW12dmtjvh7aHqJczJOTckGABRuKOejEmVW56F862IsvX0DVn5+E1Z98VLEJcebW+EQqPm+o+k5MhgMe2EZ5cAqioHf/j/chjnY9dhJQCaEICl3Pl74uRePY+jMexGsESNaMSNhViwQTQqCsK2c7B3DcFM/rxis23ojSi+vkTwuIT0JzjinKXVUgxpTM6v0iQwGI/awhHIQrBFUm0E5HIR+D6xhnqf25jVISOdCBHrdXpz+yWcxsP8TmsuLxdFxpQqhnRRHPVGb88SKhHqvzXzv7XoPgzE7PsMrBgDwwE9/G8HaaMdoXxQGg8EIF6I2Ag0hZB2AQyu/sBn/+sg7/Hq9O6MH7n85Kjs4O9P6xhn0He8AwPkkrLnn8rDKSyzfGVPCMPM7kMfukcqkIlzFOnrck57DF3BhTyOc8U6kFKTDOzifofGJk50ArP3OGKX0jneN4MRP3wWA9ZTSw7oVbDH88kaETh/V95bBCIZLj0LCafTklIBQZQoFLdYhh0YPZavsylpeOXBPz8Ez64YzXvsrFGvPTWrEMNbugRxWFvAY5kO9FOf/eopPwuiZ9WD0whAABMweWB32XjMYDDsSdhK0cBs///FyJkPRYjsbSfS6hw6nA/mr5x2Uew5f0KVcOaLRQZcpA9GH2nc02t5pOdS+65RSNP/tNI79eC+O/eht2ezs4xODGJ8Y5POusD6CwWAw9EWXmQM9kFMy5NbHspCldtZEz9GrpLx55+TOfc0ovqRKt7JjBTPeXWaWZw7MnCg4au7LVN84Buq7JbfV3bYOXftbMdIyn/js0f+9Hn//D6+EXUcGg8FgBGIZ5YAhjZQZSiQFkXu/9hy+s28rv8yEUGvCnol1iSVFQo3ylJCZtGBdyeZFyF1VjLikeNTenImewxcw2NCN7LoCOOOclnrPo8GpnsFgMIAwlIOEwoeRWL4iwI46ljo9M7CiffoT990V6SowGJbBCt+kHVASfMAZ70LV9cvQ/LfT/DpHnBNxSfO5CgrWlaFgXZlh9QwHphAwGIxoIexQpkIBVpjIKRrtxc3GP0sQ6dkCIf0XWvnfDz/HpvQZ+mFke2Hl9siq9dIDYbul5Dpzlhai4uol/PKFPY2Y6B41pG52gflUMBgMszE8z0GkFAUrCwNWJ1giuPGJQf73cy8+aOhomVUUIoY5xGr892h/z/3Xp/Q681aVIKMyh1+u/81BdO1vMaJqtoDNSDAYDLPRrBzMdD+iekRbjcAe7miJlUbb7UQwu9np4UkA89FCiNP4HHrsGcYesaggxAJqnmvZ1tqA5Y53z+PCW416V4nBYDAYEujikGzEiJ8VRkti2ZdC6v73Hm7nf2fV5MGVGGdmlRgxgFHfmr+NsqIfTyyg9j4nZiZj3f1XovtAKzrfawYA9By6AFdiHIo2VhpQQwaDwWD40W3oV419vF1GBs0UHIyyK5UzDwqGnGI22TcGgMuOvOhDK8Kum1UIZkbFiG7s0hbFIg6nA8WbqgJMjDreOR/BGjEYDEZsQPyJZBQf4EtnvvILm5FalCG7n5JO1+6jdrEUxnNuahbHf/IOqIcipSgdS2/fEHaZSiKYMBh6EqxdYu+iNaGU4tBju/jltV+5As44ZwRrZC5Spp4fvuL/4eFr1gPAekrp4cjUzHj88kaETh/V95bBCIZhRuPM5t9ehBo57znYBurhFMnMqtygZek1GstG8q1LNEYks8K1RON9lcMz50H/qS5MD05gdnwGcgNV1Bu4PlYVA/8yaxcZDIbRhOVzoGTkPFgoO7uPHEfTrEHI5zg0yf/ufK8ZRRdXyu+r8ZlKdXqxNDtjV+zkm2P1iEj+e+hXEOxwT9VAKcX04CScCS60v30Ogw09/DbiJCjbUoO81aUghMyvJ1IlMRgMBsMowlIO1AptUh1zNHaA0Uju8iIMN/UD4Ebyxi4MIa0sS7fyg42Gibc9+UIL7r6pEoD1FLRYeJ/lhGvhejveA7PqrOQdsVJd9GKsfQhnfndEdjv1ULTtakTPkXYsvXMDXAlcwAPimJ/gTpTIomx1/O2XlrZq+45tkm3jM8/eF3a9GAwGQw5dohWpwa4KQqyPYGdW5wUsj7QM6KIcqJ0if/KFFky33YvtO6xhBiLEavXRGzXXZ+VvWm72wMp1NhIjr3tmdBo3XfcfeOGVfwmqGAQcMzyFU7/aj5Wf3wyH04HZsWl+m3vabUg9rUws9zsMBiMyGB+oXgIzO2C9BDbWQANlV87HHieO8Of6776pEk++0IInX2gJup9/+/Yd2wLeHSsLcnorCpG2M9ZyPbFiO68WK7+3ejLRNYITP3sX3/n4Vpz42T7Z/ZZ/5mJseOgqLP/Mxfy6uYlZnPzFe5gensTUwAS/3j09h9nxGUPrrTfbd2xj/QeDwbAVps8c+DHL9jdWOmIz8EzP8b/HLgzDPT2nKteB1PS63zxIjF8h8D+/7TtUVjZCGPW+2Um4sLpdPxCZ2QMr+mYYVZe5iRnUPysdZKbutnVILc4E9XoBQnj/gqTsFNTevBqNfzwGAJgdm8bJX7yH0i01cDgd8Hq8AIDjP3kHAOBwOZBalIGyqxYjKTsl4ByxOgvEYDAYehCRmQM/rPG2FxM9Y/zv8a4RdOxt0lROqFFwv+mQ3d4Pq9VXz9kGNXlM/Pv7sdMMgtWeoRA73ceRlsGAZUcc19Wkl2UhtTgTAOdLQETexhmVOVh992VIypkX9tvfOscrBkK8bi9GLwzh1K/24+wfjsAz5+G3Wfk5MhgMhtWJqHIA2CvkaaRNOyJNanFgXou+E53wzCq3AVY6+m2X90EvjHqv5JwZ9SDYM7LiCLkaYimcqFHEpyYELK+9dwuWfXIjam9ZHfLYuOR4LP3ERcheUhCwvuq6pYCMNeNo2xCO/GAPhs/3SyoSSlD6vGO9H2AwGNFPxJUDO2En0w4jKLyoAmklmQHrxrtGVJXhv4fR3MH6hQylwoaR71U4ZYcjJAtDcQrDc1odqWAJeqHXQIgd7mNaeRYcLq57cSa4QBwOJOelBkQeCkZy1Y+w9O7dIM75AYnWN85gzT2Xo+r6ZchfXYrSy6uRtTg/4LhzLx7H4R27MXSuT1O97XBvGQwGw2hsoRxEsyBpN6aH5/MdZC8p4E0E9MDvnBwtz9tqI+d6j4YruT4jhe1wsEo9ohVCCO+P5JlxY7J3LMQR0mVs/PZrvILgdXsx0tQPZ4ILyfmpyF9TiuobVqD2ltVwxge6zzW9dCL8i5DBSGXen+SMJTtjMBiRxBbKAcAUBCtAvRRzE7MAgJxlhVi0bbmmbKVS0TuEEYuM7HzNcoK3mmIQLnLOu4zIYId7n103bxZ05neHMaFylhEA4pLTkbl4PopR8yv1OPficbS81oDDj+/BeNcIMipysOaey7H4o2sCjh1rjubLMgAAZldJREFUH9JU70ialMX67HSsQAi5ixBCCSGVEazDbkLIbruUG80QQq70vQ9XRroufmyjHDCshcOlXilQwt03VRquCDKbcmUIFRypqFJKlSA7J0ezW32tRPGmKmQv4cx+PLMe1D97CJN946rLqbvrP5FSvEZyW8OzhzDc1AfiIEgvz0beqhJ+25nfHcHw+X5NdQfUKWB6tlks9Kl9EQh5Un/qX36GJSCErCOEfDMcZY4Q4vCVcZN+NTMOzcpBQuHDAUKWGYIWmz2ILMKRv7jkeF3LvvumygABNFTGZK3vgligZUpCcPz3K5iwoiaKEUMb4nfUDvfa4XKi6oPLed8DAGj47cGQfkria53r/nus+cffoOzKWl7ZENL6xhm4p7gwy+VXLUbu8iJ+27kXj2O4SZn/QTj3VG9hnvV1tudnAD4l+vt8RGvECId1AL4BoDKMMhy+Mm6S2PY2gDTff0tgWJ6DUHGmtY4mxnqm4kgyfG5+FC6lKD3s8rRG09Hj+dvJSVYrkbg2seJlRULVS2l7pDYqkxIBP1S7aQelQAghBCs+uwnnXz6F8Y5heOe8aHz+GJZ+YgMSM5MD9hU7sAuZufBlFKwtA9aWYdE2wOvx4uzvj2C8cwRzE7M49+JxLPn4OhAHQflVizE7No3RNs6s6NyfTmDDQ1cpqq9eOTqkcrr4UdL3GRlpjGEK71FKn4p0JRj2gFLqAWCpmSXdzYqUjMSqdVKUEwaNdtxiTmGBCMOWdh1oxfTQZJC9leGfQpf6MwOrCVtGvdP+6zTzeq06o2B2feTaRKn1fuFUalbWavdRKfGpCVhy61oUrCsDwLUjne+eD9hHbYQvh9OB2lvW8MvjXSM4tH0X+k92wjvnBXFq79rCfW+F3y7rQxhqIIRsIIS8TAgZIYRMEULeJ4TcJrPvHb7tU779XyaErJPYL5kQ8ighpIcQMkkIeYsQclGQOnyIELKHEDLm2/9dQsgN4ZYrOvYBn6nVJRLb1vm2fVWwzkkIeYgQcpwQMk0IGSKE/JEQslTi+GpCyJ8IIeO+/Z4lhBT6yvymaN+Q5fqO+YlvcZfATOwu3/bLCSHPEEKafWX0E0L+QAhZIiijEoA/i+xnBGXs9m2X9DkghNQSQp7zlTlNCDlBCPmyxDXvJoS0E0LKCSEv+J7dICHkR4SQBPH+StB15kBJw661o5MaSfE7scpl2Q0XNkMRSN6qEgye6YHX7cV4xzBO//oAyq6sxdTAhC9yUUboQiyIlYQuPd858XVF8jqNOHc4s4hyI8RG1FNulkruXOK6Wen91AohBKVbatBz+AIAYPBMLxaF+ao745yovnFlQGSiltcagNcaAvbLFoU7NRpxXyV+R8XPU+69YP1PxKkTJ+kD0EUp7VJwbCohJFe0bpxSOi13ACFkE4A3AQwD+F8AowA+AeBZQkg+pfRxwb4P+fY5BOBfAKQD+DsAewkhV1JKDwiK/i2AD/n+vwVgFYBXAQwAaBfV4SsAHgfwGoB/A0AB3AHgJULInZTSZ7WUK8GzAP7Hd33vibbd6Tvvb0T73wTg1wB2AsgBcC+AfYSQiyiljb7654IzzcnyXUcrgOsByGnoSsp9HkApOLOw7wKo9x37ru//xwEUA/gVgA4A5QDuBvcsllNKewH0AfiMb5+3AfzYd2yP3A0ihFT77k0cgB8A6AJwM4AfEEIWUUr/QXRIErj3Zw+ArwK4xFePPnDPUhWGmRUF6/j0PIdVTReikZTCdCy98yKc+r/9ALip/dY3zgAAeo+2o/SyahReVBHJKjIYighX+BYeH8oUSMt5Iq0QKL0mNRBCkJCRhJmRKQDA4JkePtGZ1nNl1eSh5iOr0HWgBRNdowu2560sRvGmKu2VDhMlAr64H7P7TJERrPzCZqQWmTP4NN41ghM/fRcAnpbY/C0A31RQzKO+PyH3gRPy5HgMnFC8iVLaAgCEkCcA7APwPULIU5TSIUJINoD/AHAEwGV+hYMQ8n8ATgHYDmCTb9314AT47ZTSB/0nIoScArADAiGeEFICTmD/IaX0K4L1PwAnCP83IeQ5SqlXTblSUEp7CCGvA7iNEPIQpdTtO94B4HYAeyil7b51twL4GIBbKaW/F5zrlwBOA/g2OAUGAL4GoAjADZRSv0LwQ0LIMwDWCuugtFxK6XFCyHvglIPXKKW7RZfzz5TSCVHZvwZwwnfMI5TSCV8dfgXgvEKTs++CU3I2U0rf85X7QwAvAXiIEPITSqlwJCQbwHcppf/jW/4RISQTnIKgWjnQ3azIDDMCccduhDMYmwqWJiknBau+eCkSMpIWbGvf2xSQB4HBMArhrIGWAQI7+EZEGiOCTVReW8f/bn7lNNzTc0H2VkbmolwsvX0Dlt6xAQmZXLtECFB1/TJUXFOHuBRNs+phoaRPYv2M5fkEgPWivycVHvu/AD4g+ntBbmdCSAGAjQB+41cMAMAn+D8KINlXBnz/kwA8KpyJoJQ2gxsJv4QQ4p8u+4jv/3+JTvkkuJkJIR8FEA/gl4SQXP8fOAH1LwBKAPjNbdSUK8fTAPIAXCNYd4XvPELF7A5wo+a7RfWaATeyLjz+RgBnBIqBH7GiprZcWYSKASEklRCSA2AQwBkAisysxBBCnABuALDLrxj4zuUF8H1wueI/LK4KuNkPIXsA5BFC0tTWIayZA72VAKVmAnffVIntO4wZ3QKsO51rFWfs+NQErLjrYnTtb0Xne80B29xTcxgbH8Lc+CwGz/ZgvGMYcamJqPnIKiSkJ0aoxoxoQ6wYGNUWKCHaRniNVJbSSrOQUZWDkeYBUA9F3/EOFG2s1KXslMJ0rPzsJnhm3PDMuhGfFtn2JlRbLdweCwESbEgDpfSwxmPrKaWvq9jfP711WmLbadE+Svft9f0fp5R2CHeilM4SQs6LjvVr7u8HqWc+uNkJNeXK8UcAk+CUsL/51n0CnHD+e8F+deBmA2TDjhFCHD7BuRKcaZOYsxLr1JQrCyGkCMD3wCkmWaLNWmMp5wFIgbL3wU8PpXRKtM6f7CUbgKpMlIaZFalFieC7fce2BUJAtNnmBkOtYmDk9DRxOFC8qQqZNbmof/p9UMqtP/uHo/DOeQL2dU+Po+u9ZlReu8B3KOphJgLWxW/OofbZRLsAp/W+KKXy2qU49uReAEDHO+d1Uw78OBNccCZYpmtThVBJiKW+jaEIqmFfEuQ4sUOF35LkFsgLksc0lCtdQUrHCSF/AnATISQZgAfc7MVfKKXDono1A/hSsOJCnU5iXdjl+sygXgHnk/AoOMVpHIAXnJmYkbnExHXzSO7FoeiZCNHcgs50P4I4k2wAhQgbSeZzII9Z9yU5Lw3JBemY6OZmEsWKgZ/+U13werwo2bxI0iSJwbALsdDuaBVGlSjD4hwpI839yKgS+25GN3LmRHIDQGyQIerxT8Evk9i2VLSPcN9DMvu2+P6fB3AtIaREOMpPCIkHN/J8RHBso+9/l9CURQY15QbjKXA+Bh8GN2OQiYW+Ho0ArgTnhxDKDrEFwGKJ9Usk1qkpV05JWOn7+yyl9JfCDT7fEOHMgRrlrg/ABJS9D4YQVhI0PQkn6ogfpdGSoj1DrlSoWCOvNWdpYcBywboyFF1ciarrlyEpN5VfP9jQgxM/34eDj76J9rfPhe2fYKfnZ6e62gk9wqVGe3tgJuKRb7l76oyfz7DevrfJlLopJbF8p6G+AFJli8M3y73P7B2NTiilPQD2A7idEMJH9fCFoXwQnPmN30zpNQBTAB4Uhqn0HXc7gH2+CDkA8Cfffz4sqI+7wUU4EvJ7cOE2v00IiRPXUeDHoLbcYLwCToD+hO9vBJx/g5BnAKQC+FepAkT1+jOAJYQQsUD5kMShasr1+xWIzYb8o6EBI/OEkM+AM1ni8eUymJEoYwG+ff8MYCshZKOgXAeAfwKnaLwUqpxwCGvuNZJ2vnJYsU5WIdi9CZa0JxR5q0uQUpSO+NSEBc5/mdW5aPrTCYxeGApY332wDd0H25C/ugRlV9aCOBwYvTCElr+dxuz4DNJKMlHzkVVBzQOEI7hWfebMltheGBF5SG+s4nskh1T0nQWmSoIQkXmrSsyuYkSRenZS7W8szFAxAngIXCjKfb4oRWPgBOZ1AO6nlA4BAKV0kBDyr+CcnvcSQp4Gl133XnBC6oP+AimlfyWE/BXAA4SQQnAOqqsB3AYgQCunlLb6QqQ+DuAYIeRZAJ3gwnReAmA5gAq15QaDUuomhDwH4IvgBO2nKaUzot2eBecA/Q1fuNfXfPemAlyY0tMAPunb9z999+z3vihLLQA+6LsGIHD0Xk25/hmah30RgKbAKXMNvr//8SlnXQAuBhceVcr34iCAawgh/wguolMvpfRNmdvzrwCuBfA6IeRxAN2++l4N4H9FkYp0x0h7KFWEM1KjZ0cdDdEjgo2mSnU24V4zIQQpBemSUUGc8S7UfnQNln1yIzIXLTQd6D3Wgc59zRg+34+zvz+C2XGuXRjrGMaRnW+h51BbWHWzClZVXvTGbiPwsfJczEaYdE8qAZ8zbn7mIBLRhILhj4Cn9j0O571XmviRva/RC6V0H4At4Oz6vwrgEXDC/h3CHAe+fR8FJwQTcM6wXwVwFMDlohwHABeucweAq8CFKl0GTuhcEG6UUvpDcNGQWsEpGT8E8AUAbgD/rLXcEDwNLpZ/IiTCx1JK/bkW/g6c2dE3wSlGt4K7VzsF+/aCu4dvAvgyuJCvY+ByEQCcUK+l3EYAXwGXB+En4HIwXOELwfohAHsB3A/gvwGU+e7JBYlrvQecovEtXxn/LndTKKVN4JSyV3x1/G8AheBC4v6j3HF6QShVYwbFZa8DcGjD119CWsUKANZosCRHp2T2k8J/TLDkNXZFSfKlcGYO1OB1ezA1MIkLu89ivHMk9AEEWP7JjQHmSUKY0552jJh1UZroy0qYlQxND6w+a6CUg4+9yY/hLf7oGqSXZ0e2QmFiZDsk9Z0KYvGvDyOijuXxyxsRynMQ1fc2liCErAc3an8npfQ3ofZn6DRzYIWRQuHoVLj1UTqKYxeU2GSbdc0OlxMpBWmou209siQyl2bV5qH25tXzK6gv66kMVhXirI5R36w4YID4nFZoK+yCVBz8aGmX0svmzW5diQvMmy2D0vdV6SytFszIHcRgRAuEkCTRMgFnp+8BZ/7EUIBm5WCm+xE962EZoqXzBeaFC7+AYTX796rrl/EZUv1UXrcMGZU5WP/AVjic3Os50T2Kg4++iXMvnUDf8Y4F5bDO01rIPQ+rvX92IRpMHcUkZqfwv11J1lUO1Aw2Cd97Yf6NcIjGZ89gGMxuQshPCSFf9tn27wZnVvQ4pbQzslWzD5bxOTALoT1+tAuUQkVHrCBYAYfTgUXblmPpnReh4polWPXFS3lbZOIgKN4cmONj+FwfWt84g1O/PsD7JjDCw+j3QU64sYqCYJV6SCGezYsmQZE45x2Sj//0XcO/53CesxalVq/vKpoGqxgMk/gzgE3gfDH+H4BcAP8A4O8jWSm7odnnQGgDGMrO39+pHf/pPuzLLTJcINma/G+mnMcIImVTrNT+3CzfBD/DTX1ofqUenhn3gm3ZSwpQeW0dHC6nxJEMRmhC+SAxjGF2fAbHf/JOwLrqG1ZImhrqQbD2TamfjFofHTk/BD3a0Fixi2c+BwxGZNBl5kCpPfuqL2zS43Qh2ZfLhZeVi8xj5RE4PYTuULbdwe5BqNExs/0xMqvzsPbeLVh33xULtg2e6cGRnW9hdmzatPrYHfHzVfMtMJ8BayE2G7QT8akJqPpgYH6fpr+cxMyoMd9ysJliKd+YYPvp4dOmFTs+awaDYT90c0hW0mBu37HN9BG5aBRmlHYQcs9FLOBLJU2zGg6XE+sf2IqaD68MWE89FB3vSIUTnsfKQq2ZdZN7F9QQTSPqVn0n1OB/fv42wU7CY05dIepuWxew7sTP3gX1qpvN1oNgzvNSCd2UvDvBEnRqVRCYmRGDwTADXX0O9BR0jBoRs3skIqEQoMf9sZOARBwEmdV5WPWFzcionA99GMo0zsoCrdlOuuHcCyvfRy0oHUmOBOK2VC6rrv+/8Ld/fzsoDKnFmQtmBc/96Tio12t6XaR80ezUPjIYDIZeGGJWpEeDqpcQf/dNlWGXYSWUJspR6nRtBUFILfFpiUjMmo92klWTp+g4ufcykgKAmee26rOOpPBqVEz6cPF/u34l4ckXWlQdL6UwWBWHy4nam+bDF480D6BrfysAYHp40jBTo2DoFbBCHMGIKRsMBsMO6OKQbDVCOUhHE1ocmKWOsVPyKs+sGyd+tg/u6Tk4E1xY83eXgThC67lS74URicDUwhK5RQdGPUcrvKNmMD00idNPHYDXzc0axKcm8FGMXAkuJOenIbU0E7Oj0xg+3w9XUhwqrqlDWkmm4XULlihP6fPR8/2IFadZ5pDMYEQGy4Yy1TqaGC0jM2JnQ7n7sX3HNllTIznTI6uPJIZi+Fwf3NNzAICUwnRFigGwMGa5Vd6VWAiry1CGlJNxrLwfiVnJWLRtOeCLcioMb+qecWP0whA69zWj/1QX3FNzmB6cxNk/HMFYx7DhdZOLciRuT4LNDsTCM2QwGNGBJZWDcMJ5+s2I7GBvGwy/WYBQ+A+2rxC/cKHmHtoq/4NjPkZ6fHqiqkODJeeKNFaph1qsomRFEr3uQbC8BnZty9SQWZ2H6htWwBkfGJ44LiU+IDeCH+qhOPficdMUBKXto5ySYIv2lcFgxDyWVA7CHdmOFgXBj9L7IdzPLvbGWkgrzeJ/95/o1JRAKVZMNeTQ2+E/VhUEo+zI5b5bu7dlSsiqzceKz25C9uJ8ZFTlYPXdl2H1ly7D2i9fgRV3XYKVn9+M9Q9uRXYdl13dM+NG4/NHMdIyYFodY7XdYDAYsYElfA70TqwVjaY0sYISoZ1SikOP7QpYV3ZFLfLXlCg2MYp1Est38kp0uN+G2JY6VhSvYEpBtF+7FfB6vGj522kMnu3l11VdtxQ5y4oUHa+Hb5pSxVDv9yFW7OKZzwGDERkiLkkpUQzsmuzHbtEphDazka53sHoQQlDzkVUB6y7sacSxJ/fiwp5G3h+BERy1EXAY84T6PiL9/cQCDqcDVduWI600k1/X/Eq94qSIekUjUrIuWKQ09q4wGAyrobtyICXAB2sA1YQsVbOf8E8JVlI+wqmHmmOF12yVDkppx5q5KBdr7r0cOUsL+XXuaTd6Dl/AuReOh8x9IMYqz94s/LbPes+o+UdjhWE4GQythPoupQYK6n9zEO4ZfQYIlLQjcgpCsMRq4mPZd8JgMKyE7sqBEaZBRiUuE89IRNL0SCo6kVKBVS5KUbDjrXDNcigd0XMlxKHq+mVYeudFSC+b90MY7xpB62sN8Lo9is9pxftgF6wYHtZolDqlMsInVFvmjHdhycfnMy3PTcxi5Hz4/geDZ3pw6LFdOPjom+jc1xxUUZBLnKZksIM5KTMYDKthis+B2vjO4UQrUoPRArKZ+RaE90ysWCnBauH3gsUVl2NqYAKn/m8/v5ycl4olt62HM84Z5CiGXtgpV4ZehFIAYuEeGIlYKZBrz9rePIveY+388srPbUJCRpLm8w40dKP5r6cD1iVmJyOrNh/5q0sQl5IgeVyob0BLuyZFrNjFM58DBiMyaJ45uPP2xxXva9UQmUbNSGhFOOKv1sxFrBjodV2RGv3U8q4k5aQgZ9m8mdFk3zgGTnfpWa2owCgTKrXhcK1gdhTu+a3YrkUzcu9uUm5KwLJfMXDPzGFmdJof9Z8dn0Hf8Q6c+f0RnH7qADwz7oDjhs724uCjby5QDABgenASXftbcOzH76DpzydBvQsH1sTvQywqzAwGw/64tB74zLP3GaLJx5rttxxahXupcKbhYiczkcprlyK1KAOtb5wBAIy2DCJ/dWmEaxWdhDszJk5KZybi5FWxFGXJTgjzvPh/+5eHe3vwv9/4IBKzU9B3onPBse7pORx94u2g5R/90dso2bwIWUvyMXCqG53vNSuq11BjLw5t78WyT1yE5Py0BduFvgShvhMzZ5gZDAZDCZqVAzF6mgJZaTQ/HNQ2+JG8biXT38GEJ7WmY0rrpFZgI4Qgd2UxrxwMn+/HwUffBHESVH9oJTIX5epSN7tjluleKCIhFBmhkCj5fqyOHYRU/zt7zbqv4nuf+qDsfkONvWj688mQ5VEvRfveJrTvbVqwLTErGTU3rUJiZjIAzmyxY28Ths/38/uc+f0RrPr8ZjgTpLtSsWO+3P1liimDwbASujgk6znabwWBRSl6CwBWipgUzFxCfN2hwvSFuk96XzMhBIUbygPWUQ/FuT8dj8kwp+L7r9c3Fk2CjN7Cmd3MjfzXb0WlRmgyyc8iPPgxpKZkS+6fu6IopGKQvTgfjiC+SMs/czE2/PthXjEAOLPFmo+swoq7LuHXeWbcOP/XU5ibnJUtS/guWPH+MhgMhpiwZw6sHPXGDKJ9yljO9EOJA7Oa65YbydZ674o3L8J4xzDGu0bnV1Kg70Qnii6q0FSmHREKfcJ7GWvfq7+dCpbbwc7fabhE0sRLCeL3NSk3BYNnegPWfeyhb+FU90uo/83BgPWll1WjwDdY4Jl2w5UUB4ALUzraMojhpj4Mn+9HekU24lMSkL+uDHHJ8bJ1ScxKRkphOia6ubZlpHkAx57ci9V3Xxb0OLl7LDZBEq5jMBiMSBDxJGjB0GNE2ciReLuNDmpFyTWGcy+McAx3OB2ou30Dlty6FgXry/j1HXubcPDRN3H66QMYOturOh+CnbGy8GcGYsVAqyIbrYTbnpk561nxgaULTAR//+g3FigGtbesRuFFFSCEgBDCKwYAN8OYUZWDimvqsPpLl6HqumUouaw6qIDvp/Lahec/+cv3MDs+E/Q4OZNMpbOxDAaDYQZhzxwYOQIZbtmRtqtWO2sQiw7Efox6VmmlWUjOT0PPoQsB6yd7x9H0l5PIW1WCiquX6H5eq2L3maxwUJrNlqGOSJhCOuOcqP7wSrS+fgb9Jxc6IwNAyeZFyKjICes8ct+L38RoZnQKJ362DwBnYtTyt9NY/LG1YZ0TkE6Oxt5VBoNhFqbkOVCK2YJLNApKRnYmVsuFoIa5qVkc+9FeyW3rH9gK4iAm18h8ovF9Z0QWpYqBkYM0U4MTOPficcwMT/HrCjeUo/TymrDKVTrI0vp6Q0C0pLVfuUJRbhUl7alcKNRYicXP8hwwGJHB0mZFZmBErHUrxG83AzuZVcUlxWPd/Vdi5ec2Yf2DWwO2DTX2yhwVXdjlWTHsQzChX7jNyNmFpOwUrLjrEuStLAYIkLU4X1YxUFMPpe1bckFgKNPzfz6hyFxRnBNE6nzsm2UwGJHAUsqBuCE0ero62AiNVqJZKVCb5MpqOJwOJGQkgRCC1OL5UShXYlyQoxgMhlr8ioFZCgIhBBXX1GHDg1eh+oYVsuczYgYjd3lxQHS0kZZBnFcQRlVIsPbUzm0ug8GwJ5ZSDsSEasitNkJvhlOZ0g42VjsSJeFTKaWYGeFMEJzxTqSVZQUtc7J3DJ3vNWN6aFLXutoZK4XdZVgDKYXAvyzO4O7HyHfILH8z4iAovbwGZVfW8uuGzvVJZlBWg7Ats1I/x2Awoh9LKwdKCafh1HNUxgyBXNzhSdmkxrJiEGzZDyEEnlkPAMAz68GFPY3wzHkk9+073oHTT7+Pzn3NaHrphL4VtjGxFgqVIY1QuBcGFQgm9AfkK4iS92h6aBIXdjfOryCA1+MNr8woSKzHYDDsiW4ZkiOB1WNzA+qdQNVE7ZGLYc8ITU5dAe9E2Hu0Hf2nOlFx1RLkLCsCwHX2bW+exWjbIH/M1MAE3NNzzAzJR7QIdgztaHkHhAqE1nfIahHZxtqHApbzV5UockoOhTBqkVWulcFgRD+2Vg782L3RFHaSTODSjlhZDPZelF+9BBM9Y5jsHQMAeOe8aH6lHhPdY0gtzsD5v56SPO7oE2+j4qolyF1ZHBMRjhgMpYjbMTmbfz1nDawiNKcUBkbSKd68KKzyxIqTFa6RwWDEDrZXDlijyWGVTtIuEEJQfcMKdLzbFJBptfdYO3qPtQc9tvXNM5gamED5VYuNrqaliXQeEYa1kPI1kNtPia9BsPdLKnjF9h3bItYODjZ0ByyPtAwgp65Qc3ni6xbeL/bNMRgMo7G9cmA1tJg6BWvsjZg+j9aORm2Oh4TMJCzatgJVH6Roe+NMQKxyAEivyEb1jSvhcDnQe6QdF/bM2xT3HmtH3qpiJOWm6ncBNiOa3h2GuSh5d9S8X37FADBmoMQ9PYfZ0WkQpwMNvz0Ez4wbqcUZKNpYAUe8C90H2/h9HXFOpJVkLigj3BkT9r0xGAyzsJxDcjRGZgjXYVrvMqPZhEmLQzYhBOVXL+FnAhxxTpRdWYvFt6yBM84JQggK1pVh5ec2BRw3UN8tVVzMwqIXMayCnv3I9PAkjj7xNk4//T5O/d9+eGbcAIDxzhE0vnAcZ54LzJO14q5LEJ+WuKAcYdQmtURjW81gMKyL5WYOmGmM9HS6ngpTtApx4bw7hBDkry5F/upS2X0SMpKQWZOH4XN9AMBHPGLErokRM+ezDlKztno8H2Hm5VDkLi9CfGpCWOdjMBiMSGOpmYNomzHQit8m1/+ntHNTOloWzghWrJMuyInQd7wDg2d6FGVDjWbklM1oVUKFMMXAXELl15B6HuHOIqSXZyFn2UL/gbxVJUjITIIjbr4bLd5Upfk8DAaDYRUsoxxE8wiclusSC+9qyhB3hCxhlX7kLCuEK3F+wu38y6dw6LFdOPjom5joGY1gzSKHlLIZqzMJkSSWvvFQCoKckqAF4nCg6rplKBFFIBpq7EXltUux5p4tWHHXJVj/wFZJcyIGg8GwG5ZRDoxUDMIZNQqnw9WakEwuSVA4CgJDH5zxLiz5+HrJbef/ctLk2liXWFYMIiWkx8I9F2db1qIkaKXo4krU3rSaX3ZPzeHMc4cxfK4PiVnJikIbR6NPHYPBiD6IWpMIQsg6AIdWfmEzUosyQu4fSSKVKCeSsyBWSw4UrUx0j6L+NwcD1qWVZmLJresiVCOGEaiNgMUwFqkszGYrRZ5ZN0787F24p938uqKNFSi6pAoOpznjbeNdIzjx03cBYD2l9HCo/e1KJOSNWLm3DEYwLOeQrCex2JnH4jVHAldiHIiTgHrmlevam1cHOYJhN6J1hDdSQrUeCOss9M0Kta+eOONdWPmFS3HkB3v4dV0HWuGZ8cR87hMGgxEdRLVyoAY9RwiZgB79dL3fwisGrqQ4LP/URjhcTt3PIxZQ2bsVOaLFLyrSI+96ojShmt4445xY/8BWdB1oQee+ZgDAaOuAbuXLKabR8P4xGAzrYxmfAyWE6gTCzSegt42qFvw2qcw21dok580nPyu6uBJxKVz4Qq/bg9HWQcxNzepyHvH7yN4J84h0W2A0LGpZeBAHQVppJr/siNNvcMCI/DYMBoOhFEOUA6NGckJlEo6GzlzNNQin1GMpUokVSCvP5n9f2N2Iqf5xjHeN4PAP9uDs80dx+v8OYLRtENQbfphTsdLKBATz0KtNsYvSL2xH7BLlTKzkKFV6wnkWnjkPjv7obZz53RF+XUZVjqay1GLl94fBYEQHupsVRaIzibbGUo1AIsx2HA1mAsGwkgKYlJ0SkBDt1K8PBGyfm5zF2T8cRUJGImo+shpJOSlhn9N/7dH2vlsdI945K73LQsRCthWRC5MrV18jkkq2vtYA99RcwDqW44DBYEQLhswcmN2pWMEcKBLI2dvaZcRPDWqSwZlF1XVLEZ8ePK75zMg02nad1fW8VrsPjNCInxl7hupQ2qaJ91Eys6pFUXAmLBxXa3rpJKjXq7osOdg7Yi8IIVTh3+5I15XBCIXuMwdWGG2KpQRMUtE7zHbSMyN8qhWfpzPehdqbVqP5r6fgdXuRWpIJZ7wTBevKMNIyiNbXGwAAE10jEa4pwwowYU87Sr9/8X5i52s51M7klG6pgcPlQM/hC/y64fP9OLR9N6o/tAJZtfmKy2JEDZ8SLd8C4GYA/wigR7C+BwyGxWHRimxAqI5LqAwJFYRwz+lHaacprqfUiFw4ApKRphha71lSTgqWfXLjgvVpZZn8b6/bi4meMaQUpIVTRYZKrGq6wwgPLd+pVMZ5cfuk5n1xxjlRdkUtyq6oxeDZHpz/yyl+W9Of55MhphSmo/am1XAlxamuM8NeUEqfEi4TQmrAKQcvUkrPyR1HCCEAkimlEwZXkcFQjOHRiiJh3mLFUeZwCeXMKLzPely/0uhNUvUxyunSTjMT4rCm9c+8D8+cR9dzmI3wuVrdsRaQFgAZ+hANpotS7YmW9yV7cYHkAAHAJUs8/cz7GO8cUR2cgIUzjT4IIZU+06L/Rwj5NCHkBIAZAF/0bXcSQh4ihBwnhEwTQoYIIX8khCyVKCuZEPItQsgZQsgMIaSXEPJ/hJBS0X65hJAfEEJafPv1EUL2EkJuNeeqGXbE0JmDWDLvMZJQQo7QjCjSTslMGOOIT01AwbqyALODia4RpAuiHNkVuz1jNoOgP6xdDyQ5LxXrH9yK/uOd6NzfjLmJWaSmZGN8YhCzo9No+O0huBJcKN1Sg9wVxSHLs9s3FqXUcYP6AXRRSrt0KPvDAAoB7ATQBcDvmPYsgJsA/Nq3LQfAvQD2EUIuopQ2AgAhJB7AawDWAvgZgBMAygF8GcCVhJB1lNJ+X5m/B7DOV14jgEwAawBsBvA7Ha6FEYUYqhywDkQ/Qgk3QrMiM1ETQSfWBLTizYsClAM9IhZFEjuOxMfaO2cXrDJwJH6nw3lfCCHIW12C3JVFmOwdB3ESnP3DGBIdaRifGIR7xo2W1xqQvbQQDqetUgxFnITCh5FYvsKUc83RkwBuBICnJTZ/C8A3dThNHYBlQnMj30j+xwDcSin9vWD9LwGcBvBtAHf4Vj8AYCOALZTSfYJ9fw/gIIB/APAwISQDwBUAvkYp/U8d6s2IEQxRDuw+UqdntuRYIZTgGJP3kQaaEeiZJMkq2P1bj1b09vcxCisoCXorvcThQEphOgBg+acvxnBTP8ZfH+S3n3vxOPJWFqP3aDtmhqcwOz6DnKWFKLqkEomZyYbUiaGJTwBoEK3TY9YAAF6W8EO4w1f+bkJIrmD9DID3AFwj2vcQgEbRvu3gZgeuAfAwgCkAswC2EkJ+SSnt1an+jChHV+VA2JiFimBjhU5BDjlbVCt2rlaCdWiBOOMDP6/Bhh5kLcmHK8Ec50QjokjpOdLKMBcrtWGRmumUQqrf8hPu/YpLjkfeSs6MyB+9bLR1EKOtgwH7DdR3Y6x9GCvuupj3V2LtacRpoJQeNqjsJol1dQCKAPTJHUQIcVBKvb59k4Ls2wYAlNJZQsg/APhfAF2EkMMAXgfwLKX0WBj1Z0Q5pkUrigbnNSYUaSOW71Vyfhome8cAAK1vnEHrG2eQvaQAldctVWRaoFfkKb0VBIa1YYKltcheko+u/S2YHZuW3Wd2bBpNfz6J2ptW8+tY4sOoZUpinQNAM4AvBTmOCvbdB+DfZfbjXzRK6Q8IIS+As5W6AsDdAL5GCHmYUvp9lfVmxAi6KgdaOyS9I+2YgZVG4ayEHYQSM/Iy+Ekvz+KVAz+DZ3oQn5aA0strQh5vl+/BCpj5XO2AHb7FSGLGvfH3E854F5Z98iKcf/kUJrpGQJwOpJVmouTSajjjnTj243cAABNdo5LlsHc6JmgEcCWAPZTSOQX7ZlNKX1dSMKW0HcATAJ4ghCSBc2b+DiHkMUrpTBh1ZkQpus8cKHGcFY6GSmW0tKpAxBpoZQiFEivfMy11VHtMyWXVcCa4MHy+P6Dj7z7Ypkg5CAcr33sj8L93THFnKCGY8qTX++M/x3TbvXAlxmHxLWsW7CMMceqengOlFBJRchjRzzMAPgTgXyHh9EwIyRf4DDwD4LuEkLsopb8U7UcA5FJK+wghyQBAKZ30b6eUThFCGgBcCiANnE8DgxGAaWZF4ky+ctsAaysIDHujZrRQrAiIbZOVCBCEEBRtrETRxkpQrxeHtu/mt53/y0kUbapCUrb+UYxi/RuyqoJg1XrFKuKkjUY8m1BlzowGWpgcemwXknJSEJ+WgJLLapCcl6p7nRiW5FkAHwHwDULIJnCj+2MAKgBcDy5i0Sd9+/4vgA8C+AUh5AYAewHMAajylfEcgK8DWAzOwfkPAE4BGAWwHsBnAbwiCHfKYAQQ8XhqUgJMLAs10YKSBGpWIFgdhUqB2N9Ey7URhwPVH5oPxzd4thenfrUfXo9XdVmhCPYNhZPAzAhTDD0TqoXK0B1JhAnkogl/QrRo8CsLhlHXl5CRhIT0xIB1UwMTGGkZxOmnDqD/ZKch52VYC0opBReF6O/A5SL4Jjgl4FYAx8DlKfDvOwPgAwD+GZwC8D3f3w0AXgWnaADABQC/Ahf29BsAtoMzXfo2gI8aekEMWxNx5YBhD6Kh8wcCBQC9lBc1wm1WbT4yKnMC1o13DOtSD6VYTWnT2+lS7fWFyj6uF1a773oQTptgxD03so0yatCKEIIVn9uErJo8ye0trzXg4KNvYrxrxJDzM4yBUvpNSikRhiyllLb41n1d5hhKKX2SUnoxpTSVUppCKa2llH6WUvquaN8ZSun3KaWrKaVJlNJ0SukySulXKKUnffsMUEofoJSupJRm+MpbSin9FqV0wtg7wLAzEVEO5DoEuYbdbkJptI0MhovVnl84sxrBjhMKmcEEn4yqQOUgKdd8swEjrl8PIv3tmKEgaL2HWoRppefSUrbfdE34pxTxuYINPqgZmNAiwIcq34z2ixCC6htXYs29l2Ptl7dg8UfXLNin4dlD6DvRYXhdGAwGI2IzB1IdUbSYE0VzlBAt12XX56r0WtUKe93vt/K/c5YWIi45XtXx0YjeSocaIdwIEzgjBUo5QV7rOc1sq+TqHky5UKt4qCVY+Wrv6WTfGNrfPoeRlgFQURJEJbgS4uCMdyG9PBtrv7wFeatKAra3vn4G08OTMkczGAyGPhC1DRghZB2AQyu/sBmpRRmKjvE3sP4GWO9EMwxjET+/WEBLhtlgx8yOz+DC7rMYaR6A1835GCRkJGLFZzfZKjJJNDvU2iGPid5tp9nXbMe2X6lz/8zoFE7+8j1QD9en1nx4JTKrpU2F1OB1e3D48T38cvnWxUguSMOJn74LAOsNTNQVcfzyxoavv4S0ihUh99eDsdaTOPj/bgSi/N4yGMEwJVqRuGGN5pH1aCMWFQMplAgxwfZpf+schhoDk1lmVOXaSjEA7CHM6YUVw/GK20696qj0+HDbAzX1NKrtcU/NYaR1AIQQZFbn8hmJ5eoQ6vwzI1NofePMgqzH/Se7dFEOHC4nlnx8Hc48x8mp1Kt/AAMGg8EQYloo02AIOzjxyKQdE6RFE7F8z9UKXMEEicEzPYErCJC3slhr1SKCFYVlvRAPVlh58CKc0LrByguFXsK6/zsJJXjr3fZQStH25ln0HZ+3289fU4ryrYs112GwoQfn/3pKctvw+X7MjEwhISNJW4V9eD1eNP/1NL8cl5oQVnkMBoMRioj5HIg7JLkQhFqc3RgMrWhNohXMNrn1jTMBy9l1Bai5cWVEHJEZ6rCyIqSHr4SW47X4Nojb9EgEKRis7w5QDAAsyF6uFM+MGx3vNC1QDAo3lAcsd77XjLnJWcyOTWs6D8D5KAmPz6jK1VwWg8FgKCEiMwf+ESNxx6TXSBiDoYVwRovllFfPnCdAICnZXIWii6sWnFPqXbfaN2ClupiBXa7X6HqKBXmpUf9gswBSkYkiQf+prgXrxjtHMNE9ipTC9KDHeuY8GG7qw2TPGPpOdIB6aEBm47jkeKy46xI4E1zIWlyA+mfeBwAMnO7GwOluAEByfioqr12K5Lw02fMMnetD3/EOJGQkoXRLDRwuR0D7UXntUjjj5M2gGAwGQw9MVw78HYNUhyPGasIRIzKYke3XKMdM75wnYLlgQ0XAst+UTk4xsco3EM0mRdGEEXb6wpF+f7mhstyHKs9svG4PJnpG+eWUwnRMdHPL9c8eRMHaMpRuqZH0Aep4pwldB1oXrAcAZ7wLxZuqkL+2lD925Hyf5L6TveNo+O1hrPvKFZLbR1oG0PTSCX6573gH0suzMDcxy50rwYXc5UUKrpbBYDDCwxI+B8xkiBEMM98PNXHhlew/PTCfZya7rgAO50JLPjs46EezUiAVQcfqz0OO7Tu2aTaNC1WuVvz1UKu46DEoQCnFRPcomv92Gt45zpE3e0k+Kq9dijPPHcZEzxhAgZ7DFzDZN44lH1vLH+t1e3D2+WOSSQpdSXHIX1OK/LWlSK39Cb9+uu1e5K8rw0TPGEaaBxYc553zYGpwAknZKQHrZ8dn0PjHYwv2H20b4n97ZtyglNouiAGDwbAfpisH/sZequG3c6fMsDfhJKYKdmzHvmb+d0ZFtmznLnz3o1kQV4IZM0VA8NCz0fAMrDLrBGib0Qj3HXBPz+HoE28HrItLjkf5VUvgcDlRd/t6dLxzHt0H2wAAY+2cID43MYOOd85joKGbD0sKcMkKy66oQVxyPBKzU5BU+YTkeV0Jcai9aXXAutbXG9B3ohMAMN4xEqAcuGfmcO7FQMXAmeCCZ8YduC7eyRQDBoNhChGbOZBr+IURi5QqCnaMnc2IHoIJYTND8wmLml+px4W3ziF7cT7iUhOQt7IErqQ4fjt7bzkirRjYHWHbaQUFwSxlT0zraw0L1lXfuAKuRO6bIw4HSi+v4ZUDUGCybxyNfzzKm/IAXD6SRTesQErBvF+C2vcnqzafVw6EoUgppTj3x+OY7B3n15VeXo2C9eWYHpgAcRDMjs9gpGUA2bX5Cq+cwWAwwsMSZkViwhm9i3RHyIgNpOLNS717eatL0CmYPXBPzaH3GOdgODc+i/Kr5MMoRiuREhaFxNIsZaQVhEg969mJGf536eXVyFtdKunMSwjgzwXa+PxRzE36bPzjXciuK0DxpqqALOZa7ufM6BT/e7RtCLMj0xjvHIZ7ag7Tw/Pb6m5bj3/93jvYvmMbH80sMTsF6eXZqs7HYDAY4RCxUKZ64g/pZ0YHGKlIGwz9COYArAapaFvicosvqUL1jSuRXrGwc5/oHoHXE35CI7sJuZFWDPwI241oG1QIFgkuGpFql/3RhOJS4lG4oUI2yk9S3nxI4bnJWaSmZCM+LQGr774UFVcvCVsx4Coz/3P4XB+6D7VhvGs0QDGovHYpUoszLPN9MBiM2MVw5UAYnSgaBGvWcDOEKBEUsmrysPiWNVh3/5XIXTGf+GyiZwyHd+xG25tnNCkJeik5DIaVkYtwJ0Qqd8JkD5fDYG5iFgcffRM9h9okj5Uala/+0Eo89Pev8Mvh+gM5E+Un6VMK0rDkY2tZJCIGg2EZDDcrEgrTZoWjjLZRQIa1UWpi5HA6UPmBOnjn3Bg808uv7z3WAeqlKL28Bs4ES1r6MRgRQy58qhR+kzX39NyCbRfeOoeMRblIzEoOWJ+/pnTe7wBASmYW/uW7e/nIT0D4fUpWbT6qPkgx1j4MAiC1OAPpFdlwJsZJRjBjMBiMSKJbq6RkVsDImQOmGJiPf+SajV4HEuodrLi6DiWXVcMlGE3sO9GJIzvfwuHHd2O8izM36ninCcd/8g6632/FRPcoKJ23TWD3nBGKaDctkupP/AqEM8GF1KKFic36fU7BQuLTElFx9RKkl2chpTAdn/v+Tl0VAwAghCCnrhCV19Sh4po65CwrQlxKAlMMGAyGJdFtmFLJqI7RMwdMMYgMRoUBNQph4jG9zi+MshUKZ4ILRRdVoOiiCpz9/RGMXpiPZe51e9Hw7KGA/dv3NgEAcpcXoeIDdZLhDCPtdGoFhMIiM/+LHGoTCqpxUJd6xlLHE0JQ+9G1oAkPwRGfiMOPXA8A6D7UhoL1ZYhLSQjYP29VCfJWlQAAXjv0fcV1ZzAYjGgkamwYWEPOUIP/fdFbQVBDYvlO1H1xAKef+CDGu0ZD7t9/qguFF1UsMIvQcu5o5MkXWnD3TZVMMQhCqNFwJZnrtZwv2DnDRa6OKdVPAgCo14OE7BrMDJ4DADT/rR6LP7rGkLowGAxGNGDanCbrsKOPcKO8WEGgNaIOSs2tptvuRXxaDtb80wFc9mgD1n55C5LzUwP2Kb28OmB5vHNEshy9sLvpSbS3M2pN+dS+G9t3bFtwD8VBJbSah8rVW21itCdfaJE8Rq4c4nBiyUcL+OXZ8WnF5zOTaAjYwWAwogNbzhzINaLRJBhY1UyE+XYoR8k9Es5gXJP5LTju/DYmukbhdXuQVpaFgdPdYZ+DER2IBWul36LwHfMvB2tfhO2rFlOtUDkktLYhoRQiuSzM0233YrJnfmYuLikeDAaDwZDHlsqBVNg6QP8p8Ugh1wlGUmGQEkxC1cWqCo7RBBOO5Oyrp9vuxS5wttKpxRn8emE2VQDIqs3j9zcCOz8vO9ddCcLrC2eGR5g9WVyuXogVEi2E8kUQKwNy3xUQOONWsKFcc52MxK79FYPBiD4MNSsSToHrba7gn/6W+vNjp9wK4vsj1WELO1yzowSJk0UpUQyE/62O3u+J3P1RKwDkLC3kfxMHgUMmkZMemPWs7PJNWhk9k7eJn7ueQmo49ZMaBAp1zXLv1twEl9wMALrfbw2I/BUK9r4yGIxYIyzlQEpItUJ4S7GSYIU6SSHnrKfUTEBchlnobQ5gNaxS38TynUhe9OT8CgLJSEV6YdbIuxVGSO00cBAJ9MxPI/deKfnO/ArCA/e/zJej5dl9/Ivf53+Pd45gTBAhTEkdGAwGI5bQzazIKgKVEKs36uE681rxntsVvxCyfcc2yXsbKZMVz8wk/zslP82w8xhpAmZFPxWrtw3RRLjtlFBBULKvH6EyAQC//reH+NkD99TCJGkMBoPB4GAZWGyMXmYFRmOHOgKBZgzie2u2IuY/X/euT/DrMqvzTK2DXljx+cfirEGw5yAXRUgPJUrteUOhtk7+68jakI3xiUHur2Nh1C8Gg8FgcJjqkGz0aKyaZDoMY7GiQKgFsZ+HcJ1R+EfxZ0am0PxKPQCAECC9Msewcxp9TXZ5H+Qi3jDk0TrrpOYYudClwjCrwZ7ZWMcwLuw5xy8P1Heh/KrFKmrLYDAYsUNEZw709gNgHTojXJS8Q0bOIiSW78Tk+bvR8mo9Tvx83/z6nFQk56UGOdLaWM0EThy4QG5brBCu8qYkp4cav6pQZYsjFAmzJX/5nhcxUN+N7oOtaH/7HA4++ibOPHc44PjcFcUhzxuLs0sMBoMBhDFzkFD4MIDwQtYxu3kGI5Dptntx7sXjGG0LdJis+fDKCNVIP6wa2lZP51urY4Q/jZrjQzkni7erDbu6fcc2nP3DUYy2Dcruk5SbitItNSHrquZdsKJfDYPBYGhFF7MicXIdOYKF59Qbq48GWlVQMhu5iE1Ww6y6jbQOLFAMqm9YgYSMJFPObxSReLbsG5NGyaBMpEw0xUK2lsEnKcUgPi0R6eVZKN68CPGpCYrKUXMP2HvGYDCiibCVA7nG3GpYyR9BOBpm1ftlFkJBJdrvR6jra3vzLHqPtfPLrqQ4LPvkRsXCDGMeqTwb0fxuaSHY/TC7rQzl/K/12eWvLkHuimIk5aWqDgNslf6CwWAwzCZsnwOjI+ZojUcuZ5NqBZiQEojVFUs9kRJ8vG4PWl6tD1AMAGDp7RuYYqCCUPlMmAmjPQinHXBPC0KUEqD8qiVIzk8zND8Ig8FgRBumRivSQjhCvRUVAz+xIAirQW7kMBrvk3AGYbJvDA3PHoLX7eW3l29djNyVxXA4WaRhNSgxl4n22Sml+O+VmffCqO/6vq/8Gd/6ykXoO9GBsfZhfr0Sp2MGg8FgLCQs5YB1sgxGeLS+fiZAMSi7ogb5a0ojWCNp7CJURzp7uJ2I5PPU03ToH2+uRd/xjgXrizZWaCqPwWAwYh3NysFM9yOIK8rQsy4MBoDY8UPwzHkw0T3KLy/7xEVINjALcjgIHUPt8jzsUk+9/aGs+oxCORdrVRgmuhYmNEstzkBCur2d+BkMBiNSMLsFhiWJ5hFg/7XNTczw69Irsi2rGAiRSgrHCA+9zR6VmldF6vkpVVyU7hefnsj/rrp+GepuX4/aW9ZY+h21ar0YDAYDsIHPASN2CSeHhpWQioE+2TuG+t8c5JfHLgwtOM7KWHFk2q4YFUlNPIOgNL+BmTH7wzkHpRQAMDs6Pb/O40WqxWe0w50VfeD+l/EfD1+qd7UYDAaDhykHDMtjZ0HUM+NG0zPXweP2oGBtGRIykjDeNYKGZw8F7Fe8qSpCNWREGiMUA60JJq2siLtn5tD5bjM8M27MDE9hXMKcKDE7hf8dqXZDGF1P72fLsjYzGAwzYGZFDFsSKmylVejYdx5d77ei90g7Tvx8HwYautH+1rmAfQo3lKPwIuY8aUes8v5JCY1i4ViJsGymOZ9a4b37QCt6j7ZjoL5bUjHIrM5FanHkZw2279jGKwVyz0VrCHBh2QwGg2EUlp45sFLiMqtg5pQ/IzzGu0bQeyQwd0HzX08HLK+7/0oWstSmKDEPMep79beNakeSxc7+oepmVPhRLWVND08BAFJTsjE+wWVBdiXFwT01h6KLKlB86SLd6qcHrO9iMBh2xdLKgXj0hTW281g1IolZWP3ap/rHF5gOiSnaWMEUgyghlH2/Ud9rOG2iX1EQ1k3KL8EqsyNxyfEAgPGJQSz/9MVIykkJcQSDwWAwtGAp5UBsqykeFWMzCfqH+dQz3jhjnt6jgTMGlR+ogys5Hhd2ncXM2DQ30rnZWiOd4RCLyqpYGdBDiJYazR+o78ZkzxgoKLKXFCClID2scwjLFoeolXqGej3XcGdRiHM+y7F7ahYAUw4YDAbDCCylHAgVAis6XllFANJrNC9YvHErXKddoV6KvhOd/HLRxZXIWVYE4iDIqMoB9dKomzFg70v4CL/HqcEJtL1+BmMdwwH79B5pR/WKjfjvmWsQlxSv27n1HGSQKyucc3jmPAEmenYI+8tgMBh2xVLKAbDQlEgOoc2tWbMJVhGAjJjml0pyZZS9cbTTeyxw1iCjKgfEwY16EkICRkD92Fkh07PuseRTMzc5i7mJWSTnpQKYv2b31BxO/Wq/7HFNJw+gIn8J8laXgFKKwfpuDJzuRmJ2MlKKMpBckIYkQdQeM96tUI7M4Z5/sKE7YNkZb7mui8FgMKKGiLewUmHf5BQDoRLg/x1pMyOzhbpwFAOxsG+kCUEorGoipsfz7NzXHLCcUhieGUgsYmdlSYz/OrweLyZ7RjE1MIHW18/w24s2VqDk0mr+mkea+0OWSVzczFPzy6cweLYXADB6YQg41gEAyF9divKrFgecPxzkvlep9eLBBT3OPzc+y/9OyGCZjxkMBsNITFUOQvkUSG2zogApRG3H5xcAtHac/mO1nFdYhpHnUloPqecfyeethy+H1+OFZ8bNL5dvXQzq8QIOBz97IIWdBWG9o9hYxQFWDXL1nm67lxvdP9OD9j3nMDc5u2CfrgOtmB5bgsTs76HrnTcXbF//4FZMD00GzCY4450YaR3gFQMxvcfakbuyCMl5+pjfyH2Xwb5Xvd4LSik635tXuMMJV/rA/S/jyRdabPm9CdtLlgTNehBCbgTwJwAPUEp3iLZ9A8A3AfyOUvpx0barAbwO4GFK6fcUnutzANIppY/pUHUGYwERmTlQMuqvh5Bo5dFpQHvnqfY4f4eo5VgjOtHptnux3dd0SjmdA5FREvRw9qZeCofLAa/bCwBo23UWbbvOIi4lHktuXYfErGRd6xyNRIuCMN12L7weL5r+dBwjLYNBjx0+ux/UszB2f+mWGnS8cx7d77fOrySAI96JxueP8asyqnKQv7oUjS/Mr4tLSQhZZ8+sG8Pn+uCemsPc5Cymh6cQn5qAgnVluo7Qq2mLqZdidmwaE92j6Dl8ARPdowHb08qyNNdj+45ttny3AOsPlDHwNgAvgC0Adoi2bQHgBnC5xHFbfP/fUnGuzwEoBfCYuioyGMowTTmIlNBnNQVBSgA10oQisXynZsXACMR1ED+bSD+vUM8j1HvsjHNi2Sc34uQv3wtYPzcxi6GzPSi6ODATcjSZz+hJqHtiF9+E9j2NAYpBUk4KEjKSkJSbgpTCdHS/34rxrtEAxSApNxW5y4uQu7IYzjgnDj46P5vgTHCh+JKqAMUgvTwbtTetBvXSgHMfe3IvAGD1ly4NUBSmhycx1TuOqYFxdL7XIlnv3qPtyF9TivzVJQFZh2dGptD4x2OYHZ+Gd86LxMwkzE7MIiE9EQXry5G7vEjbjQI329H25tmg+2QuykXOskLN5wCs/84w7AmldJgQcgIiBYAQEgfgEgBPA/gMIWQxpVT4om8BMAngfdMqKwMhhABIppRORLoujMhi+syBmcKflZQCIVKJiBgcVnhmwYQHJSOPiVnJWHPP5Wh/uwn9J+ejFjnipD83uwi6VmLi3JfQc6gNEz1jSCvNRO6KYrgS4yJdrQWMXhjif5dvXYz8NaX8cmL5ThRuBfr3fwJd+1uQVZuPrMX5cMY5A8pIL8viy/HMuHFhTyO/zeFyoOr6pQAA4iBwxrvgmXUHHH/sx+/wyfba3jy7wGFejt6j7eg92o645Hgk5aXCleBaYMbkT0w2NTCBllfr0fJqPZIL0lB8cSUyq/MAcGZBob7rvhOdIRWDsi01KFhfrqjuahAq/FI+cAyGCt4CcB8hpI5S2uBbtwFAMrhR/o+DUwbOAgAhJB7AxQD2ASgmhPwjgKsAVPiOPQLgu5TSv/pPQAhp8W8nhPAjApRSItjnQwC+CmAdACeAowD+g1L6F8E+lQCaAfyHrz5fBbAEwD+BzUjEPKYpB2oaWikFIphAZkehSmyCYMQIMlM8jEHJc3IlxqHyA3VIKUxH6+tcHzHeOYyCdWWSZYmTUYVCKllVrOCensPpp9/H7Og0AGCkeQDdB1qRs7wIDpcDo21DmOgeRVxKPJzxLmTXFaDo4kq4p+b4RFpK6D/Vha79LXDEObFo23Ik5aSAUgpucE0ZWTV56DrAmQR1HWhB7ooiOFyc8O9vA1KLMlB702rZMkour8HoMwsHFZ3x3CyVcFag4pol6H6/FZN94wH7Dp3tBXEQWcWgfOtipJZkwjPrRsvfTmPGd28BX1Sl1uBmUUIme8Zw7k8nFqzPXpKP8quXwJUQqMRRr5f/Rvh9F+fDPe1GwboypBSl66L4yQ1MKY2Qx4g56iS+9S5KaVeQY/YAuA+cAuB/qbcAGABwDMAB3/JPfdsuApDkO+4iAB8A8CKA8wDSAXwKwF8IIR+glL7hO+ZBAN8HkA3gIXEFCCFfAfA4gNcA/BsACuAOAC8RQu6klD4rOuTDAAoB7ATQBZ/iwohtCKU09F7CAwhZB+DQyi9sRmqRdscwNSgRcu0qHGkV8kKNNsey8GglZsdncPwn7wAAUlOyUfPp5boIOnZOXhdu3c/+/kjAiLwaMipzkFGVjamBSQw19iIxMwllV9QiuTAdhBBM9o1jvGMYPUcuYMY3Ki4kISMJ1R9aIRtnX2wq6HV7cPjxPfx2sYmPUs7/9RQGG3r45ZxlhSi5tBrxqfJlnf/LSX6knxBA3NRfeevn0DaxH9lLChYc65lx4/xfT2GkeUCy7LTSTNR8ZBUAwOv2YvBMD/qOdWB6aDLktWRW56L4kiok5aWCEILW1xsC8oL4ZzkY8ox3jeDET98FgPWU0sORro9R+OWNQ4cOYd26daac8/Dhw1i/fr3c5m9RSr8pt5EQkgegF8DTlNJP+tb9BcAcpfQmQsh3AHyKUlrp2/YwgO8C2ArgAKV0UlReArhR/zZK6XWC9XsBlPrLEawvAadY/IRS+hXBeieAdwGUACinlHoFMwdzAJZRSs8FuS2MGEPzzEFC4cNILF9hikAi5aBoxsi7VRFfN8O6UJ9jsp8btnwDrxz4btjlhoorbzXk6qjlmxUqBks+vg79JzoxUN8d5Ih5RloGMNIyL/COT82h/tlDSMxMQukVtWj68wlQj/yAyczIFE4/zY3ix6clIjk/FcWbqvioQNNt98I9NYfxxi8CAM48d4Q/NrU4Q5NiAAAV19SBOAhmR6dRcukipBZnhjymdEsNhpsH4J3zBCgGCRmJWHHXJow7WvCt+w9JjqY7E1yovWk1pgcnMNI6iPiUBMyMToF6vEivzEFyfho/g+KMBwrWliF/TSlmx2YwNzGD9j2NGO8aXVAuAAw39WO4qR/Zi/ORv64sQDGo/EBdTCoGakwLE8t3Yo6eBHCjwbWKeT6B+dF/P8FmDUAp7SOE1MPnZEwIcQC4FMB3fLu8DeDrhJBySmmbb79ZAO9RSvnpOkJIIrgU4ATAbgC3KazzRwHEA/glISRXtO0vAL4FYCmAU4L1LzPFgCEmbLMiJSEy9fYzCDZabjcFQa2SYwdBkDFP96E2/vf4xCB+9/t/RHp5tq7nMPud1/Kd6RWBaOhcH/87pTAdaSWZSCvJRPnVSzB8rg+zY9NIzkuDI84BEALvnActr9ZjbmJhCNGA+g1P4dyLxyW3ESeRVBhmx6YxOzaN4aZ+rL77MjjinDi6860FjsF+8teWSq5XgjPOiarrlqk6Jj4tEbUfWYWzzx8NqFP1jav4sLqh2uXE7JQAh+RgEEKQkJ6IhPRE1N2+gTfB8nq8cE/OovtQW0CW48GzvQE+DDUfXsn7KcQSzOfIsjRonJV5C8DdvpH5LAAZ4JQCgPMt8ADYQgj5DYDN4GYMpn2Oy/8G4NOY9znwo9TEo873P5hzcz4ClYMmhWUzYghdfQ7khAajHLukBI5oaGjlrkHOVCiU0GXne2EFwlE6C9aXoe94B7/c9NJJLP7YGqQUxF5itHDfw7nJWbS8cppfFvpvOOOcyFkqHcVmxV2XYKJ7FAOnuzHRM4rUogyklWYiPi0RYx3D6NrfskCgTy3JRMGaUmTWcsLqeMcwHHFOdL3XgtHWQTgTXXBPz/FKgz8ykBxZtfnIqBIP5BlPWlkWam5ahb6jHciqzUP20kLFPhPB3nslZov+8zicDsSnJaL8ysUo2bwIp586gJmR6QX7x6clKqpXtKA1A/10272Y6V4Y9pZhGfYAuBvcrEAWuEhEhwGAUjpGCDnm21YPzq/Ab3f4GIB7ADwBYC+AQXCKxGcB3Knw3P5pt1sAjMnsc0y0vNB+khHzRDxDslLkHDflBGQ7zSJIXYOSLKP+axQrSZv6u7AvV3tIQbVEOvyoUegx0p2YmYy1X96CIz/kQlh7Zt0YqO+OSeUgXIYae+GZ9fDLmdW5Ad+53DfvjHchvTxbcsYmrSwL6eXZaPjtIX5dSkEalty6NkCITivlYuv77ewBYGZ0Cqd+tZ/PaSHGlehCcl4aKq9bGlHBN6MiBxkVOaqPUzPbo3RQxhnvwsrPbcZY+xDOv3yKn9FxxDkRl6LcWVwtVmyj7NI/MVTjF/b9ysE+SqkwhNjbAK4HpxwA8/kN7gTwf5TSLwsLI4R8XuIccjMJ/lBmXZTS92T2YTBCortxp9FmL3LKgLCh9QvMdkMvcyIzFQNA+cyQMBqInSKDyClm/r9QOONdKFg/P8ptliN/tJFSkM5Z4Po4/mPO0Vvpc5AjtTgD6+67AlXXL0PxJVWo/vAqRaPrCelJWPyxtUjMDEwWVnLpImx46CqsuWcLFn9sbcyMiKtpc9NKs7Dqi5ei7vb1qLpuKZbevl6zP0YorKgYMKIXSmknOFOdLQAuw7xJkZ+94EKGfgxcYrR3fes9CGjhAELIEgA3SZxmAkCmxPrfg3Mw/rbPTCkAQki+wstgxDiW8fxS08HLdUJ2VQr8yJlIhUIoaN99U6WeVdINO3bQwd4nsUNwqGcltFlPKVQ+axCLPiZyimNKYToWXb+cX3bPuNG19zldzulwcWZJxZuqgkYAEpNalIEVn92EpXdehLxVJSi7ohaFF4nNhc0nXIXJT6i2VvinFkIIUosykLOsCEm5qeFWVRa7tTuMqOAtALXg7PvFyoF/eTOAw5RSf9zhFwB8khCykxDyRULIIwD2Y36GQchBABmEkO2EkDsJIbcDAKW0FVx402sAHCOE/Dsh5Au+/y/DAonWGPZAd7MiLZ2EXPSdYGXZWQmQIxqvyY+4g47GDjuYKZt7ct4h1qUi1r4VMfI9DTWjlF1XgOHmfj6s5/kX/gcFl9wMhyuyCdBSCtKQUrAkonUAjFUmlfo4WQE7DkYwooo94HwF3AACzHsopT2EkEZwysNbgk0PgrP/v8V3bAM434WlANaKyv8vADXg8iDcB27G4Vlf+T8khDQA+EdfmSkAesCFRP1nfS6PEe1oznOw4esvIa1ixYLt4QgOesbmV+pzYBUHZqn6qkn8JhSqnnyhRXY/O6HVYc9MlIboPPuHIxht40JwrvzsJiSITFEYyvF6vDi8Yze/XHX9MpRc9zyAyL4nVvJzslJdGPrD8hwYhyDPQVTfWwYjGLqaFYXbGfmP39QfNJRwSPwCm/C/1Ue7pO6deF2wKXz/KNmTL7Tg7psqsam/y3LCQTh+BlZ/fqGYHZsBADjiHIhP52zQ1fgt6EW457LCc3A4HSi9vJpf9szMWeJd1ytcqxCt5VnhfgDWeF8YDAaDoQ7LRCvyTwNPt92LfSLhPpyY6tES5lNtPfflFgFtofczGzXT/XZIdKdUIPRnjnXGuUAcBBM9Y+h45zpk1uQj56JfG11NAAuVZq330grPQegwPNHNRezTIzGc3Oyd0uuVS9iolUjfZz1g2doZDAbDXmieOZjpfiRgOZwG3z+i7P+vxrxGjmjogNQKJsd/ug+b+rv4/1Zj+45tqiMbiaNQWREljpnEyQmz7uk5TPaNof6Z99F1oBX1z7yPwUOfDlq+3s6ldnfcBwLj+E32jQdsUxPYwIj3K1xH3WhC6h7YYSaXwWAwYpmwZg70mkYXCozCGQS9R439ZRhty67VGU6oDGgZ3d01+R0klu/Epv4u7Jr8TugDLIzw/tlNwJKqb1pxJkYvDIF6KU4/FRgwon1PI2o/ukY2fKae5ip63ctIjwY7453875y6Av63Uh8QpdsY+qDHgI8cVvEbYzAYjGghLJ8DI0Z/tu/YJjuDoAdmjFiFGyUjnM5uuu1erPrCprDObyX0yIdghZwKxZcukt02emEIg/XdQY8PlqnWCqOwZtfBGT8/riF07pYKsRmuWQ8TOvXHKCWVwWAwGOGjeeYgofBh/reRnWc4o6Zyx7LOPrLICetSSpUe4QjlypBTwoywqU8tykDltUvRd6IDCelJyF1RhKmBCVzYzSW0bH6lHn3HO5FRnYucugJbJs6KVHQp4gidsExMqNk9FgrT+tghmhmDwWDYEV2iFRkxevPA/S8HzCBobfyjIXOyWqwu1KjxOwg26h/Oeyc2WTMjclDu8iIsvX0DFm1bjvTybOStKkF6WRa/fbxrBB17m3D2+aOKyovlUVOHa77p8sy4+d9i/yU5Qr2DVv+GYh2mGDAYDIZxWCZDshCxD0K4xIpSYGfEz1zJc9cyq6RUATBD8HY4Haj96BqUXl4dYCYzPTgJz5zH8PNrQel3ZPT9c7jmfQ7Gu0YDtgkVhFDvkRVMzhjqYIoBg8FgGItlQpmK8QuLduy8mYOceoRmHGqVQyuE1tQKIQSFGyqQmJWMc386wa93OEObykTqmpUqZYZ+B4LbM9Y2yP9WO+Lv93GKtpkCM78JM9s7phgwGAyG8Vhy5kCIHTttf6elZvTUaiYikUjQJUaJiYiae61llsEs5iZm+d9lV9aCOKz9aaoRzPR+l7rfb8XZPxzllzOr8wBoH0iwYxujBKu1KXrCFAMGg8EwDl0kELUNtdjGO9if3thxJiISiBNKyT2PcJ6RUCgL5YwcSkGIJmFBaGIUbYTzXc+Oz+Dci8fRvreJX5dZk8dHglIj5Eez4AyYKzyb9f2ZNUMR7e8Gg8FghCLsPAdajzNa8JcTFMIZJYxG84NgqDUf8R+jBCkTIjH+5xnJe26WecZI8wD/W0v0nUigZYZMKyMtA2j847GAdSWXVaPoogrNZdrZHC0YVs8qHg5mXEs03S8Gg8HQAqGUht5LeAAh6wAcWvmFzUgtygjr5Mw2fx47h1wNNyGWWUpXOCFxjcQ9NYejP3qbX177lSvgjHMGOcKaqL2/Su+r1+3BkZ1vgXrm26pF25aj+AN/sM03wpgn2hSWSDDeNYITP30XANZTSg9Huj5G4Zc3Dh06hHXr1plyzsOHD2P9+vVAlN9bBiMYETNsfuD+l6POHCRWCfcZSikGVjL/MnpkvOdwG/87a3G+YYqB0ddh1Lc8Oz7DKwapKdlY9cVLkb2Ey4qsh/mh0e+ald5lK8DafAaDwbA2lvF69IcdjNWO1G4dpvg5+etv5evQI2OuEYy2DfG/y6+sNeQcfgHajgrC7Og0/3t8YhD5k6sw2Tem2/M0etYqlkwRGQwGg2F/TFEOpASScHMZxLIiYQWkBB4pIc2qEWSsoih4PV5MdM/H6Z8ZnYZaUz8lWE15U1OP1OIMOOPnZ1Nef/oJ1D/9Pia6RjSfnzmdMhgMBoMhjeHKgdoRS6VC4fYd26JuRM4qgpue6PGMjFYCldx3o4TJmZGpgOWGZw/h0GO7cOIX+wKclPXArPdL7/M4XE4s++RGJGQk8esoBdr2NBqiSGmBKRsMBoPBiBYsYVbkF/TVCJLRPmtgpqKg1G47UvfcDCUwUopZQnqi5PqZ4Sk0vXQCc1OzktuDQSnFRM8YRlq5CD/HfrwXZ35/BJTSoM+Qer2Y6h/XReAONSujVphOyEjC8s9cjNpbVvPrJrpGMd4xrLl+emGWyRaDwWAwGGZgqHIg7iz17Dz9mU2jjUiYuigNSWmEkG6EQKXVSTUS997hcqLEF6dfjNfjxbEf7cXsGGdzP9Y+hLO/P4LGF45hanBCtsyOd86j/pn30fj8MYy0DGBuYhZjF4bQ8mo9KKWywn/zX0/j1K8PoO2NM+FfmAE4nA5kVOSg8tql/Lqpfvn7EA1EYxvHYDAYDGtjSLYls0bQos2syApEIrysnucUx3jXUq5ReTjkKNpYify1ZTjygz2S24//9F2kFKYH+CaMNA+gcH05SrfULNh/WkZxGDjdjU8v4kxz8teUonzr4vljhicxeLYXANB3ohMZVTlIr8iGwxVe5CQj7qXX7eF/t+06i5zlRREN/WpkvgfWxjHEJJbvxBw9CeDGSFeFwWBEKYbMHAidPcWjsWzq3ZqIBWiznpPeo/VSZWmdRdCjHKU445xY83eXI29VCYo2VqD6hhUB24WKgZ/uQ204/5eTC2YC0suz+d/EmQHiXJiPZKixN+C44XN9AdvP/ekEDj++B61vnIFn1q3pmkIhNMdRM9uTVpYV4KB85Ad70LbrbIDSEOq8RjzLaPQZYlgL1n8yGAwziIjPgV4NnFCoUCtgMKyF3gqCHtGIzFYQXElxqLh6CUourUbW4nws+dhaEAeBKzEOxJc0WSj4A8Dg2V6cf/kUv+yZccMhGEWvvOEr2Pyf+1D9se8EHJdZnQdC5jMxz47PSNap73gHjvzwLfQebdfsixDsOWjJrp2UnYLam9cErOs92o62XY1BjxO3D3ZtK4TXYcVrsGKdogF2XxkMhlkYYlYkhRFT70KTBf9vNnqnHbPNacxC73fCLNOrtLIsrH9gKwDwgjkhBJRS9J/oRKvPN2DobC+813vRe7Qd7W+dCyjDPTWGmfavIKsMqLimDq2vNwAA0suzAvbzTM/PDiTlpMCVHI+xC/P5F9p2nUXbrrMou6IGidkpAOEUFaGCEQ5q72VqcQZWfm4TWl5r4OsprK9S7Nhm+L9ToYJgt2tgqEf4jGe6tYfxZTAYjFCYphz40bsTE5bHOsjwYfcwkGAKk9FCmdAZVWh7TghBzvIiXjkAgMM7dkuWkZT+FgButqFrfwu/PjErOWC/OcHMQcH6cuQuL8LM6DSa/3Y6ICLQhT3zykfZFbUoWFem+Hr0Vj4TMpJQe/Nq/todGv0O7C5cW63uVqtPMCLhY8VgMBhWx3CzIpasjGF39AzJqYZgIX4dTgcK15cHPb5oY0WAGZI/6hEAnPndEUwNzDsue91e/ndCJue0nJCeiLqPr0PtzatBnAtnCLoPtoJ6vQvWK0EvHxfv7LyfwVT/OCb7xiX38ysA0SIEWiWJX7Sg1iSVmbAyGIxoxnDlwC/cMAWBEQorvyNWFMJKLq/G4lvWBKxzJcZhzT2XY/mnL0bJpdUB24SKgnt6Dq2vNfDOxglZ8wnGRkXJ1zIqc7D+/q2ovXk18lYW8+vnJmZxaPtuHPnhHgyd61OkKAgFWj0UBGdi4ORn/dMHMNEzFrRcsVBt5LNlAqT+6DngpPYdZEoBg8GIBdjMgYmwTiUQcUfrHyG36vuixKnWTAghSK/IxqIPLufXLf3ERXAlxiEpJ2XB/otuWI68VSX88njXCI788C24p+dQetm8ItF3okPyfBmVOai4pg51t60LWO+Z9aDppRM4/pN3MT08qeoawhXSCSGouHoJv0wpMNzIhWQNJcjJjbzrEdyACZHGkFi+E0++0IInX2gxpHyj3gcGg8GwE6bNHADWFfrMIlodfrUi56Ru5djuVpxByK4rwIaHrsKGh66SzbgMcLMKFVcvQd3t6wPWH33ibRz78Tv8sns6eOjS1OJMrPz8pgXr5yZncfIX7+H8X0+BetVHNtL6beStKsHKz83XZ6KXmznQYnajJXqSkjLZdx8+RibV1IIV2wIGg8HQA1NmDgBrC3xmojRqU6Q7PrMQ3g+7XLPZIU71JrUoAyvuukR2e1xyfMgyEtKTsOGhq7D2y1sWJGIbbOjBoe270PbmWfSf6goZAlWcB0WTeVHCvHnRaOtggH+FGiVBqy2/1cOLMuQJ9cyZEsBgMGINQ5UDv2IgVhBY56msw4mV+8QcK80nMSsZKz5zMXKWFQasdyW4UH3jCpmjFuKMd6FwfTnWP7B1gSlT77F2tLxaj469Terrp/LdJ05HQGK04z99F01/Pgn39Jzqc4eDXL3Z+x0+kbyHYvM39jwZDEY0Y6hyIJwtEJsUxYrgq4ZYvyesw9WfYKZ8idkpqLpuGW+StOGhq7Dm3i1ILc5UfR7iIFj+6YtRfEnVgm3dB9vgmZPOXjwzOo2u91tx6sf3o/mlHXBPB0YbGjzbg9Y3zsgmafPjjHOi8rplAeuGGnvRf6JT5ZXoTyTeazvNxKlBzcyOkutXY+rKlAIGgxErmJIhWS4cIyMQYXKjWO+IolGwMYJQ98nsSGHFm6qw7v4rseTWtUjKTeXXt77WAPcUN4pPKYXX48VwUx9OP3UAHXubMHx2Pzr3PI39X78axx//PKb62tB5pAbn/3IKfcc7cOJn78r6MVBKcfqpA2h66cSCbWbPHIiJ9Dcczd+RUgVB7h48cP/LQfulWPeRYzAYsYvhSdDUKgV2T0gULtF87aE6Y7sgJWxE8rmF+mbMvucOpwNppVlYtG05Tv3ffgDA4JkeDJ7p4bd7PQvDnlIPl/V19Pw7OPz9W/llAKBeiq4DLZIzEyPNA7L5DTKqcsK+nlBY0ZRIj4z0dv5elVx3qGuz67Uz/n979x5jxVnGcfz7LJdlWe67CdttpVxagdrSEGxFbHRpinhJtFUTkVJLraJio/yhFawFGmvUxBpjmxJSGwtpsGq1gBG1prbGC6maaq8rpbKCpWzTQgss0IXC6x8zZx1m5+ye29zO/j7JZPfMzJl553Jm3mfey4hItRIpOQgb6MYVfHpez0+9hqJybrZ5CpLSzgSGG/QmZbDfaFNLM9M/8DYahp99mQkHBq0Xt9M+vwUbNr5vXDAwKHhpZxd7H9nFmTfPrqJ06lh0laNhjcMZe97EQbcjDkm0KSrlGlnNuZnXzHHUey1ERKR0iQYHpRbTppXZEcmzOHvLiQrYS8l0TZo5mUtuXMCIZq8HpKaWZsa0j2fSrMm0z5/K7E+8namLZnHO5VO5aOlM2jtW9FtGc9s4rMF7Q/MrT+2nc8vf6T1yom/68cBLz6YsvJC5N72HeasWMnfluyve3ihRmfFqS5Fqcax0jSxOgYGISPlir1YUFHwSFa5fX1AoytZFPVqei/rrQZYzYsH3aNS6el6xd3SUso4Ro0dy6YorBp2vqXUMTa0v0D73SkZMvoPe/as43fsmI5ob6XnpMHt2PMvJo29w4uAxnr53J/NWLeTk0V4OPtcNQOP4UbReci4Nw5J55lFtYFDL45OH6phJpjHr+0JEJMsSKzmIKjUodgFXQ7Bo1e4X7dfqZK2tQZRgNaNaBzJJNpIf1tjE6OkbGdHcCMCY9vH93sx89MXXObL3YF81pXPeMS2RwCArVR7TrFJWCQUGIiL5kFhwMNDT7qibWr1kZLOSkYBs1iHOyr4pV9Z7k4orQEjTyLGjuODDc/o+7/v9LnoP//9lZ82Tx8a6/mA3mlHHvtLzodprXZbPw6zI4u+gXu5xIlJ/UmmQHBTOxBS6Pc1iRrZUcTeorqebSl4yNuXWtc+CvKQzSrHgZvy0FhrHjfLmOXSc7r/t7ZvWMDLRWpL9XoxVqahrXbm/8awHq1mQpQc1kM2HNSIikIHgoN7EXfUk74FT3uUtA5a39AZFBQhmxvQPXgx29rwTZrT2BQ31QL/x2slSQBDlS1/cUVcPfEQk/zIRHNTTU684t0MZhoHFmQmox2o6Sao08xP1e2puG8e0xRcxvHE41mBMmNHqBQwJK5wL9XLtGgoGOlaFTHrhXM1aSYOISFKSLYcXiVGhR504Mmt56A0miwq9a1UT2AaPa+Fvy+w2Wma34ZzDzAZfSAx0PuTLYMer8Dbx8LlaLAis5cvvNm79T9nfERGJi4KDmNRLxiGPde3jMJS3vRq1yPSE398QDNTSCgzSoJKKypSzv8rtOKMWCr8RPYAQkazIRLWiehPHBT4PdVKzUASvm+vAqjlGlXy3FsejVg1/805V27JvKJ+fAmbWYWbOH94fMX25P+2qGq/XBYYzZva6mT1nZpvNbHGVy55kZuvNrKM2qZU8UHCQE2m1NyjWHqSUN8VKNlValzrNjE8wY1zshWxDSZa2v17r5pfbba0CAwn5RsLr+wtwHfBJYDXwa+CdwG/M7JdmNrrC5U4C1gEdtUik5IOqFUlJigUIeqqbL3k+RsG3qkP/82+wz/Uma9tXz9We4gwG4mwrJal5AphnZtc45x5KaJ1dzrn7gyPM7Ct4QcrXgA3A9QmlRXJOJQdSkfCNTDc2SUJUo9CBnlyn8UQ7ySqAWXhqX+yYpKHSfZ/2PpS6cy+wD7jNSmgYZWZtZvZDMztgZr1mttvM1prZiGoS4Zw745y7BXgMWGZmMwLr/JCZbTWz//rr7DazTWbWHpinA9jtf1wXqLp0nz/9fDO708yeNbMef/hjVJUqyReVHEjFFBBIGor1GpOl8zGq15s4lbIPwp0L1LKzgTSrfeWhPdZgVHpQd07iPbG/B/g48ECxGc1sIrATOBfv6f4u4CrgNmAO8LEapOdHeNWC3uuvA+BTeHnAjcDLwCzgM8B8M7vUOfcG0Al8Gfgu8BDwC/+7//b/XgYsArYBe4BxeFWbfmVmi5xzj9Qg7ZKCioODE6/21DIdIiIV6TlwbdHxjW1rgJX0dn8rsfR8c827WLrkTnoOHK75sgvb2ti2pm+bvG309Hb3X2dh+qm9zwTGruz3uRb7qJC+YsckDl1PPhFKw9n7ILh/gMjtPOWeIenzJCoNUccvylC7/3Z2dqaxrlkRD/0POOcOlLio+4CvAuvN7GfOudNF5lsNTAWWOOd+4o+728w2AJ8zs8XOud+Wmv4invb/XhgYd61z7lhwJjPbjlfKcA3wY+fcy2a2DS84eCpcbQnY4Zx7MLSMHwD/BG4GFBzklXOurAGYAhwDnAYNGjRo0KAhleEYMKXce3ieBtLLb5wsMn79IOnt8Of7tP95mf/5ev/zcv/zVYHvdAIvFNl2B9xdwn5ywP0DTL/An+eeiGmG98S/1R9eA74X8d3Btn0U0OIvYwNwKO3zR0PlQ9klB865fWY22z8BREREJHmvOuf2pZ2IOKWY32gAzkSML7XUoGALsAZYa2ZbiswzDfhdeKS/7T3+9GqN9f8eKYwws7cC38arFjQmNP+EUhbqt4m4Fa+HpPNDk10lCZVsqKhakX9BquuLkoiIiKQrz/kN59wZM1sP/BSvjn9vJYupQVLm+H93A5jZWOAPwCm8tg27geP+uh6g9M5qvg98Hq+k4E/AIeA0cAOwtAbplpSoQbKIiIhIPB4EngS+DtweMb0LmB0eaWZvwXui31WDNCzHKwl52P98JdAGLHTOPRZYZxMwMfTdgYKTpcBm59wXgiPN7MYq0yspU1emIiIiIjFwXoX8tcB5wIqIWbYBM8ws3CvR6sD0iphZg5ndjtcWYpNzbo8/qdA4Otzi+mb65wsLjZbDQUNhOWctw8xmAldXmGTJCJUciIiIiMTEObfdzP4KXB4x+Tt43Z1uMbMrgOfxnux/FPi5c+7hiO9EmWZmy/z/m/EaEl/t/90OBJ/u/xl4BdhsZncBR/11XgYcDKW928xeBJaY2fP+9C7n3OPAVuAGMzsG/AOYjlfNqBOYW2K6JYMUHIiIiIjE61agX5ekzrnXzGwBXpWjJcAkvDYW64By+tZd4A8O6AH2470/4SYX6grVX+f78LoovQWvBOBRvBKGRyOWfZ0/7x1AI7AJeBxYBZwAPoLXzuBfwGfxqkkpOMgx80q8RERERERkqFObAxERERERARQciIiIiIiIT8GBiIiIiIgACg5ERERERMSn4EBERERERAAFByIiIiIi4lNwICIiIiIigIIDERERERHxKTgQERERERFAwYGIiIiIiPgUHIiIiIiICKDgQEREREREfAoOREREREQEUHAgIiIiIiI+BQciIiIiIgLA/wDOQsb9NQTxswAAAABJRU5ErkJggg==", "text/plain": [ "
    " ] @@ -4244,6 +4242,11 @@ } ], "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, "language_info": { "codemirror_mode": { "name": "ipython", @@ -4254,12 +4257,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.8" - }, - "vscode": { - "interpreter": { - "hash": "e28391989cdb8b31df72dd917935faad186df3329a743c813090fc6af977a1ca" - } + "version": "3.12.3" } }, "nbformat": 4, diff --git a/src/xhydro/gis.py b/src/xhydro/gis.py index ca76d2ce..ebe44845 100644 --- a/src/xhydro/gis.py +++ b/src/xhydro/gis.py @@ -23,9 +23,15 @@ from pystac.extensions.item_assets import ItemAssetsExtension from pystac.extensions.projection import ProjectionExtension as proj from shapely import Point +import rioxarray +import xvec +from xrspatial import slope, aspect from tqdm.auto import tqdm + + __all__ = [ + "elevation_properties", "land_use_classification", "land_use_plot", "watershed_delineation", @@ -264,6 +270,101 @@ def _recursive_upstream_lookup( return all_upstream_indexes +def _flatten(x, dim="time"): + assert isinstance(x, xr.DataArray) + if len(x[dim].values) > len(set(x[dim].values)): + x = x.groupby(dim).map(stackstac.mosaic) + + return x + + +def elevation_properties( + gdf: gpd.GeoDataFrame, + unique_id: str = None, + projected_crs: int = 6622, + output_format: str = "geopandas", + operation: str = "mean", + dataset_date: str = '2021-04-22' +) -> gpd.GeoDataFrame | xr.Dataset: + """Elevation properties are calculated + + The calculated properties are : + - elevation (meters) + - slope (degrees) + + Parameters + ---------- + gdf : gpd.GeoDataFrame + GeoDataFrame containing watershed polygons. Must have a defined .crs attribute. + unique_id : str + The column name in the GeoDataFrame that serves as a unique identifier. + projected_crs : int + The projected coordinate reference system (crs) to utilize for calculations, such as determining watershed area. + output_format : str + One of either `xarray` (or `xr.Dataset`) or `geopandas` (or `gpd.GeoDataFrame`). + + Returns + ------- + gpd.GeoDataFrame or xr.Dataset + Output dataset containing the watershed properties. + """ + + # Geometries are projected to make calculations more accurate + projected_gdf = gdf.to_crs(projected_crs) + + collection = 'cop-dem-glo-90' + catalog = pystac_client.Client.open( + "https://planetarycomputer.microsoft.com/api/stac/v1", + ) + + search = catalog.search( + collections=[collection], + bbox=gdf.total_bounds, + ) + + items = list(search.get_items()) + + # Create a mosaic of + da = stackstac.stack(items) + da = flatten(da, dim="time") # https://hrodmn.dev/posts/stackstac/#wrangle-the-time-dimension + ds = (da + .sel(time=dataset_date) + .coarsen({"y": 5, "x": 5}, boundary='trim') + .mean() + .to_dataset(name='elevation') + .rio.write_crs("epsg:4326", inplace=True) + .rio.reproject(projected_crs) + .isel(band=0) + ) + + # Use Xvec to extract elevation for each geometry in the projected gdf + da_elevation= ds.xvec.zonal_stats( + projected_gdf.geometry, x_coords="x", y_coords="y", stats=operation + )['elevation'].squeeze() + + da_slope = slope(ds.elevation) + + # Use Xvec to extract slope for each geometry in the projected gdf + da_slope = da_slope.to_dataset(name='slope').xvec.zonal_stats( + projected_gdf.geometry, x_coords="x", y_coords="y", stats=operation + )['slope'] + + output_dataset = xr.merge([da_elevation, da_slope]) + + # Add attributes for each variable + output_dataset['slope'].attrs = {"units": "percent"} + output_dataset['elevation'].attrs = {"units": "meters"} + + if unique_id is not None: + output_dataset = output_dataset.assign_coords({unique_id: ('geometry', gdf[unique_id])}) + output_dataset = output_dataset.swap_dims({'geometry': unique_id}) + + if output_format in ("geopandas", "gpd.GeoDataFrame"): + output_dataset = output_dataset.drop('geometry').to_dataframe() + + return output_dataset + + def _merge_stac_dataset(catalog, bbox_of_interest, year): search = catalog.search(collections=["io-lulc-9-class"], bbox=bbox_of_interest) items = search.item_collection() @@ -474,3 +575,5 @@ def land_use_plot( gdf.to_crs(epsg).boundary.plot(ax=ax, alpha=0.9, color="black") return fig + + From 7505f5781c21ee9bfe56dccaad8aba0b4bfa34d0 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Mon, 3 Jun 2024 20:54:17 +0000 Subject: [PATCH 02/14] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- docs/notebooks/gis.ipynb | 8 ++----- src/xhydro/gis.py | 52 ++++++++++++++++++++-------------------- 2 files changed, 28 insertions(+), 32 deletions(-) diff --git a/docs/notebooks/gis.ipynb b/docs/notebooks/gis.ipynb index 4bbe256d..5231a17b 100644 --- a/docs/notebooks/gis.ipynb +++ b/docs/notebooks/gis.ipynb @@ -844,7 +844,8 @@ "outputs": [], "source": [ "xhgis.elevation_properties(\n", - " gdf[[\"Station\", \"geometry\"]], output_format='xarray', unique_id='Station')" + " gdf[[\"Station\", \"geometry\"]], output_format=\"xarray\", unique_id=\"Station\"\n", + ")" ] }, { @@ -4242,11 +4243,6 @@ } ], "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, "language_info": { "codemirror_mode": { "name": "ipython", diff --git a/src/xhydro/gis.py b/src/xhydro/gis.py index ebe44845..3c70f357 100644 --- a/src/xhydro/gis.py +++ b/src/xhydro/gis.py @@ -17,18 +17,16 @@ import pystac_client import rasterio import rasterio.features +import rioxarray import stackstac import xarray as xr +import xvec from matplotlib.colors import ListedColormap from pystac.extensions.item_assets import ItemAssetsExtension from pystac.extensions.projection import ProjectionExtension as proj from shapely import Point -import rioxarray -import xvec -from xrspatial import slope, aspect from tqdm.auto import tqdm - - +from xrspatial import aspect, slope __all__ = [ "elevation_properties", @@ -284,9 +282,9 @@ def elevation_properties( projected_crs: int = 6622, output_format: str = "geopandas", operation: str = "mean", - dataset_date: str = '2021-04-22' + dataset_date: str = "2021-04-22", ) -> gpd.GeoDataFrame | xr.Dataset: - """Elevation properties are calculated + """Elevation properties are calculated The calculated properties are : - elevation (meters) @@ -312,7 +310,7 @@ def elevation_properties( # Geometries are projected to make calculations more accurate projected_gdf = gdf.to_crs(projected_crs) - collection = 'cop-dem-glo-90' + collection = "cop-dem-glo-90" catalog = pystac_client.Client.open( "https://planetarycomputer.microsoft.com/api/stac/v1", ) @@ -324,43 +322,47 @@ def elevation_properties( items = list(search.get_items()) - # Create a mosaic of + # Create a mosaic of da = stackstac.stack(items) - da = flatten(da, dim="time") # https://hrodmn.dev/posts/stackstac/#wrangle-the-time-dimension - ds = (da - .sel(time=dataset_date) - .coarsen({"y": 5, "x": 5}, boundary='trim') + da = flatten( + da, dim="time" + ) # https://hrodmn.dev/posts/stackstac/#wrangle-the-time-dimension + ds = ( + da.sel(time=dataset_date) + .coarsen({"y": 5, "x": 5}, boundary="trim") .mean() - .to_dataset(name='elevation') + .to_dataset(name="elevation") .rio.write_crs("epsg:4326", inplace=True) .rio.reproject(projected_crs) .isel(band=0) ) # Use Xvec to extract elevation for each geometry in the projected gdf - da_elevation= ds.xvec.zonal_stats( + da_elevation = ds.xvec.zonal_stats( projected_gdf.geometry, x_coords="x", y_coords="y", stats=operation - )['elevation'].squeeze() + )["elevation"].squeeze() da_slope = slope(ds.elevation) # Use Xvec to extract slope for each geometry in the projected gdf - da_slope = da_slope.to_dataset(name='slope').xvec.zonal_stats( + da_slope = da_slope.to_dataset(name="slope").xvec.zonal_stats( projected_gdf.geometry, x_coords="x", y_coords="y", stats=operation - )['slope'] - + )["slope"] + output_dataset = xr.merge([da_elevation, da_slope]) # Add attributes for each variable - output_dataset['slope'].attrs = {"units": "percent"} - output_dataset['elevation'].attrs = {"units": "meters"} + output_dataset["slope"].attrs = {"units": "percent"} + output_dataset["elevation"].attrs = {"units": "meters"} if unique_id is not None: - output_dataset = output_dataset.assign_coords({unique_id: ('geometry', gdf[unique_id])}) - output_dataset = output_dataset.swap_dims({'geometry': unique_id}) + output_dataset = output_dataset.assign_coords( + {unique_id: ("geometry", gdf[unique_id])} + ) + output_dataset = output_dataset.swap_dims({"geometry": unique_id}) if output_format in ("geopandas", "gpd.GeoDataFrame"): - output_dataset = output_dataset.drop('geometry').to_dataframe() + output_dataset = output_dataset.drop("geometry").to_dataframe() return output_dataset @@ -575,5 +577,3 @@ def land_use_plot( gdf.to_crs(epsg).boundary.plot(ax=ax, alpha=0.9, color="black") return fig - - From 4ae375b6a4ecf87568833e92109df7a04d6f5da5 Mon Sep 17 00:00:00 2001 From: sebastienlanglois Date: Mon, 3 Jun 2024 20:30:01 -0400 Subject: [PATCH 03/14] update env and add tests --- docs/notebooks/gis.ipynb | 1422 +++++++++++++++++++++++++++++++++----- environment-dev.yml | 5 +- environment.yml | 5 +- pyproject.toml | 5 +- src/xhydro/gis.py | 77 ++- tests/test_gis.py | 64 ++ 6 files changed, 1356 insertions(+), 222 deletions(-) diff --git a/docs/notebooks/gis.ipynb b/docs/notebooks/gis.ipynb index 4bbe256d..433eef53 100644 --- a/docs/notebooks/gis.ipynb +++ b/docs/notebooks/gis.ipynb @@ -31,27 +31,6 @@ "from xhydro.indicators import get_yearly_op" ] }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "ename": "AttributeError", - "evalue": "module 'xhydro.gis' has no attribute 'elevation_properties'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[3], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mxhgis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43melevation_properties\u001b[49m\n", - "\u001b[0;31mAttributeError\u001b[0m: module 'xhydro.gis' has no attribute 'elevation_properties'" - ] - } - ], - "source": [ - "xhgis.elevation_properties" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -74,7 +53,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "f78388c3bbf14245b832dda302953115", + "model_id": "6d456d4baf214a1187f4a92847931f47", "version_major": 2, "version_minor": 0 }, @@ -149,73 +128,1125 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "After selecting points using either approach a) or b), or a combination of both, we can initiate the watershed delineation calculation." + "After selecting points using either approach a) or b), or a combination of both, we can initiate the watershed delineation calculation." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    HYBAS_IDUpstream Area (sq. km).geometrycategorycolor
    0712003433087595.8POLYGON ((-74.37864 48.88141, -74.37452 48.886...3#41b6c4
    17120398781144026.8POLYGON ((-80.07991 46.77860, -80.08529 46.782...5#081d58
    2712038286023717.7POLYGON ((-73.77437 43.36757, -73.77557 43.388...1#ffffd9
    \n", + "
    " + ], + "text/plain": [ + " HYBAS_ID Upstream Area (sq. km). \\\n", + "0 7120034330 87595.8 \n", + "1 7120398781 144026.8 \n", + "2 7120382860 23717.7 \n", + "\n", + " geometry category color \n", + "0 POLYGON ((-74.37864 48.88141, -74.37452 48.886... 3 #41b6c4 \n", + "1 POLYGON ((-80.07991 46.77860, -80.08529 46.782... 5 #081d58 \n", + "2 POLYGON ((-73.77437 43.36757, -73.77557 43.388... 1 #ffffd9 " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gdf = xhgis.watershed_delineation(coordinates=lng_lat, map=m)\n", + "gdf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The outcomes are stored in a GeoPandas `gpd.GeoDataFrame` (`gdf`) object, allowing us to save our polygons in various common formats such as an ESRI Shapefile or GeoJSON. If a map ``m`` is present, the polygons will automatically be added to it. If you want to visualize the map, simply type ``m`` in the code cell to render it. If displaying the map directly is not compatible with your notebook interpreter, you can utilize the following code to extract the HTML from the map and plot it:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "m.zoom_to_gdf(gdf)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### c) From [xdatasets](https://github.com/hydrologie/xdatasets)\n", + "\n", + "Automatically delineating watershed boundaries is a valuable tool in the toolbox, but users are encouraged to utilize official watershed boundaries if they already exist, instead of creating new ones. This functionality fetches a list of basins from [xdatasets](https://github.com/hydrologie/xdatasets) supported datasets, and upon request, [xdatasets](https://github.com/hydrologie/xdatasets) provides a `gpd.GeoDataFrame` containing the precalculated boundaries for these basins. Currently, the following watershed sources are available as of today.:\n", + "\n", + "| Source | Dataset name |\n", + "|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|\n", + "| [DEH](https://www.cehq.gouv.qc.ca/atlas-hydroclimatique/stations-hydrometriques/index.htm) | deh_polygons |\n", + "| [HYDAT](https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/monitoring/survey/data-products-services/national-archive-hydat.html) | hydat_polygons |\n", + "| [HQ](https://www.hydroquebec.com/r) | hq_polygons |\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    StationSuperficiegeometry
    003150121.868620POLYGON ((-72.47379 46.23340, -72.46888 46.228...
    103150215.708960POLYGON ((-72.50127 46.21216, -72.50086 46.213...
    2042103579.479614POLYGON ((-78.49014 46.64514, -78.49010 46.645...
    \n", + "
    " + ], + "text/plain": [ + " Station Superficie geometry\n", + "0 031501 21.868620 POLYGON ((-72.47379 46.23340, -72.46888 46.228...\n", + "1 031502 15.708960 POLYGON ((-72.50127 46.21216, -72.50086 46.213...\n", + "2 042103 579.479614 POLYGON ((-78.49014 46.64514, -78.49010 46.645..." + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gdf = xd.Query(\n", + " **{\n", + " \"datasets\": {\n", + " \"deh_polygons\": {\n", + " \"id\": [\"031*\", \"0421*\"],\n", + " \"regulated\": [\"Natural\"],\n", + " }\n", + " }\n", + " }\n", + ").data.reset_index()\n", + "\n", + "gdf" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Extract watershed properties" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After obtaining our watershed boundaries, we can extract valuable properties such as geographical information, land use classification and climatological data from the delineated watersheds." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### a) Geographical watershed properties\n", + "Initially, we extract geographical properties of the watershed, including the perimeter, total area, Gravelius coefficient and basin centroid. It's important to note that this function returns all the columns present in the provided `gpd.GeoDataFrame` argument." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    StationSuperficieareaperimetergraveliuscentroid
    003150121.8686202.186862e+0727186.9968451.640007(-72.48631199105834, 46.22277542928622)
    103150215.7089601.570896e+0720263.2930211.442220(-72.47966677792694, 46.21359517038631)
    2042103579.4796145.794796e+08283765.0583903.325331(-78.37036445281987, 46.48287117609677)
    \n", + "
    " + ], + "text/plain": [ + " Station Superficie area perimeter gravelius \\\n", + "0 031501 21.868620 2.186862e+07 27186.996845 1.640007 \n", + "1 031502 15.708960 1.570896e+07 20263.293021 1.442220 \n", + "2 042103 579.479614 5.794796e+08 283765.058390 3.325331 \n", + "\n", + " centroid \n", + "0 (-72.48631199105834, 46.22277542928622) \n", + "1 (-72.47966677792694, 46.21359517038631) \n", + "2 (-78.37036445281987, 46.48287117609677) " + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "xhgis.watershed_properties(gdf)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For added convenience, we can also retrieve the same results in the form of an `xarray.Dataset`:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
    <xarray.Dataset> Size: 120B\n",
    +       "Dimensions:    (Station: 3)\n",
    +       "Coordinates:\n",
    +       "  * Station    (Station) object 24B '031501' '031502' '042103'\n",
    +       "Data variables:\n",
    +       "    area       (Station) float64 24B 2.187e+07 1.571e+07 5.795e+08\n",
    +       "    perimeter  (Station) float64 24B 2.719e+04 2.026e+04 2.838e+05\n",
    +       "    gravelius  (Station) float64 24B 1.64 1.442 3.325\n",
    +       "    centroid   (Station) object 24B (-72.48631199105834, 46.22277542928622) ....
    " + ], + "text/plain": [ + " Size: 120B\n", + "Dimensions: (Station: 3)\n", + "Coordinates:\n", + " * Station (Station) object 24B '031501' '031502' '042103'\n", + "Data variables:\n", + " area (Station) float64 24B 2.187e+07 1.571e+07 5.795e+08\n", + " perimeter (Station) float64 24B 2.719e+04 2.026e+04 2.838e+05\n", + " gravelius (Station) float64 24B 1.64 1.442 3.325\n", + " centroid (Station) object 24B (-72.48631199105834, 46.22277542928622) ...." + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "xhgis.watershed_properties(\n", + " gdf[[\"Station\", \"geometry\"]], unique_id=\"Station\", output_format=\"xarray\"\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    elevationslopeaspectproj:epsgproj:shapeepsgtimeplatformgsdbandspatial_ref
    geometry
    033.5730090.324613239.0259704326{1200}43262021-04-22TanDEM-X90data0
    151.3932950.518484242.4313354326{1200}43262021-04-22TanDEM-X90data0
    2358.5498662.500644178.5576484326{1200}43262021-04-22TanDEM-X90data0
    \n", + "
    " + ], + "text/plain": [ + " elevation slope aspect proj:epsg proj:shape epsg \\\n", + "geometry \n", + "0 33.573009 0.324613 239.025970 4326 {1200} 4326 \n", + "1 51.393295 0.518484 242.431335 4326 {1200} 4326 \n", + "2 358.549866 2.500644 178.557648 4326 {1200} 4326 \n", + "\n", + " time platform gsd band spatial_ref \n", + "geometry \n", + "0 2021-04-22 TanDEM-X 90 data 0 \n", + "1 2021-04-22 TanDEM-X 90 data 0 \n", + "2 2021-04-22 TanDEM-X 90 data 0 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "xhgis.surface_properties(gdf)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "elevation float64\n", + "slope float32\n", + "aspect float32\n", + "dtype: object" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_properties[_properties_name].dtypes" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "data = {\n", + " \"elevation\": {\n", + " \"031501\": 33.57301026813054,\n", + " \"031502\": 51.393294334667644,\n", + " \"042103\": 358.5498543002855,\n", + " },\n", + " \"slope\": {\n", + " \"031501\": 0.32461288571357727,\n", + " \"031502\": 0.5184836387634277,\n", + " \"042103\": 2.5006439685821533,\n", + " },\n", + " \"aspect\": {\n", + " \"031501\": 239.02597045898438,\n", + " \"031502\": 242.43133544921875,\n", + " \"042103\": 178.55764770507812,\n", + " },\n", + "}\n", + "\n", + "df = pd.DataFrame.from_dict(data).astype(\"float32\")\n", + "df.index.names = [\"Station\"]\n", + "\n", + "surface_properties_data = df\n", + "\n", + "_properties_name = [\"elevation\", \"slope\", \"aspect\"]\n", + "unique_id = \"Station\"\n", + "\n", + "df_properties = xhgis.surface_properties(gdf, unique_id=unique_id)\n", + "\n", + "pd.testing.assert_frame_equal(\n", + " df_properties[_properties_name],\n", + " surface_properties_data[_properties_name],\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    elevationslopeaspect
    Station
    03150133.5730090.324613239.025970
    03150251.3932950.518484242.431335
    042103358.5498662.500644178.557648
    \n", + "
    " + ], + "text/plain": [ + " elevation slope aspect\n", + "Station \n", + "031501 33.573009 0.324613 239.025970\n", + "031502 51.393295 0.518484 242.431335\n", + "042103 358.549866 2.500644 178.557648" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "surface_properties_data" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 15, "metadata": {}, "outputs": [ { - "ename": "OSError", - "evalue": "GZipCodec failed: incorrect data check", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[5], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m gdf \u001b[38;5;241m=\u001b[39m \u001b[43mxhgis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwatershed_delineation\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcoordinates\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlng_lat\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mmap\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mm\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m gdf\n", - "File \u001b[0;32m~/mambaforge/envs/xhydro-dev/lib/python3.12/site-packages/xhydro/gis.py:88\u001b[0m, in \u001b[0;36mwatershed_delineation\u001b[0;34m(coordinates, map)\u001b[0m\n\u001b[1;32m 85\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39misfile(polygon_path):\n\u001b[1;32m 86\u001b[0m urllib\u001b[38;5;241m.\u001b[39mrequest\u001b[38;5;241m.\u001b[39murlretrieve(url, polygon_path)\n\u001b[0;32m---> 88\u001b[0m gdf_hydrobasins \u001b[38;5;241m=\u001b[39m \u001b[43mgpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_parquet\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpolygon_path\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 90\u001b[0m \u001b[38;5;66;03m# compute watershed boundaries\u001b[39;00m\n\u001b[1;32m 91\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m coordinates \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", - "File \u001b[0;32m~/mambaforge/envs/xhydro-dev/lib/python3.12/site-packages/geopandas/io/arrow.py:604\u001b[0m, in \u001b[0;36m_read_parquet\u001b[0;34m(path, columns, storage_options, **kwargs)\u001b[0m\n\u001b[1;32m 602\u001b[0m path \u001b[38;5;241m=\u001b[39m _expand_user(path)\n\u001b[1;32m 603\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124muse_pandas_metadata\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[0;32m--> 604\u001b[0m table \u001b[38;5;241m=\u001b[39m \u001b[43mparquet\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_table\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpath\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcolumns\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcolumns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfilesystem\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfilesystem\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 606\u001b[0m \u001b[38;5;66;03m# read metadata separately to get the raw Parquet FileMetaData metadata\u001b[39;00m\n\u001b[1;32m 607\u001b[0m \u001b[38;5;66;03m# (pyarrow doesn't properly exposes those in schema.metadata for files\u001b[39;00m\n\u001b[1;32m 608\u001b[0m \u001b[38;5;66;03m# created by GDAL - https://issues.apache.org/jira/browse/ARROW-16688)\u001b[39;00m\n\u001b[1;32m 609\u001b[0m metadata \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", - "File \u001b[0;32m~/mambaforge/envs/xhydro-dev/lib/python3.12/site-packages/pyarrow/parquet/core.py:1811\u001b[0m, in \u001b[0;36mread_table\u001b[0;34m(source, columns, use_threads, schema, use_pandas_metadata, read_dictionary, memory_map, buffer_size, partitioning, filesystem, filters, use_legacy_dataset, ignore_prefixes, pre_buffer, coerce_int96_timestamp_unit, decryption_properties, thrift_string_size_limit, thrift_container_size_limit, page_checksum_verification)\u001b[0m\n\u001b[1;32m 1799\u001b[0m \u001b[38;5;66;03m# TODO test that source is not a directory or a list\u001b[39;00m\n\u001b[1;32m 1800\u001b[0m dataset \u001b[38;5;241m=\u001b[39m ParquetFile(\n\u001b[1;32m 1801\u001b[0m source, read_dictionary\u001b[38;5;241m=\u001b[39mread_dictionary,\n\u001b[1;32m 1802\u001b[0m memory_map\u001b[38;5;241m=\u001b[39mmemory_map, buffer_size\u001b[38;5;241m=\u001b[39mbuffer_size,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1808\u001b[0m page_checksum_verification\u001b[38;5;241m=\u001b[39mpage_checksum_verification,\n\u001b[1;32m 1809\u001b[0m )\n\u001b[0;32m-> 1811\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mdataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcolumns\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcolumns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43muse_threads\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_threads\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1812\u001b[0m \u001b[43m \u001b[49m\u001b[43muse_pandas_metadata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_pandas_metadata\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/mambaforge/envs/xhydro-dev/lib/python3.12/site-packages/pyarrow/parquet/core.py:1454\u001b[0m, in \u001b[0;36mParquetDataset.read\u001b[0;34m(self, columns, use_threads, use_pandas_metadata)\u001b[0m\n\u001b[1;32m 1446\u001b[0m index_columns \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 1447\u001b[0m col \u001b[38;5;28;01mfor\u001b[39;00m col \u001b[38;5;129;01min\u001b[39;00m _get_pandas_index_columns(metadata)\n\u001b[1;32m 1448\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(col, \u001b[38;5;28mdict\u001b[39m)\n\u001b[1;32m 1449\u001b[0m ]\n\u001b[1;32m 1450\u001b[0m columns \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 1451\u001b[0m \u001b[38;5;28mlist\u001b[39m(columns) \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mset\u001b[39m(index_columns) \u001b[38;5;241m-\u001b[39m \u001b[38;5;28mset\u001b[39m(columns))\n\u001b[1;32m 1452\u001b[0m )\n\u001b[0;32m-> 1454\u001b[0m table \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_table\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1455\u001b[0m \u001b[43m \u001b[49m\u001b[43mcolumns\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcolumns\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mfilter\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_filter_expression\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1456\u001b[0m \u001b[43m \u001b[49m\u001b[43muse_threads\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_threads\u001b[49m\n\u001b[1;32m 1457\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1459\u001b[0m \u001b[38;5;66;03m# if use_pandas_metadata, restore the pandas metadata (which gets\u001b[39;00m\n\u001b[1;32m 1460\u001b[0m \u001b[38;5;66;03m# lost if doing a specific `columns` selection in to_table)\u001b[39;00m\n\u001b[1;32m 1461\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m use_pandas_metadata:\n", - "File \u001b[0;32m~/mambaforge/envs/xhydro-dev/lib/python3.12/site-packages/pyarrow/_dataset.pyx:562\u001b[0m, in \u001b[0;36mpyarrow._dataset.Dataset.to_table\u001b[0;34m()\u001b[0m\n", - "File \u001b[0;32m~/mambaforge/envs/xhydro-dev/lib/python3.12/site-packages/pyarrow/_dataset.pyx:3804\u001b[0m, in \u001b[0;36mpyarrow._dataset.Scanner.to_table\u001b[0;34m()\u001b[0m\n", - "File \u001b[0;32m~/mambaforge/envs/xhydro-dev/lib/python3.12/site-packages/pyarrow/error.pxi:154\u001b[0m, in \u001b[0;36mpyarrow.lib.pyarrow_internal_check_status\u001b[0;34m()\u001b[0m\n", - "File \u001b[0;32m~/mambaforge/envs/xhydro-dev/lib/python3.12/site-packages/pyarrow/error.pxi:91\u001b[0m, in \u001b[0;36mpyarrow.lib.check_status\u001b[0;34m()\u001b[0m\n", - "\u001b[0;31mOSError\u001b[0m: GZipCodec failed: incorrect data check" - ] + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    elevationslopeaspect
    Station
    03150133.5730090.324613239.025970
    03150251.3932950.518484242.431335
    042103358.5498662.500644178.557648
    \n", + "
    " + ], + "text/plain": [ + " elevation slope aspect\n", + "Station \n", + "031501 33.573009 0.324613 239.025970\n", + "031502 51.393295 0.518484 242.431335\n", + "042103 358.549866 2.500644 178.557648" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "gdf = xhgis.watershed_delineation(coordinates=lng_lat, map=m)\n", - "gdf" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The outcomes are stored in a GeoPandas `gpd.GeoDataFrame` (`gdf`) object, allowing us to save our polygons in various common formats such as an ESRI Shapefile or GeoJSON. If a map ``m`` is present, the polygons will automatically be added to it. If you want to visualize the map, simply type ``m`` in the code cell to render it. If displaying the map directly is not compatible with your notebook interpreter, you can utilize the following code to extract the HTML from the map and plot it:" + "df_properties[_properties_name]" ] }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "m.zoom_to_gdf(gdf)" - ] - }, - { - "cell_type": "markdown", + "execution_count": 4, "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " elevation slope aspect\n", + "0 33.573009 0.324613 239.025970\n", + "1 51.393295 0.518484 242.431335\n", + "2 358.549866 2.500644 178.557648\n", + " elevation slope aspect\n", + "0 33.573009 0.324613 239.025970\n", + "1 51.393295 0.518484 242.431335\n", + "2 358.549866 2.500644 178.557648\n" + ] + } + ], "source": [ - "### c) From [xdatasets](https://github.com/hydrologie/xdatasets)\n", + "data = {\n", + " \"elevation\": {\n", + " \"031501\": 33.57301026813054,\n", + " \"031502\": 51.393294334667644,\n", + " \"042103\": 358.5498543002855,\n", + " },\n", + " \"slope\": {\n", + " \"031501\": 0.32461288571357727,\n", + " \"031502\": 0.5184836387634277,\n", + " \"042103\": 2.5006439685821533,\n", + " },\n", + " \"aspect\": {\n", + " \"031501\": 239.02597045898438,\n", + " \"031502\": 242.43133544921875,\n", + " \"042103\": 178.55764770507812,\n", + " },\n", + "}\n", "\n", - "Automatically delineating watershed boundaries is a valuable tool in the toolbox, but users are encouraged to utilize official watershed boundaries if they already exist, instead of creating new ones. This functionality fetches a list of basins from [xdatasets](https://github.com/hydrologie/xdatasets) supported datasets, and upon request, [xdatasets](https://github.com/hydrologie/xdatasets) provides a `gpd.GeoDataFrame` containing the precalculated boundaries for these basins. Currently, the following watershed sources are available as of today.:\n", + "df = pd.DataFrame.from_dict(data).astype(\"float32\")\n", + "df.index.names = [\"geometry\"]\n", "\n", - "| Source | Dataset name |\n", - "|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|\n", - "| [DEH](https://www.cehq.gouv.qc.ca/atlas-hydroclimatique/stations-hydrometriques/index.htm) | deh_polygons |\n", - "| [HYDAT](https://www.canada.ca/en/environment-climate-change/services/water-overview/quantity/monitoring/survey/data-products-services/national-archive-hydat.html) | hydat_polygons |\n", - "| [HQ](https://www.hydroquebec.com/r) | hq_polygons |\n" + "_properties_name = [\"elevation\", \"slope\", \"aspect\"]\n", + "\n", + "df_properties = xhgis.surface_properties(gdf)\n", + "df_properties.index.name = None\n", + "\n", + "print(df_properties[_properties_name])\n", + "print(df.reset_index(drop=True)[_properties_name])\n", + "\n", + "pd.testing.assert_frame_equal(\n", + " df_properties[_properties_name], df.reset_index(drop=True)[_properties_name]\n", + ")" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -239,86 +1270,57 @@ " \n", " \n", " \n", - " Station\n", - " Superficie\n", - " geometry\n", + " index\n", + " elevation\n", + " slope\n", + " aspect\n", " \n", " \n", " \n", " \n", " 0\n", " 031501\n", - " 21.868620\n", - " POLYGON ((-72.47379 46.23340, -72.46888 46.228...\n", + " 33.573010\n", + " 0.324613\n", + " 239.025970\n", " \n", " \n", " 1\n", " 031502\n", - " 15.708960\n", - " POLYGON ((-72.50127 46.21216, -72.50086 46.213...\n", + " 51.393294\n", + " 0.518484\n", + " 242.431335\n", " \n", " \n", " 2\n", " 042103\n", - " 579.479614\n", - " POLYGON ((-78.49014 46.64514, -78.49010 46.645...\n", + " 358.549854\n", + " 2.500644\n", + " 178.557648\n", " \n", " \n", "\n", "" ], "text/plain": [ - " Station Superficie geometry\n", - "0 031501 21.868620 POLYGON ((-72.47379 46.23340, -72.46888 46.228...\n", - "1 031502 15.708960 POLYGON ((-72.50127 46.21216, -72.50086 46.213...\n", - "2 042103 579.479614 POLYGON ((-78.49014 46.64514, -78.49010 46.645..." + " index elevation slope aspect\n", + "0 031501 33.573010 0.324613 239.025970\n", + "1 031502 51.393294 0.518484 242.431335\n", + "2 042103 358.549854 2.500644 178.557648" ] }, - "execution_count": 3, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "gdf = xd.Query(\n", - " **{\n", - " \"datasets\": {\n", - " \"deh_polygons\": {\n", - " \"id\": [\"031*\", \"0421*\"],\n", - " \"regulated\": [\"Natural\"],\n", - " }\n", - " }\n", - " }\n", - ").data.reset_index()\n", - "\n", - "gdf" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Extract watershed properties" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "After obtaining our watershed boundaries, we can extract valuable properties such as geographical information, land use classification and climatological data from the delineated watersheds." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### a) Geographical watershed properties\n", - "Initially, we extract geographical properties of the watershed, including the perimeter, total area, Gravelius coefficient and basin centroid. It's important to note that this function returns all the columns present in the provided `gpd.GeoDataFrame` argument." + "df.reset_index()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -342,8 +1344,6 @@ " \n", " \n", " \n", - " Station\n", - " Superficie\n", " area\n", " perimeter\n", " gravelius\n", @@ -353,8 +1353,6 @@ " \n", " \n", " 0\n", - " 031501\n", - " 21.868620\n", " 2.186862e+07\n", " 27186.996845\n", " 1.640007\n", @@ -362,8 +1360,6 @@ " \n", " \n", " 1\n", - " 031502\n", - " 15.708960\n", " 1.570896e+07\n", " 20263.293021\n", " 1.442220\n", @@ -371,8 +1367,6 @@ " \n", " \n", " 2\n", - " 042103\n", - " 579.479614\n", " 5.794796e+08\n", " 283765.058390\n", " 3.325331\n", @@ -383,10 +1377,10 @@ "" ], "text/plain": [ - " Station Superficie area perimeter gravelius \\\n", - "0 031501 21.868620 2.186862e+07 27186.996845 1.640007 \n", - "1 031502 15.708960 1.570896e+07 20263.293021 1.442220 \n", - "2 042103 579.479614 5.794796e+08 283765.058390 3.325331 \n", + " area perimeter gravelius \\\n", + "0 2.186862e+07 27186.996845 1.640007 \n", + "1 1.570896e+07 20263.293021 1.442220 \n", + "2 5.794796e+08 283765.058390 3.325331 \n", "\n", " centroid \n", "0 (-72.48631199105834, 46.22277542928622) \n", @@ -394,25 +1388,88 @@ "2 (-78.37036445281987, 46.48287117609677) " ] }, - "execution_count": 8, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "xhgis.watershed_properties(gdf)" + "df_properties[_properties_name]" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 16, "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    areaperimetergraveliuscentroid
    02.186862e+0727186.9968451.640007(-72.48631199105834, 46.22277542928622)
    15.794796e+08283765.0583903.325331(-78.37036445281987, 46.48287117609677)
    \n", + "
    " + ], + "text/plain": [ + " area perimeter gravelius \\\n", + "0 2.186862e+07 27186.996845 1.640007 \n", + "1 5.794796e+08 283765.058390 3.325331 \n", + "\n", + " centroid \n", + "0 (-72.48631199105834, 46.22277542928622) \n", + "1 (-78.37036445281987, 46.48287117609677) " + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "For added convenience, we can also retrieve the same results in the form of an `xarray.Dataset`:" + "df[_properties_name]" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -781,72 +1838,66 @@ " stroke: currentColor;\n", " fill: currentColor;\n", "}\n", - "
    <xarray.Dataset> Size: 120B\n",
    -       "Dimensions:    (Station: 3)\n",
    +       "
    <xarray.Dataset> Size: 192B\n",
    +       "Dimensions:      (Station: 3)\n",
            "Coordinates:\n",
    -       "  * Station    (Station) object 24B '031501' '031502' '042103'\n",
    +       "    platform     <U8 32B 'TanDEM-X'\n",
    +       "    proj:epsg    int64 8B 4326\n",
    +       "    gsd          int64 8B 90\n",
    +       "    time         datetime64[ns] 8B 2021-04-22\n",
    +       "    proj:shape   object 8B {1200}\n",
    +       "    band         <U4 16B 'data'\n",
    +       "    epsg         int64 8B 4326\n",
    +       "    spatial_ref  int64 8B 0\n",
    +       "    geometry     (Station) object 24B POLYGON ((-306224.9316606918 257197.438...\n",
    +       "  * Station      (Station) object 24B '031501' '031502' '042103'\n",
            "Data variables:\n",
    -       "    area       (Station) float64 24B 2.187e+07 1.571e+07 5.795e+08\n",
    -       "    perimeter  (Station) float64 24B 2.719e+04 2.026e+04 2.838e+05\n",
    -       "    gravelius  (Station) float64 24B 1.64 1.442 3.325\n",
    -       "    centroid   (Station) object 24B (-72.48631199105834, 46.22277542928622) ....
    " + " elevation (Station) float64 24B 33.57 51.39 358.5\n", + " slope (Station) float32 12B 0.3246 0.5185 2.501\n", + " aspect (Station) float32 12B 239.0 242.4 178.6\n", + "Attributes:\n", + " spec: RasterSpec(epsg=4326, bounds=(-79.00083333333333, 46.0, -72....\n", + " resolution: 0.0008333333333333334\n", + " _FillValue: 1.7976931348623157e+308
    " ], "text/plain": [ - " Size: 120B\n", - "Dimensions: (Station: 3)\n", + " Size: 192B\n", + "Dimensions: (Station: 3)\n", "Coordinates:\n", - " * Station (Station) object 24B '031501' '031502' '042103'\n", + " platform 1\u001b[0m \u001b[43mxhgis\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43melevation_properties\u001b[49m(gdf)\n", - "\u001b[0;31mAttributeError\u001b[0m: module 'xhydro.gis' has no attribute 'elevation_properties'" - ] - } - ], - "source": [ - "xhgis.elevation_properties(gdf)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [], - "source": [ - "xhgis.elevation_properties(\n", - " gdf[[\"Station\", \"geometry\"]], output_format='xarray', unique_id='Station')" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -4242,11 +5293,6 @@ } ], "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, "language_info": { "codemirror_mode": { "name": "ipython", diff --git a/environment-dev.yml b/environment-dev.yml index ab00d1ec..78754970 100644 --- a/environment-dev.yml +++ b/environment-dev.yml @@ -19,14 +19,17 @@ dependencies: - pydantic >=2.0,<2.5.3 # FIXME: Remove pin once our dependencies (xclim, xscen) support pydantic 2.5.3 - pyyaml - rasterio + - ravenpy + - rioxarray - spotpy - stackstac - statsmodels - - ravenpy - tqdm - xarray >=2023.11.0 + - xarray-spatial - xclim >=0.48.2 - xscen >=0.8.3 + - xvec - pip >=23.3.0 - pip: - xdatasets >=0.3.5 diff --git a/environment.yml b/environment.yml index d6f7a611..695b55b3 100644 --- a/environment.yml +++ b/environment.yml @@ -19,14 +19,17 @@ dependencies: - pystac-client - pyyaml - rasterio + - ravenpy + - rioxarray - spotpy - stackstac - statsmodels - - ravenpy - tqdm - xarray >=2023.11.0 + - xarray-spatial - xclim >=0.48.2 - xscen >=0.8.3 + - xvec - pip >=23.3.0 - pip: - xdatasets >=0.3.5 diff --git a/pyproject.toml b/pyproject.toml index 9886b903..6fa47df4 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -53,14 +53,17 @@ dependencies = [ "pyyaml", "rasterio", "ravenpy", + "rioxarray", "spotpy", "stackstac", "statsmodels", "tqdm", "xarray>=2023.11.0", + "xarray-spatial", "xclim>=0.48.2", "xdatasets>=0.3.5", - "xscen>=0.8.3" + "xscen>=0.8.3", + "xvec" ] [project.optional-dependencies] diff --git a/src/xhydro/gis.py b/src/xhydro/gis.py index ebe44845..4ec36c25 100644 --- a/src/xhydro/gis.py +++ b/src/xhydro/gis.py @@ -17,23 +17,21 @@ import pystac_client import rasterio import rasterio.features +import rioxarray # noqa: F401 import stackstac import xarray as xr +import xvec # noqa: F401 from matplotlib.colors import ListedColormap from pystac.extensions.item_assets import ItemAssetsExtension from pystac.extensions.projection import ProjectionExtension as proj from shapely import Point -import rioxarray -import xvec -from xrspatial import slope, aspect from tqdm.auto import tqdm - - +from xrspatial import aspect, slope __all__ = [ - "elevation_properties", "land_use_classification", "land_use_plot", + "surface_properties", "watershed_delineation", "watershed_properties", ] @@ -278,19 +276,23 @@ def _flatten(x, dim="time"): return x -def elevation_properties( +def surface_properties( gdf: gpd.GeoDataFrame, unique_id: str = None, projected_crs: int = 6622, output_format: str = "geopandas", operation: str = "mean", - dataset_date: str = '2021-04-22' + dataset_date: str = "2021-04-22", ) -> gpd.GeoDataFrame | xr.Dataset: - """Elevation properties are calculated + """Surface properties for watersheds. + + Surface properties are calculated using Copernicus's GLO-90 Digital Elevation Model. By default, the dataset + has a geographic coordinate system (EPSG: 4326) and this function expects a projected crs for more accurate results. The calculated properties are : - elevation (meters) - slope (degrees) + - aspect ratio (degrees) Parameters ---------- @@ -302,17 +304,20 @@ def elevation_properties( The projected coordinate reference system (crs) to utilize for calculations, such as determining watershed area. output_format : str One of either `xarray` (or `xr.Dataset`) or `geopandas` (or `gpd.GeoDataFrame`). + operation : str + Aggregation statistics such as `mean` or `sum`. + dataset_date : str + Date (%Y-%m-%d) for which to select the imagery from the dataset. Date must be available. Returns ------- gpd.GeoDataFrame or xr.Dataset - Output dataset containing the watershed properties. + Output dataset containing the surface properties. """ - # Geometries are projected to make calculations more accurate projected_gdf = gdf.to_crs(projected_crs) - collection = 'cop-dem-glo-90' + collection = "cop-dem-glo-90" catalog = pystac_client.Client.open( "https://planetarycomputer.microsoft.com/api/stac/v1", ) @@ -324,43 +329,55 @@ def elevation_properties( items = list(search.get_items()) - # Create a mosaic of + # Create a mosaic of da = stackstac.stack(items) - da = flatten(da, dim="time") # https://hrodmn.dev/posts/stackstac/#wrangle-the-time-dimension - ds = (da - .sel(time=dataset_date) - .coarsen({"y": 5, "x": 5}, boundary='trim') + da = _flatten( + da, dim="time" + ) # https://hrodmn.dev/posts/stackstac/#wrangle-the-time-dimension + ds = ( + da.sel(time=dataset_date) + .coarsen({"y": 5, "x": 5}, boundary="trim") .mean() - .to_dataset(name='elevation') + .to_dataset(name="elevation") .rio.write_crs("epsg:4326", inplace=True) .rio.reproject(projected_crs) .isel(band=0) ) # Use Xvec to extract elevation for each geometry in the projected gdf - da_elevation= ds.xvec.zonal_stats( + da_elevation = ds.xvec.zonal_stats( projected_gdf.geometry, x_coords="x", y_coords="y", stats=operation - )['elevation'].squeeze() + )["elevation"].squeeze() da_slope = slope(ds.elevation) # Use Xvec to extract slope for each geometry in the projected gdf - da_slope = da_slope.to_dataset(name='slope').xvec.zonal_stats( + da_slope = da_slope.to_dataset(name="slope").xvec.zonal_stats( + projected_gdf.geometry, x_coords="x", y_coords="y", stats=operation + )["slope"] + + da_aspect = aspect(ds.elevation) + + # Use Xvec to extract aspect for each geometry in the projected gdf + da_aspect = da_aspect.to_dataset(name="aspect").xvec.zonal_stats( projected_gdf.geometry, x_coords="x", y_coords="y", stats=operation - )['slope'] - - output_dataset = xr.merge([da_elevation, da_slope]) + )["aspect"] + + output_dataset = xr.merge([da_elevation, da_slope, da_aspect]).astype("float32") # Add attributes for each variable - output_dataset['slope'].attrs = {"units": "percent"} - output_dataset['elevation'].attrs = {"units": "meters"} + output_dataset["slope"].attrs = {"units": "degrees"} + output_dataset["aspect"].attrs = {"units": "degrees"} + output_dataset["elevation"].attrs = {"units": "m"} if unique_id is not None: - output_dataset = output_dataset.assign_coords({unique_id: ('geometry', gdf[unique_id])}) - output_dataset = output_dataset.swap_dims({'geometry': unique_id}) + output_dataset = output_dataset.assign_coords( + {unique_id: ("geometry", gdf[unique_id])} + ) + output_dataset = output_dataset.swap_dims({"geometry": unique_id}) if output_format in ("geopandas", "gpd.GeoDataFrame"): - output_dataset = output_dataset.drop('geometry').to_dataframe() + output_dataset = output_dataset.drop("geometry").to_dataframe() return output_dataset @@ -575,5 +592,3 @@ def land_use_plot( gdf.to_crs(epsg).boundary.plot(ax=ax, alpha=0.9, color="black") return fig - - diff --git a/tests/test_gis.py b/tests/test_gis.py index 146773bd..28b6b55e 100644 --- a/tests/test_gis.py +++ b/tests/test_gis.py @@ -123,6 +123,70 @@ def test_watershed_properties_xarray(self, watershed_properties_data): xr.testing.assert_allclose(ds_properties, output_dataset) + @pytest.fixture + def surface_properties_data(self): + data = { + "elevation": { + "031501": 33.57301026813054, + "031502": 51.393294334667644, + "042103": 358.5498543002855, + }, + "slope": { + "031501": 0.32461288571357727, + "031502": 0.5184836387634277, + "042103": 2.5006439685821533, + }, + "aspect": { + "031501": 239.02597045898438, + "031502": 242.43133544921875, + "042103": 178.55764770507812, + }, + } + + df = pd.DataFrame.from_dict(data).astype("float32") + df.index.names = ["Station"] + return df + + def test_surface_properties(self, surface_properties_data): + _properties_name = ["elevation", "slope", "aspect"] + + df_properties = xh.gis.surface_properties(self.gdf) + df_properties.index.name = None + + pd.testing.assert_frame_equal( + df_properties[_properties_name], + surface_properties_data.reset_index(drop=True)[_properties_name], + ) + + def test_surface_properties_unique_id(self, surface_properties_data): + _properties_name = ["elevation", "slope", "aspect"] + unique_id = "Station" + + df_properties = xh.gis.surface_properties(self.gdf, unique_id=unique_id) + + pd.testing.assert_frame_equal( + df_properties[_properties_name], + surface_properties_data[_properties_name], + ) + + def test_surface_properties_xarray(self, surface_properties_data): + unique_id = "Station" + + ds_properties = xh.gis.surface_properties( + self.gdf, unique_id=unique_id, output_format="xarray" + ) + + assert ds_properties.elevation.attrs["units"] == "m" + assert ds_properties.slope.attrs["units"] == "degrees" + assert ds_properties.aspect.attrs["units"] == "degrees" + + output_dataset = surface_properties_data.set_index(unique_id).to_xarray() + output_dataset["elevation"].attrs = {"units": "m"} + output_dataset["slope"].attrs = {"units": "degrees"} + output_dataset["aspect"].attrs = {"units": "degrees"} + + xr.testing.assert_allclose(ds_properties, output_dataset) + @pytest.fixture def land_classification_data_latest(self): data = { From 415b8be798eeb2ae59bec6481d68e5fccb5b5b52 Mon Sep 17 00:00:00 2001 From: sebastienlanglois Date: Mon, 3 Jun 2024 20:42:02 -0400 Subject: [PATCH 04/14] remove duplicated line --- src/xhydro/gis.py | 1 - 1 file changed, 1 deletion(-) diff --git a/src/xhydro/gis.py b/src/xhydro/gis.py index 562e9d08..d16d1828 100644 --- a/src/xhydro/gis.py +++ b/src/xhydro/gis.py @@ -341,7 +341,6 @@ def surface_properties( .coarsen({"y": 5, "x": 5}, boundary="trim") .mean() .to_dataset(name="elevation") - .to_dataset(name="elevation") .rio.write_crs("epsg:4326", inplace=True) .rio.reproject(projected_crs) .isel(band=0) From 0861880fb8564ef20bc5b7942227be1f38f17c56 Mon Sep 17 00:00:00 2001 From: sebastienlanglois Date: Mon, 3 Jun 2024 20:46:34 -0400 Subject: [PATCH 05/14] remove duplicated values --- src/xhydro/gis.py | 12 ++---------- 1 file changed, 2 insertions(+), 10 deletions(-) diff --git a/src/xhydro/gis.py b/src/xhydro/gis.py index d16d1828..7853b9cd 100644 --- a/src/xhydro/gis.py +++ b/src/xhydro/gis.py @@ -317,7 +317,6 @@ def surface_properties( # Geometries are projected to make calculations more accurate projected_gdf = gdf.to_crs(projected_crs) - collection = "cop-dem-glo-90" collection = "cop-dem-glo-90" catalog = pystac_client.Client.open( "https://planetarycomputer.microsoft.com/api/stac/v1", @@ -330,7 +329,6 @@ def surface_properties( items = list(search.get_items()) - # Create a mosaic of # Create a mosaic of da = stackstac.stack(items) da = _flatten( @@ -348,10 +346,9 @@ def surface_properties( # Use Xvec to extract elevation for each geometry in the projected gdf da_elevation = ds.xvec.zonal_stats( - da_elevation=ds.xvec.zonal_stats( - projected_gdf.geometry, x_coords="x", y_coords="y", stats=operation - )["elevation"].squeeze() + projected_gdf.geometry, x_coords="x", y_coords="y", stats=operation )["elevation"].squeeze() + ["elevation"].squeeze() da_slope = slope(ds.elevation) @@ -379,14 +376,9 @@ def surface_properties( {unique_id: ("geometry", gdf[unique_id])} ) output_dataset = output_dataset.swap_dims({"geometry": unique_id}) - output_dataset = output_dataset.assign_coords( - {unique_id: ("geometry", gdf[unique_id])} - ) - output_dataset = output_dataset.swap_dims({"geometry": unique_id}) if output_format in ("geopandas", "gpd.GeoDataFrame"): output_dataset = output_dataset.drop("geometry").to_dataframe() - output_dataset = output_dataset.drop("geometry").to_dataframe() return output_dataset From 18340b589ba66bcb613839ce717941b4b716228e Mon Sep 17 00:00:00 2001 From: sebastienlanglois Date: Mon, 3 Jun 2024 20:50:49 -0400 Subject: [PATCH 06/14] remove duplicate value --- src/xhydro/gis.py | 1 - 1 file changed, 1 deletion(-) diff --git a/src/xhydro/gis.py b/src/xhydro/gis.py index 7853b9cd..4ec36c25 100644 --- a/src/xhydro/gis.py +++ b/src/xhydro/gis.py @@ -348,7 +348,6 @@ def surface_properties( da_elevation = ds.xvec.zonal_stats( projected_gdf.geometry, x_coords="x", y_coords="y", stats=operation )["elevation"].squeeze() - ["elevation"].squeeze() da_slope = slope(ds.elevation) From 86f6f6333bbcbdca38eec1ac5fccc4e7d938f5f8 Mon Sep 17 00:00:00 2001 From: sebastienlanglois Date: Mon, 3 Jun 2024 21:47:38 -0400 Subject: [PATCH 07/14] add mask for land usage calculations --- docs/notebooks/gis.ipynb | 154 +++++++++++++++++++-------------------- src/xhydro/gis.py | 9 ++- tests/test_gis.py | 23 ++---- 3 files changed, 92 insertions(+), 94 deletions(-) diff --git a/docs/notebooks/gis.ipynb b/docs/notebooks/gis.ipynb index 1f9d2d57..aa5a1bce 100644 --- a/docs/notebooks/gis.ipynb +++ b/docs/notebooks/gis.ipynb @@ -53,7 +53,7 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "6d456d4baf214a1187f4a92847931f47", + "model_id": "5602ca0caa4a48dc87ec04b112a92404", "version_major": 2, "version_minor": 0 }, @@ -248,7 +248,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -307,7 +307,7 @@ "2 042103 579.479614 POLYGON ((-78.49014 46.64514, -78.49010 46.645..." ] }, - "execution_count": 2, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -351,7 +351,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -445,7 +445,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -822,9 +822,9 @@ " area (Station) float64 24B 2.187e+07 1.571e+07 5.795e+08\n", " perimeter (Station) float64 24B 2.719e+04 2.026e+04 2.838e+05\n", " gravelius (Station) float64 24B 1.64 1.442 3.325\n", - " centroid (Station) object 24B (-72.48631199105834, 46.22277542928622) ....
    • Station
      PandasIndex
      PandasIndex(Index(['031501', '031502', '042103'], dtype='object', name='Station'))
  • " ], "text/plain": [ " Size: 120B\n", @@ -851,7 +851,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -878,13 +878,13 @@ " elevation\n", " slope\n", " aspect\n", - " proj:epsg\n", - " proj:shape\n", - " epsg\n", " time\n", " platform\n", " gsd\n", + " proj:shape\n", " band\n", + " epsg\n", + " proj:epsg\n", " spatial_ref\n", " \n", " \n", @@ -908,13 +908,13 @@ " 33.573009\n", " 0.324613\n", " 239.025970\n", - " 4326\n", - " {1200}\n", - " 4326\n", " 2021-04-22\n", " TanDEM-X\n", " 90\n", + " {1200}\n", " data\n", + " 4326\n", + " 4326\n", " 0\n", " \n", " \n", @@ -922,13 +922,13 @@ " 51.393295\n", " 0.518484\n", " 242.431335\n", - " 4326\n", - " {1200}\n", - " 4326\n", " 2021-04-22\n", " TanDEM-X\n", " 90\n", + " {1200}\n", " data\n", + " 4326\n", + " 4326\n", " 0\n", " \n", " \n", @@ -936,13 +936,13 @@ " 358.549866\n", " 2.500644\n", " 178.557648\n", - " 4326\n", - " {1200}\n", - " 4326\n", " 2021-04-22\n", " TanDEM-X\n", " 90\n", + " {1200}\n", " data\n", + " 4326\n", + " 4326\n", " 0\n", " \n", " \n", @@ -950,20 +950,20 @@ "" ], "text/plain": [ - " elevation slope aspect proj:epsg proj:shape epsg \\\n", - "geometry \n", - "0 33.573009 0.324613 239.025970 4326 {1200} 4326 \n", - "1 51.393295 0.518484 242.431335 4326 {1200} 4326 \n", - "2 358.549866 2.500644 178.557648 4326 {1200} 4326 \n", - "\n", - " time platform gsd band spatial_ref \n", - "geometry \n", - "0 2021-04-22 TanDEM-X 90 data 0 \n", - "1 2021-04-22 TanDEM-X 90 data 0 \n", - "2 2021-04-22 TanDEM-X 90 data 0 " + " elevation slope aspect time platform gsd \\\n", + "geometry \n", + "0 33.573009 0.324613 239.025970 2021-04-22 TanDEM-X 90 \n", + "1 51.393295 0.518484 242.431335 2021-04-22 TanDEM-X 90 \n", + "2 358.549866 2.500644 178.557648 2021-04-22 TanDEM-X 90 \n", + "\n", + " proj:shape band epsg proj:epsg spatial_ref \n", + "geometry \n", + "0 {1200} data 4326 4326 0 \n", + "1 {1200} data 4326 4326 0 \n", + "2 {1200} data 4326 4326 0 " ] }, - "execution_count": 3, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -974,7 +974,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -1343,47 +1343,47 @@ " stroke: currentColor;\n", " fill: currentColor;\n", "}\n", - "
    <xarray.Dataset> Size: 192B\n",
    +       "
    <xarray.Dataset> Size: 180B\n",
            "Dimensions:      (Station: 3)\n",
            "Coordinates:\n",
    +       "    time         datetime64[ns] 8B 2021-04-22\n",
            "    platform     <U8 32B 'TanDEM-X'\n",
    -       "    proj:epsg    int64 8B 4326\n",
            "    gsd          int64 8B 90\n",
    -       "    time         datetime64[ns] 8B 2021-04-22\n",
            "    proj:shape   object 8B {1200}\n",
            "    band         <U4 16B 'data'\n",
            "    epsg         int64 8B 4326\n",
    +       "    proj:epsg    int64 8B 4326\n",
            "    spatial_ref  int64 8B 0\n",
            "    geometry     (Station) object 24B POLYGON ((-306224.9316606918 257197.438...\n",
            "  * Station      (Station) object 24B '031501' '031502' '042103'\n",
            "Data variables:\n",
    -       "    elevation    (Station) float64 24B 33.57 51.39 358.5\n",
    +       "    elevation    (Station) float32 12B 33.57 51.39 358.5\n",
            "    slope        (Station) float32 12B 0.3246 0.5185 2.501\n",
            "    aspect       (Station) float32 12B 239.0 242.4 178.6\n",
            "Attributes:\n",
            "    spec:        RasterSpec(epsg=4326, bounds=(-79.00083333333333, 46.0, -72....\n",
            "    resolution:  0.0008333333333333334\n",
    -       "    _FillValue:  1.7976931348623157e+308
  • Station
    (Station)
    object
    '031501' '031502' '042103'
    array(['031501', '031502', '042103'], dtype=object)
    • elevation
      (Station)
      float32
      33.57 51.39 358.5
      units :
      m
      array([ 33.57301 ,  51.393295, 358.54987 ], dtype=float32)
    • slope
      (Station)
      float32
      0.3246 0.5185 2.501
      units :
      degrees
      array([0.3246129 , 0.51848364, 2.500644  ], dtype=float32)
    • aspect
      (Station)
      float32
      239.0 242.4 178.6
      units :
      degrees
      array([239.02597, 242.43134, 178.55765], dtype=float32)
    • Station
      PandasIndex
      PandasIndex(Index(['031501', '031502', '042103'], dtype='object', name='Station'))
  • spec :
    RasterSpec(epsg=4326, bounds=(-79.00083333333333, 46.0, -72.0, 47.00083333333334), resolutions_xy=(0.0008333333333333334, 0.0008333333333333334))
    resolution :
    0.0008333333333333334
    _FillValue :
    1.7976931348623157e+308
  • " ], "text/plain": [ - " Size: 192B\n", + " Size: 180B\n", "Dimensions: (Station: 3)\n", "Coordinates:\n", + " time datetime64[ns] 8B 2021-04-22\n", " platform \n", " \n", " \n", - " pct_crops\n", " pct_built_area\n", + " pct_crops\n", " pct_trees\n", " pct_rangeland\n", " pct_water\n", + " pct_snow/ice\n", " pct_bare_ground\n", " pct_flooded_vegetation\n", - " pct_snow/ice\n", " \n", " \n", " Station\n", @@ -1475,56 +1475,56 @@ " \n", " \n", " 031501\n", - " 0.776151\n", - " 0.030159\n", - " 0.191648\n", - " 0.002042\n", - " 0.000000\n", + " 0.015321\n", + " 0.724102\n", + " 0.255548\n", + " 0.005029\n", + " 0.00000\n", + " 0.000000e+00\n", " 0.000000\n", " 0.000000\n", - " 0.000000e+00\n", " \n", " \n", " 031502\n", - " 0.755217\n", - " 0.023085\n", - " 0.218869\n", - " 0.002830\n", - " 0.000000\n", + " 0.009526\n", + " 0.670792\n", + " 0.312680\n", + " 0.007002\n", + " 0.00000\n", + " 0.000000e+00\n", " 0.000000\n", " 0.000000\n", - " 0.000000e+00\n", " \n", " \n", " 042103\n", + " 0.000013\n", " 0.000000\n", - " 0.000101\n", - " 0.863602\n", - " 0.026126\n", - " 0.109987\n", - " 0.000021\n", - " 0.000162\n", - " 3.780111e-07\n", + " 0.890441\n", + " 0.024052\n", + " 0.08537\n", + " 3.444143e-07\n", + " 0.000011\n", + " 0.000113\n", " \n", " \n", "\n", "" ], "text/plain": [ - " pct_crops pct_built_area pct_trees pct_rangeland pct_water \\\n", + " pct_built_area pct_crops pct_trees pct_rangeland pct_water \\\n", "Station \n", - "031501 0.776151 0.030159 0.191648 0.002042 0.000000 \n", - "031502 0.755217 0.023085 0.218869 0.002830 0.000000 \n", - "042103 0.000000 0.000101 0.863602 0.026126 0.109987 \n", + "031501 0.015321 0.724102 0.255548 0.005029 0.00000 \n", + "031502 0.009526 0.670792 0.312680 0.007002 0.00000 \n", + "042103 0.000013 0.000000 0.890441 0.024052 0.08537 \n", "\n", - " pct_bare_ground pct_flooded_vegetation pct_snow/ice \n", + " pct_snow/ice pct_bare_ground pct_flooded_vegetation \n", "Station \n", - "031501 0.000000 0.000000 0.000000e+00 \n", - "031502 0.000000 0.000000 0.000000e+00 \n", - "042103 0.000021 0.000162 3.780111e-07 " + "031501 0.000000e+00 0.000000 0.000000 \n", + "031502 0.000000e+00 0.000000 0.000000 \n", + "042103 3.444143e-07 0.000011 0.000113 " ] }, - "execution_count": 10, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -1536,7 +1536,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [ { diff --git a/src/xhydro/gis.py b/src/xhydro/gis.py index 4ec36c25..61671535 100644 --- a/src/xhydro/gis.py +++ b/src/xhydro/gis.py @@ -427,12 +427,19 @@ def _count_pixels_from_bbox( ): bbox_of_interest = gdf.iloc[[idx]].total_bounds - merged, _ = _merge_stac_dataset(catalog, bbox_of_interest, year) + merged, item = _merge_stac_dataset(catalog, bbox_of_interest, year) + epsg = item.properties["proj:epsg"] + + # Mask with polygon + merged = merged.rio.write_crs(epsg).rio.clip([gdf.to_crs(epsg).iloc[idx].geometry]) data = merged.data.ravel() + data = data[data != 0] + df = pd.DataFrame( pd.value_counts(data, sort=False).rename(values_to_classes) / data.shape[0] ) + if unique_id is not None: column_name = [gdf[unique_id].iloc[idx]] else: diff --git a/tests/test_gis.py b/tests/test_gis.py index 28b6b55e..68485e13 100644 --- a/tests/test_gis.py +++ b/tests/test_gis.py @@ -126,21 +126,9 @@ def test_watershed_properties_xarray(self, watershed_properties_data): @pytest.fixture def surface_properties_data(self): data = { - "elevation": { - "031501": 33.57301026813054, - "031502": 51.393294334667644, - "042103": 358.5498543002855, - }, - "slope": { - "031501": 0.32461288571357727, - "031502": 0.5184836387634277, - "042103": 2.5006439685821533, - }, - "aspect": { - "031501": 239.02597045898438, - "031502": 242.43133544921875, - "042103": 178.55764770507812, - }, + "elevation": {"031501": 46.3385009765625, "042103": 358.54986572265625}, + "slope": {"031501": 0.4634914696216583, "042103": 2.5006439685821533}, + "aspect": {"031501": 241.46539306640625, "042103": 178.55764770507812}, } df = pd.DataFrame.from_dict(data).astype("float32") @@ -175,12 +163,15 @@ def test_surface_properties_xarray(self, surface_properties_data): ds_properties = xh.gis.surface_properties( self.gdf, unique_id=unique_id, output_format="xarray" ) + ds_properties = ds_properties.drop( + list(set(ds_properties.coords) - set(ds_properties.dims)) + ) assert ds_properties.elevation.attrs["units"] == "m" assert ds_properties.slope.attrs["units"] == "degrees" assert ds_properties.aspect.attrs["units"] == "degrees" - output_dataset = surface_properties_data.set_index(unique_id).to_xarray() + output_dataset = surface_properties_data.to_xarray() output_dataset["elevation"].attrs = {"units": "m"} output_dataset["slope"].attrs = {"units": "degrees"} output_dataset["aspect"].attrs = {"units": "degrees"} From 37ae24e5e157a69e2e1570374a1fabe76eb56170 Mon Sep 17 00:00:00 2001 From: sebastienlanglois Date: Mon, 3 Jun 2024 21:51:10 -0400 Subject: [PATCH 08/14] add changelog --- CHANGELOG.rst | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/CHANGELOG.rst b/CHANGELOG.rst index 782babf1..7c8a5467 100644 --- a/CHANGELOG.rst +++ b/CHANGELOG.rst @@ -4,7 +4,7 @@ Changelog v0.4.0 (unreleased) ------------------- -Contributors to this version: Gabriel Rondeau-Genesse (:user:`RondeauG`), Richard Arsenault (:user:`richardarsenault`). +Contributors to this version: Gabriel Rondeau-Genesse (:user:`RondeauG`), Richard Arsenault (:user:`richardarsenault`), Sébastien Langlois (:user:`sebastienlanglois`). New features and enhancements ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ @@ -12,6 +12,7 @@ New features and enhancements * Added support for various hydrological models emulated through the Raven hydrological framework. (:pull:`128`). * Added optimal interpolation functions for time-series and streamflow indicators. (:pull:`88`, :pull:`129`). * Added optimal interpolation notebooks. (:pull:`123`). +* Added surface properties (elevation, slope, aspect ratio) to the `gis` module. (:pull:`151`). Breaking changes ^^^^^^^^^^^^^^^^ From 07218136d2b9cc085bf5dc23c61799fd3838fbd2 Mon Sep 17 00:00:00 2001 From: sebastienlanglois Date: Mon, 3 Jun 2024 23:00:21 -0400 Subject: [PATCH 09/14] update tests --- docs/notebooks/gis.ipynb | 4426 +------------------------------------- tests/test_gis.py | 38 +- 2 files changed, 49 insertions(+), 4415 deletions(-) diff --git a/docs/notebooks/gis.ipynb b/docs/notebooks/gis.ipynb index aa5a1bce..10f2a12f 100644 --- a/docs/notebooks/gis.ipynb +++ b/docs/notebooks/gis.ipynb @@ -16,7 +16,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -47,25 +47,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "5602ca0caa4a48dc87ec04b112a92404", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Map(center=[48.63, -74.71], controls=(ZoomControl(options=['position', 'zoom_in_text', 'zoom_in_title', 'zoom_…" - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "m = leafmap.Map(center=(48.63, -74.71), zoom=5, basemap=\"USGS Hydrography\")\n", "m" @@ -81,7 +65,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -111,7 +95,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -133,83 +117,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    HYBAS_IDUpstream Area (sq. km).geometrycategorycolor
    0712003433087595.8POLYGON ((-74.37864 48.88141, -74.37452 48.886...3#41b6c4
    17120398781144026.8POLYGON ((-80.07991 46.77860, -80.08529 46.782...5#081d58
    2712038286023717.7POLYGON ((-73.77437 43.36757, -73.77557 43.388...1#ffffd9
    \n", - "
    " - ], - "text/plain": [ - " HYBAS_ID Upstream Area (sq. km). \\\n", - "0 7120034330 87595.8 \n", - "1 7120398781 144026.8 \n", - "2 7120382860 23717.7 \n", - "\n", - " geometry category color \n", - "0 POLYGON ((-74.37864 48.88141, -74.37452 48.886... 3 #41b6c4 \n", - "1 POLYGON ((-80.07991 46.77860, -80.08529 46.782... 5 #081d58 \n", - "2 POLYGON ((-73.77437 43.36757, -73.77557 43.388... 1 #ffffd9 " - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "gdf = xhgis.watershed_delineation(coordinates=lng_lat, map=m)\n", "gdf" @@ -224,7 +134,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -248,70 +158,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    StationSuperficiegeometry
    003150121.868620POLYGON ((-72.47379 46.23340, -72.46888 46.228...
    103150215.708960POLYGON ((-72.50127 46.21216, -72.50086 46.213...
    2042103579.479614POLYGON ((-78.49014 46.64514, -78.49010 46.645...
    \n", - "
    " - ], - "text/plain": [ - " Station Superficie geometry\n", - "0 031501 21.868620 POLYGON ((-72.47379 46.23340, -72.46888 46.228...\n", - "1 031502 15.708960 POLYGON ((-72.50127 46.21216, -72.50086 46.213...\n", - "2 042103 579.479614 POLYGON ((-78.49014 46.64514, -78.49010 46.645..." - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "gdf = xd.Query(\n", " **{\n", @@ -351,87 +200,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    StationSuperficieareaperimetergraveliuscentroid
    003150121.8686202.186862e+0727186.9968451.640007(-72.48631199105834, 46.22277542928622)
    103150215.7089601.570896e+0720263.2930211.442220(-72.47966677792694, 46.21359517038631)
    2042103579.4796145.794796e+08283765.0583903.325331(-78.37036445281987, 46.48287117609677)
    \n", - "
    " - ], - "text/plain": [ - " Station Superficie area perimeter gravelius \\\n", - "0 031501 21.868620 2.186862e+07 27186.996845 1.640007 \n", - "1 031502 15.708960 1.570896e+07 20263.293021 1.442220 \n", - "2 042103 579.479614 5.794796e+08 283765.058390 3.325331 \n", - "\n", - " centroid \n", - "0 (-72.48631199105834, 46.22277542928622) \n", - "1 (-72.47966677792694, 46.21359517038631) \n", - "2 (-78.37036445281987, 46.48287117609677) " - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "xhgis.watershed_properties(gdf)" ] @@ -445,404 +216,9 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
    <xarray.Dataset> Size: 120B\n",
    -       "Dimensions:    (Station: 3)\n",
    -       "Coordinates:\n",
    -       "  * Station    (Station) object 24B '031501' '031502' '042103'\n",
    -       "Data variables:\n",
    -       "    area       (Station) float64 24B 2.187e+07 1.571e+07 5.795e+08\n",
    -       "    perimeter  (Station) float64 24B 2.719e+04 2.026e+04 2.838e+05\n",
    -       "    gravelius  (Station) float64 24B 1.64 1.442 3.325\n",
    -       "    centroid   (Station) object 24B (-72.48631199105834, 46.22277542928622) ....
    " - ], - "text/plain": [ - " Size: 120B\n", - "Dimensions: (Station: 3)\n", - "Coordinates:\n", - " * Station (Station) object 24B '031501' '031502' '042103'\n", - "Data variables:\n", - " area (Station) float64 24B 2.187e+07 1.571e+07 5.795e+08\n", - " perimeter (Station) float64 24B 2.719e+04 2.026e+04 2.838e+05\n", - " gravelius (Station) float64 24B 1.64 1.442 3.325\n", - " centroid (Station) object 24B (-72.48631199105834, 46.22277542928622) ...." - ] - }, - "execution_count": 9, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "xhgis.watershed_properties(\n", " gdf[[\"Station\", \"geometry\"]], unique_id=\"Station\", output_format=\"xarray\"\n", @@ -851,552 +227,18 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    elevationslopeaspecttimeplatformgsdproj:shapebandepsgproj:epsgspatial_ref
    geometry
    033.5730090.324613239.0259702021-04-22TanDEM-X90{1200}data432643260
    151.3932950.518484242.4313352021-04-22TanDEM-X90{1200}data432643260
    2358.5498662.500644178.5576482021-04-22TanDEM-X90{1200}data432643260
    \n", - "
    " - ], - "text/plain": [ - " elevation slope aspect time platform gsd \\\n", - "geometry \n", - "0 33.573009 0.324613 239.025970 2021-04-22 TanDEM-X 90 \n", - "1 51.393295 0.518484 242.431335 2021-04-22 TanDEM-X 90 \n", - "2 358.549866 2.500644 178.557648 2021-04-22 TanDEM-X 90 \n", - "\n", - " proj:shape band epsg proj:epsg spatial_ref \n", - "geometry \n", - "0 {1200} data 4326 4326 0 \n", - "1 {1200} data 4326 4326 0 \n", - "2 {1200} data 4326 4326 0 " - ] - }, - "execution_count": 10, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "xhgis.surface_properties(gdf)" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
    <xarray.Dataset> Size: 180B\n",
    -       "Dimensions:      (Station: 3)\n",
    -       "Coordinates:\n",
    -       "    time         datetime64[ns] 8B 2021-04-22\n",
    -       "    platform     <U8 32B 'TanDEM-X'\n",
    -       "    gsd          int64 8B 90\n",
    -       "    proj:shape   object 8B {1200}\n",
    -       "    band         <U4 16B 'data'\n",
    -       "    epsg         int64 8B 4326\n",
    -       "    proj:epsg    int64 8B 4326\n",
    -       "    spatial_ref  int64 8B 0\n",
    -       "    geometry     (Station) object 24B POLYGON ((-306224.9316606918 257197.438...\n",
    -       "  * Station      (Station) object 24B '031501' '031502' '042103'\n",
    -       "Data variables:\n",
    -       "    elevation    (Station) float32 12B 33.57 51.39 358.5\n",
    -       "    slope        (Station) float32 12B 0.3246 0.5185 2.501\n",
    -       "    aspect       (Station) float32 12B 239.0 242.4 178.6\n",
    -       "Attributes:\n",
    -       "    spec:        RasterSpec(epsg=4326, bounds=(-79.00083333333333, 46.0, -72....\n",
    -       "    resolution:  0.0008333333333333334\n",
    -       "    _FillValue:  1.7976931348623157e+308
    " - ], - "text/plain": [ - " Size: 180B\n", - "Dimensions: (Station: 3)\n", - "Coordinates:\n", - " time datetime64[ns] 8B 2021-04-22\n", - " platform \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    pct_built_areapct_cropspct_treespct_rangelandpct_waterpct_snow/icepct_bare_groundpct_flooded_vegetation
    Station
    0315010.0153210.7241020.2555480.0050290.000000.000000e+000.0000000.000000
    0315020.0095260.6707920.3126800.0070020.000000.000000e+000.0000000.000000
    0421030.0000130.0000000.8904410.0240520.085373.444143e-070.0000110.000113
    \n", - "" - ], - "text/plain": [ - " pct_built_area pct_crops pct_trees pct_rangeland pct_water \\\n", - "Station \n", - "031501 0.015321 0.724102 0.255548 0.005029 0.00000 \n", - "031502 0.009526 0.670792 0.312680 0.007002 0.00000 \n", - "042103 0.000013 0.000000 0.890441 0.024052 0.08537 \n", - "\n", - " pct_snow/ice pct_bare_ground pct_flooded_vegetation \n", - "Station \n", - "031501 0.000000e+00 0.000000 0.000000 \n", - "031502 0.000000e+00 0.000000 0.000000 \n", - "042103 3.444143e-07 0.000011 0.000113 " - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "df = xhgis.land_use_classification(gdf, unique_id=\"Station\")\n", "df" @@ -1538,18 +267,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwcAAAJ/CAYAAAAtXq9XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAABM5AAATOQGPwlYBAAEAAElEQVR4nOydd5wdVfn/P8/2lt3NprfNpvceIJRAAAENglhAwAIKiEaqit2v2FB/ipAgYAQBBSkiGgtBekIvSUghvW02bTfZbLK97/n9MXfuzp07vd+7z/v12tfeqefMmZkzz3POU0gIAYZhGIZhGIZhmIywK8AwDMMwDMMwTDRg5YBhGIZhGIZhGACsHDAMwzAMwzAME4OVA4ZhGIZhGIZhALBywDAMwzAMwzBMDFYOGIZhGIZhGIYBwMoBwzAMwzAMwzAxWDlgGIZhGIZhGAYAKwcMwzAMwzAMw8Rg5YBhGIZhGIZhGACsHDAMwzAMwzAME4OVA4ZhGIZhGIZhAKSBckBEgohE2PWwChEtitX5kbDrEjZEVBFri1Vh10UPIloVq2OFxrYriGgtEbXE9qmMrb89tnx1wNU1hIiujtXr9rDr4hVEVJlK738UIaKPE9FqIqonoobY74/bOP6Lcj9MRN/V2F5KRFcS0eNEtIWImomokYjeJaKbiShb57yTiOhWInqSiPYoyhjq5TUR0WgiupOIXiOiA0TURkRNRLSOiH5ARAVW24JhGCYdSHnlgGHCgIhOAvAYgMkAXgDwZwB/D7lOj8SEp0Vh1iMVCVtxCuveEdFNAP4D4DQAbwF4BcBJAP4T22Z2/EAAdwIwUtC+BeCvAD4LoCVW3nsAZgG4G8ArOgL41wD8LnbcGGtX5OiaZgD4BoAJAHYC+CeANwCMBfBzAO8QUanV8hmGYVKdrLArwDAR54sACgAcVK2/CJJyfaMQ4iHVtt8DeBLAYf+rZ4t/AngHQG3YFWHCh4gmQhLs2wGcLYR4W7H+LQB3EtFzQoidBqe5C0ARJOH/8zr7NAG4A8B9Qoj4e0REEwC8BOAMAD8E8H3VcZsA/BqSIvE+gNcBjPbhmtYCmC6E2Kw6VzGAfwA4F8B3Y38MwzBpD88cMIwBQogqIcQ2IUSnatPI2P89GsfUxo6p97+G1hFC1MfqxcoBAwA3Qxog+oMsRAOAEGIHgF/EtunOHhDReZAUgp8D2K23nxDiV0KIHygVg9j6negVuK/QOO5PQojvCiH+IYTY79c1CSEOqxWD2PoGAD+OLZ5jsXyGYZiUp08pB0Q0jIi+HbM/PUhEHURUTUT/iJmJaB0Tt2kmomuJaCMRtcaOW6433Ryzp3+CiI7F7FffIqILHdTZ0C5fz76diAYQ0R1EtDlWfj0R7SCivxDRyRrnGUREvyWi7TGb2+NE9BwRnemgzkREnyOil2PX3xazGX6ciE63cHweEV1DRP+KHddKRCdiNsGX6xyTTUTXE9F7RFRLkh9AJRH9V30MERUS0XeIaH3svE1EtJuIniaiC1T7JvgcyOYnAL4U2+VV6rWFvjq2j67PQayeS4jozVjZLbH78gARTXfaBrE6XaVRp6S6k4bpDBEVENGPiOjDWFn1Ju3t6L0ICiK6kIgeIqKtJNmcNxPRBiL6PhHlqvZdBeDh2OKPVW13tWrfGUT0V5L6j3YiOkRED5O2TwoR0eWxdqyOvQf7ieglIvq6Yj/Te+cTsg2+ljnc07H/F2kdSET5AP4AYCuA37iow4bY/+EuzqHE8TXp0B373+G4RgzDMClGXzMr+gSkaepdkKasGwCMB/BJAB8noo8LIV7QOpCI/h+kUan3AfwPkj3rVwBMIaKzhBBCse84SFPYgwHsALAOks3sfyB9UH2FiIogmY+Mh2RD+3xsUzmkEbo9kKbq5f0nQ5reHwFpBHAlgAGQRsvOJ6IvCCEet1h2JiSTms9Amtp/A5IZSzmkdu4A8KbJaSoAPAigBsC2WF2HQmrzhUQ0WQhxu+qYRyHZJtdCavuW2PUshGT28KSifi/EznUAwKpYnUZCEiya0dteWuyC5F9wBoBxsX2rFdt0IaJCAM/F6tQEyUyiEdKzcTUk06UPHbaBXp0QK8uoXv0AvApgHoCjAP4LoBDS/V9IRAuEELfoHGv5vQiYP0G6hs2Q3vViACdDGj0+l4jOF0LIgt//IPWFp0MSVtcrzhO/p0T0aQCPA8iBZIryFqT2vhrARbHrVY5A/xLAdyDd4zcAnAAwDJKt/XgA98b2c3zvnBJT3spjix+otwshDhBRLYDRRFSiMQv2E0g2+YuEEB1E5LQqY2P/qw33soAH16Q+XwGAH8QWn3NbP4ZhmJRBCJHSf5Ac4YTFfWcAmKmx/gJIguwuAKTaVhkr4xCA2Yr1AyEJ3gLAOapjno+tvxdAhmL9tXJ9ATxisc4Vsf1X6Wy/Pbb9asW6q2PrlmnsPxiSfa28nAlJeBKQpttJsW0OJGG7CcBgi/X9YexcGwGMVm0rA3C62bVBUkzOV7ZdbP0YAHshjeZVaJznPQB5qmPyAZyqWF4U23eFxvlLAMxTrVsV279Ctf6R2PpFVu5JbP2DsfWvABig2jZCWbbdNjCrk+q5uF21/p7Y+hcBFCnWT4aknAgAi92+F378yfXQWH8JgELVun6QFHQB4ItW2kbV7s2QBPwzVdu+KD9/inV5ANpi96pMtX+WxjkM750P7TYzVl6dwT4fxPaZoVo/G0AngIc0nvnv2qzHi9Dpq/TuNYChXl9TbFv/2H14BMCzkPo+ua/ID+K+8B//8R//ReGvT5kVCSE2CSE2aqx/HtKU8zgA05MOlPiREGK94phaAPfHFuOmN7FZg/MBHAfwbSFEj+KYByGNNvrN4Nj/V9QbhBBHhBAfKlZdBOmanxBCLBNCCMW+HwD4GaQRWD1nwzhElAPgm5A+qF8WQuxTlV0nhDCbNYAQ4pgQ4gVl28XW74U08puBRNMA+XrfEkK0qY5pFQrbY8W+qzTOXy+EWGtWPycQ0TBIAmgrJMH0mKrsg8qyHbSB03oVArgGQA+AJUKI+Ei1EGIbJHtyQN/23NJ7ETRCiBVCiGbVukYAt8YWP2HzlDdDckz/thDiNdV5/wJJgDyJiObGVhcDyAWwQQhRp9q/S32OECiK/W8x2EduP3lfeebtAQD1AG5zUwEi+iqAj0BSuH7l5lwxHF2TgkJI5l1XAVgMSUH/O4CvCCFaPagfwzBMStDXzIoQszf+KCQTg0GQTAQAaVYBkMLZbdI4VMvcaEfs/zDFOtmmfqVaOInxJCTTCz+Rhcw7iKgLwEtqoVnBebH/K3S2vxH7r+mToWI+gFIAa4UQayzsbwgRnQFppH8EpJFYQm9bT1Dsug3SR/9LRLQZwD/UwreC9ZAE4duIqBrAszGh0W/OhjRLs1IIccDqQTbawCnzIM2uvCO0o9I8CmAZgNOJiJTKYwyr70XgkBQNZzEkE55CSAqVbP9it+3k9+RfOtvfgDRbcRKAdUKII0R0AMCFRHQbgL8KIQ7ZLNNP5HYwMvvSshW6GdJ7/mWDd8y8cKKzACxF70CCF23j9Jqkg6T3kkiykRoJ6Z7/AsBGIloshFjnQR0ZhmEiT59SDohoBoB/QzJD0aOfznotgU4eZVU6OMqOdVU659Fb7xlCiJeJ6C4At0Ayo+ggovWQBLk/CSEqFbtXxP4/RURPGZx2oIWiR8X+60YusQIRlUAKIWgUISR+n4QQDUR0HYA/xv6WE9F2SHb0fxFCvKPYd0dMWPsVgCcAdBPRh5B8Lh4WGlFLPMJW29htAxfIz2ul1kYhxAkiqodkclUMacRYidX3QhfSTgi4QgixwsrxGucjAL+FNEugJwzabbuK2P9qE/t65XtyFaTBgP8H4P8R0V4ArwF4XOj4NtmFpKRjk1WrtwkhzEbiZYW40GAfOfdAU6ys0QB+CukaHrFX016IaCakwYgcADcJIf7p9FwqbF+TFjEFeD+Ah4hoIyT/rYeJaLaGcswwDJN29BnlICYw/A3SR/4Psb89AJqEEIKI7gDwPegIEzY+ClZGr7xE0zRMCPENIloOyXziXEgzGicD+DYRfVYheGXG/j8H4IhBOdts1Mnttf8aklD8GoD/g+Ske0II0U1E50Py6Ui4T0KIJ4joJUjXez6AsyAlUfoaEf1GCPFtxb6/I6KnIY30ngfJQfibAG4lopuEEPfCP6y2je02CKBeSft4JCxdpbGuEvqzWWZ8FlJSqwOQFOS3ARwVQnTGTN/aYb/tMiFd/19M9osrl0KIV4hoPCRH949CeiavAnAVEf1NCPFZm3XQQj6vktUwN9ORByn6E1GhziznSNW+Z0MSvAdDiqqk3Lci9v8rRPRRAG8IIX6oPmHM7PJ5SDOMtwsh7jGppx2cXJMhQog1sYGGmZD8TpJCFzMMw6QbfUY5gDS6NhnAGiHE1zS2j9VY5wR5eny0zvZynfV6yCH0tGxkgd4R6SSEENvRO2qZB+DrkEZUl6NX8JJHfv8ghPi3zbqpkWORj3d5nk9Ccri9WCRHFNG9T0KIo5Ccfh+MKYMXAHgKkgnRI0KILYp990NyxL2HiLIAXA4pnOXviOivQogTLq9Bjd22cdQGDpCfV80MtLEZjBJIZlu+mF8JIbxUcgCp7QDga0KI/6q2OW27A5B8km4SUvx7S8T2fTz2ByJaAMm/6bLYM+kqCo4QYpHD404QURWk/mgOes0HEavnSEizIFUaz5/cl2oxJvZ3Qr2BiIZDckAeCmCpEOInTuquh8trMkLOCzIIrBwwDNMH6EsOyf1j/5PMIIioP3ptit0iO9wujjl7qtGMG29ALaTIIGNiQmyc2CioetRQEyFEmxDiTkhZewcTkeyY+1Ls/yU266XFGkhCwVwimufiPP0BNOp8wC+zcgIh8T9IUUcAfUdz2UH0MUjhOHMATLRZXyusgiTsLyaiERb2d9IGsiJpR+lfC8lJ+uSYjb4a2RH9jRQyqZDfda3EWU7bzpP3JGbi9mhscYZik5N75xb53fiMxrZLY//jypUQ4hEhBGn9QQptCgDfi627RHmyWB/7PCTF4WH0OoZ7ja1rMoOkLMlzIM0a7XVXNYZhmNSgLykHuyA5op6jFIJiI+p/gBRm0zVCiF0AXoYkoPyKiOJtTERfgk1nZCFEBySb1zJII//yubIB3AWNEV8iuiQ2QqlePwfAEEgjwMdjq/8OyWToapISg2Wrjskhok/F/DWs1PUuSCYbfyKihFkNIiojC0nQIDm0lhJRgtkFEd0KybQh6bpidVTXvT+AU2KLVbF1ZxPRR5T3JbZ+NIApkIQAyw7DVok5XP4FkvPvI0SU8LwR0XBFpBvAZhvEkGcBJtmoVzOAhyD1BfcqFVoimggpNC0gzbKkCrJD9FdIYftCRAuhH2HHrO3uhKRE3UVESVGiYs/2EpKSg4GIyklKOleg2i8XvfdPadpi+955wFJICutXlf1FrH/8QWzbMreFxNpgJSQF/W8ArvNR0bR9TbH7NlOj3iMgzfj0gxS4wMjskmEYJm1IG7MiInrHYPNdQoiniOhPAK4DsIGIXoH0sV8IyZ74EUihJr3ga5BmEG4AcB4RyUnQToGkiHzV5vl+CmnU7e6YsFgNKcpMAaQESmqb7UUAbiaig5DiejdAcjw9A5IQ+CMhRCcgjZoT0Sdj5/9V7LiNsWNGQTIfKIVkqqEVxUnNHZBG2i4BsJOIXkdvErS5kMx8zMKZ/hLAYwCeJCmT7AFIiaMmQ1I+1KOOowE8A6CeiNZAap9SSPe2GMA/FU7Js2LnOEpEawEcg2QucCakaEB3+xhV5ubYNXwEQGWsbZog2WvPhRQZRY6IYrcNAMn5/P8A3ElE56HXHOI7JpFlvgdgAaTZsz1EtBq9SdDyIMWgf9bg+KixDNK7vATAotjzPALS838ngG9pHPMOJJ+bz5CUMXkPpMGEh4QQbwkhdhLR5yHdk3/H7NC3QlKERwOYCmnW6XFI/UoZpBHye2PP5AFIbXoapOftPUgO5zJO751jhBDbSXLO/x2A14noRUgzGOdDUmK/ETNNdMsvID1f3QC6IA0caNXnauVyTFm+T7FKjn71LBF1xn4/KKQQ0W6u6TJI92kLpIGSTkh93zxITvWbISX2YxiG6RuICCRbcPOH3qRiRn+3xPbNhOSouBnSB7wa0sd+NPQTV1VCJ8kaehNqPaKxbSwkQbgOkr32OwAuNjrG5DovhCRQtEESaJ+CJFQm1RtSkqLfxvaviR1TCSkM4yKd8/cH8GNIoT6bYnXeFTvmaiiSY1moawaAL0HKAFwfa+s9sbZWJiSrgE6CN0ghKN+GpKQch2SrfJZW+0GyYf4BpBmb/ZAcTqtj5X8RQJZi3/GQcje8AWm0th2S4PYCgEs06rEKHiVBi23LheQk+76inbdD8gOZ5rQNFMdcCclUqAW9z39FbNvV0En0BUlw/T9I70ZbrMzXAVyhc48r4eC98OH916wHpFmgf0N6/pshKV3XKfqMSo1j5seegxOQFAOt/mACJAV/d6ydTgDYAmn25ULEkghCGm3+JiQzl72Q3oGjkN7JG6GRVMvo3vnchhdBcnxvjP29DsnXxc455Gc+KQma4l0x/DN4joz+kp5lu9cUu29/ij37dZCUg1pI7/6NUCVW5D/+4z/+S/c/+UPGMAzDMAzDMEwfpy/5HDAMwzAMwzAMYwArBwzDMAzDMAzDAGDlgGEYhmEYhmGYGKwcMAzDMAzDMAwDgJUDhmEYhmEYhmFisHLAMAzDMAzDMAwAVg4YhmEYhmEYhonhKEMyEZUDGOhxXRiGYRiGsUatEKIq7Er4TUjyRp9oW4bRw3YSNCIqz8jO3NfT2e1TlRiGYRiGMaEFwJR0FmKJqDy3oGBfe0tL0EWnfdsyjBFOZg4G9nR244b7H8OICVPiKx9/8kbvasWkJFdefk/Sur72XOQO/Z7utvbqXwZYE8boXsjwPQmWW17aCQC4+yMTQq5JatNa24RdKzYWQBpRT2cBdmB7S0uSvOEnB3duxe+/9vm+0LYMo4sjsyIAWL32PvzgM2/Gl4tWl3hSIcY5eeX3oa1qSWjl/3v1D3HzTSvjy0uXLUbRsL71XOSVT9fdlk3JbaFuL8Y7jO4FALRVLUF2H3s+AemZC+tZm5SXg9sunYmikOvhBvmdTcW6pyojJkzBmFlzw64Gw/QZXDkkc+cYHfLK7wu7Cgnws2GOUjHoi+X7TZiKcpTbNqh3M6/8vqR+6bZLZ8Z/L19RGUg9zDC7VzfftDLhz+pxDMMwqYrjmQMZvz80PLJqjbaqJfGPcZhCUV++R24VtCBHUuX3Si3g9KX7J98vP96XvtSOWlh5F8Lsp+wi30/1+5Kqsx8MwzBGRDqUKY/MMKmGG4EnaMWgL9BWtSSlhNCg8PMZUCoGbVVLIv+8mb13RttZMWAYJh1xPXNgFS/sNOVRGp5N0IcFofCQ2155D/RGp70UmLRGafk5iBZRHGH2ok5aM5Xq5182H/JzpiYovL6H7L/AMEwU8XTmQE/g8dJOU2tal5HQEkC5fcLFz5FrLZtu5TY9li5brCmMpIuAIreLURvI9yWVBVU36D0DTLDwPWAYJoo4yXMwF8DaGdeelhSJxmgUxK5ts9aoltV16Y6e0KMl6PDIVLRxen+s+jf0NeFX3S6yL456HRMc3P7e03S4HpsefAsA5gkh1oVdH7+Q5Y1fvrQ2sGhFezesw/c+Mg9I87ZlGCM8NSvSE3C8Gr3WG+1kAVgfpSMdt0/08POeKIUwu/dfbTeeCmgpTFGL4tUX0VLQGIZhmOjiq89B0CYtQfoihCFsu/nAsmKQPjiJBONUMbBDmDblXkTH+c3TGxNCbYZJuo22KxWEsCOqOSVV680wDGOXwByS1ZgJ11EWZtVhIP2uqx0zIqbv4fVzoBTkrJ5b+YxGTYiyUpffPL0xgJo4J2pt6pZUu55UV2wYhmHs4GsoUz0zoCAE/3RxxPV7Oj5d2qmvENSIsh1n3bDNecwcj60SlVkDmXRzmE7la0nlujMMw9gl0JkDt0pB+4lWHHhjF5oPN6B03CCMWDgOmdmZHtXOOupwql4Rhl0u+2xEA74HzvDqnYmiYqD1O9VJZfMi9p1gGKav4LtyoCfs2BGCWuuacWD1LtRXHouvO7LhAI5sOICyiYPxn8zf4iNXXY/8on4Jx/nlgxD2aLvXH1RZQWCn5XAxa3uvBBOv77MsNPkt6NmtdyoJnn2VVFQQGIZh0p1IZ0gGgK62Tmz+87sJioGSjoNdWHn/7/CNBZPw4iN/0D2PlzH/ZdOoMGKFG32c3FyfV9fiZU4LxhgngorSX0br/ji9Z0EoBnZgIS414PtkDM9UMAwTBpFWDjpbOrD+/tcT1pWOHYhxF81AZk7ypMdffnILHv7ujTi4Y6vuOaMssBp9KGX7Y7P6y0Kf2mk6SMIuPxWxopgpE3e5UQyUZSrX5ZXfF+mZI626abUFC5xMOsCKAcMwYRFatCIr7HtxW8LytC+cjPyBRQCA4tFlqN10COXFJ2HDK/+L7/Pef5/Be/99Bvd8sA9Z2dma5w0y5Kld1HatbkJSagnofl+vWuAMqn3DDKOZKpjdiyi3XdTeUxk2xXNOlJ83hmGYvkykZw5O7KmN/y6bNCSuGABAZnYmhswdha8uewhf/PndaGquQ1FhWXz7gW2bLZURxZFtp6PDVkyDgrjeMMytGGek230KWuBMt/YLEh4Ztwa3E8MwQRPpmQMlFedP1lwvj1SPmTkXP7n4zPj6UVOmG+4v/wb61uif19dpNEsQZJvyKGTfhu8/wzAMw3hDZGcOhBCgTAIA5A8sQkaWccjSY4cPAACamuuw+Ku3IjOrV+/Rch5W/7Y6oh6FmQajOljxSWAYL0kXH5O88vt4lNZn2PzPGurnkJ9NhmGCJLIzB211LRDdAgCQXZBjuO/SZYtR+eJWNDXXAQA+rPkP9ix71XaZVmYQ9LYHHafezLlUD6/rp5x9Yfo2qTwDF+UMz+lIugm6QSg9/EwyDBMUkVQOhBDY9/L2+HJGlvkER/uJ1vjvgkFFBnsaC8hOBRxlrgA75bnB7nn9FNxSVSgMgnQXNv1KChgU6SaoRhGtNvbqnQh7NoKfH4Zh0o1IKgettU1oOngivjzyzPGmx7QcbQIA5PTLtV2el9F1tAQlr0dUjRLL6QlpLLyHRzorBjJRf760BEgjoS7dFbogufmmlVi+ojJhnV7bas2I6qFleuPnPVNHkfNLKfBTkWIYhrFC5HwO8srvQ79JyxLWZWQb+xt0NLWju70LAEBEvtXNbHRU/pBpfdCCGlkNKzkbk7p4/WxGbRZBbTJk1X6b7by9YemyxQnCrZGgq+cXFjZaioif52cYhgmTyM0c9HR14MSOdxPW1e+pxaCZI3SPObB6Z/x3v1H9bZfpJHeA2XFhxfvXqwvD+E3QfjdmpILA1ZdmKKxep5vnJ+z2dFO+3vPaV54PhmGiQ+gzB0IINB48gf2rd2Ljg2/hrdtmYvujtyTsk1dWYHiO1rrmhOXOlg6vqwkg+aPlZibBC6yWzzBGePWchDFj5fXovlZ+Eb+VjFRQYtwStdmkKGGkFLBiwDBMGIQ+c3DorT04/N4+3e3jLpyOfiONZwMKhxSjtVZSEGo3H0b93mOYdtUpyMrTzpAcJGEK6MrwkqwoMOmGWYQhedkLG24/nV77ggA4cuFI4NKZnp7TT7t/J2gplX3h3jIMk36ErhzUbj6suy1/YCGGfeTvAIw/oOXnTkLL0Ua0HJGckjtbOnDorb0oP2ei7jGiR6DxwHFkZGUib0ABMrIykZFpfSJFGZ0oLMHbKKyq37MWfYUgo0+ZwUpeL2qh0I4QZmXfqAmeRmiZc0XNxOs2jxUDGasO5kGjVxerdWSlgmGYMAndrKhgUD/N9QNnfwJzv/d+fNmoU83IzMDky+ejbNLg+LojGw5g+98/QGdzO4QQqFlXhb3Pb0HLkUYAwJbH3sOOZ9Zj21Nrsf6+1/HBvavRXN1gWl+1w1xUPr5qeBrfP/RC1vpNVJ+1sDETpGTzDCtmGsr7qnWc1wKoX0JglPKPBCW0sxkOwzCMN4Q+c1Bx/mTs/s+HaDpcn7C+cd+HoIxE3cVoaj8jMwOjFk3Eid216Onqkc6x/zh2/WsjRI+Ihzo9tqUaGZkZ6OnuSThedAtsfWINhi8Yg+GnjjGsc5SFtKg4QQdBECPpepGn0r1tUwWvhUGj+xplwTPqz6M6DGi6YqYIWZmRSuf2YRgmNQh95iC7MBeTL5+HsR+blrBedB/U7ST1nBCzC3Iw8yuno2zSYBQVlqGosAzUlI2MlhwUFZbF91MqBrnFeQnnOPTOXmx57D10t3ehvvIY2htaE7ZHYSTOjCjPaHhJ1My5GHPCmnXpi0S1H4iS+Y9VrAjsbkzdGIZhokToMwcyZZOHYP/qnfFIQx0NbRBCGB6jNZOQlZuNsYuno7zrdLzw0L3Gx5cVYPpVC9DR1I5ND74JubiWo0344L7X4vsNmDIUFedPBmVkRCpEqRZRqw+T/li1b/dSKWDBK3Ww478RZQHbCz8UnjVgGCYVCH3mQMnoj0xKWF5796toPbrf9DitDnfiKacnrSsqLMP0q07BkHmjUH72BEz74ikAgJyiXMy9+WwU6+RIOLa1Gnuf26K5zYnAI4+e8igqk04YPctRVqhTnVRoTyv+AFr9eNRmGaz6rrCQzzBMKhOZmQMAKB03CKPPnYR9L2+Pr1t7x3k4+advIadfmcGRyWx+/RUAQFNzXXxdUWEZutq6MOrMCUn7ExEmfmYOjm48mFC+TN2OIxgw9RhKxgxw5Own26lrHROmDbufIRqZvgfn3mD0kEN7ymahVqNGRRW9mQQjc1iz8zEMw0SBSM0cAMDAGcPRf+LghHXVr15ta9Tp5ptWorO9DQASfA0AYPFHfmh4nkEzR2D21xZi3EUzMHvJQvQfPyi+beeKDQmhV63Y9CpnB8xGVpX7+T2joPbbiNoIXRTgNunlN09vxG+e3pi0Xv2cGr0TrBgw6YbWd8nJDAgrBgzDRAlfZg7cxNgmIoy7cDpqhu3H/tU7AQC1Hx7C4NkjLdt8Ll22GCfN/CLeePqxpG3b330DN//AuH5ZedlxpWDM4mk4ce9qiG7JIaHyha1oqKpLcqCW0YuLb1XYV+7n14wCC73mcBslohWnXksx0IKVAkbG6L3qywIyJ0xjGCZK+Dpz4GYEfNDM4fGkZOqwo3ooPzynXvJZfO4nv03aR55RkOtnRkZmBmZ/dWHCurptNVh3zypTh2k75fhxLOMMPxSDdFI2tN5rtQIgzyCwYsDIaGUQ7gs4vU7u+xmGCQtfZg7UNvlORsAzsjJRNLIUDfvq0FbXgiMbDmDwLPPZA3kEhohwxqevxHt7HsHu/2xCTx0BAOae//GE/a3ULTMnC3NvWoR1y1bF1/V09aCtrgX5AwptXZcWWj4MqSRUWfn4BT0qFrWRuCjVxQ3qZ5RzPjB28CuZXJgor0npU2H3eCWsGDAMEyaeKQd+CAkjF47DtoMn0NPVg/2rdqJoeAkKBvWzZF4k1+Ubt72Au3M+hgvPuB0lg4bgiRVLMO2Ms23XPSMzA1OunI+tj6+JrxM9yTMHVp2VtcpLZyErSGFdbvvlK+yX2VeSNTlFa4bALlFT3JhgSSfFQIkXoU6V6L1beeX3oVN8COAiz8piGIZR4plZ0fIVlUnr3Aq7BYP6YdjJowFIgviWx96PbzMSLpQd9NJli0FEmDDvFAwur9D1CTCj5WhTgmIAAPkD9WcNvBb0vXJS1vt4uRHWvArt95unN3o+YubmY52uQoySvnCNTLRIZ8XQaqhT5f5apPNAEcMw0ccz5cCsM3Qq9A2eW56wXL+31nKZbsuWBfIbb/gv2j4QCZGPJn56NojI8Hi5g9fq6IOeNjab6g5TSLyh/Px4JJyRC0d6dt7rL6kAwAqCEWEIaqkmHMrvjl1zEa/hvCjuCPo+ys+5H897e/UvPT8nwzCMjO+hTN2OgGRmZyK3ND++vHNFYjhFZQdstxM2c5iUt/3u6k/hSOXueM6EHzzxEorLyywlM7MTqcgKURYOnH4Ef1/1AgDgwOsHNKPi2IWdYRmv0AtLGbSSEOX33glBKohhKnVeXKey/mySxzBMELhWDuwmAnPC9KsWJCzXba9BT1d3fFnZWcpKgtq0yKmg+Lvfno8Nr/8vIZlaQXGJ7WtRlu9WcE0VQcHOFPttl870VZhP9xkAhkk1ghBy9ZKUBSVge6WY+DkLwTAMo8YTh2SzvAZuR88pg5CRmREPabpn5WYAQP/xgzD249M1zXuMOlE7QmhGdiZyivPQ0dAbAvWXl12Amx54ClNOXWhwZCJuHbaVbZgKI+L8EdMnle5jXyYqzumpMhgQNdRCeRgR07yA+1KGYYLG9cyBUsDx8yM28dI5SeuO7zqKtXe/iq62Tktlq0fstTpv9XmICJMunYt+I0oT1i+77rPo6UnMv2BkWuSFIBiEqYyZmZQZRqNyYUzvt1UtseV7oK671x9mFvRSg6goBmpYoXRGVBUDntFkGCaK+O5zIGM1xKceRcNKMO2Lp2DYKRXI61+QsG39/a/jP7//jeWkZAASbDi16qkktzgPky6bi7k3npWw/r3//iNp36gKf1ZNfPxQ9sJ25AR6nZOtYDfiCJOe8DPABEHYfSPDMIwaT5QDu6NZToXO/AGFGHHaWEy76hSUnzMxvr6osAwr/3AXjm8/Yuk8Zp2x3uh5RlYm5px1YXy5pnJ3/HdLQz22vv062pqbI6sgyGgJPMp1RlGWvCg7aGVBOeMS9ofYz7ZlvCOqSkHU+5aoEOZ7HnYfwzAM4xbPZw6MPl5ejUoTEQbPGonpX0p0VJ49/lOOzyljVq+9B96NOydvO/4cTtRU4zdf+AS+edoULLvus7j9ooW489fnhfoRt2o+YzRC7qXwqixHWbeglYSoCHysGHiP1rOULkKaOpiBHqw4SITta+CEdHlWGYZJDzxTDsIQePJKC5CVnx1fLuxfZrC3M9Qf3Pb61ni+gwvP+T9879y52PNBb3K2+iPV2PXoZvzvgXvQ1d7peX3M0DOXigpaCklQdY1qmzDmqIV/LQHQb3+RMFA6r/d1pTIKuSbM4JwqDMOkA66VA3XIUL195P28tmmffbpk5tPUXIdXXr4He/+3BQff3G3of+BGOJ0w6fT473u/9nnNfZqa6/DXO27D+vteR9uJFsvn7mukg/DG+I/8fqpDFts5NlXp6wqBTDoI3ezLxDBMquDJzIG68zWLdmPng2c2WrRlw0sAJL+Dg2/uwbGt1Wjc3IhBJ2ZYLsOoburlxuIDmseN+8JUfP/pF5DfrzhhfeX/tjqqh1NSLR52ULHOoyIgMM5Ilec5TIKKHMe4R09J4H6KYZgo4JlZkVlYUHVHaDV6kdkI/4RPzUZTc11CkrKm5jr875Fl+MqXnzI8v53IPTIDJg/F6E9PwOd/eifOuuJLKJ3bHxOuno7s/Bz848VvY9SlozHmY1N763K4HqLHehQlK1j58KeScBCk4MdCZurh5p6p/Vz6CjzjEC30nmE9M8u++Mwy0YaIBBHdHmL5i2J1WBRWHfoSrpUDPaHfaB+jfc1Qd5rZBTmYpJEDAQC+sWASXvrLHy2fyyr5Awpx+qeuQE2/DzB0/mhk5vTmksvIykRxeaLvw9qlr2L/qp3oagvOB4GFg0R4Op9Jd9zkJ7FKGIKrF+UFVWe3iqwSVhBSD4UAK//1ENFxInqRiM4Lu34MYxVPZg7UgpcdwdRK9mSzTrPfyP6YvWQhJn56NqZ+7qSEbc/8v9tx7VWPGx6vVScgMaSpso5m9c0uyEHBoKKEdTUf7MfGB95EZ3O74bFWsTIjEoSwEHXyyu9jpcBjlKZ+LMBEBz+dloO8126frzDedy/aR+v4MKO7Ma74E4AvAPgSgKUApgP4HxF9JNRaMYxFfEuC5reCoCYrNxvF5WUoGNwPEz41K2Fbdk5u0v5KJ0cj0yW1Ha9VJWHK507CqDPHJ6zr6erBtifXGl6HFawKAX09wgl/SLVx2y6sbPUt9IRWP94vrzILB/mM6kXOsuuArOdwbxapi4kk7wghHhNC/FkIcTuAj0CSt24Nt1oMYw1fMyRbEfqV+5phtZPtbOwdnR8zax5y8vMtn+/6Sypw800rLflEGNWZiDBkXjnm3XI2pn6+dzajvaEN7Q1tptcgozd74YS+NovAQqw2XrQLR17pGwQpiPpdlt/n9/K9Uv9mUhshxGYAtQDiI4ZEtJCIHieivUTURkS1RPQMEU1SHx8zUXqMiM4ioneJqJWI9hHRjRr7ZhHRT4noQGy/tUS0mIgeIaJKjf1PI6KVMfOnNiJaT0RXmV0TEZUR0a+J6AMiqleUlRTGMVa2IKLBsd/HiaiRiJ4iov4a+y9SXOcBIvoFgGz1fox/+KocAOHYvrcdl8KHNjXX4UTW3uTtFjtdL0beiQgFg/olrDu6QTvikV4d3KBUCMKeRZDrEpSS4kQY4Kl76/Q1ZbOvkU6Kgd/l+CnEq2cUWGEIjMlENFf1N8zJiYioFEB/AMcUqy8DMBzAnwHcCOB+AAsBvEFEgzVOMxPA3wG8BOCbAPYBWEZE56r2uw/AjwBsAPAtAC8DeBLAXI16XQJgNYABAO6InbcGwCNE9G2TyxoL4MrY8d8D8H0ALQAeJaIv6xzzLICi2L4PAfg0gGWqOp0G4HlIbfMLAHcDuATAr03qw3hIlvku7lGOxLvFSsdYXF6G6jVVAID9r+3Cb3/1EWQX5Lgq12wWxOga1TkX+pUnKcqWUSZFsrKflfoFTVTqoYUc3UYrtj6TekRN0YuSsm5Eqo/iA73vrlbmbK/e61RwdE4Hulf9Fd17XwumrH375Z9/1dj8EwC3WzhNERENhDQAOwbAzwBkAnhCsc93hRDNyoOI6FEAmwBcA+CXqnNOB3CKEOL92L5/AlAF4HpICgCIaDqA6wA8LYS4THHelwH8D5JCIa/LB/BAbP3FoldQuZeI/g7gdiL6oxDihM41bgJQIYToVpzzbkjKy3cgCf9q3hFC3KjYXwC4gYi+LoRoiK3+HYBOAKcKIQ7E9lsOYKNOPRgf8H3mwCvsjFIWjy5D8ejeiEHbnlyD7s5ugyOMy5U/4sqPudaH3Wod1dGMzPBCiFAqN2GN+Jpdhxej9jfftDJyAmG6EmXh1k/cOMvKs5F9te2AaChsqRQBiQmNzwGYp/pbbvHYuwAchTQK/w6A0yGN5v9e3kGpGBBRERENAFAHYDuAxMgqEu/KikHs+PbYuccp9vm4onwo9n0ewBbV+c4DMBDAwwAGENFA+Q/SCH9+rN6aCCHaZcWAiHKIqAzSDMRLACYSUbHGYb9XLa+GpDSNjp1nMIBTADwhKwaxshphve0ZDwhEOfBauLXCuAunIytfMlFrr2/Dnmc/dFyuXdT1JCJkZGfGlzf/5V3DDM5eoRZCtJScKOClKc/yFZXxc9opm6PvMFaxk13dTpSzqGD1HUj10Wyv3vdUbwdGl21CiHWqv8MWj/0dJOH7IgD/D0AugHzF6DyIaBgR/ZmI6gA0QvJJOApgBoBSjXNWaqw7DkA52lgR+79dY98dquXJsf/PxMpV/smj/lrmTXL9iYhuIaJtANogmUwdhWSeBIvXcDz2X76GsbH/2zSODTajbB8nZWYOAHtCbWZuFqZ+7iTk9MsDANTvPYamw/WOyrViCqAWxNWCQNmkIfHfbXUt2P3vTb4qCFFTAIzQi9Lh9bmjil9CY6oIo06xo9B5rfRZfa7MZhtTFbfvVSq8l0bwIAJjwlYhxEtCiP8KIb4Dadbg+0T0cQAgogxIdvUXQRrl/zSACyApFJuhLZvpmT+Qzm8z5DK+FitX6+95g+O/BanuawBcBeBjsWPkWQsn1yD/1xKO7Fwb4xLHPgdXXn4PxsyaG+oHz8yOPqdfHkrHDsSRmAPwtqfWYt7NZ4NI/xnTmqFQRi7SK0/vGJnysyeg9sND8eUTe2qx9u5XkT+gEJSZga6WDlAGYej80SgcXpzkxKysV6oIGVoh/vTwSliwkxHXqlDppyDjpy+In89JmD4sdgQz9Sh/qgulfuOX0Ks8r1dRfezsm4qOyExa8TsAXwXwGyJaCWl2YAaALwkhHlHuGDPPqXVYjhyBZRKAt1XbJqqWd8b+nxBCvOSgrCsBrBZCJEQn0nCQtsOe2P8pGtsma6xjfMLxzMHjTyZF0AoFs9HRUYsm9C4IoL39atPRRiOhR8tuX6sO6nUZWZmYf+s5qDg/8ZlvPdaMliON6GhqR3tDG/a9sh3bnlyLlqNNmvVKF8VADs0a1ghcVEb+UuV+MowSq7H31c79bjMIhx2tJyqmh1defk/YVWBsEPMP+B0kAfcy9I6gJ4xUxkKIOoqIFOPZ2P9bVOe9AMBU1b7PQ/Jx+CERFam2gYgGkdFIqnQN6voPguRM7QghRA2A9wBcQUQjFeftB8nxmgmISJsVeWEWQRmE/AGF8eWjH7wQ/+22ozfLPaClSAycNgxlk3TN+ABIydK2PPae43qFjVoY0PuY2/UPcFoXrWglfpQRFcHBb4xmDfTawOm7rHVcFEZr+8J9toLyfuu9Z2YCfRACv9H5nc40Bvkccrb7tOABSHb5P4DkE7ANwJ1EdDsRXU9ED0EyydljcA5DhBCbIPkLXEZEzxLR14no1wD+Bim6kFDs2wTgy5BmFLYS0c+I6Foi+j4RPQ3gACRnYT1WADgzlqvhOiL6MaTwqfsNjrHCNwHkAHibiH5ARN+C5Hh93PgwxktcKQfLV1T6kjJeiZUkZGadJmX0Krc17/wVPZ3tCduD+NAr6zh28XTMu+VsTLvqFOQPLEJe/wJkF+SgaFhJwjGH3knO0ZAK2P3YB/GRdXqP5bopFT31h1pd/3QXHJ3MdtgNKGDHhC4MZUGZqCpd8MMvI2ylQF2eE6Kk9MvvRVRm7hnrCCFaIEXrmQ4pqtDHAbwB4CYAvwUwCsA5cC9cfxVSfoDZAO6MnfNSSA7Jrao6/QvAqQDeBfAVSDkSvg7Jmfgb0PcRAIBfAfgpgNMA3APgckjOyK6mtYQQbwD4KIDDkHw1boWkiHzHzXkZe7hSDoKyHXWrIIxcOD5huW7rmxZr5xzZBEivXkSE/LJCTPvCyZh+9QLMuv4MTL58HirO6zWrO/T23nhCNyD1HUy16n/9JRWa+/lxrW4+8maRnoJUEMKepbByb7TqZkepMNs3CsJ5OikGWkRNeA/jedcr0+t2iYrywbhDCLFKCEFCiAd1tt8e2/5PIcRuIcTFQogyIUQ/IcR5Qoj1QohFQohFquNIbdsfW3+1EKJCta5TCPFDIcQIIUSeEOIkIcQLkPwQkhQPIcRaIcRnhBBDhBA5sePOE0Lcq4yuFKvD7YrlLiHEj4UQFbFypgghfi+EeCS2b6WqniSE6NJpr1Wq9a8IIU6OnXeEEOIHQogXtfZl/METsyK/OjarNvZm+xWPLkNOUW58ufa9n3mWol4vXKgVPwQtBk4fjqy8Xj/xHX//wHGOBi/xIuSn+h5df0lF0rqwnK61ngG950J5j5WKjNKMyi+hKgpChNG90bpuv5TadBfOg8TIZMbqM+32fgSZGM1sXdCoky+q4fwYjFViyc3U6xZDmrF4OfgaMamIa+XA7KNxQ/n5kZiWzenXqxzU7+3NYO51IiMrwq1ZmTOuPR35AyX/oI6mdmx97D30dPcklREkXgu8Wu0X9nXZGf03ewZSfZbHDepnxUuBpi+3a1A4iSoWBQHba8KaNQj7W8mkPEuI6FUi+l7Ml+E+SGY5+8CJxBiLOA5lapUHcYmr470SBvpPGoKmw1J2bjnngN0Qd0ZmQlrb9GYPzISlzOxMTPz0bGxY/oZUzxOtWLdsFe44egYKhxZbFrb8CDfp9YcxLGHPzXUoHS21CGp0z2iUPl1HGNP1usLEbphRP0KD2jmf2fvntJwwhXI5zC4rBowHvA/gQkg+A6WQwqI+DuCHQghnyZ6YPofv0YrCHlE68NourLnrFexftTO+LrsoJ/7biYJgZZuVKEZGZBfkYOj88oR1Va/uSLtRaaO8EWHNJBjh1pbeLXqzHOr2SrfnxCtY+ErEaf4BP03ojM7pRjHQI+yZbT+TQDJ9DyHEa0KIc4QQg4QQ2UKIYTGb/wNh141JHXyfOVDiJAmRU8FL9Ai0HG1E9dqqpG2lYwcmLHttLmNFKLMyqj9y4Xgc33kE7fVtAIDm6gZ88NJzeG2LtWAAqTDKajQTE2Wi5AirzuAdZoIyJjzsCvpRVpSiWje/3ntWEBiGiRKRdkiWsTsC2t3ehQ8ffhtbH1+juT2vrFBzvVd46TimTpr2x1uuQUdjmyfnjgJa7eS27fx0CA47CZMapRkRKwTW8GOkWOmcnoozNlF5pq1EoXITkpRhGIYxx5OZAzudtZPZA7tUvrgV7Q3JAnT+wCKMv2iGpXO4qac8cuuFsNZvZH/Mu3kR1i5dFV+38cG3QBmEivMmY8BUN8kUo0HUhFojUzP1KH1YWAnvm6potb0ffYaXfVHUZmzMri1qgrLf3xAvrjcqChTDMIzfRDpDsozdD27LkcaE5WEnjZaSjn3hZOSWJkX50sTth8DL0UPKyMCky+YiIysDTc11ACSzqb3Pb0VnS0dSmak0cplKdZVxovj5NaIc1oxB0PfNr2SLXgrJUVEM7MJCL8MwDKMkEOUg6I+PbKMPAPNuORsjzhgHIjI4wj5aQoWfTqH9RpRixjWnYfipYxLWb1j+RjzMqVmirjBJFd8Cs/vlpr5eXmsYSoHyeTYr281zb+aMGiRhO6taRauOZvWOmomcn/SV62QYhvGCUGYOAv3YCvNdnGKUsEaJVwpCdkEOhi8Yg1nXn5Gwvvr9fZ6c3y/CmtFwIhAYCb1m9TdSBr2caQhztkXtcK8VvteL+nmhIMj7etHfWD2HUZJAJ4kEjWY8nCYkTFVlxy2sIDAMw1gjMOXAToIpt+QW58V/b/jjG1BkAPcEIwEwiNH77IIczPjyqfHlGo2ITFFC2S5RMSOyI+zJ2Mkv4RajBGth+zpoKb9aswpu28GLXBRe9jNm5zJKZmUm5Budz8skWX6EAg2DVFBwvKIvXSvDMNEgJXwO7DL2wunx312tndi1YqOnCoJV4cxPRSG3JB/ZhVK+hu6ObrSdaPG8DK+JWkSdVDEZkQlbMQCSn2UzhdgLBUFLkPUqmZWZkGx1UMOJ8K+1n95sgJezH6muGLghVa89lfophmFSn8DyHOhNs/vRWRcOLcb5X7wBL/zl9wCA+spj2PrX9/G7F3ehsKTUUwHL7BrslmU1VrnoEehs7nVG7unotlUOk3pETTHQ2hZEHY1mBaz2J3r7aflUmCVKDEpwS+cZA2X91HX1un29zEQcRLtG9Z4xDJO+hDJzEERn9/nbf4PScb3JzlqONuG7n56uK7zYHUVWXoOXHy+r522uaUhYpsy0nAQKBLvmInpE0XwqCnjlg+BVv2GmzGv1EX5lAw6CVBp11hK2tdrc7X3w+n6mUhszDMOYEYrPQRAd6bJ7LsT4i2di4qdmx9ed2F2L+spjnpXhp4Jg9uHKzM5MWN78l3fR2dzuWR28JNUEZa/uZapdt1eor1vP3EjLmdktQQtpURcKo14/LYL0T/MSL8LtOnUyZxiG8RJflAMnEUX8onh0GUacNja+vPOfGzSFkLaqJbj+kgrb5w9rRDF/YBGGzi9PWLfhj2/ig3tfw7Yn12L9H17HlsffR3N1g84ZgiNscxirWHEOZRLREvKV99vMFCmVswoDbPLhNVbaM6w2dxNdyslx3OcwDBMWnikHVhzowurUh51SAQAoKixDUWEZ7vj+GcYHpAgjF45H4dDihHXdHV1oOlyPrtZOtNQ0YusTa9DV1hlSDcPH6jPn9WxB1Jyv/ULvOs2uXSujsJX28rMPcaKgsADnnrDb0G52Zq/QmiVQDjax4skwTFh4OnMQhoJg9YM+fEFFPLvwoef2J0T3kTtoo2grURrZVNZlyhXzMe6iGRg0cwQydPwO1t//elBV8xWnU+5B2hX3FaXADDvvi902c3s/9Z4ht/ctFYS5sAVxJ0S1Xc2c1O1GsIrqdTIM0/fwPVqRVjQfv6JQGDH0pNE4/N4+NDXXoaiwDLv+tRHTr1pgWld10qcooBZi+o8fhP7jB2H0uZPQWteM1qNNaK9vxcE398T3ET0ClOFtluggMVI83XxUjY41muo3O66vf+itZFB2I4yH0Yeo0RPwoi6A8/PJMAzDGOHZzIFZdAmzY/QwGym2KmBkZGVi+pd6E4dlteehq70zqR56I4qpMhqcX1aIsklDMOzkivi6zJystFIM3GL1uXOCXcEraopnWITRDlEX4vsaYSgsTjNM6x1j5kxt9TiGYZgw8dSsyMloXpA24bnFeSgaURo3L/rsxUt9KytshOidKejpTt0cCHYTSOkhO5zLz5sbm16j46yeM5WdcGXc1F8rmZqT83lhYuQFUZjJ8BO/ntd0bS8lRnk5GIZhokggoUyD6hStfLxKxw6I/3796cd090v1jpyIkJElhTvNLsgNuTbOcHIPvJhlAoyVBy+fjVSZkdJCGW3ILVbOobePF8qaXbwya2PCIehwoUYzBvz8MAwTNXzxOQhrFM2KoDVw+nAceH03mprr8PyjSzHzK2ck5QxIh866s7kd3R1dAKQZk1Qj1ZWzvoIy6ZsbRcfqsXrlGPU5fvdHXtrwR3UGwi8l1omJnxvFLArtmg7fF4Zh0pvAkqA57ZS9TjSWlZeNQTOGAwC6O7pRu/GgZlmpTld7l+bvqMGmCumBXeHRLzOVIGZ7zMr3wlzNz74olfo5r7KX293XLXptnEptzzBM3yUw5SBKjDhjHAAp70HW0RIIIVIiyogtRO/PtuPNnp3WS4Eur/w+LF9RGdnMoGahChnnOFEmrAYGUA8oeClgWsHJ+VJdaAzi3XVrgpPqbcwwDBMUvuY5iCpZednoP34QmprrcLRqLwYcm5qwPWpCqhMyc3pNpQqHFBvsaY+gbORT4UOufkZS3cE4aOw8S1b2daNg2j027BkKp/jxXvl5zcoAAl6eLwxSoU9jGIYBfIpWBHibRl45YuTVh2joyaMBApqa6/DWP55Ac02DpbrYIczR8M6W3qzI7fWtgZcfZfyaqfBa2PWCdIiKZAWvM9dawSxsZRB1sIPfwmkYioeTMoPKQMzOxgzDpCq+mRVpdYxRGlUrHFKMgdOHx5ePba7WTdaWiuSW9Doh93T1hFgTbaL0LOjhZz6EoAR2Ozk6UuGe6OH1u2p3FsFN2wXRz6jL8Pr58+sa5BDEMl5HiVL7efgh0Kfyd4RhmL6J7z4HTjpGs0QxXgkxg6YNQ1FhGQCgZVdLvAz1B8KL8pTnsCJ4uP14124+HP/d7aFDclAj0V7M2uhhR2n18sMut10UR/I5Frs2eu2RSqaHymdYfv6imPndDl6+l1oKgdPzc5IzhmHSgUAckr0UtM1Gdux88AqGFscTogHAuXO+lXS8l0JTkAJFflmBb+dO5dj8egSlIASJ1XchXWL2uxHwzPJamJmiKQcVomROolUP+f1NhfdY+QzL7R6VttVD/YykihLJMAwjE1i0IqsKghcdv1WhiIgw+txJACTfg3u/9nl0tLW5Lt8L3H64swsTE591tna4Op9MEAKFFx/TKAoQSqHMjrkPYx2r910vU7bd5yaMBGxW0Zox8LscvwhjlsOL7NvKwSUvlYbcod9zVTeGYRgjQgll6ufHRBa6rH5MBs0cgabmurh50dr//Tu+zSj5TtTJzEnMb/fhQ2+jo6k9pNoEi5Xnyy//EjMhLEiFoK8qH1bND6Mai94v5ViZsC5VTIrk/nz5isqwq+IZaqXB7rEMwzB+E6hyEOR0ux3BaMi8UWhqrkNTcx3+/P9u8KwOWtf6szvP8Oz8RmT3S5w56O7oRv2e2kDKVhNVJcvMBMSOWY58TX1VIE9V3ArJUciRoMZqH5tKSkIYBNVP2Y2cFpX+k2GY9CWSSdCCHrnLH1AU/918uAH1lcd097XbMavtkG+7dGZ8vZ9kZGZg8mfnJqyrWrUDnc3uZg/sCBNm0+pBYFcA8kJYUisIUXZETiW8CkGrfPf0lDk772eUQh478ccK8rl0WlYYszlR8x9hpYBhmKAIXTlQO5yF0QGWTRqcsLzznxtQ++Eh3z4MQX1sioaXYvLl8+LLolug8eAJV+dMxbCYbvIP2FWGjM4ZxVmFKN0nI7Tq6XcmYjvvf6q0o0xYz2IU3wEr+BEdKUqKB8MwjJLQlQOtj0XQYRUzsjIx89rTkKeI8HNk/YFAyraCm5G9I+v2JyyXjB4Q/916rBn7Xt6OXf/aiD0rN5smS7M6+h22oKQs364worw+5bFuP+KpKhSlE07voVNBLuj3wKh+Sgd42SeLn0ljfvP0Rt/OrexLrTxfYfepDMP0LUJXDpRoZUIOqlPM6ZeHIbNHxZdbaps090ulkZ624y2o23Ekvjz+EzORmdvrqLztyTU4uvEgTuypxYk9R7HjmQ/Q3eFdToRURa0gpLo5kN6MXKoIHG6dNr0coY1SyFI39XAzQ9ZXuO3Smb4pCHrRylLlnWQYJr3JMt8leNQZR/PK7wvkI5zgxCuAzpYOZBfkaO4bVJ3c0FzdkLDcUtOI4tFlyMjMQMvRJnR3dMe39XT2oL2+DbWbDmHIvHLdc0ZxtFGpUHpxT9TXGMVrZrQJI2eDmxkJp8Kg0zL1nuUgnnFZAUml90mpINx26ZKEPsYvQd5KlK326npfymYYhgEiNnOgRBmHPChKxw5MWBY9IrCy/aDfyNKE5UPv7MW6Zauw5q5XsOWx9zSPydJRhuwQtNKUV34fbr5pJa6/pCJhvZPRUDczBVFXFpX4EWXHj0SBds7ph7Dm9FmwUpeojBJzeF1j5CASQOI7bvaNctIfmB2TSn0MwzCpi2Pl4MrL7/GyHpqEoSAMmDI0/vvoxoNJ5asFF78/8EbCiZngktMvD3NuOAtFI0otlZWRmYHScQN1t5t92MM0TdCapncqiDiNYBMVYU+NltmJ1rU4fc+CGkG1Y5Nt91pSyazGy/4w1RSDsIRjpYKgRJ1MT23mpVVfs+8GKwAMw4SNq5mDID+oQUUyGjx7ZPz34Xcr0XKkEYC5YBJGiE4rZGZnYvJlczHti6ckzSTkDyxEbkl+fHnEGWOTkqeFTZAfSi+e56gqCGa4aWc/7O+DnjHw0txGrk8qC3l+hN8NKxpdGFhpP3VbpEKwB4Zh+gauzYqCUhDaqpbg+ksqEjpdPzrKwqHFGHZKRXy5RhHtJ8yIEm4/1PkDCjHp0rmYf+s58b9pXzgFOcV58X06WzohhEgoz87MhZfRfZTniGLiPCP0noOojU5bEeqDHgDQQ8ucQ++YsIVys5HjVEDPYdYpXjxHqdCWv3l6I37z9EaMXDgy/ufUvEjvOFYQGIbxG1fKgdcfECvlySxfUenbx0KpHLQea9bcJ6yOWxbYvWr3HIUTdvX7+7D9gQ2YUfbp+DorpkTyh99PQdLpyHRYH1KtUdJUtLfWi6gSVrumgoDoJ06v3+ngglfP7PIVla6OTxWB+LZLZ+K2S2fiwOtSKOx93/wWAGvfCy1/J73jcod+z4vqMiFDRIuISBDRohDrcHWsDhVh1YGJHo6Vg8efvNHLelgmCIXk6IaD8d9uMwr7gZdJtcrPmYSCwUUJ657+1Y+wafVLhsepP2Jex01PFyEwrMzQQWD1mrxWGlPJXjtq950zdQfD0mWLcdulMzH6zt+a7muWlyUKYXMZexBRKRH9HxGtJaJ6Imonoj1E9DARnRJ2/RjGjMhGK7KCXx/e/at3xn/nDygy2FMbJ/Uyy66rt+yWzOxMTLnyJEy6bC4AoKm5DgBw39e/mGBi5AS/P2Zm5iXyPlER0KNQB6/x6nrMzpOK7RalOsuDKnL/oZztY2XBP9SRjvSEfKvPinx8e/UvPasj4y1ENAPAJgA/ArATwA8BLAHwJIDTAbxDRFPDqyHDmJOyyoEV+3+nH2dlorDS8frRe7zGSEFQftS9+qDL5yAi/PDXb+HO1dtQVFgW377tnTdCy6RqJOw7PY8bZcUPx8woCY9+IIeYZZxjlujM7nOkvB9h5B1wkxMinXCjIDDRhYj6Afg3gEIApwohLhdC3COE+JMQ4vsApgC4Jcw6MowVUlY5MMJpnHSZ4Qsq4r/VicTcnNctSiXB7Qdda+TwiRVLcM4Xrovvs+y6z+Lgjq2mAl7Qvid2pti9Eirk6/NaSFEqCkErDF7NCBllX16+otJ3R2+9egWN8v45uY92sy87KcPrmUirgxVemMX0BeG5LwwapDlfAVAB4DYhxBr1RiFEtxBiqRBii9FJiGgCEf2NiGqJqI2INhHR1zX2qySiRzTW305ESYmaiOgzRLQxds7dRHQrANLYr4KIHiWiAzGTqGoiepmIzjG8eiZtSEvlwIrwYrRt4PTh8d/HtlSjtbbJu8rp4Pbj6XZGQRYS9ok3E9b//FPnYsubqzVHHJXH6RGEaZGVtgtbcLRDUAKCG8HQatQuK+2ebsKQU8UgKLxS5u30A16RTsKzlZnvdLrePsIlANoB/NXpCYhoHIB3AHwUwB8B3AbgKIDfE9GdLs57KYC/AciCZOr0EIBbAdyo2i8bwAsAzgPwIICvAbgLwAkAc52Wz6QWaaEcuI0Prd6WmZOVkAys8sVtCdmSw+6sjWKyO8nwqzxfdkEOyj85Pu57AAD3XH8Fvn3WTFz3pSdDEQjckkqKgUzQdXaiVIahkHllbhYllHUP0gcgVd7fdMbqcxv2N6ePMpmI5qr+hpkcMxXAdiFEm4ty7wDQH8D5QojvCyHuAfARACsB3EpEk+2ekIgyIQn4BwAsEEL8VgjxCwALAIzXuIYJAG4SQtwuhHhICPFrIcSnhRDmHvZMWhB6xqu88vtcf9j1IjzYTaSkrMfYxdOw7p7VACTToqpXd2D0uZPi55aPsXo+v1E7Gip/a7WPrERohRgsGFSEGV8+FR8+8g4K8/sDABqP1WLvhrWYdsbZuufsK9h9ttwQlM+H0zLUbWE3AVhUhR4/r8PonKn0XqVSXaOM1f4k6G9KlBj22KMYnZcTSFltbR3yT63R/58AuN3g8GIA2rbIFogJ8RcCeFUI8Y68XgjRQ0S/BrAYwMUAttk89XwAIwD8UAgRr58Q4hARPQ7gesW+9bH/HyOi/yn3Z/oOaTFzoIcb59WMrExM/fxJoEzJHO/oxoOoWVuVdP6oddZ6SoLeaOT1l1Rors8tycecG85CU3NdfBahdPBQzX054om3KJ+pqApgynuufgf8eifCeNesCm1eojQRTNX3KlXrnSpwnoNA+ByAeaq/5SbHNADo56LMQZCcmbV8EuR1YxycVz5GS6nYqlwQQlQC+DWAqwDUEtEbRPQjIlLPMDBpTOjKQZAffLsf+oJB/TByYe/7sP+1XZp5D/Ts3oMeFVXOFFgRKvX2k4WSjMwMFA4rBiCFOH3gni9oHmNWntN7HNVR5b6O0YyUn++zHdNAL+211TMjbuzBrWSjVr9PeoJ21AYmvMBKm6b6dWs9q3aO5X4xMLYJIdap/g6bHLMFkjlSno/1Ejq/lWSqlmWnY639kxyShRDfBTAJwHcB1AL4DoDNRPQ5e1VlUpXQlQMlQXd66vK0zIWGzBmF/IG9uQ5q1u43PGeYCoKTSCTqDMfqGYfBs0bGl+u21ziuW6plODYiinUKCrPwl2G2jVJgt5IDwwjl8WEJo1Yik0Vx9rKvYVdg5/uV1qwAkAvgSofHHwXQDMnuX82U2P+9inXHIfknqBmrWt6jOocSTR8GIcROIcTvhBCXABgFYD8kfwimD+CZcpAKApORwGDUYY//RG8im+q1VWg91py0TypNo2vVVa/+Of1y47+P7zzqumwn2T6j9Gz1dSFAb5bI6YimX21kty5az79Xir7Va4yqCVkY71+U3nkjUqWeTGD8EUAlgN8QUVJkHyLKIKIb9ZKgCSG6AfwXwNlEdLLyOADfhjTy/x/FITsBnEpE+Yp9KyBFTVKyBsAhANcTUbFi3+FQKTJEVBKLWKSs1/HYdQ3QqjeTfkRq5gDwvrPV+zDbGRnMLc7DsFMq4svVa/aZlimfM2wBUSuBmvq3vJ/yv0zBkOKE5doPD3lWt1RTEOzWIQp1DpJUH8XWU5DdmHJEYQbCC+y0gRdO9FFRGs1wO0PFpBdCiEZIDsOtAN4loseJ6AYiuoaIfg5gM4ClJqf5AaSwoS8R0S+I6EZIoUU/DuAuIYTSb+B+SH4KLxHREiL6MYB3kexH0A3gG5BmAN4hom8R0fchhUzdpSr/bAD7ieheIrqJiL5CRH8FcC6Ax+y1CJOqeKYcuOnMlR+eIG2WtYQZvfKHzi+P/z6+/UjS9qDtr71EjlykVhCWLluMzOxMlJ8zMb5v5YvbsPbuV1C72cz00hqp0kZRIcgZKjt29VH2K7FSN60ZEa9mCpxmMJbrFSRWZlD8xK/kb14eHwTcL6YuQohNAGYA+Dkkk51fArgP0gj9WwBONkqCJoTYDSnE6PMAvgrgtwCGQspH8C3VvqsALAEwHFKo0ksB3ABp9kF93qcAfBZAD4BfALgWwN0A7lHtugFSluePQDIj+i2AaZAyO99g3gJMOhCZmQM/O0Mvzp2Z0xv1tae7Bw1VdUn7RNm0yCg3gtl6pd8BAAgBVL6wFU2H6tWHOSJVkphZqaOf9VTO+qQDqSCkOUHruvSigqkJ27RIr3w7z7Vf1+DFu+XHO+r2fOrZpSj0dYw7hBDHhRA/EULMFUL0E0LkCiHGCiGuUWZOFkKsEkJQTMhXHr9DCHGpEGJA7NjpQojfCyGSHIqFEPcLIcYo9ns6lp9Ay9H4b7F95Pr8TgjxcKwOlbF99gohviKEmCSEKBJCFAshZscyO3d531pMFImMcgAEIwBaHQXV2q//hEHx3zueWY+24y0J24P4sLuNVuG0jlMun5fgmA0ARzYccFwPLVItNn7QH3F5dDuo50wmlYSVsIQrrTLldVYVg6iTSs9B0Lh97lgpYBgmSkRKOYg6Yz6a6EP04SPvoLsjHEXaiZJgFP3ETOAsHFaCaV84GZMunRNfV7fNefQiPYyErCjgxKE6FQnzOr0aIQ4CPf8i+bdZdKd0xctQsn2VdO9jGIaJLn1GOfDCcSwjKxMzrzs9Yd0H976G4zuSfRCijtMR6LyywoTl9fe/jqbD9RBCeGbuohRMo64sqPEqrn5fEKr8vLdaWZu9Rq/+UX4+g0Av54QX9LW25eeJYZgwcKwcXHm52ofFOanU+eUU5WLq509OWLf72Q/RXNMYSPlht1V2QQ5GnjEuvtzV1oltT67Fpj+9jd/deUGINQuHsO9HOuJ3yNCg8EpZTiUfE7NEdX1B6WUYhkl1HCsHjz95o5f1CAS7woPeh6xgUBGmf2lBwrqtj7+PjsY2x3Wzg9Xr8EuoGDhjeNK6jsY21O+p9aW8qONH6NqoCbp+4dd1uh1xjVKW3nQzSXKjIKSCcsFKEMMwqU6fMStS4kV8/bzSAsy9aVHCuq1PrEFnSwdq1u1HzQf70dXW6aaapli5Dj8UhKy8bEy4ZBaGnTw6YT1RUnCEPkUYQoE6XwWTiJ/Raay2e7oJ916g26+mga9CX1HsGYZJX/qccuBlx52RmYFxF82IL3c2d2DD8jewf/VO7F+1Ezv/sd6zstSE/QEqGTMAg+eOSlhXXFEWUm3Cx0thJuyZoTBJJaHQSOjviyZFXqPlu6D3Ox2UCiPC7u8ZhulbBKIcpOIHzmpnXDp2IDKyMzW3tdY1e1mlyNFQ2ZvroWBwv4RcEEGQjsKAUyEgFd8xIFhlwKoAabTd6v0xigxmh1SbdfAypKeVZGha90p9n9XKg5/PnLpcL2EFgWGYoOhzMwdeQxmEmdeeprltyJxRmuuDwu+Y+NmFOfHfLUca0dPV7VtZRjj9CEdNubD78Vfe21QTIsPAi4hljDGykuplYjCjdWaYmS95jZcCfNjZqhmG6bsEMtQrCy555felVOemlwxNTVZeNqZcMR9bn4gnPsSoM8cnmd2kG8XlZcgpykVHUzsAYN09qzHr+jOQXZBjcqT36D1b6mReeiONYT+XTstnpcAeZu80Kw3O0MrnoPdMR6GNnSZctHKc8hlz27fcfNPKhDaNQtsxDJP++D5zoBz9CFsAc4qVDvnwu5Xx35k5mRgyr7xPOOgqfS4AoGZtVUg1MTcfYKEwWKyYOoUR3SmofkhPcUtHJ3LlLKV8fXrXGGTsfnU5dsrWG0hwcpxTWPlnGCYMfJ856Cudm9LvoLsjHPOaMCgcWozJl8/DtifXAgCq11ShbNIQFAzu52u5URPmZYHDjYmTW4FJLtuO+YxfQpp6xNOsDl7lNrj5ppVYvqLS0nWp29zLZ8rO9acDypkDtZJgtR3Us3xaqJ8VqyP5TrHzXhuZMDmpQ196fhiGiRbsc2CC1Y9D2eQhCcuH3tnrW52iRtGwkgRToi1/fR/dnamnIIXtg2C3fOXIrF70lr7G0mWLHQuMdgU4o9F/LcFOS4BOF7y4Jq9zhbhFWQ+jjO1BvmtRaRuGYdIbVg5sYPQRKB07MGH50Nt70dPdE0S1PMWpuYPavOiD369Gd3tXwrojGw6g6tUd6GzpcFy/IHDzoffi421XuE/3pFJ+Yfdeub23UVcItEzy3ET5caIwWIlQFCWiVh+GYRgv6NPKgdWO3apQMOfrZyYsH9ty2HadUpWi4SWY9sVTEtZ9cN9r6GzpQFtdM6pW7UDVKztwZP0BbFj+Buq216D1WHqGejUaZbSL1jOqNNfoy8KJ16OoToTfdMGKfX0URq2DqIMdnxA3/gtuaK/+pafnYxiGUUJCCHsHEM0FsHbGtaehaFiJP7UKCD+i1BzdeBD7Xt4eX55/6zment9PlB9Ep4JP06F6bHtqra1jplwxH4VDi20d48XHNghBwyuhwCwSkxfnt2sm4zV2r0fv/lmxc9fax0r5yjKD8ivwUkjXq7Pdaw8Tq+1hdH/U29TPvpv76kWeDDOaDtdj04NvAcA8IcQ6T04aQWR5408VgzApL5goeNvbOnBN5VEgzduWYYzo0zMHgPcjOgNnDE9YPvD6Lk/P7xQtwU/rg+jWdrhoeAmGnVJh65itT6zB0U0HHZdplyCjpXiFlqmHEcrZCyszGWbncxJhx87+Qc+AeCHUp9LMgdH9C8J8zUu8eHfVTtPKdfJ6P4hKGzIMwxjhOFpR7tDvIa98umdCVhix5t1ESdGDiECZBNEtzchUr6nCgClDkT+wSPMjFBRBllk6dmBCaFcAyOtfgEEzhmPwnFFob2jFkXUHcGTDgfj2fS9tx4ldtZjwyVm+1i0dnjErZcqonzmj+ixfUZl0vPIcdlm6bHEoz3xUhXYnMw1ePTt699aL84cdmUnv27F8RaXpd8WPemsFsQijH2AYhnGKr6FMrQr8YXaafgiLc284Cx/c+xp6uiSH5GNbqzFy4fjICS1e10cpCE7+7Fy0n2hF6fhByMxJfMzySgtQfs5EDD9tDNbf/3p8fX3lMbTXtyK3JN/TesnIpjNWr9tMsA1D8LUTmtQozrzW+fTeBTfXpxyhNTpP2MKT32VHMa+BlnmO03YI+l2wUlcn1yMrtF5ch1aOBYZhmFSgz5sV+QFlZGDSZXPjy3Xba0KsTTgUDS/FgKnDkhQDJVl52Zh3y9mG53ETLUWLMBS0MIQCq/4jXjpPG+FHuwcdrjWdhTt1GNFUNL3TI2qO5jyDwDBM1PFVObD6cQnrQ+RnJ61MAtbR2A67jt9B4PVoppOPKhGhuLx/fHnHM+vjoU6dZij16nlK5Xj0XviP+IFZ9lwrWLm3XmchdusEHCZ23yN1fH/1cXrHevGs2emT/U6A5hdhz5IxDMOY4XuG5Kjid+dMRAnLbceakT+wyNcynaIeZXYTtcjK/upMvvkDitBQdRwA0F7fiu1/W4dpV52ie7weVmKkey0sREX4jqIQpIWT9lIKU1YTZdkpJyjb8Cg8K1rXZtfcTj6PX6Fk7Zxbvl9Gx6TKu8EwDBMVImdW5NRUwM4xQY3aDF8wJv5786PvRW72QEsRCGKUU/2xHn762MTtx1vQUHlM93in+SnSUTHwe9bNyfPg1TOkvDb1dSrLcDNL4GekHq9nLwBvn2Flm7p5972aoXJzbddfUuG6/KDh2QOGYaKKZ8qBlwKBU+wKjX6PKKlDenbUt/lanhvUH3elI6kfKNs+MzsT8245G4VDek2xDryxx9H9UQtkQdnUm+F1Hfy6JrXQ7VTos/vcWDV9Ud5fZTI4rxQ1oz7EjjDnZdx8t2g9J1oRdYyOD+r9cVJO2O+2Xfwe/GIYhnGLK+VAK+ShF6NlQSoIfkIZiaZFzdUNvpdpF1mwUgpagL5w55eyQEQYNGtkfLm1tgmAPb8VGXW8cj9GcJ3ixXMnn8PLa/OyfewK63qmLlptpafEythtD6P74eZe+WF/79Wzo6UYhB2OVImT67RS96j0AUqiOOPNMAzj2cyB0gEy7I9MlDrRrLxet449z21G9Zp9IdYmEa3RTSvJ0vz6yIrunvjvAVOHxn+bCQvq7L5aPhNhP5NKvBDy/LgHYYx2O3lXlf2MUkFy2iZGI+tucNIfGl2HWydupT+Fut316qi3v532iZJQ7mciP4ZhmHTBsUNye/UvkT2sxMu6uELtSGjXYc6vJGwTPzMXWx57L7584PXd6D9xMHKL/YnlbxUzQVA9g2CkIHglRHY2d8R/H9tSDdEjMPZj0wyP0XOmVMZdtxprP5Xw8jqsxKgPsu3svIfq59TpvdZzRA46soxRna0k9TJCT9D3av8oEyUhn6MVMQwTdQJxSA6rIww6DroWBYOKMOOa0xLWbfrT2yHVphct86EwMzgDwOA5IxMSoNVtq0HToXrd/e2EtIyScAAEZydtNLJu1Wbfj7YL4t2Mgh+UH+WG3afZJWoKedT6Aqt+H1b3ZRiGcUtg0YqC6NS0otNEwVkttzgPEz8zJ2Hd3ue3uIpe5IVwpVQQrHww/f7IZ+VlY+rnT0pY11wj+WkoHYuV99WKKYzaByHVcXrftWaHrNzTqAl3Wvhlzig/L1HpS9yg9Q755XMRZew8J1F69tPhGWQYJjUIJM+BlVjUfpQpE2S5ehSP6p+wfGxLNQoG98OQOaNcndfttRnlNbDia6C3v9OPamZOFoqGl8RnDPav2onswhyUTRyie4zVstR1jdKH3y/0rtHu9QfZVl68r2Y29ErUZh5h9xVKtExQolS/VKEvvOsMwzBeEdjMQVCjHlrlaGX5DIO5Ny1CdkFOfHn/qp3o6ep2dU67fhVaWB09NosU45XzrxypSGbPs5tR9eoO0+PaG1rR1daJn31rATa/uQo93b1tq6XERNXkyAgvsz+HSZCjoPLAhN7zb9QfhN1OSvxsM713gEernZNK/QrDMIwSsmvaQkRzAaydce1pKIqQQ7IdtEYmg5pd6Onqxoblb6K7oyu+bvpVpyCvrDBpX9HTg46GdggI5JbkJ2VdtoPdkdEw47QfensvDr2zN2l96biBGH/xzKT1QgjsX7UTR9YfiK8rKizDjEXnY8nvH9F1VjbD72t2oqSqIzO5zWgdFayOjjvJ5KvGzH67LwjDeu+AnkO3UTsyyfj9TjYdrsemB98CgHlCiHWeFxARZHnjTxWDMCkvx3R/L9je1oFrKo8Cad62DGNE5DIkpzsZWZmY8KlZCes+/PO7OLrxII6sP4COpnZ0tXVi+98/wNqlq7Dp4bfx4cPvYOMf38SJ3UfR3Wl/psGKEKpOLqUkaIFz+KljMPfGszD1c4n+Byd212LHP9YnrKvbUYMP7lmdpBgAwKZVL6ClMTm3hN3Qkn7hZUhTv5PW+YXapl9rpFo9u+M2pKfW71TBq1nPVFUi/SbV3h+GYRg/6LPKgdWMrH5QNKwEky6bm7Bu38vbUfXqDmx84E2sv/91NO4/nrC9s6UDu/69CR/8fjWO7zxiqRyrTstGOQLCEiIysjJRMLgf5t96TkLOg4Z9dajbXgMAaNx/HHue3YweRX4EAGhqrov//uNDn3VcB7WgEJVIIXrx8726X15ep5lJjx2HaLfRtNTJ44z28YKoJadTI7fj8hWVWL6iUrfMqDz3RnjVTn46tXtJ7tDveX5OhmEYmcgoB1EIOxok/UaUomBwkaNjd//3Q3Q0tRvuY9SWqdbOYy6YCigsqo5trQYAHHxrT3yWAADGXTQDc288C0CvgqBnimUnQZVydDtstJJXeS3Q+HWdbp47pwkWrUTlUe6nRZRGk7XMIZ22q/q6Nj7YG2I51WYWgq5vlJ4JhmEYr4mEcqBOXtZXmHLFSZhy5XyMXDgOZRMHI69/AQqHFiMjU7otQ+eXY/6t52D+redg9LmTEo798JG3IXp6tE5rCWU7q7NbB2miohRujO79xE/Ojv+u33sMh97ek5ADYe5Ni9B//CBQhqQMyErD17+6wrQORoKn37MnUVA4gOCEHT/fbyfXoGfGZPQ7DJ8V5QyM18nJ2qqW4PpLKjDz2lM9OV+6E4VIZ+3Vvwy1fIZh0htXyoF61Er9AfNiNsAPYSIqAhllEAqHFGPo/NEYe+F0TL96AaZcMR+zlyzEjC+dipELx8f3HTRzBGZdf0Z8uaezB+vvfx31e4/5UjcnQrEbAdPMITx/cBFyinLjy4feqYz/7j9hcFyhSphiAPDSX/5oqx7K6w5bANBDfidSbfTS7XtndL12BDYrz7aRn4PVcpxEwlL3mUuXLXbUB1op2yz6mFwfJ2WnM1aeHTv76x3HMAwTFo6VA6XNo/KDZjXBjhL1vurz+YFZuNMwycjKRG5pftL67IIcTL58HmRLme6ObuxcsSFuZqPET0FMDz+F6ez8HNy9eg9KSoegqLAs/tfUXIehJ42O70cZhLKJg+PL/7r7Dtyw5N+2y4uqYqDEizr6nRVb3RfYfS7Vo/V6mZ7tmIe5weo5nJSlN4Oql7jMqC3dJLiz+ixoKQ4s4LqD249hmCgQiFmR05CNTC9yGxYNK8G0L56C/IG9/gp7/7cFx7YcTsq47CZGuVfCopcfu4ce+wLuWVeJT9/2Y2TmSGHtCof0i/tuyGWNWjQh4bjX//aoZ3XwGqczY25n5ZRKQVRzPdhxjvc7w7edLNtOw1iGmVMgFZThVCUqoZMZhmGs4qlyEJVkY+mAkY1xXlkhpn4+Mczn3ue3Yu3dr6LpcH3SubRGHoMSQow+eE6eDyLC5vp/YcwVE/CVux7Enc/vxC03P5ewz7e+9zLmfewT8eWn7vgBmmsabZUTRWHZS6IU+lTLhMdoRkPPHMaJkqOX9dvNiLrZ+b0kiknKWMhlGIZJbRwrB+3Vv7QlbJoJgn1FkTDKymvFT0PeRkSYc8NZSdu3PbnWu8o6xK5ApH5+jI6XBY+s3Gy8tvX3KCwpjW9bvqIyfuzVdyxLOO6wRlI1PaIgMFvF7exB2P4VWkqAUZ2szHTYuX/qJHJm57Dri+Onf4LfWHm2tKJn9XXctkHUngOGYfoeWUEW5rcfgVuCqJfaPEEZX9wumdmZmL1kIQ6+vhtHNx2Kr+/p6kZGVqabarrC6sdRr72dOPD1OjRL67Kys3Hn29vwzVMnAwBO7Km1dE67dYgCXmT3DisCix9lmpkfaW3XMmFy64+h5Uxs5iegRRD3xo2S6XV2+aCy1TMMwzDaRCKUqRq/PwxRmaVYumyx62vNys3G6I9MRmZOrzIgeoTBEc6JUlIn9XnkdlQKUXmFiXkkuto7LZ07lRQDGScRwtQj9F6OWNqpi1MHYzVOHHCNIsvYnSWQr1VOKmZHMVDWxSi8qh+jylHpD5VEsU5BEsWZJIZh+g6+zhzIH7godvRao1NRGrHSqofS90C9vbujO/676pUdGPPRqZ7XyY3Q7GVUHKshGm++aSUK+5eh5sAuAMChN/eg/JxJRoemDXafZT8Sqdl5790KQm7No/TMi+yijjJktw5665XCopczCV71zV72nXafnShix4GdYRgmagQyc2DmqOzmg+oGTWffkD9KRv4bRm0zcuG4+O9jW6vReqzZ87q5we9kYnqOpd9/+oX48tEPD6Gnuye+fzqOzil9gMK+Piu+SE5jwnuF1bwWeg7TRnjZ9uoZDa0cM3bxq69T5uEIuz+NAnZ9VJxmA2cYryGi24nIH1MEJtKEZlak9dEIUjE4tfawbl2C/qDZiQGvJ3ANnT86YdmujX0qYSeSzKN/uxYZ2ZLJlegWqH5/X3z/KEXs0cOL6FJRvj7APBmXUpGTR83DFJysJgtTzkbYSUimdYxy5k0r8aReHYJErbC48aeSz8cwqQYRTSaiR4loFxG1EdFRIlpDRHcR0bCw62cGEb1KRCvCrgcTLpHNc+AnbVVL8PZA83c0yHp7oRgVDi2O/84vK3B9PrtE7T7LDJzae69bVCFN1c6nURKk7SbqU2+PimmDlehTRgK/l4qA03YwU2CM7pXdZ0vLxMmqQmT1HfT7XfXSXCmq/QrDqCGiBQA+APARAE8DuBHAnQB2ALgOQKTtWomoP4AzAPwntuoOAP3CqxETFr4qB2cX/AiAvlATRCZkJ6izNacKzdUN8d8lYwcGWnbQo5dmjqVKlI7IBUO0+7mwQ3qmOkb33QslxUtfFS/MrbSO15rlCWKWw2n2aYZhPOdHALoBnCSE+J4Q4gEhxK+EEFcCGApJcYgyiyHJhf8FACFEhxCiKdwqMWHg+8zB2QU/MhQcopLER+vDHoV6WUXtY0BEvpWljozjt0JgJea8ngAmenpQt60mvjx4zkjvKxggRs+knmmL8r8fBKkYmoUhtRslyUtlxciPxWqGZyvZl7Xyyyj/p1tOmVTqh5m0YjIRzVX9mZkcjAOwSwhxQL1BCNEkhKgHACK6mogEEV1ARD8kov0xE6Q3iWiW+lgiGkpEDxLRYSJqJ6KdRPR/RJSt2Oe62DmnKdbNia3brzrfd2Prh6qKuhjAe0KImth+mj4HRDSDiP5GREdi9d5DRH8kon6q/a4ioveIqJmIGonoRSI61aQNmQjge56DtwcOw6m1hzXNeMLs9JWRlOwmcIvix+rIB73vfkaWfzqfmWDhV9sYRWgxFHxVSpLo6gFyvayZfxg9m3qRwNQzcXnl97m2/VbiJlKOm9F6ZbnKdtGrj14oUC9Rl+1V8ivHz3qMKPZPdkmHiEWMd1xTeTSMYv+qse4nAG43OGYvgLOJ6DQhxFsWyvh57P/vAOQB+BaAFUQ0QQjRBcRNfd4GMALA/QC2QzJb+gmAmQA+EzvHqtj/RQA2K373ABhJROOFELsU67cLIarlisQUjQsA/NqowkS0EMDzANoAPABgN4CRAD4FYACAxth+vwXwDQDPAPgzgAIAXwawiojOFUK8Yd48TFj4OnMgKwR69v1Bjj7rYXckVl4fNVvY9hOt8d8jF44PsSbe48pxWDXmkZETaN4/15g57uvNvPllsqcWTpVlWCnHixkMK4K/st2s+DzYxY6SZGWGwmmEGrvvRBh9VpT6SadEyReJCYzPAZin+ltucswdADIBvElEHxDRPUT0OSIarLN/JoDThBB3CSF+CeAaABUAzlfs893Yui8IIW4WQtwnhPgUgD8A+DQRXQAAQoidAA4BOEtx7CIAzwJoiv0GEWUBOB29yoTMWQBK0OtvkAQRZQD4E4B2AHOEEN8RQvxRCPF/QojpAPbF9jsJwDcBfFsIcakQ4l4hxG8AnATgMIDf6JXBRAPflAN1eFKjqfAoYVfw19s/SOWhp6sbzUd6HW37TxgUSLkyTu+j0yRZdqCMxJmD7jZridCihJU2CtM8z2q5TgRxZYQiILkt9ByDteoUlj+JXaGf/V6iB9+TPsk2IcQ61d9howOEEK8DOBXAU5AE+hsAPAbgIBEtU5oBxVguhFB+lFbH/o9TrLsYwG4hxFOqY38Z+/8J1fFnAXFBfiGAlwC8iZhyAEnJKVKUpSxnrxDiQ4NLnA1gAoB7hRD71BuFEPJw3BUAOgE8RUQD5T9IsyMvAThFbYLERIvQQplqfbzDisvu1UyA1nmCUBBq1u5Hd3sXACArPxvZhf7ZzRiF1rQqJAapOPX2VRLZRSliU2SCXvtpCcd+tnWQColW36A1gq8XtcmrnApB91Fmzt526hPlgRk9lNcvhPAtA3zYpMMMCwMIIdYIIS4HUAYpOtESSCPqNwL4nmr3StWxx2M/yxSrxwDYqlFOFaQZgTGK1asADCaiqQBmAegP4FVIisCi2D6LFPsquQjAv/WvDICkGADABpP9JgPIBlAF4Kjq7xoABCDYqCmMLUJTDmTaqpbg1NrDuP6Sivi6ID++QXTIfpdRX3ks/nvUmcGZFLl13rY72u1EmDvw2q7476LhJb46agdFWH4fbnGrFNrJb2FlvzAjJ9nB6/upVBAiExDieAva6prR1doZV+jVdTu25TDW3v0q1i59Fcd3Hgmrqr7CCkL6ICR2CCHuB3AKgHoAV6l269Y53M6HSqkty7MBZ0FSAo4B+BCSIjCCiMbHtu1QzoIQ0UxIMx1myoFVMgC0ADjP4K9a92gmdHwxwLbbwb3a8jPMRO+H2quPrxWb66BGWK04PjulTRGpqKerx5cy1LhpK7vt4PR5aD3WjJp1vY7aIwNUnLxGfn60ZqWcZNQOGnW9ndZNy9/AroKgTi7mxM6fzUy8Y9/L23F048GEdYNnjcSRDQdQNKwEI8+8EoXDSrDvle3x7bv/+yGGzi/HkLmjkF2Y62v/qoWfz0DQ18L4jxDiGBHtBjDNdOdk9gKYol5JRKMgmQftVZSznYgOQ1IM8gCsFkIIIloDSVg/F5K/gdpE6SIAJwC8ZlKXnbH/syDlcTDa7wIAHyqdnpnUwdeZA6NRqZtvWomzC34U/5PxWjG4Fiscn0PLTyKKlJ/bm1el6tUdIdYkeIxGfw++uTv+O7c0PyFJXCoSdlZxKwTte+Nl/gOv9ktF/H6O9J6BrvbOJMUAAI5skCJBNh2ux7an1uHA6l3o6Uwc+KheU4XD70lmz6msGEQtuAXjHCL6CBFlaqwfC0nATzIPssC/AIwjos+o1n9XsV2J7HewEJJJEWJ+DW8BuAVAMZJNii4G8D85QpIB6yEldPt6TDlJgHqn5h+P/b+DNKbrDRy0mYjgeObgysvvwb9X/zBpvdUIKctXVAKKKEZvWwi3qHZyNtsHAB7EJcgrv8TWx8OLkdggO/vS8b0OyKJH4EtX/hkPP66evXSPckRLOYpt5b5YxcsPb1drr5/XkLmj0sKkCIieQqDE6kyc/CyZ3W+7NvVWUCdlM1pWE7VZg6jVxypCCDTuP47d/zXyfeyl5oP9muvbVPld7OBmhN6Ldk8FZZ+xzd0ASonoX5DMeboATIRkTpQDIFloMufXAD4L4HEiOgOScH4OgE8DeEYI8YJq/9UALo/9XqVYvwq9oVPjzsixXAcnxepuiBCih4iuhRTKdD0RyaFMh0MKZfoJAJVCiLeJ6P8B+DaAqbH2qAUwCtKsBkFSXpiI4lg5ePzJG1E0rER3u9fCcRDCtpcdc5BxujMyM5Bbkof2+jYAQE3lbpMjnGGlfbyYEndiKqLFwGnD0HSoHgBwYPUuDJw+HBmZobvZpDx+hEiVFQA3fgV2ytJLDmcUqtWL8qxgVKZRO7nF7z5L2TccensvDr9bmbB9xpdPRXZRLpoO1SMjMwPHdx1BzdpkpWDaF07G5kffAwA07D+OthMtyCst8K3eWrhpf7NgAkxK801IQvJZAK6EZPZzBJK5zp1CiLftnlAIcZyIToMk2MuOzlUAfozeiEVKVsX+16I33wHQqxDsEkIop+suguT78JzF+rweS2T2YwDXASgEcBDAi7Ey5f2+EzNn+jqkWY4cSGFM3wfwiJWymPBw5XOgHNHz0hzIbPQxVTrRIOuZW1KA9vo2FBWW4T+v/h8yc/2N5+/XB07vOXKidAycPhyVL24DAPR096CjoQ15/YMVItIZLxRBeWbAjxmCqKC8NqPnW2udVuQlZVQ3r5UEpwqCup5GOWJa9lyfpBgUl/dHbkm+9HtUfwBSAIH+Ewbj8LuVEF09KBxWjKLhJcgfWISs3Cx0xSK0ffjwOxh/8QzkFOcjf0BhUvhiLeXMa8d4t6TKN40xRgjxPKRRdbP9HoGOgCyESJrijjkPX2OxDtug4dAcSzqmNX1+MYDXhBAnNI65HRpJ34QQGyApQWZ1eRrGvglMRHFlVhQ0djMZ9xVaa5vQUFUHAMgoE74qBkZt7NcHTl2m1ZHYm29aia8+PgjNNVIOiMycJFNQxgFe32e9UXy/sFqOWU4FJ2Wqn12zPktPQfALLxQDvXV55feh/Xg11t2TGF590MwRGLVoQtL+AFA0rAQTLpmVtH7wnJE49E5lfHnXvzcBALILcjDr+jPi69UKp5ZPjB/9lrocrchuffV7xUSO1yGN5jNMnMini5VHssIaWXFatt4oqB8f9saDJ+K/+0/0x88nDKVAqwy5Xa2MnC5dthgFNADNaERRYRmy8nN8ryfTi99mKlqCtp/Pop8mPUYE1f95pRho0XS4HlufOBnN1Q0J62d95XRHeVmGnVKRoBzIdLZ04MNH3sH0qxfYPqdXWJ0FsrOdYfxCCPH/wq4DEz0irxwAqTflqqUY+ClQHN/RG/NbPaXuJ0EJLGrFwCp122twtLoSAJA9Ist220Txgx21+tjBrxkHJX7fM7fvcVSdh+0qBnbaWCtUKQCMXTzNccJGysjAvFvORvPhBuz853p0d/SGi2873oI1d72CwbNGovLs9aiYMTuh3l4GUFBix9TSiQLBMAwTFJ4qB16NEup1kmb+B35M17rprIOwoxY9PWg8cCK+XDSy1NF5zEZFlW0b5AfMaVmN+49jz8peX6yh88ptHa+OxBSVj3ZUBYiwcy7kld+HU2sP49WWn3l+bmXdvY4OZDaarMaP6EReKwbKOvZ092gqBhXnT0HZpCFJ9bDznBARioaXYM7Xz4IQAhsfeBOdzR3x7Uc2HMCPLl6Az/3gt7bq7xQ7GeKNtkXx/WYYpm/hOHTL40/eCEAKSbp8RaUv0Ym0Ej6lAupkS1rJl7xCGa4ThHjUDtHTgxN7atHR2GbpPEuXLbYkdBh9uPxWhCzX8UQLtv/9g/jy4FkjTHMcyM+bHzHH09XR1ipBmZ15rRho5TcJcuRfq93CnnmwMou3dNli9HR1Y89zm7Fu2aqEbfNuORtn3LUNIz/2z4T1SmXcTHjWgogw/uKZSeuLCsvwr7vv0D1fGFhNyskwDBMWrmYOlmvkJvA647AThz21n0IYikUQIRkBaQpdZvCskejp7kF3Rxd2/2sjmg5L9r0Dpw3D4Dmj8L2fvearcOHk3MpINV6ELwWA/at2xn+XjBmAUWdPtF0vNW5G9PpyJtWo1s+u/4BTBc+s7zFrn7CSkxnVw6gthBCo/fAQ9r20PWnb1OseQP7o3tDmdvtls/0LhxZjzg1nQfT0oLu1C5sefhtNzVKghq62TmTlZdsqz0+i8I1iGIbRw1efA68VBT1SQUjyC6W/QcuRxqSROgCo3XwYtZsP4889t0AMEoH6JZjhdaQa0SNQv/dYfLnivMmWkp8FmZfCC1KprulA2CP2XmPn+dELp6rm2qsex7c+NjE+KKFk/MUzUDbVXs4jJ8JzZnYmgMykd/7opkMYdtJo2+X6iZZJrJKwHOAZhmECywilNUXvd3leEWVBrOVIY/y3nPBLj5ce/wPOmPRVv6sUKrWbD8V/5xbn2XJ4NLKXj5LyGSVzOz/MsJxgNrKv3u6nqZ8SZUZxrT8nBNHmZnWU26/laBMOv1uJKf0uwrdOnxpXDIoKy1A6diBmXnc65t96DoaebS/UuVUzIy262jvxwb2vJa5r6dDZ2zu8fJb6uikiwzDh4unMgRV7dPmjEgWBwgpqx1SZqAiLBYOLNUfqAKBs4mB0NLaj6bCkNBQVluH+b38RM687PcgqGmLlubDT1sqMqoNmj9Tcx2hkUD3bFZX7bAe/orEYlaNcF0abWRldVddNmVDMz9FZr9vD7fncmjrJ7VW7+TAqX9gKAHj0rVvj2/MHFmHE2aPRb2R/S+V5SVdrJ9b/4fWk9YNmDA+sDl7BMwYMw4SFq5kDqx8p5SiIXyMiRhk5/SovCgrOyLPGJywPX1CBGdechvm3noOxF07H5MvnYdoXTgYANDXXoaOpHT3dPWFU1RQv7qHSB0MrQpGesme0X1TutR5GMwlh1DuKbaWnfFp1ck8XjMJt2pnN+MxH74wrBmomXzbXsWLgdpaues2+hOXBs0Zi/q3nIK+s0FYd7Nbb6+9aX3omGYaJHq6UA2X4wiiMsNqJM+13mUGRkZmBcRfNQL+RpRhxxjgMP3UscovzACA+Kpo/sAi5pfnxY45vr3FdbtjXbYXW2ibD7alwDVYJWoGxqlz5Vbad8/cVEw2n12m3f6zctB4//9S5mtvGXjjNUoZ2LWXErXPusS2HUb2mKr5cNLwEo87WzrzsNX1NyWQYJr1xrBzkDv2e5X2D7Djt2mOng+DQf/wgTLp0bpLDnbLd+40oja/vUMQCd4rXCtfNN620HPPd6J5VnDc5/rtm3f6k7VbqHfQslJ9cf0mF5+cMsx3cvN+yMJqK99EKdkMROxnUaT3WjF9fsTgeBSi3NB9zb1qECZfMxNTPnYSyiUN0j9VSCKzOdJnV8/iuo9j7fOJMxvhLZloKRqBH1GcMGYZh/MJTh2QzQTsoJcFOp+42tr9cXpTQug8N++riv1uPNiZtTyWM7ln+gF7zgeM7j+juJxMFMxy/8EMxCBO7fj+ybbxeJmXGHt2d3TjxWq/DMQBM/fzJyMjMQMmYgSgY3C/pGL17pNVH6/kbqZ26tdj9n00Jy7O/uhBZufqhS9NhUIhhGMYvXDskR8GcyC/MHDujlj1XRksYGn7a2LiNcN32Ixg8ux65/fORnZ8TdPUMcTuym5nfKxB0d3RbOsZJrPdUIcxsul46JzsJCGCU7buvKwd274sQAnuf24yuo5K/UlNzHWZed3osdKj18tw6Q+tRMLgILUckM8Kxn/wxiiZdYXg+NgFiGIbRJ7BQpnaJih+DEUHUT/YbcMvAacPivggAsO2ptdjwhzdwZP0BCCFcn98p8siu8mPtKsxjLEO0TMtRY78Dq0T9WQyCsJybnUYKU783ahMjO8emE06e5bptNTixuxZNzXVoaq7DrK+cjpwi8zDBVkOSuu3vZQdoAKjb8kZS+Xbo64ojwzCMp8qB1dGYVO581UKD30Kjl/HYRyvs8WWqXt2BtXe/isPvJ0b5SNV7pFZ0sguTZ0bs3rNUVAzSwaTITVhb+X1x+t7wyHIiB9/aE/89eNZIy/lDrGSA9uL9Gjq/NzJZ/a41Cf1AqvZlDMMwYRHKzIHRx0ArgkVYwllUZi+MBBV5ZsGKEFRcXoZRZ2lH7zj4xm7Uba9B+4lW5AxfGlh2azuY1aOrrRO7/91re1w6fhCyC7TNpqze2yjcf7+x+vykUlso35kgchmkPQqdWx0+2QwrOUXccPNNK/HN774UX6aMJkeOyOrZjaj0/wzDMEETWbMiNXay16qd2LxELWA4GZns6erGkfUHcHzHEcsmPXqCjV0n7yFzR2HeLWdj7o1nYfiCioRte1ZuxqaH38baX5yMrvbOhG1RUBCM7mVXWye2PPY+Tuypja8bfkqFq7JYMEgklU00+opi4EeEna72TnQ0tgEASscNREZmeJ8NrWtbumwxfvy1ufHl4lH9k/Zxcl6/w/EyDMNEFce9fHv1L10JT1rHWpmCVmNmx+o3ToSOqld3oOrVHdj97IfY+c8NniQls1MPIkJGViaGnzo2IcSpTPuJVtRtrY4vGwnKUQj3J4TA1sffjwswgORjoRU9RU26KgDLV1Ri+YpK0/2CSFDoFC2l3wl9STEAvH+mG/efiP/2wofHqeJt1M+c2N07KDBw+jBP2sCvvsFqIkaGYZiwiMzMgduOOJWEvJaa3lCiDfvqcGD1rtDqMmrRBBQM6YeCQUUJ6wuHlZgeazfmvBuM7m9rbTPa63sVg1lfOR0V50/x5NypjBOnW68VhLDaVr6OvqIYKPH6XWw6eCL+u6OhzXYAA7Oob3bOoXd8Q1VvqOYMixGUlKjDpQbx3KZrv8MwTOoTCeXATidp1Hl73ak7EZSsHJOjiBoEAEc2HEBPd08oI7cFg/th6pUnYernT0bpuIHx9Q2VdbrHBJ0kTH1P1bMV+QMSIxRZdZZMZ9xE49HalmqjnH0pY61fs3fyczBk7qiE9Uc3HHRULz+F4f4TBsd/a81uWGmfIIT1VHuPGIbpm0RCOXBKUJGCnNJc04DtT6/D2qWvYtd/NqHpUD1qPzyEeoVdvMyB13aFLswMmjE8/tssgZiXMez10FL2tD6uVvMZ9BWsJO2zYnKkxEn0IyfPh1IxCUqwTEVkwdsvpUAZ7SmnXx6mXHlSfES+6tUdaK01Ni8yCj/rdBDE6BnIV8x8dtS3Ojp/kPDzzDBMlAlVOYiyXahbjm48iK2Pr0HjgRMQPQIndh3FtqfWovLFbZBn5YuG95ruHFl/AGvuegXNh+sDrafyI37o7b3x3wVDzO31tRQEP0cwtcoHks0Iulo7tXY3RB0hy0r5qY5dBcEJfgmwSuE4Cn4vXmHlOvy+VnmQQjn7UjikX8IMwr6XtsXrYpTpWEvBtzsIYjYQ0dnakdB3lU0eEjnn+XR6RhmGSX88UQ7cCk9R6DS96rx/c8e5OLrxIPa9vD1hfVFhWfwPAIafOgYTPz076fitT67FwTd3x+16/RZMT2y8Gh2NbTjwxm40K3whhp1coXuMOsypWgDw835qKSMZmRkJCZk2PfQW2o63eFamnjCjdua1e6/stJNXZnTqMq06LS9fUWnb/M/ucyDPaJgJnFHoL/zE7fU5HTBRzhZoPfPNh3oHLrKLEk0jtZxsvRq4MfQ3OtaMDX94A93tXQCA4vL+GHDKX22dA/B3JtRpEj+GYZiwcKwcXHn5PfHfZiNBeoJTFD/yburUcrQJm//8TpJiMOeGs9D/pAEAgOy8PCy56y8YvmAMMrIyMfO605POc/i9fdj+1Dp0t3d5amqkvAdCCFSt2oEPH34HGx98C9WKJGijzhqP3JJ8w3MF4fMBJAos8m+tMuRRzaLCMuRnl2DHM+vR0dRuuRwnwqfy3ihHWf1S6JT+NkYzHTJevF/qNrd6j6P4bkedMNtMqRBo9TmipwcN+4/Hl4dphAn22wxM673a/Jd3E5YnX/vfpBwHYeYzYcWAYZhUxFezIqVAF7Y9vRledNr7XtyaZP8++bPzkJmdiSFzRuEXL76PO15ai1MvuSzeNjlFuZh70yJMufKkhOOaDtfjg/tew5ENByyXbzb7Id+Dnu4efHDvahz5IPncg2eNxJC55UnrtfD7Q6cUBsyen8FzRsVnZQAgp6cAWx9/35MwsXbx+ll3MjugNZKr92wsX1EZ6vvJJhfJ90Zr2a82MksQ19nagQ3L34wv5xTlJkU38wKz61Mr32oTzJnXnY6cftIgjNWoQ0E9d5w3hWGYVCLL6YGPP3kjinTCXdoR6tKFnu6eBLOcsYunoXBoccIIfNmwEUnHyR/mwiH9MO+WszG5YDH+esdt8e1Vr+zAgClDkZljfqusmHKIHoFtT6xBT2ei0Dxg6lCMOmsCsvKyk+pmVqaVdW5Yumyx6Wg8ZRDueGkt/vG7n2HV0w+hqLAMnc0daKg8htJxgwAAx7ZWY+//tiQcN2jGcIw6e6Kn9Y0adu3YzWZA7ApUdvOTmJ3DiclS2DgZVXd6jVZMZOR328o7XvXyDnS19frxjP/ETMP6OX3/rRynnEn8wTUz4+tHnDYWxVP/5EuZTvEr7wTDMIzfeD5zoBYojIS6qHWabkZ3uts6E0auyyYNSTLNMbJdv/mmlSAibG99Dss31CRsb6iss2yqYiQ4tdU1Y8Mf30gI9Vd+zkTM/tpCjLlgaoJiYFRfr7HrVKq331/+dg2aRlYCAJqa61BUWBZPjlRfeSxJMQCAo5sOofKFrZbLiCp2/QG0UM8gWE2kZhe3ykXQoXTdYjYr4OZcTjFTuGvWVWHNXa9gx98/SIhcNuGTsywlF/QCMz+e5sMN8d8lU78b/x32d4VnwhiGSXUczxzIGHXeVkZ8U3EUUIus/Gw0NffmBmitbUL+wMSpdyMTK2U7PfDIFRgydxRq1u0HALQcbbQlqGt9HDsa27Dl8TXo6ew1exp97iQMmpk8myHXJyqzPrZt+AmAkBSE1p1ZqDh/CmrWVOnufmLXUfR0dSAjK8ddRX3AbydgNVqjzkoFwYvzM/5i55lRv+MtRxqx5a/vx5eVfgYjzxyPkgrJbMfrWQM1amd/ZT17urvxi0vPxzFFFvfsov6elq+FlRkZ9jFgGCYdcD1zoCdAGjm3aWFHaAg7tKRW+ZSRkRD+s1pDGDVKzKRe329U//jvtjr3kXf2v7YrrhhQZglGnD5WVzHQqk9QaJm3qNFzzAWkezP9i6fEl7s7uvD1r/0rQciZ8/UzMfmz85A/oBAA0NPVg7e/uxBVLzzguN5OohX5gbo91G2ldCzWQ2/k0+wd1bsnypkhLcdmoxm7VBGu9Ga/rMxyeKUw2Zn51FL+dz/7YYJioCSnKBdD5ozS3Ga3bCt1U7J02WLkld+HzpYOfOMT43DV+ELs+KDXB2LgtGHIgvVoQ07bmxUDhmH6Cp6YFWkJvVEQlIJGmUSso6HN1bk6m3sj7ZSMHZiwzYkg2lzdOwU/7/v/xJjPROf+WP2IWlFYli5bjMaDJxLW/fJ7C+O/88oKkJmThaLhJQntKrrrsf+FB1G/54PefW0IEU4y8vrlpGjVGdMOVhQDs2UtxcRK1CU79XCC17kSrJzP7nWbYfccSTMGR5twfMeRhHUlFWUoHtUfhUOLUXHBFFCGFAUoSCF46bLFyB11Lw6uegwblr+BoxsTszP3Hz8IFedPSYpQpIeWo74VzPpbVgwYhkknPPU5cCIgAe4/bG5wosTolT9g6rD479xS41CgZjQpY4oXJpq72Ln+zAF3YPd/P0xUVpp+DsB/Ew8vzu/kXnc2dyQs73hmfTzHRMnoAfH1w08dkxCSUXTXY9M9V6DtWKIAEiZRt1+2MurvhT8EEG2TJKvhMrVygoSV10BJR2PiYMasr5yOCZ+cjYmfmYMpV8xHcXmvP5XXio0ReeX3Yfff78Def/08YX1WXhYmfno2xl00w9a5jJaN0OqH0i0BH8MwjEyoGZKVeOl74PWokFWUmXndmgId29JrT7vznxsSnIgBnVjkQqD9RCuaqxsghEDd9hq8+6MFCQ6FpbHRcvmjHlTCMjsjqer97Cqdg2YMR2ZOZtL65tbjGKzI8pqRmYERp43F7K8uRE6/3iRqm++/ONDQg1ZHzL2+V0Fcn5syUm30NQzzKK/Oq/RFGr5gDLILc5P2UT+DViIiGfWtnc3tqPlgPw6+sRvVa6vQ3dEV36Z854+8/2zCcTO+dCpmf+3MBIXFDHW9vXy/U+05ZRiGMcO1Q3Iq47XpU3ZBNrLystHV1ommw/WorzwWd+Czy5iPTk2IrrPlsfcw9fMnoWBQP3Q0taNmbRXajregs7kdbXUt6OlKDE064rSxOLatGhCJ5x193uSkstyE3LOaWVRW/oyEC68UxOzCXMxecia6Wjqw618b4yFmP/n1H6Iq682k/bPyszH1Cydj/X2vA5CyrrbXt5omggO8c9xWKmt67am22/cCI6XMzrFe4kXoUy20nnM/lGOrz3EUZgxk6vcei//uN7I0abvXZjNd7Z3Y9NDbCf3Wobf34s87mhP2Ez09ED29isv4T8y0PSvrdXI2+R3Um0Hx4z1lGIYJEl9mDvzOFGsFrQ+vOgKG11BGBkrG9ioDu/+zCUIIgyP0GTBlKGZdfwby+hfE12157H3UrNuPjQ+8iZp1+1G/9xhajjQlKQYAcPCtPQmzF4NnjcCfthxHdkGviZKbj5ee86XbkKRefVCJCNmFuZj02XkYccY4nHThp3DxTd/Rve9ZudkoV+Q7OPT2XkvlWFUMerq6cWTDAVSv2Ye24/qzSm1VSyCEwPGdR3BsWzV6uroTtvkZ3SuqwozWqK/X55XP7Qd++ZV4iTLyjzIYgrpMu5GQ9N6PI+sOJPVbPZ3d+OFHF+CamSWoemU72o63YOvyRRDdvSaWJWOcDbYAwTzffjiaMwzDBE1kzIoA7zpvrfOoR3j9cqAetWhC/HdPVw+q39vn+FzZBTmYcuX8hHX7V++0fZ6MrAyUnzMJ9z/w6aRtTuzCnWZv1Ytko1cns3LVaN3DjMwMDDtpNBpH7EFmVpahMD9o5ghk5Uu5Ho5trUZ7fatheVboaGzDnpWbse6e1ah6ZQcOvL4bm//yboLyIXoEjmw4gDV3vYK1y17F2rtfxe7/foi9z23BB/e9hqpXtic4lNu5V2qF2EpoYaNoUGZl+Tkg4MbWPQxBLUjTNLcUKiKtKZ81wPrsoBKz56B6jXa/uG/7enQ0tuPIhoP48JF3UBdzks7IysDky+eBiBIGIZz2O04xm9lTl8swDJOKkN2RbSKaC2DtjGtP082QLGMU1z8qOK1jd0cXRnYtwOsvPoSiESUYMncUKEPStVqONGLrE2sgegQyczIx87rTLWU41qPqle04siHZSbb8nInIzs9Bv/L+8QRmDfuPY8ffeyPuZOVlYeSZEzBw2rCk492iNtOwO31vZ3+vTQP0qHplB45sOBBfnnvTImRk2tehO1s6ULNuP6rf11cOp39pAeq21ViepcgtzcfAacPQf+Jg5JUWJG3XMpvxKlu5VQEx6HfeidCvNfsSxrWpn2mr1+Ll89/d0QXRI7D+/tfj6wbPGYnyRRMNjnLPmrteif+ecsV8bH1ije6+lEGYfPk8FA4ptj3bGJR5T1D9k0zT4XpsevAtAJgnhFjne4EhIcsbIRWf1m3LMEYEohwA/gkLdmy+vbIP727vwrEXT6Du0IF44rPBs0ai/JzeD+rh9ypx8M09AIDc4jzMuOY0V2XW7zuGA6/tRmttE7ILczDhEmuZSoUQlsP8ucHpqJlVfwer53d7j1uONmLLY72x3sd9fDr6TxhseExPVzc6mzuw/el16GhsN9zXDjn9cnXPN+eGs1C76RByS/LQb2R/ZOZKyqdRe0YpsZ1XeDEjYPVZ9bL9tIRJq6PgXnFk/X5UvZo8Eznmo1MxYMpQz8pRc/CtPTj8biUAacZiypUnoeVII6rf34e8sgL0nzAYddtqULN+PzJzsjDu4zNQNLzEkWJgto9bwpotYOUgENK6bRnGiJRxSNYbAVL7N8jLXW2dyMjKQEZWctQapzQfrkfL0SZUr9mH9vo2FBX2Rss4suEABk4fFhfYB80aEVcO2hvaXDknA0DJ6AEo+cKAuA+DVYFfuV8UZ3KsfkzVI6tmz4MRRkJDwaB+GL6gAofeqQQAHN95RFc5aD/Rip0rNhj6EFAmoWziEBQNL0H/iYNR/d4+VK/VztY8ZO4oDJk7Cl2tncgfVAQighACu/+zCSd21ybs+8HvVycsF5f3R8UFUwGD9ozSfU9FnLSfG/8bPzn09l4ceid5xqq4vAxlk4ckrfdKMerp6o4rBgAw/LSxAICCwf0w9sLp8fUjzijCsFPHAJBMA60oBso+IZ0VA4ZhGL/xTTkIYtZAjRACF5z8fSy77TNoOlSPzNwsTLp0bjwTrtN6NOw/jsNv701KrpWdl4cilMVnD7b89X3MvfEsZGRlIis3G8Wjy9CwT9q2858bMOZjUzFgsrsRuSBmAZzgp6OsnTLMhBgth0H1R71sylCFcnAUna0dyM6XHLl7urrRdLgBe1duRmdLh35FCBi5cLyUvTVm8gUAw08fi8zcLBx8S1Ics/KzUXH+lHiIWQDI6ZfXexoijL94JpqrG3B040HUbj6sWVxD1XFs/vM7mP21hXHzNj2USmKqzyZY8WEJC79Cz7q9Zz3dPahZl6ig9h8/CINmjdAMD+rlM7Ln2c3x31l52YYDJkbmfE79kryElQGGYdIVx2ZFv3xpLf69+oe6+4UxSj1n6BV44qffiQvrMiMXjsOgmSNAmRkQXT1xEwwzhBA48Nou1Kzbr7n9xt8/gVlnX4Brp/V+UAfOGI6Kj0yGEAIN++qw858b4tsogzD3pkWRFfC9wu9RO6v2vVpCjZ7woD7PpoffRvsJ6w7J2QU5EEKg4rzJKK4YYMlPwYnJV+PBE9j9n00JOTWUFI8uw4RLZsWz2QZFlJQMOwJiEM+olTpYzQHiBftX74z3afkDizD1cycF8ry01jZh86PvxZdHnTUBQxR5R/SwMkJvNLOgN8to1I9EPRQpmxUFQlq3LcMY4WrmwEwBCFJY6Onuwf8eWAYAKCosS1AQDry+Gwde3x1fHjxrBMrPmaR7rrptNejp7kHb8ZYExSAjKwM9XT0oGlaMsslDcdLiS0BEmPjp2djxzHoAQO2mQxhx+lgcemsvjm5MdCLOKc5DX8LvD6xdxcAIZV1vvmklftvyEWz601uaYWKV5JbmY+zHpqFwaLHlsmTsKAZy/fqNKMXsry5MUCyaqxuw858b0NXWiYZ9ddj+4AZkDiKMOGMsCgYZ+6V0tnbg8LuVyMzOxPBTxzoWEv1+1608S1GZNfCyHn68P/V7JBM1ImDip4JRJBv3H8d2ZaCE3CxfFQPlNifHGB0bBFFXThiGSW9cKQdGAkHQo4gN++qwf9emuGJQcd5kVL64TXPfll2t6D6jSzOCUO3mw6h8YSsAJPgUlE0agrGLpyXsu+yeCwFIdrqyCVFRYRk2/OENzXLLz5mYlrMG6pkC5Uio/JGz+rGzIgxYOY9T+/C2qiVYumwxvvXdl/DTmlNw+L1KoD4zeTbqjHEYPGekpz4tdlA+R4VDizH58nnY8uh76OnukeraDNRXSomtisv7Y9iCMeg3ojThHEII7P7XRjQdlkJXHn5vHyrOm4wBU4faMk1SrvPjvQ8ioVhYGD3LXgqHXW2d2PnPDQlhSguHlWhmQvYaIQT2Pr81Yd3Ez8wxPc7tfdfbZtTHROE5ioJywjDpBhFdDeBhAGOEEJXh1ib6OFYOHn/yRtNoRX6jFEZkJ7em5joMmDoUA6cPR7+R/dFe34razYfjo6oyx3ce1Qzvqfx4NjVLwn7mIMKosyck7auk4vwp2PjAm0lCpEzBkH6a9rzpgFFoSGUscifmRl6bKNnxjSgZMyCedKmjsQ2UmZGQRC5oDM0g+hdg8uXzsHPFBnQ2J/pCNFQdR0PVcQDAgsWX4fwvLcGE+Qvwk1tOjisGMpUvbkPli9sw5fJ5KIy930IIiB6RYCqlpQSEaVYUhM+LVbyoi5dC4dGNB7Hv5e1J64tHB9MfNeyrQ0djGwAgMycTU648KSG5o9co29+OT4qfDsZm/ZhyEIVJXYhoEYBXVaubAVQB+BuAO4UQjQFXi2FskzLRiowQQqD1aFN8WRZickvzkVuaH/8Ith5rxua/vAsAaN7Yiv4TkmcPMnOz4rMPA2cMx/fvfRWDRo02FXxu+/7L+Nmac3Fox9a4gjB0XrnkzFqQI+VBSMNZAxm9j57WB8/JiFiQ8cq1HD+VTsJhoBWtSU1eOXDSnC40bL4WO59Zj/aGtqR93ln5N3y4+iUASFBkKZMgunv9j7Y9tRZDTxoN0S1wdNNBdHd0o2ziYIw+fwoys/2fLfEqf0FYuKmL1ZwLZn1S24kWHHhtV1KkK5lBM4YD8N9H6Piuo/HfEz89B6WzHumto4uEYmYzA04Vg6AzZVupF88gpBx/ArAq9rsYwJkAfgzgNADnh1QnhrGM5xmSrWat9BIiQpHCZEI9GiqTP6AQpWMHoqm5Dq2NDTjy7FGoHbIHZU+MC03DF4zB4//8muV6fP9vz2PwmcMwdH45Jl8+DyPPHI8xF0zFyIXjA5m+TyWcPCN2jzF7Fo0+uOoQuVHAioCQkZmF0pmPYMY1p2HezYsw/hMzk/Zpaq5LUAzKJg/BvJvOxpQr5qNouDxbIJkZVa+tQndHNwCgbscRrL//NXS1SrNwrbVNSe+PFzjtP6KiGNhB6xmVl/WePSvPZMvRJnz48DtJisGI08Zi+KljMGfJmb71Scrraa5pQO2mQwAAyizBgJMfS9pX7/pl7PoMmNXJ7bmslqf8MyvbLFN9Kj7bfZx3hBCPxf7uE0JcDuAZAOcRkXHiHBsQkXmyowAgohwiCm9anfEcT5WDoDuwpcsW4+tf+xcOv1eJhqpeYaf/+EG6x4xa1GseVH+0BicUo1oAsGVNb+bO7MLEZ93oo7x02WL8/r6LUTZ5CEYuHB+6yVWUsPLBs6pUeq1UtFUtSfqTSVUFAZCumTIyUDp2IObfeg7m3bwIYxdPQ15pfsJ+g2ePxJgLpgIAvn/HG5j82XkYtWgCMnO0ZwdEt8D6P7yOHf9Yj82PvodND76Fhqo6dHd0ubswRb3VqO9LquC2zlozA1b9Oo5phLydvWQhhp1SgeELxiQlzfOavPL70NPVjZ3/WN+70mDm1GoUMas49SPw4zmTn1+1wqA3K+DUz4qJPPJLGbf7JKLRRHQPEW0moqbY3+tE9DH1wUS0iogOENFEIvovEdUDeE2x/TQiWklEx4mojYjWE9FVVitHRPNiZbQS0REi+gMRzSAiEbPXl/e7OrZuMRH9goj2A2gFMDW2fQIR/Y2IamP12EREX9cor5KIHtFYfzsRCdU6+drLiWgFETUSUV2sjkmjHET0GSLaGCt/NxHdCiB9TTd8IGXNim6+aSWaThzH/33sVBzcvSe+vmBQEYbHkudokVuSjxGnjY3Hmc/YKFA6flDc5EceJQUACAAUjNNluqP3sfZLOFHfJ6fleJkRN+gPvLJMyshA2aQhKJs0BN2d3ehq6UB2Ua6mH8GQOaPQf/wg1O04gp6ObpRNGYKmAyc0Hfw7mtrjkbrGLp6GsknJCbTcYDfTthu8NuHww6zIam6KIxsPxH8Xj+qPsRdNR1Zub74Nr+zr1c+18rwNVcfR1darNA6dW6Jr6pNuwq9VkyYr1621z5WX34PvPTjPWeUYq0zWMAU+LITQTjaTSBERyclrigCcDuAqACuEECcU+50E4DwA/wKwB5IJ0hcAPEtE5wkhXladtwDAy7G/byMmwxHRJQCeBrAOwB0AWgBcDOARIhoihPh/RpUlokmQfCU6AfwGQC2ASwH82eCwX8f2vxuStFRHROMAvAMgG8DvISlEnwTweyIaK4T4plE9TMgH8AqA1QBuA7AAwPUAjgL4keJaLgXwFIBtAH4IIBfArbFrYiySssoBANx5+wU4Xn0ovlw0vAQTLplletywUypwbMthtJ1oRUPV8XgW3AOv7Yrvo541YLzDjj22OuOp/Nvso6oWnsKyR7dbbyvYtb9W75+ZnYnMknzN/WVy+uWh4pP/jS+XzgRKx12Hqle3o37vsUQlOsaelZvRf+Jgz3xrghQYtRTWqAqsZopB7ebDCf4jZpGB3CgGyv/q85zY0/strjh/imYACCdJ7Mz28WK2wS+MnKXt1OXxJ2/0tF5R57nvTsWM8sJAytpU1YyP/WoLAPxVY/NPANxu4TR3xf6U/AvA51TrVgoh/q5cQUTLAKyHJPyrlYP+AO4WQvxUsX8+gAcA/A/AxaLX1vNeIvo7gNuJ6I8qpUTNzwEUApgthNgUO+99SHauVpIB4DQhRNy5jYieitXxNCHEO7F19wL4D4BbiegBIYR2GElzygDcIYS4M7b8ByIqhaQg/ChWViakdj8AYIEQoiG2/mFIygJjEcdmRVdefk9g5hZdrZ1oqKrDnpWbseOZ9Tiy/gCWLluM7rbOuO108aj+mPzZeZYTnA2ZVx7/vefZzdj9703xnAZFhWUYvmBMUvxvu2YmYZujhOH/YRW7piLq/Z06rCrxu22CbHuj9vTKFKto0gOY+tXXMHvJmZh/6zmY8eVTMeqs8Qn77PrXRtRuPoymw/W2/RGi9qxG8f25+aaVhv1KfeWxeChmACipSI5I5KcpkUx3ewvqtlYb1sNtGVpEMWO2ll9BVBVPJoHPAZin+ltu8djfQZoROA/AJyApFecA+IfSNl8I0SL/JqI8IhoAoB8kZ+aTdM59j2r5PAADIYXpHEBEA+U/AM9CGnE/Xa+iMYH6YwBekhWDWN26ACwzuMYHVIpBJoALAbwqKwax8/RAmmUgSLMZThEA1C/0agCDFL4X8wGMALBcVgxidTgE4HEXZfc5XPscOBWArXx4e7q6selPb0k2zs+sR932GjRU1aHq1R1Yc9crCbGzh8wzT6ijpP+ERJ8g5SjX5FPPxE//+IH6EADWzUzCVgyUROEDqYfdxFZK3wAnwltQH2WrMda9xgsFwWzf/NH3I6/8PpTMeBhD5pZj2lWnICNL6krq90rC6bYn12L9fa/ZyjKtJMj7ZHa92pGh/FEctK5b2Zdsf+8tHNyxNWkfmfo9iTPnQ+aWJyzrmRN53V8de+/L8QSCZZOHWHJ+NjN10vNH0fpt9/741Q5MSrNNCLFO9WfFpAgAtgohXor9/VsIcTuA6wBcAODL8k5ElE1EPyWiSkh2+7WQzGS+CqBU47x1QojjqnWTY/+fiR2r/Hsots3ICXoQpFmD5HjHwA6D43arluXzbNHYV16nb/NtTo0QQv1BkdtCHn2Qz681S6DfcTJJeOKQbNShOv2AdrZ2YN09qzXDMarJH1iEfjZzCGTlZ2v6JoxaNAE3P/AkMgySQMl2v6lE1BUEJ8Kg2+OiFPrSDerRZL128SsqS35ZISZdOjce6Uimu6Mbmx5+G9ueXItjW6sNZxJS9T4EVe+bb1qJ8q7T8fPPnoNfXv4xtDdoK12drZ3x3+MunG6Yy8DJu6N+zrRo3fc11HzQm1m+dMxAzf1knCpoeu+vmwEDP/zJeKaAifF87P85inV3Q7KLfxbAlQA+Cmkm4HFoO9BqvfiysPI19M5WqP+e1zhOxqkdqJORH6HzW4lerOxkW9ZeSPVf69zskGwDx8qBVZtHKyPDWp355kfeSVjOLc3H6HMnJURRoQzC8AUVmHTpnATHSiOUH7fhC8Zg9LmTAEimREXDijF49khPPxBmZgBBkQofpzDqGHa7eDECvXTZYssKq5UQi07apHBoMSZdNhczvnQqKs6fkrCt6XA99v5vC2rWVunWx235WngplAUdClNGvqd3L/0YXnjoXhQVlqG7owMdje2a+x/fcST+u3RCYtQ2o3p61efVvPZZrL37VdTvPRZfl93PfshUMxNCvQg/bhSDKPTTTFojRwRQhh+9EsBfhBBfF0I8IYR4XgjxEuzJZjtj/08oZivUf4cMjj8CyYF5ksa2iTbqcRRSwrepGtvkj8JexbrjkPwT1Iy1UaYaOTrNFI1tkzXWMTq4ckh2G+pRN3HW8ZaEKBdjPzYNZZOlKCiDZo5A48ET6OnsRvHoMsvOj8o6KqN9DJw+HF3tXZg54SJcfOO38adHPw/A/GNpZXvYH5tUHBkPW1gPAtlJ2Ot7E3YULSKKJx4sGTsANWv34+iGA715ErYfwdD5o+P7exkxxwg/2trKOe0KrFrXL9/Tq694BDfeLbVdUWEZGvYeQz9FbhdAMsNUouwbvbp+LUd/mfq9tdi5YmPC9rKJg1E0rFj3fFYEf6NtXoYsDfv9YdKeS2L/lTbL3VCNaMciB10C6zwPoA7AD4nov0KIJuVGIhoEoFboTN0KIbqJ6DkAnySiGQqH5CwAlj3fY+f5L4DLiOhkIcR7sfNkQHKuFpAck2V2AjibiPJlcyEiqoC9a1ezBsAhANcT0T0Kh+ThkBQxxiKe5TnwUhBWjjBmF+TEFQOZfiNKUVIxwFZUFL2OnzIIw04ajaOlG+OKgVWiMitgBE9ph4NdX4owsCqEmT1DWteSnZ+DkWeMw+wlZ8bXtRxpRFd7Z9K+ZnUxIqwRfTt48f498sTVyMrLjmdvP/z+PnR36s+yFwxJzI0URB+g9AEDgAmfmoWxF04H6ZhoulUMzM7l5DwM4xELiOjzsb+vENEfANwLKbSn0sl3BYDPE9F9RHQdEf0SwLuwYR8fUwa+DGmUfysR/YyIriWi7xPR05Ai95iltf8RJDOhVUT0EyK6CVKkogK5GIvV+QGAEwBeiuVAuBHACwA+DuAuVaSi+yH5KbxEREuI6Mewee1qhBDdAL4BYBSAd4joW0T0fUjhVXcZHswk4GkoU7sjdHqhHesre6ekp33xFMPj5XKtoBzNd5uvwIpSYDUmOWOdqIeZVGL1fQjrWsxCq9ox3dA7FxEhIzsTPTFBtrm6ASWjB2ie36ieTvFKQdBLTBVU/goiwvhLZmLbk2vj69bf/xrGfXwGSsdKNv09nT3xbVk5yV27VzMoct+n7NeEEBDdveXPu+VsW4M3Zo70XigGUegzlN8N/i6kNdfE/gBpduAwgEcB3C6EqFbsdwskofxTAL4EyZH2ekhmMcYxiBUIIf5FRKcC+B6Ar0Ay1zkKyRH4GzC214cQYisRnQ3gt5BG+Rsh5U14FMDbsOhfIITYTUQLAPwCklN1EaQZghshKUfKfVcR0ZJYeXfF9rsBwDRIkaEcIYR4KpZE7f9i9TgIybfjOHodtBkTPM2QbGcUXa+j7unuSbCnzcrP1txPeQ51vG2ZKIQiTPUPQBTaUEmqORJbEUiMIhu5uU43ZTs5r965Bk0fHv9ds3a/5j56RP0+e+kfYYY667roFtjz7Idorm6A6BFo2NebJT5/UJEn9bJKT0d33HzsrM98ybNcF25RBh8IA/U7LPsHpfp3gdFGCLFKCEGqvywhxCghxDVCiP2q/ZuEEDcKIUYIIfKFEHOEEE8JIW4XQpBq30VCiJEGZa8VQnxGCDFECJETO+d5Qoh79UyKVMe/L4Q4K1aPwUKIr0MKCwoA+xX7PRK7rpd0zrNDCHGpEGKAECJXCDFdCPF7rToIIe4XQoxR7Pe0nWtX1KVStf5vsfPlCiHGCiF+J4R4WGtfRhtPlQPAvRmL2m62fq+1pHZGI3jqzln53+h8evSV0R+txFBOjvWDIBWEsEau3bxHerHVvYpiZLVubcdbkJHd280oR5f1MHOYTnf0zBW1zIh6unqw9Yk1WLv0Vex5bnN8fen4QUn7Av6Nnh/bJg2GFhWW4cMtz5nubyfZmZtZgzCfITf9J8METSyZmnI5G9Ksw3FImZeZPoTnyoEd1J1+Z3M7Nv7xzYR1J3ZrKwfyx9PqyJCWgqDcpuUcqdeh95WRH70Y4lEhinVyg10bbLPz2DHBcqogqP+UHFl/AJv/8i4Ov7cvvs5sRDudhCiv/JFkZeGIIjxodmEO+k/UDl2elZeVFFYW6O3n3Ebo0er76rb3Rkk6tqUajQfUodiN0Zr1BYJ/x730IVO+E07zsjBMgGwnomVE9FUi+h6A9wCcBuAnQgjt8GhM2uKpcuBWYK6vrIsnzpEZNGuEzt7JEYiUOIl/rTXS4zT8X7p8BNzkEkinNvAb5fNmJdyo2XnCpuaD/ah6dQdET+JMcrFBPpKo1F2N0/uv7B/snENr8KG9pQU4lBdfnnTpXIz92DSMWjQB+QMK4+uz8rMx7uKZSWY9epGh9Powu8EWMjKl8uSM9Qff3GO0uyW8eO+iMICgVBAA67PSDBMw/4aUKfl3kByUuwFcJYRYGmqtmFDwRDmwE2fdiJaaxvjv/IFFmHfL2SgY1M/giESsxnlX76/nbOikHOU2HilivMDOc6R+bu0oGV4+qyd2Hk1YHjhtGMZeOA0lYwb4XnaqYUWA/etPvo2De7egqLAMQ+eVI69/ASiDMGTOKEz74imYf+s5mHfL2Zj1ldOTQpyq0eoDlchBFIwGP9Tbys+ZhIEK3xInKOsVllDv54ywlWe8L8xIM9FECHGDEGKCEKIg9jdfCPGXsOvFhEOoZkUycQGmrCC+rrW2CTD3oYmj/pjZ/bg4TaJjdj69cwY5QsSjUemB22fTipLgxfPf09WNxoMn4svTv7QAFedPQdnEIZFxVE0Vbr5pJdpbWvD+s/9AUWEZmtuOY9iCCs19iUgzbKjde2omoKoHQAAgr38Bys+Z2FuXDOP7HITwH4VZAyXyLOz1l1SEXRWGYRhDImNW1Fa1BAOnD0tYV/3+Pp29rZ/TCLP66h1vZUTt5ptWRubjFNZoVFSuPyz8GA2P4mxUT3cP6nbUYM1dr2DNXa9g3T2r49uy8rKQXWg/Q25U8PsZNjv/ty+bhFtOHg9AMtkZOq8cmRphSu1ix7RFvSz3J2rTS6VC0HjghGkd9HJpRO35DgMe0GEYJkxCnzlQfggysjJRpJgSP7a1Rvc4qwKv2mbeSlx3t9PbylwKeqE3+8r0cV8RkIFgo+wYleNWoLVT/7rtNVh/32vY8+xmze3jPzELmdlm+Xeig19hL7Vs/o3KaTnSiHXLVqFxSyOamuvQ1FwHyiQMmqUbydARWv2Qcp2dPC1EhKy83tDTLUebkvZRC73K/tHLdyfIgQm7grzSBFd5zX0lCh7DMNHH8RDUlZffgzGz5saXnXRmWhEpOhp6c220HW9xWr0kgvxYaCU/6+uj6H4Q5YRoQYdZtZOwzAw77blnZbJSkJGdgZ7OHpRNHqIZNcdtmUqiqCSq0XMGltESwHeu2ICeWNhXOSvypEvnIqfI/iyMm+AAWv26XrCHtqolKBjSL55v4dA7ezH+ohmm59OqrxWicu+dfPu0IuaxQsAwTFQIfeZASWdze0ICtDEfm2q4vx+dqVeCJnf0vXj9EQ96VNDqyKDberkZtbbrtOxFGzZU1SUsT7hkFmZ/dSHm3rAIc29ahDEfNX5/vcCvkX4vzms1NK26r+jp7kFncweKCnsjO835+plJSdDs4FUbmT1jIxeOj/8+seso9v5vC7raOz1/h6Kc38AOyjDAfT2/B8Mw0SE05UDzw1mXOFNQNnFIUNVJrEcaheEMG78EeTOHby8JStHzQjBQnkPvXHYFK7Vg193ehcoXtmLHM+vj60rHD0LJmAHxjOYZmRmOnY+1bN7NhMsws+BqoTZNtFM/ORFkU3MdBpZXYOwVkz3xM/A6W7DWeQoGFSFDYUZ2bGs1dv15M7591kzs/d8WNNc0JB0T9gxg2MEh2L+AYZio4Vg5ePzJGw23OxFyClUmCE2HTtg+h1cEYXfsF1H82Phx7WoFwY8y7CoGURFQvRxZVbZBd3sXdvxjPWo3H07Yp+K8yfYqaBErYTWVuBWAvbR5d1oHQq9SlZWdg5x+eQZ7B4u6fbXae9ZXTk867nDVDhzbWo2dz6xHZ0uHqzqY3SO7bR/FWV4enGIYJkxczRzIH22tztWsc1YnhgGAzqbEJHy5pQWwglowtJvAxy7y+aMmhJvVKawPjp+julERxpVEbRTbKzqa2rHlr++hubp39LdgcD/MvO70BEdUtygjfqn/23nnjLI3R5nM3Czk9Zf6vl0b30HT4fqQa2SPzJwszL/1HIz7+HSAehOjAUBXexcOvb03vux0dkuPVLrPMrKPmtUcJVH77jAMk36E6nOg7gx7OrsTls2c78xGi/3uRMMacdK7bqWipnXtqfjhtEIqCoCpRk9XN7Y8+h7a69vi66Z+7iRM/dxJjpxktdAKmWn0PKczZZN7TSrbjjWHWBPnbd9/wmDMv+UczL3xLMy8rnc2oaHymOFxRn26UYQur95/L581vWhEarxIIsowDOMV7g1ZY3gRhq211ruPYBCCu91r9lJ4NTpXFKfJ+yLp5LvS1dqJrrbOhHW7/rMJpWMGYtTZEzxJbqb33CoVhDCf7SAz+Iqe3gSQwkYySKto1V/uz/Ta2Er7a50jIysTOUW9fgiZFmaZtOoX1Lvk1zNmdl5llDsjPwzu3xmG8RvPZg7kDstVx+VR8lStMHFeEnbnzCPkfRc7I6RunhP1O5PTLy8pelhHQxuObDiAuq3Vuufw8t1z+95ZbTu9UJ1m+3hJZ7Nkl19UWIb8AUUJ2/waYdYzEfWiv1NGtsotzU/YZud5DmKW0IlDvB5O/R94JpRhmDCJTIZkAMguyIn/9tKG2Q/CVhCY1CEM23e1w6gT1ALwgMlDMe/ms+P28DJ7n9+K1trkhFd65wkbO/dCT8Hx+z42H66P5zcoHNovvj7M2RMrpi96Ckb93l5TooFTh8V/q33PovCs+KUgsdkQwzCpQqTyHJzYXQvKlCIWlYwd4Nl5rX7InWS6TCWb6FSooxlREB7soPXseTGib1fo14owY6c8GcogTLlyPkYtmpCwfvOj76HpUGo5zuphJKgGpeB1NLWjqbkOuSX5oAypm47C+6slJFupV3d7V/x3Xpm1QBNahJELwCtlzMp5Uq1/YxgmPYmMctDR2IaaD/ZDdEsChjLhTxQ+ikZEQUEI2zk7SNLhA+rViL5d5cNJmer2zszJwpA5ozDslIqE9dueWou67TWaZUXxnpnNCKjbKqhZn672zrgwnVvcG8bUTkjXoLDaryh9KNT5bKxi5IwcBl4qKpz8jGGYKOGZQ7Jbdv1nU/x3waAiDJwxPL6s9UEMO6a9eno/7I+2MsMmO7GlDm6dltXPYZACxojTxkJ096B6TVV83Z6Vm9HZ0oHBs0eCiFLGbvpnd56B2y6dmbQ+jPq3H2+N/87u500kKD+wqhjcfNNKfGu1NNNUVFiGrlb7eQ6ioBiona31yla+k0bvo9YMVaq8LwzDpDehzhx0NLWjoaoOQgi01DTG10+6bK5p9JOgOlG9zt2OsK0cYQpCeAtyFMrLcqy0URQd9dzOyrgZzVfbgds1NbJTntbfyIXjMe2qUxL23b9qJzYsfwPVa/ahvb5V54zR4zdPbwy7CgASkz9m5Ubb90rG6B24666PJpic5ap8VmTsZkoOux/QyndjlpNDb6ZP/kunGV6GYVIXz5QDs4gOPd09Ccvt9a3Y9Ke3sOOZ9dj+t3WJlcoyr5Zfwq/ZddjtvK1EPrF6HruZQVNtmjpV6x5mvgu35XshYOWXFWLO189EbkmvCUxXaycOvL4bHz78Nmo/PJR0TNAKsxW0Zg7CoP1Er0KV2z/fYM/o03KkEeuWrUpInPfFLy63fZ6wFQEZOcyo1TDW119SgbaqJfH/gPEAB8/wMgwTBTwPZaqk5Ugj9r28HWvuegXrlq3ChuVvoKu9E611zdj00NtxO1S1I6PsgBcGRna98nSxF9mR7QhEyn2tHBfkh9TPsqIkOPqNG/8Dt21kNZu5EZk5WZjx5dMw5fJ56DeyNL5eCKDyxW2ot5D4yul1ODlWvf+PvvmGo7L9oKOxN1P8wTd2o6OxzWDvaKDVZ3a1dWLrE2sS1pVPnYnhEyYbnsvqvfTi2bfblzspT53p2wuuvPwez87FMAyjhuwm2CGiuQDWzrj2tASnYQC4Ycm/8X/Xz0XTwROo237EUYXGXDAFAxSh7vQII7yg0uZUK5urHm7tZdXH2z0uKqNudnB6zW7KcyOg2z1WL+GUG2HHbRuZtbmde9JypBFVr+5A06HekJwTPzUbxaPLdM9ndF4vFSArduBhUretBnue2wxAstEfOnYCSj9SGHKt9NELr3p00yHse2lbfHnMBVNQNmUobrn5OUvPfVD3zCz5mxZa77yVMK9e0XS4HpsefAsA5gkh1pntn6rI8sZz352KGeXBvAObqprxsV9tAdK8bRnGCE+H6O+/8WrUvVtrSzHIUTjcDTt5tCXFICi0RqaUyd7cJn6zKvA4tbOPon2+VcKouxsB1MkoZtRMCLTMHtT+DOq49HoUDO6HSZfNRWZOFpqapQRYO/6xXjeakfr8XhM1EyYjyiYPwZQr5seXq/fsTDA10iJMW3Wt57izpSNBMRh/8QwMmDpMUzHQwk7ELbf31EkUKKuKQRQjTDEMw5jhmXLQ1daJza+/gqbmOhQV9o4O9hvVHxXnTcawk0fH1xUNK0HFeZMxZ8mZmHnt6Zh53emYftUpGHH6OFd1sPLx13Iis4PWjIHZ+ZwIPEbObKkg4HhFUEqCV2VYvTd6AoObZGlePBfqcpXPt/xMWq0bEWHip2cnJDRUmxBaUTaCfN6NyhJCoLuzG+0NrWg8cBzr//A6Nj74FrY9tRbHdx2F3VlYIwqHFgNAXLE656RbDPePkgDa092DDctVZlqxABNBRZ7zEjvfC73rW76i0tJ1skMywzBRwLNQppSZEf+QNTXXoXTsQAyZOwr9RvWP76Mn/OcU5QKwF7LPaQhIOx9RpcCinnpW+h+o1xmdy4ryYlRPt6Ev7cJh9uzjxkRJiRNl0KuytbBqOqcsv3BoMWZedxrW3bMagOSorCZqz5VWG7adaMH2p9ahs0UdhrMTHY1taDq0CaMWTcCQOaM8qUNrXTNAAITUn5ZPm4U3d3pyat9Zt2xVwnLp2IEoqbCe1NIod0cY5qRm2DExNSNKSh7DMH0Xz2YOMrMzAUg2skWFZfjIJ25MUAz0cDNSovdR8MN8QG962G6uA7MpcbdT7l4S9RE9r3Harn7fD7vndxIJyOg9tGIaYTTjoQww0FbXbKk+UWPLY+9rKAaJ7F+1E2vuegVNh7UzRbcdb8H6P7yOtUtfxcYH30Td9hq01jYl7NPd0QXR04O6bTVAbCKiaHgJBpdXeHEZvlO9Zl/C8rCTRmP8J2aCMoxDU4eBF6P06nN4PYPMMAwTBp4mQRu7eBqOrD4MAHjxn0sx4ZOzTY9xO1IS9Ei6jJ8jPGGPHum1p5+j0qmOemTT67Zy85xbdUw3mvlyStuJFmx7vDdiTW5p6oXmbDnSiJ7O7oR1JRUDkFdWgKIRpah6ZTs6m3sVh21PrsWwk0cnzJS2HmvG5r+8G1/uaGzHnpWS07E843Dw/7N33mFyFGf+/9bMbM45J+2utMoRgQQIBBiwMDZgY4ITjhzYpLvz+bjzndPvjH0JJGxhnH0GjLGNwdjYREkgEBLKaVdarTZoc85xZur3R8/09vR2z3T3dPd0z9TnefbZ6VRdnaret+oN755H1/4WECcB9cybKJVvXWzUpekKpRTtbzfxy65EF0ouC20qalRuDr1Q8k0E20eLci8+Tvztz9GTAG5UVS6DwWAoRfPMQULhwwvWZS3Ox/jEIPfXOaKrDW40Y6cRejvVlRFIsGen1XEyWJnu6TnUP30Q7hk3vy5zUa7qc0RaIb2wZ96eJ391KTY8dBVqb16NsitqkVWThxWf3YTU4sDIbV0HWjHUyAVmoJSi+W+n5cvf3YhDO3aha38Lt7+HBvhtTXSNyhxpLUZbBwOWV//d5RGqiTLCUYSlZgj0mLEWh62WK3Om+5GwzsNgMBjB0DxzMNP9COJEoUyFWY09sx6c/OV7KL20GlmL87XXMAzYSLc27OD4bNVna+RMlh7PRc/wtqFmSTr3NcMzyykGzgQXCjeUI3tpoWRZoZJKqbmvSuzT1YTGFLZr/Sc7Uby5KsDJ2hnnRN1t6+H1eNH819O8UtD055NY9smNmB6cwGTvfAb4iquWYG5qFsNNfZjs5cyKhDMFwLwjsjPeiZTiDFNmE8P9ptrfPsf/Ltm8KGSWe7VYrT0S+ocFq1uo+6okuSWDwWCYie7ZxrJq8/jfM8NTaPrLSbS83mDoLIKdQ3bqid6dZzCfjkgTy89b7trV3BO9n6F4hNPr8aL3aDs/Ar76S5eiaGNlSIFRDzNDqd/hUHL5vGmM1+NFw28PLcj4DgAOpwPVH1oRkP+l+W+n4Z4OdMLOWpKP4kuqsOwTG5G9pGBBOXkri+FwOhCfmoCld16E5LxUXa4jGHq8Dw6Xk/+du0L/kNTBHJXNxj/TJlYMQvnBSc0MCBH67rB+jcFgRArdlYOyK2oDRtUAoP9EJy7sjkyoDblOLxxnNOGxWsoxqtE3YtTaTKfvaMGMTj2YgqD0/HrMQMgx1jbIJz8DODv8ppdOoO9Ep+RAgVHx4PVQpFIK0lH9oRUgTk6xmR6cRN+xdtn9a29eDWc8Nyk71T+OznfOB2xvebWe/1153VLUfGQVyrcuxqJty7Hu/itRcU0dfnFmDCu/sBmJWcmK6xkOeryzcSnx/O+JnrEge+qHldqhUN+kEOEMHlMEGAyG1dBdOYhPS8Saey7HmnsC7U17j7ZjottY21k1I91aBRG/MhAq9rWS2NhGKQh2KNMqWCGuuF4CjpYytJ471Dvh9VBeMQCAyb5xDJ3rQ+vrDTj02C7JkXc9CHUtQlMoNWTV5mPpHRfxyyPnB2T3dSa4sPzTG+GM50bShT4XADApEJwdTgcyF+Uif00pspcUwOHkmuTHf3ij7mY5eiF374T+JMJkd3pixdlMpYJ9OAqAFdopBoMRO+iuHPhxJcZh/YNbA9bV/+YgpgaMDWXob3zvvqmS/9MTJUqFmoZcbYcRTgK3cJCrp5ZOOZxr0HOk0AodrtjMQM/y1B6n9i/Y+TOqcpC1OB9y8u3hHbvRc7gNPYfaMNzUp6nOwa5F6newdUqIS56fEZ3sGw+yJzdIsuyTG5GQnrhgW97qEk3nD4VZo+hy7VVKUQZvRiaO7mQGVppFECIcUBKipt2PdAQ7BoMRWximHACcI9/Kz24KWNd3vMPIUwLgGl1xY6pHpyF0QDPKDMKOqL23Vrl3/npYQUkI16xAeLwVhCSH04HqG1Zg3QNbsf5B7i9/bWnAPhf2nMOFt87h3J9O6J7/wIh7EJcyn6jRPT0H6qVBz5GQkYS6OzYsMA3yuo2ZNfETqWfvmXXzs0XxaQuVonBQYtev9RtS8v2ryWcgRpwsU+vsFYPBYJiFocoBwMU1L76kil/uPdoOj06jSqEaaL2E0GAj3aESo6kh1KhsqOzJkURt0i2t51AjANip81VbVz1HxPVG+C4kVTwBQggIISi/cjHSZRIjnvzVfkNMjfR08AxotwhAvVx9g933uOR41N2xHpk1XKCGxKxkZFQpzxaslUi8C8JEZ2K/MyMJ97lqzWOgdAZUj/whVhjAYDAYsYPhygEAFG6sCFg+8oM9mJuYCatMualaKfR09lIzgqSmQxB35nKCthUVAzFGjIxpKVPpM7fDPRWj1MbZCgiVhZqbV6NgbRkyqnLgSgiMpHx4x26c+vUB9J3ogHtmTqY05Wh12pZ7x869cIz/nVmVGxCdJxiuhDjU3LgSGx66CivuuiQgmlE0MdU/P/vjcIXuWtQKvOLZA72deEdaBjBQ380rfcEQthlqrkOrGSaDwWCYiSnKgcPpQN3t6wPWnX3+mMze1kPYEZgtSAo7E6POrdZHQmqdsKPe1N8VIMybMasQiwTLoGpVkqt+hLIra1F702qsuXcLKq9dGrB9qn8cra+fwclfvIfxzpGAbWZm0l0QYnJwAmPtw/xy6ZaasMqPRoS5HNr3NmHonL6+JEoyfGuBUoojP9yDxj8eQ/PfTuPC7nOo/81BnPzVezj91AF0HWgJ61zhmC76Zx3sOIDBYDDsS1gZktUIJKlFGai7bV5BmOofh0cUxUMpeo+kGDEyo7Yx12sUTK2zr5oZGD/B6jrddi/25crHOA8nOo7WJGB2UUzCvS9y262G8HnkLi/C4o+uWbCPe2oODb89BOo1Nsu60uRUwkhrrgQXMlf/0pCZsXCI9LMWZ4lu/uupoM9PbRspd4+8Hi96DrXhy1cW4+Cjb+Lgo2+i8Y9HQ/qxeD1eeD1e1D9zEJ7ZeZOx3mNcZL3pwUlM9o2j453z6HinSXPdhW2s8HtV8ryE57FDG8ZgMKIDU2YO/KQUpQcsj3UM61JuuMK9P5FNsBFuqdEbPWxJxYTbwfvro+WeqFUsxIKp/95FMma3XRQBP3Lxz+2KGvt+/7NKL8/G+ge2ouTSRQtMbj5w0dcWlK8Eve9jmsBXwj3jxmRPs67lRwPZSwqw6Ibl/LLX7eWzRRtJ2xtncOGtcxhtnQ+dO9IyiJO/2i97zMzoFE798j0c3rE7YMZDjp7DFwKWQ2X0DoXa9tHu7QKDwbAXpioH4pkCqrMD4vD5fvSf7NRkr6xFSDNqqjeYgKUkrKRQQQhl0iOn9ARDaUcldx3hRuUJFp5WanZB64xDpNAr74AZilIoZUCpkkAcBEUbK1F3+3pUfqAOAJCako1zh/aHFQIyFErvT3xaYkC0pcZnv61bHfQk0qZm2YsLAiLUdb7XLJn0Ti/c03PoP9Ulu73l1XocfOxNHH58N0ZaudwU1OvFiZ/tw8zoNB96VYq8lcVITclGako2khMyAUgPoAQbVAlXiRAS6ZkhBoMRO4StHKjpgMQRLFpea9B0TqlGdripD+dePI6W1xpwdOfbGG0bVN0paVEQzMw7EKw+UgqCms5Iyb5CYVOLH0EkZxSsrCDopTyFe2+NzNSqdBYhsXwnkgvmZxj/9uPt+LcvrcH99/0lZHlq677AryDE9ZdcWs3/HmvZp8hx1Qz8bZBVHFfjMxIDskmfe/F4WApCsG92bmI2YHnl5zcjs3o+GVv/qS6AcrMYjc8fw2TfGD+jIMzgnVaaibIrawEAeatKsP6Breg70clvX3nFByTvr9I2likGDAbDTpg6cwAAyz99Mf/bM+PWbFMsFn7F2ZfP/uEoGv94DNNDk4rKm+wdw3jXSFAFQdg5iHMeGI0SoVZKYFczkui/Di22wP6yje7EzI5OZTZy9TZa8BOf1whFQWlZSTkpSMpN4QWz/nd78b+f/ajkDIK4nqESoIVTN2dcYHSinrduV3ysHucPhvCbjfS7TwhBwdoyfnmkeQBtb5zRVFaoZ5iYnRyQaO7ci8dRuKFCdv/TT72PmeGp+eOzkrH+wa1Ycus6FKwtw4aHrkLF1UtAHIQvd3xiECf2vIZ/unI1r+QI2/1gfQBzJGYwGHbEdOVgXORn0Pp6g2bHZD/bd2zDSPPAgvWjrYM4+cv3FtiLLqhT1wjqn3kfDc8ewrEf78VY/ecDtvs7qEhGLVKL1hFyuetSWp5ZI/NahGUrzx4AwYW6SL5vSp129YI4CBZ/bC3SSjMxPjGI8YlBHN3zMj5VlYizzx9Fz5ELsiPRekU0UqIYUYOTmSlFKKRaZfagYF1ZwLJU+xwKJe8WISQgEt5U/zgSc5KDHDHP9V96AMs/czGITBrv9IpAk6Ox/j488ZW7wspjo3abVZ4nI/IQQu4ihFBCSKVg3S8JIS2RqxUjWjFVORhs6EGraASp/1QXTj/zvuYESP6GenZcPm/ChT2NvPPz3OQsxjuHA87Xe/gC/LLG3MQsmv58ElMt92iqjxFoFcD0sjmXKyOYX4RRaI0vLsaqCoJVCRZlRc17pkR4TyzfibikeCz+6FqkFAYGMRhtHcSF3Y04+sTbinyLQtVL7exIakkm/zs5Py3io/RirDJoEZeSgPUPbuWXZ8dndEt+KXUuoSDvmXaj+saVAfuklwcK+p//7o/wkfu/JqsYAEDZlbUouoibhfArqfte/i36TnSqMpPyP5PptnuDJi/0/2cKgX0hhFzpE+CFf+OEkNOEkG8SQtJMqMPfE0LuMvo8jOjGVOVAzsRnZngKZ39/BO5p9Y7Eg2d6cOzHe+Gemj+25sMrkbs8MJzmmecO8zMJDb89jMM7dqPveAdGWgYweFYUUWPEia4XujB5/m5+VTAhQ+/G3KyIO1LnkVqnNlmUmai991YT5uxGsBC2WsoIpmASBzcqXHp5NZyihGmeGTeO7nxbsk2RiqLlZ7R1kAtaoKGt8Xq8cE/N27gPn+9XXYZZWOE9J4TwwjUADNZ3qzpejWmbP6kmcRK4kuORVZOH9Q9ciZWf34z1D1yJ2ltWo+62dVi0bTlWffFSXHlH6BkAh8uJksuqsf7BrQFhWltfb8BAECdoKYTtlNh3KxhWUfYYqvkZgE/5/v4JwHEA3wDwhzDKfApAGoDWEPv9PYC7wjgPg6FdOZjpfkT1qFvB+jLkrykFIZxdcVxyPL9tvHOEGw1U2GlTrxfdB1tx/uVTC5zS0sqyUHntUtR8ZFXA+rPPHw0wYWp94wwa/7gwGdv4xCA6WxvQ/Ld6RTb7RjXgRioJYtvsUOcKFT0pWPl6I7bxFfuChFIYQpkX2S0cqh2Q8xeQw7+NEILCDRVYc8/lWPuVKxaYq5z85Xto/ONRDJzuQue+ZvQebceh7bvQ/tY5TJ6/O+AcY+1DOPv8UbS81oATP9+navR3rH0Ih3fsxvTgvDKiJAuwHGaMDltBQchdVcL/HjitTqAW4r8Wqe/bPT3HZ2fOqMjhfUOIw4GE9EQQhwOEEKQWZyJ7SQG++i9vqGqzCSGouKYuYN1k77iq+is533TbvWzWIHp4j1L6lO9vJ6X0dnCKwQcIIflaCqSUuiml49TI8F8aIISkRroODP1xhd5FP5zxLpRvXYzyrYv5dV37m9Hx7nzM8KNPvI31D24NOt0LAEPn+tD+dtOC9TlLC+GM5y4rrSQTccnxmJucXbCfHBmV2Rhp4Rwhhxp70XO4DQUIVBD06HTlyjFaKNWj/nLT42YTjomRkmtQOoNiZyIVGUltiEdCCJxxTpRdUYuEzCS0vXmW3zbSMsh/s366D7Wh+1Abqq5bimx6DwghASEvPTNutLxaj8oPLAVxEMxNzKBtVyNGWwfgSo5H4YZy5K3kBFv31BzO/O5IQPlJuanIrMnTdO2hrlnJN2pWAIBwESYPc0+H51vGXet8QjHepHRs3qQ0KSclZDlaBnOSclKw9I4NqP/NQaSmZGNuckZTnhthu2OFNpRhKv4GiBdICCHfBPANSmmAwOPzK2gG8FlK6S996+4C8AsAVZTSFqkTEEL8ikOJ4HcrpbRSrlKEkMsB3ANgE4AiAOMA9gD4F0rpGdG+FMDTvr9vAVgJ4EkAD/q2fwbAlwEsB+AF8B6Af6eU7hOUkQ3gawCuBbAIQDyA0wAepZQ+JVdPhrmY7pAspujiKiy+ZU3Ausme0ElpBk4vnKKuuHoJKq9dyi///VdfRd0dG1D5gTpkLQ5U1pNyUpC7ogh5q0qQUpCGtLIsLLl1LWpvDqzLhT3n0Hu0HdPD3IihXoKxHuYZRpxfvM2OHZjSDttMwcqO91FvhKO+/tkfLVF28leXYsVnLkbO0sKQ+za/Uo+OvU2glC5oMwZOd+PUr/djuKkPx378DoYae+GZ9WBmeAqtr5/BaBuncPhNVvzU3rIayz+1MWDmM1JY+b2aHp7EYEMPv5y/pjTI3tqZGZmPPtT1fmvA7LPScNRK9rnlw9/jl12JcYbNGDNTIstQRwhZJ/orCn0YACCVEJLr+6skhHwCwGcAvEApHTauyvgUgCEADZg3a3owxDEfB1AM4FcA7gPwBIDLAeyVmeVYB+A3AN4EcD+AXQBACPlvcMpLKzhTqm8DKAWwmxBymeD4RQDuBKeAPAzgXwBMAvg1IeRzqq6WYRimzhwIEQoJvcfa+fXEQRCfkSh3GADOqdjTOz+z5nA5UHvLGqQJnAX9ZSekJyJhRTFyVxQDN3D+DXAACelJsuWvuOsSnPzle/zy4IF+DB7oR/UnlyEuOV53oVJ4L8wklKIjHOHSojCYObrpj9Sixz00KqqRVHlG3hsrRWcSJuYL9pyU3o/E7BRUXb8MRRdXouWVesSlJmB2bBqzY9NIyknBaNsQv2/3wTZ0H2yTPt/gJM796YTktrN/OIrSy6oD8hlkLspFRkWOojoGI9Q9CDV7YJXZu2BMdI4ELCdkJIFSGnJWWCn+e5iYFRidqP2tc/wgkZL3SWmb0ds2P8OdqGCGQgtMMZDmd+NfxdsjS0w5V/f4GQCfBbjRcTHfAvBNBcU86vsT8iKAT4RTt1BQSp8ihHwPQI+KUfh/ppROCFcQQn4N4ASAzwN4RLT/UgBXUErfEux/EYB/APBVSul/C9Y/AeAkgP8CNzMBX7mVlFKPYL/HALwObkbh5wrrzTCQiM0c+EcN+453YLhp3rEvZ1kh4pKCj8j5909Nycambbdh3X1XLlAM5EjITAqqGABc7OvVX7qUd4L0x1tPulCs6BxBy1Zgz26mwBippFdGwDpWdUTqGekZcjMxKxl1t69H9YdWYOkdG7D6S5dh8UfXYs29l8ses/xTGwPCXwrLWn33ZQERktr3NgWYPaaWZCw4Tguh3lUlz8bqJkWO+MCxp8YXjuHQY7vQ/X4of0p5pHILJOWkoPTy+QR1/ae7AnIZaEHq/SxaVMv/XrfsY5rL1iPhIcMUPgFgvejvSYXH/i+AD/j+PgJOqbgKwPOEkMhPOQoQKgaEkFRCSA6AQQBnAFwkccgxoWLg4w4AcwB+K5gxyQWQCE7ov9gfqYlSOuNXDAgh8T4zoxzffosJIelgRBxTZg6Eo2TCRtc9O4sHNtYE7Cv0R5BjrH1+VHDjh27BO41Kv1flxKUkYOkdG9B/shPdB9swPjGI915+DsWDlSjetEhTmWInYH/HIL43Rgu5YptXYQe1qb8Lu0R1lUqQpdReP9KdXzg+FkYlANPLbyXUeayA3Dtt9DvuSojDis9egu73WzFyfgBzk7MgToLiS6qQlMv5zy3/1Ea0vt6A8a5RpJdnoeam1XA4HSi8qAJNL0nPJigdhBBj1DOXKlPLDJpes27+sgDg0UevhyspLiCSHMApXAP13Vj2qY2aZhGE9RxrH8J45whyVxSj90g7F9KaAu6pWSRkBh8EUnoO/7I/dO74xCDe+NWTqLp9SciBJjms9p0yJGmglB7WeGw9pfR1wfKfCCH1AJ4F8DkAPwq7djrhM5X6HoAbAWSJNkuFZFvo7AnUAYgDID1Fy5ELYIxwH/0DAP4OwGIA4kYgE8AoGBHFFOVASjEY6evFkw9+Hl63G6kp2ZglE1j1xUsDjpPrsIhj/l1afvlV2PDBjxgibHztG7sBAN+8bwOa/nwSAND5XgsKNlQsyJZqB4Rx6qUUlcTyndiXWwS0hTZtCGZmpDSWfbAy9cKKnbDZdZJS5sKpgxolNpKJuRIzk1H5gaWglGJ6aBKuxLgAP4Gk3FTU3b4B7pk5uBLi+PVZNXmovXk1Wl9rCMifEpcSj6R8bWHKzX7mwrZTqaKul4LgL8PhdGDpnRfh9K8PwDMb6Iw8NTCB6aFJJGWrN88ZvTCE/uMdACEYPMP5NHS8cz5gH5fIH0SPgRfhOzI+MYgTP9uHzEW5qLx+acA2tfi/TyMHDRiW4BXf/6swrxzIRR4yRcAghDjA1asUnBnUKXAOyV4Aj0HaukRqWs4Bzm/gI0FO53f6+kcA/wnObOs/APQBcAPYBuAhmXMyTCYiPgfDPd14+Op1/PLkzDCWfWojvywOTSlu0B3O+XdncnQEP/75bYbVdfuObcisyUNSbgofLu/Mbw+h7o4NAfUIhVy4T2FnIBSk1NoUaxXWg01xK+2ohKZKWhUDNcfrjZ6jplZF7/uq5n4JBwcicZ8JIUGFUCnBLqMyhx+sGGsfwvTgJDKqclR985HGf7+VPnsjns0/ff1NTD4wih/uuAnxaYk48sM98MxypsaT3aOqlQPPrBtnf38k6D5FF1ciIUP7rIEYoXK17JMbcfqpA/y24fP96D/RicINFXKHK8IOPiSMsPE3NMIRhiEAIIRkUUqHBOu1mSdwqAl1utL3x0dF8uMz91GazKURwHUATlJKQyU0uRPAHkrpJ0Xnu1rhuRgmEFZPp2ZEULhv07GDAdtSU3LhmQnMnim0LRXjSpzvzP+8838U10EtfmGdEIIlt66DwzdbMNk3jsM7duPsH45iql9dvGsx4g5BL4faYAmEjDT5CbeDi1QHyeKLh0YYbUjL/bKrApZWmoW8VSWITwseKMEqaL3PRnwD23dsw09+cTt/74QRprRkTO473hF0e+FFFSjeVCVZDz1IzkvF4o+uCVg3MzItua+S/DFClISvZQqErbnJ91+o3Tb6/l/lXyEwu9HKBBaaB8nh/wjFoVQ/Ay6sqVKe8f3/LpGwFRRFPfJInC8PnPMzwyKEpRz4hWc1ncr2HduwdNMWFFbP+xaMjvSi/pn3cfYPR1H/7EHcf105vB6vbIOeu3LeMfjQ317UfgEhEF7XP/zTa6i9eXXA9tG2QZz69QE0v3I6ZFlaBHEzHJP1LlMPR0qzO0G7Cq1GI/6upZxBY4VoF8rMep7plfORnobPKc8wPXphCAcffVMyt01CZhLWfnkL1j+4FaWXVcv6MWi9RnG7ljPFRc1JTclGakq27GySXiGhmVJgSy4hhHzS9/clQsiPAPwQXK6DHYL9XgNnw/9TQsjXCSH3gQsNqilRmo+DAFYSQr5BCLmDEHJjkH0bfH//Qwj5JiHkbkLIz8GZGJ0PclwAvjwG/wkuzNM+QsjDhJAvEkK+TQh5C4GZoV8AsIUQ8oxvn28AOAbggqqrZBiKLjMHoRpd8X7Jaen4xou78T/7GuAqmjetG20bxETXKIbO9mKosVdW8UjISOIjCI1N9IZzCSERCkRpJZkoWF+2YJ+B0904+OibuPBWI591dXp4EjOjgSNKUiP6oQRlPYV4ozMuqw1xqmeZDP2R+q7FIUkZHFZ7V6X8vJRg9DMVOnSPtg0u8EXwuj3ofK8ZZ58/iglfvpvR1sEFpkRJuamIS+H8CgrWlsEZ7wo7RKqSax9s6MG+l38LgPM7SM7IRO4K6QHWB+5/WbOCIJcojfkk2IbPA/i1728ngBt8vy8Wmt1QSt3gZhSOAfg6gH/z/b4rjHM/DOBv4EKLPgPgcbkdfef/EIC94HIW/DeAMnAzGaqEdUrp18DlTJgG8M/glKBPglOIvivY9XvgciBs9tXtdt922XoyzIeozcRNCFkH4NDKL2zGvz7yDgD1yoHQ9phSip7DF9D+1rkFx62553K4EuMW2CpP9Iyi/hkuU6U3eRbLPrlxwbF6EMxGun1vk2RIPuIkcCXGYW5iFgCQt6oE5Vct1tRxSTkVClHbUQSLQBQOWjswvabbYxErOC/Ggq+GUkJ9W5G6V2odcc2ImCb0O1h8yxokF6Sh7c2zvHOxkJJLFy1wNk7KTUXtTasQl5oAAEHbVr2/k+M/eYd3Us9fW4riTVX4h6++Zsj9Ctbmj3eN4MRP3wWA9WFE1LE8fnnjc1/5BQpLTMpz0HEGP//BZ4Eov7cMRjDCNitS2igKnW2FxxBCULCuDMkFC6OAyCUu6jk8r9AWrFs4kq8Xwa6Nur3S6z2UVwwAzkZ2+Fxf2OcXzzqE0+FFWqj0o+Ra1NY1Vkazp9vujfi1yn0fka5XpLHSLIIWodVoJaboknmfgO73W9H00glJxQBYGIUod2Uxln9qI+LTEkEIUTTootez8Hq8AdGreo+0Y6J71JSIXEblo2EwGAwpTA29IdfpEEKw9PYNWP6pwBkAz/R8fOwH7n8ZEz2jOPGLfRhs4DoST+IMcpaF9plR2nCr6UQya/OQkcU511VdtxRlW2pk9xVma9UTtUKIWZ2Lls5Yr7pF60i234xHb3Meo5xQraggWEloNxMtkaWMJH91Cf97sneMNx8KRXJeKsoul29npdCzzXM4HchZNu9QnZqSjcbnj6Hl1Xr8139cFeRIbYgHT5gpH4PBMIuwzYr0DlN46tf7+ZChaSWZ+LdfvY2Cqmr8y6eWB2QqBYDSy6pReFHwEHLCxjRY/ZRG8BFOU3s9XhACEAenY1FK0X+iE1MDEyBOgp5DC032ii6uRPGmqrDtY61mi6pX3gItpk9WMLFhBGJWQj8lyCkEer8zRpnt2Q1xXyD1Lpz8xT5MS2Qxzl5SgMzqXJx/+dSCbUs+thZpZUqDsBgDpRStb5xB/4nOgPVxyfFYffdlhp1X3I8xsyLjYGZFDEaYeQ6Ejb1/tDBcYSCrJo9XDsY6hvGdm7ciPjEJA32BgrYrwRVSMRDWS45wRhLFUSqSKp5AWQUnGEwNTEgqB137WzBQ342s2jwUXlSBuCT1mdSV5Ewwg1AKlZY6CeN9KzleznFPWB7DfKygFJiN2nc3mgk1wu1KjgcklINF25YD4BJd+hNPAkBWbT5SNWan1hNCCCqvqUPu8iI0PHuIXz83OYvp4UkkZiYbct5Y/J4YDEbk0NWsSI8GrHjTIhRfUslnQaZe7wLFICEzCcvvukRVvaTqptcUrdhcIbF8J5JyUmRHuWZHp9Fz6AKa/xo6BGqw81iFYHXSUmc1fhVKlYdoxoxrjMS7x0wolGGFdkFs8iIeOBK3vxXX1EmW45/JzqrNx4aHruL/qj+0gu8TtNZPT1KLMrDu/iuRmDWvDEx0jep6DimYaRGDwTADXTIk621CULxpEQrWlaP/dBcu7G7k16cUpWPp7Rt0OQfA1VdLeLlQ6/wsvmUNRpr7Mdo6hPx1peg92o6B093wzHDh+2YkRs7UnDvSqMnqaeRIqlQ9YnnU1ggicT/1ak8ikX3WbP8eK73vwRJY+knKkc6MPNkzhpTCdMPqpCcOpwPpFdmYHpoEAAyd7Q1I8sZgMBh2xZQ8B1pwJrhQsLYMqUXzHUX+6lLdz6MULY6/xEGQWZ2H8qsWIzEzGeVXLkbh+nJ+v4T0+Yyr4QovkRIO1JzXSAFNr0hOdiTWrlcvjHofzX4eRp9PycyEf3Yg3FHt4fPKE6OpRe8R9+mhSfQebeeXh8/348xzh0G90pHs9CAWExAyGAzzCdusyD/NaVSDteiGFchdXoTCiyqQWZOne/nhOM1KjVaHKk/Y+U0NTCwoN5jtvFTZVhOGxXWxUt0Y9kdvAU9PBSGxfCfuvqlSt/KUYIZioDfBnuHQWX2TWorPJXdute/VZO8YTv7yvQXrxzqGMdk3rqosLSQUPmz4ORgMRuyiWTm483ZlyeyUNrpy+8WnJaLy2qUovawazjin5D7hEm62YjUCeuW1S/nfc5OzaNt1dsE+wTpkLSPkRtski++f3P2MlKJgBZvsaCHS99LKo6ZmKwZmo+S5q3k+SbmpC9aF41cgxt+nhFIQhPsp6a/mJmdx+un3ZbdLXReDwWDYCVPyHFjFgcov2GgJuynerlVASspJQdkV87G6B+u7+fKtYB6glWCKgFVmN6ymIAjfR6vVLZbQ694zk4/QCGeZpaI5Tw1MwC3IbxMuYsdo/385xUEOr9uDtl1ncer/9uPYk3sl90lNyUZqSvaCKHZSWKVPZDAYDCl0UQ6CdYjbd2zDky+0yG4P12/Bjo1swbpyvgNxz7hR/5uDoN7AfBN6Coti4dzM6DZM8JVGrXO7lbCCoqc3Wu69XZ6XGsTtqRGKvX+EPrU4c8E2Z4ILUDh5oKTtFyojUuavoZYBwDPrxuHH96D3aPsCU9DqG1YELGcXK/OLY0okg8GwMmEpB8KRsmBTsnp0LmqUALlssuHWQ09hYMmta/nfE92jfFIdsRBvhJIQjcJdMKxwvUqUJSvUMxR2qKNW1ETeCpVfw67ICa1GZDD/7z82omhjBeLTE+FwOZC3shjLP30xXAlxisuT63eE64TPSGowyt+PyV174/PHJNc7XA5kLc7H4o+uAQCMTwzCWzAhuS+DwWDYCc3KwTPP3hewrHVK3Q4jKMEUE62dZkpRBhZ9cDm/fOGtRox1DGsqy+pYQaCMRaXIKthpdk9LTo5YQW8FgRCCkkurserzm7HuvitRcU0d4lMTVM86ivsQqfdNSkEQbpM7z3jXCMa7RhasdyW6UHfbegBAenk2Kq6pQ/Ellchfa05EvZnuR0w5D4PBiE10yXMALEzvLpcQR3xMOMqBnNAhPL94Stkf81xN3H1xHfXqJLPrCjAzOoWOd87D6/ai52Ab0gzKAmpGxla5Dtbq2WKNrp9VR5eNjDJm5jn0Pl+o98HK77JSzPomxW20v20WPyMts2lyoVOFbb7ccVJI3ZPW1xsCltc/uBWzo9NwJrjgSpyf4chbWSxbTwaDwbAbhjgkq7UFVYLcvsHWSzmjBUPpaJVewl5i+U7krpjvVOKm0nQpN9j5jMSOQlMo85BwTbvkklQpnckwwm9DGH44VjKu2vHdNBK5+yFljqkV8QCRODma2ORT6i8Uofzd/GUD4H3fpPwq5EhITwpYbvrTCcSnJ8KVGMf8qRgMRtRim2hFUo2w2hFCfz38nUGwht1oBcF/vMM1/whWb73OkHP5sUOiNK0Y9Y6Fi5J3TQ6jBA+xoGbUyH4klA69riVWhT6934VQ75fRyqlQQdAyG1SwoTxgefh8Px9hjsFgMKIVU5QDQHp6WSnCjjqc0RrhOSMRwUeK3iPzGTbPdL4BwJj8ANE8chqOcKE0hK3ejuGhsHM0IyF28CmSw47322oE+zalAlpo/ZbVPCs1TtdpJZlYeucGxKfNZ7NvfqUe450jGD/zxZDfcizMyjEYjOhDV+UglCAgbCi1NJqR7Kz1Pvd0272glKLj3fP8uoyKbFPObSSRSHym5+h3MOVT63NQcw/E59crv0YksLNiwAgftd9lON+xmm9Mbd+TUpCOVV/YjNwVRfy6ht8ewtEfvY2Dj76Jg4+9if5TXfB6vAuOZd8Ag8GwI7opB0obwXDzGkQKYdZfvSLfjJ/5YsBynGB0ysrRdayUw0APswSp+yx3beEoCKFmq+TOF6shaIOh5Zmz+6cMs9tmM5PHhXOeR35zAnUbtizcQIGWV+txeMduNL+ZiunpuyLeLjIYDEY46G5WJOUILF6npmPXexQ3nLL0Fi5cSYHxvKnEyJMRZi16E8p3Q0oI1kuxMFqwMOK+K811IKUQaH0H1WaEjSWY8rUQuw3eqEEc5UhqgEFSUU9Nxb889wr+/id/RGqK9Czv4Mk9OPXj+zDeXm+JwRMGg8HQgmE+B1JCm9oOR9ywigUnu0MIQVJuCr882TcuuZ8awcWMDkmpwCo1Si6nKEQataY/ahBeu5JjjRBUhQ7I0aAgGGV+whSF2CFU4k6p75UQgrXXfBBPnOzEzxtGsObey1F7y2q+HaeeEVDPCI7+z82YarkHgLUHdhgMBkMK3fIcKEGtSZFw1DxcxUAudGqoUW+jhYSE9CRM9XNZNQfru5FelqWpnGB26kag1JHXCk7fSvELBEZgpWuP5lFhJSh9zkxBMA+z82GoDYgh9S7sfPJmuBLikFGRg4xP5YB6vTi0fTe/fbxjGMSxMK+OXHhjBoPBsAqmhTINxxlZjxkDPRIjqVmvBEoppgYn+GXhLIKaepmtGITCCnXQit6zU1ZSCqyCFWYu7PyORiNWVFjVviPE4UD51sX88mjbIF9OtM16MxiM6Ma0UKZCzO4IggkjasJKim3l5RxIlTrszgxPYWZ4il8WJkQzgwfuf9lU4TXYvbaSEB2qIzeic48lU5ZgGdPNRHjPrfT+xTJWUByFyL0fcu9wZnUu/3vs1BhuveGxoOUyGAyGFTFdOYjECFGocwYTzJTMGARTBIIm3hHMGqQWZ+Dv//HVoPWULCOMTmb7jm388XpmRg2GnWy6hdP/WurMBE57ECpLttWxa72lsPIMgjjDsxRf/dc3eQVhfGIQX/vAKsyOTYd1/ljJYs5gMKyDKcqBFRt8KdQKgEKhcVN/l+rzDTf187/z15SqPl5YDz9KMjtLKTJKOj69sYOCoAW9nKytLvRZvX5KUBJO1g7Ytd52QawgyLF9xzZUXrd0fgUF6n9zMKxzmxnqlcFgMIAIzBzYYQRETWQgP7smv6NKWZibmkX/KW4fZ7wTmTV5hofkDCUIRaIDsqqCoNXcJNaEND2v1+z3z4wwyWZgl5k4tdjtOfhxxrtQee28gjA3MQtKaQRrxGAwGOoISzlQKugLoxRFwt8gEgqJX1mQYnZ8Bsd/8g6/XHRxJRzO8PQ0pdGDrIzVhYFgwqTW2YJQSojV7onUtxQto+8MayD267JS0sVQTA1M4NBju9Dyan3AekJIhGrEYDAY6jE1lKlShAKIPy67FqXC7PB4wRDWpflvp0E93EiSM8GFnGVFup5LLvSeVRUEYWhJM8LHqsWoOoVyfOZnn5L/Dbsmv6PrubWGU5T7noxKFgcY895aXci0I3q0t0qSA1qZzveaF6xb/XeXRaAmDAaDoZ2IRCsSIjUSKc6mHE3mLnMTMxi7MMQvV9+wAnHJ8Yacy2j0nJER+03YUXhT668CBFc89FYI5M4vN0oLhE4UJYfeGczt+D5EkkiYwxmVYM8uioHX48VwU1/AuqzafMQl2bN9ZzAYsUtYyoEeQrtcGXo4yIZbPz1tef118bq9Aeu79rfoUn4kECtx4WLlSEZKhSfxbECwKFhKZiT25XKzSkabxsmF5Q23TD3NQcxSEKz4/qlFTUI/PaM16TWQY+W2QA735Cw/I5xekY2629dj0bblqspgijCDwbACEZ85CIZVTIL06qAeuP9lJGQkYcmta/l1Yx3DcM/M6VK+VqwkFPixolAQTFgJphQoOSYY+3KL8OQLLcorqhA5AUy4PpSfkJbwrloULfHx4byzsSJ8afmGIn1v7KYQCHEJZoBHWweRWpQB4lDuayAOj81gMBiRwjDlQBw33yqCvlb0sOH334O00iykFKbz60/+fB+8bk9Y9YvGzsQu1yR+D0LVW40A5N9PS6hcNRg9UiscydYaLphhDGrfX6XYITKdnoiDSnS/3yq5nxKnfgaDwYgkmpWDO29/PGBZqAyIGz+7KwZShCuslG6p4X+7p91ofOG45H5aO41ImBToTbB7bHYUKi3hbcXHaxVyrS4YK42UpaeQr7UcJYpbrGHUtx+N7X4oSjYv4n+3723CuT8dh3s6cGY4Fu8Lg8GwF7pFK/I3eEIHYitFC5JCbf30FBzSSjJRuL4c3YfaAABjF4bQ8mp9QHxsvSL4yI3YWlEhkELq+v3Oj1Z6x8J5TqFG1Y10TjYCo6M7GUGsKQbi7z/Wrl8t4ih6UhRdXInpoUkM1HcD4BJdtrxSj5qPrDKljgwGg6EHmmcOnnn2Psn1wkbTKkKbHEIlJhJT4CWXVwdkRu4/1YWBhm7JfbWOeNpFAQjFA/e/LJm0zagIKWKkYvmLo/zoIVyFel6xZqphBlY3WzKqfRLOZln5+q2Cv70J1a9VXb8MiVnJ/LIj3hmybCkfJeaczGAwIkVEHJKtKODoEZ9bbUNOCEH51sXIXJTLr2v+62n+d7gj/cH2t9Oo4d03VfIOuVLXZHYIRbHjoB73TmkZVle4AWu/S1auGyM6mJucxfTQJACAEKDsilpFxwmVNHFoZwaDwTATw5UDodAWqRH6UBiRuEfNdVZ9cFnAcs/hC/xvM0wp7CAwTbfdi7tvqpTdbpTQrDT/gprQkcHOZYdnwZjHjMy9kcgszwgNpRTD5/sxUN+NualZAMDs2DSOPbmX3yerNl9zHhumIDAYjEhh6VCmdkCsBPgb8WCZZMUNvSPOiewlBfzywGntkWmUCJh2C5mnR86LcAh2P5WELDWSSJseCM9vtnJjt/eYYS6eOQ/GOoZDRoLTmo+j71gHzr14HM1/O41jP9qLkZYBtLzaELBPyWXVIc8dDDZYwGAwIoGuyoG4cQ02eq50FiHSwo+eyAkzhBCUX72YX3a4Am1U1Ya99P+WsikOdi+tOrMjJFKdpdVH9aPlG1GK2N9DuC4UVn6ODP04/+cTOPPcYRx+fA9GWgcUH6f4PRqcCFhueukEXMlxAeviUhNUn0fcBitpuxkMBkNPdFMOEst34u6bKoN2vMLp8VBT5WKlwKoNo1RyqmDOq3KcE4QyTc5PW7DdSOHUTAXM6spHKKzmxBlp04NIKmt6HK9HFDC5ZUZkmewd5383Pn8MYx3DupY/Oz4TsOx1ezHY0BOwbuC0dIAJILjQL6UgWKG9YTAYsYFuyoG/4RLmOpBTANQoBeLy7YCamPj+ax3vHOHXK4luYQRmmO2YFV3IDKwiDCr1izDy/JH4PuVmx9QcrxbhvWUCm7VxiWz9G/9wFJN9Ywv2k3p/5L4hr8eL3qPtaHj2IIab+kPWIT5NfubAf24x4nY4WtpLBoNhH3RTDvRqwPTIRGwWUoKC1ghD6WVZ/O/u91sXJM4xGn+9zVIQwsUqgrlV6iFGqx11LKH23jD7cHsxOzodsOz1eHH6qfdx9vmj6Hj3/IKRfzn8fdsD97+MvmMdaNt1FuNdowH75K0sXnBc7vIiZFTmBC1b7p0ShwRnCgKDwTAT3ZKgCQm3MfNHfrF6Z6s1262UOUL1h7+EIz98i1/X+noDqj+0Muw6Kq2T3YjUO2JVQTtUtCQ7fE92wE6DF7EG9VK4p2YRl5IASik8s25+W1JuKqb6OTOj0dZBjLYOovdIO6quX4rM6jx+v2Aj+dt3bIMjTjSrS4AND14FACjcWIkLu87CPTWL0i01SCnKCFnnaAphzJiHEJIJ4H4AHwFQAyARQAeAPQB+RCndH7naMRih0WXmwK8I6JkZORo6XHEUl2B2zik1P8bSOy/il4ca+9B/stOcitoYM4V1qyoGfqLhmwkHo0dXld5fNsprPtTrxdnnj+LYj9/BwUffxKHHdvHbXIkuLLl1LXKWFQYI955ZN869dAIXdjfCM+OWKnYBI+cDTYnW3rOF/52Qnoiaj6xC3e0bkFqcCUJImFclHyr3ztsfD7tshjEQQlYCOAHg3wA0Avg6gHsBPAvgUgDvEUKWyZfAYEQeXZQDoVIghdWFKqNQa5OcUpCGjKr5aeiW1xqC7G08VhZyIu2srodDqxFYrT5mYpXRVavUI5boO96JsQtDkttqb1kDV2Icqq5bhjX3XI6ld2xA9uJ8biMFeo5cwPm/nlJ0nmGBclBxzRI4EwyZfOeR8yd65tn7DD0vQxuEkDQAfwKQAmATpfR2SunjlNKfUUr/BcBSAA+GKMNJCEkyvrYMhjy6tWxSHaLflEEPgUU8O2F3pCJVJJbvRM2H78Gh7fOjXoNnepC1OF+XUSjhecXnZoRGbLpjVUHcLmZ5YszO2q1H4joxQoU6WtoqOyCOEgQADqcDi25YjpSC9IB1KYXpqNq2HCnFGbiwuxEAMNI8gJmRKSRkyMtk08OTAcuJWck61V4dieU7Md71iYicmxGSLwGoBPAFSulB8UZKqQfAdv8yIeRKALt8x6WBm2GoBPAxAC8QQgoB/D8ANwDIBtAG4NcAHqGUzgnK+SWAzwAoBfC/AK4DQAD8GcBDlNJewb65AL4J4EMAigCMAjgDYDul9HdhXj8jSjA0CZrenXs0drbie0QcBCkF86FMz798Coce2wXqpYadmykJ6rCD0G2HOobCjPdSb2WZZTOODMIADgXry7Dskxux9r4rAvwJhBBCULC2DPmrS/l1o22DQc8xOxbowByfmhhGjZVjpdDJjJDcBGAGwNMqj7sfnGLwMwAPAGghhGQB2Afg0wCeA/AQOHOlbwH4jUw5fwGQDOBfATwF4HYArxJChKG7fu8r81nfOb8HoBnAZpV1ZkQxxs6J+tDDB0Hs5CwsT878Re059ahnuCSW70TZ1k+g/a1zAeFNuw60oPiSKlPrEul7EQwjRn2VnpdhLHbNneDHyuZ40UpcagKmh7iR/ayafCTnpSo6LrUkA73H2gEAM0NTQfdNSA9UBhIyw7P8UDK7J+6TWPtjKnUSM/ZdlNKuIMcsA3CGUjodZB8pigAsppTyGioh5PvgZhFup5T+1rd6JyHkCQB/Rwi5jlL6iqicM5TS2wRlNADYAeDzAJ4ghGQAuALA1yil/6myjowYglCqbkSaELIOwKGVX9iMVAXRGPRE3OmKFYRgCoQR6G26IXRgBoBzfzoeEEu77rb1SC3O0FWJEZ8z0uVoPW8kzs3QFyPeIa3fSqj3Skm5VhhsiBVGmgfQ+MIxAEBGVQ5qb1qt6LjJ3jGcfvp9fnn5Zy5GUnZKwD6UUoy3DyMuNQGnfr0f1MP1mevuu2JBNnslaHnPxf1b87HDePia9QCwnlJ6WHUlbIJf3oh0PQR8i1L6TbmNhJA5AO9RSi9XUpjArGg7pfRB0bZ6AHGU0hrR+nIArQCeoJTe61v3S3BmRZsppfsE+yYA6AfwNqV0m28GYQzAmwA+IzQ3YjCE6DZzIOwIgwno4g5T6eiJsDy5kTkzR+zMGLWu+fAqNP7xKEZauMGEht8eQmpKNr71+hVobTqCuclZJGYno+TSamTV5MHr8WKwvhtxqQkB8bX999gz68ZY+zCGGnuxuPIKdHuOo6Q8cJ9wiZStO1MMogO9R++NEs6VlMsUA2OQEq7TK7P5cKUjzQMYax9CWmmWXBE8SXmpSMxK5mcdTv3ffqx/YCsIIaCUovW1BvSfkh4onh2bCcvvQE1bKQynCgDjXSPBdmfowycAiKOCBJs1ADj7/bQQ+0jRJLGuCsBr4pWU0jZCyLhvu5gzon1nCCEt/n0ppbOEkH8A55fQRQg5DOB1AM9SSo9pqDcjStEtlKk4aYuS/cSNYyjh3q8YRNquN5Ri4M8QrRa/Xamw/KoPLud/p6ZkAwDOndiPuclZ7pjBSTS9dAINzx3G4cd3o+W1BjT+8RgOPvomzv/lJLweL1fu0CROP3UA5148joHT3dj38m/R/Eo9Tj95BajXq+i6lNTdbMw+73/97rhp54o19HyOerYRzCfHmgifCyEEeavmE5H1HetQVAYhBEs+vm5+BQUOPbYL/ae6cPIX78kqBrkrijUrBiwohG1ooJQeFv2FUg5OgzNHUuuQEtymTRops4+QpiCU0h8AWATgK+CUkrsBHCGEfE1DHRhRimEZkv2ds9LwpsGEaaUdvXg/rUK6UuSEGeEMilYlwY8rMQ6rvnhpyGPGO4YXNAuDZ3sx2jIAAGh78wxmRhaaQQ429ODc09fxy+F2VtE8gv/A/S/jq7euUryv0e8fgxGLyAnX2XUF/O/Bs72KR9fjkuNRdd3SgHUtr9ZjZmShvOZKdKHi6iWouGaJ2moHwJyMo5YXACQAuFOHsprBhT4NgBBSBiDVt11MnWjfBHB+CwH7UkrbKaVPUEpvB1AC4F0A3/Htz2Dol+dATngXKgj+fdTaXArT1werg1x99BbSQjXqUknhwiE+NQEbHroKPzzejsWfX4X1D27F+ge3YuXnNyNnWWHQYyf7xjE7PoPRC0NITclGako28lYWI70im9+n5/AFnP7Jg2HVMRZQMxLtfweZaQmDoT9SCoIrIS5AQTj7uyOY6BlTVF7OsiLkry2V3OZKdGHtV67Ahoeuwpp7tiBvVYluoaUZUcePAbQA+C+fv0QAhBAHIeQ+hUnQXgRQTQj5mGj9Pwu2i3lQtPwlcIrEn33nTyaEBEx5UUqnwJlPxUGbSRQjCjElWhGgX8QiO6G33bPD4YDDOa/PJaQnouq6ZZgb44R/AFi0bTmGGvsw1Mj5GXXua+Yc7HyzCtPeMSy+ciWSFz2Jrr3PoekP/w4AGDz9N4y1nkBaxUpbxshnMBixhVTEsoqrl2BuYhZjF4bg9Xhx5reHsPyuSxZEGvIjHKgqv3IxCjdUoPfIBThcDs53qyoX8alsMJWhDErpGCHkwwD+CmA/IeR34Eblp8DZ/X8UwBIAKxQU930AtwF4hhByGYCzAK7ylfEHSumrEscsIYS85Dv/MgD3gAt/+jPf9sUAdhNC/gDgFDgfifUAPgvgFUpp/8IiGbGIoXkO/MiNoAob9mB+CnrVIVIYfQ21H12D6htXYsVdlyB7SQEW3bAcWbXz8b2b/nKS91dwT82hcx83w1h02cchHAA79titmOxtAcBsYRkMIex7sCbiXC3OeBcWf3QNUou4xGdejxcDp0OZic8Tn5qA0strULxpEfJWljDFgKEaSukJACvBJS+rA/AIgJ3gTI3eBbCRUnpaQTlD4HIP/BpcvoLHAKwB8A0Ad8gcdgOASd85/fkRPkAp9SfpuADgVwA2+srZDuBKAN8Gp3QwGABMUg7EyNmMKsldEA5m2X8HM3EyAkIIsmryeAc5QggWbVsBZzwXZs+vGIxPDCI1JRvuqTn+GWz+71NILZ4PSXv4kesxfOwuNnPAiGmk3n89FQTmi6IfYjNPQggSMuctJ4I5DjO7f4YRUEqHKKXfopSuo5SmUUoTKKWLKKWfF2ZOppTuppQSSulPZcrp8h1TSCmNp5TWUEq/LcyOLKKHUnobpTSDUppOKb2DUtojKG+AUvoApXSlb58USulSX10ndL4NDBsTEeUgFGIfAy3CtVTna/bsQbiOyeFAHAQlly4CwCkF4xOD/O/UkkwAXMc4034fam9ejeT8+aRBHe9IRVWLLInlO5mDL8NUzBAa7TwIYmXmJuazGTP/AAaDwVCHqcqBsNMSRmtILN+pyMRIK5EwKbKCf0T+mjKs/Owm1N68GtmL85FVm4/Ka5cucGJ2xruw5NZ536mhxj5M9o2bXV0e//sg/AOAJ19oscR9ZcQuRpgX6S3Ms28EyF9bxv/u2Hc+gjVhMBgM+2GqciCVEA2QntoNp4OL1MhZqPNGol4JmUnIqMzBohtWoPpDK5C7vEhyJC2l5sfIXTkfJ/zci5GJ589suxlWQqpt0uMdVZIXhqGd+LR5X4HpwcmAbeLBKCvAZnsYDIaVMEQ5UNPQ6ZHfQOq4SGHnRr744kr+9+zYNMY7zc3CGarDjkXbYDu/T4zg6BHBjQFQb2CCl9mxaZx+6n1+OaVgPjqjsI1hCgIjWqCU3uXzXXBHui6M6EB35UDcwAWzE4/GjlFudiQSMe/Vdjbpy3/OOzEDwPTQZJC9A9E6Gic2HZIiVp0GleT3YJiD+B3Ue/aAoY32t8/hyA/3oOOdJlCvF1MDEzj+03cD9qm9eU1kKqcAYf/I3gcGg2EVDMlzIG7k9Gr0tIy0mdngWr1xDyXQUK+X/02cBJk1uZrOoVSQF9dHGLc8FpUBMXol0WPoh/AdZflAIgulFD2HL4B6KboOtKLrQOuCfepuWwdXUhy/bLXn5U8SavW+g8FgxBa6zxyoDUeqNutssNFU8ShMpBpcYd0i2eiLzx2qY5zqbYZn1gMASEhLhCshLuj+asoWI1QMhKOysTpLEAyrCw5KZn+iCb1nEBjaIIQsMCny43A5kL+6BKnFmeZWCupnUa3+fTMYjNhDs3KQUPiw4gZQr5FP4QiLVINqhUbWCiFUtTI9OJ8saHp4CpRKd7yyx6sQ7IXRqhjRQ6wIy0xBsAZV1y9bsC6jMgfLP3MJyq9aEoEasQEOBoNhfyyZ5yAUoZyYI4F/1sI/Y6FGITJTuBAK5eIOzOn+WcDyzPCUafVi2Bfhe8SEIoaZZNcVILM60PxxamAcCemJEaoRg8Fg2B/NPgcz3Y8greJpflnsVKXGtEaJQ5bV7a61+FlYwb5eeO6EzCQ4XA543ZzvwWjbYNDsotGI2c9E/F7bZZaJMf+O+M1ImGIkjZE29YQQVN+4Er1H2nFhTyMAYHZsBg3PHsSS29azBGgMBoOhgbBmDoSdodbGXygcKVEAosV5y6qmCEWCcKajbUORq0iEMeP5WF3hVUMsC8ZCJYERiBkRtwghKFhXhpqPrOLXjXeNYrxj2LBzMhgMRjSjm1mRHuFKg+0bzNfAblhZiMiozOF/z45Ej1mRUuFEaG5llqPtky+04MkXWgw9hxkwBcG4b9vKbUYw/O21Ge935qJA86LEnBTDz8lgMBjRiC7KgVRuA7XHKRH6o0ExAILb/Uea+PRERONMvNp3J1LPJZpmE2IVIwR5q7UTati+Y5uh9aeUwuvhTCGTclP59a5E5dHWGAwGgzFPWMqB2FdArd2933k3WoR+qxAs8VwoXIlxSC3NAgBM9o1j6GyvLnWK9MhnuEK3EfXfvmNbwIiq/3c4z48ROVgEI3NxT8+h8YVjOPTYLhx+fDd6j7UjIWPeEbnpTyciVzkGg8GwMWEpB0KhXvw7HB8EJhiFh9J7L3efsxfn87+b/nISLa83qA5rKkZu5NCs+Phq38dICXdMWbY3YrM0hnE0/+00RpoHuAUKtL15FsNN/fz24fP98Mx5IlQ7BoPBsC8RCWUqpwDEahp5IxSicMy0clcUIbkgjV/uP9GJcy8eD1tBsIOwJFRWjArRKefLoIeDP8MaGG0GJPUtxdKgykjLwLxiEITpwUkTasNgMBjRRcTyHIiFHynFIJY6OytBHA4svmVNgIIw0jyA7oNtYZU73XavpFBjNXtqozI2x1IWYYb8+64X4rJjRaGkXorGPx7jlxMyk5BSmC6571TfmFnVYjAYjKghIsqBnGIQar9oxYqmJK7EOCy78yKUXVnLr+vY2wRA3xkAKyoGRhDqnlntPjD0wajnKldutA+oUEpxaPuugHVL79iApXdsQM2HVyJ/TSlSijhFwZngQoYoghGDwWAwQmOpDMlWE5DDIVgnbafR4/w1pQHLo22DALRfAxOCpTErbKrViXbhVk+kviW12dmtjvh7aHqJczJOTckGABRuKOejEmVW56F862IsvX0DVn5+E1Z98VLEJcebW+EQqPm+o+k5MhgMe2EZ5cAqioHf/j/chjnY9dhJQCaEICl3Pl74uRePY+jMexGsESNaMSNhViwQTQqCsK2c7B3DcFM/rxis23ojSi+vkTwuIT0JzjinKXVUgxpTM6v0iQwGI/awhHIQrBFUm0E5HIR+D6xhnqf25jVISOdCBHrdXpz+yWcxsP8TmsuLxdFxpQqhnRRHPVGb88SKhHqvzXzv7XoPgzE7PsMrBgDwwE9/G8HaaMdoXxQGg8EIF6I2Ag0hZB2AQyu/sBn/+sg7/Hq9O6MH7n85Kjs4O9P6xhn0He8AwPkkrLnn8rDKSyzfGVPCMPM7kMfukcqkIlzFOnrck57DF3BhTyOc8U6kFKTDOzifofGJk50ArP3OGKX0jneN4MRP3wWA9ZTSw7oVbDH88kaETh/V95bBCIZLj0LCafTklIBQZQoFLdYhh0YPZavsylpeOXBPz8Ez64YzXvsrFGvPTWrEMNbugRxWFvAY5kO9FOf/eopPwuiZ9WD0whAABMweWB32XjMYDDsSdhK0cBs///FyJkPRYjsbSfS6hw6nA/mr5x2Uew5f0KVcOaLRQZcpA9GH2nc02t5pOdS+65RSNP/tNI79eC+O/eht2ezs4xODGJ8Y5POusD6CwWAw9EWXmQM9kFMy5NbHspCldtZEz9GrpLx55+TOfc0ovqRKt7JjBTPeXWaWZw7MnCg4au7LVN84Buq7JbfV3bYOXftbMdIyn/js0f+9Hn//D6+EXUcGg8FgBGIZ5YAhjZQZSiQFkXu/9hy+s28rv8yEUGvCnol1iSVFQo3ylJCZtGBdyeZFyF1VjLikeNTenImewxcw2NCN7LoCOOOclnrPo8GpnsFgMIAwlIOEwoeRWL4iwI46ljo9M7CiffoT990V6SowGJbBCt+kHVASfMAZ70LV9cvQ/LfT/DpHnBNxSfO5CgrWlaFgXZlh9QwHphAwGIxoIexQpkIBVpjIKRrtxc3GP0sQ6dkCIf0XWvnfDz/HpvQZ+mFke2Hl9siq9dIDYbul5Dpzlhai4uol/PKFPY2Y6B41pG52gflUMBgMszE8z0GkFAUrCwNWJ1giuPGJQf73cy8+aOhomVUUIoY5xGr892h/z/3Xp/Q681aVIKMyh1+u/81BdO1vMaJqtoDNSDAYDLPRrBzMdD+iekRbjcAe7miJlUbb7UQwu9np4UkA89FCiNP4HHrsGcYesaggxAJqnmvZ1tqA5Y53z+PCW416V4nBYDAYEujikGzEiJ8VRkti2ZdC6v73Hm7nf2fV5MGVGGdmlRgxgFHfmr+NsqIfTyyg9j4nZiZj3f1XovtAKzrfawYA9By6AFdiHIo2VhpQQwaDwWD40W3oV419vF1GBs0UHIyyK5UzDwqGnGI22TcGgMuOvOhDK8Kum1UIZkbFiG7s0hbFIg6nA8WbqgJMjDreOR/BGjEYDEZsQPyJZBQf4EtnvvILm5FalCG7n5JO1+6jdrEUxnNuahbHf/IOqIcipSgdS2/fEHaZSiKYMBh6EqxdYu+iNaGU4tBju/jltV+5As44ZwRrZC5Spp4fvuL/4eFr1gPAekrp4cjUzHj88kaETh/V95bBCIZhRuPM5t9ehBo57znYBurhFMnMqtygZek1GstG8q1LNEYks8K1RON9lcMz50H/qS5MD05gdnwGcgNV1Bu4PlYVA/8yaxcZDIbRhOVzoGTkPFgoO7uPHEfTrEHI5zg0yf/ufK8ZRRdXyu+r8ZlKdXqxNDtjV+zkm2P1iEj+e+hXEOxwT9VAKcX04CScCS60v30Ogw09/DbiJCjbUoO81aUghMyvJ1IlMRgMBsMowlIO1AptUh1zNHaA0Uju8iIMN/UD4Ebyxi4MIa0sS7fyg42Gibc9+UIL7r6pEoD1FLRYeJ/lhGvhejveA7PqrOQdsVJd9GKsfQhnfndEdjv1ULTtakTPkXYsvXMDXAlcwAPimJ/gTpTIomx1/O2XlrZq+45tkm3jM8/eF3a9GAwGQw5dohWpwa4KQqyPYGdW5wUsj7QM6KIcqJ0if/KFFky33YvtO6xhBiLEavXRGzXXZ+VvWm72wMp1NhIjr3tmdBo3XfcfeOGVfwmqGAQcMzyFU7/aj5Wf3wyH04HZsWl+m3vabUg9rUws9zsMBiMyGB+oXgIzO2C9BDbWQANlV87HHieO8Of6776pEk++0IInX2gJup9/+/Yd2wLeHSsLcnorCpG2M9ZyPbFiO68WK7+3ejLRNYITP3sX3/n4Vpz42T7Z/ZZ/5mJseOgqLP/Mxfy6uYlZnPzFe5gensTUwAS/3j09h9nxGUPrrTfbd2xj/QeDwbAVps8c+DHL9jdWOmIz8EzP8b/HLgzDPT2nKteB1PS63zxIjF8h8D+/7TtUVjZCGPW+2Um4sLpdPxCZ2QMr+mYYVZe5iRnUPysdZKbutnVILc4E9XoBQnj/gqTsFNTevBqNfzwGAJgdm8bJX7yH0i01cDgd8Hq8AIDjP3kHAOBwOZBalIGyqxYjKTsl4ByxOgvEYDAYehCRmQM/rPG2FxM9Y/zv8a4RdOxt0lROqFFwv+mQ3d4Pq9VXz9kGNXlM/Pv7sdMMgtWeoRA73ceRlsGAZUcc19Wkl2UhtTgTAOdLQETexhmVOVh992VIypkX9tvfOscrBkK8bi9GLwzh1K/24+wfjsAz5+G3Wfk5MhgMhtWJqHIA2CvkaaRNOyJNanFgXou+E53wzCq3AVY6+m2X90EvjHqv5JwZ9SDYM7LiCLkaYimcqFHEpyYELK+9dwuWfXIjam9ZHfLYuOR4LP3ERcheUhCwvuq6pYCMNeNo2xCO/GAPhs/3SyoSSlD6vGO9H2AwGNFPxJUDO2En0w4jKLyoAmklmQHrxrtGVJXhv4fR3MH6hQylwoaR71U4ZYcjJAtDcQrDc1odqWAJeqHXQIgd7mNaeRYcLq57cSa4QBwOJOelBkQeCkZy1Y+w9O7dIM75AYnWN85gzT2Xo+r6ZchfXYrSy6uRtTg/4LhzLx7H4R27MXSuT1O97XBvGQwGw2hsoRxEsyBpN6aH5/MdZC8p4E0E9MDvnBwtz9tqI+d6j4YruT4jhe1wsEo9ohVCCO+P5JlxY7J3LMQR0mVs/PZrvILgdXsx0tQPZ4ILyfmpyF9TiuobVqD2ltVwxge6zzW9dCL8i5DBSGXen+SMJTtjMBiRxBbKAcAUBCtAvRRzE7MAgJxlhVi0bbmmbKVS0TuEEYuM7HzNcoK3mmIQLnLOu4zIYId7n103bxZ05neHMaFylhEA4pLTkbl4PopR8yv1OPficbS81oDDj+/BeNcIMipysOaey7H4o2sCjh1rjubLMgAAZldJREFUH9JU70ialMX67HSsQAi5ixBCCSGVEazDbkLIbruUG80QQq70vQ9XRroufmyjHDCshcOlXilQwt03VRquCDKbcmUIFRypqFJKlSA7J0ezW32tRPGmKmQv4cx+PLMe1D97CJN946rLqbvrP5FSvEZyW8OzhzDc1AfiIEgvz0beqhJ+25nfHcHw+X5NdQfUKWB6tlks9Kl9EQh5Un/qX36GJSCErCOEfDMcZY4Q4vCVcZN+NTMOzcpBQuHDAUKWGYIWmz2ILMKRv7jkeF3LvvumygABNFTGZK3vgligZUpCcPz3K5iwoiaKEUMb4nfUDvfa4XKi6oPLed8DAGj47cGQfkria53r/nus+cffoOzKWl7ZENL6xhm4p7gwy+VXLUbu8iJ+27kXj2O4SZn/QTj3VG9hnvV1tudnAD4l+vt8RGvECId1AL4BoDKMMhy+Mm6S2PY2gDTff0tgWJ6DUHGmtY4mxnqm4kgyfG5+FC6lKD3s8rRG09Hj+dvJSVYrkbg2seJlRULVS2l7pDYqkxIBP1S7aQelQAghBCs+uwnnXz6F8Y5heOe8aHz+GJZ+YgMSM5MD9hU7sAuZufBlFKwtA9aWYdE2wOvx4uzvj2C8cwRzE7M49+JxLPn4OhAHQflVizE7No3RNs6s6NyfTmDDQ1cpqq9eOTqkcrr4UdL3GRlpjGEK71FKn4p0JRj2gFLqAWCpmSXdzYqUjMSqdVKUEwaNdtxiTmGBCMOWdh1oxfTQZJC9leGfQpf6MwOrCVtGvdP+6zTzeq06o2B2feTaRKn1fuFUalbWavdRKfGpCVhy61oUrCsDwLUjne+eD9hHbYQvh9OB2lvW8MvjXSM4tH0X+k92wjvnBXFq79rCfW+F3y7rQxhqIIRsIIS8TAgZIYRMEULeJ4TcJrPvHb7tU779XyaErJPYL5kQ8ighpIcQMkkIeYsQclGQOnyIELKHEDLm2/9dQsgN4ZYrOvYBn6nVJRLb1vm2fVWwzkkIeYgQcpwQMk0IGSKE/JEQslTi+GpCyJ8IIeO+/Z4lhBT6yvymaN+Q5fqO+YlvcZfATOwu3/bLCSHPEEKafWX0E0L+QAhZIiijEoA/i+xnBGXs9m2X9DkghNQSQp7zlTlNCDlBCPmyxDXvJoS0E0LKCSEv+J7dICHkR4SQBPH+StB15kBJw661o5MaSfE7scpl2Q0XNkMRSN6qEgye6YHX7cV4xzBO//oAyq6sxdTAhC9yUUboQiyIlYQuPd858XVF8jqNOHc4s4hyI8RG1FNulkruXOK6Wen91AohBKVbatBz+AIAYPBMLxaF+ao745yovnFlQGSiltcagNcaAvbLFoU7NRpxXyV+R8XPU+69YP1PxKkTJ+kD0EUp7VJwbCohJFe0bpxSOi13ACFkE4A3AQwD+F8AowA+AeBZQkg+pfRxwb4P+fY5BOBfAKQD+DsAewkhV1JKDwiK/i2AD/n+vwVgFYBXAQwAaBfV4SsAHgfwGoB/A0AB3AHgJULInZTSZ7WUK8GzAP7Hd33vibbd6Tvvb0T73wTg1wB2AsgBcC+AfYSQiyiljb7654IzzcnyXUcrgOsByGnoSsp9HkApOLOw7wKo9x37ru//xwEUA/gVgA4A5QDuBvcsllNKewH0AfiMb5+3AfzYd2yP3A0ihFT77k0cgB8A6AJwM4AfEEIWUUr/QXRIErj3Zw+ArwK4xFePPnDPUhWGmRUF6/j0PIdVTReikZTCdCy98yKc+r/9ALip/dY3zgAAeo+2o/SyahReVBHJKjIYighX+BYeH8oUSMt5Iq0QKL0mNRBCkJCRhJmRKQDA4JkePtGZ1nNl1eSh5iOr0HWgBRNdowu2560sRvGmKu2VDhMlAr64H7P7TJERrPzCZqQWmTP4NN41ghM/fRcAnpbY/C0A31RQzKO+PyH3gRPy5HgMnFC8iVLaAgCEkCcA7APwPULIU5TSIUJINoD/AHAEwGV+hYMQ8n8ATgHYDmCTb9314AT47ZTSB/0nIoScArADAiGeEFICTmD/IaX0K4L1PwAnCP83IeQ5SqlXTblSUEp7CCGvA7iNEPIQpdTtO94B4HYAeyil7b51twL4GIBbKaW/F5zrlwBOA/g2OAUGAL4GoAjADZRSv0LwQ0LIMwDWCuugtFxK6XFCyHvglIPXKKW7RZfzz5TSCVHZvwZwwnfMI5TSCV8dfgXgvEKTs++CU3I2U0rf85X7QwAvAXiIEPITSqlwJCQbwHcppf/jW/4RISQTnIKgWjnQ3azIDDMCccduhDMYmwqWJiknBau+eCkSMpIWbGvf2xSQB4HBMArhrIGWAQI7+EZEGiOCTVReW8f/bn7lNNzTc0H2VkbmolwsvX0Dlt6xAQmZXLtECFB1/TJUXFOHuBRNs+phoaRPYv2M5fkEgPWivycVHvu/AD4g+ntBbmdCSAGAjQB+41cMAMAn+D8KINlXBnz/kwA8KpyJoJQ2gxsJv4QQ4p8u+4jv/3+JTvkkuJkJIR8FEA/gl4SQXP8fOAH1LwBKAPjNbdSUK8fTAPIAXCNYd4XvPELF7A5wo+a7RfWaATeyLjz+RgBnBIqBH7GiprZcWYSKASEklRCSA2AQwBkAisysxBBCnABuALDLrxj4zuUF8H1wueI/LK4KuNkPIXsA5BFC0tTWIayZA72VAKVmAnffVIntO4wZ3QKsO51rFWfs+NQErLjrYnTtb0Xne80B29xTcxgbH8Lc+CwGz/ZgvGMYcamJqPnIKiSkJ0aoxoxoQ6wYGNUWKCHaRniNVJbSSrOQUZWDkeYBUA9F3/EOFG2s1KXslMJ0rPzsJnhm3PDMuhGfFtn2JlRbLdweCwESbEgDpfSwxmPrKaWvq9jfP711WmLbadE+Svft9f0fp5R2CHeilM4SQs6LjvVr7u8HqWc+uNkJNeXK8UcAk+CUsL/51n0CnHD+e8F+deBmA2TDjhFCHD7BuRKcaZOYsxLr1JQrCyGkCMD3wCkmWaLNWmMp5wFIgbL3wU8PpXRKtM6f7CUbgKpMlIaZFalFieC7fce2BUJAtNnmBkOtYmDk9DRxOFC8qQqZNbmof/p9UMqtP/uHo/DOeQL2dU+Po+u9ZlReu8B3KOphJgLWxW/OofbZRLsAp/W+KKXy2qU49uReAEDHO+d1Uw78OBNccCZYpmtThVBJiKW+jaEIqmFfEuQ4sUOF35LkFsgLksc0lCtdQUrHCSF/AnATISQZgAfc7MVfKKXDono1A/hSsOJCnU5iXdjl+sygXgHnk/AoOMVpHIAXnJmYkbnExHXzSO7FoeiZCNHcgs50P4I4k2wAhQgbSeZzII9Z9yU5Lw3JBemY6OZmEsWKgZ/+U13werwo2bxI0iSJwbALsdDuaBVGlSjD4hwpI839yKgS+25GN3LmRHIDQGyQIerxT8Evk9i2VLSPcN9DMvu2+P6fB3AtIaREOMpPCIkHN/J8RHBso+9/l9CURQY15QbjKXA+Bh8GN2OQiYW+Ho0ArgTnhxDKDrEFwGKJ9Usk1qkpV05JWOn7+yyl9JfCDT7fEOHMgRrlrg/ABJS9D4YQVhI0PQkn6ogfpdGSoj1DrlSoWCOvNWdpYcBywboyFF1ciarrlyEpN5VfP9jQgxM/34eDj76J9rfPhe2fYKfnZ6e62gk9wqVGe3tgJuKRb7l76oyfz7DevrfJlLopJbF8p6G+AFJli8M3y73P7B2NTiilPQD2A7idEMJH9fCFoXwQnPmN30zpNQBTAB4Uhqn0HXc7gH2+CDkA8Cfffz4sqI+7wUU4EvJ7cOE2v00IiRPXUeDHoLbcYLwCToD+hO9vBJx/g5BnAKQC+FepAkT1+jOAJYQQsUD5kMShasr1+xWIzYb8o6EBI/OEkM+AM1ni8eUymJEoYwG+ff8MYCshZKOgXAeAfwKnaLwUqpxwCGvuNZJ2vnJYsU5WIdi9CZa0JxR5q0uQUpSO+NSEBc5/mdW5aPrTCYxeGApY332wDd0H25C/ugRlV9aCOBwYvTCElr+dxuz4DNJKMlHzkVVBzQOEI7hWfebMltheGBF5SG+s4nskh1T0nQWmSoIQkXmrSsyuYkSRenZS7W8szFAxAngIXCjKfb4oRWPgBOZ1AO6nlA4BAKV0kBDyr+CcnvcSQp4Gl133XnBC6oP+AimlfyWE/BXAA4SQQnAOqqsB3AYgQCunlLb6QqQ+DuAYIeRZAJ3gwnReAmA5gAq15QaDUuomhDwH4IvgBO2nKaUzot2eBecA/Q1fuNfXfPemAlyY0tMAPunb9z999+z3vihLLQA+6LsGIHD0Xk25/hmah30RgKbAKXMNvr//8SlnXQAuBhceVcr34iCAawgh/wguolMvpfRNmdvzrwCuBfA6IeRxAN2++l4N4H9FkYp0x0h7KFWEM1KjZ0cdDdEjgo2mSnU24V4zIQQpBemSUUGc8S7UfnQNln1yIzIXLTQd6D3Wgc59zRg+34+zvz+C2XGuXRjrGMaRnW+h51BbWHWzClZVXvTGbiPwsfJczEaYdE8qAZ8zbn7mIBLRhILhj4Cn9j0O571XmviRva/RC6V0H4At4Oz6vwrgEXDC/h3CHAe+fR8FJwQTcM6wXwVwFMDlohwHABeucweAq8CFKl0GTuhcEG6UUvpDcNGQWsEpGT8E8AUAbgD/rLXcEDwNLpZ/IiTCx1JK/bkW/g6c2dE3wSlGt4K7VzsF+/aCu4dvAvgyuJCvY+ByEQCcUK+l3EYAXwGXB+En4HIwXOELwfohAHsB3A/gvwGU+e7JBYlrvQecovEtXxn/LndTKKVN4JSyV3x1/G8AheBC4v6j3HF6QShVYwbFZa8DcGjD119CWsUKANZosCRHp2T2k8J/TLDkNXZFSfKlcGYO1OB1ezA1MIkLu89ivHMk9AEEWP7JjQHmSUKY0552jJh1UZroy0qYlQxND6w+a6CUg4+9yY/hLf7oGqSXZ0e2QmFiZDsk9Z0KYvGvDyOijuXxyxsRynMQ1fc2liCErAc3an8npfQ3ofZn6DRzYIWRQuHoVLj1UTqKYxeU2GSbdc0OlxMpBWmou209siQyl2bV5qH25tXzK6gv66kMVhXirI5R36w4YID4nFZoK+yCVBz8aGmX0svmzW5diQvMmy2D0vdV6SytFszIHcRgRAuEkCTRMgFnp+8BZ/7EUIBm5WCm+xE962EZoqXzBeaFC7+AYTX796rrl/EZUv1UXrcMGZU5WP/AVjic3Os50T2Kg4++iXMvnUDf8Y4F5bDO01rIPQ+rvX92IRpMHcUkZqfwv11J1lUO1Aw2Cd97Yf6NcIjGZ89gGMxuQshPCSFf9tn27wZnVvQ4pbQzslWzD5bxOTALoT1+tAuUQkVHrCBYAYfTgUXblmPpnReh4polWPXFS3lbZOIgKN4cmONj+FwfWt84g1O/PsD7JjDCw+j3QU64sYqCYJV6SCGezYsmQZE45x2Sj//0XcO/53CesxalVq/vKpoGqxgMk/gzgE3gfDH+H4BcAP8A4O8jWSm7odnnQGgDGMrO39+pHf/pPuzLLTJcINma/G+mnMcIImVTrNT+3CzfBD/DTX1ofqUenhn3gm3ZSwpQeW0dHC6nxJEMRmhC+SAxjGF2fAbHf/JOwLrqG1ZImhrqQbD2TamfjFofHTk/BD3a0Fixi2c+BwxGZNBl5kCpPfuqL2zS43Qh2ZfLhZeVi8xj5RE4PYTuULbdwe5BqNExs/0xMqvzsPbeLVh33xULtg2e6cGRnW9hdmzatPrYHfHzVfMtMJ8BayE2G7QT8akJqPpgYH6fpr+cxMyoMd9ysJliKd+YYPvp4dOmFTs+awaDYT90c0hW0mBu37HN9BG5aBRmlHYQcs9FLOBLJU2zGg6XE+sf2IqaD68MWE89FB3vSIUTnsfKQq2ZdZN7F9QQTSPqVn0n1OB/fv42wU7CY05dIepuWxew7sTP3gX1qpvN1oNgzvNSCd2UvDvBEnRqVRCYmRGDwTADXX0O9BR0jBoRs3skIqEQoMf9sZOARBwEmdV5WPWFzcionA99GMo0zsoCrdlOuuHcCyvfRy0oHUmOBOK2VC6rrv+/8Ld/fzsoDKnFmQtmBc/96Tio12t6XaR80ezUPjIYDIZeGGJWpEeDqpcQf/dNlWGXYSWUJspR6nRtBUFILfFpiUjMmo92klWTp+g4ufcykgKAmee26rOOpPBqVEz6cPF/u34l4ckXWlQdL6UwWBWHy4nam+bDF480D6BrfysAYHp40jBTo2DoFbBCHMGIKRsMBsMO6OKQbDVCOUhHE1ocmKWOsVPyKs+sGyd+tg/u6Tk4E1xY83eXgThC67lS74URicDUwhK5RQdGPUcrvKNmMD00idNPHYDXzc0axKcm8FGMXAkuJOenIbU0E7Oj0xg+3w9XUhwqrqlDWkmm4XULlihP6fPR8/2IFadZ5pDMYEQGy4Yy1TqaGC0jM2JnQ7n7sX3HNllTIznTI6uPJIZi+Fwf3NNzAICUwnRFigGwMGa5Vd6VWAiry1CGlJNxrLwfiVnJWLRtOeCLcioMb+qecWP0whA69zWj/1QX3FNzmB6cxNk/HMFYx7DhdZOLciRuT4LNDsTCM2QwGNGBJZWDcMJ5+s2I7GBvGwy/WYBQ+A+2rxC/cKHmHtoq/4NjPkZ6fHqiqkODJeeKNFaph1qsomRFEr3uQbC8BnZty9SQWZ2H6htWwBkfGJ44LiU+IDeCH+qhOPficdMUBKXto5ySYIv2lcFgxDyWVA7CHdmOFgXBj9L7IdzPLvbGWkgrzeJ/95/o1JRAKVZMNeTQ2+E/VhUEo+zI5b5bu7dlSsiqzceKz25C9uJ8ZFTlYPXdl2H1ly7D2i9fgRV3XYKVn9+M9Q9uRXYdl13dM+NG4/NHMdIyYFodY7XdYDAYsYElfA70TqwVjaY0sYISoZ1SikOP7QpYV3ZFLfLXlCg2MYp1Est38kp0uN+G2JY6VhSvYEpBtF+7FfB6vGj522kMnu3l11VdtxQ5y4oUHa+Hb5pSxVDv9yFW7OKZzwGDERkiLkkpUQzsmuzHbtEphDazka53sHoQQlDzkVUB6y7sacSxJ/fiwp5G3h+BERy1EXAY84T6PiL9/cQCDqcDVduWI600k1/X/Eq94qSIekUjUrIuWKQ09q4wGAyrobtyICXAB2sA1YQsVbOf8E8JVlI+wqmHmmOF12yVDkppx5q5KBdr7r0cOUsL+XXuaTd6Dl/AuReOh8x9IMYqz94s/LbPes+o+UdjhWE4GQythPoupQYK6n9zEO4ZfQYIlLQjcgpCsMRq4mPZd8JgMKyE7sqBEaZBRiUuE89IRNL0SCo6kVKBVS5KUbDjrXDNcigd0XMlxKHq+mVYeudFSC+b90MY7xpB62sN8Lo9is9pxftgF6wYHtZolDqlMsInVFvmjHdhycfnMy3PTcxi5Hz4/geDZ3pw6LFdOPjom+jc1xxUUZBLnKZksIM5KTMYDKthis+B2vjO4UQrUoPRArKZ+RaE90ysWCnBauH3gsUVl2NqYAKn/m8/v5ycl4olt62HM84Z5CiGXtgpV4ZehFIAYuEeGIlYKZBrz9rePIveY+388srPbUJCRpLm8w40dKP5r6cD1iVmJyOrNh/5q0sQl5IgeVyob0BLuyZFrNjFM58DBiMyaJ45uPP2xxXva9UQmUbNSGhFOOKv1sxFrBjodV2RGv3U8q4k5aQgZ9m8mdFk3zgGTnfpWa2owCgTKrXhcK1gdhTu+a3YrkUzcu9uUm5KwLJfMXDPzGFmdJof9Z8dn0Hf8Q6c+f0RnH7qADwz7oDjhs724uCjby5QDABgenASXftbcOzH76DpzydBvQsH1sTvQywqzAwGw/64tB74zLP3GaLJx5rttxxahXupcKbhYiczkcprlyK1KAOtb5wBAIy2DCJ/dWmEaxWdhDszJk5KZybi5FWxFGXJTgjzvPh/+5eHe3vwv9/4IBKzU9B3onPBse7pORx94u2g5R/90dso2bwIWUvyMXCqG53vNSuq11BjLw5t78WyT1yE5Py0BduFvgShvhMzZ5gZDAZDCZqVAzF6mgJZaTQ/HNQ2+JG8biXT38GEJ7WmY0rrpFZgI4Qgd2UxrxwMn+/HwUffBHESVH9oJTIX5epSN7tjluleKCIhFBmhkCj5fqyOHYRU/zt7zbqv4nuf+qDsfkONvWj688mQ5VEvRfveJrTvbVqwLTErGTU3rUJiZjIAzmyxY28Ths/38/uc+f0RrPr8ZjgTpLtSsWO+3P1liimDwbASujgk6znabwWBRSl6CwBWipgUzFxCfN2hwvSFuk96XzMhBIUbygPWUQ/FuT8dj8kwp+L7r9c3Fk2CjN7Cmd3MjfzXb0WlRmgyyc8iPPgxpKZkS+6fu6IopGKQvTgfjiC+SMs/czE2/PthXjEAOLPFmo+swoq7LuHXeWbcOP/XU5ibnJUtS/guWPH+MhgMhpiwZw6sHPXGDKJ9yljO9EOJA7Oa65YbydZ674o3L8J4xzDGu0bnV1Kg70Qnii6q0FSmHREKfcJ7GWvfq7+dCpbbwc7fabhE0sRLCeL3NSk3BYNnegPWfeyhb+FU90uo/83BgPWll1WjwDdY4Jl2w5UUB4ALUzraMojhpj4Mn+9HekU24lMSkL+uDHHJ8bJ1ScxKRkphOia6ubZlpHkAx57ci9V3Xxb0OLl7LDZBEq5jMBiMSBDxJGjB0GNE2ciReLuNDmpFyTWGcy+McAx3OB2ou30Dlty6FgXry/j1HXubcPDRN3H66QMYOturOh+CnbGy8GcGYsVAqyIbrYTbnpk561nxgaULTAR//+g3FigGtbesRuFFFSCEgBDCKwYAN8OYUZWDimvqsPpLl6HqumUouaw6qIDvp/Lahec/+cv3MDs+E/Q4OZNMpbOxDAaDYQZhzxwYOQIZbtmRtqtWO2sQiw7Efox6VmmlWUjOT0PPoQsB6yd7x9H0l5PIW1WCiquX6H5eq2L3maxwUJrNlqGOSJhCOuOcqP7wSrS+fgb9Jxc6IwNAyeZFyKjICes8ct+L38RoZnQKJ362DwBnYtTyt9NY/LG1YZ0TkE6Oxt5VBoNhFqbkOVCK2YJLNApKRnYmVsuFoIa5qVkc+9FeyW3rH9gK4iAm18h8ovF9Z0QWpYqBkYM0U4MTOPficcwMT/HrCjeUo/TymrDKVTrI0vp6Q0C0pLVfuUJRbhUl7alcKNRYicXP8hwwGJHB0mZFZmBErHUrxG83AzuZVcUlxWPd/Vdi5ec2Yf2DWwO2DTX2yhwVXdjlWTHsQzChX7jNyNmFpOwUrLjrEuStLAYIkLU4X1YxUFMPpe1bckFgKNPzfz6hyFxRnBNE6nzsm2UwGJHAUsqBuCE0ero62AiNVqJZKVCb5MpqOJwOJGQkgRCC1OL5UShXYlyQoxgMhlr8ioFZCgIhBBXX1GHDg1eh+oYVsuczYgYjd3lxQHS0kZZBnFcQRlVIsPbUzm0ug8GwJ5ZSDsSEasitNkJvhlOZ0g42VjsSJeFTKaWYGeFMEJzxTqSVZQUtc7J3DJ3vNWN6aFLXutoZK4XdZVgDKYXAvyzO4O7HyHfILH8z4iAovbwGZVfW8uuGzvVJZlBWg7Ats1I/x2Awoh9LKwdKCafh1HNUxgyBXNzhSdmkxrJiEGzZDyEEnlkPAMAz68GFPY3wzHkk9+073oHTT7+Pzn3NaHrphL4VtjGxFgqVIY1QuBcGFQgm9AfkK4iS92h6aBIXdjfOryCA1+MNr8woSKzHYDDsiW4ZkiOB1WNzA+qdQNVE7ZGLYc8ITU5dAe9E2Hu0Hf2nOlFx1RLkLCsCwHX2bW+exWjbIH/M1MAE3NNzzAzJR7QIdgztaHkHhAqE1nfIahHZxtqHApbzV5UockoOhTBqkVWulcFgRD+2Vg782L3RFHaSTODSjlhZDPZelF+9BBM9Y5jsHQMAeOe8aH6lHhPdY0gtzsD5v56SPO7oE2+j4qolyF1ZHBMRjhgMpYjbMTmbfz1nDawiNKcUBkbSKd68KKzyxIqTFa6RwWDEDrZXDlijyWGVTtIuEEJQfcMKdLzbFJBptfdYO3qPtQc9tvXNM5gamED5VYuNrqaliXQeEYa1kPI1kNtPia9BsPdLKnjF9h3bItYODjZ0ByyPtAwgp65Qc3ni6xbeL/bNMRgMo7G9cmA1tJg6BWvsjZg+j9aORm2Oh4TMJCzatgJVH6Roe+NMQKxyAEivyEb1jSvhcDnQe6QdF/bM2xT3HmtH3qpiJOWm6ncBNiOa3h2GuSh5d9S8X37FADBmoMQ9PYfZ0WkQpwMNvz0Ez4wbqcUZKNpYAUe8C90H2/h9HXFOpJVkLigj3BkT9r0xGAyzsJxDcjRGZgjXYVrvMqPZhEmLQzYhBOVXL+FnAhxxTpRdWYvFt6yBM84JQggK1pVh5ec2BRw3UN8tVVzMwqIXMayCnv3I9PAkjj7xNk4//T5O/d9+eGbcAIDxzhE0vnAcZ54LzJO14q5LEJ+WuKAcYdQmtURjW81gMKyL5WYOmGmM9HS6ngpTtApx4bw7hBDkry5F/upS2X0SMpKQWZOH4XN9AMBHPGLErokRM+ezDlKztno8H2Hm5VDkLi9CfGpCWOdjMBiMSGOpmYNomzHQit8m1/+ntHNTOloWzghWrJMuyInQd7wDg2d6FGVDjWbklM1oVUKFMMXAXELl15B6HuHOIqSXZyFn2UL/gbxVJUjITIIjbr4bLd5Upfk8DAaDYRUsoxxE8wiclusSC+9qyhB3hCxhlX7kLCuEK3F+wu38y6dw6LFdOPjom5joGY1gzSKHlLIZqzMJkSSWvvFQCoKckqAF4nCg6rplKBFFIBpq7EXltUux5p4tWHHXJVj/wFZJcyIGg8GwG5ZRDoxUDMIZNQqnw9WakEwuSVA4CgJDH5zxLiz5+HrJbef/ctLk2liXWFYMIiWkx8I9F2db1qIkaKXo4krU3rSaX3ZPzeHMc4cxfK4PiVnJikIbR6NPHYPBiD6IWpMIQsg6AIdWfmEzUosyQu4fSSKVKCeSsyBWSw4UrUx0j6L+NwcD1qWVZmLJresiVCOGEaiNgMUwFqkszGYrRZ5ZN0787F24p938uqKNFSi6pAoOpznjbeNdIzjx03cBYD2l9HCo/e1KJOSNWLm3DEYwLOeQrCex2JnH4jVHAldiHIiTgHrmlevam1cHOYJhN6J1hDdSQrUeCOss9M0Kta+eOONdWPmFS3HkB3v4dV0HWuGZ8cR87hMGgxEdRLVyoAY9RwiZgB79dL3fwisGrqQ4LP/URjhcTt3PIxZQ2bsVOaLFLyrSI+96ojShmt4445xY/8BWdB1oQee+ZgDAaOuAbuXLKabR8P4xGAzrYxmfAyWE6gTCzSegt42qFvw2qcw21dok580nPyu6uBJxKVz4Qq/bg9HWQcxNzepyHvH7yN4J84h0W2A0LGpZeBAHQVppJr/siNNvcMCI/DYMBoOhFEOUA6NGckJlEo6GzlzNNQin1GMpUokVSCvP5n9f2N2Iqf5xjHeN4PAP9uDs80dx+v8OYLRtENQbfphTsdLKBATz0KtNsYvSL2xH7BLlTKzkKFV6wnkWnjkPjv7obZz53RF+XUZVjqay1GLl94fBYEQHupsVRaIzibbGUo1AIsx2HA1mAsGwkgKYlJ0SkBDt1K8PBGyfm5zF2T8cRUJGImo+shpJOSlhn9N/7dH2vlsdI945K73LQsRCthWRC5MrV18jkkq2vtYA99RcwDqW44DBYEQLhswcmN2pWMEcKBLI2dvaZcRPDWqSwZlF1XVLEZ8ePK75zMg02nad1fW8VrsPjNCInxl7hupQ2qaJ91Eys6pFUXAmLBxXa3rpJKjXq7osOdg7Yi8IIVTh3+5I15XBCIXuMwdWGG2KpQRMUtE7zHbSMyN8qhWfpzPehdqbVqP5r6fgdXuRWpIJZ7wTBevKMNIyiNbXGwAAE10jEa4pwwowYU87Sr9/8X5i52s51M7klG6pgcPlQM/hC/y64fP9OLR9N6o/tAJZtfmKy2JEDZ8SLd8C4GYA/wigR7C+BwyGxWHRimxAqI5LqAwJFYRwz+lHaacprqfUiFw4ApKRphha71lSTgqWfXLjgvVpZZn8b6/bi4meMaQUpIVTRYZKrGq6wwgPLd+pVMZ5cfuk5n1xxjlRdkUtyq6oxeDZHpz/yyl+W9Of55MhphSmo/am1XAlxamuM8NeUEqfEi4TQmrAKQcvUkrPyR1HCCEAkimlEwZXkcFQjOHRiiJh3mLFUeZwCeXMKLzPely/0uhNUvUxyunSTjMT4rCm9c+8D8+cR9dzmI3wuVrdsRaQFgAZ+hANpotS7YmW9yV7cYHkAAHAJUs8/cz7GO8cUR2cgIUzjT4IIZU+06L/Rwj5NCHkBIAZAF/0bXcSQh4ihBwnhEwTQoYIIX8khCyVKCuZEPItQsgZQsgMIaSXEPJ/hJBS0X65hJAfEEJafPv1EUL2EkJuNeeqGXbE0JmDWDLvMZJQQo7QjCjSTslMGOOIT01AwbqyALODia4RpAuiHNkVuz1jNoOgP6xdDyQ5LxXrH9yK/uOd6NzfjLmJWaSmZGN8YhCzo9No+O0huBJcKN1Sg9wVxSHLs9s3FqXUcYP6AXRRSrt0KPvDAAoB7ATQBcDvmPYsgJsA/Nq3LQfAvQD2EUIuopQ2AgAhJB7AawDWAvgZgBMAygF8GcCVhJB1lNJ+X5m/B7DOV14jgEwAawBsBvA7Ha6FEYUYqhywDkQ/Qgk3QrMiM1ETQSfWBLTizYsClAM9IhZFEjuOxMfaO2cXrDJwJH6nw3lfCCHIW12C3JVFmOwdB3ESnP3DGBIdaRifGIR7xo2W1xqQvbQQDqetUgxFnITCh5FYvsKUc83RkwBuBICnJTZ/C8A3dThNHYBlQnMj30j+xwDcSin9vWD9LwGcBvBtAHf4Vj8AYCOALZTSfYJ9fw/gIIB/APAwISQDwBUAvkYp/U8d6s2IEQxRDuw+UqdntuRYIZTgGJP3kQaaEeiZJMkq2P1bj1b09vcxCisoCXorvcThQEphOgBg+acvxnBTP8ZfH+S3n3vxOPJWFqP3aDtmhqcwOz6DnKWFKLqkEomZyYbUiaGJTwBoEK3TY9YAAF6W8EO4w1f+bkJIrmD9DID3AFwj2vcQgEbRvu3gZgeuAfAwgCkAswC2EkJ+SSnt1an+jChHV+VA2JiFimBjhU5BDjlbVCt2rlaCdWiBOOMDP6/Bhh5kLcmHK8Ec50QjokjpOdLKMBcrtWGRmumUQqrf8hPu/YpLjkfeSs6MyB+9bLR1EKOtgwH7DdR3Y6x9GCvuupj3V2LtacRpoJQeNqjsJol1dQCKAPTJHUQIcVBKvb59k4Ls2wYAlNJZQsg/APhfAF2EkMMAXgfwLKX0WBj1Z0Q5pkUrigbnNSYUaSOW71Vyfhome8cAAK1vnEHrG2eQvaQAldctVWRaoFfkKb0VBIa1YYKltcheko+u/S2YHZuW3Wd2bBpNfz6J2ptW8+tY4sOoZUpinQNAM4AvBTmOCvbdB+DfZfbjXzRK6Q8IIS+As5W6AsDdAL5GCHmYUvp9lfVmxAi6KgdaOyS9I+2YgZVG4ayEHYQSM/Iy+Ekvz+KVAz+DZ3oQn5aA0strQh5vl+/BCpj5XO2AHb7FSGLGvfH3E854F5Z98iKcf/kUJrpGQJwOpJVmouTSajjjnTj243cAABNdo5LlsHc6JmgEcCWAPZTSOQX7ZlNKX1dSMKW0HcATAJ4ghCSBc2b+DiHkMUrpTBh1ZkQpus8cKHGcFY6GSmW0tKpAxBpoZQiFEivfMy11VHtMyWXVcCa4MHy+P6Dj7z7Ypkg5CAcr33sj8L93THFnKCGY8qTX++M/x3TbvXAlxmHxLWsW7CMMceqengOlFBJRchjRzzMAPgTgXyHh9EwIyRf4DDwD4LuEkLsopb8U7UcA5FJK+wghyQBAKZ30b6eUThFCGgBcCiANnE8DgxGAaWZF4ky+ctsAaysIDHujZrRQrAiIbZOVCBCEEBRtrETRxkpQrxeHtu/mt53/y0kUbapCUrb+UYxi/RuyqoJg1XrFKuKkjUY8m1BlzowGWpgcemwXknJSEJ+WgJLLapCcl6p7nRiW5FkAHwHwDULIJnCj+2MAKgBcDy5i0Sd9+/4vgA8C+AUh5AYAewHMAajylfEcgK8DWAzOwfkPAE4BGAWwHsBnAbwiCHfKYAQQ8XhqUgJMLAs10YKSBGpWIFgdhUqB2N9Ey7URhwPVH5oPxzd4thenfrUfXo9XdVmhCPYNhZPAzAhTDD0TqoXK0B1JhAnkogl/QrRo8CsLhlHXl5CRhIT0xIB1UwMTGGkZxOmnDqD/ZKch52VYC0opBReF6O/A5SL4Jjgl4FYAx8DlKfDvOwPgAwD+GZwC8D3f3w0AXgWnaADABQC/Ahf29BsAtoMzXfo2gI8aekEMWxNx5YBhD6Kh8wcCBQC9lBc1wm1WbT4yKnMC1o13DOtSD6VYTWnT2+lS7fWFyj6uF1a773oQTptgxD03so0yatCKEIIVn9uErJo8ye0trzXg4KNvYrxrxJDzM4yBUvpNSikRhiyllLb41n1d5hhKKX2SUnoxpTSVUppCKa2llH6WUvquaN8ZSun3KaWrKaVJlNJ0SukySulXKKUnffsMUEofoJSupJRm+MpbSin9FqV0wtg7wLAzEVEO5DoEuYbdbkJptI0MhovVnl84sxrBjhMKmcEEn4yqQOUgKdd8swEjrl8PIv3tmKEgaL2HWoRppefSUrbfdE34pxTxuYINPqgZmNAiwIcq34z2ixCC6htXYs29l2Ptl7dg8UfXLNin4dlD6DvRYXhdGAwGI2IzB1IdUbSYE0VzlBAt12XX56r0WtUKe93vt/K/c5YWIi45XtXx0YjeSocaIdwIEzgjBUo5QV7rOc1sq+TqHky5UKt4qCVY+Wrv6WTfGNrfPoeRlgFQURJEJbgS4uCMdyG9PBtrv7wFeatKAra3vn4G08OTMkczGAyGPhC1DRghZB2AQyu/sBmpRRmKjvE3sP4GWO9EMwxjET+/WEBLhtlgx8yOz+DC7rMYaR6A1835GCRkJGLFZzfZKjJJNDvU2iGPid5tp9nXbMe2X6lz/8zoFE7+8j1QD9en1nx4JTKrpU2F1OB1e3D48T38cvnWxUguSMOJn74LAOsNTNQVcfzyxoavv4S0ihUh99eDsdaTOPj/bgSi/N4yGMEwJVqRuGGN5pH1aCMWFQMplAgxwfZpf+schhoDk1lmVOXaSjEA7CHM6YUVw/GK20696qj0+HDbAzX1NKrtcU/NYaR1AIQQZFbn8hmJ5eoQ6vwzI1NofePMgqzH/Se7dFEOHC4nlnx8Hc48x8mp1Kt/AAMGg8EQYloo02AIOzjxyKQdE6RFE7F8z9UKXMEEicEzPYErCJC3slhr1SKCFYVlvRAPVlh58CKc0LrByguFXsK6/zsJJXjr3fZQStH25ln0HZ+3289fU4ryrYs112GwoQfn/3pKctvw+X7MjEwhISNJW4V9eD1eNP/1NL8cl5oQVnkMBoMRioj5HIg7JLkQhFqc3RgMrWhNohXMNrn1jTMBy9l1Bai5cWVEHJEZ6rCyIqSHr4SW47X4Nojb9EgEKRis7w5QDAAsyF6uFM+MGx3vNC1QDAo3lAcsd77XjLnJWcyOTWs6D8D5KAmPz6jK1VwWg8FgKCEiMwf+ESNxx6TXSBiDoYVwRovllFfPnCdAICnZXIWii6sWnFPqXbfaN2ClupiBXa7X6HqKBXmpUf9gswBSkYkiQf+prgXrxjtHMNE9ipTC9KDHeuY8GG7qw2TPGPpOdIB6aEBm47jkeKy46xI4E1zIWlyA+mfeBwAMnO7GwOluAEByfioqr12K5Lw02fMMnetD3/EOJGQkoXRLDRwuR0D7UXntUjjj5M2gGAwGQw9MVw78HYNUhyPGasIRIzKYke3XKMdM75wnYLlgQ0XAst+UTk4xsco3EM0mRdGEEXb6wpF+f7mhstyHKs9svG4PJnpG+eWUwnRMdHPL9c8eRMHaMpRuqZH0Aep4pwldB1oXrAcAZ7wLxZuqkL+2lD925Hyf5L6TveNo+O1hrPvKFZLbR1oG0PTSCX6573gH0suzMDcxy50rwYXc5UUKrpbBYDDCwxI+B8xkiBEMM98PNXHhlew/PTCfZya7rgAO50JLPjs46EezUiAVQcfqz0OO7Tu2aTaNC1WuVvz1UKu46DEoQCnFRPcomv92Gt45zpE3e0k+Kq9dijPPHcZEzxhAgZ7DFzDZN44lH1vLH+t1e3D2+WOSSQpdSXHIX1OK/LWlSK39Cb9+uu1e5K8rw0TPGEaaBxYc553zYGpwAknZKQHrZ8dn0PjHYwv2H20b4n97ZtyglNouiAGDwbAfpisH/sZequG3c6fMsDfhJKYKdmzHvmb+d0ZFtmznLnz3o1kQV4IZM0VA8NCz0fAMrDLrBGib0Qj3HXBPz+HoE28HrItLjkf5VUvgcDlRd/t6dLxzHt0H2wAAY+2cID43MYOOd85joKGbD0sKcMkKy66oQVxyPBKzU5BU+YTkeV0Jcai9aXXAutbXG9B3ohMAMN4xEqAcuGfmcO7FQMXAmeCCZ8YduC7eyRQDBoNhChGbOZBr+IURi5QqCnaMnc2IHoIJYTND8wmLml+px4W3ziF7cT7iUhOQt7IErqQ4fjt7bzkirRjYHWHbaQUFwSxlT0zraw0L1lXfuAKuRO6bIw4HSi+v4ZUDUGCybxyNfzzKm/IAXD6SRTesQErBvF+C2vcnqzafVw6EoUgppTj3x+OY7B3n15VeXo2C9eWYHpgAcRDMjs9gpGUA2bX5Cq+cwWAwwsMSZkViwhm9i3RHyIgNpOLNS717eatL0CmYPXBPzaH3GOdgODc+i/Kr5MMoRiuREhaFxNIsZaQVhEg969mJGf536eXVyFtdKunMSwjgzwXa+PxRzE36bPzjXciuK0DxpqqALOZa7ufM6BT/e7RtCLMj0xjvHIZ7ag7Tw/Pb6m5bj3/93jvYvmMbH80sMTsF6eXZqs7HYDAY4RCxUKZ64g/pZ0YHGKlIGwz9COYArAapaFvicosvqUL1jSuRXrGwc5/oHoHXE35CI7sJuZFWDPwI241oG1QIFgkuGpFql/3RhOJS4lG4oUI2yk9S3nxI4bnJWaSmZCM+LQGr774UFVcvCVsx4Coz/3P4XB+6D7VhvGs0QDGovHYpUoszLPN9MBiM2MVw5UAYnSgaBGvWcDOEKBEUsmrysPiWNVh3/5XIXTGf+GyiZwyHd+xG25tnNCkJeik5DIaVkYtwJ0Qqd8JkD5fDYG5iFgcffRM9h9okj5Uala/+0Eo89Pev8Mvh+gM5E+Un6VMK0rDkY2tZJCIGg2EZDDcrEgrTZoWjjLZRQIa1UWpi5HA6UPmBOnjn3Bg808uv7z3WAeqlKL28Bs4ES1r6MRgRQy58qhR+kzX39NyCbRfeOoeMRblIzEoOWJ+/pnTe7wBASmYW/uW7e/nIT0D4fUpWbT6qPkgx1j4MAiC1OAPpFdlwJsZJRjBjMBiMSKJbq6RkVsDImQOmGJiPf+SajV4HEuodrLi6DiWXVcMlGE3sO9GJIzvfwuHHd2O8izM36ninCcd/8g6632/FRPcoKJ23TWD3nBGKaDctkupP/AqEM8GF1KKFic36fU7BQuLTElFx9RKkl2chpTAdn/v+Tl0VAwAghCCnrhCV19Sh4po65CwrQlxKAlMMGAyGJdFtmFLJqI7RMwdMMYgMRoUBNQph4jG9zi+MshUKZ4ILRRdVoOiiCpz9/RGMXpiPZe51e9Hw7KGA/dv3NgEAcpcXoeIDdZLhDCPtdGoFhMIiM/+LHGoTCqpxUJd6xlLHE0JQ+9G1oAkPwRGfiMOPXA8A6D7UhoL1ZYhLSQjYP29VCfJWlQAAXjv0fcV1ZzAYjGgkamwYWEPOUIP/fdFbQVBDYvlO1H1xAKef+CDGu0ZD7t9/qguFF1UsMIvQcu5o5MkXWnD3TZVMMQhCqNFwJZnrtZwv2DnDRa6OKdVPAgCo14OE7BrMDJ4DADT/rR6LP7rGkLowGAxGNGDanCbrsKOPcKO8WEGgNaIOSs2tptvuRXxaDtb80wFc9mgD1n55C5LzUwP2Kb28OmB5vHNEshy9sLvpSbS3M2pN+dS+G9t3bFtwD8VBJbSah8rVW21itCdfaJE8Rq4c4nBiyUcL+OXZ8WnF5zOTaAjYwWAwogNbzhzINaLRJBhY1UyE+XYoR8k9Es5gXJP5LTju/DYmukbhdXuQVpaFgdPdYZ+DER2IBWul36LwHfMvB2tfhO2rFlOtUDkktLYhoRQiuSzM0233YrJnfmYuLikeDAaDwZDHlsqBVNg6QP8p8Ugh1wlGUmGQEkxC1cWqCo7RBBOO5Oyrp9vuxS5wttKpxRn8emE2VQDIqs3j9zcCOz8vO9ddCcLrC2eGR5g9WVyuXogVEi2E8kUQKwNy3xUQOONWsKFcc52MxK79FYPBiD4MNSsSToHrba7gn/6W+vNjp9wK4vsj1WELO1yzowSJk0UpUQyE/62O3u+J3P1RKwDkLC3kfxMHgUMmkZMemPWs7PJNWhk9k7eJn7ueQmo49ZMaBAp1zXLv1twEl9wMALrfbw2I/BUK9r4yGIxYIyzlQEpItUJ4S7GSYIU6SSHnrKfUTEBchlnobQ5gNaxS38TynUhe9OT8CgLJSEV6YdbIuxVGSO00cBAJ9MxPI/deKfnO/ArCA/e/zJej5dl9/Ivf53+Pd45gTBAhTEkdGAwGI5bQzazIKgKVEKs36uE681rxntsVvxCyfcc2yXsbKZMVz8wk/zslP82w8xhpAmZFPxWrtw3RRLjtlFBBULKvH6EyAQC//reH+NkD99TCJGkMBoPB4GAZWGyMXmYFRmOHOgKBZgzie2u2IuY/X/euT/DrMqvzTK2DXljx+cfirEGw5yAXRUgPJUrteUOhtk7+68jakI3xiUHur2Nh1C8Gg8FgcJjqkGz0aKyaZDoMY7GiQKgFsZ+HcJ1R+EfxZ0am0PxKPQCAECC9Msewcxp9TXZ5H+Qi3jDk0TrrpOYYudClwjCrwZ7ZWMcwLuw5xy8P1Heh/KrFKmrLYDAYsUNEZw709gNgHTojXJS8Q0bOIiSW78Tk+bvR8mo9Tvx83/z6nFQk56UGOdLaWM0EThy4QG5brBCu8qYkp4cav6pQZYsjFAmzJX/5nhcxUN+N7oOtaH/7HA4++ibOPHc44PjcFcUhzxuLs0sMBoMBhDFzkFD4MIDwQtYxu3kGI5Dptntx7sXjGG0LdJis+fDKCNVIP6wa2lZP51urY4Q/jZrjQzkni7erDbu6fcc2nP3DUYy2Dcruk5SbitItNSHrquZdsKJfDYPBYGhFF7MicXIdOYKF59Qbq48GWlVQMhu5iE1Ww6y6jbQOLFAMqm9YgYSMJFPObxSReLbsG5NGyaBMpEw0xUK2lsEnKcUgPi0R6eVZKN68CPGpCYrKUXMP2HvGYDCiibCVA7nG3GpYyR9BOBpm1ftlFkJBJdrvR6jra3vzLHqPtfPLrqQ4LPvkRsXCDGMeqTwb0fxuaSHY/TC7rQzl/K/12eWvLkHuimIk5aWqDgNslf6CwWAwzCZsnwOjI+ZojUcuZ5NqBZiQEojVFUs9kRJ8vG4PWl6tD1AMAGDp7RuYYqCCUPlMmAmjPQinHXBPC0KUEqD8qiVIzk8zND8Ig8FgRBumRivSQjhCvRUVAz+xIAirQW7kMBrvk3AGYbJvDA3PHoLX7eW3l29djNyVxXA4WaRhNSgxl4n22Sml+O+VmffCqO/6vq/8Gd/6ykXoO9GBsfZhfr0Sp2MGg8FgLCQs5YB1sgxGeLS+fiZAMSi7ogb5a0ojWCNp7CJURzp7uJ2I5PPU03ToH2+uRd/xjgXrizZWaCqPwWAwYh3NysFM9yOIK8rQsy4MBoDY8UPwzHkw0T3KLy/7xEVINjALcjgIHUPt8jzsUk+9/aGs+oxCORdrVRgmuhYmNEstzkBCur2d+BkMBiNSMLsFhiWJ5hFg/7XNTczw69Irsi2rGAiRSgrHCA+9zR6VmldF6vkpVVyU7hefnsj/rrp+GepuX4/aW9ZY+h21ar0YDAYDsIHPASN2CSeHhpWQioE+2TuG+t8c5JfHLgwtOM7KWHFk2q4YFUlNPIOgNL+BmTH7wzkHpRQAMDs6Pb/O40WqxWe0w50VfeD+l/EfD1+qd7UYDAaDhykHDMtjZ0HUM+NG0zPXweP2oGBtGRIykjDeNYKGZw8F7Fe8qSpCNWREGiMUA60JJq2siLtn5tD5bjM8M27MDE9hXMKcKDE7hf8dqXZDGF1P72fLsjYzGAwzYGZFDFsSKmylVejYdx5d77ei90g7Tvx8HwYautH+1rmAfQo3lKPwIuY8aUes8v5JCY1i4ViJsGymOZ9a4b37QCt6j7ZjoL5bUjHIrM5FanHkZw2279jGKwVyz0VrCHBh2QwGg2EUlp45sFLiMqtg5pQ/IzzGu0bQeyQwd0HzX08HLK+7/0oWstSmKDEPMep79beNakeSxc7+oepmVPhRLWVND08BAFJTsjE+wWVBdiXFwT01h6KLKlB86SLd6qcHrO9iMBh2xdLKgXj0hTW281g1IolZWP3ap/rHF5gOiSnaWMEUgyghlH2/Ud9rOG2iX1EQ1k3KL8EqsyNxyfEAgPGJQSz/9MVIykkJcQSDwWAwtGAp5UBsqykeFWMzCfqH+dQz3jhjnt6jgTMGlR+ogys5Hhd2ncXM2DQ30rnZWiOd4RCLyqpYGdBDiJYazR+o78ZkzxgoKLKXFCClID2scwjLFoeolXqGej3XcGdRiHM+y7F7ahYAUw4YDAbDCCylHAgVAis6XllFANJrNC9YvHErXKddoV6KvhOd/HLRxZXIWVYE4iDIqMoB9dKomzFg70v4CL/HqcEJtL1+BmMdwwH79B5pR/WKjfjvmWsQlxSv27n1HGSQKyucc3jmPAEmenYI+8tgMBh2xVLKAbDQlEgOoc2tWbMJVhGAjJjml0pyZZS9cbTTeyxw1iCjKgfEwY16EkICRkD92Fkh07PuseRTMzc5i7mJWSTnpQKYv2b31BxO/Wq/7HFNJw+gIn8J8laXgFKKwfpuDJzuRmJ2MlKKMpBckIYkQdQeM96tUI7M4Z5/sKE7YNkZb7mui8FgMKKGiLewUmHf5BQDoRLg/x1pMyOzhbpwFAOxsG+kCUEorGoipsfz7NzXHLCcUhieGUgsYmdlSYz/OrweLyZ7RjE1MIHW18/w24s2VqDk0mr+mkea+0OWSVzczFPzy6cweLYXADB6YQg41gEAyF9divKrFgecPxzkvlep9eLBBT3OPzc+y/9OyGCZjxkMBsNITFUOQvkUSG2zogApRG3H5xcAtHac/mO1nFdYhpHnUloPqecfyeethy+H1+OFZ8bNL5dvXQzq8QIOBz97IIWdBWG9o9hYxQFWDXL1nm67lxvdP9OD9j3nMDc5u2CfrgOtmB5bgsTs76HrnTcXbF//4FZMD00GzCY4450YaR3gFQMxvcfakbuyCMl5+pjfyH2Xwb5Xvd4LSik635tXuMMJV/rA/S/jyRdabPm9CdtLlgTNehBCbgTwJwAPUEp3iLZ9A8A3AfyOUvpx0barAbwO4GFK6fcUnutzANIppY/pUHUGYwERmTlQMuqvh5Bo5dFpQHvnqfY4f4eo5VgjOtHptnux3dd0SjmdA5FREvRw9qZeCofLAa/bCwBo23UWbbvOIi4lHktuXYfErGRd6xyNRIuCMN12L7weL5r+dBwjLYNBjx0+ux/UszB2f+mWGnS8cx7d77fOrySAI96JxueP8asyqnKQv7oUjS/Mr4tLSQhZZ8+sG8Pn+uCemsPc5Cymh6cQn5qAgnVluo7Qq2mLqZdidmwaE92j6Dl8ARPdowHb08qyNNdj+45ttny3AOsPlDHwNgAvgC0Adoi2bQHgBnC5xHFbfP/fUnGuzwEoBfCYuioyGMowTTmIlNBnNQVBSgA10oQisXynZsXACMR1ED+bSD+vUM8j1HvsjHNi2Sc34uQv3wtYPzcxi6GzPSi6ODATcjSZz+hJqHtiF9+E9j2NAYpBUk4KEjKSkJSbgpTCdHS/34rxrtEAxSApNxW5y4uQu7IYzjgnDj46P5vgTHCh+JKqAMUgvTwbtTetBvXSgHMfe3IvAGD1ly4NUBSmhycx1TuOqYFxdL7XIlnv3qPtyF9TivzVJQFZh2dGptD4x2OYHZ+Gd86LxMwkzE7MIiE9EQXry5G7vEjbjQI329H25tmg+2QuykXOskLN5wCs/84w7AmldJgQcgIiBYAQEgfgEgBPA/gMIWQxpVT4om8BMAngfdMqKwMhhABIppRORLoujMhi+syBmcKflZQCIVKJiBgcVnhmwYQHJSOPiVnJWHPP5Wh/uwn9J+ejFjnipD83uwi6VmLi3JfQc6gNEz1jSCvNRO6KYrgS4yJdrQWMXhjif5dvXYz8NaX8cmL5ThRuBfr3fwJd+1uQVZuPrMX5cMY5A8pIL8viy/HMuHFhTyO/zeFyoOr6pQAA4iBwxrvgmXUHHH/sx+/wyfba3jy7wGFejt6j7eg92o645Hgk5aXCleBaYMbkT0w2NTCBllfr0fJqPZIL0lB8cSUyq/MAcGZBob7rvhOdIRWDsi01KFhfrqjuahAq/FI+cAyGCt4CcB8hpI5S2uBbtwFAMrhR/o+DUwbOAgAhJB7AxQD2ASgmhPwjgKsAVPiOPQLgu5TSv/pPQAhp8W8nhPAjApRSItjnQwC+CmAdACeAowD+g1L6F8E+lQCaAfyHrz5fBbAEwD+BzUjEPKYpB2oaWikFIphAZkehSmyCYMQIMlM8jEHJc3IlxqHyA3VIKUxH6+tcHzHeOYyCdWWSZYmTUYVCKllVrOCensPpp9/H7Og0AGCkeQDdB1qRs7wIDpcDo21DmOgeRVxKPJzxLmTXFaDo4kq4p+b4RFpK6D/Vha79LXDEObFo23Ik5aSAUgpucE0ZWTV56DrAmQR1HWhB7ooiOFyc8O9vA1KLMlB702rZMkour8HoMwsHFZ3x3CyVcFag4pol6H6/FZN94wH7Dp3tBXEQWcWgfOtipJZkwjPrRsvfTmPGd28BX1Sl1uBmUUIme8Zw7k8nFqzPXpKP8quXwJUQqMRRr5f/Rvh9F+fDPe1GwboypBSl66L4yQ1MKY2Qx4g56iS+9S5KaVeQY/YAuA+cAuB/qbcAGABwDMAB3/JPfdsuApDkO+4iAB8A8CKA8wDSAXwKwF8IIR+glL7hO+ZBAN8HkA3gIXEFCCFfAfA4gNcA/BsACuAOAC8RQu6klD4rOuTDAAoB7ATQBZ/iwohtCKU09F7CAwhZB+DQyi9sRmqRdscwNSgRcu0qHGkV8kKNNsey8GglZsdncPwn7wAAUlOyUfPp5boIOnZOXhdu3c/+/kjAiLwaMipzkFGVjamBSQw19iIxMwllV9QiuTAdhBBM9o1jvGMYPUcuYMY3Ki4kISMJ1R9aIRtnX2wq6HV7cPjxPfx2sYmPUs7/9RQGG3r45ZxlhSi5tBrxqfJlnf/LSX6knxBA3NRfeevn0DaxH9lLChYc65lx4/xfT2GkeUCy7LTSTNR8ZBUAwOv2YvBMD/qOdWB6aDLktWRW56L4kiok5aWCEILW1xsC8oL4ZzkY8ox3jeDET98FgPWU0sORro9R+OWNQ4cOYd26daac8/Dhw1i/fr3c5m9RSr8pt5EQkgegF8DTlNJP+tb9BcAcpfQmQsh3AHyKUlrp2/YwgO8C2ArgAKV0UlReArhR/zZK6XWC9XsBlPrLEawvAadY/IRS+hXBeieAdwGUACinlHoFMwdzAJZRSs8FuS2MGEPzzEFC4cNILF9hikAi5aBoxsi7VRFfN8O6UJ9jsp8btnwDrxz4btjlhoorbzXk6qjlmxUqBks+vg79JzoxUN8d5Ih5RloGMNIyL/COT82h/tlDSMxMQukVtWj68wlQj/yAyczIFE4/zY3ix6clIjk/FcWbqvioQNNt98I9NYfxxi8CAM48d4Q/NrU4Q5NiAAAV19SBOAhmR6dRcukipBZnhjymdEsNhpsH4J3zBCgGCRmJWHHXJow7WvCt+w9JjqY7E1yovWk1pgcnMNI6iPiUBMyMToF6vEivzEFyfho/g+KMBwrWliF/TSlmx2YwNzGD9j2NGO8aXVAuAAw39WO4qR/Zi/ORv64sQDGo/EBdTCoGakwLE8t3Yo6eBHCjwbWKeT6B+dF/P8FmDUAp7SOE1MPnZEwIcQC4FMB3fLu8DeDrhJBySmmbb79ZAO9RSvnpOkJIIrgU4ATAbgC3KazzRwHEA/glISRXtO0vAL4FYCmAU4L1LzPFgCEmbLMiJSEy9fYzCDZabjcFQa2SYwdBkDFP96E2/vf4xCB+9/t/RHp5tq7nMPud1/Kd6RWBaOhcH/87pTAdaSWZSCvJRPnVSzB8rg+zY9NIzkuDI84BEALvnActr9ZjbmJhCNGA+g1P4dyLxyW3ESeRVBhmx6YxOzaN4aZ+rL77MjjinDi6860FjsF+8teWSq5XgjPOiarrlqk6Jj4tEbUfWYWzzx8NqFP1jav4sLqh2uXE7JQAh+RgEEKQkJ6IhPRE1N2+gTfB8nq8cE/OovtQW0CW48GzvQE+DDUfXsn7KcQSzOfIsjRonJV5C8DdvpH5LAAZ4JQCgPMt8ADYQgj5DYDN4GYMpn2Oy/8G4NOY9znwo9TEo873P5hzcz4ClYMmhWUzYghdfQ7khAajHLukBI5oaGjlrkHOVCiU0GXne2EFwlE6C9aXoe94B7/c9NJJLP7YGqQUxF5itHDfw7nJWbS8cppfFvpvOOOcyFkqHcVmxV2XYKJ7FAOnuzHRM4rUogyklWYiPi0RYx3D6NrfskCgTy3JRMGaUmTWcsLqeMcwHHFOdL3XgtHWQTgTXXBPz/FKgz8ykBxZtfnIqBIP5BlPWlkWam5ahb6jHciqzUP20kLFPhPB3nslZov+8zicDsSnJaL8ysUo2bwIp586gJmR6QX7x6clKqpXtKA1A/10272Y6V4Y9pZhGfYAuBvcrEAWuEhEhwGAUjpGCDnm21YPzq/Ab3f4GIB7ADwBYC+AQXCKxGcB3Knw3P5pt1sAjMnsc0y0vNB+khHzRDxDslLkHDflBGQ7zSJIXYOSLKP+axQrSZv6u7AvV3tIQbVEOvyoUegx0p2YmYy1X96CIz/kQlh7Zt0YqO+OSeUgXIYae+GZ9fDLmdW5Ad+53DfvjHchvTxbcsYmrSwL6eXZaPjtIX5dSkEalty6NkCITivlYuv77ewBYGZ0Cqd+tZ/PaSHGlehCcl4aKq9bGlHBN6MiBxkVOaqPUzPbo3RQxhnvwsrPbcZY+xDOv3yKn9FxxDkRl6LcWVwtVmyj7NI/MVTjF/b9ysE+SqkwhNjbAK4HpxwA8/kN7gTwf5TSLwsLI4R8XuIccjMJ/lBmXZTS92T2YTBCortxp9FmL3LKgLCh9QvMdkMvcyIzFQNA+cyQMBqInSKDyClm/r9QOONdKFg/P8ptliN/tJFSkM5Z4Po4/mPO0Vvpc5AjtTgD6+67AlXXL0PxJVWo/vAqRaPrCelJWPyxtUjMDEwWVnLpImx46CqsuWcLFn9sbcyMiKtpc9NKs7Dqi5ei7vb1qLpuKZbevl6zP0YorKgYMKIXSmknOFOdLQAuw7xJkZ+94EKGfgxcYrR3fes9CGjhAELIEgA3SZxmAkCmxPrfg3Mw/rbPTCkAQki+wstgxDiW8fxS08HLdUJ2VQr8yJlIhUIoaN99U6WeVdINO3bQwd4nsUNwqGcltFlPKVQ+axCLPiZyimNKYToWXb+cX3bPuNG19zldzulwcWZJxZuqgkYAEpNalIEVn92EpXdehLxVJSi7ohaFF4nNhc0nXIXJT6i2VvinFkIIUosykLOsCEm5qeFWVRa7tTuMqOAtALXg7PvFyoF/eTOAw5RSf9zhFwB8khCykxDyRULIIwD2Y36GQchBABmEkO2EkDsJIbcDAKW0FVx402sAHCOE/Dsh5Au+/y/DAonWGPZAd7MiLZ2EXPSdYGXZWQmQIxqvyY+4g47GDjuYKZt7ct4h1qUi1r4VMfI9DTWjlF1XgOHmfj6s5/kX/gcFl9wMhyuyCdBSCtKQUrAkonUAjFUmlfo4WQE7DkYwooo94HwF3AACzHsopT2EkEZwysNbgk0PgrP/v8V3bAM434WlANaKyv8vADXg8iDcB27G4Vlf+T8khDQA+EdfmSkAesCFRP1nfS6PEe1oznOw4esvIa1ixYLt4QgOesbmV+pzYBUHZqn6qkn8JhSqnnyhRXY/O6HVYc9MlIboPPuHIxht40JwrvzsJiSITFEYyvF6vDi8Yze/XHX9MpRc9zyAyL4nVvJzslJdGPrD8hwYhyDPQVTfWwYjGLqaFYXbGfmP39QfNJRwSPwCm/C/1Ue7pO6deF2wKXz/KNmTL7Tg7psqsam/y3LCQTh+BlZ/fqGYHZsBADjiHIhP52zQ1fgt6EW457LCc3A4HSi9vJpf9szMWeJd1ytcqxCt5VnhfgDWeF8YDAaDoQ7LRCvyTwNPt92LfSLhPpyY6tES5lNtPfflFgFtofczGzXT/XZIdKdUIPRnjnXGuUAcBBM9Y+h45zpk1uQj56JfG11NAAuVZq330grPQegwPNHNRezTIzGc3Oyd0uuVS9iolUjfZz1g2doZDAbDXmieOZjpfiRgOZwG3z+i7P+vxrxGjmjogNQKJsd/ug+b+rv4/1Zj+45tqiMbiaNQWREljpnEyQmz7uk5TPaNof6Z99F1oBX1z7yPwUOfDlq+3s6ldnfcBwLj+E32jQdsUxPYwIj3K1xH3WhC6h7YYSaXwWAwYpmwZg70mkYXCozCGQS9R439ZRhty67VGU6oDGgZ3d01+R0klu/Epv4u7Jr8TugDLIzw/tlNwJKqb1pxJkYvDIF6KU4/FRgwon1PI2o/ukY2fKae5ip63ctIjwY7453875y6Av63Uh8QpdsY+qDHgI8cVvEbYzAYjGghLJ8DI0Z/tu/YJjuDoAdmjFiFGyUjnM5uuu1erPrCprDObyX0yIdghZwKxZcukt02emEIg/XdQY8PlqnWCqOwZtfBGT8/riF07pYKsRmuWQ8TOvXHKCWVwWAwGOGjeeYgofBh/reRnWc4o6Zyx7LOPrLICetSSpUe4QjlypBTwoywqU8tykDltUvRd6IDCelJyF1RhKmBCVzYzSW0bH6lHn3HO5FRnYucugJbJs6KVHQp4gidsExMqNk9FgrT+tghmhmDwWDYEV2iFRkxevPA/S8HzCBobfyjIXOyWqwu1KjxOwg26h/Oeyc2WTMjclDu8iIsvX0DFm1bjvTybOStKkF6WRa/fbxrBB17m3D2+aOKyovlUVOHa77p8sy4+d9i/yU5Qr2DVv+GYh2mGDAYDIZxWCZDshCxD0K4xIpSYGfEz1zJc9cyq6RUATBD8HY4Haj96BqUXl4dYCYzPTgJz5zH8PNrQel3ZPT9c7jmfQ7Gu0YDtgkVhFDvkRVMzhjqYIoBg8FgGItlQpmK8QuLduy8mYOceoRmHGqVQyuE1tQKIQSFGyqQmJWMc386wa93OEObykTqmpUqZYZ+B4LbM9Y2yP9WO+Lv93GKtpkCM78JM9s7phgwGAyG8Vhy5kCIHTttf6elZvTUaiYikUjQJUaJiYiae61llsEs5iZm+d9lV9aCOKz9aaoRzPR+l7rfb8XZPxzllzOr8wBoH0iwYxujBKu1KXrCFAMGg8EwDl0kELUNtdjGO9if3thxJiISiBNKyT2PcJ6RUCgL5YwcSkGIJmFBaGIUbYTzXc+Oz+Dci8fRvreJX5dZk8dHglIj5Eez4AyYKzyb9f2ZNUMR7e8Gg8FghCLsPAdajzNa8JcTFMIZJYxG84NgqDUf8R+jBCkTIjH+5xnJe26WecZI8wD/W0v0nUigZYZMKyMtA2j847GAdSWXVaPoogrNZdrZHC0YVs8qHg5mXEs03S8Gg8HQAqGUht5LeAAh6wAcWvmFzUgtygjr5Mw2fx47h1wNNyGWWUpXOCFxjcQ9NYejP3qbX177lSvgjHMGOcKaqL2/Su+r1+3BkZ1vgXrm26pF25aj+AN/sM03wpgn2hSWSDDeNYITP30XANZTSg9Huj5G4Zc3Dh06hHXr1plyzsOHD2P9+vVAlN9bBiMYETNsfuD+l6POHCRWCfcZSikGVjL/MnpkvOdwG/87a3G+YYqB0ddh1Lc8Oz7DKwapKdlY9cVLkb2Ey4qsh/mh0e+ald5lK8DafAaDwbA2lvF69IcdjNWO1G4dpvg5+etv5evQI2OuEYy2DfG/y6+sNeQcfgHajgrC7Og0/3t8YhD5k6sw2Tem2/M0etYqlkwRGQwGg2F/TFEOpASScHMZxLIiYQWkBB4pIc2qEWSsoih4PV5MdM/H6Z8ZnYZaUz8lWE15U1OP1OIMOOPnZ1Nef/oJ1D/9Pia6RjSfnzmdMhgMBoMhjeHKgdoRS6VC4fYd26JuRM4qgpue6PGMjFYCldx3o4TJmZGpgOWGZw/h0GO7cOIX+wKclPXArPdL7/M4XE4s++RGJGQk8esoBdr2NBqiSGmBKRsMBoPBiBYsYVbkF/TVCJLRPmtgpqKg1G47UvfcDCUwUopZQnqi5PqZ4Sk0vXQCc1OzktuDQSnFRM8YRlq5CD/HfrwXZ35/BJTSoM+Qer2Y6h/XReAONSujVphOyEjC8s9cjNpbVvPrJrpGMd4xrLl+emGWyRaDwWAwGGZgqHIg7iz17Dz9mU2jjUiYuigNSWmEkG6EQKXVSTUS997hcqLEF6dfjNfjxbEf7cXsGGdzP9Y+hLO/P4LGF45hanBCtsyOd86j/pn30fj8MYy0DGBuYhZjF4bQ8mo9KKWywn/zX0/j1K8PoO2NM+FfmAE4nA5kVOSg8tql/Lqpfvn7EA1EYxvHYDAYDGtjSLYls0bQos2syApEIrysnucUx3jXUq5ReTjkKNpYify1ZTjygz2S24//9F2kFKYH+CaMNA+gcH05SrfULNh/WkZxGDjdjU8v4kxz8teUonzr4vljhicxeLYXANB3ohMZVTlIr8iGwxVe5CQj7qXX7eF/t+06i5zlRREN/WpkvgfWxjHEJJbvxBw9CeDGSFeFwWBEKYbMHAidPcWjsWzq3ZqIBWiznpPeo/VSZWmdRdCjHKU445xY83eXI29VCYo2VqD6hhUB24WKgZ/uQ204/5eTC2YC0suz+d/EmQHiXJiPZKixN+C44XN9AdvP/ekEDj++B61vnIFn1q3pmkIhNMdRM9uTVpYV4KB85Ad70LbrbIDSEOq8RjzLaPQZYlgL1n8yGAwziIjPgV4NnFCoUCtgMKyF3gqCHtGIzFYQXElxqLh6CUourUbW4nws+dhaEAeBKzEOxJc0WSj4A8Dg2V6cf/kUv+yZccMhGEWvvOEr2Pyf+1D9se8EHJdZnQdC5jMxz47PSNap73gHjvzwLfQebdfsixDsOWjJrp2UnYLam9cErOs92o62XY1BjxO3D3ZtK4TXYcVrsGKdogF2XxkMhlkYYlYkhRFT70KTBf9vNnqnHbPNacxC73fCLNOrtLIsrH9gKwDwgjkhBJRS9J/oRKvPN2DobC+813vRe7Qd7W+dCyjDPTWGmfavIKsMqLimDq2vNwAA0suzAvbzTM/PDiTlpMCVHI+xC/P5F9p2nUXbrrMou6IGidkpAOEUFaGCEQ5q72VqcQZWfm4TWl5r4OsprK9S7Nhm+L9ToYJgt2tgqEf4jGe6tYfxZTAYjFCYphz40bsTE5bHOsjwYfcwkGAKk9FCmdAZVWh7TghBzvIiXjkAgMM7dkuWkZT+FgButqFrfwu/PjErOWC/OcHMQcH6cuQuL8LM6DSa/3Y6ICLQhT3zykfZFbUoWFem+Hr0Vj4TMpJQe/Nq/todGv0O7C5cW63uVqtPMCLhY8VgMBhWx3CzIpasjGF39AzJqYZgIX4dTgcK15cHPb5oY0WAGZI/6hEAnPndEUwNzDsue91e/ndCJue0nJCeiLqPr0PtzatBnAtnCLoPtoJ6vQvWK0EvHxfv7LyfwVT/OCb7xiX38ysA0SIEWiWJX7Sg1iSVmbAyGIxoxnDlwC/cMAWBEQorvyNWFMJKLq/G4lvWBKxzJcZhzT2XY/mnL0bJpdUB24SKgnt6Dq2vNfDOxglZ8wnGRkXJ1zIqc7D+/q2ovXk18lYW8+vnJmZxaPtuHPnhHgyd61OkKAgFWj0UBGdi4ORn/dMHMNEzFrRcsVBt5LNlAqT+6DngpPYdZEoBg8GIBdjMgYmwTiUQcUfrHyG36vuixKnWTAghSK/IxqIPLufXLf3ERXAlxiEpJ2XB/otuWI68VSX88njXCI788C24p+dQetm8ItF3okPyfBmVOai4pg51t60LWO+Z9aDppRM4/pN3MT08qeoawhXSCSGouHoJv0wpMNzIhWQNJcjJjbzrEdyACZHGkFi+E0++0IInX2gxpHyj3gcGg8GwE6bNHADWFfrMIlodfrUi56Ru5djuVpxByK4rwIaHrsKGh66SzbgMcLMKFVcvQd3t6wPWH33ibRz78Tv8sns6eOjS1OJMrPz8pgXr5yZncfIX7+H8X0+BetVHNtL6beStKsHKz83XZ6KXmznQYnajJXqSkjLZdx8+RibV1IIV2wIGg8HQA1NmDgBrC3xmojRqU6Q7PrMQ3g+7XLPZIU71JrUoAyvuukR2e1xyfMgyEtKTsOGhq7D2y1sWJGIbbOjBoe270PbmWfSf6goZAlWcB0WTeVHCvHnRaOtggH+FGiVBqy2/1cOLMuQJ9cyZEsBgMGINQ5UDv2IgVhBY56msw4mV+8QcK80nMSsZKz5zMXKWFQasdyW4UH3jCpmjFuKMd6FwfTnWP7B1gSlT77F2tLxaj469Terrp/LdJ05HQGK04z99F01/Pgn39Jzqc4eDXL3Z+x0+kbyHYvM39jwZDEY0Y6hyIJwtEJsUxYrgq4ZYvyesw9WfYKZ8idkpqLpuGW+StOGhq7Dm3i1ILc5UfR7iIFj+6YtRfEnVgm3dB9vgmZPOXjwzOo2u91tx6sf3o/mlHXBPB0YbGjzbg9Y3zsgmafPjjHOi8rplAeuGGnvRf6JT5ZXoTyTeazvNxKlBzcyOkutXY+rKlAIGgxErmJIhWS4cIyMQYXKjWO+IolGwMYJQ98nsSGHFm6qw7v4rseTWtUjKTeXXt77WAPcUN4pPKYXX48VwUx9OP3UAHXubMHx2Pzr3PI39X78axx//PKb62tB5pAbn/3IKfcc7cOJn78r6MVBKcfqpA2h66cSCbWbPHIiJ9Dcczd+RUgVB7h48cP/LQfulWPeRYzAYsYvhSdDUKgV2T0gULtF87aE6Y7sgJWxE8rmF+mbMvucOpwNppVlYtG05Tv3ffgDA4JkeDJ7p4bd7PQvDnlIPl/V19Pw7OPz9W/llAKBeiq4DLZIzEyPNA7L5DTKqcsK+nlBY0ZRIj4z0dv5elVx3qGuz67Uz/n979x5jxVnGcfz7LJdlWe67CdttpVxagdrSEGxFbHRpinhJtFUTkVJLraJio/yhFawFGmvUxBpjmxJSGwtpsGq1gBG1prbGC6maaq8rpbKCpWzTQgss0IXC6x8zZx1m5+ye29zO/j7JZPfMzJl553Jm3mfey4hItRIpOQgb6MYVfHpez0+9hqJybrZ5CpLSzgSGG/QmZbDfaFNLM9M/8DYahp99mQkHBq0Xt9M+vwUbNr5vXDAwKHhpZxd7H9nFmTfPrqJ06lh0laNhjcMZe97EQbcjDkm0KSrlGlnNuZnXzHHUey1ERKR0iQYHpRbTppXZEcmzOHvLiQrYS8l0TZo5mUtuXMCIZq8HpKaWZsa0j2fSrMm0z5/K7E+8namLZnHO5VO5aOlM2jtW9FtGc9s4rMF7Q/MrT+2nc8vf6T1yom/68cBLz6YsvJC5N72HeasWMnfluyve3ihRmfFqS5Fqcax0jSxOgYGISPlir1YUFHwSFa5fX1AoytZFPVqei/rrQZYzYsH3aNS6el6xd3SUso4Ro0dy6YorBp2vqXUMTa0v0D73SkZMvoPe/as43fsmI5ob6XnpMHt2PMvJo29w4uAxnr53J/NWLeTk0V4OPtcNQOP4UbReci4Nw5J55lFtYFDL45OH6phJpjHr+0JEJMsSKzmIKjUodgFXQ7Bo1e4X7dfqZK2tQZRgNaNaBzJJNpIf1tjE6OkbGdHcCMCY9vH93sx89MXXObL3YF81pXPeMS2RwCArVR7TrFJWCQUGIiL5kFhwMNDT7qibWr1kZLOSkYBs1iHOyr4pV9Z7k4orQEjTyLGjuODDc/o+7/v9LnoP//9lZ82Tx8a6/mA3mlHHvtLzodprXZbPw6zI4u+gXu5xIlJ/UmmQHBTOxBS6Pc1iRrZUcTeorqebSl4yNuXWtc+CvKQzSrHgZvy0FhrHjfLmOXSc7r/t7ZvWMDLRWpL9XoxVqahrXbm/8awHq1mQpQc1kM2HNSIikIHgoN7EXfUk74FT3uUtA5a39AZFBQhmxvQPXgx29rwTZrT2BQ31QL/x2slSQBDlS1/cUVcPfEQk/zIRHNTTU684t0MZhoHFmQmox2o6Sao08xP1e2puG8e0xRcxvHE41mBMmNHqBQwJK5wL9XLtGgoGOlaFTHrhXM1aSYOISFKSLYcXiVGhR504Mmt56A0miwq9a1UT2AaPa+Fvy+w2Wma34ZzDzAZfSAx0PuTLYMer8Dbx8LlaLAis5cvvNm79T9nfERGJi4KDmNRLxiGPde3jMJS3vRq1yPSE398QDNTSCgzSoJKKypSzv8rtOKMWCr8RPYAQkazIRLWiehPHBT4PdVKzUASvm+vAqjlGlXy3FsejVg1/805V27JvKJ+fAmbWYWbOH94fMX25P+2qGq/XBYYzZva6mT1nZpvNbHGVy55kZuvNrKM2qZU8UHCQE2m1NyjWHqSUN8VKNlValzrNjE8wY1zshWxDSZa2v17r5pfbba0CAwn5RsLr+wtwHfBJYDXwa+CdwG/M7JdmNrrC5U4C1gEdtUik5IOqFUlJigUIeqqbL3k+RsG3qkP/82+wz/Uma9tXz9We4gwG4mwrJal5AphnZtc45x5KaJ1dzrn7gyPM7Ct4QcrXgA3A9QmlRXJOJQdSkfCNTDc2SUJUo9CBnlyn8UQ7ySqAWXhqX+yYpKHSfZ/2PpS6cy+wD7jNSmgYZWZtZvZDMztgZr1mttvM1prZiGoS4Zw745y7BXgMWGZmMwLr/JCZbTWz//rr7DazTWbWHpinA9jtf1wXqLp0nz/9fDO708yeNbMef/hjVJUqyReVHEjFFBBIGor1GpOl8zGq15s4lbIPwp0L1LKzgTSrfeWhPdZgVHpQd07iPbG/B/g48ECxGc1sIrATOBfv6f4u4CrgNmAO8LEapOdHeNWC3uuvA+BTeHnAjcDLwCzgM8B8M7vUOfcG0Al8Gfgu8BDwC/+7//b/XgYsArYBe4BxeFWbfmVmi5xzj9Qg7ZKCioODE6/21DIdIiIV6TlwbdHxjW1rgJX0dn8rsfR8c827WLrkTnoOHK75sgvb2ti2pm+bvG309Hb3X2dh+qm9zwTGruz3uRb7qJC+YsckDl1PPhFKw9n7ILh/gMjtPOWeIenzJCoNUccvylC7/3Z2dqaxrlkRD/0POOcOlLio+4CvAuvN7GfOudNF5lsNTAWWOOd+4o+728w2AJ8zs8XOud+Wmv4invb/XhgYd61z7lhwJjPbjlfKcA3wY+fcy2a2DS84eCpcbQnY4Zx7MLSMHwD/BG4GFBzklXOurAGYAhwDnAYNGjRo0KAhleEYMKXce3ieBtLLb5wsMn79IOnt8Of7tP95mf/5ev/zcv/zVYHvdAIvFNl2B9xdwn5ywP0DTL/An+eeiGmG98S/1R9eA74X8d3Btn0U0OIvYwNwKO3zR0PlQ9klB865fWY22z8BREREJHmvOuf2pZ2IOKWY32gAzkSML7XUoGALsAZYa2ZbiswzDfhdeKS/7T3+9GqN9f8eKYwws7cC38arFjQmNP+EUhbqt4m4Fa+HpPNDk10lCZVsqKhakX9BquuLkoiIiKQrz/kN59wZM1sP/BSvjn9vJYupQVLm+H93A5jZWOAPwCm8tg27geP+uh6g9M5qvg98Hq+k4E/AIeA0cAOwtAbplpSoQbKIiIhIPB4EngS+DtweMb0LmB0eaWZvwXui31WDNCzHKwl52P98JdAGLHTOPRZYZxMwMfTdgYKTpcBm59wXgiPN7MYq0yspU1emIiIiIjFwXoX8tcB5wIqIWbYBM8ws3CvR6sD0iphZg5ndjtcWYpNzbo8/qdA4Otzi+mb65wsLjZbDQUNhOWctw8xmAldXmGTJCJUciIiIiMTEObfdzP4KXB4x+Tt43Z1uMbMrgOfxnux/FPi5c+7hiO9EmWZmy/z/m/EaEl/t/90OBJ/u/xl4BdhsZncBR/11XgYcDKW928xeBJaY2fP+9C7n3OPAVuAGMzsG/AOYjlfNqBOYW2K6JYMUHIiIiIjE61agX5ekzrnXzGwBXpWjJcAkvDYW64By+tZd4A8O6AH2470/4SYX6grVX+f78LoovQWvBOBRvBKGRyOWfZ0/7x1AI7AJeBxYBZwAPoLXzuBfwGfxqkkpOMgx80q8RERERERkqFObAxERERERARQciIiIiIiIT8GBiIiIiIgACg5ERERERMSn4EBERERERAAFByIiIiIi4lNwICIiIiIigIIDERERERHxKTgQERERERFAwYGIiIiIiPgUHIiIiIiICKDgQEREREREfAoOREREREQEUHAgIiIiIiI+BQciIiIiIgLA/wDOQsb9NQTxswAAAABJRU5ErkJggg==", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "ax = xhgis.land_use_plot(gdf, unique_id=\"Station\", idx=2)" ] @@ -1566,24 +284,9 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0f2b3eedba2140ca97cb7224f6c01cae", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "0it [00:00, ?it/s]" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "datasets = {\n", " \"era5_land_reanalysis\": {\"variables\": [\"t2m\", \"tp\", \"sd\"]},\n", @@ -1619,433 +322,9 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
    \n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
    <xarray.Dataset> Size: 21MB\n",
    -       "Dimensions:  (time: 262968, Station: 3)\n",
    -       "Coordinates:\n",
    -       "  * time     (time) datetime64[ns] 2MB 1981-01-01 ... 2010-12-31T23:00:00\n",
    -       "  * Station  (Station) object 24B '031501' '031502' '042103'\n",
    -       "    source   <U20 80B 'era5_land_reanalysis'\n",
    -       "Data variables:\n",
    -       "    tas      (Station, time) float64 6MB -23.29 -23.28 -23.49 ... 2.389 2.339\n",
    -       "    pr       (Station, time) float64 6MB 0.0 0.0 0.0 ... 0.003698 0.0006662\n",
    -       "    snd      (Station, time) float64 6MB 55.07 55.07 55.07 ... 64.58 64.21 63.84
    " - ], - "text/plain": [ - " Size: 21MB\n", - "Dimensions: (time: 262968, Station: 3)\n", - "Coordinates:\n", - " * time (time) datetime64[ns] 2MB 1981-01-01 ... 2010-12-31T23:00:00\n", - " * Station (Station) object 24B '031501' '031502' '042103'\n", - " source \n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "
    <xarray.Dataset> Size: 54kB\n",
    -       "Dimensions:               (Station: 3, time: 30)\n",
    -       "Coordinates:\n",
    -       "  * Station               (Station) object 24B '031501' '031502' '042103'\n",
    -       "    source                <U20 80B 'era5_land_reanalysis'\n",
    -       "  * time                  (time) datetime64[ns] 240B 1981-01-01 ... 2010-01-01\n",
    -       "Data variables: (12/75)\n",
    -       "    tas_max_01            (Station, time) float64 720B 5.1 3.616 ... 3.161\n",
    -       "    tas_max_02            (Station, time) float64 720B 13.23 1.781 ... 3.544\n",
    -       "    tas_max_03            (Station, time) float64 720B 11.61 10.72 ... 12.78\n",
    -       "    tas_max_04            (Station, time) float64 720B 19.4 20.66 ... 25.98\n",
    -       "    tas_max_05            (Station, time) float64 720B 24.39 28.17 ... 32.24\n",
    -       "    tas_max_06            (Station, time) float64 720B 29.32 28.33 ... 25.42\n",
    -       "    ...                    ...\n",
    -       "    snd_mean_10           (Station, time) float64 720B 0.3611 ... 0.4031\n",
    -       "    snd_mean_11           (Station, time) float64 720B 4.29 2.369 ... 7.307\n",
    -       "    snd_mean_12           (Station, time) float64 720B 44.07 5.757 ... 52.67\n",
    -       "    snd_mean_spring       (Station, time) float64 720B 6.949 92.08 ... 33.31\n",
    -       "    snd_mean_summer_fall  (Station, time) float64 720B 0.1345 0.1227 ... 0.7276\n",
    -       "    snd_mean_year         (Station, time) float64 720B 14.36 47.45 ... 25.75\n",
    -       "Attributes:\n",
    -       "    cat:variable:          ('tas_max_01',)\n",
    -       "    cat:xrfreq:            YS-JAN\n",
    -       "    cat:frequency:         yr\n",
    -       "    cat:processing_level:  indicators\n",
    -       "    cat:id:                
    " - ], - "text/plain": [ - " Size: 54kB\n", - "Dimensions: (Station: 3, time: 30)\n", - "Coordinates:\n", - " * Station (Station) object 24B '031501' '031502' '042103'\n", - " source \n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
    Station031501031502042103
    sourceera5_land_reanalysisera5_land_reanalysisera5_land_reanalysis
    tas_max_015.793285.839793.640586
    tas_max_025.7095445.749494.044133
    tas_max_0312.45172612.53172810.525447
    tas_max_0421.22463421.25469319.973493
    tas_max_0526.61874326.6226225.819365
    tas_max_0629.91525429.91423428.824476
    tas_max_0730.53817730.54167429.448428
    tas_max_0829.40167629.39660728.537646
    tas_max_0926.40974326.42007425.724547
    tas_max_1020.43363520.45785919.723571
    tas_max_1114.84029914.88475611.896061
    tas_max_127.1100357.1552065.333868
    tas_max_spring29.2728429.2705428.397473
    tas_max_summer_fall31.17183731.17298230.377644
    tas_max_year31.37376131.37296630.683164
    tas_mean_01-11.098958-11.070966-12.603846
    tas_mean_02-8.575376-8.555364-10.618004
    tas_mean_03-3.011887-2.994205-5.155519
    tas_mean_045.1687795.1935152.977892
    tas_mean_0512.84946412.85689510.543722
    tas_mean_0618.24693418.25092715.93364
    tas_mean_0720.6019520.60527318.610954
    tas_mean_0819.55662219.56029217.645789
    tas_mean_0915.10044615.10998613.367451
    tas_mean_108.0605418.0740526.448969
    tas_mean_111.3300691.348995-0.077759
    tas_mean_12-6.698234-6.672344-7.776868
    tas_mean_spring5.0319985.0471032.825004
    tas_mean_summer_fall14.46616514.47451612.628117
    tas_mean_year6.0281066.0427944.177412
    tas_min_01-28.778872-28.809396-30.041543
    tas_min_02-25.183904-25.231202-26.180241
    tas_min_03-20.468419-20.494124-22.264767
    tas_min_04-7.592577-7.580951-10.628039
    tas_min_051.6425971.65338-1.659695
    tas_min_068.1138888.1269524.091024
    tas_min_0712.1205912.1141259.005369
    tas_min_0810.29727210.300838.655322
    tas_min_094.899944.9000053.395228
    tas_min_10-1.616498-1.610984-2.296447
    tas_min_11-11.544179-11.551885-9.818372
    tas_min_12-24.749929-24.769652-25.083827
    tas_min_spring-24.09364-24.113668-25.060736
    tas_min_summer_fall-6.582494-6.571843-7.22109
    tas_min_year-30.032823-30.080185-31.024786
    pr_sum_0179.06173279.09060263.558415
    pr_sum_0266.88893166.91705851.602254
    pr_sum_0376.44473376.47845264.438532
    pr_sum_0493.79018393.89075771.526317
    pr_sum_0599.6473999.72762186.51231
    pr_sum_06110.389847110.46751489.062977
    pr_sum_07118.354004118.34331796.532123
    pr_sum_08108.421897108.59788696.009423
    pr_sum_09105.164435105.113248100.346083
    pr_sum_10104.317676104.31894296.030414
    pr_sum_11105.9594105.99777794.391328
    pr_sum_1292.27641992.31166272.925842
    pr_sum_spring376.994477377.308115310.340259
    pr_sum_summer_fall552.196939552.293122488.178244
    pr_sum_year1160.7166461161.254838982.936018
    snd_mean_0167.387166.59295979.101277
    snd_mean_0295.08466193.688919113.425968
    snd_mean_0395.80424193.601279130.332078
    snd_mean_0420.81310619.62034259.455446
    snd_mean_050.025170.0219460.88963
    snd_mean_06-0.0-0.00.003253
    snd_mean_07-0.0-0.0-0.0
    snd_mean_08-0.0-0.0-0.0
    snd_mean_090.0000010.0000010.001507
    snd_mean_100.2183640.2134990.825938
    snd_mean_114.6551224.6104968.643051
    snd_mean_1230.77039930.49598939.301119
    snd_mean_spring41.78858440.76941261.98516
    snd_mean_summer_fall0.3198960.3153620.928477
    snd_mean_year25.92351225.43569935.612642
    \n", - "" - ], - "text/plain": [ - "Station 031501 031502 \\\n", - "source era5_land_reanalysis era5_land_reanalysis \n", - "tas_max_01 5.79328 5.83979 \n", - "tas_max_02 5.709544 5.74949 \n", - "tas_max_03 12.451726 12.531728 \n", - "tas_max_04 21.224634 21.254693 \n", - "tas_max_05 26.618743 26.62262 \n", - "tas_max_06 29.915254 29.914234 \n", - "tas_max_07 30.538177 30.541674 \n", - "tas_max_08 29.401676 29.396607 \n", - "tas_max_09 26.409743 26.420074 \n", - "tas_max_10 20.433635 20.457859 \n", - "tas_max_11 14.840299 14.884756 \n", - "tas_max_12 7.110035 7.155206 \n", - "tas_max_spring 29.27284 29.27054 \n", - "tas_max_summer_fall 31.171837 31.172982 \n", - "tas_max_year 31.373761 31.372966 \n", - "tas_mean_01 -11.098958 -11.070966 \n", - "tas_mean_02 -8.575376 -8.555364 \n", - "tas_mean_03 -3.011887 -2.994205 \n", - "tas_mean_04 5.168779 5.193515 \n", - "tas_mean_05 12.849464 12.856895 \n", - "tas_mean_06 18.246934 18.250927 \n", - "tas_mean_07 20.60195 20.605273 \n", - "tas_mean_08 19.556622 19.560292 \n", - "tas_mean_09 15.100446 15.109986 \n", - "tas_mean_10 8.060541 8.074052 \n", - "tas_mean_11 1.330069 1.348995 \n", - "tas_mean_12 -6.698234 -6.672344 \n", - "tas_mean_spring 5.031998 5.047103 \n", - "tas_mean_summer_fall 14.466165 14.474516 \n", - "tas_mean_year 6.028106 6.042794 \n", - "tas_min_01 -28.778872 -28.809396 \n", - "tas_min_02 -25.183904 -25.231202 \n", - "tas_min_03 -20.468419 -20.494124 \n", - "tas_min_04 -7.592577 -7.580951 \n", - "tas_min_05 1.642597 1.65338 \n", - "tas_min_06 8.113888 8.126952 \n", - "tas_min_07 12.12059 12.114125 \n", - "tas_min_08 10.297272 10.30083 \n", - "tas_min_09 4.89994 4.900005 \n", - "tas_min_10 -1.616498 -1.610984 \n", - "tas_min_11 -11.544179 -11.551885 \n", - "tas_min_12 -24.749929 -24.769652 \n", - "tas_min_spring -24.09364 -24.113668 \n", - "tas_min_summer_fall -6.582494 -6.571843 \n", - "tas_min_year -30.032823 -30.080185 \n", - "pr_sum_01 79.061732 79.090602 \n", - "pr_sum_02 66.888931 66.917058 \n", - "pr_sum_03 76.444733 76.478452 \n", - "pr_sum_04 93.790183 93.890757 \n", - "pr_sum_05 99.64739 99.727621 \n", - "pr_sum_06 110.389847 110.467514 \n", - "pr_sum_07 118.354004 118.343317 \n", - "pr_sum_08 108.421897 108.597886 \n", - "pr_sum_09 105.164435 105.113248 \n", - "pr_sum_10 104.317676 104.318942 \n", - "pr_sum_11 105.9594 105.997777 \n", - "pr_sum_12 92.276419 92.311662 \n", - "pr_sum_spring 376.994477 377.308115 \n", - "pr_sum_summer_fall 552.196939 552.293122 \n", - "pr_sum_year 1160.716646 1161.254838 \n", - "snd_mean_01 67.3871 66.592959 \n", - "snd_mean_02 95.084661 93.688919 \n", - "snd_mean_03 95.804241 93.601279 \n", - "snd_mean_04 20.813106 19.620342 \n", - "snd_mean_05 0.02517 0.021946 \n", - "snd_mean_06 -0.0 -0.0 \n", - "snd_mean_07 -0.0 -0.0 \n", - "snd_mean_08 -0.0 -0.0 \n", - "snd_mean_09 0.000001 0.000001 \n", - "snd_mean_10 0.218364 0.213499 \n", - "snd_mean_11 4.655122 4.610496 \n", - "snd_mean_12 30.770399 30.495989 \n", - "snd_mean_spring 41.788584 40.769412 \n", - "snd_mean_summer_fall 0.319896 0.315362 \n", - "snd_mean_year 25.923512 25.435699 \n", - "\n", - "Station 042103 \n", - "source era5_land_reanalysis \n", - "tas_max_01 3.640586 \n", - "tas_max_02 4.044133 \n", - "tas_max_03 10.525447 \n", - "tas_max_04 19.973493 \n", - "tas_max_05 25.819365 \n", - "tas_max_06 28.824476 \n", - "tas_max_07 29.448428 \n", - "tas_max_08 28.537646 \n", - "tas_max_09 25.724547 \n", - "tas_max_10 19.723571 \n", - "tas_max_11 11.896061 \n", - "tas_max_12 5.333868 \n", - "tas_max_spring 28.397473 \n", - "tas_max_summer_fall 30.377644 \n", - "tas_max_year 30.683164 \n", - "tas_mean_01 -12.603846 \n", - "tas_mean_02 -10.618004 \n", - "tas_mean_03 -5.155519 \n", - "tas_mean_04 2.977892 \n", - "tas_mean_05 10.543722 \n", - "tas_mean_06 15.93364 \n", - "tas_mean_07 18.610954 \n", - "tas_mean_08 17.645789 \n", - "tas_mean_09 13.367451 \n", - "tas_mean_10 6.448969 \n", - "tas_mean_11 -0.077759 \n", - "tas_mean_12 -7.776868 \n", - "tas_mean_spring 2.825004 \n", - "tas_mean_summer_fall 12.628117 \n", - "tas_mean_year 4.177412 \n", - "tas_min_01 -30.041543 \n", - "tas_min_02 -26.180241 \n", - "tas_min_03 -22.264767 \n", - "tas_min_04 -10.628039 \n", - "tas_min_05 -1.659695 \n", - "tas_min_06 4.091024 \n", - "tas_min_07 9.005369 \n", - "tas_min_08 8.655322 \n", - "tas_min_09 3.395228 \n", - "tas_min_10 -2.296447 \n", - "tas_min_11 -9.818372 \n", - "tas_min_12 -25.083827 \n", - "tas_min_spring -25.060736 \n", - "tas_min_summer_fall -7.22109 \n", - "tas_min_year -31.024786 \n", - "pr_sum_01 63.558415 \n", - "pr_sum_02 51.602254 \n", - "pr_sum_03 64.438532 \n", - "pr_sum_04 71.526317 \n", - "pr_sum_05 86.51231 \n", - "pr_sum_06 89.062977 \n", - "pr_sum_07 96.532123 \n", - "pr_sum_08 96.009423 \n", - "pr_sum_09 100.346083 \n", - "pr_sum_10 96.030414 \n", - "pr_sum_11 94.391328 \n", - "pr_sum_12 72.925842 \n", - "pr_sum_spring 310.340259 \n", - "pr_sum_summer_fall 488.178244 \n", - "pr_sum_year 982.936018 \n", - "snd_mean_01 79.101277 \n", - "snd_mean_02 113.425968 \n", - "snd_mean_03 130.332078 \n", - "snd_mean_04 59.455446 \n", - "snd_mean_05 0.88963 \n", - "snd_mean_06 0.003253 \n", - "snd_mean_07 -0.0 \n", - "snd_mean_08 -0.0 \n", - "snd_mean_09 0.001507 \n", - "snd_mean_10 0.825938 \n", - "snd_mean_11 8.643051 \n", - "snd_mean_12 39.301119 \n", - "snd_mean_spring 61.98516 \n", - "snd_mean_summer_fall 0.928477 \n", - "snd_mean_year 35.612642 " - ] - }, - "execution_count": 32, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "pd.set_option(\"display.max_rows\", 100)\n", "ds_climatology.mean(\"time\").to_dataframe().T" diff --git a/tests/test_gis.py b/tests/test_gis.py index 68485e13..bbe76061 100644 --- a/tests/test_gis.py +++ b/tests/test_gis.py @@ -181,20 +181,20 @@ def test_surface_properties_xarray(self, surface_properties_data): @pytest.fixture def land_classification_data_latest(self): data = { - "pct_crops": {"031501": 0.7761508991718495, "042103": 0.0}, "pct_built_area": { - "031501": 0.030159065706857738, - "042103": 0.00010067694852579148, + "031501": 0.015321084992280073, + "042103": 1.291553583975092e-05, }, - "pct_trees": {"031501": 0.1916484013692483, "042103": 0.8636022653195444}, + "pct_crops": {"031501": 0.7241017020382433, "042103": 0.0}, + "pct_trees": {"031501": 0.25554784070456893, "042103": 0.8904406091999945}, "pct_rangeland": { - "031501": 0.002041633752044415, - "042103": 0.026126172157203968, + "031501": 0.005029372264907681, + "042103": 0.02405165525507322, }, - "pct_water": {"031501": 0.0, "042103": 0.10998710919246692}, - "pct_bare_ground": {"031501": 0.0, "042103": 2.142062734591308e-05}, - "pct_flooded_vegetation": {"031501": 0.0, "042103": 0.00016197774384218392}, - "pct_snow/ice": {"031501": 0.0, "042103": 3.780110708102308e-07}, + "pct_water": {"031501": 0.0, "042103": 0.08536996982930828}, + "pct_snow/ice": {"031501": 0.0, "042103": 3.444142890600245e-07}, + "pct_bare_ground": {"031501": 0.0, "042103": 1.1193464394450798e-05}, + "pct_flooded_vegetation": {"031501": 0.0, "042103": 0.00011331230110074807}, } df = pd.DataFrame.from_dict(data) @@ -204,19 +204,19 @@ def land_classification_data_latest(self): @pytest.fixture def land_classification_data_2018(self): data = { - "pct_crops": {"031501": 0.7746247733063341, "042103": 0.0}, "pct_built_area": { - "031501": 0.028853606886295277, - "042103": 0.0001139703378492846, + "031501": 0.0157641813680258, + "042103": 3.857440037472275e-05, }, - "pct_trees": {"031501": 0.19468025530620797, "042103": 0.8850292558518161}, + "pct_crops": {"031501": 0.7236266296353819, "042103": 0.0}, + "pct_trees": {"031501": 0.2563609453940817, "042103": 0.9106845922823646}, "pct_rangeland": { - "031501": 0.0018413645011626744, - "042103": 0.005653344569502407, + "031501": 0.004248243602510575, + "042103": 0.004328943199195448, }, - "pct_water": {"031501": 0.0, "042103": 0.10902236193791408}, - "pct_bare_ground": {"031501": 0.0, "042103": 1.8900553540511542e-05}, - "pct_flooded_vegetation": {"031501": 0.0, "042103": 0.00016216674937758903}, + "pct_water": {"031501": 0.0, "042103": 0.08475932329480486}, + "pct_flooded_vegetation": {"031501": 0.0, "042103": 0.0001883946161158334}, + "pct_bare_ground": {"031501": 0.0, "042103": 1.7220714453001225e-07}, } df = pd.DataFrame.from_dict(data) From ff605f517eeec6aea4477a82a9c94f678af0fc1f Mon Sep 17 00:00:00 2001 From: sebastienlanglois Date: Mon, 3 Jun 2024 23:20:41 -0400 Subject: [PATCH 10/14] keep gis notebook outputs --- docs/notebooks/gis.ipynb | 4428 +++++++++++++++++++++++++++++++++++++- 1 file changed, 4397 insertions(+), 31 deletions(-) diff --git a/docs/notebooks/gis.ipynb b/docs/notebooks/gis.ipynb index 10f2a12f..8b41c65d 100644 --- a/docs/notebooks/gis.ipynb +++ b/docs/notebooks/gis.ipynb @@ -16,7 +16,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -47,9 +47,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ae8f2bc0342c4ad1a4c7647294560113", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Map(center=[48.63, -74.71], controls=(ZoomControl(options=['position', 'zoom_in_text', 'zoom_in_title', 'zoom_…" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "m = leafmap.Map(center=(48.63, -74.71), zoom=5, basemap=\"USGS Hydrography\")\n", "m" @@ -65,7 +81,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -95,7 +111,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ @@ -117,9 +133,83 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    HYBAS_IDUpstream Area (sq. km).geometrycategorycolor
    0712003433087595.8POLYGON ((-74.37864 48.88141, -74.37452 48.886...3#41b6c4
    17120398781144026.8POLYGON ((-80.07991 46.77860, -80.08529 46.782...5#081d58
    2712038286023717.7POLYGON ((-73.77437 43.36757, -73.77557 43.388...1#ffffd9
    \n", + "
    " + ], + "text/plain": [ + " HYBAS_ID Upstream Area (sq. km). \\\n", + "0 7120034330 87595.8 \n", + "1 7120398781 144026.8 \n", + "2 7120382860 23717.7 \n", + "\n", + " geometry category color \n", + "0 POLYGON ((-74.37864 48.88141, -74.37452 48.886... 3 #41b6c4 \n", + "1 POLYGON ((-80.07991 46.77860, -80.08529 46.782... 5 #081d58 \n", + "2 POLYGON ((-73.77437 43.36757, -73.77557 43.388... 1 #ffffd9 " + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "gdf = xhgis.watershed_delineation(coordinates=lng_lat, map=m)\n", "gdf" @@ -134,7 +224,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -158,9 +248,70 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    StationSuperficiegeometry
    003150121.868620POLYGON ((-72.47379 46.23340, -72.46888 46.228...
    103150215.708960POLYGON ((-72.50127 46.21216, -72.50086 46.213...
    2042103579.479614POLYGON ((-78.49014 46.64514, -78.49010 46.645...
    \n", + "
    " + ], + "text/plain": [ + " Station Superficie geometry\n", + "0 031501 21.868620 POLYGON ((-72.47379 46.23340, -72.46888 46.228...\n", + "1 031502 15.708960 POLYGON ((-72.50127 46.21216, -72.50086 46.213...\n", + "2 042103 579.479614 POLYGON ((-78.49014 46.64514, -78.49010 46.645..." + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "gdf = xd.Query(\n", " **{\n", @@ -200,9 +351,87 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    StationSuperficieareaperimetergraveliuscentroid
    003150121.8686202.186862e+0727186.9968451.640007(-72.48631199105834, 46.22277542928622)
    103150215.7089601.570896e+0720263.2930211.442220(-72.47966677792694, 46.21359517038631)
    2042103579.4796145.794796e+08283765.0583903.325331(-78.37036445281987, 46.48287117609677)
    \n", + "
    " + ], + "text/plain": [ + " Station Superficie area perimeter gravelius \\\n", + "0 031501 21.868620 2.186862e+07 27186.996845 1.640007 \n", + "1 031502 15.708960 1.570896e+07 20263.293021 1.442220 \n", + "2 042103 579.479614 5.794796e+08 283765.058390 3.325331 \n", + "\n", + " centroid \n", + "0 (-72.48631199105834, 46.22277542928622) \n", + "1 (-72.47966677792694, 46.21359517038631) \n", + "2 (-78.37036445281987, 46.48287117609677) " + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "xhgis.watershed_properties(gdf)" ] @@ -216,9 +445,404 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
    <xarray.Dataset> Size: 120B\n",
    +       "Dimensions:    (Station: 3)\n",
    +       "Coordinates:\n",
    +       "  * Station    (Station) object 24B '031501' '031502' '042103'\n",
    +       "Data variables:\n",
    +       "    area       (Station) float64 24B 2.187e+07 1.571e+07 5.795e+08\n",
    +       "    perimeter  (Station) float64 24B 2.719e+04 2.026e+04 2.838e+05\n",
    +       "    gravelius  (Station) float64 24B 1.64 1.442 3.325\n",
    +       "    centroid   (Station) object 24B (-72.48631199105834, 46.22277542928622) ....
    " + ], + "text/plain": [ + " Size: 120B\n", + "Dimensions: (Station: 3)\n", + "Coordinates:\n", + " * Station (Station) object 24B '031501' '031502' '042103'\n", + "Data variables:\n", + " area (Station) float64 24B 2.187e+07 1.571e+07 5.795e+08\n", + " perimeter (Station) float64 24B 2.719e+04 2.026e+04 2.838e+05\n", + " gravelius (Station) float64 24B 1.64 1.442 3.325\n", + " centroid (Station) object 24B (-72.48631199105834, 46.22277542928622) ...." + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "xhgis.watershed_properties(\n", " gdf[[\"Station\", \"geometry\"]], unique_id=\"Station\", output_format=\"xarray\"\n", @@ -227,18 +851,552 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    elevationslopeaspecttimeplatformgsdproj:shapebandepsgproj:epsgspatial_ref
    geometry
    033.5730090.324613239.0259702021-04-22TanDEM-X90{1200}data432643260
    151.3932950.518484242.4313352021-04-22TanDEM-X90{1200}data432643260
    2358.5498662.500644178.5576482021-04-22TanDEM-X90{1200}data432643260
    \n", + "
    " + ], + "text/plain": [ + " elevation slope aspect time platform gsd \\\n", + "geometry \n", + "0 33.573009 0.324613 239.025970 2021-04-22 TanDEM-X 90 \n", + "1 51.393295 0.518484 242.431335 2021-04-22 TanDEM-X 90 \n", + "2 358.549866 2.500644 178.557648 2021-04-22 TanDEM-X 90 \n", + "\n", + " proj:shape band epsg proj:epsg spatial_ref \n", + "geometry \n", + "0 {1200} data 4326 4326 0 \n", + "1 {1200} data 4326 4326 0 \n", + "2 {1200} data 4326 4326 0 " + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "xhgis.surface_properties(gdf)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
    <xarray.Dataset> Size: 180B\n",
    +       "Dimensions:      (Station: 3)\n",
    +       "Coordinates:\n",
    +       "    time         datetime64[ns] 8B 2021-04-22\n",
    +       "    platform     <U8 32B 'TanDEM-X'\n",
    +       "    gsd          int64 8B 90\n",
    +       "    proj:shape   object 8B {1200}\n",
    +       "    band         <U4 16B 'data'\n",
    +       "    epsg         int64 8B 4326\n",
    +       "    proj:epsg    int64 8B 4326\n",
    +       "    spatial_ref  int64 8B 0\n",
    +       "    geometry     (Station) object 24B POLYGON ((-306224.9316606918 257197.438...\n",
    +       "  * Station      (Station) object 24B '031501' '031502' '042103'\n",
    +       "Data variables:\n",
    +       "    elevation    (Station) float32 12B 33.57 51.39 358.5\n",
    +       "    slope        (Station) float32 12B 0.3246 0.5185 2.501\n",
    +       "    aspect       (Station) float32 12B 239.0 242.4 178.6\n",
    +       "Attributes:\n",
    +       "    spec:        RasterSpec(epsg=4326, bounds=(-79.00083333333333, 46.0, -72....\n",
    +       "    resolution:  0.0008333333333333334\n",
    +       "    _FillValue:  1.7976931348623157e+308
    " + ], + "text/plain": [ + " Size: 180B\n", + "Dimensions: (Station: 3)\n", + "Coordinates:\n", + " time datetime64[ns] 8B 2021-04-22\n", + " platform \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    pct_built_areapct_cropspct_treespct_rangelandpct_waterpct_snow/icepct_bare_groundpct_flooded_vegetation
    Station
    0315010.0153210.7241020.2555480.0050290.000000.000000e+000.0000000.000000
    0315020.0095260.6707920.3126800.0070020.000000.000000e+000.0000000.000000
    0421030.0000130.0000000.8904410.0240520.085373.444143e-070.0000110.000113
    \n", + "" + ], + "text/plain": [ + " pct_built_area pct_crops pct_trees pct_rangeland pct_water \\\n", + "Station \n", + "031501 0.015321 0.724102 0.255548 0.005029 0.00000 \n", + "031502 0.009526 0.670792 0.312680 0.007002 0.00000 \n", + "042103 0.000013 0.000000 0.890441 0.024052 0.08537 \n", + "\n", + " pct_snow/ice pct_bare_ground pct_flooded_vegetation \n", + "Station \n", + "031501 0.000000e+00 0.000000 0.000000 \n", + "031502 0.000000e+00 0.000000 0.000000 \n", + "042103 3.444143e-07 0.000011 0.000113 " + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "df = xhgis.land_use_classification(gdf, unique_id=\"Station\")\n", "df" @@ -265,9 +1536,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwcAAAJ/CAYAAAAtXq9XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAABM5AAATOQGPwlYBAAEAAElEQVR4nOydd5wdVfn/P8/2lt3NprfNpvceIJRAAAENglhAwAIKiEaqit2v2FB/ipAgYAQBBSkiGgtBekIvSUghvW02bTfZbLK97/n9MXfuzp07vd+7z/v12tfeqefMmZkzz3POU0gIAYZhGIZhGIZhmIywK8AwDMMwDMMwTDRg5YBhGIZhGIZhGACsHDAMwzAMwzAME4OVA4ZhGIZhGIZhALBywDAMwzAMwzBMDFYOGIZhGIZhGIYBwMoBwzAMwzAMwzAxWDlgGIZhGIZhGAYAKwcMwzAMwzAMw8Rg5YBhGIZhGIZhGACsHDAMwzAMwzAME4OVA4ZhGIZhGIZhAKSBckBEgohE2PWwChEtitX5kbDrEjZEVBFri1Vh10UPIloVq2OFxrYriGgtEbXE9qmMrb89tnx1wNU1hIiujtXr9rDr4hVEVJlK738UIaKPE9FqIqonoobY74/bOP6Lcj9MRN/V2F5KRFcS0eNEtIWImomokYjeJaKbiShb57yTiOhWInqSiPYoyhjq5TUR0WgiupOIXiOiA0TURkRNRLSOiH5ARAVW24JhGCYdSHnlgGHCgIhOAvAYgMkAXgDwZwB/D7lOj8SEp0Vh1iMVCVtxCuveEdFNAP4D4DQAbwF4BcBJAP4T22Z2/EAAdwIwUtC+BeCvAD4LoCVW3nsAZgG4G8ArOgL41wD8LnbcGGtX5OiaZgD4BoAJAHYC+CeANwCMBfBzAO8QUanV8hmGYVKdrLArwDAR54sACgAcVK2/CJJyfaMQ4iHVtt8DeBLAYf+rZ4t/AngHQG3YFWHCh4gmQhLs2wGcLYR4W7H+LQB3EtFzQoidBqe5C0ARJOH/8zr7NAG4A8B9Qoj4e0REEwC8BOAMAD8E8H3VcZsA/BqSIvE+gNcBjPbhmtYCmC6E2Kw6VzGAfwA4F8B3Y38MwzBpD88cMIwBQogqIcQ2IUSnatPI2P89GsfUxo6p97+G1hFC1MfqxcoBAwA3Qxog+oMsRAOAEGIHgF/EtunOHhDReZAUgp8D2K23nxDiV0KIHygVg9j6negVuK/QOO5PQojvCiH+IYTY79c1CSEOqxWD2PoGAD+OLZ5jsXyGYZiUp08pB0Q0jIi+HbM/PUhEHURUTUT/iJmJaB0Tt2kmomuJaCMRtcaOW6433Ryzp3+CiI7F7FffIqILHdTZ0C5fz76diAYQ0R1EtDlWfj0R7SCivxDRyRrnGUREvyWi7TGb2+NE9BwRnemgzkREnyOil2PX3xazGX6ciE63cHweEV1DRP+KHddKRCdiNsGX6xyTTUTXE9F7RFRLkh9AJRH9V30MERUS0XeIaH3svE1EtJuIniaiC1T7JvgcyOYnAL4U2+VV6rWFvjq2j67PQayeS4jozVjZLbH78gARTXfaBrE6XaVRp6S6k4bpDBEVENGPiOjDWFn1Ju3t6L0ICiK6kIgeIqKtJNmcNxPRBiL6PhHlqvZdBeDh2OKPVW13tWrfGUT0V5L6j3YiOkRED5O2TwoR0eWxdqyOvQf7ieglIvq6Yj/Te+cTsg2+ljnc07H/F2kdSET5AP4AYCuA37iow4bY/+EuzqHE8TXp0B373+G4RgzDMClGXzMr+gSkaepdkKasGwCMB/BJAB8noo8LIV7QOpCI/h+kUan3AfwPkj3rVwBMIaKzhBBCse84SFPYgwHsALAOks3sfyB9UH2FiIogmY+Mh2RD+3xsUzmkEbo9kKbq5f0nQ5reHwFpBHAlgAGQRsvOJ6IvCCEet1h2JiSTms9Amtp/A5IZSzmkdu4A8KbJaSoAPAigBsC2WF2HQmrzhUQ0WQhxu+qYRyHZJtdCavuW2PUshGT28KSifi/EznUAwKpYnUZCEiya0dteWuyC5F9wBoBxsX2rFdt0IaJCAM/F6tQEyUyiEdKzcTUk06UPHbaBXp0QK8uoXv0AvApgHoCjAP4LoBDS/V9IRAuEELfoHGv5vQiYP0G6hs2Q3vViACdDGj0+l4jOF0LIgt//IPWFp0MSVtcrzhO/p0T0aQCPA8iBZIryFqT2vhrARbHrVY5A/xLAdyDd4zcAnAAwDJKt/XgA98b2c3zvnBJT3spjix+otwshDhBRLYDRRFSiMQv2E0g2+YuEEB1E5LQqY2P/qw33soAH16Q+XwGAH8QWn3NbP4ZhmJRBCJHSf5Ac4YTFfWcAmKmx/gJIguwuAKTaVhkr4xCA2Yr1AyEJ3gLAOapjno+tvxdAhmL9tXJ9ATxisc4Vsf1X6Wy/Pbb9asW6q2PrlmnsPxiSfa28nAlJeBKQpttJsW0OJGG7CcBgi/X9YexcGwGMVm0rA3C62bVBUkzOV7ZdbP0YAHshjeZVaJznPQB5qmPyAZyqWF4U23eFxvlLAMxTrVsV279Ctf6R2PpFVu5JbP2DsfWvABig2jZCWbbdNjCrk+q5uF21/p7Y+hcBFCnWT4aknAgAi92+F378yfXQWH8JgELVun6QFHQB4ItW2kbV7s2QBPwzVdu+KD9/inV5ANpi96pMtX+WxjkM750P7TYzVl6dwT4fxPaZoVo/G0AngIc0nvnv2qzHi9Dpq/TuNYChXl9TbFv/2H14BMCzkPo+ua/ID+K+8B//8R//ReGvT5kVCSE2CSE2aqx/HtKU8zgA05MOlPiREGK94phaAPfHFuOmN7FZg/MBHAfwbSFEj+KYByGNNvrN4Nj/V9QbhBBHhBAfKlZdBOmanxBCLBNCCMW+HwD4GaQRWD1nwzhElAPgm5A+qF8WQuxTlV0nhDCbNYAQ4pgQ4gVl28XW74U08puBRNMA+XrfEkK0qY5pFQrbY8W+qzTOXy+EWGtWPycQ0TBIAmgrJMH0mKrsg8qyHbSB03oVArgGQA+AJUKI+Ei1EGIbJHtyQN/23NJ7ETRCiBVCiGbVukYAt8YWP2HzlDdDckz/thDiNdV5/wJJgDyJiObGVhcDyAWwQQhRp9q/S32OECiK/W8x2EduP3lfeebtAQD1AG5zUwEi+iqAj0BSuH7l5lwxHF2TgkJI5l1XAVgMSUH/O4CvCCFaPagfwzBMStDXzIoQszf+KCQTg0GQTAQAaVYBkMLZbdI4VMvcaEfs/zDFOtmmfqVaOInxJCTTCz+Rhcw7iKgLwEtqoVnBebH/K3S2vxH7r+mToWI+gFIAa4UQayzsbwgRnQFppH8EpJFYQm9bT1Dsug3SR/9LRLQZwD/UwreC9ZAE4duIqBrAszGh0W/OhjRLs1IIccDqQTbawCnzIM2uvCO0o9I8CmAZgNOJiJTKYwyr70XgkBQNZzEkE55CSAqVbP9it+3k9+RfOtvfgDRbcRKAdUKII0R0AMCFRHQbgL8KIQ7ZLNNP5HYwMvvSshW6GdJ7/mWDd8y8cKKzACxF70CCF23j9Jqkg6T3kkiykRoJ6Z7/AsBGIloshFjnQR0ZhmEiT59SDohoBoB/QzJD0aOfznotgU4eZVU6OMqOdVU659Fb7xlCiJeJ6C4At0Ayo+ggovWQBLk/CSEqFbtXxP4/RURPGZx2oIWiR8X+60YusQIRlUAKIWgUISR+n4QQDUR0HYA/xv6WE9F2SHb0fxFCvKPYd0dMWPsVgCcAdBPRh5B8Lh4WGlFLPMJW29htAxfIz2ul1kYhxAkiqodkclUMacRYidX3QhfSTgi4QgixwsrxGucjAL+FNEugJwzabbuK2P9qE/t65XtyFaTBgP8H4P8R0V4ArwF4XOj4NtmFpKRjk1WrtwkhzEbiZYW40GAfOfdAU6ys0QB+CukaHrFX016IaCakwYgcADcJIf7p9FwqbF+TFjEFeD+Ah4hoIyT/rYeJaLaGcswwDJN29BnlICYw/A3SR/4Psb89AJqEEIKI7gDwPegIEzY+ClZGr7xE0zRMCPENIloOyXziXEgzGicD+DYRfVYheGXG/j8H4IhBOdts1Mnttf8aklD8GoD/g+Ske0II0U1E50Py6Ui4T0KIJ4joJUjXez6AsyAlUfoaEf1GCPFtxb6/I6KnIY30ngfJQfibAG4lopuEEPfCP6y2je02CKBeSft4JCxdpbGuEvqzWWZ8FlJSqwOQFOS3ARwVQnTGTN/aYb/tMiFd/19M9osrl0KIV4hoPCRH949CeiavAnAVEf1NCPFZm3XQQj6vktUwN9ORByn6E1GhziznSNW+Z0MSvAdDiqqk3Lci9v8rRPRRAG8IIX6oPmHM7PJ5SDOMtwsh7jGppx2cXJMhQog1sYGGmZD8TpJCFzMMw6QbfUY5gDS6NhnAGiHE1zS2j9VY5wR5eny0zvZynfV6yCH0tGxkgd4R6SSEENvRO2qZB+DrkEZUl6NX8JJHfv8ghPi3zbqpkWORj3d5nk9Ccri9WCRHFNG9T0KIo5Ccfh+MKYMXAHgKkgnRI0KILYp990NyxL2HiLIAXA4pnOXviOivQogTLq9Bjd22cdQGDpCfV80MtLEZjBJIZlu+mF8JIbxUcgCp7QDga0KI/6q2OW27A5B8km4SUvx7S8T2fTz2ByJaAMm/6bLYM+kqCo4QYpHD404QURWk/mgOes0HEavnSEizIFUaz5/cl2oxJvZ3Qr2BiIZDckAeCmCpEOInTuquh8trMkLOCzIIrBwwDNMH6EsOyf1j/5PMIIioP3ptit0iO9wujjl7qtGMG29ALaTIIGNiQmyc2CioetRQEyFEmxDiTkhZewcTkeyY+1Ls/yU266XFGkhCwVwimufiPP0BNOp8wC+zcgIh8T9IUUcAfUdz2UH0MUjhOHMATLRZXyusgiTsLyaiERb2d9IGsiJpR+lfC8lJ+uSYjb4a2RH9jRQyqZDfda3EWU7bzpP3JGbi9mhscYZik5N75xb53fiMxrZLY//jypUQ4hEhBGn9QQptCgDfi627RHmyWB/7PCTF4WH0OoZ7ja1rMoOkLMlzIM0a7XVXNYZhmNSgLykHuyA5op6jFIJiI+p/gBRm0zVCiF0AXoYkoPyKiOJtTERfgk1nZCFEBySb1zJII//yubIB3AWNEV8iuiQ2QqlePwfAEEgjwMdjq/8OyWToapISg2Wrjskhok/F/DWs1PUuSCYbfyKihFkNIiojC0nQIDm0lhJRgtkFEd0KybQh6bpidVTXvT+AU2KLVbF1ZxPRR5T3JbZ+NIApkIQAyw7DVok5XP4FkvPvI0SU8LwR0XBFpBvAZhvEkGcBJtmoVzOAhyD1BfcqFVoimggpNC0gzbKkCrJD9FdIYftCRAuhH2HHrO3uhKRE3UVESVGiYs/2EpKSg4GIyklKOleg2i8XvfdPadpi+955wFJICutXlf1FrH/8QWzbMreFxNpgJSQF/W8ArvNR0bR9TbH7NlOj3iMgzfj0gxS4wMjskmEYJm1IG7MiInrHYPNdQoiniOhPAK4DsIGIXoH0sV8IyZ74EUihJr3ga5BmEG4AcB4RyUnQToGkiHzV5vl+CmnU7e6YsFgNKcpMAaQESmqb7UUAbiaig5DiejdAcjw9A5IQ+CMhRCcgjZoT0Sdj5/9V7LiNsWNGQTIfKIVkqqEVxUnNHZBG2i4BsJOIXkdvErS5kMx8zMKZ/hLAYwCeJCmT7AFIiaMmQ1I+1KOOowE8A6CeiNZAap9SSPe2GMA/FU7Js2LnOEpEawEcg2QucCakaEB3+xhV5ubYNXwEQGWsbZog2WvPhRQZRY6IYrcNAMn5/P8A3ElE56HXHOI7JpFlvgdgAaTZsz1EtBq9SdDyIMWgf9bg+KixDNK7vATAotjzPALS838ngG9pHPMOJJ+bz5CUMXkPpMGEh4QQbwkhdhLR5yHdk3/H7NC3QlKERwOYCmnW6XFI/UoZpBHye2PP5AFIbXoapOftPUgO5zJO751jhBDbSXLO/x2A14noRUgzGOdDUmK/ETNNdMsvID1f3QC6IA0caNXnauVyTFm+T7FKjn71LBF1xn4/KKQQ0W6u6TJI92kLpIGSTkh93zxITvWbISX2YxiG6RuICCRbcPOH3qRiRn+3xPbNhOSouBnSB7wa0sd+NPQTV1VCJ8kaehNqPaKxbSwkQbgOkr32OwAuNjrG5DovhCRQtEESaJ+CJFQm1RtSkqLfxvaviR1TCSkM4yKd8/cH8GNIoT6bYnXeFTvmaiiSY1moawaAL0HKAFwfa+s9sbZWJiSrgE6CN0ghKN+GpKQch2SrfJZW+0GyYf4BpBmb/ZAcTqtj5X8RQJZi3/GQcje8AWm0th2S4PYCgEs06rEKHiVBi23LheQk+76inbdD8gOZ5rQNFMdcCclUqAW9z39FbNvV0En0BUlw/T9I70ZbrMzXAVyhc48r4eC98OH916wHpFmgf0N6/pshKV3XKfqMSo1j5seegxOQFAOt/mACJAV/d6ydTgDYAmn25ULEkghCGm3+JiQzl72Q3oGjkN7JG6GRVMvo3vnchhdBcnxvjP29DsnXxc455Gc+KQma4l0x/DN4joz+kp5lu9cUu29/ij37dZCUg1pI7/6NUCVW5D/+4z/+S/c/+UPGMAzDMAzDMEwfpy/5HDAMwzAMwzAMYwArBwzDMAzDMAzDAGDlgGEYhmEYhmGYGKwcMAzDMAzDMAwDgJUDhmEYhmEYhmFisHLAMAzDMAzDMAwAVg4YhmEYhmEYhonhKEMyEZUDGOhxXRiGYRiGsUatEKIq7Er4TUjyRp9oW4bRw3YSNCIqz8jO3NfT2e1TlRiGYRiGMaEFwJR0FmKJqDy3oGBfe0tL0EWnfdsyjBFOZg4G9nR244b7H8OICVPiKx9/8kbvasWkJFdefk/Sur72XOQO/Z7utvbqXwZYE8boXsjwPQmWW17aCQC4+yMTQq5JatNa24RdKzYWQBpRT2cBdmB7S0uSvOEnB3duxe+/9vm+0LYMo4sjsyIAWL32PvzgM2/Gl4tWl3hSIcY5eeX3oa1qSWjl/3v1D3HzTSvjy0uXLUbRsL71XOSVT9fdlk3JbaFuL8Y7jO4FALRVLUF2H3s+AemZC+tZm5SXg9sunYmikOvhBvmdTcW6pyojJkzBmFlzw64Gw/QZXDkkc+cYHfLK7wu7Cgnws2GOUjHoi+X7TZiKcpTbNqh3M6/8vqR+6bZLZ8Z/L19RGUg9zDC7VzfftDLhz+pxDMMwqYrjmQMZvz80PLJqjbaqJfGPcZhCUV++R24VtCBHUuX3Si3g9KX7J98vP96XvtSOWlh5F8Lsp+wi30/1+5Kqsx8MwzBGRDqUKY/MMKmGG4EnaMWgL9BWtSSlhNCg8PMZUCoGbVVLIv+8mb13RttZMWAYJh1xPXNgFS/sNOVRGp5N0IcFofCQ2155D/RGp70UmLRGafk5iBZRHGH2ok5aM5Xq5182H/JzpiYovL6H7L/AMEwU8XTmQE/g8dJOU2tal5HQEkC5fcLFz5FrLZtu5TY9li5brCmMpIuAIreLURvI9yWVBVU36D0DTLDwPWAYJoo4yXMwF8DaGdeelhSJxmgUxK5ts9aoltV16Y6e0KMl6PDIVLRxen+s+jf0NeFX3S6yL456HRMc3P7e03S4HpsefAsA5gkh1oVdH7+Q5Y1fvrQ2sGhFezesw/c+Mg9I87ZlGCM8NSvSE3C8Gr3WG+1kAVgfpSMdt0/08POeKIUwu/dfbTeeCmgpTFGL4tUX0VLQGIZhmOjiq89B0CYtQfoihCFsu/nAsmKQPjiJBONUMbBDmDblXkTH+c3TGxNCbYZJuo22KxWEsCOqOSVV680wDGOXwByS1ZgJ11EWZtVhIP2uqx0zIqbv4fVzoBTkrJ5b+YxGTYiyUpffPL0xgJo4J2pt6pZUu55UV2wYhmHs4GsoUz0zoCAE/3RxxPV7Oj5d2qmvENSIsh1n3bDNecwcj60SlVkDmXRzmE7la0nlujMMw9gl0JkDt0pB+4lWHHhjF5oPN6B03CCMWDgOmdmZHtXOOupwql4Rhl0u+2xEA74HzvDqnYmiYqD1O9VJZfMi9p1gGKav4LtyoCfs2BGCWuuacWD1LtRXHouvO7LhAI5sOICyiYPxn8zf4iNXXY/8on4Jx/nlgxD2aLvXH1RZQWCn5XAxa3uvBBOv77MsNPkt6NmtdyoJnn2VVFQQGIZh0p1IZ0gGgK62Tmz+87sJioGSjoNdWHn/7/CNBZPw4iN/0D2PlzH/ZdOoMGKFG32c3FyfV9fiZU4LxhgngorSX0br/ji9Z0EoBnZgIS414PtkDM9UMAwTBpFWDjpbOrD+/tcT1pWOHYhxF81AZk7ypMdffnILHv7ujTi4Y6vuOaMssBp9KGX7Y7P6y0Kf2mk6SMIuPxWxopgpE3e5UQyUZSrX5ZXfF+mZI626abUFC5xMOsCKAcMwYRFatCIr7HtxW8LytC+cjPyBRQCA4tFlqN10COXFJ2HDK/+L7/Pef5/Be/99Bvd8sA9Z2dma5w0y5Kld1HatbkJSagnofl+vWuAMqn3DDKOZKpjdiyi3XdTeUxk2xXNOlJ83hmGYvkykZw5O7KmN/y6bNCSuGABAZnYmhswdha8uewhf/PndaGquQ1FhWXz7gW2bLZURxZFtp6PDVkyDgrjeMMytGGek230KWuBMt/YLEh4Ztwa3E8MwQRPpmQMlFedP1lwvj1SPmTkXP7n4zPj6UVOmG+4v/wb61uif19dpNEsQZJvyKGTfhu8/wzAMw3hDZGcOhBCgTAIA5A8sQkaWccjSY4cPAACamuuw+Ku3IjOrV+/Rch5W/7Y6oh6FmQajOljxSWAYL0kXH5O88vt4lNZn2PzPGurnkJ9NhmGCJLIzB211LRDdAgCQXZBjuO/SZYtR+eJWNDXXAQA+rPkP9ix71XaZVmYQ9LYHHafezLlUD6/rp5x9Yfo2qTwDF+UMz+lIugm6QSg9/EwyDBMUkVQOhBDY9/L2+HJGlvkER/uJ1vjvgkFFBnsaC8hOBRxlrgA75bnB7nn9FNxSVSgMgnQXNv1KChgU6SaoRhGtNvbqnQh7NoKfH4Zh0o1IKgettU1oOngivjzyzPGmx7QcbQIA5PTLtV2el9F1tAQlr0dUjRLL6QlpLLyHRzorBjJRf760BEgjoS7dFbogufmmlVi+ojJhnV7bas2I6qFleuPnPVNHkfNLKfBTkWIYhrFC5HwO8srvQ79JyxLWZWQb+xt0NLWju70LAEBEvtXNbHRU/pBpfdCCGlkNKzkbk7p4/WxGbRZBbTJk1X6b7by9YemyxQnCrZGgq+cXFjZaioif52cYhgmTyM0c9HR14MSOdxPW1e+pxaCZI3SPObB6Z/x3v1H9bZfpJHeA2XFhxfvXqwvD+E3QfjdmpILA1ZdmKKxep5vnJ+z2dFO+3vPaV54PhmGiQ+gzB0IINB48gf2rd2Ljg2/hrdtmYvujtyTsk1dWYHiO1rrmhOXOlg6vqwkg+aPlZibBC6yWzzBGePWchDFj5fXovlZ+Eb+VjFRQYtwStdmkKGGkFLBiwDBMGIQ+c3DorT04/N4+3e3jLpyOfiONZwMKhxSjtVZSEGo3H0b93mOYdtUpyMrTzpAcJGEK6MrwkqwoMOmGWYQhedkLG24/nV77ggA4cuFI4NKZnp7TT7t/J2gplX3h3jIMk36ErhzUbj6suy1/YCGGfeTvAIw/oOXnTkLL0Ua0HJGckjtbOnDorb0oP2ei7jGiR6DxwHFkZGUib0ABMrIykZFpfSJFGZ0oLMHbKKyq37MWfYUgo0+ZwUpeL2qh0I4QZmXfqAmeRmiZc0XNxOs2jxUDGasO5kGjVxerdWSlgmGYMAndrKhgUD/N9QNnfwJzv/d+fNmoU83IzMDky+ejbNLg+LojGw5g+98/QGdzO4QQqFlXhb3Pb0HLkUYAwJbH3sOOZ9Zj21Nrsf6+1/HBvavRXN1gWl+1w1xUPr5qeBrfP/RC1vpNVJ+1sDETpGTzDCtmGsr7qnWc1wKoX0JglPKPBCW0sxkOwzCMN4Q+c1Bx/mTs/s+HaDpcn7C+cd+HoIxE3cVoaj8jMwOjFk3Eid216Onqkc6x/zh2/WsjRI+Ihzo9tqUaGZkZ6OnuSThedAtsfWINhi8Yg+GnjjGsc5SFtKg4QQdBECPpepGn0r1tUwWvhUGj+xplwTPqz6M6DGi6YqYIWZmRSuf2YRgmNQh95iC7MBeTL5+HsR+blrBedB/U7ST1nBCzC3Iw8yuno2zSYBQVlqGosAzUlI2MlhwUFZbF91MqBrnFeQnnOPTOXmx57D10t3ehvvIY2htaE7ZHYSTOjCjPaHhJ1My5GHPCmnXpi0S1H4iS+Y9VrAjsbkzdGIZhokToMwcyZZOHYP/qnfFIQx0NbRBCGB6jNZOQlZuNsYuno7zrdLzw0L3Gx5cVYPpVC9DR1I5ND74JubiWo0344L7X4vsNmDIUFedPBmVkRCpEqRZRqw+T/li1b/dSKWDBK3Ww478RZQHbCz8UnjVgGCYVCH3mQMnoj0xKWF5796toPbrf9DitDnfiKacnrSsqLMP0q07BkHmjUH72BEz74ikAgJyiXMy9+WwU6+RIOLa1Gnuf26K5zYnAI4+e8igqk04YPctRVqhTnVRoTyv+AFr9eNRmGaz6rrCQzzBMKhOZmQMAKB03CKPPnYR9L2+Pr1t7x3k4+advIadfmcGRyWx+/RUAQFNzXXxdUWEZutq6MOrMCUn7ExEmfmYOjm48mFC+TN2OIxgw9RhKxgxw5Own26lrHROmDbufIRqZvgfn3mD0kEN7ymahVqNGRRW9mQQjc1iz8zEMw0SBSM0cAMDAGcPRf+LghHXVr15ta9Tp5ptWorO9DQASfA0AYPFHfmh4nkEzR2D21xZi3EUzMHvJQvQfPyi+beeKDQmhV63Y9CpnB8xGVpX7+T2joPbbiNoIXRTgNunlN09vxG+e3pi0Xv2cGr0TrBgw6YbWd8nJDAgrBgzDRAlfZg7cxNgmIoy7cDpqhu3H/tU7AQC1Hx7C4NkjLdt8Ll22GCfN/CLeePqxpG3b330DN//AuH5ZedlxpWDM4mk4ce9qiG7JIaHyha1oqKpLcqCW0YuLb1XYV+7n14wCC73mcBslohWnXksx0IKVAkbG6L3qywIyJ0xjGCZK+Dpz4GYEfNDM4fGkZOqwo3ooPzynXvJZfO4nv03aR55RkOtnRkZmBmZ/dWHCurptNVh3zypTh2k75fhxLOMMPxSDdFI2tN5rtQIgzyCwYsDIaGUQ7gs4vU7u+xmGCQtfZg7UNvlORsAzsjJRNLIUDfvq0FbXgiMbDmDwLPPZA3kEhohwxqevxHt7HsHu/2xCTx0BAOae//GE/a3ULTMnC3NvWoR1y1bF1/V09aCtrgX5AwptXZcWWj4MqSRUWfn4BT0qFrWRuCjVxQ3qZ5RzPjB28CuZXJgor0npU2H3eCWsGDAMEyaeKQd+CAkjF47DtoMn0NPVg/2rdqJoeAkKBvWzZF4k1+Ubt72Au3M+hgvPuB0lg4bgiRVLMO2Ms23XPSMzA1OunI+tj6+JrxM9yTMHVp2VtcpLZyErSGFdbvvlK+yX2VeSNTlFa4bALlFT3JhgSSfFQIkXoU6V6L1beeX3oVN8COAiz8piGIZR4plZ0fIVlUnr3Aq7BYP6YdjJowFIgviWx96PbzMSLpQd9NJli0FEmDDvFAwur9D1CTCj5WhTgmIAAPkD9WcNvBb0vXJS1vt4uRHWvArt95unN3o+YubmY52uQoySvnCNTLRIZ8XQaqhT5f5apPNAEcMw0ccz5cCsM3Qq9A2eW56wXL+31nKZbsuWBfIbb/gv2j4QCZGPJn56NojI8Hi5g9fq6IOeNjab6g5TSLyh/Px4JJyRC0d6dt7rL6kAwAqCEWEIaqkmHMrvjl1zEa/hvCjuCPo+ys+5H897e/UvPT8nwzCMjO+hTN2OgGRmZyK3ND++vHNFYjhFZQdstxM2c5iUt/3u6k/hSOXueM6EHzzxEorLyywlM7MTqcgKURYOnH4Ef1/1AgDgwOsHNKPi2IWdYRmv0AtLGbSSEOX33glBKohhKnVeXKey/mySxzBMELhWDuwmAnPC9KsWJCzXba9BT1d3fFnZWcpKgtq0yKmg+Lvfno8Nr/8vIZlaQXGJ7WtRlu9WcE0VQcHOFPttl870VZhP9xkAhkk1ghBy9ZKUBSVge6WY+DkLwTAMo8YTh2SzvAZuR88pg5CRmREPabpn5WYAQP/xgzD249M1zXuMOlE7QmhGdiZyivPQ0dAbAvWXl12Amx54ClNOXWhwZCJuHbaVbZgKI+L8EdMnle5jXyYqzumpMhgQNdRCeRgR07yA+1KGYYLG9cyBUsDx8yM28dI5SeuO7zqKtXe/iq62Tktlq0fstTpv9XmICJMunYt+I0oT1i+77rPo6UnMv2BkWuSFIBiEqYyZmZQZRqNyYUzvt1UtseV7oK671x9mFvRSg6goBmpYoXRGVBUDntFkGCaK+O5zIGM1xKceRcNKMO2Lp2DYKRXI61+QsG39/a/jP7//jeWkZAASbDi16qkktzgPky6bi7k3npWw/r3//iNp36gKf1ZNfPxQ9sJ25AR6nZOtYDfiCJOe8DPABEHYfSPDMIwaT5QDu6NZToXO/AGFGHHaWEy76hSUnzMxvr6osAwr/3AXjm8/Yuk8Zp2x3uh5RlYm5px1YXy5pnJ3/HdLQz22vv062pqbI6sgyGgJPMp1RlGWvCg7aGVBOeMS9ofYz7ZlvCOqSkHU+5aoEOZ7HnYfwzAM4xbPZw6MPl5ejUoTEQbPGonpX0p0VJ49/lOOzyljVq+9B96NOydvO/4cTtRU4zdf+AS+edoULLvus7j9ooW489fnhfoRt2o+YzRC7qXwqixHWbeglYSoCHysGHiP1rOULkKaOpiBHqw4SITta+CEdHlWGYZJDzxTDsIQePJKC5CVnx1fLuxfZrC3M9Qf3Pb61ni+gwvP+T9879y52PNBb3K2+iPV2PXoZvzvgXvQ1d7peX3M0DOXigpaCklQdY1qmzDmqIV/LQHQb3+RMFA6r/d1pTIKuSbM4JwqDMOkA66VA3XIUL195P28tmmffbpk5tPUXIdXXr4He/+3BQff3G3of+BGOJ0w6fT473u/9nnNfZqa6/DXO27D+vteR9uJFsvn7mukg/DG+I/8fqpDFts5NlXp6wqBTDoI3ezLxDBMquDJzIG68zWLdmPng2c2WrRlw0sAJL+Dg2/uwbGt1Wjc3IhBJ2ZYLsOoburlxuIDmseN+8JUfP/pF5DfrzhhfeX/tjqqh1NSLR52ULHOoyIgMM5Ilec5TIKKHMe4R09J4H6KYZgo4JlZkVlYUHVHaDV6kdkI/4RPzUZTc11CkrKm5jr875Fl+MqXnzI8v53IPTIDJg/F6E9PwOd/eifOuuJLKJ3bHxOuno7s/Bz848VvY9SlozHmY1N763K4HqLHehQlK1j58KeScBCk4MdCZurh5p6p/Vz6CjzjEC30nmE9M8u++Mwy0YaIBBHdHmL5i2J1WBRWHfoSrpUDPaHfaB+jfc1Qd5rZBTmYpJEDAQC+sWASXvrLHy2fyyr5Awpx+qeuQE2/DzB0/mhk5vTmksvIykRxeaLvw9qlr2L/qp3oagvOB4GFg0R4Op9Jd9zkJ7FKGIKrF+UFVWe3iqwSVhBSD4UAK//1ENFxInqRiM4Lu34MYxVPZg7UgpcdwdRK9mSzTrPfyP6YvWQhJn56NqZ+7qSEbc/8v9tx7VWPGx6vVScgMaSpso5m9c0uyEHBoKKEdTUf7MfGB95EZ3O74bFWsTIjEoSwEHXyyu9jpcBjlKZ+LMBEBz+dloO8126frzDedy/aR+v4MKO7Ma74E4AvAPgSgKUApgP4HxF9JNRaMYxFfEuC5reCoCYrNxvF5WUoGNwPEz41K2Fbdk5u0v5KJ0cj0yW1Ha9VJWHK507CqDPHJ6zr6erBtifXGl6HFawKAX09wgl/SLVx2y6sbPUt9IRWP94vrzILB/mM6kXOsuuArOdwbxapi4kk7wghHhNC/FkIcTuAj0CSt24Nt1oMYw1fMyRbEfqV+5phtZPtbOwdnR8zax5y8vMtn+/6Sypw800rLflEGNWZiDBkXjnm3XI2pn6+dzajvaEN7Q1tptcgozd74YS+NovAQqw2XrQLR17pGwQpiPpdlt/n9/K9Uv9mUhshxGYAtQDiI4ZEtJCIHieivUTURkS1RPQMEU1SHx8zUXqMiM4ioneJqJWI9hHRjRr7ZhHRT4noQGy/tUS0mIgeIaJKjf1PI6KVMfOnNiJaT0RXmV0TEZUR0a+J6AMiqleUlRTGMVa2IKLBsd/HiaiRiJ4iov4a+y9SXOcBIvoFgGz1fox/+KocAOHYvrcdl8KHNjXX4UTW3uTtFjtdL0beiQgFg/olrDu6QTvikV4d3KBUCMKeRZDrEpSS4kQY4Kl76/Q1ZbOvkU6Kgd/l+CnEq2cUWGEIjMlENFf1N8zJiYioFEB/AMcUqy8DMBzAnwHcCOB+AAsBvEFEgzVOMxPA3wG8BOCbAPYBWEZE56r2uw/AjwBsAPAtAC8DeBLAXI16XQJgNYABAO6InbcGwCNE9G2TyxoL4MrY8d8D8H0ALQAeJaIv6xzzLICi2L4PAfg0gGWqOp0G4HlIbfMLAHcDuATAr03qw3hIlvku7lGOxLvFSsdYXF6G6jVVAID9r+3Cb3/1EWQX5Lgq12wWxOga1TkX+pUnKcqWUSZFsrKflfoFTVTqoYUc3UYrtj6TekRN0YuSsm5Eqo/iA73vrlbmbK/e61RwdE4Hulf9Fd17XwumrH375Z9/1dj8EwC3WzhNERENhDQAOwbAzwBkAnhCsc93hRDNyoOI6FEAmwBcA+CXqnNOB3CKEOL92L5/AlAF4HpICgCIaDqA6wA8LYS4THHelwH8D5JCIa/LB/BAbP3FoldQuZeI/g7gdiL6oxDihM41bgJQIYToVpzzbkjKy3cgCf9q3hFC3KjYXwC4gYi+LoRoiK3+HYBOAKcKIQ7E9lsOYKNOPRgf8H3mwCvsjFIWjy5D8ejeiEHbnlyD7s5ugyOMy5U/4sqPudaH3Wod1dGMzPBCiFAqN2GN+Jpdhxej9jfftDJyAmG6EmXh1k/cOMvKs5F9te2AaChsqRQBiQmNzwGYp/pbbvHYuwAchTQK/w6A0yGN5v9e3kGpGBBRERENAFAHYDuAxMgqEu/KikHs+PbYuccp9vm4onwo9n0ewBbV+c4DMBDAwwAGENFA+Q/SCH9+rN6aCCHaZcWAiHKIqAzSDMRLACYSUbHGYb9XLa+GpDSNjp1nMIBTADwhKwaxshphve0ZDwhEOfBauLXCuAunIytfMlFrr2/Dnmc/dFyuXdT1JCJkZGfGlzf/5V3DDM5eoRZCtJScKOClKc/yFZXxc9opm6PvMFaxk13dTpSzqGD1HUj10Wyv3vdUbwdGl21CiHWqv8MWj/0dJOH7IgD/D0AugHzF6DyIaBgR/ZmI6gA0QvJJOApgBoBSjXNWaqw7DkA52lgR+79dY98dquXJsf/PxMpV/smj/lrmTXL9iYhuIaJtANogmUwdhWSeBIvXcDz2X76GsbH/2zSODTajbB8nZWYOAHtCbWZuFqZ+7iTk9MsDANTvPYamw/WOyrViCqAWxNWCQNmkIfHfbXUt2P3vTb4qCFFTAIzQi9Lh9bmjil9CY6oIo06xo9B5rfRZfa7MZhtTFbfvVSq8l0bwIAJjwlYhxEtCiP8KIb4Dadbg+0T0cQAgogxIdvUXQRrl/zSACyApFJuhLZvpmT+Qzm8z5DK+FitX6+95g+O/BanuawBcBeBjsWPkWQsn1yD/1xKO7Fwb4xLHPgdXXn4PxsyaG+oHz8yOPqdfHkrHDsSRmAPwtqfWYt7NZ4NI/xnTmqFQRi7SK0/vGJnysyeg9sND8eUTe2qx9u5XkT+gEJSZga6WDlAGYej80SgcXpzkxKysV6oIGVoh/vTwSliwkxHXqlDppyDjpy+In89JmD4sdgQz9Sh/qgulfuOX0Ks8r1dRfezsm4qOyExa8TsAXwXwGyJaCWl2YAaALwkhHlHuGDPPqXVYjhyBZRKAt1XbJqqWd8b+nxBCvOSgrCsBrBZCJEQn0nCQtsOe2P8pGtsma6xjfMLxzMHjTyZF0AoFs9HRUYsm9C4IoL39atPRRiOhR8tuX6sO6nUZWZmYf+s5qDg/8ZlvPdaMliON6GhqR3tDG/a9sh3bnlyLlqNNmvVKF8VADs0a1ghcVEb+UuV+MowSq7H31c79bjMIhx2tJyqmh1defk/YVWBsEPMP+B0kAfcy9I6gJ4xUxkKIOoqIFOPZ2P9bVOe9AMBU1b7PQ/Jx+CERFam2gYgGkdFIqnQN6voPguRM7QghRA2A9wBcQUQjFeftB8nxmgmISJsVeWEWQRmE/AGF8eWjH7wQ/+22ozfLPaClSAycNgxlk3TN+ABIydK2PPae43qFjVoY0PuY2/UPcFoXrWglfpQRFcHBb4xmDfTawOm7rHVcFEZr+8J9toLyfuu9Z2YCfRACv9H5nc40Bvkccrb7tOABSHb5P4DkE7ANwJ1EdDsRXU9ED0EyydljcA5DhBCbIPkLXEZEzxLR14no1wD+Bim6kFDs2wTgy5BmFLYS0c+I6Foi+j4RPQ3gACRnYT1WADgzlqvhOiL6MaTwqfsNjrHCNwHkAHibiH5ARN+C5Hh93PgwxktcKQfLV1T6kjJeiZUkZGadJmX0Krc17/wVPZ3tCduD+NAr6zh28XTMu+VsTLvqFOQPLEJe/wJkF+SgaFhJwjGH3knO0ZAK2P3YB/GRdXqP5bopFT31h1pd/3QXHJ3MdtgNKGDHhC4MZUGZqCpd8MMvI2ylQF2eE6Kk9MvvRVRm7hnrCCFaIEXrmQ4pqtDHAbwB4CYAvwUwCsA5cC9cfxVSfoDZAO6MnfNSSA7Jrao6/QvAqQDeBfAVSDkSvg7Jmfgb0PcRAIBfAfgpgNMA3APgckjOyK6mtYQQbwD4KIDDkHw1boWkiHzHzXkZe7hSDoKyHXWrIIxcOD5huW7rmxZr5xzZBEivXkSE/LJCTPvCyZh+9QLMuv4MTL58HirO6zWrO/T23nhCNyD1HUy16n/9JRWa+/lxrW4+8maRnoJUEMKepbByb7TqZkepMNs3CsJ5OikGWkRNeA/jedcr0+t2iYrywbhDCLFKCEFCiAd1tt8e2/5PIcRuIcTFQogyIUQ/IcR5Qoj1QohFQohFquNIbdsfW3+1EKJCta5TCPFDIcQIIUSeEOIkIcQLkPwQkhQPIcRaIcRnhBBDhBA5sePOE0Lcq4yuFKvD7YrlLiHEj4UQFbFypgghfi+EeCS2b6WqniSE6NJpr1Wq9a8IIU6OnXeEEOIHQogXtfZl/METsyK/OjarNvZm+xWPLkNOUW58ufa9n3mWol4vXKgVPwQtBk4fjqy8Xj/xHX//wHGOBi/xIuSn+h5df0lF0rqwnK61ngG950J5j5WKjNKMyi+hKgpChNG90bpuv5TadBfOg8TIZMbqM+32fgSZGM1sXdCoky+q4fwYjFViyc3U6xZDmrF4OfgaMamIa+XA7KNxQ/n5kZiWzenXqxzU7+3NYO51IiMrwq1ZmTOuPR35AyX/oI6mdmx97D30dPcklREkXgu8Wu0X9nXZGf03ewZSfZbHDepnxUuBpi+3a1A4iSoWBQHba8KaNQj7W8mkPEuI6FUi+l7Ml+E+SGY5+8CJxBiLOA5lapUHcYmr470SBvpPGoKmw1J2bjnngN0Qd0ZmQlrb9GYPzISlzOxMTPz0bGxY/oZUzxOtWLdsFe44egYKhxZbFrb8CDfp9YcxLGHPzXUoHS21CGp0z2iUPl1HGNP1usLEbphRP0KD2jmf2fvntJwwhXI5zC4rBowHvA/gQkg+A6WQwqI+DuCHQghnyZ6YPofv0YrCHlE68NourLnrFexftTO+LrsoJ/7biYJgZZuVKEZGZBfkYOj88oR1Va/uSLtRaaO8EWHNJBjh1pbeLXqzHOr2SrfnxCtY+ErEaf4BP03ojM7pRjHQI+yZbT+TQDJ9DyHEa0KIc4QQg4QQ2UKIYTGb/wNh141JHXyfOVDiJAmRU8FL9Ai0HG1E9dqqpG2lYwcmLHttLmNFKLMyqj9y4Xgc33kE7fVtAIDm6gZ88NJzeG2LtWAAqTDKajQTE2Wi5AirzuAdZoIyJjzsCvpRVpSiWje/3ntWEBiGiRKRdkiWsTsC2t3ehQ8ffhtbH1+juT2vrFBzvVd46TimTpr2x1uuQUdjmyfnjgJa7eS27fx0CA47CZMapRkRKwTW8GOkWOmcnoozNlF5pq1EoXITkpRhGIYxx5OZAzudtZPZA7tUvrgV7Q3JAnT+wCKMv2iGpXO4qac8cuuFsNZvZH/Mu3kR1i5dFV+38cG3QBmEivMmY8BUN8kUo0HUhFojUzP1KH1YWAnvm6potb0ffYaXfVHUZmzMri1qgrLf3xAvrjcqChTDMIzfRDpDsozdD27LkcaE5WEnjZaSjn3hZOSWJkX50sTth8DL0UPKyMCky+YiIysDTc11ACSzqb3Pb0VnS0dSmak0cplKdZVxovj5NaIc1oxB0PfNr2SLXgrJUVEM7MJCL8MwDKMkEOUg6I+PbKMPAPNuORsjzhgHIjI4wj5aQoWfTqH9RpRixjWnYfipYxLWb1j+RjzMqVmirjBJFd8Cs/vlpr5eXmsYSoHyeTYr281zb+aMGiRhO6taRauOZvWOmomcn/SV62QYhvGCUGYOAv3YCvNdnGKUsEaJVwpCdkEOhi8Yg1nXn5Gwvvr9fZ6c3y/CmtFwIhAYCb1m9TdSBr2caQhztkXtcK8VvteL+nmhIMj7etHfWD2HUZJAJ4kEjWY8nCYkTFVlxy2sIDAMw1gjMOXAToIpt+QW58V/b/jjG1BkAPcEIwEwiNH77IIczPjyqfHlGo2ITFFC2S5RMSOyI+zJ2Mkv4RajBGth+zpoKb9aswpu28GLXBRe9jNm5zJKZmUm5Budz8skWX6EAg2DVFBwvKIvXSvDMNEgJXwO7DL2wunx312tndi1YqOnCoJV4cxPRSG3JB/ZhVK+hu6ObrSdaPG8DK+JWkSdVDEZkQlbMQCSn2UzhdgLBUFLkPUqmZWZkGx1UMOJ8K+1n95sgJezH6muGLghVa89lfophmFSn8DyHOhNs/vRWRcOLcb5X7wBL/zl9wCA+spj2PrX9/G7F3ehsKTUUwHL7BrslmU1VrnoEehs7nVG7unotlUOk3pETTHQ2hZEHY1mBaz2J3r7aflUmCVKDEpwS+cZA2X91HX1un29zEQcRLtG9Z4xDJO+hDJzEERn9/nbf4PScb3JzlqONuG7n56uK7zYHUVWXoOXHy+r522uaUhYpsy0nAQKBLvmInpE0XwqCnjlg+BVv2GmzGv1EX5lAw6CVBp11hK2tdrc7X3w+n6mUhszDMOYEYrPQRAd6bJ7LsT4i2di4qdmx9ed2F2L+spjnpXhp4Jg9uHKzM5MWN78l3fR2dzuWR28JNUEZa/uZapdt1eor1vP3EjLmdktQQtpURcKo14/LYL0T/MSL8LtOnUyZxiG8RJflAMnEUX8onh0GUacNja+vPOfGzSFkLaqJbj+kgrb5w9rRDF/YBGGzi9PWLfhj2/ig3tfw7Yn12L9H17HlsffR3N1g84ZgiNscxirWHEOZRLREvKV99vMFCmVswoDbPLhNVbaM6w2dxNdyslx3OcwDBMWnikHVhzowurUh51SAQAoKixDUWEZ7vj+GcYHpAgjF45H4dDihHXdHV1oOlyPrtZOtNQ0YusTa9DV1hlSDcPH6jPn9WxB1Jyv/ULvOs2uXSujsJX28rMPcaKgsADnnrDb0G52Zq/QmiVQDjax4skwTFh4OnMQhoJg9YM+fEFFPLvwoef2J0T3kTtoo2grURrZVNZlyhXzMe6iGRg0cwQydPwO1t//elBV8xWnU+5B2hX3FaXADDvvi902c3s/9Z4ht/ctFYS5sAVxJ0S1Xc2c1O1GsIrqdTIM0/fwPVqRVjQfv6JQGDH0pNE4/N4+NDXXoaiwDLv+tRHTr1pgWld10qcooBZi+o8fhP7jB2H0uZPQWteM1qNNaK9vxcE398T3ET0ClOFtluggMVI83XxUjY41muo3O66vf+itZFB2I4yH0Yeo0RPwoi6A8/PJMAzDGOHZzIFZdAmzY/QwGym2KmBkZGVi+pd6E4dlteehq70zqR56I4qpMhqcX1aIsklDMOzkivi6zJystFIM3GL1uXOCXcEraopnWITRDlEX4vsaYSgsTjNM6x1j5kxt9TiGYZgw8dSsyMloXpA24bnFeSgaURo3L/rsxUt9KytshOidKejpTt0cCHYTSOkhO5zLz5sbm16j46yeM5WdcGXc1F8rmZqT83lhYuQFUZjJ8BO/ntd0bS8lRnk5GIZhokggoUyD6hStfLxKxw6I/3796cd090v1jpyIkJElhTvNLsgNuTbOcHIPvJhlAoyVBy+fjVSZkdJCGW3ILVbOobePF8qaXbwya2PCIehwoUYzBvz8MAwTNXzxOQhrFM2KoDVw+nAceH03mprr8PyjSzHzK2ck5QxIh866s7kd3R1dAKQZk1Qj1ZWzvoIy6ZsbRcfqsXrlGPU5fvdHXtrwR3UGwi8l1omJnxvFLArtmg7fF4Zh0pvAkqA57ZS9TjSWlZeNQTOGAwC6O7pRu/GgZlmpTld7l+bvqMGmCumBXeHRLzOVIGZ7zMr3wlzNz74olfo5r7KX293XLXptnEptzzBM3yUw5SBKjDhjHAAp70HW0RIIIVIiyogtRO/PtuPNnp3WS4Eur/w+LF9RGdnMoGahChnnOFEmrAYGUA8oeClgWsHJ+VJdaAzi3XVrgpPqbcwwDBMUvuY5iCpZednoP34QmprrcLRqLwYcm5qwPWpCqhMyc3pNpQqHFBvsaY+gbORT4UOufkZS3cE4aOw8S1b2daNg2j027BkKp/jxXvl5zcoAAl6eLwxSoU9jGIYBfIpWBHibRl45YuTVh2joyaMBApqa6/DWP55Ac02DpbrYIczR8M6W3qzI7fWtgZcfZfyaqfBa2PWCdIiKZAWvM9dawSxsZRB1sIPfwmkYioeTMoPKQMzOxgzDpCq+mRVpdYxRGlUrHFKMgdOHx5ePba7WTdaWiuSW9Doh93T1hFgTbaL0LOjhZz6EoAR2Ozk6UuGe6OH1u2p3FsFN2wXRz6jL8Pr58+sa5BDEMl5HiVL7efgh0Kfyd4RhmL6J7z4HTjpGs0QxXgkxg6YNQ1FhGQCgZVdLvAz1B8KL8pTnsCJ4uP14124+HP/d7aFDclAj0V7M2uhhR2n18sMut10UR/I5Frs2eu2RSqaHymdYfv6imPndDl6+l1oKgdPzc5IzhmHSgUAckr0UtM1Gdux88AqGFscTogHAuXO+lXS8l0JTkAJFflmBb+dO5dj8egSlIASJ1XchXWL2uxHwzPJamJmiKQcVomROolUP+f1NhfdY+QzL7R6VttVD/YykihLJMAwjE1i0IqsKghcdv1WhiIgw+txJACTfg3u/9nl0tLW5Lt8L3H64swsTE591tna4Op9MEAKFFx/TKAoQSqHMjrkPYx2r910vU7bd5yaMBGxW0Zox8LscvwhjlsOL7NvKwSUvlYbcod9zVTeGYRgjQgll6ufHRBa6rH5MBs0cgabmurh50dr//Tu+zSj5TtTJzEnMb/fhQ2+jo6k9pNoEi5Xnyy//EjMhLEiFoK8qH1bND6Mai94v5ViZsC5VTIrk/nz5isqwq+IZaqXB7rEMwzB+E6hyEOR0ux3BaMi8UWhqrkNTcx3+/P9u8KwOWtf6szvP8Oz8RmT3S5w56O7oRv2e2kDKVhNVJcvMBMSOWY58TX1VIE9V3ArJUciRoMZqH5tKSkIYBNVP2Y2cFpX+k2GY9CWSSdCCHrnLH1AU/918uAH1lcd097XbMavtkG+7dGZ8vZ9kZGZg8mfnJqyrWrUDnc3uZg/sCBNm0+pBYFcA8kJYUisIUXZETiW8CkGrfPf0lDk772eUQh478ccK8rl0WlYYszlR8x9hpYBhmKAIXTlQO5yF0QGWTRqcsLzznxtQ++Eh3z4MQX1sioaXYvLl8+LLolug8eAJV+dMxbCYbvIP2FWGjM4ZxVmFKN0nI7Tq6XcmYjvvf6q0o0xYz2IU3wEr+BEdKUqKB8MwjJLQlQOtj0XQYRUzsjIx89rTkKeI8HNk/YFAyraCm5G9I+v2JyyXjB4Q/916rBn7Xt6OXf/aiD0rN5smS7M6+h22oKQs364worw+5bFuP+KpKhSlE07voVNBLuj3wKh+Sgd42SeLn0ljfvP0Rt/OrexLrTxfYfepDMP0LUJXDpRoZUIOqlPM6ZeHIbNHxZdbaps090ulkZ624y2o23Ekvjz+EzORmdvrqLztyTU4uvEgTuypxYk9R7HjmQ/Q3eFdToRURa0gpLo5kN6MXKoIHG6dNr0coY1SyFI39XAzQ9ZXuO3Smb4pCHrRylLlnWQYJr3JMt8leNQZR/PK7wvkI5zgxCuAzpYOZBfkaO4bVJ3c0FzdkLDcUtOI4tFlyMjMQMvRJnR3dMe39XT2oL2+DbWbDmHIvHLdc0ZxtFGpUHpxT9TXGMVrZrQJI2eDmxkJp8Kg0zL1nuUgnnFZAUml90mpINx26ZKEPsYvQd5KlK326npfymYYhgEiNnOgRBmHPChKxw5MWBY9IrCy/aDfyNKE5UPv7MW6Zauw5q5XsOWx9zSPydJRhuwQtNKUV34fbr5pJa6/pCJhvZPRUDczBVFXFpX4EWXHj0SBds7ph7Dm9FmwUpeojBJzeF1j5CASQOI7bvaNctIfmB2TSn0MwzCpi2Pl4MrL7/GyHpqEoSAMmDI0/vvoxoNJ5asFF78/8EbCiZngktMvD3NuOAtFI0otlZWRmYHScQN1t5t92MM0TdCapncqiDiNYBMVYU+NltmJ1rU4fc+CGkG1Y5Nt91pSyazGy/4w1RSDsIRjpYKgRJ1MT23mpVVfs+8GKwAMw4SNq5mDID+oQUUyGjx7ZPz34Xcr0XKkEYC5YBJGiE4rZGZnYvJlczHti6ckzSTkDyxEbkl+fHnEGWOTkqeFTZAfSi+e56gqCGa4aWc/7O+DnjHw0txGrk8qC3l+hN8NKxpdGFhpP3VbpEKwB4Zh+gauzYqCUhDaqpbg+ksqEjpdPzrKwqHFGHZKRXy5RhHtJ8yIEm4/1PkDCjHp0rmYf+s58b9pXzgFOcV58X06WzohhEgoz87MhZfRfZTniGLiPCP0noOojU5bEeqDHgDQQ8ucQ++YsIVys5HjVEDPYdYpXjxHqdCWv3l6I37z9EaMXDgy/ufUvEjvOFYQGIbxG1fKgdcfECvlySxfUenbx0KpHLQea9bcJ6yOWxbYvWr3HIUTdvX7+7D9gQ2YUfbp+DorpkTyh99PQdLpyHRYH1KtUdJUtLfWi6gSVrumgoDoJ06v3+ngglfP7PIVla6OTxWB+LZLZ+K2S2fiwOtSKOx93/wWAGvfCy1/J73jcod+z4vqMiFDRIuISBDRohDrcHWsDhVh1YGJHo6Vg8efvNHLelgmCIXk6IaD8d9uMwr7gZdJtcrPmYSCwUUJ657+1Y+wafVLhsepP2Jex01PFyEwrMzQQWD1mrxWGlPJXjtq950zdQfD0mWLcdulMzH6zt+a7muWlyUKYXMZexBRKRH9HxGtJaJ6Imonoj1E9DARnRJ2/RjGjMhGK7KCXx/e/at3xn/nDygy2FMbJ/Uyy66rt+yWzOxMTLnyJEy6bC4AoKm5DgBw39e/mGBi5AS/P2Zm5iXyPlER0KNQB6/x6nrMzpOK7RalOsuDKnL/oZztY2XBP9SRjvSEfKvPinx8e/UvPasj4y1ENAPAJgA/ArATwA8BLAHwJIDTAbxDRFPDqyHDmJOyyoEV+3+nH2dlorDS8frRe7zGSEFQftS9+qDL5yAi/PDXb+HO1dtQVFgW377tnTdCy6RqJOw7PY8bZcUPx8woCY9+IIeYZZxjlujM7nOkvB9h5B1wkxMinXCjIDDRhYj6Afg3gEIApwohLhdC3COE+JMQ4vsApgC4Jcw6MowVUlY5MMJpnHSZ4Qsq4r/VicTcnNctSiXB7Qdda+TwiRVLcM4Xrovvs+y6z+Lgjq2mAl7Qvid2pti9Eirk6/NaSFEqCkErDF7NCBllX16+otJ3R2+9egWN8v45uY92sy87KcPrmUirgxVemMX0BeG5LwwapDlfAVAB4DYhxBr1RiFEtxBiqRBii9FJiGgCEf2NiGqJqI2INhHR1zX2qySiRzTW305ESYmaiOgzRLQxds7dRHQrANLYr4KIHiWiAzGTqGoiepmIzjG8eiZtSEvlwIrwYrRt4PTh8d/HtlSjtbbJu8rp4Pbj6XZGQRYS9ok3E9b//FPnYsubqzVHHJXH6RGEaZGVtgtbcLRDUAKCG8HQatQuK+2ebsKQU8UgKLxS5u30A16RTsKzlZnvdLrePsIlANoB/NXpCYhoHIB3AHwUwB8B3AbgKIDfE9GdLs57KYC/AciCZOr0EIBbAdyo2i8bwAsAzgPwIICvAbgLwAkAc52Wz6QWaaEcuI0Prd6WmZOVkAys8sVtCdmSw+6sjWKyO8nwqzxfdkEOyj85Pu57AAD3XH8Fvn3WTFz3pSdDEQjckkqKgUzQdXaiVIahkHllbhYllHUP0gcgVd7fdMbqcxv2N6ePMpmI5qr+hpkcMxXAdiFEm4ty7wDQH8D5QojvCyHuAfARACsB3EpEk+2ekIgyIQn4BwAsEEL8VgjxCwALAIzXuIYJAG4SQtwuhHhICPFrIcSnhRDmHvZMWhB6xqu88vtcf9j1IjzYTaSkrMfYxdOw7p7VACTToqpXd2D0uZPi55aPsXo+v1E7Gip/a7WPrERohRgsGFSEGV8+FR8+8g4K8/sDABqP1WLvhrWYdsbZuufsK9h9ttwQlM+H0zLUbWE3AVhUhR4/r8PonKn0XqVSXaOM1f4k6G9KlBj22KMYnZcTSFltbR3yT63R/58AuN3g8GIA2rbIFogJ8RcCeFUI8Y68XgjRQ0S/BrAYwMUAttk89XwAIwD8UAgRr58Q4hARPQ7gesW+9bH/HyOi/yn3Z/oOaTFzoIcb59WMrExM/fxJoEzJHO/oxoOoWVuVdP6oddZ6SoLeaOT1l1Rors8tycecG85CU3NdfBahdPBQzX054om3KJ+pqApgynuufgf8eifCeNesCm1eojQRTNX3KlXrnSpwnoNA+ByAeaq/5SbHNADo56LMQZCcmbV8EuR1YxycVz5GS6nYqlwQQlQC+DWAqwDUEtEbRPQjIlLPMDBpTOjKQZAffLsf+oJB/TByYe/7sP+1XZp5D/Ts3oMeFVXOFFgRKvX2k4WSjMwMFA4rBiCFOH3gni9oHmNWntN7HNVR5b6O0YyUn++zHdNAL+211TMjbuzBrWSjVr9PeoJ21AYmvMBKm6b6dWs9q3aO5X4xMLYJIdap/g6bHLMFkjlSno/1Ejq/lWSqlmWnY639kxyShRDfBTAJwHcB1AL4DoDNRPQ5e1VlUpXQlQMlQXd66vK0zIWGzBmF/IG9uQ5q1u43PGeYCoKTSCTqDMfqGYfBs0bGl+u21ziuW6plODYiinUKCrPwl2G2jVJgt5IDwwjl8WEJo1Yik0Vx9rKvYVdg5/uV1qwAkAvgSofHHwXQDMnuX82U2P+9inXHIfknqBmrWt6jOocSTR8GIcROIcTvhBCXABgFYD8kfwimD+CZcpAKApORwGDUYY//RG8im+q1VWg91py0TypNo2vVVa/+Of1y47+P7zzqumwn2T6j9Gz1dSFAb5bI6YimX21kty5az79Xir7Va4yqCVkY71+U3nkjUqWeTGD8EUAlgN8QUVJkHyLKIKIb9ZKgCSG6AfwXwNlEdLLyOADfhjTy/x/FITsBnEpE+Yp9KyBFTVKyBsAhANcTUbFi3+FQKTJEVBKLWKSs1/HYdQ3QqjeTfkRq5gDwvrPV+zDbGRnMLc7DsFMq4svVa/aZlimfM2wBUSuBmvq3vJ/yv0zBkOKE5doPD3lWt1RTEOzWIQp1DpJUH8XWU5DdmHJEYQbCC+y0gRdO9FFRGs1wO0PFpBdCiEZIDsOtAN4loseJ6AYiuoaIfg5gM4ClJqf5AaSwoS8R0S+I6EZIoUU/DuAuIYTSb+B+SH4KLxHREiL6MYB3kexH0A3gG5BmAN4hom8R0fchhUzdpSr/bAD7ieheIrqJiL5CRH8FcC6Ax+y1CJOqeKYcuOnMlR+eIG2WtYQZvfKHzi+P/z6+/UjS9qDtr71EjlykVhCWLluMzOxMlJ8zMb5v5YvbsPbuV1C72cz00hqp0kZRIcgZKjt29VH2K7FSN60ZEa9mCpxmMJbrFSRWZlD8xK/kb14eHwTcL6YuQohNAGYA+Dkkk51fArgP0gj9WwBONkqCJoTYDSnE6PMAvgrgtwCGQspH8C3VvqsALAEwHFKo0ksB3ABp9kF93qcAfBZAD4BfALgWwN0A7lHtugFSluePQDIj+i2AaZAyO99g3gJMOhCZmQM/O0Mvzp2Z0xv1tae7Bw1VdUn7RNm0yCg3gtl6pd8BAAgBVL6wFU2H6tWHOSJVkphZqaOf9VTO+qQDqSCkOUHruvSigqkJ27RIr3w7z7Vf1+DFu+XHO+r2fOrZpSj0dYw7hBDHhRA/EULMFUL0E0LkCiHGCiGuUWZOFkKsEkJQTMhXHr9DCHGpEGJA7NjpQojfCyGSHIqFEPcLIcYo9ns6lp9Ay9H4b7F95Pr8TgjxcKwOlbF99gohviKEmCSEKBJCFAshZscyO3d531pMFImMcgAEIwBaHQXV2q//hEHx3zueWY+24y0J24P4sLuNVuG0jlMun5fgmA0ARzYccFwPLVItNn7QH3F5dDuo50wmlYSVsIQrrTLldVYVg6iTSs9B0Lh97lgpYBgmSkRKOYg6Yz6a6EP04SPvoLsjHEXaiZJgFP3ETOAsHFaCaV84GZMunRNfV7fNefQiPYyErCjgxKE6FQnzOr0aIQ4CPf8i+bdZdKd0xctQsn2VdO9jGIaJLn1GOfDCcSwjKxMzrzs9Yd0H976G4zuSfRCijtMR6LyywoTl9fe/jqbD9RBCeGbuohRMo64sqPEqrn5fEKr8vLdaWZu9Rq/+UX4+g0Av54QX9LW25eeJYZgwcKwcXHm52ofFOanU+eUU5WLq509OWLf72Q/RXNMYSPlht1V2QQ5GnjEuvtzV1oltT67Fpj+9jd/deUGINQuHsO9HOuJ3yNCg8EpZTiUfE7NEdX1B6WUYhkl1HCsHjz95o5f1CAS7woPeh6xgUBGmf2lBwrqtj7+PjsY2x3Wzg9Xr8EuoGDhjeNK6jsY21O+p9aW8qONH6NqoCbp+4dd1uh1xjVKW3nQzSXKjIKSCcsFKEMMwqU6fMStS4kV8/bzSAsy9aVHCuq1PrEFnSwdq1u1HzQf70dXW6aaapli5Dj8UhKy8bEy4ZBaGnTw6YT1RUnCEPkUYQoE6XwWTiJ/Raay2e7oJ916g26+mga9CX1HsGYZJX/qccuBlx52RmYFxF82IL3c2d2DD8jewf/VO7F+1Ezv/sd6zstSE/QEqGTMAg+eOSlhXXFEWUm3Cx0thJuyZoTBJJaHQSOjviyZFXqPlu6D3Ox2UCiPC7u8ZhulbBKIcpOIHzmpnXDp2IDKyMzW3tdY1e1mlyNFQ2ZvroWBwv4RcEEGQjsKAUyEgFd8xIFhlwKoAabTd6v0xigxmh1SbdfAypKeVZGha90p9n9XKg5/PnLpcL2EFgWGYoOhzMwdeQxmEmdeeprltyJxRmuuDwu+Y+NmFOfHfLUca0dPV7VtZRjj9CEdNubD78Vfe21QTIsPAi4hljDGykuplYjCjdWaYmS95jZcCfNjZqhmG6bsEMtQrCy555felVOemlwxNTVZeNqZcMR9bn4gnPsSoM8cnmd2kG8XlZcgpykVHUzsAYN09qzHr+jOQXZBjcqT36D1b6mReeiONYT+XTstnpcAeZu80Kw3O0MrnoPdMR6GNnSZctHKc8hlz27fcfNPKhDaNQtsxDJP++D5zoBz9CFsAc4qVDvnwu5Xx35k5mRgyr7xPOOgqfS4AoGZtVUg1MTcfYKEwWKyYOoUR3SmofkhPcUtHJ3LlLKV8fXrXGGTsfnU5dsrWG0hwcpxTWPlnGCYMfJ856Cudm9LvoLsjHPOaMCgcWozJl8/DtifXAgCq11ShbNIQFAzu52u5URPmZYHDjYmTW4FJLtuO+YxfQpp6xNOsDl7lNrj5ppVYvqLS0nWp29zLZ8rO9acDypkDtZJgtR3Us3xaqJ8VqyP5TrHzXhuZMDmpQ196fhiGiRbsc2CC1Y9D2eQhCcuH3tnrW52iRtGwkgRToi1/fR/dnamnIIXtg2C3fOXIrF70lr7G0mWLHQuMdgU4o9F/LcFOS4BOF7y4Jq9zhbhFWQ+jjO1BvmtRaRuGYdIbVg5sYPQRKB07MGH50Nt70dPdE0S1PMWpuYPavOiD369Gd3tXwrojGw6g6tUd6GzpcFy/IHDzoffi421XuE/3pFJ+Yfdeub23UVcItEzy3ET5caIwWIlQFCWiVh+GYRgv6NPKgdWO3apQMOfrZyYsH9ty2HadUpWi4SWY9sVTEtZ9cN9r6GzpQFtdM6pW7UDVKztwZP0BbFj+Buq216D1WHqGejUaZbSL1jOqNNfoy8KJ16OoToTfdMGKfX0URq2DqIMdnxA3/gtuaK/+pafnYxiGUUJCCHsHEM0FsHbGtaehaFiJP7UKCD+i1BzdeBD7Xt4eX55/6zment9PlB9Ep4JP06F6bHtqra1jplwxH4VDi20d48XHNghBwyuhwCwSkxfnt2sm4zV2r0fv/lmxc9fax0r5yjKD8ivwUkjXq7Pdaw8Tq+1hdH/U29TPvpv76kWeDDOaDtdj04NvAcA8IcQ6T04aQWR5408VgzApL5goeNvbOnBN5VEgzduWYYzo0zMHgPcjOgNnDE9YPvD6Lk/P7xQtwU/rg+jWdrhoeAmGnVJh65itT6zB0U0HHZdplyCjpXiFlqmHEcrZCyszGWbncxJhx87+Qc+AeCHUp9LMgdH9C8J8zUu8eHfVTtPKdfJ6P4hKGzIMwxjhOFpR7tDvIa98umdCVhix5t1ESdGDiECZBNEtzchUr6nCgClDkT+wSPMjFBRBllk6dmBCaFcAyOtfgEEzhmPwnFFob2jFkXUHcGTDgfj2fS9tx4ldtZjwyVm+1i0dnjErZcqonzmj+ixfUZl0vPIcdlm6bHEoz3xUhXYnMw1ePTt699aL84cdmUnv27F8RaXpd8WPemsFsQijH2AYhnGKr6FMrQr8YXaafgiLc284Cx/c+xp6uiSH5GNbqzFy4fjICS1e10cpCE7+7Fy0n2hF6fhByMxJfMzySgtQfs5EDD9tDNbf/3p8fX3lMbTXtyK3JN/TesnIpjNWr9tMsA1D8LUTmtQozrzW+fTeBTfXpxyhNTpP2MKT32VHMa+BlnmO03YI+l2wUlcn1yMrtF5ch1aOBYZhmFSgz5sV+QFlZGDSZXPjy3Xba0KsTTgUDS/FgKnDkhQDJVl52Zh3y9mG53ETLUWLMBS0MIQCq/4jXjpPG+FHuwcdrjWdhTt1GNFUNL3TI2qO5jyDwDBM1PFVObD6cQnrQ+RnJ61MAtbR2A67jt9B4PVoppOPKhGhuLx/fHnHM+vjoU6dZij16nlK5Xj0XviP+IFZ9lwrWLm3XmchdusEHCZ23yN1fH/1cXrHevGs2emT/U6A5hdhz5IxDMOY4XuG5Kjid+dMRAnLbceakT+wyNcynaIeZXYTtcjK/upMvvkDitBQdRwA0F7fiu1/W4dpV52ie7weVmKkey0sREX4jqIQpIWT9lIKU1YTZdkpJyjb8Cg8K1rXZtfcTj6PX6Fk7Zxbvl9Gx6TKu8EwDBMVImdW5NRUwM4xQY3aDF8wJv5786PvRW72QEsRCGKUU/2xHn762MTtx1vQUHlM93in+SnSUTHwe9bNyfPg1TOkvDb1dSrLcDNL4GekHq9nLwBvn2Flm7p5972aoXJzbddfUuG6/KDh2QOGYaKKZ8qBlwKBU+wKjX6PKKlDenbUt/lanhvUH3elI6kfKNs+MzsT8245G4VDek2xDryxx9H9UQtkQdnUm+F1Hfy6JrXQ7VTos/vcWDV9Ud5fZTI4rxQ1oz7EjjDnZdx8t2g9J1oRdYyOD+r9cVJO2O+2Xfwe/GIYhnGLK+VAK+ShF6NlQSoIfkIZiaZFzdUNvpdpF1mwUgpagL5w55eyQEQYNGtkfLm1tgmAPb8VGXW8cj9GcJ3ixXMnn8PLa/OyfewK63qmLlptpafEythtD6P74eZe+WF/79Wzo6UYhB2OVImT67RS96j0AUqiOOPNMAzj2cyB0gEy7I9MlDrRrLxet449z21G9Zp9IdYmEa3RTSvJ0vz6yIrunvjvAVOHxn+bCQvq7L5aPhNhP5NKvBDy/LgHYYx2O3lXlf2MUkFy2iZGI+tucNIfGl2HWydupT+Fut316qi3v532iZJQ7mciP4ZhmHTBsUNye/UvkT2sxMu6uELtSGjXYc6vJGwTPzMXWx57L7584PXd6D9xMHKL/YnlbxUzQVA9g2CkIHglRHY2d8R/H9tSDdEjMPZj0wyP0XOmVMZdtxprP5Xw8jqsxKgPsu3svIfq59TpvdZzRA46soxRna0k9TJCT9D3av8oEyUhn6MVMQwTdQJxSA6rIww6DroWBYOKMOOa0xLWbfrT2yHVphct86EwMzgDwOA5IxMSoNVtq0HToXrd/e2EtIyScAAEZydtNLJu1Wbfj7YL4t2Mgh+UH+WG3afZJWoKedT6Aqt+H1b3ZRiGcUtg0YqC6NS0otNEwVkttzgPEz8zJ2Hd3ue3uIpe5IVwpVQQrHww/f7IZ+VlY+rnT0pY11wj+WkoHYuV99WKKYzaByHVcXrftWaHrNzTqAl3Wvhlzig/L1HpS9yg9Q755XMRZew8J1F69tPhGWQYJjUIJM+BlVjUfpQpE2S5ehSP6p+wfGxLNQoG98OQOaNcndfttRnlNbDia6C3v9OPamZOFoqGl8RnDPav2onswhyUTRyie4zVstR1jdKH3y/0rtHu9QfZVl68r2Y29ErUZh5h9xVKtExQolS/VKEvvOsMwzBeEdjMQVCjHlrlaGX5DIO5Ny1CdkFOfHn/qp3o6ep2dU67fhVaWB09NosU45XzrxypSGbPs5tR9eoO0+PaG1rR1daJn31rATa/uQo93b1tq6XERNXkyAgvsz+HSZCjoPLAhN7zb9QfhN1OSvxsM713gEernZNK/QrDMIwSsmvaQkRzAaydce1pKIqQQ7IdtEYmg5pd6Onqxoblb6K7oyu+bvpVpyCvrDBpX9HTg46GdggI5JbkJ2VdtoPdkdEw47QfensvDr2zN2l96biBGH/xzKT1QgjsX7UTR9YfiK8rKizDjEXnY8nvH9F1VjbD72t2oqSqIzO5zWgdFayOjjvJ5KvGzH67LwjDeu+AnkO3UTsyyfj9TjYdrsemB98CgHlCiHWeFxARZHnjTxWDMCkvx3R/L9je1oFrKo8Cad62DGNE5DIkpzsZWZmY8KlZCes+/PO7OLrxII6sP4COpnZ0tXVi+98/wNqlq7Dp4bfx4cPvYOMf38SJ3UfR3Wl/psGKEKpOLqUkaIFz+KljMPfGszD1c4n+Byd212LHP9YnrKvbUYMP7lmdpBgAwKZVL6ClMTm3hN3Qkn7hZUhTv5PW+YXapl9rpFo9u+M2pKfW71TBq1nPVFUi/SbV3h+GYRg/6LPKgdWMrH5QNKwEky6bm7Bu38vbUfXqDmx84E2sv/91NO4/nrC9s6UDu/69CR/8fjWO7zxiqRyrTstGOQLCEiIysjJRMLgf5t96TkLOg4Z9dajbXgMAaNx/HHue3YweRX4EAGhqrov//uNDn3VcB7WgEJVIIXrx8726X15ep5lJjx2HaLfRtNTJ44z28YKoJadTI7fj8hWVWL6iUrfMqDz3RnjVTn46tXtJ7tDveX5OhmEYmcgoB1EIOxok/UaUomBwkaNjd//3Q3Q0tRvuY9SWqdbOYy6YCigsqo5trQYAHHxrT3yWAADGXTQDc288C0CvgqBnimUnQZVydDtstJJXeS3Q+HWdbp47pwkWrUTlUe6nRZRGk7XMIZ22q/q6Nj7YG2I51WYWgq5vlJ4JhmEYr4mEcqBOXtZXmHLFSZhy5XyMXDgOZRMHI69/AQqHFiMjU7otQ+eXY/6t52D+redg9LmTEo798JG3IXp6tE5rCWU7q7NbB2miohRujO79xE/Ojv+u33sMh97ek5ADYe5Ni9B//CBQhqQMyErD17+6wrQORoKn37MnUVA4gOCEHT/fbyfXoGfGZPQ7DJ8V5QyM18nJ2qqW4PpLKjDz2lM9OV+6E4VIZ+3Vvwy1fIZh0htXyoF61Er9AfNiNsAPYSIqAhllEAqHFGPo/NEYe+F0TL96AaZcMR+zlyzEjC+dipELx8f3HTRzBGZdf0Z8uaezB+vvfx31e4/5UjcnQrEbAdPMITx/cBFyinLjy4feqYz/7j9hcFyhSphiAPDSX/5oqx7K6w5bANBDfidSbfTS7XtndL12BDYrz7aRn4PVcpxEwlL3mUuXLXbUB1op2yz6mFwfJ2WnM1aeHTv76x3HMAwTFo6VA6XNo/KDZjXBjhL1vurz+YFZuNMwycjKRG5pftL67IIcTL58HmRLme6ObuxcsSFuZqPET0FMDz+F6ez8HNy9eg9KSoegqLAs/tfUXIehJ42O70cZhLKJg+PL/7r7Dtyw5N+2y4uqYqDEizr6nRVb3RfYfS7Vo/V6mZ7tmIe5weo5nJSlN4Oql7jMqC3dJLiz+ixoKQ4s4LqD249hmCgQiFmR05CNTC9yGxYNK8G0L56C/IG9/gp7/7cFx7YcTsq47CZGuVfCopcfu4ce+wLuWVeJT9/2Y2TmSGHtCof0i/tuyGWNWjQh4bjX//aoZ3XwGqczY25n5ZRKQVRzPdhxjvc7w7edLNtOw1iGmVMgFZThVCUqoZMZhmGs4qlyEJVkY+mAkY1xXlkhpn4+Mczn3ue3Yu3dr6LpcH3SubRGHoMSQow+eE6eDyLC5vp/YcwVE/CVux7Enc/vxC03P5ewz7e+9zLmfewT8eWn7vgBmmsabZUTRWHZS6IU+lTLhMdoRkPPHMaJkqOX9dvNiLrZ+b0kiknKWMhlGIZJbRwrB+3Vv7QlbJoJgn1FkTDKymvFT0PeRkSYc8NZSdu3PbnWu8o6xK5ApH5+jI6XBY+s3Gy8tvX3KCwpjW9bvqIyfuzVdyxLOO6wRlI1PaIgMFvF7exB2P4VWkqAUZ2szHTYuX/qJHJm57Dri+Onf4LfWHm2tKJn9XXctkHUngOGYfoeWUEW5rcfgVuCqJfaPEEZX9wumdmZmL1kIQ6+vhtHNx2Kr+/p6kZGVqabarrC6sdRr72dOPD1OjRL67Kys3Hn29vwzVMnAwBO7Km1dE67dYgCXmT3DisCix9lmpkfaW3XMmFy64+h5Uxs5iegRRD3xo2S6XV2+aCy1TMMwzDaRCKUqRq/PwxRmaVYumyx62vNys3G6I9MRmZOrzIgeoTBEc6JUlIn9XnkdlQKUXmFiXkkuto7LZ07lRQDGScRwtQj9F6OWNqpi1MHYzVOHHCNIsvYnSWQr1VOKmZHMVDWxSi8qh+jylHpD5VEsU5BEsWZJIZh+g6+zhzIH7godvRao1NRGrHSqofS90C9vbujO/676pUdGPPRqZ7XyY3Q7GVUHKshGm++aSUK+5eh5sAuAMChN/eg/JxJRoemDXafZT8Sqdl5790KQm7No/TMi+yijjJktw5665XCopczCV71zV72nXafnShix4GdYRgmagQyc2DmqOzmg+oGTWffkD9KRv4bRm0zcuG4+O9jW6vReqzZ87q5we9kYnqOpd9/+oX48tEPD6Gnuye+fzqOzil9gMK+Piu+SE5jwnuF1bwWeg7TRnjZ9uoZDa0cM3bxq69T5uEIuz+NAnZ9VJxmA2cYryGi24nIH1MEJtKEZlak9dEIUjE4tfawbl2C/qDZiQGvJ3ANnT86YdmujX0qYSeSzKN/uxYZ2ZLJlegWqH5/X3z/KEXs0cOL6FJRvj7APBmXUpGTR83DFJysJgtTzkbYSUimdYxy5k0r8aReHYJErbC48aeSz8cwqQYRTSaiR4loFxG1EdFRIlpDRHcR0bCw62cGEb1KRCvCrgcTLpHNc+AnbVVL8PZA83c0yHp7oRgVDi2O/84vK3B9PrtE7T7LDJzae69bVCFN1c6nURKk7SbqU2+PimmDlehTRgK/l4qA03YwU2CM7pXdZ0vLxMmqQmT1HfT7XfXSXCmq/QrDqCGiBQA+APARAE8DuBHAnQB2ALgOQKTtWomoP4AzAPwntuoOAP3CqxETFr4qB2cX/AiAvlATRCZkJ6izNacKzdUN8d8lYwcGWnbQo5dmjqVKlI7IBUO0+7mwQ3qmOkb33QslxUtfFS/MrbSO15rlCWKWw2n2aYZhPOdHALoBnCSE+J4Q4gEhxK+EEFcCGApJcYgyiyHJhf8FACFEhxCiKdwqMWHg+8zB2QU/MhQcopLER+vDHoV6WUXtY0BEvpWljozjt0JgJea8ngAmenpQt60mvjx4zkjvKxggRs+knmmL8r8fBKkYmoUhtRslyUtlxciPxWqGZyvZl7Xyyyj/p1tOmVTqh5m0YjIRzVX9mZkcjAOwSwhxQL1BCNEkhKgHACK6mogEEV1ARD8kov0xE6Q3iWiW+lgiGkpEDxLRYSJqJ6KdRPR/RJSt2Oe62DmnKdbNia3brzrfd2Prh6qKuhjAe0KImth+mj4HRDSDiP5GREdi9d5DRH8kon6q/a4ioveIqJmIGonoRSI61aQNmQjge56DtwcOw6m1hzXNeMLs9JWRlOwmcIvix+rIB73vfkaWfzqfmWDhV9sYRWgxFHxVSpLo6gFyvayZfxg9m3qRwNQzcXnl97m2/VbiJlKOm9F6ZbnKdtGrj14oUC9Rl+1V8ivHz3qMKPZPdkmHiEWMd1xTeTSMYv+qse4nAG43OGYvgLOJ6DQhxFsWyvh57P/vAOQB+BaAFUQ0QQjRBcRNfd4GMALA/QC2QzJb+gmAmQA+EzvHqtj/RQA2K373ABhJROOFELsU67cLIarlisQUjQsA/NqowkS0EMDzANoAPABgN4CRAD4FYACAxth+vwXwDQDPAPgzgAIAXwawiojOFUK8Yd48TFj4OnMgKwR69v1Bjj7rYXckVl4fNVvY9hOt8d8jF44PsSbe48pxWDXmkZETaN4/15g57uvNvPllsqcWTpVlWCnHixkMK4K/st2s+DzYxY6SZGWGwmmEGrvvRBh9VpT6SadEyReJCYzPAZin+ltucswdADIBvElEHxDRPUT0OSIarLN/JoDThBB3CSF+CeAaABUAzlfs893Yui8IIW4WQtwnhPgUgD8A+DQRXQAAQoidAA4BOEtx7CIAzwJoiv0GEWUBOB29yoTMWQBK0OtvkAQRZQD4E4B2AHOEEN8RQvxRCPF/QojpAPbF9jsJwDcBfFsIcakQ4l4hxG8AnATgMIDf6JXBRAPflAN1eFKjqfAoYVfw19s/SOWhp6sbzUd6HW37TxgUSLkyTu+j0yRZdqCMxJmD7jZridCihJU2CtM8z2q5TgRxZYQiILkt9ByDteoUlj+JXaGf/V6iB9+TPsk2IcQ61d9howOEEK8DOBXAU5AE+hsAPAbgIBEtU5oBxVguhFB+lFbH/o9TrLsYwG4hxFOqY38Z+/8J1fFnAXFBfiGAlwC8iZhyAEnJKVKUpSxnrxDiQ4NLnA1gAoB7hRD71BuFEPJw3BUAOgE8RUQD5T9IsyMvAThFbYLERIvQQplqfbzDisvu1UyA1nmCUBBq1u5Hd3sXACArPxvZhf7ZzRiF1rQqJAapOPX2VRLZRSliU2SCXvtpCcd+tnWQColW36A1gq8XtcmrnApB91Fmzt526hPlgRk9lNcvhPAtA3zYpMMMCwMIIdYIIS4HUAYpOtESSCPqNwL4nmr3StWxx2M/yxSrxwDYqlFOFaQZgTGK1asADCaiqQBmAegP4FVIisCi2D6LFPsquQjAv/WvDICkGADABpP9JgPIBlAF4Kjq7xoABCDYqCmMLUJTDmTaqpbg1NrDuP6Sivi6ID++QXTIfpdRX3ks/nvUmcGZFLl13rY72u1EmDvw2q7476LhJb46agdFWH4fbnGrFNrJb2FlvzAjJ9nB6/upVBAiExDieAva6prR1doZV+jVdTu25TDW3v0q1i59Fcd3Hgmrqr7CCkL6ICR2CCHuB3AKgHoAV6l269Y53M6HSqkty7MBZ0FSAo4B+BCSIjCCiMbHtu1QzoIQ0UxIMx1myoFVMgC0ADjP4K9a92gmdHwxwLbbwb3a8jPMRO+H2quPrxWb66BGWK04PjulTRGpqKerx5cy1LhpK7vt4PR5aD3WjJp1vY7aIwNUnLxGfn60ZqWcZNQOGnW9ndZNy9/AroKgTi7mxM6fzUy8Y9/L23F048GEdYNnjcSRDQdQNKwEI8+8EoXDSrDvle3x7bv/+yGGzi/HkLmjkF2Y62v/qoWfz0DQ18L4jxDiGBHtBjDNdOdk9gKYol5JRKMgmQftVZSznYgOQ1IM8gCsFkIIIloDSVg/F5K/gdpE6SIAJwC8ZlKXnbH/syDlcTDa7wIAHyqdnpnUwdeZA6NRqZtvWomzC34U/5PxWjG4Fiscn0PLTyKKlJ/bm1el6tUdIdYkeIxGfw++uTv+O7c0PyFJXCoSdlZxKwTte+Nl/gOv9ktF/H6O9J6BrvbOJMUAAI5skCJBNh2ux7an1uHA6l3o6Uwc+KheU4XD70lmz6msGEQtuAXjHCL6CBFlaqwfC0nATzIPssC/AIwjos+o1n9XsV2J7HewEJJJEWJ+DW8BuAVAMZJNii4G8D85QpIB6yEldPt6TDlJgHqn5h+P/b+DNKbrDRy0mYjgeObgysvvwb9X/zBpvdUIKctXVAKKKEZvWwi3qHZyNtsHAB7EJcgrv8TWx8OLkdggO/vS8b0OyKJH4EtX/hkPP66evXSPckRLOYpt5b5YxcsPb1drr5/XkLmj0sKkCIieQqDE6kyc/CyZ3W+7NvVWUCdlM1pWE7VZg6jVxypCCDTuP47d/zXyfeyl5oP9muvbVPld7OBmhN6Ldk8FZZ+xzd0ASonoX5DMeboATIRkTpQDIFloMufXAD4L4HEiOgOScH4OgE8DeEYI8YJq/9UALo/9XqVYvwq9oVPjzsixXAcnxepuiBCih4iuhRTKdD0RyaFMh0MKZfoJAJVCiLeJ6P8B+DaAqbH2qAUwCtKsBkFSXpiI4lg5ePzJG1E0rER3u9fCcRDCtpcdc5BxujMyM5Bbkof2+jYAQE3lbpMjnGGlfbyYEndiKqLFwGnD0HSoHgBwYPUuDJw+HBmZobvZpDx+hEiVFQA3fgV2ytJLDmcUqtWL8qxgVKZRO7nF7z5L2TccensvDr9bmbB9xpdPRXZRLpoO1SMjMwPHdx1BzdpkpWDaF07G5kffAwA07D+OthMtyCst8K3eWrhpf7NgAkxK801IQvJZAK6EZPZzBJK5zp1CiLftnlAIcZyIToMk2MuOzlUAfozeiEVKVsX+16I33wHQqxDsEkIop+suguT78JzF+rweS2T2YwDXASgEcBDAi7Ey5f2+EzNn+jqkWY4cSGFM3wfwiJWymPBw5XOgHNHz0hzIbPQxVTrRIOuZW1KA9vo2FBWW4T+v/h8yc/2N5+/XB07vOXKidAycPhyVL24DAPR096CjoQ15/YMVItIZLxRBeWbAjxmCqKC8NqPnW2udVuQlZVQ3r5UEpwqCup5GOWJa9lyfpBgUl/dHbkm+9HtUfwBSAIH+Ewbj8LuVEF09KBxWjKLhJcgfWISs3Cx0xSK0ffjwOxh/8QzkFOcjf0BhUvhiLeXMa8d4t6TKN40xRgjxPKRRdbP9HoGOgCyESJrijjkPX2OxDtug4dAcSzqmNX1+MYDXhBAnNI65HRpJ34QQGyApQWZ1eRrGvglMRHFlVhQ0djMZ9xVaa5vQUFUHAMgoE74qBkZt7NcHTl2m1ZHYm29aia8+PgjNNVIOiMycJFNQxgFe32e9UXy/sFqOWU4FJ2Wqn12zPktPQfALLxQDvXV55feh/Xg11t2TGF590MwRGLVoQtL+AFA0rAQTLpmVtH7wnJE49E5lfHnXvzcBALILcjDr+jPi69UKp5ZPjB/9lrocrchuffV7xUSO1yGN5jNMnMini5VHssIaWXFatt4oqB8f9saDJ+K/+0/0x88nDKVAqwy5Xa2MnC5dthgFNADNaERRYRmy8nN8ryfTi99mKlqCtp/Pop8mPUYE1f95pRho0XS4HlufOBnN1Q0J62d95XRHeVmGnVKRoBzIdLZ04MNH3sH0qxfYPqdXWJ0FsrOdYfxCCPH/wq4DEz0irxwAqTflqqUY+ClQHN/RG/NbPaXuJ0EJLGrFwCp122twtLoSAJA9Ist220Txgx21+tjBrxkHJX7fM7fvcVSdh+0qBnbaWCtUKQCMXTzNccJGysjAvFvORvPhBuz853p0d/SGi2873oI1d72CwbNGovLs9aiYMTuh3l4GUFBix9TSiQLBMAwTFJ4qB16NEup1kmb+B35M17rprIOwoxY9PWg8cCK+XDSy1NF5zEZFlW0b5AfMaVmN+49jz8peX6yh88ptHa+OxBSVj3ZUBYiwcy7kld+HU2sP49WWn3l+bmXdvY4OZDaarMaP6EReKwbKOvZ092gqBhXnT0HZpCFJ9bDznBARioaXYM7Xz4IQAhsfeBOdzR3x7Uc2HMCPLl6Az/3gt7bq7xQ7GeKNtkXx/WYYpm/hOHTL40/eCEAKSbp8RaUv0Ym0Ej6lAupkS1rJl7xCGa4ThHjUDtHTgxN7atHR2GbpPEuXLbYkdBh9uPxWhCzX8UQLtv/9g/jy4FkjTHMcyM+bHzHH09XR1ipBmZ15rRho5TcJcuRfq93CnnmwMou3dNli9HR1Y89zm7Fu2aqEbfNuORtn3LUNIz/2z4T1SmXcTHjWgogw/uKZSeuLCsvwr7vv0D1fGFhNyskwDBMWrmYOlmvkJvA647AThz21n0IYikUQIRkBaQpdZvCskejp7kF3Rxd2/2sjmg5L9r0Dpw3D4Dmj8L2fvearcOHk3MpINV6ELwWA/at2xn+XjBmAUWdPtF0vNW5G9PpyJtWo1s+u/4BTBc+s7zFrn7CSkxnVw6gthBCo/fAQ9r20PWnb1OseQP7o3tDmdvtls/0LhxZjzg1nQfT0oLu1C5sefhtNzVKghq62TmTlZdsqz0+i8I1iGIbRw1efA68VBT1SQUjyC6W/QcuRxqSROgCo3XwYtZsP4889t0AMEoH6JZjhdaQa0SNQv/dYfLnivMmWkp8FmZfCC1KprulA2CP2XmPn+dELp6rm2qsex7c+NjE+KKFk/MUzUDbVXs4jJ8JzZnYmgMykd/7opkMYdtJo2+X6iZZJrJKwHOAZhmECywilNUXvd3leEWVBrOVIY/y3nPBLj5ce/wPOmPRVv6sUKrWbD8V/5xbn2XJ4NLKXj5LyGSVzOz/MsJxgNrKv3u6nqZ8SZUZxrT8nBNHmZnWU26/laBMOv1uJKf0uwrdOnxpXDIoKy1A6diBmXnc65t96DoaebS/UuVUzIy262jvxwb2vJa5r6dDZ2zu8fJb6uikiwzDh4unMgRV7dPmjEgWBwgpqx1SZqAiLBYOLNUfqAKBs4mB0NLaj6bCkNBQVluH+b38RM687PcgqGmLlubDT1sqMqoNmj9Tcx2hkUD3bFZX7bAe/orEYlaNcF0abWRldVddNmVDMz9FZr9vD7fncmjrJ7VW7+TAqX9gKAHj0rVvj2/MHFmHE2aPRb2R/S+V5SVdrJ9b/4fWk9YNmDA+sDl7BMwYMw4SFq5kDqx8p5SiIXyMiRhk5/SovCgrOyLPGJywPX1CBGdechvm3noOxF07H5MvnYdoXTgYANDXXoaOpHT3dPWFU1RQv7qHSB0MrQpGesme0X1TutR5GMwlh1DuKbaWnfFp1ck8XjMJt2pnN+MxH74wrBmomXzbXsWLgdpaues2+hOXBs0Zi/q3nIK+s0FYd7Nbb6+9aX3omGYaJHq6UA2X4wiiMsNqJM+13mUGRkZmBcRfNQL+RpRhxxjgMP3UscovzACA+Kpo/sAi5pfnxY45vr3FdbtjXbYXW2ibD7alwDVYJWoGxqlz5Vbad8/cVEw2n12m3f6zctB4//9S5mtvGXjjNUoZ2LWXErXPusS2HUb2mKr5cNLwEo87WzrzsNX1NyWQYJr1xrBzkDv2e5X2D7Djt2mOng+DQf/wgTLp0bpLDnbLd+40oja/vUMQCd4rXCtfNN620HPPd6J5VnDc5/rtm3f6k7VbqHfQslJ9cf0mF5+cMsx3cvN+yMJqK99EKdkMROxnUaT3WjF9fsTgeBSi3NB9zb1qECZfMxNTPnYSyiUN0j9VSCKzOdJnV8/iuo9j7fOJMxvhLZloKRqBH1GcMGYZh/MJTh2QzQTsoJcFOp+42tr9cXpTQug8N++riv1uPNiZtTyWM7ln+gF7zgeM7j+juJxMFMxy/8EMxCBO7fj+ybbxeJmXGHt2d3TjxWq/DMQBM/fzJyMjMQMmYgSgY3C/pGL17pNVH6/kbqZ26tdj9n00Jy7O/uhBZufqhS9NhUIhhGMYvXDskR8GcyC/MHDujlj1XRksYGn7a2LiNcN32Ixg8ux65/fORnZ8TdPUMcTuym5nfKxB0d3RbOsZJrPdUIcxsul46JzsJCGCU7buvKwd274sQAnuf24yuo5K/UlNzHWZed3osdKj18tw6Q+tRMLgILUckM8Kxn/wxiiZdYXg+NgFiGIbRJ7BQpnaJih+DEUHUT/YbcMvAacPivggAsO2ptdjwhzdwZP0BCCFcn98p8siu8mPtKsxjLEO0TMtRY78Dq0T9WQyCsJybnUYKU783ahMjO8emE06e5bptNTixuxZNzXVoaq7DrK+cjpwi8zDBVkOSuu3vZQdoAKjb8kZS+Xbo64ojwzCMp8qB1dGYVO581UKD30Kjl/HYRyvs8WWqXt2BtXe/isPvJ0b5SNV7pFZ0sguTZ0bs3rNUVAzSwaTITVhb+X1x+t7wyHIiB9/aE/89eNZIy/lDrGSA9uL9Gjq/NzJZ/a41Cf1AqvZlDMMwYRHKzIHRx0ArgkVYwllUZi+MBBV5ZsGKEFRcXoZRZ2lH7zj4xm7Uba9B+4lW5AxfGlh2azuY1aOrrRO7/91re1w6fhCyC7TNpqze2yjcf7+x+vykUlso35kgchmkPQqdWx0+2QwrOUXccPNNK/HN774UX6aMJkeOyOrZjaj0/wzDMEETWbMiNXay16qd2LxELWA4GZns6erGkfUHcHzHEcsmPXqCjV0n7yFzR2HeLWdj7o1nYfiCioRte1ZuxqaH38baX5yMrvbOhG1RUBCM7mVXWye2PPY+Tuypja8bfkqFq7JYMEgklU00+opi4EeEna72TnQ0tgEASscNREZmeJ8NrWtbumwxfvy1ufHl4lH9k/Zxcl6/w/EyDMNEFce9fHv1L10JT1rHWpmCVmNmx+o3ToSOqld3oOrVHdj97IfY+c8NniQls1MPIkJGViaGnzo2IcSpTPuJVtRtrY4vGwnKUQj3J4TA1sffjwswgORjoRU9RU26KgDLV1Ri+YpK0/2CSFDoFC2l3wl9STEAvH+mG/efiP/2wofHqeJt1M+c2N07KDBw+jBP2sCvvsFqIkaGYZiwiMzMgduOOJWEvJaa3lCiDfvqcGD1rtDqMmrRBBQM6YeCQUUJ6wuHlZgeazfmvBuM7m9rbTPa63sVg1lfOR0V50/x5NypjBOnW68VhLDaVr6OvqIYKPH6XWw6eCL+u6OhzXYAA7Oob3bOoXd8Q1VvqOYMixGUlKjDpQbx3KZrv8MwTOoTCeXATidp1Hl73ak7EZSsHJOjiBoEAEc2HEBPd08oI7cFg/th6pUnYernT0bpuIHx9Q2VdbrHBJ0kTH1P1bMV+QMSIxRZdZZMZ9xE49HalmqjnH0pY61fs3fyczBk7qiE9Uc3HHRULz+F4f4TBsd/a81uWGmfIIT1VHuPGIbpm0RCOXBKUJGCnNJc04DtT6/D2qWvYtd/NqHpUD1qPzyEeoVdvMyB13aFLswMmjE8/tssgZiXMez10FL2tD6uVvMZ9BWsJO2zYnKkxEn0IyfPh1IxCUqwTEVkwdsvpUAZ7SmnXx6mXHlSfES+6tUdaK01Ni8yCj/rdBDE6BnIV8x8dtS3Ojp/kPDzzDBMlAlVOYiyXahbjm48iK2Pr0HjgRMQPQIndh3FtqfWovLFbZBn5YuG95ruHFl/AGvuegXNh+sDrafyI37o7b3x3wVDzO31tRQEP0cwtcoHks0Iulo7tXY3RB0hy0r5qY5dBcEJfgmwSuE4Cn4vXmHlOvy+VnmQQjn7UjikX8IMwr6XtsXrYpTpWEvBtzsIYjYQ0dnakdB3lU0eEjnn+XR6RhmGSX88UQ7cCk9R6DS96rx/c8e5OLrxIPa9vD1hfVFhWfwPAIafOgYTPz076fitT67FwTd3x+16/RZMT2y8Gh2NbTjwxm40K3whhp1coXuMOsypWgDw835qKSMZmRkJCZk2PfQW2o63eFamnjCjdua1e6/stJNXZnTqMq06LS9fUWnb/M/ucyDPaJgJnFHoL/zE7fU5HTBRzhZoPfPNh3oHLrKLEk0jtZxsvRq4MfQ3OtaMDX94A93tXQCA4vL+GHDKX22dA/B3JtRpEj+GYZiwcKwcXHn5PfHfZiNBeoJTFD/yburUcrQJm//8TpJiMOeGs9D/pAEAgOy8PCy56y8YvmAMMrIyMfO605POc/i9fdj+1Dp0t3d5amqkvAdCCFSt2oEPH34HGx98C9WKJGijzhqP3JJ8w3MF4fMBJAos8m+tMuRRzaLCMuRnl2DHM+vR0dRuuRwnwqfy3ihHWf1S6JT+NkYzHTJevF/qNrd6j6P4bkedMNtMqRBo9TmipwcN+4/Hl4dphAn22wxM673a/Jd3E5YnX/vfpBwHYeYzYcWAYZhUxFezIqVAF7Y9vRledNr7XtyaZP8++bPzkJmdiSFzRuEXL76PO15ai1MvuSzeNjlFuZh70yJMufKkhOOaDtfjg/tew5ENByyXbzb7Id+Dnu4efHDvahz5IPncg2eNxJC55UnrtfD7Q6cUBsyen8FzRsVnZQAgp6cAWx9/35MwsXbx+ll3MjugNZKr92wsX1EZ6vvJJhfJ90Zr2a82MksQ19nagQ3L34wv5xTlJkU38wKz61Mr32oTzJnXnY6cftIgjNWoQ0E9d5w3hWGYVCLL6YGPP3kjinTCXdoR6tKFnu6eBLOcsYunoXBoccIIfNmwEUnHyR/mwiH9MO+WszG5YDH+esdt8e1Vr+zAgClDkZljfqusmHKIHoFtT6xBT2ei0Dxg6lCMOmsCsvKyk+pmVqaVdW5Yumyx6Wg8ZRDueGkt/vG7n2HV0w+hqLAMnc0daKg8htJxgwAAx7ZWY+//tiQcN2jGcIw6e6Kn9Y0adu3YzWZA7ApUdvOTmJ3DiclS2DgZVXd6jVZMZOR328o7XvXyDnS19frxjP/ETMP6OX3/rRynnEn8wTUz4+tHnDYWxVP/5EuZTvEr7wTDMIzfeD5zoBYojIS6qHWabkZ3uts6E0auyyYNSTLNMbJdv/mmlSAibG99Dss31CRsb6iss2yqYiQ4tdU1Y8Mf30gI9Vd+zkTM/tpCjLlgaoJiYFRfr7HrVKq331/+dg2aRlYCAJqa61BUWBZPjlRfeSxJMQCAo5sOofKFrZbLiCp2/QG0UM8gWE2kZhe3ykXQoXTdYjYr4OZcTjFTuGvWVWHNXa9gx98/SIhcNuGTsywlF/QCMz+e5sMN8d8lU78b/x32d4VnwhiGSXUczxzIGHXeVkZ8U3EUUIus/Gw0NffmBmitbUL+wMSpdyMTK2U7PfDIFRgydxRq1u0HALQcbbQlqGt9HDsa27Dl8TXo6ew1exp97iQMmpk8myHXJyqzPrZt+AmAkBSE1p1ZqDh/CmrWVOnufmLXUfR0dSAjK8ddRX3AbydgNVqjzkoFwYvzM/5i55lRv+MtRxqx5a/vx5eVfgYjzxyPkgrJbMfrWQM1amd/ZT17urvxi0vPxzFFFvfsov6elq+FlRkZ9jFgGCYdcD1zoCdAGjm3aWFHaAg7tKRW+ZSRkRD+s1pDGDVKzKRe329U//jvtjr3kXf2v7YrrhhQZglGnD5WVzHQqk9QaJm3qNFzzAWkezP9i6fEl7s7uvD1r/0rQciZ8/UzMfmz85A/oBAA0NPVg7e/uxBVLzzguN5OohX5gbo91G2ldCzWQ2/k0+wd1bsnypkhLcdmoxm7VBGu9Ga/rMxyeKUw2Zn51FL+dz/7YYJioCSnKBdD5ozS3Ga3bCt1U7J02WLkld+HzpYOfOMT43DV+ELs+KDXB2LgtGHIgvVoQ07bmxUDhmH6Cp6YFWkJvVEQlIJGmUSso6HN1bk6m3sj7ZSMHZiwzYkg2lzdOwU/7/v/xJjPROf+WP2IWlFYli5bjMaDJxLW/fJ7C+O/88oKkJmThaLhJQntKrrrsf+FB1G/54PefW0IEU4y8vrlpGjVGdMOVhQDs2UtxcRK1CU79XCC17kSrJzP7nWbYfccSTMGR5twfMeRhHUlFWUoHtUfhUOLUXHBFFCGFAUoSCF46bLFyB11Lw6uegwblr+BoxsTszP3Hz8IFedPSYpQpIeWo74VzPpbVgwYhkknPPU5cCIgAe4/bG5wosTolT9g6rD479xS41CgZjQpY4oXJpq72Ln+zAF3YPd/P0xUVpp+DsB/Ew8vzu/kXnc2dyQs73hmfTzHRMnoAfH1w08dkxCSUXTXY9M9V6DtWKIAEiZRt1+2MurvhT8EEG2TJKvhMrVygoSV10BJR2PiYMasr5yOCZ+cjYmfmYMpV8xHcXmvP5XXio0ReeX3Yfff78Def/08YX1WXhYmfno2xl00w9a5jJaN0OqH0i0BH8MwjEyoGZKVeOl74PWokFWUmXndmgId29JrT7vznxsSnIgBnVjkQqD9RCuaqxsghEDd9hq8+6MFCQ6FpbHRcvmjHlTCMjsjqer97Cqdg2YMR2ZOZtL65tbjGKzI8pqRmYERp43F7K8uRE6/3iRqm++/ONDQg1ZHzL2+V0Fcn5syUm30NQzzKK/Oq/RFGr5gDLILc5P2UT+DViIiGfWtnc3tqPlgPw6+sRvVa6vQ3dEV36Z854+8/2zCcTO+dCpmf+3MBIXFDHW9vXy/U+05ZRiGMcO1Q3Iq47XpU3ZBNrLystHV1ommw/WorzwWd+Czy5iPTk2IrrPlsfcw9fMnoWBQP3Q0taNmbRXajregs7kdbXUt6OlKDE064rSxOLatGhCJ5x193uSkstyE3LOaWVRW/oyEC68UxOzCXMxecia6Wjqw618b4yFmP/n1H6Iq682k/bPyszH1Cydj/X2vA5CyrrbXt5omggO8c9xWKmt67am22/cCI6XMzrFe4kXoUy20nnM/lGOrz3EUZgxk6vcei//uN7I0abvXZjNd7Z3Y9NDbCf3Wobf34s87mhP2Ez09ED29isv4T8y0PSvrdXI2+R3Um0Hx4z1lGIYJEl9mDvzOFGsFrQ+vOgKG11BGBkrG9ioDu/+zCUIIgyP0GTBlKGZdfwby+hfE12157H3UrNuPjQ+8iZp1+1G/9xhajjQlKQYAcPCtPQmzF4NnjcCfthxHdkGviZKbj5ee86XbkKRefVCJCNmFuZj02XkYccY4nHThp3DxTd/Rve9ZudkoV+Q7OPT2XkvlWFUMerq6cWTDAVSv2Ye24/qzSm1VSyCEwPGdR3BsWzV6uroTtvkZ3SuqwozWqK/X55XP7Qd++ZV4iTLyjzIYgrpMu5GQ9N6PI+sOJPVbPZ3d+OFHF+CamSWoemU72o63YOvyRRDdvSaWJWOcDbYAwTzffjiaMwzDBE1kzIoA7zpvrfOoR3j9cqAetWhC/HdPVw+q39vn+FzZBTmYcuX8hHX7V++0fZ6MrAyUnzMJ9z/w6aRtTuzCnWZv1Ytko1cns3LVaN3DjMwMDDtpNBpH7EFmVpahMD9o5ghk5Uu5Ho5trUZ7fatheVboaGzDnpWbse6e1ah6ZQcOvL4bm//yboLyIXoEjmw4gDV3vYK1y17F2rtfxe7/foi9z23BB/e9hqpXtic4lNu5V2qF2EpoYaNoUGZl+Tkg4MbWPQxBLUjTNLcUKiKtKZ81wPrsoBKz56B6jXa/uG/7enQ0tuPIhoP48JF3UBdzks7IysDky+eBiBIGIZz2O04xm9lTl8swDJOKkN2RbSKaC2DtjGtP082QLGMU1z8qOK1jd0cXRnYtwOsvPoSiESUYMncUKEPStVqONGLrE2sgegQyczIx87rTLWU41qPqle04siHZSbb8nInIzs9Bv/L+8QRmDfuPY8ffeyPuZOVlYeSZEzBw2rCk492iNtOwO31vZ3+vTQP0qHplB45sOBBfnnvTImRk2tehO1s6ULNuP6rf11cOp39pAeq21ViepcgtzcfAacPQf+Jg5JUWJG3XMpvxKlu5VQEx6HfeidCvNfsSxrWpn2mr1+Ll89/d0QXRI7D+/tfj6wbPGYnyRRMNjnLPmrteif+ecsV8bH1ije6+lEGYfPk8FA4ptj3bGJR5T1D9k0zT4XpsevAtAJgnhFjne4EhIcsbIRWf1m3LMEYEohwA/gkLdmy+vbIP727vwrEXT6Du0IF44rPBs0ai/JzeD+rh9ypx8M09AIDc4jzMuOY0V2XW7zuGA6/tRmttE7ILczDhEmuZSoUQlsP8ucHpqJlVfwer53d7j1uONmLLY72x3sd9fDr6TxhseExPVzc6mzuw/el16GhsN9zXDjn9cnXPN+eGs1C76RByS/LQb2R/ZOZKyqdRe0YpsZ1XeDEjYPVZ9bL9tIRJq6PgXnFk/X5UvZo8Eznmo1MxYMpQz8pRc/CtPTj8biUAacZiypUnoeVII6rf34e8sgL0nzAYddtqULN+PzJzsjDu4zNQNLzEkWJgto9bwpotYOUgENK6bRnGiJRxSNYbAVL7N8jLXW2dyMjKQEZWctQapzQfrkfL0SZUr9mH9vo2FBX2Rss4suEABk4fFhfYB80aEVcO2hvaXDknA0DJ6AEo+cKAuA+DVYFfuV8UZ3KsfkzVI6tmz4MRRkJDwaB+GL6gAofeqQQAHN95RFc5aD/Rip0rNhj6EFAmoWziEBQNL0H/iYNR/d4+VK/VztY8ZO4oDJk7Cl2tncgfVAQighACu/+zCSd21ybs+8HvVycsF5f3R8UFUwGD9ozSfU9FnLSfG/8bPzn09l4ceid5xqq4vAxlk4ckrfdKMerp6o4rBgAw/LSxAICCwf0w9sLp8fUjzijCsFPHAJBMA60oBso+IZ0VA4ZhGL/xTTkIYtZAjRACF5z8fSy77TNoOlSPzNwsTLp0bjwTrtN6NOw/jsNv701KrpWdl4cilMVnD7b89X3MvfEsZGRlIis3G8Wjy9CwT9q2858bMOZjUzFgsrsRuSBmAZzgp6OsnTLMhBgth0H1R71sylCFcnAUna0dyM6XHLl7urrRdLgBe1duRmdLh35FCBi5cLyUvTVm8gUAw08fi8zcLBx8S1Ics/KzUXH+lHiIWQDI6ZfXexoijL94JpqrG3B040HUbj6sWVxD1XFs/vM7mP21hXHzNj2USmKqzyZY8WEJC79Cz7q9Zz3dPahZl6ig9h8/CINmjdAMD+rlM7Ln2c3x31l52YYDJkbmfE79kryElQGGYdIVx2ZFv3xpLf69+oe6+4UxSj1n6BV44qffiQvrMiMXjsOgmSNAmRkQXT1xEwwzhBA48Nou1Kzbr7n9xt8/gVlnX4Brp/V+UAfOGI6Kj0yGEAIN++qw858b4tsogzD3pkWRFfC9wu9RO6v2vVpCjZ7woD7PpoffRvsJ6w7J2QU5EEKg4rzJKK4YYMlPwYnJV+PBE9j9n00JOTWUFI8uw4RLZsWz2QZFlJQMOwJiEM+olTpYzQHiBftX74z3afkDizD1cycF8ry01jZh86PvxZdHnTUBQxR5R/SwMkJvNLOgN8to1I9EPRQpmxUFQlq3LcMY4WrmwEwBCFJY6Onuwf8eWAYAKCosS1AQDry+Gwde3x1fHjxrBMrPmaR7rrptNejp7kHb8ZYExSAjKwM9XT0oGlaMsslDcdLiS0BEmPjp2djxzHoAQO2mQxhx+lgcemsvjm5MdCLOKc5DX8LvD6xdxcAIZV1vvmklftvyEWz601uaYWKV5JbmY+zHpqFwaLHlsmTsKAZy/fqNKMXsry5MUCyaqxuw858b0NXWiYZ9ddj+4AZkDiKMOGMsCgYZ+6V0tnbg8LuVyMzOxPBTxzoWEv1+1608S1GZNfCyHn68P/V7JBM1ImDip4JRJBv3H8d2ZaCE3CxfFQPlNifHGB0bBFFXThiGSW9cKQdGAkHQo4gN++qwf9emuGJQcd5kVL64TXPfll2t6D6jSzOCUO3mw6h8YSsAJPgUlE0agrGLpyXsu+yeCwFIdrqyCVFRYRk2/OENzXLLz5mYlrMG6pkC5Uio/JGz+rGzIgxYOY9T+/C2qiVYumwxvvXdl/DTmlNw+L1KoD4zeTbqjHEYPGekpz4tdlA+R4VDizH58nnY8uh76OnukeraDNRXSomtisv7Y9iCMeg3ojThHEII7P7XRjQdlkJXHn5vHyrOm4wBU4faMk1SrvPjvQ8ioVhYGD3LXgqHXW2d2PnPDQlhSguHlWhmQvYaIQT2Pr81Yd3Ez8wxPc7tfdfbZtTHROE5ioJywjDpBhFdDeBhAGOEEJXh1ib6OFYOHn/yRtNoRX6jFEZkJ7em5joMmDoUA6cPR7+R/dFe34razYfjo6oyx3ce1Qzvqfx4NjVLwn7mIMKosyck7auk4vwp2PjAm0lCpEzBkH6a9rzpgFFoSGUscifmRl6bKNnxjSgZMyCedKmjsQ2UmZGQRC5oDM0g+hdg8uXzsHPFBnQ2J/pCNFQdR0PVcQDAgsWX4fwvLcGE+Qvwk1tOjisGMpUvbkPli9sw5fJ5KIy930IIiB6RYCqlpQSEaVYUhM+LVbyoi5dC4dGNB7Hv5e1J64tHB9MfNeyrQ0djGwAgMycTU648KSG5o9co29+OT4qfDsZm/ZhyEIVJXYhoEYBXVaubAVQB+BuAO4UQjQFXi2FskzLRiowQQqD1aFN8WRZickvzkVuaH/8Ith5rxua/vAsAaN7Yiv4TkmcPMnOz4rMPA2cMx/fvfRWDRo02FXxu+/7L+Nmac3Fox9a4gjB0XrnkzFqQI+VBSMNZAxm9j57WB8/JiFiQ8cq1HD+VTsJhoBWtSU1eOXDSnC40bL4WO59Zj/aGtqR93ln5N3y4+iUASFBkKZMgunv9j7Y9tRZDTxoN0S1wdNNBdHd0o2ziYIw+fwoys/2fLfEqf0FYuKmL1ZwLZn1S24kWHHhtV1KkK5lBM4YD8N9H6Piuo/HfEz89B6WzHumto4uEYmYzA04Vg6AzZVupF88gpBx/ArAq9rsYwJkAfgzgNADnh1QnhrGM5xmSrWat9BIiQpHCZEI9GiqTP6AQpWMHoqm5Dq2NDTjy7FGoHbIHZU+MC03DF4zB4//8muV6fP9vz2PwmcMwdH45Jl8+DyPPHI8xF0zFyIXjA5m+TyWcPCN2jzF7Fo0+uOoQuVHAioCQkZmF0pmPYMY1p2HezYsw/hMzk/Zpaq5LUAzKJg/BvJvOxpQr5qNouDxbIJkZVa+tQndHNwCgbscRrL//NXS1SrNwrbVNSe+PFzjtP6KiGNhB6xmVl/WePSvPZMvRJnz48DtJisGI08Zi+KljMGfJmb71Scrraa5pQO2mQwAAyizBgJMfS9pX7/pl7PoMmNXJ7bmslqf8MyvbLFN9Kj7bfZx3hBCPxf7uE0JcDuAZAOcRkXHiHBsQkXmyowAgohwiCm9anfEcT5WDoDuwpcsW4+tf+xcOv1eJhqpeYaf/+EG6x4xa1GseVH+0BicUo1oAsGVNb+bO7MLEZ93oo7x02WL8/r6LUTZ5CEYuHB+6yVWUsPLBs6pUeq1UtFUtSfqTSVUFAZCumTIyUDp2IObfeg7m3bwIYxdPQ15pfsJ+g2ePxJgLpgIAvn/HG5j82XkYtWgCMnO0ZwdEt8D6P7yOHf9Yj82PvodND76Fhqo6dHd0ubswRb3VqO9LquC2zlozA1b9Oo5phLydvWQhhp1SgeELxiQlzfOavPL70NPVjZ3/WN+70mDm1GoUMas49SPw4zmTn1+1wqA3K+DUz4qJPPJLGbf7JKLRRHQPEW0moqbY3+tE9DH1wUS0iogOENFEIvovEdUDeE2x/TQiWklEx4mojYjWE9FVVitHRPNiZbQS0REi+gMRzSAiEbPXl/e7OrZuMRH9goj2A2gFMDW2fQIR/Y2IamP12EREX9cor5KIHtFYfzsRCdU6+drLiWgFETUSUV2sjkmjHET0GSLaGCt/NxHdCiB9TTd8IGXNim6+aSWaThzH/33sVBzcvSe+vmBQEYbHkudokVuSjxGnjY3Hmc/YKFA6flDc5EceJQUACAAUjNNluqP3sfZLOFHfJ6fleJkRN+gPvLJMyshA2aQhKJs0BN2d3ehq6UB2Ua6mH8GQOaPQf/wg1O04gp6ObpRNGYKmAyc0Hfw7mtrjkbrGLp6GsknJCbTcYDfTthu8NuHww6zIam6KIxsPxH8Xj+qPsRdNR1Zub74Nr+zr1c+18rwNVcfR1darNA6dW6Jr6pNuwq9VkyYr1621z5WX34PvPTjPWeUYq0zWMAU+LITQTjaTSBERyclrigCcDuAqACuEECcU+50E4DwA/wKwB5IJ0hcAPEtE5wkhXladtwDAy7G/byMmwxHRJQCeBrAOwB0AWgBcDOARIhoihPh/RpUlokmQfCU6AfwGQC2ASwH82eCwX8f2vxuStFRHROMAvAMgG8DvISlEnwTweyIaK4T4plE9TMgH8AqA1QBuA7AAwPUAjgL4keJaLgXwFIBtAH4IIBfArbFrYiySssoBANx5+wU4Xn0ovlw0vAQTLplletywUypwbMthtJ1oRUPV8XgW3AOv7Yrvo541YLzDjj22OuOp/Nvso6oWnsKyR7dbbyvYtb9W75+ZnYnMknzN/WVy+uWh4pP/jS+XzgRKx12Hqle3o37vsUQlOsaelZvRf+Jgz3xrghQYtRTWqAqsZopB7ebDCf4jZpGB3CgGyv/q85zY0/strjh/imYACCdJ7Mz28WK2wS+MnKXt1OXxJ2/0tF5R57nvTsWM8sJAytpU1YyP/WoLAPxVY/NPANxu4TR3xf6U/AvA51TrVgoh/q5cQUTLAKyHJPyrlYP+AO4WQvxUsX8+gAcA/A/AxaLX1vNeIvo7gNuJ6I8qpUTNzwEUApgthNgUO+99SHauVpIB4DQhRNy5jYieitXxNCHEO7F19wL4D4BbiegBIYR2GElzygDcIYS4M7b8ByIqhaQg/ChWViakdj8AYIEQoiG2/mFIygJjEcdmRVdefk9g5hZdrZ1oqKrDnpWbseOZ9Tiy/gCWLluM7rbOuO108aj+mPzZeZYTnA2ZVx7/vefZzdj9703xnAZFhWUYvmBMUvxvu2YmYZujhOH/YRW7piLq/Z06rCrxu22CbHuj9vTKFKto0gOY+tXXMHvJmZh/6zmY8eVTMeqs8Qn77PrXRtRuPoymw/W2/RGi9qxG8f25+aaVhv1KfeWxeChmACipSI5I5KcpkUx3ewvqtlYb1sNtGVpEMWO2ll9BVBVPJoHPAZin+ltu8djfQZoROA/AJyApFecA+IfSNl8I0SL/JqI8IhoAoB8kZ+aTdM59j2r5PAADIYXpHEBEA+U/AM9CGnE/Xa+iMYH6YwBekhWDWN26ACwzuMYHVIpBJoALAbwqKwax8/RAmmUgSLMZThEA1C/0agCDFL4X8wGMALBcVgxidTgE4HEXZfc5XPscOBWArXx4e7q6selPb0k2zs+sR932GjRU1aHq1R1Yc9crCbGzh8wzT6ijpP+ERJ8g5SjX5FPPxE//+IH6EADWzUzCVgyUROEDqYfdxFZK3wAnwltQH2WrMda9xgsFwWzf/NH3I6/8PpTMeBhD5pZj2lWnICNL6krq90rC6bYn12L9fa/ZyjKtJMj7ZHa92pGh/FEctK5b2Zdsf+8tHNyxNWkfmfo9iTPnQ+aWJyzrmRN53V8de+/L8QSCZZOHWHJ+NjN10vNH0fpt9/741Q5MSrNNCLFO9WfFpAgAtgohXor9/VsIcTuA6wBcAODL8k5ElE1EPyWiSkh2+7WQzGS+CqBU47x1QojjqnWTY/+fiR2r/Hsots3ICXoQpFmD5HjHwA6D43arluXzbNHYV16nb/NtTo0QQv1BkdtCHn2Qz681S6DfcTJJeOKQbNShOv2AdrZ2YN09qzXDMarJH1iEfjZzCGTlZ2v6JoxaNAE3P/AkMgySQMl2v6lE1BUEJ8Kg2+OiFPrSDerRZL128SsqS35ZISZdOjce6Uimu6Mbmx5+G9ueXItjW6sNZxJS9T4EVe+bb1qJ8q7T8fPPnoNfXv4xtDdoK12drZ3x3+MunG6Yy8DJu6N+zrRo3fc11HzQm1m+dMxAzf1knCpoeu+vmwEDP/zJeKaAifF87P85inV3Q7KLfxbAlQA+Cmkm4HFoO9BqvfiysPI19M5WqP+e1zhOxqkdqJORH6HzW4lerOxkW9ZeSPVf69zskGwDx8qBVZtHKyPDWp355kfeSVjOLc3H6HMnJURRoQzC8AUVmHTpnATHSiOUH7fhC8Zg9LmTAEimREXDijF49khPPxBmZgBBkQofpzDqGHa7eDECvXTZYssKq5UQi07apHBoMSZdNhczvnQqKs6fkrCt6XA99v5vC2rWVunWx235WngplAUdClNGvqd3L/0YXnjoXhQVlqG7owMdje2a+x/fcST+u3RCYtQ2o3p61efVvPZZrL37VdTvPRZfl93PfshUMxNCvQg/bhSDKPTTTFojRwRQhh+9EsBfhBBfF0I8IYR4XgjxEuzJZjtj/08oZivUf4cMjj8CyYF5ksa2iTbqcRRSwrepGtvkj8JexbrjkPwT1Iy1UaYaOTrNFI1tkzXWMTq4ckh2G+pRN3HW8ZaEKBdjPzYNZZOlKCiDZo5A48ET6OnsRvHoMsvOj8o6KqN9DJw+HF3tXZg54SJcfOO38adHPw/A/GNpZXvYH5tUHBkPW1gPAtlJ2Ot7E3YULSKKJx4sGTsANWv34+iGA715ErYfwdD5o+P7exkxxwg/2trKOe0KrFrXL9/Tq694BDfeLbVdUWEZGvYeQz9FbhdAMsNUouwbvbp+LUd/mfq9tdi5YmPC9rKJg1E0rFj3fFYEf6NtXoYsDfv9YdKeS2L/lTbL3VCNaMciB10C6zwPoA7AD4nov0KIJuVGIhoEoFboTN0KIbqJ6DkAnySiGQqH5CwAlj3fY+f5L4DLiOhkIcR7sfNkQHKuFpAck2V2AjibiPJlcyEiqoC9a1ezBsAhANcT0T0Kh+ThkBQxxiKe5TnwUhBWjjBmF+TEFQOZfiNKUVIxwFZUFL2OnzIIw04ajaOlG+OKgVWiMitgBE9ph4NdX4owsCqEmT1DWteSnZ+DkWeMw+wlZ8bXtRxpRFd7Z9K+ZnUxIqwRfTt48f498sTVyMrLjmdvP/z+PnR36s+yFwxJzI0URB+g9AEDgAmfmoWxF04H6ZhoulUMzM7l5DwM4xELiOjzsb+vENEfANwLKbSn0sl3BYDPE9F9RHQdEf0SwLuwYR8fUwa+DGmUfysR/YyIriWi7xPR05Ai95iltf8RJDOhVUT0EyK6CVKkogK5GIvV+QGAEwBeiuVAuBHACwA+DuAuVaSi+yH5KbxEREuI6Mewee1qhBDdAL4BYBSAd4joW0T0fUjhVXcZHswk4GkoU7sjdHqhHesre6ekp33xFMPj5XKtoBzNd5uvwIpSYDUmOWOdqIeZVGL1fQjrWsxCq9ox3dA7FxEhIzsTPTFBtrm6ASWjB2ie36ieTvFKQdBLTBVU/goiwvhLZmLbk2vj69bf/xrGfXwGSsdKNv09nT3xbVk5yV27VzMoct+n7NeEEBDdveXPu+VsW4M3Zo70XigGUegzlN8N/i6kNdfE/gBpduAwgEcB3C6EqFbsdwskofxTAL4EyZH2ekhmMcYxiBUIIf5FRKcC+B6Ar0Ay1zkKyRH4GzC214cQYisRnQ3gt5BG+Rsh5U14FMDbsOhfIITYTUQLAPwCklN1EaQZghshKUfKfVcR0ZJYeXfF9rsBwDRIkaEcIYR4KpZE7f9i9TgIybfjOHodtBkTPM2QbGcUXa+j7unuSbCnzcrP1txPeQ51vG2ZKIQiTPUPQBTaUEmqORJbEUiMIhu5uU43ZTs5r965Bk0fHv9ds3a/5j56RP0+e+kfYYY667roFtjz7Idorm6A6BFo2NebJT5/UJEn9bJKT0d33HzsrM98ybNcF25RBh8IA/U7LPsHpfp3gdFGCLFKCEGqvywhxCghxDVCiP2q/ZuEEDcKIUYIIfKFEHOEEE8JIW4XQpBq30VCiJEGZa8VQnxGCDFECJETO+d5Qoh79UyKVMe/L4Q4K1aPwUKIr0MKCwoA+xX7PRK7rpd0zrNDCHGpEGKAECJXCDFdCPF7rToIIe4XQoxR7Pe0nWtX1KVStf5vsfPlCiHGCiF+J4R4WGtfRhtPlQPAvRmL2m62fq+1pHZGI3jqzln53+h8evSV0R+txFBOjvWDIBWEsEau3bxHerHVvYpiZLVubcdbkJHd280oR5f1MHOYTnf0zBW1zIh6unqw9Yk1WLv0Vex5bnN8fen4QUn7Av6Nnh/bJg2GFhWW4cMtz5nubyfZmZtZgzCfITf9J8METSyZmnI5G9Ksw3FImZeZPoTnyoEd1J1+Z3M7Nv7xzYR1J3ZrKwfyx9PqyJCWgqDcpuUcqdeh95WRH70Y4lEhinVyg10bbLPz2DHBcqogqP+UHFl/AJv/8i4Ov7cvvs5sRDudhCiv/JFkZeGIIjxodmEO+k/UDl2elZeVFFYW6O3n3Ebo0er76rb3Rkk6tqUajQfUodiN0Zr1BYJ/x730IVO+E07zsjBMgGwnomVE9FUi+h6A9wCcBuAnQgjt8GhM2uKpcuBWYK6vrIsnzpEZNGuEzt7JEYiUOIl/rTXS4zT8X7p8BNzkEkinNvAb5fNmJdyo2XnCpuaD/ah6dQdET+JMcrFBPpKo1F2N0/uv7B/snENr8KG9pQU4lBdfnnTpXIz92DSMWjQB+QMK4+uz8rMx7uKZSWY9epGh9Powu8EWMjKl8uSM9Qff3GO0uyW8eO+iMICgVBAA67PSDBMw/4aUKfl3kByUuwFcJYRYGmqtmFDwRDmwE2fdiJaaxvjv/IFFmHfL2SgY1M/giESsxnlX76/nbOikHOU2HilivMDOc6R+bu0oGV4+qyd2Hk1YHjhtGMZeOA0lYwb4XnaqYUWA/etPvo2De7egqLAMQ+eVI69/ASiDMGTOKEz74imYf+s5mHfL2Zj1ldOTQpyq0eoDlchBFIwGP9Tbys+ZhIEK3xInKOsVllDv54ywlWe8L8xIM9FECHGDEGKCEKIg9jdfCPGXsOvFhEOoZkUycQGmrCC+rrW2CTD3oYmj/pjZ/bg4TaJjdj69cwY5QsSjUemB22fTipLgxfPf09WNxoMn4svTv7QAFedPQdnEIZFxVE0Vbr5pJdpbWvD+s/9AUWEZmtuOY9iCCs19iUgzbKjde2omoKoHQAAgr38Bys+Z2FuXDOP7HITwH4VZAyXyLOz1l1SEXRWGYRhDImNW1Fa1BAOnD0tYV/3+Pp29rZ/TCLP66h1vZUTt5ptWRubjFNZoVFSuPyz8GA2P4mxUT3cP6nbUYM1dr2DNXa9g3T2r49uy8rKQXWg/Q25U8PsZNjv/ty+bhFtOHg9AMtkZOq8cmRphSu1ix7RFvSz3J2rTS6VC0HjghGkd9HJpRO35DgMe0GEYJkxCnzlQfggysjJRpJgSP7a1Rvc4qwKv2mbeSlx3t9PbylwKeqE3+8r0cV8RkIFgo+wYleNWoLVT/7rtNVh/32vY8+xmze3jPzELmdlm+Xeig19hL7Vs/o3KaTnSiHXLVqFxSyOamuvQ1FwHyiQMmqUbydARWv2Qcp2dPC1EhKy83tDTLUebkvZRC73K/tHLdyfIgQm7grzSBFd5zX0lCh7DMNHH8RDUlZffgzGz5saXnXRmWhEpOhp6c220HW9xWr0kgvxYaCU/6+uj6H4Q5YRoQYdZtZOwzAw77blnZbJSkJGdgZ7OHpRNHqIZNcdtmUqiqCSq0XMGltESwHeu2ICeWNhXOSvypEvnIqfI/iyMm+AAWv26XrCHtqolKBjSL55v4dA7ezH+ohmm59OqrxWicu+dfPu0IuaxQsAwTFQIfeZASWdze0ICtDEfm2q4vx+dqVeCJnf0vXj9EQ96VNDqyKDberkZtbbrtOxFGzZU1SUsT7hkFmZ/dSHm3rAIc29ahDEfNX5/vcCvkX4vzms1NK26r+jp7kFncweKCnsjO835+plJSdDs4FUbmT1jIxeOj/8+seso9v5vC7raOz1/h6Kc38AOyjDAfT2/B8Mw0SE05UDzw1mXOFNQNnFIUNVJrEcaheEMG78EeTOHby8JStHzQjBQnkPvXHYFK7Vg193ehcoXtmLHM+vj60rHD0LJmAHxjOYZmRmOnY+1bN7NhMsws+BqoTZNtFM/ORFkU3MdBpZXYOwVkz3xM/A6W7DWeQoGFSFDYUZ2bGs1dv15M7591kzs/d8WNNc0JB0T9gxg2MEh2L+AYZio4Vg5ePzJGw23OxFyClUmCE2HTtg+h1cEYXfsF1H82Phx7WoFwY8y7CoGURFQvRxZVbZBd3sXdvxjPWo3H07Yp+K8yfYqaBErYTWVuBWAvbR5d1oHQq9SlZWdg5x+eQZ7B4u6fbXae9ZXTk867nDVDhzbWo2dz6xHZ0uHqzqY3SO7bR/FWV4enGIYJkxczRzIH22tztWsc1YnhgGAzqbEJHy5pQWwglowtJvAxy7y+aMmhJvVKawPjp+julERxpVEbRTbKzqa2rHlr++hubp39LdgcD/MvO70BEdUtygjfqn/23nnjLI3R5nM3Czk9Zf6vl0b30HT4fqQa2SPzJwszL/1HIz7+HSAehOjAUBXexcOvb03vux0dkuPVLrPMrKPmtUcJVH77jAMk36E6nOg7gx7OrsTls2c78xGi/3uRMMacdK7bqWipnXtqfjhtEIqCoCpRk9XN7Y8+h7a69vi66Z+7iRM/dxJjpxktdAKmWn0PKczZZN7TSrbjjWHWBPnbd9/wmDMv+UczL3xLMy8rnc2oaHymOFxRn26UYQur95/L581vWhEarxIIsowDOMV7g1ZY3gRhq211ruPYBCCu91r9lJ4NTpXFKfJ+yLp5LvS1dqJrrbOhHW7/rMJpWMGYtTZEzxJbqb33CoVhDCf7SAz+Iqe3gSQwkYySKto1V/uz/Ta2Er7a50jIysTOUW9fgiZFmaZtOoX1Lvk1zNmdl5llDsjPwzu3xmG8RvPZg7kDstVx+VR8lStMHFeEnbnzCPkfRc7I6RunhP1O5PTLy8pelhHQxuObDiAuq3Vuufw8t1z+95ZbTu9UJ1m+3hJZ7Nkl19UWIb8AUUJ2/waYdYzEfWiv1NGtsotzU/YZud5DmKW0IlDvB5O/R94JpRhmDCJTIZkAMguyIn/9tKG2Q/CVhCY1CEM23e1w6gT1ALwgMlDMe/ms+P28DJ7n9+K1trkhFd65wkbO/dCT8Hx+z42H66P5zcoHNovvj7M2RMrpi96Ckb93l5TooFTh8V/q33PovCs+KUgsdkQwzCpQqTyHJzYXQvKlCIWlYwd4Nl5rX7InWS6TCWb6FSooxlREB7soPXseTGib1fo14owY6c8GcogTLlyPkYtmpCwfvOj76HpUGo5zuphJKgGpeB1NLWjqbkOuSX5oAypm47C+6slJFupV3d7V/x3Xpm1QBNahJELwCtlzMp5Uq1/YxgmPYmMctDR2IaaD/ZDdEsChjLhTxQ+ikZEQUEI2zk7SNLhA+rViL5d5cNJmer2zszJwpA5ozDslIqE9dueWou67TWaZUXxnpnNCKjbKqhZn672zrgwnVvcG8bUTkjXoLDaryh9KNT5bKxi5IwcBl4qKpz8jGGYKOGZQ7Jbdv1nU/x3waAiDJwxPL6s9UEMO6a9eno/7I+2MsMmO7GlDm6dltXPYZACxojTxkJ096B6TVV83Z6Vm9HZ0oHBs0eCiFLGbvpnd56B2y6dmbQ+jPq3H2+N/87u500kKD+wqhjcfNNKfGu1NNNUVFiGrlb7eQ6ioBiona31yla+k0bvo9YMVaq8LwzDpDehzhx0NLWjoaoOQgi01DTG10+6bK5p9JOgOlG9zt2OsK0cYQpCeAtyFMrLcqy0URQd9dzOyrgZzVfbgds1NbJTntbfyIXjMe2qUxL23b9qJzYsfwPVa/ahvb5V54zR4zdPbwy7CgASkz9m5Ubb90rG6B24666PJpic5ap8VmTsZkoOux/QyndjlpNDb6ZP/kunGV6GYVIXz5QDs4gOPd09Ccvt9a3Y9Ke3sOOZ9dj+t3WJlcoyr5Zfwq/ZddjtvK1EPrF6HruZQVNtmjpV6x5mvgu35XshYOWXFWLO189EbkmvCUxXaycOvL4bHz78Nmo/PJR0TNAKsxW0Zg7CoP1Er0KV2z/fYM/o03KkEeuWrUpInPfFLy63fZ6wFQEZOcyo1TDW119SgbaqJfH/gPEAB8/wMgwTBTwPZaqk5Ugj9r28HWvuegXrlq3ChuVvoKu9E611zdj00NtxO1S1I6PsgBcGRna98nSxF9mR7QhEyn2tHBfkh9TPsqIkOPqNG/8Dt21kNZu5EZk5WZjx5dMw5fJ56DeyNL5eCKDyxW2ot5D4yul1ODlWvf+PvvmGo7L9oKOxN1P8wTd2o6OxzWDvaKDVZ3a1dWLrE2sS1pVPnYnhEyYbnsvqvfTi2bfblzspT53p2wuuvPwez87FMAyjhuwm2CGiuQDWzrj2tASnYQC4Ycm/8X/Xz0XTwROo237EUYXGXDAFAxSh7vQII7yg0uZUK5urHm7tZdXH2z0uKqNudnB6zW7KcyOg2z1WL+GUG2HHbRuZtbmde9JypBFVr+5A06HekJwTPzUbxaPLdM9ndF4vFSArduBhUretBnue2wxAstEfOnYCSj9SGHKt9NELr3p00yHse2lbfHnMBVNQNmUobrn5OUvPfVD3zCz5mxZa77yVMK9e0XS4HpsefAsA5gkh1pntn6rI8sZz352KGeXBvAObqprxsV9tAdK8bRnGCE+H6O+/8WrUvVtrSzHIUTjcDTt5tCXFICi0RqaUyd7cJn6zKvA4tbOPon2+VcKouxsB1MkoZtRMCLTMHtT+DOq49HoUDO6HSZfNRWZOFpqapQRYO/6xXjeakfr8XhM1EyYjyiYPwZQr5seXq/fsTDA10iJMW3Wt57izpSNBMRh/8QwMmDpMUzHQwk7ELbf31EkUKKuKQRQjTDEMw5jhmXLQ1daJza+/gqbmOhQV9o4O9hvVHxXnTcawk0fH1xUNK0HFeZMxZ8mZmHnt6Zh53emYftUpGHH6OFd1sPLx13Iis4PWjIHZ+ZwIPEbObKkg4HhFUEqCV2VYvTd6AoObZGlePBfqcpXPt/xMWq0bEWHip2cnJDRUmxBaUTaCfN6NyhJCoLuzG+0NrWg8cBzr//A6Nj74FrY9tRbHdx2F3VlYIwqHFgNAXLE656RbDPePkgDa092DDctVZlqxABNBRZ7zEjvfC73rW76i0tJ1skMywzBRwLNQppSZEf+QNTXXoXTsQAyZOwr9RvWP76Mn/OcU5QKwF7LPaQhIOx9RpcCinnpW+h+o1xmdy4ryYlRPt6Ev7cJh9uzjxkRJiRNl0KuytbBqOqcsv3BoMWZedxrW3bMagOSorCZqz5VWG7adaMH2p9ahs0UdhrMTHY1taDq0CaMWTcCQOaM8qUNrXTNAAITUn5ZPm4U3d3pyat9Zt2xVwnLp2IEoqbCe1NIod0cY5qRm2DExNSNKSh7DMH0Xz2YOMrMzAUg2skWFZfjIJ25MUAz0cDNSovdR8MN8QG962G6uA7MpcbdT7l4S9RE9r3Harn7fD7vndxIJyOg9tGIaYTTjoQww0FbXbKk+UWPLY+9rKAaJ7F+1E2vuegVNh7UzRbcdb8H6P7yOtUtfxcYH30Td9hq01jYl7NPd0QXR04O6bTVAbCKiaHgJBpdXeHEZvlO9Zl/C8rCTRmP8J2aCMoxDU4eBF6P06nN4PYPMMAwTBp4mQRu7eBqOrD4MAHjxn0sx4ZOzTY9xO1IS9Ei6jJ8jPGGPHum1p5+j0qmOemTT67Zy85xbdUw3mvlyStuJFmx7vDdiTW5p6oXmbDnSiJ7O7oR1JRUDkFdWgKIRpah6ZTs6m3sVh21PrsWwk0cnzJS2HmvG5r+8G1/uaGzHnpWS07E843Dw/7N33mFyFGf+/9bMbM45J+2utMoRgQQIBBiwMDZgY4ITjhzYpLvz+bjzndPvjH0JJGxhnH0GjLGNwdjYREkgEBLKaVdarTZoc85xZur3R8/09vR2z3T3dPd0z9TnefbZ6VRdnaret+oN755H1/4WECcB9cybKJVvXWzUpekKpRTtbzfxy65EF0ouC20qalRuDr1Q8k0E20eLci8+Tvztz9GTAG5UVS6DwWAoRfPMQULhwwvWZS3Ox/jEIPfXOaKrDW40Y6cRejvVlRFIsGen1XEyWJnu6TnUP30Q7hk3vy5zUa7qc0RaIb2wZ96eJ391KTY8dBVqb16NsitqkVWThxWf3YTU4sDIbV0HWjHUyAVmoJSi+W+n5cvf3YhDO3aha38Lt7+HBvhtTXSNyhxpLUZbBwOWV//d5RGqiTLCUYSlZgj0mLEWh62WK3Om+5GwzsNgMBjB0DxzMNP9COJEoUyFWY09sx6c/OV7KL20GlmL87XXMAzYSLc27OD4bNVna+RMlh7PRc/wtqFmSTr3NcMzyykGzgQXCjeUI3tpoWRZoZJKqbmvSuzT1YTGFLZr/Sc7Uby5KsDJ2hnnRN1t6+H1eNH819O8UtD055NY9smNmB6cwGTvfAb4iquWYG5qFsNNfZjs5cyKhDMFwLwjsjPeiZTiDFNmE8P9ptrfPsf/Ltm8KGSWe7VYrT0S+ocFq1uo+6okuSWDwWCYie7ZxrJq8/jfM8NTaPrLSbS83mDoLIKdQ3bqid6dZzCfjkgTy89b7trV3BO9n6F4hNPr8aL3aDs/Ar76S5eiaGNlSIFRDzNDqd/hUHL5vGmM1+NFw28PLcj4DgAOpwPVH1oRkP+l+W+n4Z4OdMLOWpKP4kuqsOwTG5G9pGBBOXkri+FwOhCfmoCld16E5LxUXa4jGHq8Dw6Xk/+du0L/kNTBHJXNxj/TJlYMQvnBSc0MCBH67rB+jcFgRArdlYOyK2oDRtUAoP9EJy7sjkyoDblOLxxnNOGxWsoxqtE3YtTaTKfvaMGMTj2YgqD0/HrMQMgx1jbIJz8DODv8ppdOoO9Ep+RAgVHx4PVQpFIK0lH9oRUgTk6xmR6cRN+xdtn9a29eDWc8Nyk71T+OznfOB2xvebWe/1153VLUfGQVyrcuxqJty7Hu/itRcU0dfnFmDCu/sBmJWcmK6xkOeryzcSnx/O+JnrEge+qHldqhUN+kEOEMHlMEGAyG1dBdOYhPS8Saey7HmnsC7U17j7ZjottY21k1I91aBRG/MhAq9rWS2NhGKQh2KNMqWCGuuF4CjpYytJ471Dvh9VBeMQCAyb5xDJ3rQ+vrDTj02C7JkXc9CHUtQlMoNWTV5mPpHRfxyyPnB2T3dSa4sPzTG+GM50bShT4XADApEJwdTgcyF+Uif00pspcUwOHkmuTHf3ij7mY5eiF374T+JMJkd3pixdlMpYJ9OAqAFdopBoMRO+iuHPhxJcZh/YNbA9bV/+YgpgaMDWXob3zvvqmS/9MTJUqFmoZcbYcRTgK3cJCrp5ZOOZxr0HOk0AodrtjMQM/y1B6n9i/Y+TOqcpC1OB9y8u3hHbvRc7gNPYfaMNzUp6nOwa5F6newdUqIS56fEZ3sGw+yJzdIsuyTG5GQnrhgW97qEk3nD4VZo+hy7VVKUQZvRiaO7mQGVppFECIcUBKipt2PdAQ7BoMRWximHACcI9/Kz24KWNd3vMPIUwLgGl1xY6pHpyF0QDPKDMKOqL23Vrl3/npYQUkI16xAeLwVhCSH04HqG1Zg3QNbsf5B7i9/bWnAPhf2nMOFt87h3J9O6J7/wIh7EJcyn6jRPT0H6qVBz5GQkYS6OzYsMA3yuo2ZNfETqWfvmXXzs0XxaQuVonBQYtev9RtS8v2ryWcgRpwsU+vsFYPBYJiFocoBwMU1L76kil/uPdoOj06jSqEaaL2E0GAj3aESo6kh1KhsqOzJkURt0i2t51AjANip81VbVz1HxPVG+C4kVTwBQggIISi/cjHSZRIjnvzVfkNMjfR08AxotwhAvVx9g933uOR41N2xHpk1XKCGxKxkZFQpzxaslUi8C8JEZ2K/MyMJ97lqzWOgdAZUj/whVhjAYDAYsYPhygEAFG6sCFg+8oM9mJuYCatMualaKfR09lIzgqSmQxB35nKCthUVAzFGjIxpKVPpM7fDPRWj1MbZCgiVhZqbV6NgbRkyqnLgSgiMpHx4x26c+vUB9J3ogHtmTqY05Wh12pZ7x869cIz/nVmVGxCdJxiuhDjU3LgSGx66CivuuiQgmlE0MdU/P/vjcIXuWtQKvOLZA72deEdaBjBQ380rfcEQthlqrkOrGSaDwWCYiSnKgcPpQN3t6wPWnX3+mMze1kPYEZgtSAo7E6POrdZHQmqdsKPe1N8VIMybMasQiwTLoGpVkqt+hLIra1F702qsuXcLKq9dGrB9qn8cra+fwclfvIfxzpGAbWZm0l0QYnJwAmPtw/xy6ZaasMqPRoS5HNr3NmHonL6+JEoyfGuBUoojP9yDxj8eQ/PfTuPC7nOo/81BnPzVezj91AF0HWgJ61zhmC76Zx3sOIDBYDDsS1gZktUIJKlFGai7bV5BmOofh0cUxUMpeo+kGDEyo7Yx12sUTK2zr5oZGD/B6jrddi/25crHOA8nOo7WJGB2UUzCvS9y262G8HnkLi/C4o+uWbCPe2oODb89BOo1Nsu60uRUwkhrrgQXMlf/0pCZsXCI9LMWZ4lu/uupoM9PbRspd4+8Hi96DrXhy1cW4+Cjb+Lgo2+i8Y9HQ/qxeD1eeD1e1D9zEJ7ZeZOx3mNcZL3pwUlM9o2j453z6HinSXPdhW2s8HtV8ryE57FDG8ZgMKIDU2YO/KQUpQcsj3UM61JuuMK9P5FNsBFuqdEbPWxJxYTbwfvro+WeqFUsxIKp/95FMma3XRQBP3Lxz+2KGvt+/7NKL8/G+ge2ouTSRQtMbj5w0dcWlK8Eve9jmsBXwj3jxmRPs67lRwPZSwqw6Ibl/LLX7eWzRRtJ2xtncOGtcxhtnQ+dO9IyiJO/2i97zMzoFE798j0c3rE7YMZDjp7DFwKWQ2X0DoXa9tHu7QKDwbAXpioH4pkCqrMD4vD5fvSf7NRkr6xFSDNqqjeYgKUkrKRQQQhl0iOn9ARDaUcldx3hRuUJFp5WanZB64xDpNAr74AZilIoZUCpkkAcBEUbK1F3+3pUfqAOAJCako1zh/aHFQIyFErvT3xaYkC0pcZnv61bHfQk0qZm2YsLAiLUdb7XLJn0Ti/c03PoP9Ulu73l1XocfOxNHH58N0ZaudwU1OvFiZ/tw8zoNB96VYq8lcVITclGako2khMyAUgPoAQbVAlXiRAS6ZkhBoMRO4StHKjpgMQRLFpea9B0TqlGdripD+dePI6W1xpwdOfbGG0bVN0paVEQzMw7EKw+UgqCms5Iyb5CYVOLH0EkZxSsrCDopTyFe2+NzNSqdBYhsXwnkgvmZxj/9uPt+LcvrcH99/0lZHlq677AryDE9ZdcWs3/HmvZp8hx1Qz8bZBVHFfjMxIDskmfe/F4WApCsG92bmI2YHnl5zcjs3o+GVv/qS6AcrMYjc8fw2TfGD+jIMzgnVaaibIrawEAeatKsP6Breg70clvX3nFByTvr9I2likGDAbDTpg6cwAAyz99Mf/bM+PWbFMsFn7F2ZfP/uEoGv94DNNDk4rKm+wdw3jXSFAFQdg5iHMeGI0SoVZKYFczkui/Di22wP6yje7EzI5OZTZy9TZa8BOf1whFQWlZSTkpSMpN4QWz/nd78b+f/ajkDIK4nqESoIVTN2dcYHSinrduV3ysHucPhvCbjfS7TwhBwdoyfnmkeQBtb5zRVFaoZ5iYnRyQaO7ci8dRuKFCdv/TT72PmeGp+eOzkrH+wa1Ycus6FKwtw4aHrkLF1UtAHIQvd3xiECf2vIZ/unI1r+QI2/1gfQBzJGYwGHbEdOVgXORn0Pp6g2bHZD/bd2zDSPPAgvWjrYM4+cv3FtiLLqhT1wjqn3kfDc8ewrEf78VY/ecDtvs7qEhGLVKL1hFyuetSWp5ZI/NahGUrzx4AwYW6SL5vSp129YI4CBZ/bC3SSjMxPjGI8YlBHN3zMj5VlYizzx9Fz5ELsiPRekU0UqIYUYOTmSlFKKRaZfagYF1ZwLJU+xwKJe8WISQgEt5U/zgSc5KDHDHP9V96AMs/czGITBrv9IpAk6Ox/j488ZW7wspjo3abVZ4nI/IQQu4ihFBCSKVg3S8JIS2RqxUjWjFVORhs6EGraASp/1QXTj/zvuYESP6GenZcPm/ChT2NvPPz3OQsxjuHA87Xe/gC/LLG3MQsmv58ElMt92iqjxFoFcD0sjmXKyOYX4RRaI0vLsaqCoJVCRZlRc17pkR4TyzfibikeCz+6FqkFAYGMRhtHcSF3Y04+sTbinyLQtVL7exIakkm/zs5Py3io/RirDJoEZeSgPUPbuWXZ8dndEt+KXUuoSDvmXaj+saVAfuklwcK+p//7o/wkfu/JqsYAEDZlbUouoibhfArqfte/i36TnSqMpPyP5PptnuDJi/0/2cKgX0hhFzpE+CFf+OEkNOEkG8SQtJMqMPfE0LuMvo8jOjGVOVAzsRnZngKZ39/BO5p9Y7Eg2d6cOzHe+Gemj+25sMrkbs8MJzmmecO8zMJDb89jMM7dqPveAdGWgYweFYUUWPEia4XujB5/m5+VTAhQ+/G3KyIO1LnkVqnNlmUmai991YT5uxGsBC2WsoIpmASBzcqXHp5NZyihGmeGTeO7nxbsk2RiqLlZ7R1kAtaoKGt8Xq8cE/N27gPn+9XXYZZWOE9J4TwwjUADNZ3qzpejWmbP6kmcRK4kuORVZOH9Q9ciZWf34z1D1yJ2ltWo+62dVi0bTlWffFSXHlH6BkAh8uJksuqsf7BrQFhWltfb8BAECdoKYTtlNh3KxhWUfYYqvkZgE/5/v4JwHEA3wDwhzDKfApAGoDWEPv9PYC7wjgPg6FdOZjpfkT1qFvB+jLkrykFIZxdcVxyPL9tvHOEGw1U2GlTrxfdB1tx/uVTC5zS0sqyUHntUtR8ZFXA+rPPHw0wYWp94wwa/7gwGdv4xCA6WxvQ/Ld6RTb7RjXgRioJYtvsUOcKFT0pWPl6I7bxFfuChFIYQpkX2S0cqh2Q8xeQw7+NEILCDRVYc8/lWPuVKxaYq5z85Xto/ONRDJzuQue+ZvQebceh7bvQ/tY5TJ6/O+AcY+1DOPv8UbS81oATP9+navR3rH0Ih3fsxvTgvDKiJAuwHGaMDltBQchdVcL/HjitTqAW4r8Wqe/bPT3HZ2fOqMjhfUOIw4GE9EQQhwOEEKQWZyJ7SQG++i9vqGqzCSGouKYuYN1k77iq+is533TbvWzWIHp4j1L6lO9vJ6X0dnCKwQcIIflaCqSUuiml49TI8F8aIISkRroODP1xhd5FP5zxLpRvXYzyrYv5dV37m9Hx7nzM8KNPvI31D24NOt0LAEPn+tD+dtOC9TlLC+GM5y4rrSQTccnxmJucXbCfHBmV2Rhp4Rwhhxp70XO4DQUIVBD06HTlyjFaKNWj/nLT42YTjomRkmtQOoNiZyIVGUltiEdCCJxxTpRdUYuEzCS0vXmW3zbSMsh/s366D7Wh+1Abqq5bimx6DwghASEvPTNutLxaj8oPLAVxEMxNzKBtVyNGWwfgSo5H4YZy5K3kBFv31BzO/O5IQPlJuanIrMnTdO2hrlnJN2pWAIBwESYPc0+H51vGXet8QjHepHRs3qQ0KSclZDlaBnOSclKw9I4NqP/NQaSmZGNuckZTnhthu2OFNpRhKv4GiBdICCHfBPANSmmAwOPzK2gG8FlK6S996+4C8AsAVZTSFqkTEEL8ikOJ4HcrpbRSrlKEkMsB3ANgE4AiAOMA9gD4F0rpGdG+FMDTvr9vAVgJ4EkAD/q2fwbAlwEsB+AF8B6Af6eU7hOUkQ3gawCuBbAIQDyA0wAepZQ+JVdPhrmY7pAspujiKiy+ZU3Ausme0ElpBk4vnKKuuHoJKq9dyi///VdfRd0dG1D5gTpkLQ5U1pNyUpC7ogh5q0qQUpCGtLIsLLl1LWpvDqzLhT3n0Hu0HdPD3IihXoKxHuYZRpxfvM2OHZjSDttMwcqO91FvhKO+/tkfLVF28leXYsVnLkbO0sKQ+za/Uo+OvU2glC5oMwZOd+PUr/djuKkPx378DoYae+GZ9WBmeAqtr5/BaBuncPhNVvzU3rIayz+1MWDmM1JY+b2aHp7EYEMPv5y/pjTI3tqZGZmPPtT1fmvA7LPScNRK9rnlw9/jl12JcYbNGDNTIstQRwhZJ/orCn0YACCVEJLr+6skhHwCwGcAvEApHTauyvgUgCEADZg3a3owxDEfB1AM4FcA7gPwBIDLAeyVmeVYB+A3AN4EcD+AXQBACPlvcMpLKzhTqm8DKAWwmxBymeD4RQDuBKeAPAzgXwBMAvg1IeRzqq6WYRimzhwIEQoJvcfa+fXEQRCfkSh3GADOqdjTOz+z5nA5UHvLGqQJnAX9ZSekJyJhRTFyVxQDN3D+DXAACelJsuWvuOsSnPzle/zy4IF+DB7oR/UnlyEuOV53oVJ4L8wklKIjHOHSojCYObrpj9Sixz00KqqRVHlG3hsrRWcSJuYL9pyU3o/E7BRUXb8MRRdXouWVesSlJmB2bBqzY9NIyknBaNsQv2/3wTZ0H2yTPt/gJM796YTktrN/OIrSy6oD8hlkLspFRkWOojoGI9Q9CDV7YJXZu2BMdI4ELCdkJIFSGnJWWCn+e5iYFRidqP2tc/wgkZL3SWmb0ds2P8OdqGCGQgtMMZDmd+NfxdsjS0w5V/f4GQCfBbjRcTHfAvBNBcU86vsT8iKAT4RTt1BQSp8ihHwPQI+KUfh/ppROCFcQQn4N4ASAzwN4RLT/UgBXUErfEux/EYB/APBVSul/C9Y/AeAkgP8CNzMBX7mVlFKPYL/HALwObkbh5wrrzTCQiM0c+EcN+453YLhp3rEvZ1kh4pKCj8j5909Nycambbdh3X1XLlAM5EjITAqqGABc7OvVX7qUd4L0x1tPulCs6BxBy1Zgz26mwBippFdGwDpWdUTqGekZcjMxKxl1t69H9YdWYOkdG7D6S5dh8UfXYs29l8ses/xTGwPCXwrLWn33ZQERktr3NgWYPaaWZCw4Tguh3lUlz8bqJkWO+MCxp8YXjuHQY7vQ/X4of0p5pHILJOWkoPTy+QR1/ae7AnIZaEHq/SxaVMv/XrfsY5rL1iPhIcMUPgFgvejvSYXH/i+AD/j+PgJOqbgKwPOEkMhPOQoQKgaEkFRCSA6AQQBnAFwkccgxoWLg4w4AcwB+K5gxyQWQCE7ov9gfqYlSOuNXDAgh8T4zoxzffosJIelgRBxTZg6Eo2TCRtc9O4sHNtYE7Cv0R5BjrH1+VHDjh27BO41Kv1flxKUkYOkdG9B/shPdB9swPjGI915+DsWDlSjetEhTmWInYH/HIL43Rgu5YptXYQe1qb8Lu0R1lUqQpdReP9KdXzg+FkYlANPLbyXUeayA3Dtt9DvuSojDis9egu73WzFyfgBzk7MgToLiS6qQlMv5zy3/1Ea0vt6A8a5RpJdnoeam1XA4HSi8qAJNL0nPJigdhBBj1DOXKlPLDJpes27+sgDg0UevhyspLiCSHMApXAP13Vj2qY2aZhGE9RxrH8J45whyVxSj90g7F9KaAu6pWSRkBh8EUnoO/7I/dO74xCDe+NWTqLp9SciBJjms9p0yJGmglB7WeGw9pfR1wfKfCCH1AJ4F8DkAPwq7djrhM5X6HoAbAWSJNkuFZFvo7AnUAYgDID1Fy5ELYIxwH/0DAP4OwGIA4kYgE8AoGBHFFOVASjEY6evFkw9+Hl63G6kp2ZglE1j1xUsDjpPrsIhj/l1afvlV2PDBjxgibHztG7sBAN+8bwOa/nwSAND5XgsKNlQsyJZqB4Rx6qUUlcTyndiXWwS0hTZtCGZmpDSWfbAy9cKKnbDZdZJS5sKpgxolNpKJuRIzk1H5gaWglGJ6aBKuxLgAP4Gk3FTU3b4B7pk5uBLi+PVZNXmovXk1Wl9rCMifEpcSj6R8bWHKzX7mwrZTqaKul4LgL8PhdGDpnRfh9K8PwDMb6Iw8NTCB6aFJJGWrN88ZvTCE/uMdACEYPMP5NHS8cz5gH5fIH0SPgRfhOzI+MYgTP9uHzEW5qLx+acA2tfi/TyMHDRiW4BXf/6swrxzIRR4yRcAghDjA1asUnBnUKXAOyV4Aj0HaukRqWs4Bzm/gI0FO53f6+kcA/wnObOs/APQBcAPYBuAhmXMyTCYiPgfDPd14+Op1/PLkzDCWfWojvywOTSlu0B3O+XdncnQEP/75bYbVdfuObcisyUNSbgofLu/Mbw+h7o4NAfUIhVy4T2FnIBSk1NoUaxXWg01xK+2ohKZKWhUDNcfrjZ6jplZF7/uq5n4JBwcicZ8JIUGFUCnBLqMyhx+sGGsfwvTgJDKqclR985HGf7+VPnsjns0/ff1NTD4wih/uuAnxaYk48sM98MxypsaT3aOqlQPPrBtnf38k6D5FF1ciIUP7rIEYoXK17JMbcfqpA/y24fP96D/RicINFXKHK8IOPiSMsPE3NMIRhiEAIIRkUUqHBOu1mSdwqAl1utL3x0dF8uMz91GazKURwHUATlJKQyU0uRPAHkrpJ0Xnu1rhuRgmEFZPp2ZEULhv07GDAdtSU3LhmQnMnim0LRXjSpzvzP+8838U10EtfmGdEIIlt66DwzdbMNk3jsM7duPsH45iql9dvGsx4g5BL4faYAmEjDT5CbeDi1QHyeKLh0YYbUjL/bKrApZWmoW8VSWITwseKMEqaL3PRnwD23dsw09+cTt/74QRprRkTO473hF0e+FFFSjeVCVZDz1IzkvF4o+uCVg3MzItua+S/DFClISvZQqErbnJ91+o3Tb6/l/lXyEwu9HKBBaaB8nh/wjFoVQ/Ay6sqVKe8f3/LpGwFRRFPfJInC8PnPMzwyKEpRz4hWc1ncr2HduwdNMWFFbP+xaMjvSi/pn3cfYPR1H/7EHcf105vB6vbIOeu3LeMfjQ317UfgEhEF7XP/zTa6i9eXXA9tG2QZz69QE0v3I6ZFlaBHEzHJP1LlMPR0qzO0G7Cq1GI/6upZxBY4VoF8rMep7plfORnobPKc8wPXphCAcffVMyt01CZhLWfnkL1j+4FaWXVcv6MWi9RnG7ljPFRc1JTclGakq27GySXiGhmVJgSy4hhHzS9/clQsiPAPwQXK6DHYL9XgNnw/9TQsjXCSH3gQsNqilRmo+DAFYSQr5BCLmDEHJjkH0bfH//Qwj5JiHkbkLIz8GZGJ0PclwAvjwG/wkuzNM+QsjDhJAvEkK+TQh5C4GZoV8AsIUQ8oxvn28AOAbggqqrZBiKLjMHoRpd8X7Jaen4xou78T/7GuAqmjetG20bxETXKIbO9mKosVdW8UjISOIjCI1N9IZzCSERCkRpJZkoWF+2YJ+B0904+OibuPBWI591dXp4EjOjgSNKUiP6oQRlPYV4ozMuqw1xqmeZDP2R+q7FIUkZHFZ7V6X8vJRg9DMVOnSPtg0u8EXwuj3ofK8ZZ58/iglfvpvR1sEFpkRJuamIS+H8CgrWlsEZ7wo7RKqSax9s6MG+l38LgPM7SM7IRO4K6QHWB+5/WbOCIJcojfkk2IbPA/i1728ngBt8vy8Wmt1QSt3gZhSOAfg6gH/z/b4rjHM/DOBv4EKLPgPgcbkdfef/EIC94HIW/DeAMnAzGaqEdUrp18DlTJgG8M/glKBPglOIvivY9XvgciBs9tXtdt922XoyzIeozcRNCFkH4NDKL2zGvz7yDgD1yoHQ9phSip7DF9D+1rkFx62553K4EuMW2CpP9Iyi/hkuU6U3eRbLPrlxwbF6EMxGun1vk2RIPuIkcCXGYW5iFgCQt6oE5Vct1tRxSTkVClHbUQSLQBQOWjswvabbYxErOC/Ggq+GUkJ9W5G6V2odcc2ImCb0O1h8yxokF6Sh7c2zvHOxkJJLFy1wNk7KTUXtTasQl5oAAEHbVr2/k+M/eYd3Us9fW4riTVX4h6++Zsj9Ctbmj3eN4MRP3wWA9WFE1LE8fnnjc1/5BQpLTMpz0HEGP//BZ4Eov7cMRjDCNitS2igKnW2FxxBCULCuDMkFC6OAyCUu6jk8r9AWrFs4kq8Xwa6Nur3S6z2UVwwAzkZ2+Fxf2OcXzzqE0+FFWqj0o+Ra1NY1Vkazp9vujfi1yn0fka5XpLHSLIIWodVoJaboknmfgO73W9H00glJxQBYGIUod2Uxln9qI+LTEkEIUTTootez8Hq8AdGreo+0Y6J71JSIXEblo2EwGAwpTA29IdfpEEKw9PYNWP6pwBkAz/R8fOwH7n8ZEz2jOPGLfRhs4DoST+IMcpaF9plR2nCr6UQya/OQkcU511VdtxRlW2pk9xVma9UTtUKIWZ2Lls5Yr7pF60i234xHb3Meo5xQraggWEloNxMtkaWMJH91Cf97sneMNx8KRXJeKsoul29npdCzzXM4HchZNu9QnZqSjcbnj6Hl1Xr8139cFeRIbYgHT5gpH4PBMIuwzYr0DlN46tf7+ZChaSWZ+LdfvY2Cqmr8y6eWB2QqBYDSy6pReFHwEHLCxjRY/ZRG8BFOU3s9XhACEAenY1FK0X+iE1MDEyBOgp5DC032ii6uRPGmqrDtY61mi6pX3gItpk9WMLFhBGJWQj8lyCkEer8zRpnt2Q1xXyD1Lpz8xT5MS2Qxzl5SgMzqXJx/+dSCbUs+thZpZUqDsBgDpRStb5xB/4nOgPVxyfFYffdlhp1X3I8xsyLjYGZFDEaYeQ6Ejb1/tDBcYSCrJo9XDsY6hvGdm7ciPjEJA32BgrYrwRVSMRDWS45wRhLFUSqSKp5AWQUnGEwNTEgqB137WzBQ342s2jwUXlSBuCT1mdSV5Ewwg1AKlZY6CeN9KzleznFPWB7DfKygFJiN2nc3mgk1wu1KjgcklINF25YD4BJd+hNPAkBWbT5SNWan1hNCCCqvqUPu8iI0PHuIXz83OYvp4UkkZiYbct5Y/J4YDEbk0NWsSI8GrHjTIhRfUslnQaZe7wLFICEzCcvvukRVvaTqptcUrdhcIbF8J5JyUmRHuWZHp9Fz6AKa/xo6BGqw81iFYHXSUmc1fhVKlYdoxoxrjMS7x0wolGGFdkFs8iIeOBK3vxXX1EmW45/JzqrNx4aHruL/qj+0gu8TtNZPT1KLMrDu/iuRmDWvDEx0jep6DimYaRGDwTADXTIk621CULxpEQrWlaP/dBcu7G7k16cUpWPp7Rt0OQfA1VdLeLlQ6/wsvmUNRpr7Mdo6hPx1peg92o6B093wzHDh+2YkRs7UnDvSqMnqaeRIqlQ9YnnU1ggicT/1ak8ikX3WbP8eK73vwRJY+knKkc6MPNkzhpTCdMPqpCcOpwPpFdmYHpoEAAyd7Q1I8sZgMBh2xZQ8B1pwJrhQsLYMqUXzHUX+6lLdz6MULY6/xEGQWZ2H8qsWIzEzGeVXLkbh+nJ+v4T0+Yyr4QovkRIO1JzXSAFNr0hOdiTWrlcvjHofzX4eRp9PycyEf3Yg3FHt4fPKE6OpRe8R9+mhSfQebeeXh8/348xzh0G90pHs9CAWExAyGAzzCdusyD/NaVSDteiGFchdXoTCiyqQWZOne/nhOM1KjVaHKk/Y+U0NTCwoN5jtvFTZVhOGxXWxUt0Y9kdvAU9PBSGxfCfuvqlSt/KUYIZioDfBnuHQWX2TWorPJXdute/VZO8YTv7yvQXrxzqGMdk3rqosLSQUPmz4ORgMRuyiWTm483ZlyeyUNrpy+8WnJaLy2qUovawazjin5D7hEm62YjUCeuW1S/nfc5OzaNt1dsE+wTpkLSPkRtski++f3P2MlKJgBZvsaCHS99LKo6ZmKwZmo+S5q3k+SbmpC9aF41cgxt+nhFIQhPsp6a/mJmdx+un3ZbdLXReDwWDYCVPyHFjFgcov2GgJuynerlVASspJQdkV87G6B+u7+fKtYB6glWCKgFVmN6ymIAjfR6vVLZbQ694zk4/QCGeZpaI5Tw1MwC3IbxMuYsdo/385xUEOr9uDtl1ncer/9uPYk3sl90lNyUZqSvaCKHZSWKVPZDAYDCl0UQ6CdYjbd2zDky+0yG4P12/Bjo1swbpyvgNxz7hR/5uDoN7AfBN6Coti4dzM6DZM8JVGrXO7lbCCoqc3Wu69XZ6XGsTtqRGKvX+EPrU4c8E2Z4ILUDh5oKTtFyojUuavoZYBwDPrxuHH96D3aPsCU9DqG1YELGcXK/OLY0okg8GwMmEpB8KRsmBTsnp0LmqUALlssuHWQ09hYMmta/nfE92jfFIdsRBvhJIQjcJdMKxwvUqUJSvUMxR2qKNW1ETeCpVfw67ICa1GZDD/7z82omhjBeLTE+FwOZC3shjLP30xXAlxisuT63eE64TPSGowyt+PyV174/PHJNc7XA5kLc7H4o+uAQCMTwzCWzAhuS+DwWDYCc3KwTPP3hewrHVK3Q4jKMEUE62dZkpRBhZ9cDm/fOGtRox1DGsqy+pYQaCMRaXIKthpdk9LTo5YQW8FgRCCkkurserzm7HuvitRcU0d4lMTVM86ivsQqfdNSkEQbpM7z3jXCMa7RhasdyW6UHfbegBAenk2Kq6pQ/Ellchfa05EvZnuR0w5D4PBiE10yXMALEzvLpcQR3xMOMqBnNAhPL94Stkf81xN3H1xHfXqJLPrCjAzOoWOd87D6/ai52Ab0gzKAmpGxla5Dtbq2WKNrp9VR5eNjDJm5jn0Pl+o98HK77JSzPomxW20v20WPyMts2lyoVOFbb7ccVJI3ZPW1xsCltc/uBWzo9NwJrjgSpyf4chbWSxbTwaDwbAbhjgkq7UFVYLcvsHWSzmjBUPpaJVewl5i+U7krpjvVOKm0nQpN9j5jMSOQlMo85BwTbvkklQpnckwwm9DGH44VjKu2vHdNBK5+yFljqkV8QCRODma2ORT6i8Uofzd/GUD4H3fpPwq5EhITwpYbvrTCcSnJ8KVGMf8qRgMRtRim2hFUo2w2hFCfz38nUGwht1oBcF/vMM1/whWb73OkHP5sUOiNK0Y9Y6Fi5J3TQ6jBA+xoGbUyH4klA69riVWhT6934VQ75fRyqlQQdAyG1SwoTxgefh8Px9hjsFgMKIVU5QDQHp6WSnCjjqc0RrhOSMRwUeK3iPzGTbPdL4BwJj8ANE8chqOcKE0hK3ejuGhsHM0IyF28CmSw47322oE+zalAlpo/ZbVPCs1TtdpJZlYeucGxKfNZ7NvfqUe450jGD/zxZDfcizMyjEYjOhDV+UglCAgbCi1NJqR7Kz1Pvd0272glKLj3fP8uoyKbFPObSSRSHym5+h3MOVT63NQcw/E59crv0YksLNiwAgftd9lON+xmm9Mbd+TUpCOVV/YjNwVRfy6ht8ewtEfvY2Dj76Jg4+9if5TXfB6vAuOZd8Ag8GwI7opB0obwXDzGkQKYdZfvSLfjJ/5YsBynGB0ysrRdayUw0APswSp+yx3beEoCKFmq+TOF6shaIOh5Zmz+6cMs9tmM5PHhXOeR35zAnUbtizcQIGWV+txeMduNL+ZiunpuyLeLjIYDEY46G5WJOUILF6npmPXexQ3nLL0Fi5cSYHxvKnEyJMRZi16E8p3Q0oI1kuxMFqwMOK+K811IKUQaH0H1WaEjSWY8rUQuw3eqEEc5UhqgEFSUU9Nxb889wr+/id/RGqK9Czv4Mk9OPXj+zDeXm+JwRMGg8HQgmE+B1JCm9oOR9ywigUnu0MIQVJuCr882TcuuZ8awcWMDkmpwCo1Si6nKEQataY/ahBeu5JjjRBUhQ7I0aAgGGV+whSF2CFU4k6p75UQgrXXfBBPnOzEzxtGsObey1F7y2q+HaeeEVDPCI7+z82YarkHgLUHdhgMBkMK3fIcKEGtSZFw1DxcxUAudGqoUW+jhYSE9CRM9XNZNQfru5FelqWpnGB26kag1JHXCk7fSvELBEZgpWuP5lFhJSh9zkxBMA+z82GoDYgh9S7sfPJmuBLikFGRg4xP5YB6vTi0fTe/fbxjGMSxMK+OXHhjBoPBsAqmhTINxxlZjxkDPRIjqVmvBEoppgYn+GXhLIKaepmtGITCCnXQit6zU1ZSCqyCFWYu7PyORiNWVFjVviPE4UD51sX88mjbIF9OtM16MxiM6Ma0UKZCzO4IggkjasJKim3l5RxIlTrszgxPYWZ4il8WJkQzgwfuf9lU4TXYvbaSEB2qIzeic48lU5ZgGdPNRHjPrfT+xTJWUByFyL0fcu9wZnUu/3vs1BhuveGxoOUyGAyGFTFdOYjECFGocwYTzJTMGARTBIIm3hHMGqQWZ+Dv//HVoPWULCOMTmb7jm388XpmRg2GnWy6hdP/WurMBE57ECpLttWxa72lsPIMgjjDsxRf/dc3eQVhfGIQX/vAKsyOTYd1/ljJYs5gMKyDKcqBFRt8KdQKgEKhcVN/l+rzDTf187/z15SqPl5YDz9KMjtLKTJKOj69sYOCoAW9nKytLvRZvX5KUBJO1g7Ytd52QawgyLF9xzZUXrd0fgUF6n9zMKxzmxnqlcFgMIAIzBzYYQRETWQgP7smv6NKWZibmkX/KW4fZ7wTmTV5hofkDCUIRaIDsqqCoNXcJNaEND2v1+z3z4wwyWZgl5k4tdjtOfhxxrtQee28gjA3MQtKaQRrxGAwGOoISzlQKugLoxRFwt8gEgqJX1mQYnZ8Bsd/8g6/XHRxJRzO8PQ0pdGDrIzVhYFgwqTW2YJQSojV7onUtxQto+8MayD267JS0sVQTA1M4NBju9Dyan3AekJIhGrEYDAY6jE1lKlShAKIPy67FqXC7PB4wRDWpflvp0E93EiSM8GFnGVFup5LLvSeVRUEYWhJM8LHqsWoOoVyfOZnn5L/Dbsmv6PrubWGU5T7noxKFgcY895aXci0I3q0t0qSA1qZzveaF6xb/XeXRaAmDAaDoZ2IRCsSIjUSKc6mHE3mLnMTMxi7MMQvV9+wAnHJ8Yacy2j0nJER+03YUXhT668CBFc89FYI5M4vN0oLhE4UJYfeGczt+D5EkkiYwxmVYM8uioHX48VwU1/AuqzafMQl2bN9ZzAYsUtYyoEeQrtcGXo4yIZbPz1tef118bq9Aeu79rfoUn4kECtx4WLlSEZKhSfxbECwKFhKZiT25XKzSkabxsmF5Q23TD3NQcxSEKz4/qlFTUI/PaM16TWQY+W2QA735Cw/I5xekY2629dj0bblqspgijCDwbACEZ85CIZVTIL06qAeuP9lJGQkYcmta/l1Yx3DcM/M6VK+VqwkFPixolAQTFgJphQoOSYY+3KL8OQLLcorqhA5AUy4PpSfkJbwrloULfHx4byzsSJ8afmGIn1v7KYQCHEJZoBHWweRWpQB4lDuayAOj81gMBiRwjDlQBw33yqCvlb0sOH334O00iykFKbz60/+fB+8bk9Y9YvGzsQu1yR+D0LVW40A5N9PS6hcNRg9UiscydYaLphhDGrfX6XYITKdnoiDSnS/3yq5nxKnfgaDwYgkmpWDO29/PGBZqAyIGz+7KwZShCuslG6p4X+7p91ofOG45H5aO41ImBToTbB7bHYUKi3hbcXHaxVyrS4YK42UpaeQr7UcJYpbrGHUtx+N7X4oSjYv4n+3723CuT8dh3s6cGY4Fu8Lg8GwF7pFK/I3eEIHYitFC5JCbf30FBzSSjJRuL4c3YfaAABjF4bQ8mp9QHxsvSL4yI3YWlEhkELq+v3Oj1Z6x8J5TqFG1Y10TjYCo6M7GUGsKQbi7z/Wrl8t4ih6UhRdXInpoUkM1HcD4BJdtrxSj5qPrDKljgwGg6EHmmcOnnn2Psn1wkbTKkKbHEIlJhJT4CWXVwdkRu4/1YWBhm7JfbWOeNpFAQjFA/e/LJm0zagIKWKkYvmLo/zoIVyFel6xZqphBlY3WzKqfRLOZln5+q2Cv70J1a9VXb8MiVnJ/LIj3hmybCkfJeaczGAwIkVEHJKtKODoEZ9bbUNOCEH51sXIXJTLr2v+62n+d7gj/cH2t9Oo4d03VfIOuVLXZHYIRbHjoB73TmkZVle4AWu/S1auGyM6mJucxfTQJACAEKDsilpFxwmVNHFoZwaDwTATw5UDodAWqRH6UBiRuEfNdVZ9cFnAcs/hC/xvM0wp7CAwTbfdi7tvqpTdbpTQrDT/gprQkcHOZYdnwZjHjMy9kcgszwgNpRTD5/sxUN+NualZAMDs2DSOPbmX3yerNl9zHhumIDAYjEhh6VCmdkCsBPgb8WCZZMUNvSPOiewlBfzywGntkWmUCJh2C5mnR86LcAh2P5WELDWSSJseCM9vtnJjt/eYYS6eOQ/GOoZDRoLTmo+j71gHzr14HM1/O41jP9qLkZYBtLzaELBPyWXVIc8dDDZYwGAwIoGuyoG4cQ02eq50FiHSwo+eyAkzhBCUX72YX3a4Am1U1Ya99P+WsikOdi+tOrMjJFKdpdVH9aPlG1GK2N9DuC4UVn6ODP04/+cTOPPcYRx+fA9GWgcUH6f4PRqcCFhueukEXMlxAeviUhNUn0fcBitpuxkMBkNPdFMOEst34u6bKoN2vMLp8VBT5WKlwKoNo1RyqmDOq3KcE4QyTc5PW7DdSOHUTAXM6spHKKzmxBlp04NIKmt6HK9HFDC5ZUZkmewd5383Pn8MYx3DupY/Oz4TsOx1ezHY0BOwbuC0dIAJILjQL6UgWKG9YTAYsYFuyoG/4RLmOpBTANQoBeLy7YCamPj+ax3vHOHXK4luYQRmmO2YFV3IDKwiDCr1izDy/JH4PuVmx9QcrxbhvWUCm7VxiWz9G/9wFJN9Ywv2k3p/5L4hr8eL3qPtaHj2IIab+kPWIT5NfubAf24x4nY4WtpLBoNhH3RTDvRqwPTIRGwWUoKC1ghD6WVZ/O/u91sXJM4xGn+9zVIQwsUqgrlV6iFGqx11LKH23jD7cHsxOzodsOz1eHH6qfdx9vmj6Hj3/IKRfzn8fdsD97+MvmMdaNt1FuNdowH75K0sXnBc7vIiZFTmBC1b7p0ShwRnCgKDwTAT3ZKgCQm3MfNHfrF6Z6s1262UOUL1h7+EIz98i1/X+noDqj+0Muw6Kq2T3YjUO2JVQTtUtCQ7fE92wE6DF7EG9VK4p2YRl5IASik8s25+W1JuKqb6OTOj0dZBjLYOovdIO6quX4rM6jx+v2Aj+dt3bIMjTjSrS4AND14FACjcWIkLu87CPTWL0i01SCnKCFnnaAphzJiHEJIJ4H4AHwFQAyARQAeAPQB+RCndH7naMRih0WXmwK8I6JkZORo6XHEUl2B2zik1P8bSOy/il4ca+9B/stOcitoYM4V1qyoGfqLhmwkHo0dXld5fNsprPtTrxdnnj+LYj9/BwUffxKHHdvHbXIkuLLl1LXKWFQYI955ZN869dAIXdjfCM+OWKnYBI+cDTYnW3rOF/52Qnoiaj6xC3e0bkFqcCUJImFclHyr3ztsfD7tshjEQQlYCOAHg3wA0Avg6gHsBPAvgUgDvEUKWyZfAYEQeXZQDoVIghdWFKqNQa5OcUpCGjKr5aeiW1xqC7G08VhZyIu2srodDqxFYrT5mYpXRVavUI5boO96JsQtDkttqb1kDV2Icqq5bhjX3XI6ld2xA9uJ8biMFeo5cwPm/nlJ0nmGBclBxzRI4EwyZfOeR8yd65tn7DD0vQxuEkDQAfwKQAmATpfR2SunjlNKfUUr/BcBSAA+GKMNJCEkyvrYMhjy6tWxSHaLflEEPgUU8O2F3pCJVJJbvRM2H78Gh7fOjXoNnepC1OF+XUSjhecXnZoRGbLpjVUHcLmZ5YszO2q1H4joxQoU6WtoqOyCOEgQADqcDi25YjpSC9IB1KYXpqNq2HCnFGbiwuxEAMNI8gJmRKSRkyMtk08OTAcuJWck61V4dieU7Md71iYicmxGSLwGoBPAFSulB8UZKqQfAdv8yIeRKALt8x6WBm2GoBPAxAC8QQgoB/D8ANwDIBtAG4NcAHqGUzgnK+SWAzwAoBfC/AK4DQAD8GcBDlNJewb65AL4J4EMAigCMAjgDYDul9HdhXj8jSjA0CZrenXs0drbie0QcBCkF86FMz798Coce2wXqpYadmykJ6rCD0G2HOobCjPdSb2WZZTOODMIADgXry7Dskxux9r4rAvwJhBBCULC2DPmrS/l1o22DQc8xOxbowByfmhhGjZVjpdDJjJDcBGAGwNMqj7sfnGLwMwAPAGghhGQB2Afg0wCeA/AQOHOlbwH4jUw5fwGQDOBfATwF4HYArxJChKG7fu8r81nfOb8HoBnAZpV1ZkQxxs6J+tDDB0Hs5CwsT878Re059ahnuCSW70TZ1k+g/a1zAeFNuw60oPiSKlPrEul7EQwjRn2VnpdhLHbNneDHyuZ40UpcagKmh7iR/ayafCTnpSo6LrUkA73H2gEAM0NTQfdNSA9UBhIyw7P8UDK7J+6TWPtjKnUSM/ZdlNKuIMcsA3CGUjodZB8pigAsppTyGioh5PvgZhFup5T+1rd6JyHkCQB/Rwi5jlL6iqicM5TS2wRlNADYAeDzAJ4ghGQAuALA1yil/6myjowYglCqbkSaELIOwKGVX9iMVAXRGPRE3OmKFYRgCoQR6G26IXRgBoBzfzoeEEu77rb1SC3O0FWJEZ8z0uVoPW8kzs3QFyPeIa3fSqj3Skm5VhhsiBVGmgfQ+MIxAEBGVQ5qb1qt6LjJ3jGcfvp9fnn5Zy5GUnZKwD6UUoy3DyMuNQGnfr0f1MP1mevuu2JBNnslaHnPxf1b87HDePia9QCwnlJ6WHUlbIJf3oh0PQR8i1L6TbmNhJA5AO9RSi9XUpjArGg7pfRB0bZ6AHGU0hrR+nIArQCeoJTe61v3S3BmRZsppfsE+yYA6AfwNqV0m28GYQzAmwA+IzQ3YjCE6DZzIOwIgwno4g5T6eiJsDy5kTkzR+zMGLWu+fAqNP7xKEZauMGEht8eQmpKNr71+hVobTqCuclZJGYno+TSamTV5MHr8WKwvhtxqQkB8bX999gz68ZY+zCGGnuxuPIKdHuOo6Q8cJ9wiZStO1MMogO9R++NEs6VlMsUA2OQEq7TK7P5cKUjzQMYax9CWmmWXBE8SXmpSMxK5mcdTv3ffqx/YCsIIaCUovW1BvSfkh4onh2bCcvvQE1bKQynCgDjXSPBdmfowycAiKOCBJs1ADj7/bQQ+0jRJLGuCsBr4pWU0jZCyLhvu5gzon1nCCEt/n0ppbOEkH8A55fQRQg5DOB1AM9SSo9pqDcjStEtlKk4aYuS/cSNYyjh3q8YRNquN5Ri4M8QrRa/Xamw/KoPLud/p6ZkAwDOndiPuclZ7pjBSTS9dAINzx3G4cd3o+W1BjT+8RgOPvomzv/lJLweL1fu0CROP3UA5148joHT3dj38m/R/Eo9Tj95BajXq+i6lNTdbMw+73/97rhp54o19HyOerYRzCfHmgifCyEEeavmE5H1HetQVAYhBEs+vm5+BQUOPbYL/ae6cPIX78kqBrkrijUrBiwohG1ooJQeFv2FUg5OgzNHUuuQEtymTRops4+QpiCU0h8AWATgK+CUkrsBHCGEfE1DHRhRimEZkv2ds9LwpsGEaaUdvXg/rUK6UuSEGeEMilYlwY8rMQ6rvnhpyGPGO4YXNAuDZ3sx2jIAAGh78wxmRhaaQQ429ODc09fxy+F2VtE8gv/A/S/jq7euUryv0e8fgxGLyAnX2XUF/O/Bs72KR9fjkuNRdd3SgHUtr9ZjZmShvOZKdKHi6iWouGaJ2moHwJyMo5YXACQAuFOHsprBhT4NgBBSBiDVt11MnWjfBHB+CwH7UkrbKaVPUEpvB1AC4F0A3/Htz2Dol+dATngXKgj+fdTaXArT1werg1x99BbSQjXqUknhwiE+NQEbHroKPzzejsWfX4X1D27F+ge3YuXnNyNnWWHQYyf7xjE7PoPRC0NITclGako28lYWI70im9+n5/AFnP7Jg2HVMRZQMxLtfweZaQmDoT9SCoIrIS5AQTj7uyOY6BlTVF7OsiLkry2V3OZKdGHtV67Ahoeuwpp7tiBvVYluoaUZUcePAbQA+C+fv0QAhBAHIeQ+hUnQXgRQTQj5mGj9Pwu2i3lQtPwlcIrEn33nTyaEBEx5UUqnwJlPxUGbSRQjCjElWhGgX8QiO6G33bPD4YDDOa/PJaQnouq6ZZgb44R/AFi0bTmGGvsw1Mj5GXXua+Yc7HyzCtPeMSy+ciWSFz2Jrr3PoekP/w4AGDz9N4y1nkBaxUpbxshnMBixhVTEsoqrl2BuYhZjF4bg9Xhx5reHsPyuSxZEGvIjHKgqv3IxCjdUoPfIBThcDs53qyoX8alsMJWhDErpGCHkwwD+CmA/IeR34Eblp8DZ/X8UwBIAKxQU930AtwF4hhByGYCzAK7ylfEHSumrEscsIYS85Dv/MgD3gAt/+jPf9sUAdhNC/gDgFDgfifUAPgvgFUpp/8IiGbGIoXkO/MiNoAob9mB+CnrVIVIYfQ21H12D6htXYsVdlyB7SQEW3bAcWbXz8b2b/nKS91dwT82hcx83w1h02cchHAA79titmOxtAcBsYRkMIex7sCbiXC3OeBcWf3QNUou4xGdejxcDp0OZic8Tn5qA0strULxpEfJWljDFgKEaSukJACvBJS+rA/AIgJ3gTI3eBbCRUnpaQTlD4HIP/BpcvoLHAKwB8A0Ad8gcdgOASd85/fkRPkAp9SfpuADgVwA2+srZDuBKAN8Gp3QwGABMUg7EyNmMKsldEA5m2X8HM3EyAkIIsmryeAc5QggWbVsBZzwXZs+vGIxPDCI1JRvuqTn+GWz+71NILZ4PSXv4kesxfOwuNnPAiGmk3n89FQTmi6IfYjNPQggSMuctJ4I5DjO7f4YRUEqHKKXfopSuo5SmUUoTKKWLKKWfF2ZOppTuppQSSulPZcrp8h1TSCmNp5TWUEq/LcyOLKKHUnobpTSDUppOKb2DUtojKG+AUvoApXSlb58USulSX10ndL4NDBsTEeUgFGIfAy3CtVTna/bsQbiOyeFAHAQlly4CwCkF4xOD/O/UkkwAXMc4034fam9ejeT8+aRBHe9IRVWLLInlO5mDL8NUzBAa7TwIYmXmJuazGTP/AAaDwVCHqcqBsNMSRmtILN+pyMRIK5EwKbKCf0T+mjKs/Owm1N68GtmL85FVm4/Ka5cucGJ2xruw5NZ536mhxj5M9o2bXV0e//sg/AOAJ19oscR9ZcQuRpgX6S3Ms28EyF9bxv/u2Hc+gjVhMBgM+2GqciCVEA2QntoNp4OL1MhZqPNGol4JmUnIqMzBohtWoPpDK5C7vEhyJC2l5sfIXTkfJ/zci5GJ589suxlWQqpt0uMdVZIXhqGd+LR5X4HpwcmAbeLBKCvAZnsYDIaVMEQ5UNPQ6ZHfQOq4SGHnRr744kr+9+zYNMY7zc3CGarDjkXbYDu/T4zg6BHBjQFQb2CCl9mxaZx+6n1+OaVgPjqjsI1hCgIjWqCU3uXzXXBHui6M6EB35UDcwAWzE4/GjlFudiQSMe/Vdjbpy3/OOzEDwPTQZJC9A9E6Gic2HZIiVp0GleT3YJiD+B3Ue/aAoY32t8/hyA/3oOOdJlCvF1MDEzj+03cD9qm9eU1kKqcAYf/I3gcGg2EVDMlzIG7k9Gr0tIy0mdngWr1xDyXQUK+X/02cBJk1uZrOoVSQF9dHGLc8FpUBMXol0WPoh/AdZflAIgulFD2HL4B6KboOtKLrQOuCfepuWwdXUhy/bLXn5U8SavW+g8FgxBa6zxyoDUeqNutssNFU8ShMpBpcYd0i2eiLzx2qY5zqbYZn1gMASEhLhCshLuj+asoWI1QMhKOysTpLEAyrCw5KZn+iCb1nEBjaIIQsMCny43A5kL+6BKnFmeZWCupnUa3+fTMYjNhDs3KQUPiw4gZQr5FP4QiLVINqhUbWCiFUtTI9OJ8saHp4CpRKd7yyx6sQ7IXRqhjRQ6wIy0xBsAZV1y9bsC6jMgfLP3MJyq9aEoEasQEOBoNhfyyZ5yAUoZyYI4F/1sI/Y6FGITJTuBAK5eIOzOn+WcDyzPCUafVi2Bfhe8SEIoaZZNcVILM60PxxamAcCemJEaoRg8Fg2B/NPgcz3Y8greJpflnsVKXGtEaJQ5bV7a61+FlYwb5eeO6EzCQ4XA543ZzvwWjbYNDsotGI2c9E/F7bZZaJMf+O+M1ImGIkjZE29YQQVN+4Er1H2nFhTyMAYHZsBg3PHsSS29azBGgMBoOhgbBmDoSdodbGXygcKVEAosV5y6qmCEWCcKajbUORq0iEMeP5WF3hVUMsC8ZCJYERiBkRtwghKFhXhpqPrOLXjXeNYrxj2LBzMhgMRjSjm1mRHuFKg+0bzNfAblhZiMiozOF/z45Ej1mRUuFEaG5llqPtky+04MkXWgw9hxkwBcG4b9vKbUYw/O21Ge935qJA86LEnBTDz8lgMBjRiC7KgVRuA7XHKRH6o0ExAILb/Uea+PRERONMvNp3J1LPJZpmE2IVIwR5q7UTati+Y5uh9aeUwuvhTCGTclP59a5E5dHWGAwGgzFPWMqB2FdArd2933k3WoR+qxAs8VwoXIlxSC3NAgBM9o1j6GyvLnWK9MhnuEK3EfXfvmNbwIiq/3c4z48ROVgEI3NxT8+h8YVjOPTYLhx+fDd6j7UjIWPeEbnpTyciVzkGg8GwMWEpB0KhXvw7HB8EJhiFh9J7L3efsxfn87+b/nISLa83qA5rKkZu5NCs+Phq38dICXdMWbY3YrM0hnE0/+00RpoHuAUKtL15FsNN/fz24fP98Mx5IlQ7BoPBsC8RCWUqpwDEahp5IxSicMy0clcUIbkgjV/uP9GJcy8eD1tBsIOwJFRWjArRKefLoIeDP8MaGG0GJPUtxdKgykjLwLxiEITpwUkTasNgMBjRRcTyHIiFHynFIJY6OytBHA4svmVNgIIw0jyA7oNtYZU73XavpFBjNXtqozI2x1IWYYb8+64X4rJjRaGkXorGPx7jlxMyk5BSmC6571TfmFnVYjAYjKghIsqBnGIQar9oxYqmJK7EOCy78yKUXVnLr+vY2wRA3xkAKyoGRhDqnlntPjD0wajnKldutA+oUEpxaPuugHVL79iApXdsQM2HVyJ/TSlSijhFwZngQoYoghGDwWAwQmOpDMlWE5DDIVgnbafR4/w1pQHLo22DALRfAxOCpTErbKrViXbhVk+kviW12dmtjvh7aHqJczJOTckGABRuKOejEmVW56F862IsvX0DVn5+E1Z98VLEJcebW+EQqPm+o+k5MhgMe2EZ5cAqioHf/j/chjnY9dhJQCaEICl3Pl74uRePY+jMexGsESNaMSNhViwQTQqCsK2c7B3DcFM/rxis23ojSi+vkTwuIT0JzjinKXVUgxpTM6v0iQwGI/awhHIQrBFUm0E5HIR+D6xhnqf25jVISOdCBHrdXpz+yWcxsP8TmsuLxdFxpQqhnRRHPVGb88SKhHqvzXzv7XoPgzE7PsMrBgDwwE9/G8HaaMdoXxQGg8EIF6I2Ag0hZB2AQyu/sBn/+sg7/Hq9O6MH7n85Kjs4O9P6xhn0He8AwPkkrLnn8rDKSyzfGVPCMPM7kMfukcqkIlzFOnrck57DF3BhTyOc8U6kFKTDOzifofGJk50ArP3OGKX0jneN4MRP3wWA9ZTSw7oVbDH88kaETh/V95bBCIZLj0LCafTklIBQZQoFLdYhh0YPZavsylpeOXBPz8Ez64YzXvsrFGvPTWrEMNbugRxWFvAY5kO9FOf/eopPwuiZ9WD0whAABMweWB32XjMYDDsSdhK0cBs///FyJkPRYjsbSfS6hw6nA/mr5x2Uew5f0KVcOaLRQZcpA9GH2nc02t5pOdS+65RSNP/tNI79eC+O/eht2ezs4xODGJ8Y5POusD6CwWAw9EWXmQM9kFMy5NbHspCldtZEz9GrpLx55+TOfc0ovqRKt7JjBTPeXWaWZw7MnCg4au7LVN84Buq7JbfV3bYOXftbMdIyn/js0f+9Hn//D6+EXUcGg8FgBGIZ5YAhjZQZSiQFkXu/9hy+s28rv8yEUGvCnol1iSVFQo3ylJCZtGBdyeZFyF1VjLikeNTenImewxcw2NCN7LoCOOOclnrPo8GpnsFgMIAwlIOEwoeRWL4iwI46ljo9M7CiffoT990V6SowGJbBCt+kHVASfMAZ70LV9cvQ/LfT/DpHnBNxSfO5CgrWlaFgXZlh9QwHphAwGIxoIexQpkIBVpjIKRrtxc3GP0sQ6dkCIf0XWvnfDz/HpvQZ+mFke2Hl9siq9dIDYbul5Dpzlhai4uol/PKFPY2Y6B41pG52gflUMBgMszE8z0GkFAUrCwNWJ1giuPGJQf73cy8+aOhomVUUIoY5xGr892h/z/3Xp/Q681aVIKMyh1+u/81BdO1vMaJqtoDNSDAYDLPRrBzMdD+iekRbjcAe7miJlUbb7UQwu9np4UkA89FCiNP4HHrsGcYesaggxAJqnmvZ1tqA5Y53z+PCW416V4nBYDAYEujikGzEiJ8VRkti2ZdC6v73Hm7nf2fV5MGVGGdmlRgxgFHfmr+NsqIfTyyg9j4nZiZj3f1XovtAKzrfawYA9By6AFdiHIo2VhpQQwaDwWD40W3oV419vF1GBs0UHIyyK5UzDwqGnGI22TcGgMuOvOhDK8Kum1UIZkbFiG7s0hbFIg6nA8WbqgJMjDreOR/BGjEYDEZsQPyJZBQf4EtnvvILm5FalCG7n5JO1+6jdrEUxnNuahbHf/IOqIcipSgdS2/fEHaZSiKYMBh6EqxdYu+iNaGU4tBju/jltV+5As44ZwRrZC5Spp4fvuL/4eFr1gPAekrp4cjUzHj88kaETh/V95bBCIZhRuPM5t9ehBo57znYBurhFMnMqtygZek1GstG8q1LNEYks8K1RON9lcMz50H/qS5MD05gdnwGcgNV1Bu4PlYVA/8yaxcZDIbRhOVzoGTkPFgoO7uPHEfTrEHI5zg0yf/ufK8ZRRdXyu+r8ZlKdXqxNDtjV+zkm2P1iEj+e+hXEOxwT9VAKcX04CScCS60v30Ogw09/DbiJCjbUoO81aUghMyvJ1IlMRgMBsMowlIO1AptUh1zNHaA0Uju8iIMN/UD4Ebyxi4MIa0sS7fyg42Gibc9+UIL7r6pEoD1FLRYeJ/lhGvhejveA7PqrOQdsVJd9GKsfQhnfndEdjv1ULTtakTPkXYsvXMDXAlcwAPimJ/gTpTIomx1/O2XlrZq+45tkm3jM8/eF3a9GAwGQw5dohWpwa4KQqyPYGdW5wUsj7QM6KIcqJ0if/KFFky33YvtO6xhBiLEavXRGzXXZ+VvWm72wMp1NhIjr3tmdBo3XfcfeOGVfwmqGAQcMzyFU7/aj5Wf3wyH04HZsWl+m3vabUg9rUws9zsMBiMyGB+oXgIzO2C9BDbWQANlV87HHieO8Of6776pEk++0IInX2gJup9/+/Yd2wLeHSsLcnorCpG2M9ZyPbFiO68WK7+3ejLRNYITP3sX3/n4Vpz42T7Z/ZZ/5mJseOgqLP/Mxfy6uYlZnPzFe5gensTUwAS/3j09h9nxGUPrrTfbd2xj/QeDwbAVps8c+DHL9jdWOmIz8EzP8b/HLgzDPT2nKteB1PS63zxIjF8h8D+/7TtUVjZCGPW+2Um4sLpdPxCZ2QMr+mYYVZe5iRnUPysdZKbutnVILc4E9XoBQnj/gqTsFNTevBqNfzwGAJgdm8bJX7yH0i01cDgd8Hq8AIDjP3kHAOBwOZBalIGyqxYjKTsl4ByxOgvEYDAYehCRmQM/rPG2FxM9Y/zv8a4RdOxt0lROqFFwv+mQ3d4Pq9VXz9kGNXlM/Pv7sdMMgtWeoRA73ceRlsGAZUcc19Wkl2UhtTgTAOdLQETexhmVOVh992VIypkX9tvfOscrBkK8bi9GLwzh1K/24+wfjsAz5+G3Wfk5MhgMhtWJqHIA2CvkaaRNOyJNanFgXou+E53wzCq3AVY6+m2X90EvjHqv5JwZ9SDYM7LiCLkaYimcqFHEpyYELK+9dwuWfXIjam9ZHfLYuOR4LP3ERcheUhCwvuq6pYCMNeNo2xCO/GAPhs/3SyoSSlD6vGO9H2AwGNFPxJUDO2En0w4jKLyoAmklmQHrxrtGVJXhv4fR3MH6hQylwoaR71U4ZYcjJAtDcQrDc1odqWAJeqHXQIgd7mNaeRYcLq57cSa4QBwOJOelBkQeCkZy1Y+w9O7dIM75AYnWN85gzT2Xo+r6ZchfXYrSy6uRtTg/4LhzLx7H4R27MXSuT1O97XBvGQwGw2hsoRxEsyBpN6aH5/MdZC8p4E0E9MDvnBwtz9tqI+d6j4YruT4jhe1wsEo9ohVCCO+P5JlxY7J3LMQR0mVs/PZrvILgdXsx0tQPZ4ILyfmpyF9TiuobVqD2ltVwxge6zzW9dCL8i5DBSGXen+SMJTtjMBiRxBbKAcAUBCtAvRRzE7MAgJxlhVi0bbmmbKVS0TuEEYuM7HzNcoK3mmIQLnLOu4zIYId7n103bxZ05neHMaFylhEA4pLTkbl4PopR8yv1OPficbS81oDDj+/BeNcIMipysOaey7H4o2sCjh1rjubLMgAAZldJREFUH9JU70ialMX67HSsQAi5ixBCCSGVEazDbkLIbruUG80QQq70vQ9XRroufmyjHDCshcOlXilQwt03VRquCDKbcmUIFRypqFJKlSA7J0ezW32tRPGmKmQv4cx+PLMe1D97CJN946rLqbvrP5FSvEZyW8OzhzDc1AfiIEgvz0beqhJ+25nfHcHw+X5NdQfUKWB6tlks9Kl9EQh5Un/qX36GJSCErCOEfDMcZY4Q4vCVcZN+NTMOzcpBQuHDAUKWGYIWmz2ILMKRv7jkeF3LvvumygABNFTGZK3vgligZUpCcPz3K5iwoiaKEUMb4nfUDvfa4XKi6oPLed8DAGj47cGQfkria53r/nus+cffoOzKWl7ZENL6xhm4p7gwy+VXLUbu8iJ+27kXj2O4SZn/QTj3VG9hnvV1tudnAD4l+vt8RGvECId1AL4BoDKMMhy+Mm6S2PY2gDTff0tgWJ6DUHGmtY4mxnqm4kgyfG5+FC6lKD3s8rRG09Hj+dvJSVYrkbg2seJlRULVS2l7pDYqkxIBP1S7aQelQAghBCs+uwnnXz6F8Y5heOe8aHz+GJZ+YgMSM5MD9hU7sAuZufBlFKwtA9aWYdE2wOvx4uzvj2C8cwRzE7M49+JxLPn4OhAHQflVizE7No3RNs6s6NyfTmDDQ1cpqq9eOTqkcrr4UdL3GRlpjGEK71FKn4p0JRj2gFLqAWCpmSXdzYqUjMSqdVKUEwaNdtxiTmGBCMOWdh1oxfTQZJC9leGfQpf6MwOrCVtGvdP+6zTzeq06o2B2feTaRKn1fuFUalbWavdRKfGpCVhy61oUrCsDwLUjne+eD9hHbYQvh9OB2lvW8MvjXSM4tH0X+k92wjvnBXFq79rCfW+F3y7rQxhqIIRsIIS8TAgZIYRMEULeJ4TcJrPvHb7tU779XyaErJPYL5kQ8ighpIcQMkkIeYsQclGQOnyIELKHEDLm2/9dQsgN4ZYrOvYBn6nVJRLb1vm2fVWwzkkIeYgQcpwQMk0IGSKE/JEQslTi+GpCyJ8IIeO+/Z4lhBT6yvymaN+Q5fqO+YlvcZfATOwu3/bLCSHPEEKafWX0E0L+QAhZIiijEoA/i+xnBGXs9m2X9DkghNQSQp7zlTlNCDlBCPmyxDXvJoS0E0LKCSEv+J7dICHkR4SQBPH+StB15kBJw661o5MaSfE7scpl2Q0XNkMRSN6qEgye6YHX7cV4xzBO//oAyq6sxdTAhC9yUUboQiyIlYQuPd858XVF8jqNOHc4s4hyI8RG1FNulkruXOK6Wen91AohBKVbatBz+AIAYPBMLxaF+ao745yovnFlQGSiltcagNcaAvbLFoU7NRpxXyV+R8XPU+69YP1PxKkTJ+kD0EUp7VJwbCohJFe0bpxSOi13ACFkE4A3AQwD+F8AowA+AeBZQkg+pfRxwb4P+fY5BOBfAKQD+DsAewkhV1JKDwiK/i2AD/n+vwVgFYBXAQwAaBfV4SsAHgfwGoB/A0AB3AHgJULInZTSZ7WUK8GzAP7Hd33vibbd6Tvvb0T73wTg1wB2AsgBcC+AfYSQiyiljb7654IzzcnyXUcrgOsByGnoSsp9HkApOLOw7wKo9x37ru//xwEUA/gVgA4A5QDuBvcsllNKewH0AfiMb5+3AfzYd2yP3A0ihFT77k0cgB8A6AJwM4AfEEIWUUr/QXRIErj3Zw+ArwK4xFePPnDPUhWGmRUF6/j0PIdVTReikZTCdCy98yKc+r/9ALip/dY3zgAAeo+2o/SyahReVBHJKjIYighX+BYeH8oUSMt5Iq0QKL0mNRBCkJCRhJmRKQDA4JkePtGZ1nNl1eSh5iOr0HWgBRNdowu2560sRvGmKu2VDhMlAr64H7P7TJERrPzCZqQWmTP4NN41ghM/fRcAnpbY/C0A31RQzKO+PyH3gRPy5HgMnFC8iVLaAgCEkCcA7APwPULIU5TSIUJINoD/AHAEwGV+hYMQ8n8ATgHYDmCTb9314AT47ZTSB/0nIoScArADAiGeEFICTmD/IaX0K4L1PwAnCP83IeQ5SqlXTblSUEp7CCGvA7iNEPIQpdTtO94B4HYAeyil7b51twL4GIBbKaW/F5zrlwBOA/g2OAUGAL4GoAjADZRSv0LwQ0LIMwDWCuugtFxK6XFCyHvglIPXKKW7RZfzz5TSCVHZvwZwwnfMI5TSCV8dfgXgvEKTs++CU3I2U0rf85X7QwAvAXiIEPITSqlwJCQbwHcppf/jW/4RISQTnIKgWjnQ3azIDDMCccduhDMYmwqWJiknBau+eCkSMpIWbGvf2xSQB4HBMArhrIGWAQI7+EZEGiOCTVReW8f/bn7lNNzTc0H2VkbmolwsvX0Dlt6xAQmZXLtECFB1/TJUXFOHuBRNs+phoaRPYv2M5fkEgPWivycVHvu/AD4g+ntBbmdCSAGAjQB+41cMAMAn+D8KINlXBnz/kwA8KpyJoJQ2gxsJv4QQ4p8u+4jv/3+JTvkkuJkJIR8FEA/gl4SQXP8fOAH1LwBKAPjNbdSUK8fTAPIAXCNYd4XvPELF7A5wo+a7RfWaATeyLjz+RgBnBIqBH7GiprZcWYSKASEklRCSA2AQwBkAisysxBBCnABuALDLrxj4zuUF8H1wueI/LK4KuNkPIXsA5BFC0tTWIayZA72VAKVmAnffVIntO4wZ3QKsO51rFWfs+NQErLjrYnTtb0Xne80B29xTcxgbH8Lc+CwGz/ZgvGMYcamJqPnIKiSkJ0aoxoxoQ6wYGNUWKCHaRniNVJbSSrOQUZWDkeYBUA9F3/EOFG2s1KXslMJ0rPzsJnhm3PDMuhGfFtn2JlRbLdweCwESbEgDpfSwxmPrKaWvq9jfP711WmLbadE+Svft9f0fp5R2CHeilM4SQs6LjvVr7u8HqWc+uNkJNeXK8UcAk+CUsL/51n0CnHD+e8F+deBmA2TDjhFCHD7BuRKcaZOYsxLr1JQrCyGkCMD3wCkmWaLNWmMp5wFIgbL3wU8PpXRKtM6f7CUbgKpMlIaZFalFieC7fce2BUJAtNnmBkOtYmDk9DRxOFC8qQqZNbmof/p9UMqtP/uHo/DOeQL2dU+Po+u9ZlReu8B3KOphJgLWxW/OofbZRLsAp/W+KKXy2qU49uReAEDHO+d1Uw78OBNccCZYpmtThVBJiKW+jaEIqmFfEuQ4sUOF35LkFsgLksc0lCtdQUrHCSF/AnATISQZgAfc7MVfKKXDono1A/hSsOJCnU5iXdjl+sygXgHnk/AoOMVpHIAXnJmYkbnExHXzSO7FoeiZCNHcgs50P4I4k2wAhQgbSeZzII9Z9yU5Lw3JBemY6OZmEsWKgZ/+U13werwo2bxI0iSJwbALsdDuaBVGlSjD4hwpI839yKgS+25GN3LmRHIDQGyQIerxT8Evk9i2VLSPcN9DMvu2+P6fB3AtIaREOMpPCIkHN/J8RHBso+9/l9CURQY15QbjKXA+Bh8GN2OQiYW+Ho0ArgTnhxDKDrEFwGKJ9Usk1qkpV05JWOn7+yyl9JfCDT7fEOHMgRrlrg/ABJS9D4YQVhI0PQkn6ogfpdGSoj1DrlSoWCOvNWdpYcBywboyFF1ciarrlyEpN5VfP9jQgxM/34eDj76J9rfPhe2fYKfnZ6e62gk9wqVGe3tgJuKRb7l76oyfz7DevrfJlLopJbF8p6G+AFJli8M3y73P7B2NTiilPQD2A7idEMJH9fCFoXwQnPmN30zpNQBTAB4Uhqn0HXc7gH2+CDkA8Cfffz4sqI+7wUU4EvJ7cOE2v00IiRPXUeDHoLbcYLwCToD+hO9vBJx/g5BnAKQC+FepAkT1+jOAJYQQsUD5kMShasr1+xWIzYb8o6EBI/OEkM+AM1ni8eUymJEoYwG+ff8MYCshZKOgXAeAfwKnaLwUqpxwCGvuNZJ2vnJYsU5WIdi9CZa0JxR5q0uQUpSO+NSEBc5/mdW5aPrTCYxeGApY332wDd0H25C/ugRlV9aCOBwYvTCElr+dxuz4DNJKMlHzkVVBzQOEI7hWfebMltheGBF5SG+s4nskh1T0nQWmSoIQkXmrSsyuYkSRenZS7W8szFAxAngIXCjKfb4oRWPgBOZ1AO6nlA4BAKV0kBDyr+CcnvcSQp4Gl133XnBC6oP+AimlfyWE/BXAA4SQQnAOqqsB3AYgQCunlLb6QqQ+DuAYIeRZAJ3gwnReAmA5gAq15QaDUuomhDwH4IvgBO2nKaUzot2eBecA/Q1fuNfXfPemAlyY0tMAPunb9z999+z3vihLLQA+6LsGIHD0Xk25/hmah30RgKbAKXMNvr//8SlnXQAuBhceVcr34iCAawgh/wguolMvpfRNmdvzrwCuBfA6IeRxAN2++l4N4H9FkYp0x0h7KFWEM1KjZ0cdDdEjgo2mSnU24V4zIQQpBemSUUGc8S7UfnQNln1yIzIXLTQd6D3Wgc59zRg+34+zvz+C2XGuXRjrGMaRnW+h51BbWHWzClZVXvTGbiPwsfJczEaYdE8qAZ8zbn7mIBLRhILhj4Cn9j0O571XmviRva/RC6V0H4At4Oz6vwrgEXDC/h3CHAe+fR8FJwQTcM6wXwVwFMDlohwHABeucweAq8CFKl0GTuhcEG6UUvpDcNGQWsEpGT8E8AUAbgD/rLXcEDwNLpZ/IiTCx1JK/bkW/g6c2dE3wSlGt4K7VzsF+/aCu4dvAvgyuJCvY+ByEQCcUK+l3EYAXwGXB+En4HIwXOELwfohAHsB3A/gvwGU+e7JBYlrvQecovEtXxn/LndTKKVN4JSyV3x1/G8AheBC4v6j3HF6QShVYwbFZa8DcGjD119CWsUKANZosCRHp2T2k8J/TLDkNXZFSfKlcGYO1OB1ezA1MIkLu89ivHMk9AEEWP7JjQHmSUKY0552jJh1UZroy0qYlQxND6w+a6CUg4+9yY/hLf7oGqSXZ0e2QmFiZDsk9Z0KYvGvDyOijuXxyxsRynMQ1fc2liCErAc3an8npfQ3ofZn6DRzYIWRQuHoVLj1UTqKYxeU2GSbdc0OlxMpBWmou209siQyl2bV5qH25tXzK6gv66kMVhXirI5R36w4YID4nFZoK+yCVBz8aGmX0svmzW5diQvMmy2D0vdV6SytFszIHcRgRAuEkCTRMgFnp+8BZ/7EUIBm5WCm+xE962EZoqXzBeaFC7+AYTX796rrl/EZUv1UXrcMGZU5WP/AVjic3Os50T2Kg4++iXMvnUDf8Y4F5bDO01rIPQ+rvX92IRpMHcUkZqfwv11J1lUO1Aw2Cd97Yf6NcIjGZ89gGMxuQshPCSFf9tn27wZnVvQ4pbQzslWzD5bxOTALoT1+tAuUQkVHrCBYAYfTgUXblmPpnReh4polWPXFS3lbZOIgKN4cmONj+FwfWt84g1O/PsD7JjDCw+j3QU64sYqCYJV6SCGezYsmQZE45x2Sj//0XcO/53CesxalVq/vKpoGqxgMk/gzgE3gfDH+H4BcAP8A4O8jWSm7odnnQGgDGMrO39+pHf/pPuzLLTJcINma/G+mnMcIImVTrNT+3CzfBD/DTX1ofqUenhn3gm3ZSwpQeW0dHC6nxJEMRmhC+SAxjGF2fAbHf/JOwLrqG1ZImhrqQbD2TamfjFofHTk/BD3a0Fixi2c+BwxGZNBl5kCpPfuqL2zS43Qh2ZfLhZeVi8xj5RE4PYTuULbdwe5BqNExs/0xMqvzsPbeLVh33xULtg2e6cGRnW9hdmzatPrYHfHzVfMtMJ8BayE2G7QT8akJqPpgYH6fpr+cxMyoMd9ysJliKd+YYPvp4dOmFTs+awaDYT90c0hW0mBu37HN9BG5aBRmlHYQcs9FLOBLJU2zGg6XE+sf2IqaD68MWE89FB3vSIUTnsfKQq2ZdZN7F9QQTSPqVn0n1OB/fv42wU7CY05dIepuWxew7sTP3gX1qpvN1oNgzvNSCd2UvDvBEnRqVRCYmRGDwTADXX0O9BR0jBoRs3skIqEQoMf9sZOARBwEmdV5WPWFzcionA99GMo0zsoCrdlOuuHcCyvfRy0oHUmOBOK2VC6rrv+/8Ld/fzsoDKnFmQtmBc/96Tio12t6XaR80ezUPjIYDIZeGGJWpEeDqpcQf/dNlWGXYSWUJspR6nRtBUFILfFpiUjMmo92klWTp+g4ufcykgKAmee26rOOpPBqVEz6cPF/u34l4ckXWlQdL6UwWBWHy4nam+bDF480D6BrfysAYHp40jBTo2DoFbBCHMGIKRsMBsMO6OKQbDVCOUhHE1ocmKWOsVPyKs+sGyd+tg/u6Tk4E1xY83eXgThC67lS74URicDUwhK5RQdGPUcrvKNmMD00idNPHYDXzc0axKcm8FGMXAkuJOenIbU0E7Oj0xg+3w9XUhwqrqlDWkmm4XULlihP6fPR8/2IFadZ5pDMYEQGy4Yy1TqaGC0jM2JnQ7n7sX3HNllTIznTI6uPJIZi+Fwf3NNzAICUwnRFigGwMGa5Vd6VWAiry1CGlJNxrLwfiVnJWLRtOeCLcioMb+qecWP0whA69zWj/1QX3FNzmB6cxNk/HMFYx7DhdZOLciRuT4LNDsTCM2QwGNGBJZWDcMJ5+s2I7GBvGwy/WYBQ+A+2rxC/cKHmHtoq/4NjPkZ6fHqiqkODJeeKNFaph1qsomRFEr3uQbC8BnZty9SQWZ2H6htWwBkfGJ44LiU+IDeCH+qhOPficdMUBKXto5ySYIv2lcFgxDyWVA7CHdmOFgXBj9L7IdzPLvbGWkgrzeJ/95/o1JRAKVZMNeTQ2+E/VhUEo+zI5b5bu7dlSsiqzceKz25C9uJ8ZFTlYPXdl2H1ly7D2i9fgRV3XYKVn9+M9Q9uRXYdl13dM+NG4/NHMdIyYFodY7XdYDAYsYElfA70TqwVjaY0sYISoZ1SikOP7QpYV3ZFLfLXlCg2MYp1Est38kp0uN+G2JY6VhSvYEpBtF+7FfB6vGj522kMnu3l11VdtxQ5y4oUHa+Hb5pSxVDv9yFW7OKZzwGDERkiLkkpUQzsmuzHbtEphDazka53sHoQQlDzkVUB6y7sacSxJ/fiwp5G3h+BERy1EXAY84T6PiL9/cQCDqcDVduWI600k1/X/Eq94qSIekUjUrIuWKQ09q4wGAyrobtyICXAB2sA1YQsVbOf8E8JVlI+wqmHmmOF12yVDkppx5q5KBdr7r0cOUsL+XXuaTd6Dl/AuReOh8x9IMYqz94s/LbPes+o+UdjhWE4GQythPoupQYK6n9zEO4ZfQYIlLQjcgpCsMRq4mPZd8JgMKyE7sqBEaZBRiUuE89IRNL0SCo6kVKBVS5KUbDjrXDNcigd0XMlxKHq+mVYeudFSC+b90MY7xpB62sN8Lo9is9pxftgF6wYHtZolDqlMsInVFvmjHdhycfnMy3PTcxi5Hz4/geDZ3pw6LFdOPjom+jc1xxUUZBLnKZksIM5KTMYDKthis+B2vjO4UQrUoPRArKZ+RaE90ysWCnBauH3gsUVl2NqYAKn/m8/v5ycl4olt62HM84Z5CiGXtgpV4ZehFIAYuEeGIlYKZBrz9rePIveY+388srPbUJCRpLm8w40dKP5r6cD1iVmJyOrNh/5q0sQl5IgeVyob0BLuyZFrNjFM58DBiMyaJ45uPP2xxXva9UQmUbNSGhFOOKv1sxFrBjodV2RGv3U8q4k5aQgZ9m8mdFk3zgGTnfpWa2owCgTKrXhcK1gdhTu+a3YrkUzcu9uUm5KwLJfMXDPzGFmdJof9Z8dn0Hf8Q6c+f0RnH7qADwz7oDjhs724uCjby5QDABgenASXftbcOzH76DpzydBvQsH1sTvQywqzAwGw/64tB74zLP3GaLJx5rttxxahXupcKbhYiczkcprlyK1KAOtb5wBAIy2DCJ/dWmEaxWdhDszJk5KZybi5FWxFGXJTgjzvPh/+5eHe3vwv9/4IBKzU9B3onPBse7pORx94u2g5R/90dso2bwIWUvyMXCqG53vNSuq11BjLw5t78WyT1yE5Py0BduFvgShvhMzZ5gZDAZDCZqVAzF6mgJZaTQ/HNQ2+JG8biXT38GEJ7WmY0rrpFZgI4Qgd2UxrxwMn+/HwUffBHESVH9oJTIX5epSN7tjluleKCIhFBmhkCj5fqyOHYRU/zt7zbqv4nuf+qDsfkONvWj688mQ5VEvRfveJrTvbVqwLTErGTU3rUJiZjIAzmyxY28Ths/38/uc+f0RrPr8ZjgTpLtSsWO+3P1liimDwbASujgk6znabwWBRSl6CwBWipgUzFxCfN2hwvSFuk96XzMhBIUbygPWUQ/FuT8dj8kwp+L7r9c3Fk2CjN7Cmd3MjfzXb0WlRmgyyc8iPPgxpKZkS+6fu6IopGKQvTgfjiC+SMs/czE2/PthXjEAOLPFmo+swoq7LuHXeWbcOP/XU5ibnJUtS/guWPH+MhgMhpiwZw6sHPXGDKJ9yljO9EOJA7Oa65YbydZ674o3L8J4xzDGu0bnV1Kg70Qnii6q0FSmHREKfcJ7GWvfq7+dCpbbwc7fabhE0sRLCeL3NSk3BYNnegPWfeyhb+FU90uo/83BgPWll1WjwDdY4Jl2w5UUB4ALUzraMojhpj4Mn+9HekU24lMSkL+uDHHJ8bJ1ScxKRkphOia6ubZlpHkAx57ci9V3Xxb0OLl7LDZBEq5jMBiMSBDxJGjB0GNE2ciReLuNDmpFyTWGcy+McAx3OB2ou30Dlty6FgXry/j1HXubcPDRN3H66QMYOturOh+CnbGy8GcGYsVAqyIbrYTbnpk561nxgaULTAR//+g3FigGtbesRuFFFSCEgBDCKwYAN8OYUZWDimvqsPpLl6HqumUouaw6qIDvp/Lahec/+cv3MDs+E/Q4OZNMpbOxDAaDYQZhzxwYOQIZbtmRtqtWO2sQiw7Efox6VmmlWUjOT0PPoQsB6yd7x9H0l5PIW1WCiquX6H5eq2L3maxwUJrNlqGOSJhCOuOcqP7wSrS+fgb9Jxc6IwNAyeZFyKjICes8ct+L38RoZnQKJ362DwBnYtTyt9NY/LG1YZ0TkE6Oxt5VBoNhFqbkOVCK2YJLNApKRnYmVsuFoIa5qVkc+9FeyW3rH9gK4iAm18h8ovF9Z0QWpYqBkYM0U4MTOPficcwMT/HrCjeUo/TymrDKVTrI0vp6Q0C0pLVfuUJRbhUl7alcKNRYicXP8hwwGJHB0mZFZmBErHUrxG83AzuZVcUlxWPd/Vdi5ec2Yf2DWwO2DTX2yhwVXdjlWTHsQzChX7jNyNmFpOwUrLjrEuStLAYIkLU4X1YxUFMPpe1bckFgKNPzfz6hyFxRnBNE6nzsm2UwGJHAUsqBuCE0ero62AiNVqJZKVCb5MpqOJwOJGQkgRCC1OL5UShXYlyQoxgMhlr8ioFZCgIhBBXX1GHDg1eh+oYVsuczYgYjd3lxQHS0kZZBnFcQRlVIsPbUzm0ug8GwJ5ZSDsSEasitNkJvhlOZ0g42VjsSJeFTKaWYGeFMEJzxTqSVZQUtc7J3DJ3vNWN6aFLXutoZK4XdZVgDKYXAvyzO4O7HyHfILH8z4iAovbwGZVfW8uuGzvVJZlBWg7Ats1I/x2Awoh9LKwdKCafh1HNUxgyBXNzhSdmkxrJiEGzZDyEEnlkPAMAz68GFPY3wzHkk9+073oHTT7+Pzn3NaHrphL4VtjGxFgqVIY1QuBcGFQgm9AfkK4iS92h6aBIXdjfOryCA1+MNr8woSKzHYDDsiW4ZkiOB1WNzA+qdQNVE7ZGLYc8ITU5dAe9E2Hu0Hf2nOlFx1RLkLCsCwHX2bW+exWjbIH/M1MAE3NNzzAzJR7QIdgztaHkHhAqE1nfIahHZxtqHApbzV5UockoOhTBqkVWulcFgRD+2Vg782L3RFHaSTODSjlhZDPZelF+9BBM9Y5jsHQMAeOe8aH6lHhPdY0gtzsD5v56SPO7oE2+j4qolyF1ZHBMRjhgMpYjbMTmbfz1nDawiNKcUBkbSKd68KKzyxIqTFa6RwWDEDrZXDlijyWGVTtIuEEJQfcMKdLzbFJBptfdYO3qPtQc9tvXNM5gamED5VYuNrqaliXQeEYa1kPI1kNtPia9BsPdLKnjF9h3bItYODjZ0ByyPtAwgp65Qc3ni6xbeL/bNMRgMo7G9cmA1tJg6BWvsjZg+j9aORm2Oh4TMJCzatgJVH6Roe+NMQKxyAEivyEb1jSvhcDnQe6QdF/bM2xT3HmtH3qpiJOWm6ncBNiOa3h2GuSh5d9S8X37FADBmoMQ9PYfZ0WkQpwMNvz0Ez4wbqcUZKNpYAUe8C90H2/h9HXFOpJVkLigj3BkT9r0xGAyzsJxDcjRGZgjXYVrvMqPZhEmLQzYhBOVXL+FnAhxxTpRdWYvFt6yBM84JQggK1pVh5ec2BRw3UN8tVVzMwqIXMayCnv3I9PAkjj7xNk4//T5O/d9+eGbcAIDxzhE0vnAcZ54LzJO14q5LEJ+WuKAcYdQmtURjW81gMKyL5WYOmGmM9HS6ngpTtApx4bw7hBDkry5F/upS2X0SMpKQWZOH4XN9AMBHPGLErokRM+ezDlKztno8H2Hm5VDkLi9CfGpCWOdjMBiMSGOpmYNomzHQit8m1/+ntHNTOloWzghWrJMuyInQd7wDg2d6FGVDjWbklM1oVUKFMMXAXELl15B6HuHOIqSXZyFn2UL/gbxVJUjITIIjbr4bLd5Upfk8DAaDYRUsoxxE8wiclusSC+9qyhB3hCxhlX7kLCuEK3F+wu38y6dw6LFdOPjom5joGY1gzSKHlLIZqzMJkSSWvvFQCoKckqAF4nCg6rplKBFFIBpq7EXltUux5p4tWHHXJVj/wFZJcyIGg8GwG5ZRDoxUDMIZNQqnw9WakEwuSVA4CgJDH5zxLiz5+HrJbef/ctLk2liXWFYMIiWkx8I9F2db1qIkaKXo4krU3rSaX3ZPzeHMc4cxfK4PiVnJikIbR6NPHYPBiD6IWpMIQsg6AIdWfmEzUosyQu4fSSKVKCeSsyBWSw4UrUx0j6L+NwcD1qWVZmLJresiVCOGEaiNgMUwFqkszGYrRZ5ZN0787F24p938uqKNFSi6pAoOpznjbeNdIzjx03cBYD2l9HCo/e1KJOSNWLm3DEYwLOeQrCex2JnH4jVHAldiHIiTgHrmlevam1cHOYJhN6J1hDdSQrUeCOss9M0Kta+eOONdWPmFS3HkB3v4dV0HWuGZ8cR87hMGgxEdRLVyoAY9RwiZgB79dL3fwisGrqQ4LP/URjhcTt3PIxZQ2bsVOaLFLyrSI+96ojShmt4445xY/8BWdB1oQee+ZgDAaOuAbuXLKabR8P4xGAzrYxmfAyWE6gTCzSegt42qFvw2qcw21dok580nPyu6uBJxKVz4Qq/bg9HWQcxNzepyHvH7yN4J84h0W2A0LGpZeBAHQVppJr/siNNvcMCI/DYMBoOhFEOUA6NGckJlEo6GzlzNNQin1GMpUokVSCvP5n9f2N2Iqf5xjHeN4PAP9uDs80dx+v8OYLRtENQbfphTsdLKBATz0KtNsYvSL2xH7BLlTKzkKFV6wnkWnjkPjv7obZz53RF+XUZVjqay1GLl94fBYEQHupsVRaIzibbGUo1AIsx2HA1mAsGwkgKYlJ0SkBDt1K8PBGyfm5zF2T8cRUJGImo+shpJOSlhn9N/7dH2vlsdI945K73LQsRCthWRC5MrV18jkkq2vtYA99RcwDqW44DBYEQLhswcmN2pWMEcKBLI2dvaZcRPDWqSwZlF1XVLEZ8ePK75zMg02nad1fW8VrsPjNCInxl7hupQ2qaJ91Eys6pFUXAmLBxXa3rpJKjXq7osOdg7Yi8IIVTh3+5I15XBCIXuMwdWGG2KpQRMUtE7zHbSMyN8qhWfpzPehdqbVqP5r6fgdXuRWpIJZ7wTBevKMNIyiNbXGwAAE10jEa4pwwowYU87Sr9/8X5i52s51M7klG6pgcPlQM/hC/y64fP9OLR9N6o/tAJZtfmKy2JEDZ8SLd8C4GYA/wigR7C+BwyGxWHRimxAqI5LqAwJFYRwz+lHaacprqfUiFw4ApKRphha71lSTgqWfXLjgvVpZZn8b6/bi4meMaQUpIVTRYZKrGq6wwgPLd+pVMZ5cfuk5n1xxjlRdkUtyq6oxeDZHpz/yyl+W9Of55MhphSmo/am1XAlxamuM8NeUEqfEi4TQmrAKQcvUkrPyR1HCCEAkimlEwZXkcFQjOHRiiJh3mLFUeZwCeXMKLzPely/0uhNUvUxyunSTjMT4rCm9c+8D8+cR9dzmI3wuVrdsRaQFgAZ+hANpotS7YmW9yV7cYHkAAHAJUs8/cz7GO8cUR2cgIUzjT4IIZU+06L/Rwj5NCHkBIAZAF/0bXcSQh4ihBwnhEwTQoYIIX8khCyVKCuZEPItQsgZQsgMIaSXEPJ/hJBS0X65hJAfEEJafPv1EUL2EkJuNeeqGXbE0JmDWDLvMZJQQo7QjCjSTslMGOOIT01AwbqyALODia4RpAuiHNkVuz1jNoOgP6xdDyQ5LxXrH9yK/uOd6NzfjLmJWaSmZGN8YhCzo9No+O0huBJcKN1Sg9wVxSHLs9s3FqXUcYP6AXRRSrt0KPvDAAoB7ATQBcDvmPYsgJsA/Nq3LQfAvQD2EUIuopQ2AgAhJB7AawDWAvgZgBMAygF8GcCVhJB1lNJ+X5m/B7DOV14jgEwAawBsBvA7Ha6FEYUYqhywDkQ/Qgk3QrMiM1ETQSfWBLTizYsClAM9IhZFEjuOxMfaO2cXrDJwJH6nw3lfCCHIW12C3JVFmOwdB3ESnP3DGBIdaRifGIR7xo2W1xqQvbQQDqetUgxFnITCh5FYvsKUc83RkwBuBICnJTZ/C8A3dThNHYBlQnMj30j+xwDcSin9vWD9LwGcBvBtAHf4Vj8AYCOALZTSfYJ9fw/gIIB/APAwISQDwBUAvkYp/U8d6s2IEQxRDuw+UqdntuRYIZTgGJP3kQaaEeiZJMkq2P1bj1b09vcxCisoCXorvcThQEphOgBg+acvxnBTP8ZfH+S3n3vxOPJWFqP3aDtmhqcwOz6DnKWFKLqkEomZyYbUiaGJTwBoEK3TY9YAAF6W8EO4w1f+bkJIrmD9DID3AFwj2vcQgEbRvu3gZgeuAfAwgCkAswC2EkJ+SSnt1an+jChHV+VA2JiFimBjhU5BDjlbVCt2rlaCdWiBOOMDP6/Bhh5kLcmHK8Ec50QjokjpOdLKMBcrtWGRmumUQqrf8hPu/YpLjkfeSs6MyB+9bLR1EKOtgwH7DdR3Y6x9GCvuupj3V2LtacRpoJQeNqjsJol1dQCKAPTJHUQIcVBKvb59k4Ls2wYAlNJZQsg/APhfAF2EkMMAXgfwLKX0WBj1Z0Q5pkUrigbnNSYUaSOW71Vyfhome8cAAK1vnEHrG2eQvaQAldctVWRaoFfkKb0VBIa1YYKltcheko+u/S2YHZuW3Wd2bBpNfz6J2ptW8+tY4sOoZUpinQNAM4AvBTmOCvbdB+DfZfbjXzRK6Q8IIS+As5W6AsDdAL5GCHmYUvp9lfVmxAi6KgdaOyS9I+2YgZVG4ayEHYQSM/Iy+Ekvz+KVAz+DZ3oQn5aA0strQh5vl+/BCpj5XO2AHb7FSGLGvfH3E854F5Z98iKcf/kUJrpGQJwOpJVmouTSajjjnTj243cAABNdo5LlsHc6JmgEcCWAPZTSOQX7ZlNKX1dSMKW0HcATAJ4ghCSBc2b+DiHkMUrpTBh1ZkQpus8cKHGcFY6GSmW0tKpAxBpoZQiFEivfMy11VHtMyWXVcCa4MHy+P6Dj7z7Ypkg5CAcr33sj8L93THFnKCGY8qTX++M/x3TbvXAlxmHxLWsW7CMMceqengOlFBJRchjRzzMAPgTgXyHh9EwIyRf4DDwD4LuEkLsopb8U7UcA5FJK+wghyQBAKZ30b6eUThFCGgBcCiANnE8DgxGAaWZF4ky+ctsAaysIDHujZrRQrAiIbZOVCBCEEBRtrETRxkpQrxeHtu/mt53/y0kUbapCUrb+UYxi/RuyqoJg1XrFKuKkjUY8m1BlzowGWpgcemwXknJSEJ+WgJLLapCcl6p7nRiW5FkAHwHwDULIJnCj+2MAKgBcDy5i0Sd9+/4vgA8C+AUh5AYAewHMAajylfEcgK8DWAzOwfkPAE4BGAWwHsBnAbwiCHfKYAQQ8XhqUgJMLAs10YKSBGpWIFgdhUqB2N9Ey7URhwPVH5oPxzd4thenfrUfXo9XdVmhCPYNhZPAzAhTDD0TqoXK0B1JhAnkogl/QrRo8CsLhlHXl5CRhIT0xIB1UwMTGGkZxOmnDqD/ZKch52VYC0opBReF6O/A5SL4Jjgl4FYAx8DlKfDvOwPgAwD+GZwC8D3f3w0AXgWnaADABQC/Ahf29BsAtoMzXfo2gI8aekEMWxNx5YBhD6Kh8wcCBQC9lBc1wm1WbT4yKnMC1o13DOtSD6VYTWnT2+lS7fWFyj6uF1a773oQTptgxD03so0yatCKEIIVn9uErJo8ye0trzXg4KNvYrxrxJDzM4yBUvpNSikRhiyllLb41n1d5hhKKX2SUnoxpTSVUppCKa2llH6WUvquaN8ZSun3KaWrKaVJlNJ0SukySulXKKUnffsMUEofoJSupJRm+MpbSin9FqV0wtg7wLAzEVEO5DoEuYbdbkJptI0MhovVnl84sxrBjhMKmcEEn4yqQOUgKdd8swEjrl8PIv3tmKEgaL2HWoRppefSUrbfdE34pxTxuYINPqgZmNAiwIcq34z2ixCC6htXYs29l2Ptl7dg8UfXLNin4dlD6DvRYXhdGAwGI2IzB1IdUbSYE0VzlBAt12XX56r0WtUKe93vt/K/c5YWIi45XtXx0YjeSocaIdwIEzgjBUo5QV7rOc1sq+TqHky5UKt4qCVY+Wrv6WTfGNrfPoeRlgFQURJEJbgS4uCMdyG9PBtrv7wFeatKAra3vn4G08OTMkczGAyGPhC1DRghZB2AQyu/sBmpRRmKjvE3sP4GWO9EMwxjET+/WEBLhtlgx8yOz+DC7rMYaR6A1835GCRkJGLFZzfZKjJJNDvU2iGPid5tp9nXbMe2X6lz/8zoFE7+8j1QD9en1nx4JTKrpU2F1OB1e3D48T38cvnWxUguSMOJn74LAOsNTNQVcfzyxoavv4S0ihUh99eDsdaTOPj/bgSi/N4yGMEwJVqRuGGN5pH1aCMWFQMplAgxwfZpf+schhoDk1lmVOXaSjEA7CHM6YUVw/GK20696qj0+HDbAzX1NKrtcU/NYaR1AIQQZFbn8hmJ5eoQ6vwzI1NofePMgqzH/Se7dFEOHC4nlnx8Hc48x8mp1Kt/AAMGg8EQYloo02AIOzjxyKQdE6RFE7F8z9UKXMEEicEzPYErCJC3slhr1SKCFYVlvRAPVlh58CKc0LrByguFXsK6/zsJJXjr3fZQStH25ln0HZ+3289fU4ryrYs112GwoQfn/3pKctvw+X7MjEwhISNJW4V9eD1eNP/1NL8cl5oQVnkMBoMRioj5HIg7JLkQhFqc3RgMrWhNohXMNrn1jTMBy9l1Bai5cWVEHJEZ6rCyIqSHr4SW47X4Nojb9EgEKRis7w5QDAAsyF6uFM+MGx3vNC1QDAo3lAcsd77XjLnJWcyOTWs6D8D5KAmPz6jK1VwWg8FgKCEiMwf+ESNxx6TXSBiDoYVwRovllFfPnCdAICnZXIWii6sWnFPqXbfaN2ClupiBXa7X6HqKBXmpUf9gswBSkYkiQf+prgXrxjtHMNE9ipTC9KDHeuY8GG7qw2TPGPpOdIB6aEBm47jkeKy46xI4E1zIWlyA+mfeBwAMnO7GwOluAEByfioqr12K5Lw02fMMnetD3/EOJGQkoXRLDRwuR0D7UXntUjjj5M2gGAwGQw9MVw78HYNUhyPGasIRIzKYke3XKMdM75wnYLlgQ0XAst+UTk4xsco3EM0mRdGEEXb6wpF+f7mhstyHKs9svG4PJnpG+eWUwnRMdHPL9c8eRMHaMpRuqZH0Aep4pwldB1oXrAcAZ7wLxZuqkL+2lD925Hyf5L6TveNo+O1hrPvKFZLbR1oG0PTSCX6573gH0suzMDcxy50rwYXc5UUKrpbBYDDCwxI+B8xkiBEMM98PNXHhlew/PTCfZya7rgAO50JLPjs46EezUiAVQcfqz0OO7Tu2aTaNC1WuVvz1UKu46DEoQCnFRPcomv92Gt45zpE3e0k+Kq9dijPPHcZEzxhAgZ7DFzDZN44lH1vLH+t1e3D2+WOSSQpdSXHIX1OK/LWlSK39Cb9+uu1e5K8rw0TPGEaaBxYc553zYGpwAknZKQHrZ8dn0PjHYwv2H20b4n97ZtyglNouiAGDwbAfpisH/sZequG3c6fMsDfhJKYKdmzHvmb+d0ZFtmznLnz3o1kQV4IZM0VA8NCz0fAMrDLrBGib0Qj3HXBPz+HoE28HrItLjkf5VUvgcDlRd/t6dLxzHt0H2wAAY+2cID43MYOOd85joKGbD0sKcMkKy66oQVxyPBKzU5BU+YTkeV0Jcai9aXXAutbXG9B3ohMAMN4xEqAcuGfmcO7FQMXAmeCCZ8YduC7eyRQDBoNhChGbOZBr+IURi5QqCnaMnc2IHoIJYTND8wmLml+px4W3ziF7cT7iUhOQt7IErqQ4fjt7bzkirRjYHWHbaQUFwSxlT0zraw0L1lXfuAKuRO6bIw4HSi+v4ZUDUGCybxyNfzzKm/IAXD6SRTesQErBvF+C2vcnqzafVw6EoUgppTj3x+OY7B3n15VeXo2C9eWYHpgAcRDMjs9gpGUA2bX5Cq+cwWAwwsMSZkViwhm9i3RHyIgNpOLNS717eatL0CmYPXBPzaH3GOdgODc+i/Kr5MMoRiuREhaFxNIsZaQVhEg969mJGf536eXVyFtdKunMSwjgzwXa+PxRzE36bPzjXciuK0DxpqqALOZa7ufM6BT/e7RtCLMj0xjvHIZ7ag7Tw/Pb6m5bj3/93jvYvmMbH80sMTsF6eXZqs7HYDAY4RCxUKZ64g/pZ0YHGKlIGwz9COYArAapaFvicosvqUL1jSuRXrGwc5/oHoHXE35CI7sJuZFWDPwI241oG1QIFgkuGpFql/3RhOJS4lG4oUI2yk9S3nxI4bnJWaSmZCM+LQGr774UFVcvCVsx4Coz/3P4XB+6D7VhvGs0QDGovHYpUoszLPN9MBiM2MVw5UAYnSgaBGvWcDOEKBEUsmrysPiWNVh3/5XIXTGf+GyiZwyHd+xG25tnNCkJeik5DIaVkYtwJ0Qqd8JkD5fDYG5iFgcffRM9h9okj5Uala/+0Eo89Pev8Mvh+gM5E+Un6VMK0rDkY2tZJCIGg2EZDDcrEgrTZoWjjLZRQIa1UWpi5HA6UPmBOnjn3Bg808uv7z3WAeqlKL28Bs4ES1r6MRgRQy58qhR+kzX39NyCbRfeOoeMRblIzEoOWJ+/pnTe7wBASmYW/uW7e/nIT0D4fUpWbT6qPkgx1j4MAiC1OAPpFdlwJsZJRjBjMBiMSKJbq6RkVsDImQOmGJiPf+SajV4HEuodrLi6DiWXVcMlGE3sO9GJIzvfwuHHd2O8izM36ninCcd/8g6632/FRPcoKJ23TWD3nBGKaDctkupP/AqEM8GF1KKFic36fU7BQuLTElFx9RKkl2chpTAdn/v+Tl0VAwAghCCnrhCV19Sh4po65CwrQlxKAlMMGAyGJdFtmFLJqI7RMwdMMYgMRoUBNQph4jG9zi+MshUKZ4ILRRdVoOiiCpz9/RGMXpiPZe51e9Hw7KGA/dv3NgEAcpcXoeIDdZLhDCPtdGoFhMIiM/+LHGoTCqpxUJd6xlLHE0JQ+9G1oAkPwRGfiMOPXA8A6D7UhoL1ZYhLSQjYP29VCfJWlQAAXjv0fcV1ZzAYjGgkamwYWEPOUIP/fdFbQVBDYvlO1H1xAKef+CDGu0ZD7t9/qguFF1UsMIvQcu5o5MkXWnD3TZVMMQhCqNFwJZnrtZwv2DnDRa6OKdVPAgCo14OE7BrMDJ4DADT/rR6LP7rGkLowGAxGNGDanCbrsKOPcKO8WEGgNaIOSs2tptvuRXxaDtb80wFc9mgD1n55C5LzUwP2Kb28OmB5vHNEshy9sLvpSbS3M2pN+dS+G9t3bFtwD8VBJbSah8rVW21itCdfaJE8Rq4c4nBiyUcL+OXZ8WnF5zOTaAjYwWAwogNbzhzINaLRJBhY1UyE+XYoR8k9Es5gXJP5LTju/DYmukbhdXuQVpaFgdPdYZ+DER2IBWul36LwHfMvB2tfhO2rFlOtUDkktLYhoRQiuSzM0233YrJnfmYuLikeDAaDwZDHlsqBVNg6QP8p8Ugh1wlGUmGQEkxC1cWqCo7RBBOO5Oyrp9vuxS5wttKpxRn8emE2VQDIqs3j9zcCOz8vO9ddCcLrC2eGR5g9WVyuXogVEi2E8kUQKwNy3xUQOONWsKFcc52MxK79FYPBiD4MNSsSToHrba7gn/6W+vNjp9wK4vsj1WELO1yzowSJk0UpUQyE/62O3u+J3P1RKwDkLC3kfxMHgUMmkZMemPWs7PJNWhk9k7eJn7ueQmo49ZMaBAp1zXLv1twEl9wMALrfbw2I/BUK9r4yGIxYIyzlQEpItUJ4S7GSYIU6SSHnrKfUTEBchlnobQ5gNaxS38TynUhe9OT8CgLJSEV6YdbIuxVGSO00cBAJ9MxPI/deKfnO/ArCA/e/zJej5dl9/Ivf53+Pd45gTBAhTEkdGAwGI5bQzazIKgKVEKs36uE681rxntsVvxCyfcc2yXsbKZMVz8wk/zslP82w8xhpAmZFPxWrtw3RRLjtlFBBULKvH6EyAQC//reH+NkD99TCJGkMBoPB4GAZWGyMXmYFRmOHOgKBZgzie2u2IuY/X/euT/DrMqvzTK2DXljx+cfirEGw5yAXRUgPJUrteUOhtk7+68jakI3xiUHur2Nh1C8Gg8FgcJjqkGz0aKyaZDoMY7GiQKgFsZ+HcJ1R+EfxZ0am0PxKPQCAECC9Msewcxp9TXZ5H+Qi3jDk0TrrpOYYudClwjCrwZ7ZWMcwLuw5xy8P1Heh/KrFKmrLYDAYsUNEZw709gNgHTojXJS8Q0bOIiSW78Tk+bvR8mo9Tvx83/z6nFQk56UGOdLaWM0EThy4QG5brBCu8qYkp4cav6pQZYsjFAmzJX/5nhcxUN+N7oOtaH/7HA4++ibOPHc44PjcFcUhzxuLs0sMBoMBhDFzkFD4MIDwQtYxu3kGI5Dptntx7sXjGG0LdJis+fDKCNVIP6wa2lZP51urY4Q/jZrjQzkni7erDbu6fcc2nP3DUYy2Dcruk5SbitItNSHrquZdsKJfDYPBYGhFF7MicXIdOYKF59Qbq48GWlVQMhu5iE1Ww6y6jbQOLFAMqm9YgYSMJFPObxSReLbsG5NGyaBMpEw0xUK2lsEnKcUgPi0R6eVZKN68CPGpCYrKUXMP2HvGYDCiibCVA7nG3GpYyR9BOBpm1ftlFkJBJdrvR6jra3vzLHqPtfPLrqQ4LPvkRsXCDGMeqTwb0fxuaSHY/TC7rQzl/K/12eWvLkHuimIk5aWqDgNslf6CwWAwzCZsnwOjI+ZojUcuZ5NqBZiQEojVFUs9kRJ8vG4PWl6tD1AMAGDp7RuYYqCCUPlMmAmjPQinHXBPC0KUEqD8qiVIzk8zND8Ig8FgRBumRivSQjhCvRUVAz+xIAirQW7kMBrvk3AGYbJvDA3PHoLX7eW3l29djNyVxXA4WaRhNSgxl4n22Sml+O+VmffCqO/6vq/8Gd/6ykXoO9GBsfZhfr0Sp2MGg8FgLCQs5YB1sgxGeLS+fiZAMSi7ogb5a0ojWCNp7CJURzp7uJ2I5PPU03ToH2+uRd/xjgXrizZWaCqPwWAwYh3NysFM9yOIK8rQsy4MBoDY8UPwzHkw0T3KLy/7xEVINjALcjgIHUPt8jzsUk+9/aGs+oxCORdrVRgmuhYmNEstzkBCur2d+BkMBiNSMLsFhiWJ5hFg/7XNTczw69Irsi2rGAiRSgrHCA+9zR6VmldF6vkpVVyU7hefnsj/rrp+GepuX4/aW9ZY+h21ar0YDAYDsIHPASN2CSeHhpWQioE+2TuG+t8c5JfHLgwtOM7KWHFk2q4YFUlNPIOgNL+BmTH7wzkHpRQAMDs6Pb/O40WqxWe0w50VfeD+l/EfD1+qd7UYDAaDhykHDMtjZ0HUM+NG0zPXweP2oGBtGRIykjDeNYKGZw8F7Fe8qSpCNWREGiMUA60JJq2siLtn5tD5bjM8M27MDE9hXMKcKDE7hf8dqXZDGF1P72fLsjYzGAwzYGZFDFsSKmylVejYdx5d77ei90g7Tvx8HwYautH+1rmAfQo3lKPwIuY8aUes8v5JCY1i4ViJsGymOZ9a4b37QCt6j7ZjoL5bUjHIrM5FanHkZw2279jGKwVyz0VrCHBh2QwGg2EUlp45sFLiMqtg5pQ/IzzGu0bQeyQwd0HzX08HLK+7/0oWstSmKDEPMep79beNakeSxc7+oepmVPhRLWVND08BAFJTsjE+wWVBdiXFwT01h6KLKlB86SLd6qcHrO9iMBh2xdLKgXj0hTW281g1IolZWP3ap/rHF5gOiSnaWMEUgyghlH2/Ud9rOG2iX1EQ1k3KL8EqsyNxyfEAgPGJQSz/9MVIykkJcQSDwWAwtGAp5UBsqykeFWMzCfqH+dQz3jhjnt6jgTMGlR+ogys5Hhd2ncXM2DQ30rnZWiOd4RCLyqpYGdBDiJYazR+o78ZkzxgoKLKXFCClID2scwjLFoeolXqGej3XcGdRiHM+y7F7ahYAUw4YDAbDCCylHAgVAis6XllFANJrNC9YvHErXKddoV6KvhOd/HLRxZXIWVYE4iDIqMoB9dKomzFg70v4CL/HqcEJtL1+BmMdwwH79B5pR/WKjfjvmWsQlxSv27n1HGSQKyucc3jmPAEmenYI+8tgMBh2xVLKAbDQlEgOoc2tWbMJVhGAjJjml0pyZZS9cbTTeyxw1iCjKgfEwY16EkICRkD92Fkh07PuseRTMzc5i7mJWSTnpQKYv2b31BxO/Wq/7HFNJw+gIn8J8laXgFKKwfpuDJzuRmJ2MlKKMpBckIYkQdQeM96tUI7M4Z5/sKE7YNkZb7mui8FgMKKGiLewUmHf5BQDoRLg/x1pMyOzhbpwFAOxsG+kCUEorGoipsfz7NzXHLCcUhieGUgsYmdlSYz/OrweLyZ7RjE1MIHW18/w24s2VqDk0mr+mkea+0OWSVzczFPzy6cweLYXADB6YQg41gEAyF9divKrFgecPxzkvlep9eLBBT3OPzc+y/9OyGCZjxkMBsNITFUOQvkUSG2zogApRG3H5xcAtHac/mO1nFdYhpHnUloPqecfyeethy+H1+OFZ8bNL5dvXQzq8QIOBz97IIWdBWG9o9hYxQFWDXL1nm67lxvdP9OD9j3nMDc5u2CfrgOtmB5bgsTs76HrnTcXbF//4FZMD00GzCY4450YaR3gFQMxvcfakbuyCMl5+pjfyH2Xwb5Xvd4LSik635tXuMMJV/rA/S/jyRdabPm9CdtLlgTNehBCbgTwJwAPUEp3iLZ9A8A3AfyOUvpx0barAbwO4GFK6fcUnutzANIppY/pUHUGYwERmTlQMuqvh5Bo5dFpQHvnqfY4f4eo5VgjOtHptnux3dd0SjmdA5FREvRw9qZeCofLAa/bCwBo23UWbbvOIi4lHktuXYfErGRd6xyNRIuCMN12L7weL5r+dBwjLYNBjx0+ux/UszB2f+mWGnS8cx7d77fOrySAI96JxueP8asyqnKQv7oUjS/Mr4tLSQhZZ8+sG8Pn+uCemsPc5Cymh6cQn5qAgnVluo7Qq2mLqZdidmwaE92j6Dl8ARPdowHb08qyNNdj+45ttny3AOsPlDHwNgAvgC0Adoi2bQHgBnC5xHFbfP/fUnGuzwEoBfCYuioyGMowTTmIlNBnNQVBSgA10oQisXynZsXACMR1ED+bSD+vUM8j1HvsjHNi2Sc34uQv3wtYPzcxi6GzPSi6ODATcjSZz+hJqHtiF9+E9j2NAYpBUk4KEjKSkJSbgpTCdHS/34rxrtEAxSApNxW5y4uQu7IYzjgnDj46P5vgTHCh+JKqAMUgvTwbtTetBvXSgHMfe3IvAGD1ly4NUBSmhycx1TuOqYFxdL7XIlnv3qPtyF9TivzVJQFZh2dGptD4x2OYHZ+Gd86LxMwkzE7MIiE9EQXry5G7vEjbjQI329H25tmg+2QuykXOskLN5wCs/84w7AmldJgQcgIiBYAQEgfgEgBPA/gMIWQxpVT4om8BMAngfdMqKwMhhABIppRORLoujMhi+syBmcKflZQCIVKJiBgcVnhmwYQHJSOPiVnJWHPP5Wh/uwn9J+ejFjnipD83uwi6VmLi3JfQc6gNEz1jSCvNRO6KYrgS4yJdrQWMXhjif5dvXYz8NaX8cmL5ThRuBfr3fwJd+1uQVZuPrMX5cMY5A8pIL8viy/HMuHFhTyO/zeFyoOr6pQAA4iBwxrvgmXUHHH/sx+/wyfba3jy7wGFejt6j7eg92o645Hgk5aXCleBaYMbkT0w2NTCBllfr0fJqPZIL0lB8cSUyq/MAcGZBob7rvhOdIRWDsi01KFhfrqjuahAq/FI+cAyGCt4CcB8hpI5S2uBbtwFAMrhR/o+DUwbOAgAhJB7AxQD2ASgmhPwjgKsAVPiOPQLgu5TSv/pPQAhp8W8nhPAjApRSItjnQwC+CmAdACeAowD+g1L6F8E+lQCaAfyHrz5fBbAEwD+BzUjEPKYpB2oaWikFIphAZkehSmyCYMQIMlM8jEHJc3IlxqHyA3VIKUxH6+tcHzHeOYyCdWWSZYmTUYVCKllVrOCensPpp9/H7Og0AGCkeQDdB1qRs7wIDpcDo21DmOgeRVxKPJzxLmTXFaDo4kq4p+b4RFpK6D/Vha79LXDEObFo23Ik5aSAUgpucE0ZWTV56DrAmQR1HWhB7ooiOFyc8O9vA1KLMlB702rZMkour8HoMwsHFZ3x3CyVcFag4pol6H6/FZN94wH7Dp3tBXEQWcWgfOtipJZkwjPrRsvfTmPGd28BX1Sl1uBmUUIme8Zw7k8nFqzPXpKP8quXwJUQqMRRr5f/Rvh9F+fDPe1GwboypBSl66L4yQ1MKY2Qx4g56iS+9S5KaVeQY/YAuA+cAuB/qbcAGABwDMAB3/JPfdsuApDkO+4iAB8A8CKA8wDSAXwKwF8IIR+glL7hO+ZBAN8HkA3gIXEFCCFfAfA4gNcA/BsACuAOAC8RQu6klD4rOuTDAAoB7ATQBZ/iwohtCKU09F7CAwhZB+DQyi9sRmqRdscwNSgRcu0qHGkV8kKNNsey8GglZsdncPwn7wAAUlOyUfPp5boIOnZOXhdu3c/+/kjAiLwaMipzkFGVjamBSQw19iIxMwllV9QiuTAdhBBM9o1jvGMYPUcuYMY3Ki4kISMJ1R9aIRtnX2wq6HV7cPjxPfx2sYmPUs7/9RQGG3r45ZxlhSi5tBrxqfJlnf/LSX6knxBA3NRfeevn0DaxH9lLChYc65lx4/xfT2GkeUCy7LTSTNR8ZBUAwOv2YvBMD/qOdWB6aDLktWRW56L4kiok5aWCEILW1xsC8oL4ZzkY8ox3jeDET98FgPWU0sORro9R+OWNQ4cOYd26daac8/Dhw1i/fr3c5m9RSr8pt5EQkgegF8DTlNJP+tb9BcAcpfQmQsh3AHyKUlrp2/YwgO8C2ArgAKV0UlReArhR/zZK6XWC9XsBlPrLEawvAadY/IRS+hXBeieAdwGUACinlHoFMwdzAJZRSs8FuS2MGEPzzEFC4cNILF9hikAi5aBoxsi7VRFfN8O6UJ9jsp8btnwDrxz4btjlhoorbzXk6qjlmxUqBks+vg79JzoxUN8d5Ih5RloGMNIyL/COT82h/tlDSMxMQukVtWj68wlQj/yAyczIFE4/zY3ix6clIjk/FcWbqvioQNNt98I9NYfxxi8CAM48d4Q/NrU4Q5NiAAAV19SBOAhmR6dRcukipBZnhjymdEsNhpsH4J3zBCgGCRmJWHHXJow7WvCt+w9JjqY7E1yovWk1pgcnMNI6iPiUBMyMToF6vEivzEFyfho/g+KMBwrWliF/TSlmx2YwNzGD9j2NGO8aXVAuAAw39WO4qR/Zi/ORv64sQDGo/EBdTCoGakwLE8t3Yo6eBHCjwbWKeT6B+dF/P8FmDUAp7SOE1MPnZEwIcQC4FMB3fLu8DeDrhJBySmmbb79ZAO9RSvnpOkJIIrgU4ATAbgC3KazzRwHEA/glISRXtO0vAL4FYCmAU4L1LzPFgCEmbLMiJSEy9fYzCDZabjcFQa2SYwdBkDFP96E2/vf4xCB+9/t/RHp5tq7nMPud1/Kd6RWBaOhcH/87pTAdaSWZSCvJRPnVSzB8rg+zY9NIzkuDI84BEALvnActr9ZjbmJhCNGA+g1P4dyLxyW3ESeRVBhmx6YxOzaN4aZ+rL77MjjinDi6860FjsF+8teWSq5XgjPOiarrlqk6Jj4tEbUfWYWzzx8NqFP1jav4sLqh2uXE7JQAh+RgEEKQkJ6IhPRE1N2+gTfB8nq8cE/OovtQW0CW48GzvQE+DDUfXsn7KcQSzOfIsjRonJV5C8DdvpH5LAAZ4JQCgPMt8ADYQgj5DYDN4GYMpn2Oy/8G4NOY9znwo9TEo873P5hzcz4ClYMmhWUzYghdfQ7khAajHLukBI5oaGjlrkHOVCiU0GXne2EFwlE6C9aXoe94B7/c9NJJLP7YGqQUxF5itHDfw7nJWbS8cppfFvpvOOOcyFkqHcVmxV2XYKJ7FAOnuzHRM4rUogyklWYiPi0RYx3D6NrfskCgTy3JRMGaUmTWcsLqeMcwHHFOdL3XgtHWQTgTXXBPz/FKgz8ykBxZtfnIqBIP5BlPWlkWam5ahb6jHciqzUP20kLFPhPB3nslZov+8zicDsSnJaL8ysUo2bwIp586gJmR6QX7x6clKqpXtKA1A/10272Y6V4Y9pZhGfYAuBvcrEAWuEhEhwGAUjpGCDnm21YPzq/Ab3f4GIB7ADwBYC+AQXCKxGcB3Knw3P5pt1sAjMnsc0y0vNB+khHzRDxDslLkHDflBGQ7zSJIXYOSLKP+axQrSZv6u7AvV3tIQbVEOvyoUegx0p2YmYy1X96CIz/kQlh7Zt0YqO+OSeUgXIYae+GZ9fDLmdW5Ad+53DfvjHchvTxbcsYmrSwL6eXZaPjtIX5dSkEalty6NkCITivlYuv77ewBYGZ0Cqd+tZ/PaSHGlehCcl4aKq9bGlHBN6MiBxkVOaqPUzPbo3RQxhnvwsrPbcZY+xDOv3yKn9FxxDkRl6LcWVwtVmyj7NI/MVTjF/b9ysE+SqkwhNjbAK4HpxwA8/kN7gTwf5TSLwsLI4R8XuIccjMJ/lBmXZTS92T2YTBCortxp9FmL3LKgLCh9QvMdkMvcyIzFQNA+cyQMBqInSKDyClm/r9QOONdKFg/P8ptliN/tJFSkM5Z4Po4/mPO0Vvpc5AjtTgD6+67AlXXL0PxJVWo/vAqRaPrCelJWPyxtUjMDEwWVnLpImx46CqsuWcLFn9sbcyMiKtpc9NKs7Dqi5ei7vb1qLpuKZbevl6zP0YorKgYMKIXSmknOFOdLQAuw7xJkZ+94EKGfgxcYrR3fes9CGjhAELIEgA3SZxmAkCmxPrfg3Mw/rbPTCkAQki+wstgxDiW8fxS08HLdUJ2VQr8yJlIhUIoaN99U6WeVdINO3bQwd4nsUNwqGcltFlPKVQ+axCLPiZyimNKYToWXb+cX3bPuNG19zldzulwcWZJxZuqgkYAEpNalIEVn92EpXdehLxVJSi7ohaFF4nNhc0nXIXJT6i2VvinFkIIUosykLOsCEm5qeFWVRa7tTuMqOAtALXg7PvFyoF/eTOAw5RSf9zhFwB8khCykxDyRULIIwD2Y36GQchBABmEkO2EkDsJIbcDAKW0FVx402sAHCOE/Dsh5Au+/y/DAonWGPZAd7MiLZ2EXPSdYGXZWQmQIxqvyY+4g47GDjuYKZt7ct4h1qUi1r4VMfI9DTWjlF1XgOHmfj6s5/kX/gcFl9wMhyuyCdBSCtKQUrAkonUAjFUmlfo4WQE7DkYwooo94HwF3AACzHsopT2EkEZwysNbgk0PgrP/v8V3bAM434WlANaKyv8vADXg8iDcB27G4Vlf+T8khDQA+EdfmSkAesCFRP1nfS6PEe1oznOw4esvIa1ixYLt4QgOesbmV+pzYBUHZqn6qkn8JhSqnnyhRXY/O6HVYc9MlIboPPuHIxht40JwrvzsJiSITFEYyvF6vDi8Yze/XHX9MpRc9zyAyL4nVvJzslJdGPrD8hwYhyDPQVTfWwYjGLqaFYXbGfmP39QfNJRwSPwCm/C/1Ue7pO6deF2wKXz/KNmTL7Tg7psqsam/y3LCQTh+BlZ/fqGYHZsBADjiHIhP52zQ1fgt6EW457LCc3A4HSi9vJpf9szMWeJd1ytcqxCt5VnhfgDWeF8YDAaDoQ7LRCvyTwNPt92LfSLhPpyY6tES5lNtPfflFgFtofczGzXT/XZIdKdUIPRnjnXGuUAcBBM9Y+h45zpk1uQj56JfG11NAAuVZq330grPQegwPNHNRezTIzGc3Oyd0uuVS9iolUjfZz1g2doZDAbDXmieOZjpfiRgOZwG3z+i7P+vxrxGjmjogNQKJsd/ug+b+rv4/1Zj+45tqiMbiaNQWREljpnEyQmz7uk5TPaNof6Z99F1oBX1z7yPwUOfDlq+3s6ldnfcBwLj+E32jQdsUxPYwIj3K1xH3WhC6h7YYSaXwWAwYpmwZg70mkYXCozCGQS9R439ZRhty67VGU6oDGgZ3d01+R0klu/Epv4u7Jr8TugDLIzw/tlNwJKqb1pxJkYvDIF6KU4/FRgwon1PI2o/ukY2fKae5ip63ctIjwY7453875y6Av63Uh8QpdsY+qDHgI8cVvEbYzAYjGghLJ8DI0Z/tu/YJjuDoAdmjFiFGyUjnM5uuu1erPrCprDObyX0yIdghZwKxZcukt02emEIg/XdQY8PlqnWCqOwZtfBGT8/riF07pYKsRmuWQ8TOvXHKCWVwWAwGOGjeeYgofBh/reRnWc4o6Zyx7LOPrLICetSSpUe4QjlypBTwoywqU8tykDltUvRd6IDCelJyF1RhKmBCVzYzSW0bH6lHn3HO5FRnYucugJbJs6KVHQp4gidsExMqNk9FgrT+tghmhmDwWDYEV2iFRkxevPA/S8HzCBobfyjIXOyWqwu1KjxOwg26h/Oeyc2WTMjclDu8iIsvX0DFm1bjvTybOStKkF6WRa/fbxrBB17m3D2+aOKyovlUVOHa77p8sy4+d9i/yU5Qr2DVv+GYh2mGDAYDIZxWCZDshCxD0K4xIpSYGfEz1zJc9cyq6RUATBD8HY4Haj96BqUXl4dYCYzPTgJz5zH8PNrQel3ZPT9c7jmfQ7Gu0YDtgkVhFDvkRVMzhjqYIoBg8FgGItlQpmK8QuLduy8mYOceoRmHGqVQyuE1tQKIQSFGyqQmJWMc386wa93OEObykTqmpUqZYZ+B4LbM9Y2yP9WO+Lv93GKtpkCM78JM9s7phgwGAyG8Vhy5kCIHTttf6elZvTUaiYikUjQJUaJiYiae61llsEs5iZm+d9lV9aCOKz9aaoRzPR+l7rfb8XZPxzllzOr8wBoH0iwYxujBKu1KXrCFAMGg8EwDl0kELUNtdjGO9if3thxJiISiBNKyT2PcJ6RUCgL5YwcSkGIJmFBaGIUbYTzXc+Oz+Dci8fRvreJX5dZk8dHglIj5Eez4AyYKzyb9f2ZNUMR7e8Gg8FghCLsPAdajzNa8JcTFMIZJYxG84NgqDUf8R+jBCkTIjH+5xnJe26WecZI8wD/W0v0nUigZYZMKyMtA2j847GAdSWXVaPoogrNZdrZHC0YVs8qHg5mXEs03S8Gg8HQAqGUht5LeAAh6wAcWvmFzUgtygjr5Mw2fx47h1wNNyGWWUpXOCFxjcQ9NYejP3qbX177lSvgjHMGOcKaqL2/Su+r1+3BkZ1vgXrm26pF25aj+AN/sM03wpgn2hSWSDDeNYITP30XANZTSg9Huj5G4Zc3Dh06hHXr1plyzsOHD2P9+vVAlN9bBiMYETNsfuD+l6POHCRWCfcZSikGVjL/MnpkvOdwG/87a3G+YYqB0ddh1Lc8Oz7DKwapKdlY9cVLkb2Ey4qsh/mh0e+ald5lK8DafAaDwbA2lvF69IcdjNWO1G4dpvg5+etv5evQI2OuEYy2DfG/y6+sNeQcfgHajgrC7Og0/3t8YhD5k6sw2Tem2/M0etYqlkwRGQwGg2F/TFEOpASScHMZxLIiYQWkBB4pIc2qEWSsoih4PV5MdM/H6Z8ZnYZaUz8lWE15U1OP1OIMOOPnZ1Nef/oJ1D/9Pia6RjSfnzmdMhgMBoMhjeHKgdoRS6VC4fYd26JuRM4qgpue6PGMjFYCldx3o4TJmZGpgOWGZw/h0GO7cOIX+wKclPXArPdL7/M4XE4s++RGJGQk8esoBdr2NBqiSGmBKRsMBoPBiBYsYVbkF/TVCJLRPmtgpqKg1G47UvfcDCUwUopZQnqi5PqZ4Sk0vXQCc1OzktuDQSnFRM8YRlq5CD/HfrwXZ35/BJTSoM+Qer2Y6h/XReAONSujVphOyEjC8s9cjNpbVvPrJrpGMd4xrLl+emGWyRaDwWAwGGZgqHIg7iz17Dz9mU2jjUiYuigNSWmEkG6EQKXVSTUS997hcqLEF6dfjNfjxbEf7cXsGGdzP9Y+hLO/P4LGF45hanBCtsyOd86j/pn30fj8MYy0DGBuYhZjF4bQ8mo9KKWywn/zX0/j1K8PoO2NM+FfmAE4nA5kVOSg8tql/Lqpfvn7EA1EYxvHYDAYDGtjSLYls0bQos2syApEIrysnucUx3jXUq5ReTjkKNpYify1ZTjygz2S24//9F2kFKYH+CaMNA+gcH05SrfULNh/WkZxGDjdjU8v4kxz8teUonzr4vljhicxeLYXANB3ohMZVTlIr8iGwxVe5CQj7qXX7eF/t+06i5zlRREN/WpkvgfWxjHEJJbvxBw9CeDGSFeFwWBEKYbMHAidPcWjsWzq3ZqIBWiznpPeo/VSZWmdRdCjHKU445xY83eXI29VCYo2VqD6hhUB24WKgZ/uQ204/5eTC2YC0suz+d/EmQHiXJiPZKixN+C44XN9AdvP/ekEDj++B61vnIFn1q3pmkIhNMdRM9uTVpYV4KB85Ad70LbrbIDSEOq8RjzLaPQZYlgL1n8yGAwziIjPgV4NnFCoUCtgMKyF3gqCHtGIzFYQXElxqLh6CUourUbW4nws+dhaEAeBKzEOxJc0WSj4A8Dg2V6cf/kUv+yZccMhGEWvvOEr2Pyf+1D9se8EHJdZnQdC5jMxz47PSNap73gHjvzwLfQebdfsixDsOWjJrp2UnYLam9cErOs92o62XY1BjxO3D3ZtK4TXYcVrsGKdogF2XxkMhlkYYlYkhRFT70KTBf9vNnqnHbPNacxC73fCLNOrtLIsrH9gKwDwgjkhBJRS9J/oRKvPN2DobC+813vRe7Qd7W+dCyjDPTWGmfavIKsMqLimDq2vNwAA0suzAvbzTM/PDiTlpMCVHI+xC/P5F9p2nUXbrrMou6IGidkpAOEUFaGCEQ5q72VqcQZWfm4TWl5r4OsprK9S7Nhm+L9ToYJgt2tgqEf4jGe6tYfxZTAYjFCYphz40bsTE5bHOsjwYfcwkGAKk9FCmdAZVWh7TghBzvIiXjkAgMM7dkuWkZT+FgButqFrfwu/PjErOWC/OcHMQcH6cuQuL8LM6DSa/3Y6ICLQhT3zykfZFbUoWFem+Hr0Vj4TMpJQe/Nq/todGv0O7C5cW63uVqtPMCLhY8VgMBhWx3CzIpasjGF39AzJqYZgIX4dTgcK15cHPb5oY0WAGZI/6hEAnPndEUwNzDsue91e/ndCJue0nJCeiLqPr0PtzatBnAtnCLoPtoJ6vQvWK0EvHxfv7LyfwVT/OCb7xiX38ysA0SIEWiWJX7Sg1iSVmbAyGIxoxnDlwC/cMAWBEQorvyNWFMJKLq/G4lvWBKxzJcZhzT2XY/mnL0bJpdUB24SKgnt6Dq2vNfDOxglZ8wnGRkXJ1zIqc7D+/q2ovXk18lYW8+vnJmZxaPtuHPnhHgyd61OkKAgFWj0UBGdi4ORn/dMHMNEzFrRcsVBt5LNlAqT+6DngpPYdZEoBg8GIBdjMgYmwTiUQcUfrHyG36vuixKnWTAghSK/IxqIPLufXLf3ERXAlxiEpJ2XB/otuWI68VSX88njXCI788C24p+dQetm8ItF3okPyfBmVOai4pg51t60LWO+Z9aDppRM4/pN3MT08qeoawhXSCSGouHoJv0wpMNzIhWQNJcjJjbzrEdyACZHGkFi+E0++0IInX2gxpHyj3gcGg8GwE6bNHADWFfrMIlodfrUi56Ru5djuVpxByK4rwIaHrsKGh66SzbgMcLMKFVcvQd3t6wPWH33ibRz78Tv8sns6eOjS1OJMrPz8pgXr5yZncfIX7+H8X0+BetVHNtL6beStKsHKz83XZ6KXmznQYnajJXqSkjLZdx8+RibV1IIV2wIGg8HQA1NmDgBrC3xmojRqU6Q7PrMQ3g+7XLPZIU71JrUoAyvuukR2e1xyfMgyEtKTsOGhq7D2y1sWJGIbbOjBoe270PbmWfSf6goZAlWcB0WTeVHCvHnRaOtggH+FGiVBqy2/1cOLMuQJ9cyZEsBgMGINQ5UDv2IgVhBY56msw4mV+8QcK80nMSsZKz5zMXKWFQasdyW4UH3jCpmjFuKMd6FwfTnWP7B1gSlT77F2tLxaj469Terrp/LdJ05HQGK04z99F01/Pgn39Jzqc4eDXL3Z+x0+kbyHYvM39jwZDEY0Y6hyIJwtEJsUxYrgq4ZYvyesw9WfYKZ8idkpqLpuGW+StOGhq7Dm3i1ILc5UfR7iIFj+6YtRfEnVgm3dB9vgmZPOXjwzOo2u91tx6sf3o/mlHXBPB0YbGjzbg9Y3zsgmafPjjHOi8rplAeuGGnvRf6JT5ZXoTyTeazvNxKlBzcyOkutXY+rKlAIGgxErmJIhWS4cIyMQYXKjWO+IolGwMYJQ98nsSGHFm6qw7v4rseTWtUjKTeXXt77WAPcUN4pPKYXX48VwUx9OP3UAHXubMHx2Pzr3PI39X78axx//PKb62tB5pAbn/3IKfcc7cOJn78r6MVBKcfqpA2h66cSCbWbPHIiJ9Dcczd+RUgVB7h48cP/LQfulWPeRYzAYsYvhSdDUKgV2T0gULtF87aE6Y7sgJWxE8rmF+mbMvucOpwNppVlYtG05Tv3ffgDA4JkeDJ7p4bd7PQvDnlIPl/V19Pw7OPz9W/llAKBeiq4DLZIzEyPNA7L5DTKqcsK+nlBY0ZRIj4z0dv5elVx3qGuz67Uz/n979x5jxVnGcfz7LJdlWe67CdttpVxagdrSEGxFbHRpinhJtFUTkVJLraJio/yhFawFGmvUxBpjmxJSGwtpsGq1gBG1prbGC6maaq8rpbKCpWzTQgss0IXC6x8zZx1m5+ye29zO/j7JZPfMzJl553Jm3mfey4hItRIpOQgb6MYVfHpez0+9hqJybrZ5CpLSzgSGG/QmZbDfaFNLM9M/8DYahp99mQkHBq0Xt9M+vwUbNr5vXDAwKHhpZxd7H9nFmTfPrqJ06lh0laNhjcMZe97EQbcjDkm0KSrlGlnNuZnXzHHUey1ERKR0iQYHpRbTppXZEcmzOHvLiQrYS8l0TZo5mUtuXMCIZq8HpKaWZsa0j2fSrMm0z5/K7E+8namLZnHO5VO5aOlM2jtW9FtGc9s4rMF7Q/MrT+2nc8vf6T1yom/68cBLz6YsvJC5N72HeasWMnfluyve3ihRmfFqS5Fqcax0jSxOgYGISPlir1YUFHwSFa5fX1AoytZFPVqei/rrQZYzYsH3aNS6el6xd3SUso4Ro0dy6YorBp2vqXUMTa0v0D73SkZMvoPe/as43fsmI5ob6XnpMHt2PMvJo29w4uAxnr53J/NWLeTk0V4OPtcNQOP4UbReci4Nw5J55lFtYFDL45OH6phJpjHr+0JEJMsSKzmIKjUodgFXQ7Bo1e4X7dfqZK2tQZRgNaNaBzJJNpIf1tjE6OkbGdHcCMCY9vH93sx89MXXObL3YF81pXPeMS2RwCArVR7TrFJWCQUGIiL5kFhwMNDT7qibWr1kZLOSkYBs1iHOyr4pV9Z7k4orQEjTyLGjuODDc/o+7/v9LnoP//9lZ82Tx8a6/mA3mlHHvtLzodprXZbPw6zI4u+gXu5xIlJ/UmmQHBTOxBS6Pc1iRrZUcTeorqebSl4yNuXWtc+CvKQzSrHgZvy0FhrHjfLmOXSc7r/t7ZvWMDLRWpL9XoxVqahrXbm/8awHq1mQpQc1kM2HNSIikIHgoN7EXfUk74FT3uUtA5a39AZFBQhmxvQPXgx29rwTZrT2BQ31QL/x2slSQBDlS1/cUVcPfEQk/zIRHNTTU684t0MZhoHFmQmox2o6Sao08xP1e2puG8e0xRcxvHE41mBMmNHqBQwJK5wL9XLtGgoGOlaFTHrhXM1aSYOISFKSLYcXiVGhR504Mmt56A0miwq9a1UT2AaPa+Fvy+w2Wma34ZzDzAZfSAx0PuTLYMer8Dbx8LlaLAis5cvvNm79T9nfERGJi4KDmNRLxiGPde3jMJS3vRq1yPSE398QDNTSCgzSoJKKypSzv8rtOKMWCr8RPYAQkazIRLWiehPHBT4PdVKzUASvm+vAqjlGlXy3FsejVg1/805V27JvKJ+fAmbWYWbOH94fMX25P+2qGq/XBYYzZva6mT1nZpvNbHGVy55kZuvNrKM2qZU8UHCQE2m1NyjWHqSUN8VKNlValzrNjE8wY1zshWxDSZa2v17r5pfbba0CAwn5RsLr+wtwHfBJYDXwa+CdwG/M7JdmNrrC5U4C1gEdtUik5IOqFUlJigUIeqqbL3k+RsG3qkP/82+wz/Uma9tXz9We4gwG4mwrJal5AphnZtc45x5KaJ1dzrn7gyPM7Ct4QcrXgA3A9QmlRXJOJQdSkfCNTDc2SUJUo9CBnlyn8UQ7ySqAWXhqX+yYpKHSfZ/2PpS6cy+wD7jNSmgYZWZtZvZDMztgZr1mttvM1prZiGoS4Zw745y7BXgMWGZmMwLr/JCZbTWz//rr7DazTWbWHpinA9jtf1wXqLp0nz/9fDO708yeNbMef/hjVJUqyReVHEjFFBBIGor1GpOl8zGq15s4lbIPwp0L1LKzgTSrfeWhPdZgVHpQd07iPbG/B/g48ECxGc1sIrATOBfv6f4u4CrgNmAO8LEapOdHeNWC3uuvA+BTeHnAjcDLwCzgM8B8M7vUOfcG0Al8Gfgu8BDwC/+7//b/XgYsArYBe4BxeFWbfmVmi5xzj9Qg7ZKCioODE6/21DIdIiIV6TlwbdHxjW1rgJX0dn8rsfR8c827WLrkTnoOHK75sgvb2ti2pm+bvG309Hb3X2dh+qm9zwTGruz3uRb7qJC+YsckDl1PPhFKw9n7ILh/gMjtPOWeIenzJCoNUccvylC7/3Z2dqaxrlkRD/0POOcOlLio+4CvAuvN7GfOudNF5lsNTAWWOOd+4o+728w2AJ8zs8XOud+Wmv4invb/XhgYd61z7lhwJjPbjlfKcA3wY+fcy2a2DS84eCpcbQnY4Zx7MLSMHwD/BG4GFBzklXOurAGYAhwDnAYNGjRo0KAhleEYMKXce3ieBtLLb5wsMn79IOnt8Of7tP95mf/5ev/zcv/zVYHvdAIvFNl2B9xdwn5ywP0DTL/An+eeiGmG98S/1R9eA74X8d3Btn0U0OIvYwNwKO3zR0PlQ9klB865fWY22z8BREREJHmvOuf2pZ2IOKWY32gAzkSML7XUoGALsAZYa2ZbiswzDfhdeKS/7T3+9GqN9f8eKYwws7cC38arFjQmNP+EUhbqt4m4Fa+HpPNDk10lCZVsqKhakX9BquuLkoiIiKQrz/kN59wZM1sP/BSvjn9vJYupQVLm+H93A5jZWOAPwCm8tg27geP+uh6g9M5qvg98Hq+k4E/AIeA0cAOwtAbplpSoQbKIiIhIPB4EngS+DtweMb0LmB0eaWZvwXui31WDNCzHKwl52P98JdAGLHTOPRZYZxMwMfTdgYKTpcBm59wXgiPN7MYq0yspU1emIiIiIjFwXoX8tcB5wIqIWbYBM8ws3CvR6sD0iphZg5ndjtcWYpNzbo8/qdA4Otzi+mb65wsLjZbDQUNhOWctw8xmAldXmGTJCJUciIiIiMTEObfdzP4KXB4x+Tt43Z1uMbMrgOfxnux/FPi5c+7hiO9EmWZmy/z/m/EaEl/t/90OBJ/u/xl4BdhsZncBR/11XgYcDKW928xeBJaY2fP+9C7n3OPAVuAGMzsG/AOYjlfNqBOYW2K6JYMUHIiIiIjE61agX5ekzrnXzGwBXpWjJcAkvDYW64By+tZd4A8O6AH2470/4SYX6grVX+f78LoovQWvBOBRvBKGRyOWfZ0/7x1AI7AJeBxYBZwAPoLXzuBfwGfxqkkpOMgx80q8RERERERkqFObAxERERERARQciIiIiIiIT8GBiIiIiIgACg5ERERERMSn4EBERERERAAFByIiIiIi4lNwICIiIiIigIIDERERERHxKTgQERERERFAwYGIiIiIiPgUHIiIiIiICKDgQEREREREfAoOREREREQEUHAgIiIiIiI+BQciIiIiIgLA/wDOQsb9NQTxswAAAABJRU5ErkJggg==", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "ax = xhgis.land_use_plot(gdf, unique_id=\"Station\", idx=2)" ] @@ -284,9 +1566,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 29, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ceebb0e0d14e4d7d8c496506065e5557", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "0it [00:00, ?it/s]" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "datasets = {\n", " \"era5_land_reanalysis\": {\"variables\": [\"t2m\", \"tp\", \"sd\"]},\n", @@ -322,9 +1619,433 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 30, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
    <xarray.Dataset> Size: 21MB\n",
    +       "Dimensions:  (Station: 3, time: 262968)\n",
    +       "Coordinates:\n",
    +       "  * time     (time) datetime64[ns] 2MB 1981-01-01 ... 2010-12-31T23:00:00\n",
    +       "  * Station  (Station) object 24B '031501' '031502' '042103'\n",
    +       "    source   <U20 80B 'era5_land_reanalysis'\n",
    +       "Data variables:\n",
    +       "    tas      (Station, time) float64 6MB -23.29 -23.28 -23.49 ... 2.389 2.339\n",
    +       "    pr       (Station, time) float64 6MB 0.0 0.0 0.0 ... 0.003698 0.0006662\n",
    +       "    snd      (Station, time) float64 6MB 55.07 55.07 55.07 ... 64.58 64.21 63.84
    " + ], + "text/plain": [ + " Size: 21MB\n", + "Dimensions: (Station: 3, time: 262968)\n", + "Coordinates:\n", + " * time (time) datetime64[ns] 2MB 1981-01-01 ... 2010-12-31T23:00:00\n", + " * Station (Station) object 24B '031501' '031502' '042103'\n", + " source \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
    <xarray.Dataset> Size: 54kB\n",
    +       "Dimensions:               (Station: 3, time: 30)\n",
    +       "Coordinates:\n",
    +       "  * Station               (Station) object 24B '031501' '031502' '042103'\n",
    +       "    source                <U20 80B 'era5_land_reanalysis'\n",
    +       "  * time                  (time) datetime64[ns] 240B 1981-01-01 ... 2010-01-01\n",
    +       "Data variables: (12/75)\n",
    +       "    tas_max_01            (Station, time) float64 720B 5.1 3.616 ... 3.161\n",
    +       "    tas_max_02            (Station, time) float64 720B 13.23 1.781 ... 3.544\n",
    +       "    tas_max_03            (Station, time) float64 720B 11.61 10.72 ... 12.78\n",
    +       "    tas_max_04            (Station, time) float64 720B 19.4 20.66 ... 25.98\n",
    +       "    tas_max_05            (Station, time) float64 720B 24.39 28.17 ... 32.24\n",
    +       "    tas_max_06            (Station, time) float64 720B 29.32 28.33 ... 25.42\n",
    +       "    ...                    ...\n",
    +       "    snd_mean_10           (Station, time) float64 720B 0.3611 ... 0.4031\n",
    +       "    snd_mean_11           (Station, time) float64 720B 4.29 2.369 ... 7.307\n",
    +       "    snd_mean_12           (Station, time) float64 720B 44.07 5.757 ... 52.67\n",
    +       "    snd_mean_spring       (Station, time) float64 720B 6.949 92.08 ... 33.31\n",
    +       "    snd_mean_summer_fall  (Station, time) float64 720B 0.1345 0.1227 ... 0.7276\n",
    +       "    snd_mean_year         (Station, time) float64 720B 14.36 47.45 ... 25.75\n",
    +       "Attributes:\n",
    +       "    cat:variable:          ('tas_max_01',)\n",
    +       "    cat:xrfreq:            YS-JAN\n",
    +       "    cat:frequency:         yr\n",
    +       "    cat:processing_level:  indicators\n",
    +       "    cat:id:                
    " + ], + "text/plain": [ + " Size: 54kB\n", + "Dimensions: (Station: 3, time: 30)\n", + "Coordinates:\n", + " * Station (Station) object 24B '031501' '031502' '042103'\n", + " source \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    Station031501031502042103
    sourceera5_land_reanalysisera5_land_reanalysisera5_land_reanalysis
    tas_max_015.793285.839793.640586
    tas_max_025.7095445.749494.044133
    tas_max_0312.45172612.53172810.525447
    tas_max_0421.22463421.25469319.973493
    tas_max_0526.61874326.6226225.819365
    tas_max_0629.91525429.91423428.824476
    tas_max_0730.53817730.54167429.448428
    tas_max_0829.40167629.39660728.537646
    tas_max_0926.40974326.42007425.724547
    tas_max_1020.43363520.45785919.723571
    tas_max_1114.84029914.88475611.896061
    tas_max_127.1100357.1552065.333868
    tas_max_spring29.2728429.2705428.397473
    tas_max_summer_fall31.17183731.17298230.377644
    tas_max_year31.37376131.37296630.683164
    tas_mean_01-11.098958-11.070966-12.603846
    tas_mean_02-8.575376-8.555364-10.618004
    tas_mean_03-3.011887-2.994205-5.155519
    tas_mean_045.1687795.1935152.977892
    tas_mean_0512.84946412.85689510.543722
    tas_mean_0618.24693418.25092715.93364
    tas_mean_0720.6019520.60527318.610954
    tas_mean_0819.55662219.56029217.645789
    tas_mean_0915.10044615.10998613.367451
    tas_mean_108.0605418.0740526.448969
    tas_mean_111.3300691.348995-0.077759
    tas_mean_12-6.698234-6.672344-7.776868
    tas_mean_spring5.0319985.0471032.825004
    tas_mean_summer_fall14.46616514.47451612.628117
    tas_mean_year6.0281066.0427944.177412
    tas_min_01-28.778872-28.809396-30.041543
    tas_min_02-25.183904-25.231202-26.180241
    tas_min_03-20.468419-20.494124-22.264767
    tas_min_04-7.592577-7.580951-10.628039
    tas_min_051.6425971.65338-1.659695
    tas_min_068.1138888.1269524.091024
    tas_min_0712.1205912.1141259.005369
    tas_min_0810.29727210.300838.655322
    tas_min_094.899944.9000053.395228
    tas_min_10-1.616498-1.610984-2.296447
    tas_min_11-11.544179-11.551885-9.818372
    tas_min_12-24.749929-24.769652-25.083827
    tas_min_spring-24.09364-24.113668-25.060736
    tas_min_summer_fall-6.582494-6.571843-7.22109
    tas_min_year-30.032823-30.080185-31.024786
    pr_sum_0179.06173279.09060263.558415
    pr_sum_0266.88893166.91705851.602254
    pr_sum_0376.44473376.47845264.438532
    pr_sum_0493.79018393.89075771.526317
    pr_sum_0599.6473999.72762186.51231
    pr_sum_06110.389847110.46751489.062977
    pr_sum_07118.354004118.34331796.532123
    pr_sum_08108.421897108.59788696.009423
    pr_sum_09105.164435105.113248100.346083
    pr_sum_10104.317676104.31894296.030414
    pr_sum_11105.9594105.99777794.391328
    pr_sum_1292.27641992.31166272.925842
    pr_sum_spring376.994477377.308115310.340259
    pr_sum_summer_fall552.196939552.293122488.178244
    pr_sum_year1160.7166461161.254838982.936018
    snd_mean_0167.387166.59295979.101277
    snd_mean_0295.08466193.688919113.425968
    snd_mean_0395.80424193.601279130.332078
    snd_mean_0420.81310619.62034259.455446
    snd_mean_050.025170.0219460.88963
    snd_mean_06-0.0-0.00.003253
    snd_mean_07-0.0-0.0-0.0
    snd_mean_08-0.0-0.0-0.0
    snd_mean_090.0000010.0000010.001507
    snd_mean_100.2183640.2134990.825938
    snd_mean_114.6551224.6104968.643051
    snd_mean_1230.77039930.49598939.301119
    snd_mean_spring41.78858440.76941261.98516
    snd_mean_summer_fall0.3198960.3153620.928477
    snd_mean_year25.92351225.43569935.612642
    \n", + "" + ], + "text/plain": [ + "Station 031501 031502 \\\n", + "source era5_land_reanalysis era5_land_reanalysis \n", + "tas_max_01 5.79328 5.83979 \n", + "tas_max_02 5.709544 5.74949 \n", + "tas_max_03 12.451726 12.531728 \n", + "tas_max_04 21.224634 21.254693 \n", + "tas_max_05 26.618743 26.62262 \n", + "tas_max_06 29.915254 29.914234 \n", + "tas_max_07 30.538177 30.541674 \n", + "tas_max_08 29.401676 29.396607 \n", + "tas_max_09 26.409743 26.420074 \n", + "tas_max_10 20.433635 20.457859 \n", + "tas_max_11 14.840299 14.884756 \n", + "tas_max_12 7.110035 7.155206 \n", + "tas_max_spring 29.27284 29.27054 \n", + "tas_max_summer_fall 31.171837 31.172982 \n", + "tas_max_year 31.373761 31.372966 \n", + "tas_mean_01 -11.098958 -11.070966 \n", + "tas_mean_02 -8.575376 -8.555364 \n", + "tas_mean_03 -3.011887 -2.994205 \n", + "tas_mean_04 5.168779 5.193515 \n", + "tas_mean_05 12.849464 12.856895 \n", + "tas_mean_06 18.246934 18.250927 \n", + "tas_mean_07 20.60195 20.605273 \n", + "tas_mean_08 19.556622 19.560292 \n", + "tas_mean_09 15.100446 15.109986 \n", + "tas_mean_10 8.060541 8.074052 \n", + "tas_mean_11 1.330069 1.348995 \n", + "tas_mean_12 -6.698234 -6.672344 \n", + "tas_mean_spring 5.031998 5.047103 \n", + "tas_mean_summer_fall 14.466165 14.474516 \n", + "tas_mean_year 6.028106 6.042794 \n", + "tas_min_01 -28.778872 -28.809396 \n", + "tas_min_02 -25.183904 -25.231202 \n", + "tas_min_03 -20.468419 -20.494124 \n", + "tas_min_04 -7.592577 -7.580951 \n", + "tas_min_05 1.642597 1.65338 \n", + "tas_min_06 8.113888 8.126952 \n", + "tas_min_07 12.12059 12.114125 \n", + "tas_min_08 10.297272 10.30083 \n", + "tas_min_09 4.89994 4.900005 \n", + "tas_min_10 -1.616498 -1.610984 \n", + "tas_min_11 -11.544179 -11.551885 \n", + "tas_min_12 -24.749929 -24.769652 \n", + "tas_min_spring -24.09364 -24.113668 \n", + "tas_min_summer_fall -6.582494 -6.571843 \n", + "tas_min_year -30.032823 -30.080185 \n", + "pr_sum_01 79.061732 79.090602 \n", + "pr_sum_02 66.888931 66.917058 \n", + "pr_sum_03 76.444733 76.478452 \n", + "pr_sum_04 93.790183 93.890757 \n", + "pr_sum_05 99.64739 99.727621 \n", + "pr_sum_06 110.389847 110.467514 \n", + "pr_sum_07 118.354004 118.343317 \n", + "pr_sum_08 108.421897 108.597886 \n", + "pr_sum_09 105.164435 105.113248 \n", + "pr_sum_10 104.317676 104.318942 \n", + "pr_sum_11 105.9594 105.997777 \n", + "pr_sum_12 92.276419 92.311662 \n", + "pr_sum_spring 376.994477 377.308115 \n", + "pr_sum_summer_fall 552.196939 552.293122 \n", + "pr_sum_year 1160.716646 1161.254838 \n", + "snd_mean_01 67.3871 66.592959 \n", + "snd_mean_02 95.084661 93.688919 \n", + "snd_mean_03 95.804241 93.601279 \n", + "snd_mean_04 20.813106 19.620342 \n", + "snd_mean_05 0.02517 0.021946 \n", + "snd_mean_06 -0.0 -0.0 \n", + "snd_mean_07 -0.0 -0.0 \n", + "snd_mean_08 -0.0 -0.0 \n", + "snd_mean_09 0.000001 0.000001 \n", + "snd_mean_10 0.218364 0.213499 \n", + "snd_mean_11 4.655122 4.610496 \n", + "snd_mean_12 30.770399 30.495989 \n", + "snd_mean_spring 41.788584 40.769412 \n", + "snd_mean_summer_fall 0.319896 0.315362 \n", + "snd_mean_year 25.923512 25.435699 \n", + "\n", + "Station 042103 \n", + "source era5_land_reanalysis \n", + "tas_max_01 3.640586 \n", + "tas_max_02 4.044133 \n", + "tas_max_03 10.525447 \n", + "tas_max_04 19.973493 \n", + "tas_max_05 25.819365 \n", + "tas_max_06 28.824476 \n", + "tas_max_07 29.448428 \n", + "tas_max_08 28.537646 \n", + "tas_max_09 25.724547 \n", + "tas_max_10 19.723571 \n", + "tas_max_11 11.896061 \n", + "tas_max_12 5.333868 \n", + "tas_max_spring 28.397473 \n", + "tas_max_summer_fall 30.377644 \n", + "tas_max_year 30.683164 \n", + "tas_mean_01 -12.603846 \n", + "tas_mean_02 -10.618004 \n", + "tas_mean_03 -5.155519 \n", + "tas_mean_04 2.977892 \n", + "tas_mean_05 10.543722 \n", + "tas_mean_06 15.93364 \n", + "tas_mean_07 18.610954 \n", + "tas_mean_08 17.645789 \n", + "tas_mean_09 13.367451 \n", + "tas_mean_10 6.448969 \n", + "tas_mean_11 -0.077759 \n", + "tas_mean_12 -7.776868 \n", + "tas_mean_spring 2.825004 \n", + "tas_mean_summer_fall 12.628117 \n", + "tas_mean_year 4.177412 \n", + "tas_min_01 -30.041543 \n", + "tas_min_02 -26.180241 \n", + "tas_min_03 -22.264767 \n", + "tas_min_04 -10.628039 \n", + "tas_min_05 -1.659695 \n", + "tas_min_06 4.091024 \n", + "tas_min_07 9.005369 \n", + "tas_min_08 8.655322 \n", + "tas_min_09 3.395228 \n", + "tas_min_10 -2.296447 \n", + "tas_min_11 -9.818372 \n", + "tas_min_12 -25.083827 \n", + "tas_min_spring -25.060736 \n", + "tas_min_summer_fall -7.22109 \n", + "tas_min_year -31.024786 \n", + "pr_sum_01 63.558415 \n", + "pr_sum_02 51.602254 \n", + "pr_sum_03 64.438532 \n", + "pr_sum_04 71.526317 \n", + "pr_sum_05 86.51231 \n", + "pr_sum_06 89.062977 \n", + "pr_sum_07 96.532123 \n", + "pr_sum_08 96.009423 \n", + "pr_sum_09 100.346083 \n", + "pr_sum_10 96.030414 \n", + "pr_sum_11 94.391328 \n", + "pr_sum_12 72.925842 \n", + "pr_sum_spring 310.340259 \n", + "pr_sum_summer_fall 488.178244 \n", + "pr_sum_year 982.936018 \n", + "snd_mean_01 79.101277 \n", + "snd_mean_02 113.425968 \n", + "snd_mean_03 130.332078 \n", + "snd_mean_04 59.455446 \n", + "snd_mean_05 0.88963 \n", + "snd_mean_06 0.003253 \n", + "snd_mean_07 -0.0 \n", + "snd_mean_08 -0.0 \n", + "snd_mean_09 0.001507 \n", + "snd_mean_10 0.825938 \n", + "snd_mean_11 8.643051 \n", + "snd_mean_12 39.301119 \n", + "snd_mean_spring 61.98516 \n", + "snd_mean_summer_fall 0.928477 \n", + "snd_mean_year 35.612642 " + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "pd.set_option(\"display.max_rows\", 100)\n", "ds_climatology.mean(\"time\").to_dataframe().T" From 1ac65d393780a57b55009e93634e72deb9c6b9d8 Mon Sep 17 00:00:00 2001 From: sebastienlanglois Date: Mon, 3 Jun 2024 23:36:11 -0400 Subject: [PATCH 11/14] change notebook cell for faster tests --- docs/notebooks/gis.ipynb | 302 +++++++++++++++++++-------------------- 1 file changed, 151 insertions(+), 151 deletions(-) diff --git a/docs/notebooks/gis.ipynb b/docs/notebooks/gis.ipynb index 8b41c65d..ddc9c1ad 100644 --- a/docs/notebooks/gis.ipynb +++ b/docs/notebooks/gis.ipynb @@ -16,7 +16,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -47,13 +47,13 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ae8f2bc0342c4ad1a4c7647294560113", + "model_id": "f61cf6c8bb764084a4b509700285e9f9", "version_major": 2, "version_minor": 0 }, @@ -61,7 +61,7 @@ "Map(center=[48.63, -74.71], controls=(ZoomControl(options=['position', 'zoom_in_text', 'zoom_in_title', 'zoom_…" ] }, - "execution_count": 17, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -81,7 +81,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -111,7 +111,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -133,7 +133,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -205,7 +205,7 @@ "2 POLYGON ((-73.77437 43.36757, -73.77557 43.388... 1 #ffffd9 " ] }, - "execution_count": 20, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -224,7 +224,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -248,7 +248,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -307,7 +307,7 @@ "2 042103 579.479614 POLYGON ((-78.49014 46.64514, -78.49010 46.645..." ] }, - "execution_count": 22, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -351,7 +351,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -427,7 +427,7 @@ "2 (-78.37036445281987, 46.48287117609677) " ] }, - "execution_count": 23, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -445,7 +445,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -822,9 +822,9 @@ " area (Station) float64 24B 2.187e+07 1.571e+07 5.795e+08\n", " perimeter (Station) float64 24B 2.719e+04 2.026e+04 2.838e+05\n", " gravelius (Station) float64 24B 1.64 1.442 3.325\n", - " centroid (Station) object 24B (-72.48631199105834, 46.22277542928622) ....
    • Station
      PandasIndex
      PandasIndex(Index(['031501', '031502', '042103'], dtype='object', name='Station'))
  • " ], "text/plain": [ " Size: 120B\n", @@ -838,7 +838,7 @@ " centroid (Station) object 24B (-72.48631199105834, 46.22277542928622) ...." ] }, - "execution_count": 24, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -851,7 +851,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -878,11 +878,11 @@ " elevation\n", " slope\n", " aspect\n", - " time\n", " platform\n", - " gsd\n", - " proj:shape\n", " band\n", + " proj:shape\n", + " gsd\n", + " time\n", " epsg\n", " proj:epsg\n", " spatial_ref\n", @@ -908,11 +908,11 @@ " 33.573009\n", " 0.324613\n", " 239.025970\n", - " 2021-04-22\n", " TanDEM-X\n", - " 90\n", - " {1200}\n", " data\n", + " {1200}\n", + " 90\n", + " 2021-04-22\n", " 4326\n", " 4326\n", " 0\n", @@ -922,11 +922,11 @@ " 51.393295\n", " 0.518484\n", " 242.431335\n", - " 2021-04-22\n", " TanDEM-X\n", - " 90\n", - " {1200}\n", " data\n", + " {1200}\n", + " 90\n", + " 2021-04-22\n", " 4326\n", " 4326\n", " 0\n", @@ -936,11 +936,11 @@ " 358.549866\n", " 2.500644\n", " 178.557648\n", - " 2021-04-22\n", " TanDEM-X\n", - " 90\n", - " {1200}\n", " data\n", + " {1200}\n", + " 90\n", + " 2021-04-22\n", " 4326\n", " 4326\n", " 0\n", @@ -950,20 +950,20 @@ "" ], "text/plain": [ - " elevation slope aspect time platform gsd \\\n", - "geometry \n", - "0 33.573009 0.324613 239.025970 2021-04-22 TanDEM-X 90 \n", - "1 51.393295 0.518484 242.431335 2021-04-22 TanDEM-X 90 \n", - "2 358.549866 2.500644 178.557648 2021-04-22 TanDEM-X 90 \n", - "\n", - " proj:shape band epsg proj:epsg spatial_ref \n", - "geometry \n", - "0 {1200} data 4326 4326 0 \n", - "1 {1200} data 4326 4326 0 \n", - "2 {1200} data 4326 4326 0 " + " elevation slope aspect platform band proj:shape gsd \\\n", + "geometry \n", + "0 33.573009 0.324613 239.025970 TanDEM-X data {1200} 90 \n", + "1 51.393295 0.518484 242.431335 TanDEM-X data {1200} 90 \n", + "2 358.549866 2.500644 178.557648 TanDEM-X data {1200} 90 \n", + "\n", + " time epsg proj:epsg spatial_ref \n", + "geometry \n", + "0 2021-04-22 4326 4326 0 \n", + "1 2021-04-22 4326 4326 0 \n", + "2 2021-04-22 4326 4326 0 " ] }, - "execution_count": 25, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -974,7 +974,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -1346,11 +1346,11 @@ "
    <xarray.Dataset> Size: 180B\n",
            "Dimensions:      (Station: 3)\n",
            "Coordinates:\n",
    -       "    time         datetime64[ns] 8B 2021-04-22\n",
            "    platform     <U8 32B 'TanDEM-X'\n",
    -       "    gsd          int64 8B 90\n",
    -       "    proj:shape   object 8B {1200}\n",
            "    band         <U4 16B 'data'\n",
    +       "    proj:shape   object 8B {1200}\n",
    +       "    gsd          int64 8B 90\n",
    +       "    time         datetime64[ns] 8B 2021-04-22\n",
            "    epsg         int64 8B 4326\n",
            "    proj:epsg    int64 8B 4326\n",
            "    spatial_ref  int64 8B 0\n",
    @@ -1363,20 +1363,20 @@
            "Attributes:\n",
            "    spec:        RasterSpec(epsg=4326, bounds=(-79.00083333333333, 46.0, -72....\n",
            "    resolution:  0.0008333333333333334\n",
    -       "    _FillValue:  1.7976931348623157e+308
    • elevation
      (Station)
      float32
      33.57 51.39 358.5
      units :
      m
      array([ 33.57301 ,  51.393295, 358.54987 ], dtype=float32)
    • slope
      (Station)
      float32
      0.3246 0.5185 2.501
      units :
      degrees
      array([0.3246129 , 0.51848364, 2.500644  ], dtype=float32)
    • aspect
      (Station)
      float32
      239.0 242.4 178.6
      units :
      degrees
      array([239.02597, 242.43134, 178.55765], dtype=float32)
    • Station
      PandasIndex
      PandasIndex(Index(['031501', '031502', '042103'], dtype='object', name='Station'))
  • spec :
    RasterSpec(epsg=4326, bounds=(-79.00083333333333, 46.0, -72.0, 47.00083333333334), resolutions_xy=(0.0008333333333333334, 0.0008333333333333334))
    resolution :
    0.0008333333333333334
    _FillValue :
    1.7976931348623157e+308
  • " ], "text/plain": [ " Size: 180B\n", "Dimensions: (Station: 3)\n", "Coordinates:\n", - " time datetime64[ns] 8B 2021-04-22\n", " platform " ] @@ -1551,7 +1551,7 @@ } ], "source": [ - "ax = xhgis.land_use_plot(gdf, unique_id=\"Station\", idx=2)" + "ax = xhgis.land_use_plot(gdf, unique_id=\"Station\", idx=0)" ] }, { @@ -1566,13 +1566,13 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ceebb0e0d14e4d7d8c496506065e5557", + "model_id": "5cf4d097331c40edb926adab7836fdaa", "version_major": 2, "version_minor": 0 }, @@ -1619,7 +1619,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -1997,25 +1997,25 @@ "Data variables:\n", " tas (Station, time) float64 6MB -23.29 -23.28 -23.49 ... 2.389 2.339\n", " pr (Station, time) float64 6MB 0.0 0.0 0.0 ... 0.003698 0.0006662\n", - " snd (Station, time) float64 6MB 55.07 55.07 55.07 ... 64.58 64.21 63.84
  • " ], "text/plain": [ " Size: 21MB\n", @@ -2041,7 +2041,7 @@ " snd (Station, time) float64 6MB 55.07 55.07 55.07 ... 64.58 64.21 63.84" ] }, - "execution_count": 30, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -2082,7 +2082,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -2120,7 +2120,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -2514,7 +2514,7 @@ " cat:xrfreq: YS-JAN\n", " cat:frequency: yr\n", " cat:processing_level: indicators\n", - " cat:id:
  • cat:variable :
    ('tas_max_01',)
    cat:xrfreq :
    YS-JAN
    cat:frequency :
    yr
    cat:processing_level :
    indicators
    cat:id :
  • " ], "text/plain": [ " Size: 54kB\n", @@ -4113,7 +4113,7 @@ " cat:id: " ] }, - "execution_count": 32, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -4138,7 +4138,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -4786,7 +4786,7 @@ "snd_mean_year 35.612642 " ] }, - "execution_count": 33, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } From d924a54078c23e23f4d295dc49324b4110444d9c Mon Sep 17 00:00:00 2001 From: sebastienlanglois Date: Mon, 3 Jun 2024 23:56:01 -0400 Subject: [PATCH 12/14] limit cell computation --- docs/notebooks/gis.ipynb | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/docs/notebooks/gis.ipynb b/docs/notebooks/gis.ipynb index ddc9c1ad..fd30df75 100644 --- a/docs/notebooks/gis.ipynb +++ b/docs/notebooks/gis.ipynb @@ -1551,7 +1551,7 @@ } ], "source": [ - "ax = xhgis.land_use_plot(gdf, unique_id=\"Station\", idx=0)" + "ax = xhgis.land_use_plot(gdf, unique_id=\"Station\", idx=2)" ] }, { @@ -1566,13 +1566,13 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "5cf4d097331c40edb926adab7836fdaa", + "model_id": "3806166867be457598aa4fdd81c2b6aa", "version_major": 2, "version_minor": 0 }, @@ -1591,7 +1591,7 @@ "space = {\n", " \"clip\": \"polygon\", # bbox, point or polygon\n", " \"averaging\": True,\n", - " \"geometry\": gdf, # 3 polygons\n", + " \"geometry\": gdf.iloc[0:2], # select the 2 first polygons\n", " \"unique_id\": \"Station\",\n", "}\n", "time = {\n", From 8d728c9b210f474495c14f199dd12adc30fe6052 Mon Sep 17 00:00:00 2001 From: RondeauG Date: Thu, 6 Jun 2024 16:23:43 -0400 Subject: [PATCH 13/14] collection as an argument --- src/xhydro/gis.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/src/xhydro/gis.py b/src/xhydro/gis.py index 61671535..cf0bd9be 100644 --- a/src/xhydro/gis.py +++ b/src/xhydro/gis.py @@ -283,6 +283,7 @@ def surface_properties( output_format: str = "geopandas", operation: str = "mean", dataset_date: str = "2021-04-22", + collection: str = "cop-dem-glo-90", ) -> gpd.GeoDataFrame | xr.Dataset: """Surface properties for watersheds. @@ -308,6 +309,8 @@ def surface_properties( Aggregation statistics such as `mean` or `sum`. dataset_date : str Date (%Y-%m-%d) for which to select the imagery from the dataset. Date must be available. + collection : str + Collection name from the Planetary Computer STAC Catalog. Default is `cop-dem-glo-90`. Returns ------- @@ -317,7 +320,6 @@ def surface_properties( # Geometries are projected to make calculations more accurate projected_gdf = gdf.to_crs(projected_crs) - collection = "cop-dem-glo-90" catalog = pystac_client.Client.open( "https://planetarycomputer.microsoft.com/api/stac/v1", ) From 0c414f9173064f3500124da6d038989936fda1c3 Mon Sep 17 00:00:00 2001 From: Zeitsperre <10819524+Zeitsperre@users.noreply.github.com> Date: Mon, 10 Jun 2024 12:51:39 -0400 Subject: [PATCH 14/14] update URL allowlist --- .github/workflows/main.yml | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/.github/workflows/main.yml b/.github/workflows/main.yml index 26c04552..4583f01f 100644 --- a/.github/workflows/main.yml +++ b/.github/workflows/main.yml @@ -128,7 +128,7 @@ jobs: shell: bash -l {0} steps: - name: Harden Runner - uses: step-security/harden-runner@f086349bfa2bd1361f7909c78558e816508cdc10 # v2.8.0 + uses: step-security/harden-runner@17d0e2bd7d51742c71671bd19fa12bdc9d40a3d6 # v2.8.1 with: disable-sudo: true egress-policy: block @@ -137,6 +137,7 @@ jobs: cdn.proj.org:443 conda.anaconda.org:443 coveralls.io:443 + elevationeuwest.blob.core.windows.net:443 files.pythonhosted.org:443 github.com:443 objects.githubusercontent.com:443