
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

ARTICLE TYPE

Parallel Performance of Algebraic Multigrid Domain

Decomposition (AMG-DD)

Wayne B. Mitchell*1 | Robert Strzodka1 | Robert D. Falgout2

1ZITI, Universität Heidelberg,
Baden-Württemberg, Germany

2CASC, Lawrence Livermore National Lab,
California, USA

Correspondence
*Wayne Mitchell, ZITI, Im Neuenheimer
Feld 368, 5. OG, 69120 Heidelberg. Email:
wayne.b.mitchell@gmail.com

Present Address
Present address

Abstract

Algebraic multigrid (AMG) is a widely used scalable solver and preconditioner for
large-scale linear systems resulting from the discretization of a wide class of elliptic
PDEs. While AMG has optimal computational complexity, the cost of communica-
tion has become a significant bottleneck that limits its scalability as processor counts
continue to grow on modern machines. This paper examines the design, implemen-
tation, and parallel performance of a novel algorithm, Algebraic Multigrid Domain
Decomposition (AMG-DD), designed specifically to limit communication. The goal
of AMG-DD is to provide a low-communication alternative to standard AMG V-
cycles by trading some additional computational overhead for a significant reduction
in communication cost. Numerical results show that AMG-DD achieves superior
accuracy per communication cost compared to AMG, and speedup over AMG is
demonstrated on a large GPU cluster.

KEYWORDS:
low-communication algorithms, algebraic multigrid, parallel performance

1 INTRODUCTION

Algebraic multigrid (AMG)1–3 is a widely used scalable solver and preconditioner for large-scale linear systems resulting from

the discretization of a wide class of elliptic PDEs. AMG scales well to very large problem sizes4 due to its optimal computational

complexity: application of an AMG cycle has O(N) computational cost, where N is the size of the linear system to be solved.

The cost of communication, however, has become a significant bottleneck that limits the scalability of AMG as processor counts

continue to grow on modern machines5. In fact, it is well documented that for large processor counts, an AMG V-cycle may

spend more time on coarse levels of the hierarchy than the finest level. This difficulty is due to increased communication costs on

the coarse levels even though there is exponentially less computational work there compared to the finest level6. This result is in

2 Wayne Mitchell ET AL

direct conflict with one of the most general guiding principles of multigrid methods: that the coarse grids should be inexpensive.

Thus, in order to maintain the efficiency of AMG on modern supercomputers with ever increasing parallelism, work must be

done to ameliorate its communication costs. This paper continues development of algebraic multigrid domain decomposition

(AMG-DD)7, a novel algorithm built on top of AMG and designed with the express purpose of achieving similar or better

convergence with significantly reduced communication at the cost of some redundant storage and computation.

There are several approaches available when considering the reduction of communication costs in AMG that may be divided

into three broad categories that may each be employed in conjunction with one another: optimization and algorithm development

for parallel implementation; modification of the AMG algorithm itself through various changes to the AMG hierarchy; and use

of entirely different cycling structures or algorithms based on the AMG hierarchy such as AMG-DD.

The first category includes changes to the parallel implementation that avoid any changes to the underlying AMG algorithm

itself and thus exactly preserve convergence and other algorithmic properties. In8, for example, the authors develop an assumed

partition algorithm for efficiently determining interprocessor communication patterns when global partitioning information

is unavailable. The applicability of this algorithm is quite general, but, in particular, it may be used to speed up the AMG

setup phase where communication patterns for coarse-grid matrices must be established. In9, the authors develop node-aware

communication patterns for general sparse matrix-vector multiplication that may be applied to speed up the solve phase of AMG.

These approaches to communication reduction are the least invasive in that there is no change to the AMG algorithm itself, so

speedup may be achieved with no fear of degraded convergence.

A more invasive category of approaches involves changing the AMG hierarchy itself. The cost of communication is generally

most problematic on coarse grids in the middle of the AMG hierarchy. On the finest grids, communication patterns are typically

regular and fairly sparse (if the problem comes from, for example, the discretization of a PDE that is then decomposed among

processors), and the amount of computational work is typically very large compared to the required communication. On the

coarsest grids, on the other hand, the total number of degrees of freedom can be significantly less than the number of proces-

sors, meaning that many processors are inactive and the total amount of communication is small. That leaves the mid-range of

the hierarchy, where increasing complexity of the coarse-grid operators leads to large communication stencils and, thus, large

communication costs that dominate the relatively small computational cost on these levels. On systems where communication

is a dominant cost, AMG may actually spend more time on these mid-range coarse levels than the fine grid (see, for example,

numerical results from6), contradicting a basic heuristic of multigrid methods that the coarse grids should be cheap relative to

the fine grid. Thus, efforts to ameliorate communication cost through modification of the AMG hierarchy have focused on spar-

sification of the coarse-grid operators. Modified coarsening and interpolation schemes are developed in10, 11 that are designed

to produce sparser coarse-grid operators with correspondingly sparser communication patterns. In12, aggressive coarsening is

used in conjunction with improved long-distance interpolation in order to both sparsify the coarse grids and reduce the total

Wayne Mitchell ET AL 3

number of grid levels. More direct approaches to sparsification through elimination of matrix entries resulting in non-Galerkin

coarse-grid operators are explored in6, 13. In each of these cases, the sparsified hierarchies yield faster AMG V-cycles at the cost

of a degraded V-cycle convergence factor. Thus, more (but faster) V-cycles may be required to solve a given problem to a desired

tolerance. This tradeoff means that the benefits of using these modified AMG hierarchies may be very problem dependent:

significant speedup is observed for some problems, whereas convergence is destroyed for others.

Finally, there has been exploration of altogether different algorithms based on AMG (or multigrid methods in general) that aim

to replace typical multigrid cycling. A main underlying principle here is the attempt to add parallelism and/or reduce communi-

cation by decoupling pieces of the multigrid cycle. Additive multigrid methods, for example, add extra concurrency compared

to traditional multiplicative methods by decoupling the levels of the multigrid hierarchy. Traditional additive multigrid meth-

ods suffer from worse convergence compared to their multiplicative counterparts, though more advanced variants on additive

multigrid that recover good convergence exist, such as the asynchronous fast adaptive composite grid methods described in14

or the additive multigrid methods using modified smoothed interpolation operators described in15. Algebraic multigrid domain

decomposition (AMG-DD) retains a multiplicative multigrid cycling approach, but it decouples the spatial decomposition of

the problem among processors, employing independent cycling on each processor to reduce communication by storing fully

overlapping composite grid structures. Similar algorithms employing overlapping composite grids have been explored in the

context of geometric multilevel methods and adaptive mesh refinement. The parallel meshing algorithm from16 uses the idea

of storing additional overlapping information on each processor in order to determine adaptively refined meshes with reduced

communication but then relies on subsequent conventional domain decomposition or multigrid iterations to perform the solve.

In17, 18, a multigrid solver based on full domain partitions and a hierarchical basis is developed that requires communication only

twice per cycle. The range-decomposition algorithm developed in19, 20 enables fully independent nested-iteration solves with

adaptive mesh refinement on each processor. In contrast to these algorithms, AMG-DD operates in a purely algebraic context,

providing a linear solver that requires only the fine-grid matrix equation with no need for additional discretization information

or infrastructure.

AMG-DD was originally presented in7, in which the authors provide some basic motivating theory, performance models, and

test results using a model serial code for small problem sizes. This paper continues the development of AMG-DD through further

modification and design of the algorithm, implementation of a scalable parallel code, and empirical study of algorithm behavior

and parallel performance. The crucial algorithmic development presented here is an efficient algebraic fast adaptive composite

(AlgFAC) cycle with minimal storage and communication requirements. In addition, the communication algorithm proposed

in7 is implemented and modified to avoid the redundant communication present in the original algorithm. Section 2 gives a brief

review of AMG and is followed by a description of AMG-DD in Section 3. Section 4 explains the newly developed AlgFAC

cycle used as the primary computational routine of AMG-DD, and Section 5 gives further detail on the primary communication

4 Wayne Mitchell ET AL

routine of AMG-DD. Finally, Section 6 studies optimal parameter choices for AMG-DD, examines the scaling behavior of

AMG-DD, and demonstrates speedup of AMG-DD over AMG on a large GPU cluster.

2 REVIEW OF AMG

Algebraic multigrid (AMG)1–3 generates a multigrid hierarchy and then solves a given linear system, Au = f , using only the

information given in the matrix A. The given linear system comprises the finest level of the hierarchy, level l = 0, so denote

A = A0, u = u0, and f = f0, and letN = N0 be the number of degrees of freedom in this system. Generating a set of coarse-grid

degrees of freedom may be done either by splitting the fine-grid degrees of freedom into disjoint sets of fine points (F -points)

and coarse points that are repeated on the coarse grid (C-points), as done in "classical" AMG, or by grouping several degrees

of freedom and treating them as a single point on the coarse grid, as done in "smoothed aggregation" AMG21. This paper treats

only classical AMG, although nothing prevents AMG-DD from being applied to smoothed aggregation. In classical AMG, the

splitting of the degrees of freedom intoC- and F -points is typically accomplished via a coloring algorithm that seeks to generate

a maximal subset of C-points such that C-points do not strongly influence each other but do strongly influence the remaining

F -points, where "strong influence" is determined by the relative size of entries in A0. Given such a splitting withN1 C-points,

an N0 ×N1 interpolation operator, P0, is constructed based on connections in the matrix, A0. Typically, an interpolated value

at a C-point is simply injected from the coarse grid, while a value at an F -point is obtained by applying interpolation weights

(determined based on connections inA0) to values atC-points in the F -point’s interpolatory set. Classically, the interpolatory set

contains C-points within distance 1 through the graph of A0, but interpolation operators based on longer-distance interpolatory

sets are also now commonly used10, 12. An N1 ×N0 restriction operator, R0, may also be generated separately, but often is set

as R0 = P T
0 . Once the interpolation and restriction operators are defined, the coarse-grid operator is then formed by the triple

matrix product,A1 = R0A0P0. This process may then be repeated recursively on level l = 1, 2, ..., L, splitting the level l degrees

of freedom into C- and F -points, defining Pl and Rl, and then forming Al+1 = RlAlPl, until a sufficiently coarse level, L, on

which AL is small enough to be easily handled by relaxation or a direct method such as Gaussian elimination.

Construction of the interpolation, restriction, and coarse-grid operators comprises the setup phase of AMG. The solve phase

then involves cycling on the hierarchy of grids by performing some relaxation on a grid level (usually some variation on an easily

applied, pointwise iterative method like Jacobi or Gauss-Seidel), then either restricting a residual equation or interpolating a

correction to move up or down through the hierarchy. Algorithm 1 shows pseudocode and lists communications for an AMG

V(�1, �2)-cycle, the most commonly used cycle structure, which is simply a downsweep performing �1 relaxations on each

level followed by an upsweep performing �2 relaxations on each level. For simple relaxation methods like Jacobi and Gauss-

Seidel, the cost of relaxation on level l is equivalent to performing a matrix-vector multiplication (mat-vec) with Al. Thus, the

Wayne Mitchell ET AL 5

cost associated with an AMG V(�1, �2)-cycle is the cost of (1 + �1 + �2) mat-vecs with Al (�1 + �2 relaxations and a residual

calculation) plus a mat-vec with Pl for interpolation and a mat-vec with Rl for restriction on each level, l. When running an

AMG cycle on a parallel system, degrees of freedom on each level are partitioned among processors. In order to perform a mat-

vec, each processor must then communicate with nearest processor neighbors to exchange "halo" data, i.e. vector data at points

that are distance 1 (through the graph of the matrix) away from the owned, on-processor points. As stated in the introduction,

on the finest levels of the hierarchy, this communication cost is usually dominated by computational cost, but growing operator

complexities on coarser levels can lead to a sharp increase in the number of neighbors each processor must communicate with

in order to perform a mat-vec. Thus, these coarse-level communication costs may dominate the total cost of the entire cycle.

3 AMG-DD ALGORITHM DESCRIPTION

Algebraic multigrid domain decomposition (AMG-DD) seeks to reduce the communication cost of the AMG solve phase by

constructing global composite grids on each processor based on the underlying AMG hierarchy and that processor’s owned

partition of the degrees of freedom, referred to here as that processor’s subdomain. These composite grids are generated by

moving through the graphs of the operators,Al, on each level of the AMG hierarchy, as illustrated in Figure 1. First, choose some

padding value for each level, denoted �l. Then, beginning on the finest level, a processor’s composite grid includes its subdomain

(the black points in the left pane of Figure 1) plus additional points within distance �0 through the graph of A0 (the white points

in the left pane of Figure 1). All C-points from the resulting set are then included in the composite grid on level 1 plus all points

within distance �1 through the graph of A1 (the white points in the middle pane of Figure 1). This process of coarsening and

then extending through the graph of Al by distance �l is then repeated for all of the coarse grids. The coarsest-level padding,

�L, should be chosen large enough that each processor stores the entire coarsest grid (depending on the paddings chosen and

the size of the coarsest grids, this may be true for a few of the coarsest grids). Thus, each processor stores a composite grid that

has finest-level information over its subdomain plus additional information at composite-grid points that extend further away

over the global domain on coarser levels. Processors may independently perform cycling on these composite grids through an

algebraic fast adaptive composite (AlgFAC) cycling routine (described in detail in Section 4).

Algorithm 2 shows pseudocode and lists communications for an AMG-DD cycle. The cycle provides a correction to the

residual equation, A0�u0 = f0 − A0u0, for some current fine-grid iterate, u0. The first step is to calculate a current residual

and restrict that residual to all levels of the hierarchy (using regular, distributed mat-vecs). Then a more complicated algorithm

(described in detail in Section 5) is used to communicate residuals such that each processor obtains current residuals at all of

their composite grid points (note that before this step, processors only have access to current residuals in their subdomain).

These residuals are then used as the right-hand sides for a local solve via AlgFAC cycles on the composite grids in which each

6 Wayne Mitchell ET AL

FIGURE 1 Illustration of composite grid construction on a regular, 2D grid with �l = 2 on all levels.

processor, p, obtains its own correction term, �up0. The correction to the global solution is applied locally on each processor, that

is, each processor updates u0 ← u0 + �u
p
0 over its fine-grid subdomain, Ωp0, using fine-grid values from its locally calculated

composite-grid solution. Since the composite grids stored on each processor cover the global domain at some coarse level, the

local solves performed on each processor may be thought of as solving a composite representation of the global problem. This

composite representation is (hopefully) accurate to the global problem in the processor’s subdomain, where it has finest-level

information, and so the global correction produced by AMG-DD is patched together from these processor subdomains.

Whereas AMG V-cycles require communication for each operation on each level of the hierarchy, AMG-DD requires com-

munication only to calculate, restrict, and communicate the residual values between local AlgFAC solves. Algorithms 1 (AMG)

and 2 (AMG-DD) allow a high level comparison of the different communication requirements for each algorithm. The reduction

in communication provided by AMG-DD comes with the added cost of redundant composite-grid storage and computation: any

additional points in a processor’s composite grid that were not in that processor’s subdomain represent additional storage and

computation cost. Due to the graded nature of the composite grids, this additional overhead may be kept to a manageable level

(as studied in detail in Section 6).

3.1 Hybrid AMG-DD

Up to this point, AMG-DDhas been considered as an alternative cyclingmethod toAMGV-cycles. It may be beneficial, however,

to employ a hybrid method that uses regular AMG cycling on the finer levels and AMG-DD starting on a coarse level, L̃. As

previously mentioned, it is common for the finest levels of an AMG hierarchy to be compute-limited while the coarser levels

are communication-limited. This is due to the fact that the finer grids have simultaneously many more degrees of freedom and

usually far smaller communication stencils than the coarse grids. Thus, the real need for communication reduction in an AMG

cycle exists primarily (if not entirely) on the coarse levels. In a hybrid AMG-DD cycle, AMG-DD acts as a kind of coarse-

grid solver for the AMG cycle, where the transition level, L̃, between AMG and AMG-DD is somewhere in the middle of the

Wayne Mitchell ET AL 7

hierarchy. Algorithm 3 shows this hybrid AMG-DD idea applied to a V-cycle, but this idea can be applied to other cycle structures

as well, meaning that hybrid AMG-DD may enable more efficient versions of W or F cycles, where coarse-grid communication

costs are even larger. Using AMG-DD in this way retains communication reduction on the coarse levels while also reducing the

storage and computation overheads of the composite grids.

Convergence rates for hybrid AMG-DD tend to be more similar to the convergence of the associated AMGV-cycle rather than

the full AMG-DD algorithm. For the test problems shown in the numerical results in Section 6, AMG-DD tends to converge

faster than AMG V-cycles, making the hybrid scheme a less attractive option in this case. Furthermore, the GPU accelerated

system used here provides sufficient local computational power that composite-grid overheads for the full AMG-DD algorithm

are acceptable. Nevertheless, hybrid AMG-DD may be a useful option for problems where AMG-DD convergence suffers or

for computing environments where local computation is a more significant cost and the computational overhead incurred by

AMG-DD needs to be minimized.

4 ALGEBRAIC FAST ADAPTIVE COMPOSITE CYCLING

In the proof-of-concept implementation of AMG-DD used in7, the local composite-grid problems on each processor were solved

by explicitly constructing composite-grid matrix operators and solving the resulting matrix equations with AMG. The additional

overhead of forming the local composite-grid matrices (and subsequent associated AMG hierarchies) may be avoided, however,

by cycling directly on the pieces of the original AMG hierarchy that make up the composite grid via an algebraic variant of

the fast adaptive composite (FAC) method. FAC cycling has previously been applied to geometric multigrid hierarchies, and a

detailed description of this can be found in22.When attempting to apply the ideas behind FAC to an algebraic multigrid hierarchy,

extra care must be taken in order to ensure proper calculation of values at the borders of each grid level. In the geometric case,

these borders correspond to changes in the level of mesh refinement, and calculations there are based on information from the

underlying discretization and mesh. In the algebraic setting, such geometric information is not available, and the AMG coarse

grids may be quite irregular with arbitrary connectivity. Thus, this section discusses the necessary generalizations of previous

geometric techniques for handling the borders of composite grids in order to achieve algebraic fast adaptive composite cycling

(AlgFAC) on general AMG hierarchies.

Classically, FAC cycles are used for geometric problems where high resolution of the grid is required only over some subset

of the domain. A first step towards a more efficient algorithm for dealing with such a problem is to simply suppress relaxation

where it is not necessary (i.e., outside of the region requiring high resolution). This saves the computational effort of relaxing

where coarser representation of the solution is sufficient. The storage and computational cost can then be further reduced by

removing the fine-grid representation of the solution where it is not needed altogether, resulting in a grid with varying levels

8 Wayne Mitchell ET AL

FIGURE 2 Simple 1D illustration of real and ghost points and the sets Dl and D̄l on different levels (boxed points belong to
the marked sets).

of refinement similar to the AMG-DD composite grids. The resulting representation of the solution and multigrid cycling on

this composite grid should be exactly equivalent to the algorithm that retains a fine-grid representation everywhere and simply

suppresses relaxation. This will be the guiding principle used to develop AlgFAC cycling on algebraic grids: the result obtained

via the AlgFAC cycle should be exactly the same as that obtained by cycling on the entire grid while suppressing relaxation at

certain points. This equivalence is shown in the following subsections by breaking the multigrid cycle down into its component

parts: relaxation, interpolation, and restriction.

4.1 Relaxation

Denote the set of degrees of freedom that comprise grid level l of the global AMG hierarchy as Ωl, and denote the composite-

grid points on level l as Dl ⊆ Ωl. The points in Dl undergo relaxation as part of the AlgFAC cycle and are referred to as "real"

points, whereas the remaining points on the level, referred to as "ghost" points, are not relaxed. In designing the AlgFAC cycling

algorithm, the goal is to reproduce the action of a global AMG cycle (operating on the full Ωl grids) where only points in Dl

are relaxed and as few ghost points as possible are actually stored or involved in any computation.

Applying simple, pointwise algebraic relaxation schemes like Jacobi or Gauss-Seidel to a real point, i ∈ Dl, requires solution

values at all points, j, connected through the row stencil of Al, i.e., a nonzero matrix entry, ai,j ∈ Al, connects points i and j.

Denote the extension of Dl through the row stencil of Al as

D̄l = Dl ∪ {j ∶ ai,j ∈ Al, ai,j ≠ 0, i ∈ Dl}. (1)

Thus, in order to perform correct relaxation on each grid level, it is necessary to store solution values at all points in D̄l. Figure

2 illustrates real and ghost points and the setsDl, and D̄l on different levels for an example composite grid using regular stencils

on 1D grids.

4.2 Interpolation

Since relaxation requires correct solution values to be maintained at points in D̄l, it is necessary to interpolate coarse-grid

corrections to these points. Denote the coarse-grid interpolatory set for D̄l as Pl(D̄l), i.e., points connected through the row

Wayne Mitchell ET AL 9

FIGURE 3 Simple 1D illustration of the sets D̄l and Pl(D̄l) showing the connections to the coarse grid from D̄l through the
row stencil of Pl (boxed points belong to the marked sets).

FIGURE 4 Simple 1D illustration of the case where x ∈ Pl(D̄l), but x ∉ D̄l+1 (boxed points belong to the marked sets).

stencil of Pl as illustrated in Figure 3. For typical AMG hierarchies, most points in Pl(D̄l) are in D̄l+1 if �l+1 ≥ 1, so their

contributions to interpolation will be correctly accounted for (note that in Figure 3 Pl(D̄l) ⊆ D̄l+1). It is possible, however, that

some points in Pl(D̄l) are outside of D̄l+1. Consider, for example, the stencils drawn in Figure 4. If the fine-grid point, y, has no

connection through interpolation or restriction to the coarse grid (i.e. all entries in Pl and Rl associated with y are zero) while

its C-point neighbors are injected to and from the coarse grid as usual, then the coarse-grid point, x, is in Pl(D̄l), but has no

connection through Al+1 = RTl AlPl to any real points on the coarse grid and is thus not in D̄l+1. A point that is in Pl(D̄l) but

not in D̄l+1 is, by assumption, not a real degree of freedom and is thus initialized to zero and not relaxed on level l + 1. The

solution value at such a point will remain zero (and thus does not need to be accounted for in interpolation) so long as it also

receives zero coarse-grid correction. That is, the set formed by recursively moving through the interpolatory sets of this point

all the way to the coarsest level should not include any real degrees of freedom on any level. This is true for many hierarchies in

practice including all test cases examined in this paper, but is not necessarily guaranteed in general. Assuming this property, all

points in Pl(D̄l) are either accounted for on the composite grid on the next coarse level or have zero contribution (and may thus

be simply omitted), and interpolation may proceed as normal by applying Pl to correction values on composite-grid level l + 1.

4.3 Traditional restriction

As described above, the implementation for relaxation and interpolation over the composite grid is identical to that for a global

multigrid cycle. Relaxation is simply not done for points outside Dl, and interpolation is not done for points outside D̄l. A

similarly straightforward implementation of restriction presents problems, however. Since the coarse composite grids expand to

cover the entire computational domain, storing the restriction stencils for all points in the composite grid in a recursive way such

10 Wayne Mitchell ET AL

that it is always possible to restrict from fine to coarse grids in the standard way results in storing the entire global hierarchy.

Thus, restriction must be somehow rewritten for composite-grid points whose restriction stencils do not reside in the composite

grid.

A key realization is that actual inter-grid restriction is not necessary when finer-grid relaxation does not impact the residual.

For the discussion here, assume the use of a V-cycle, though all ideas are easily extended to arbitrary cycle types. Consider

restriction to composite-grid points whose restriction stencils include only points that are greater than distance 1 away from real

points on all finer grid levels, e.g. the point, x, illustrated in Figure 5. Since corrections are initialized to zero on the downsweep

and no relaxation occurs to change those values outside the real points, residual calculation simply yields the currently stored

right-hand side for all coarse grids. Thus, setting the right-hand side, fl+1,i, on level l+1 for V-cycle iteration i by restricting the

residual from level l to level l+1may be rewritten as a restriction of the finest-grid residual after the previous V-cycle iteration

as follows:

fl+1,i = Rlfl,i (2)

= RlRl−1fl−1,i (3)

⋮ (4)

= Rl...R0(f0 − A0u0,i−1). (5)

Note that the fine-grid right-hand side, f0,i = f0, remains constant from iteration to iteration. Here, u0,i−1 is the fine-grid solution

at the end of the previous V-cycle iteration i−1. Again considering only composite-grid points on levels 0, ..., l that are distance

1 away from real points means that u0,i−1 is unaffected by relaxation on levels 0, ..., l and may thus be expressed as the previous

solution, u0,i−2, plus the interpolated corrections from coarser levels generated on iteration i − 1 all the way down to level l as

follows:

fl+1,i = Rl...R0(f0 − A0u0,i−1) (6)

= Rl...R0(f0 − A0(u0,i−2 + P0u1,i−1)) (7)

= Rl...R0(f0 − A0(u0,i−2 + P0P1u2,i−1)) (8)

⋮ (9)

= Rl...R0(f0 − A0(u0,i−2 + P0...Plul+1,i−1)). (10)

Now, rearranging and invoking the definition of the coarse-grid operators as Al+1 = RlAlPl shows that restricting the residual

may, in fact, be rewritten as a residual recalculation on the coarse grid using the previous solution/correction value and right-hand

Wayne Mitchell ET AL 11

FIGURE 5 Recursive restrictions stencils of a point, x, on a coarse level that remain separated by more than distance 1 from
the real composite-grid points on finer levels.

side as follows:

fl+1,i = Rl...R0(f0 − A0u0,i−2) − Rl...R0A0P0...Plul+1,i−1 (11)

= fl+1,i−1 − Al+1ul+1,i−1. (12)

Thus, away from the real points where relaxation occurs, restricting the residual can be replaced with a residual recalculation on

the coarse grid, removing the necessity for storing information on the grids above. Meanwhile, traditional restriction may occur

as usual for points whose restriction stencils do include the influence of finer-grid relaxation. Note that this implementation

still requires some additional layers of ghost points to be stored and computed on. Specifically, ghost points within distance

2 plus twice the interpolation distance are required, i.e., distance 4 or 6 neighbors when distance 1 or 2 interpolation is used,

respectively.

4.4 AlgFAC restriction

While the above method for implementing restriction is feasible, it still demands somewhat large overhead by requiring storage

and computation at ghost points within distance 4 to 6 of the real points. Furthermore, initial right-hand side data must be

communicated at all of these ghost points between each outer AMG-DD iteration, so the ghost points represent a significant

overhead not only in terms of storage and computation but also in terms of communication cost. Restriction may actually be

correctly performed without these additional ghost points, however, if the idea of coarse-grid residual recalculation is applied

to all points, even those influenced by finer-grid relaxation. This is how restriction is performed in an AlgFAC cycle.

Rewriting restriction in this way requires some additional notation. Define vl,i as the value stored in the solution/correction

vector just before restriction occurs from level l to level l+1 on iteration i. Define ul,i as the value stored in the solution/correction

vector just before interpolation occurs from level l to level l − 1 on iteration i. Respectively define �1l,i and �
2
l,i as the effects

of pre- and post-relaxation on level l, iteration i. The following equations express the relationship between each of these terms

12 Wayne Mitchell ET AL

during a V-cycle:

vl,i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

u0,i−1 + �10,i , l = 0

�1l,i , else
(13)

ul,i = vl,i + Plul+1,i + �2l,i. (14)

The right-hand sides, fl,i, on level l, iteration i are then written as follows:

fl,i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f0 , l = 0

Rl−1(fl−1,i − Al−1vl−1,i) , else.
(15)

The goal is to reexpress restriction in a form that requires as little computation and storage as possible outside of the real degrees

of freedom. Begin by rewriting restriction to the first coarse grid as follows:

f1,i = R0(f0,i − A0v0,i) (16)

= R0(f0 − A0(u0,i−1 + �10,i)) (17)

= R0(f0 − A0(v0,i−1 + P0u1,i−1 + �20,i−1 + �
1
0,i)) (18)

= R0(f0,i−1 − A0v0,i−1) − R0A0P0u1,i−1 − R0A0(�20,i−1 + �
1
0,i) (19)

= f1,i−1 − A1u1,i−1 − R0A0(�20,i−1 + �
1
0,i). (20)

Thus, restricting the residual to the first coarse grid may be written as a recalculation of a residual on the coarse grid using the

currently stored right-hand side and correction vector, f1,i−1 −A1u1,i−1, plus an update term that restricts the effect of fine-grid

relaxation, −R0A0(�20,i−1 + �
1
0,i).

It is possible to write restriction to the second coarse grid in a similar way as follows, recursively using the expression above

for f1,i in order to rewrite f2,i:

f2,i = R1(f1,i − A1v1,i) (21)

= R1(f1,i−1 − A1u1,i−1 − R0A0(�20,i−1 + �
1
0,i) − A1�

1
1,i) (22)

= R1(f1,i−1 − A1(v1,i−1 + P1u2,i−1 + �21,i−1) − R0A0(�
2
0,i−1 + �

1
0,i) − A1�

1
1,i) (23)

= R1(f1,i−1 − A1v1,i−1) − R1A1P1u2,i−1 − R1A1(�21,i−1 + �
1
1,i) − R1R0A0(�

2
0,i−1 + �

1
0,i) (24)

= f2,i−1 − A2u2,i−1 − R1A1(�21,i−1 + �
1
1,i) − R1R0A0(�

2
0,i−1 + �

1
0,i). (25)

Wayne Mitchell ET AL 13

Thus, restriction to any level of the multigrid hierarchy may be rewritten as follows as a residual recalculation on the coarse

level plus some restricted updates due to finer-level relaxation:

fl,i = fl,i−1 − Alul,i−1 (26)

− Rl−1Al−1(�2l−1,i−1 + �
1
l−1,i) (27)

− Rl−1Rl−2Al−2(�2l−2,i−1 + �
1
l−2,i) (28)

⋮ (29)

− Rl−1Rl−2...R0A0(�20,i−1 + �
1
0,i). (30)

The restricted update terms above may be accumulated in a recursive way during the downsweep of the AlgFAC cycle such that

obtaining the right-hand side on level l involves only a single application ofRl to a vector on level l−1 that has collected update

terms from all finer levels.

4.5 AlgFAC cycle

With restriction rewritten as in the previous subsection, it is possible to write the AlgFAC V-cycle as a whole as shown in

Algorithm 4. Auxiliary vectors, tl and sl, are introduced in order to accumulate and restrict the effects of relaxation. For other

cycle types, such asW or F cycles, a similar description is possible. The update vector, tl, accumulates changes due to relaxation,

sl accumulates updates from finer grids, and these updates are combined and passed to coarser grids during restriction, after

which they are reset to zero. Rewriting things in this way requires only a single layer of ghost points and, furthermore, does not

require right-hand side information there. Right-hand side information is needed at real points in order to perform relaxation and

coarse-grid residual recalculation but is no longer required in the restriction stencils of real points. The update term, tl, is nonzero

only at real points, so Altl is nonzero only in D̄l. Some assumptions on the connectivity of the AMG hierarchy are required to

ensure the stored composite grids correctly account for contributions to sl throughout the cycle. In fact, this requirement is very

similar to the requirement for correct interpolation discussed in Section 4.2 and is equivalent to that requirement if Rl = P T
l .

Denote the restriction transpose stencil for D̄l as RTl (D̄l), i.e., points on level l+ 1 that are connected through the columns of R

to points in D̄l. Most points inRTl (D̄l)will be naturally contained in D̄l+1, and contributions to sl+1 will be accounted for at these

points. If a point in RTl (D̄l) is not in D̄l+1, then the value of sl is not needed here since no relaxation occurs and, subsequently,

no right-hand side is needed. Moreover, the value of sl at this point need not be restricted to coarser levels, provided that moving

recursively further through the restriction transpose stencils all the way to the coarsest level includes no real points. If Rl = P T
l ,

then the restriction transpose stencils are exactly the interpolation stencils (or interpolatory sets), and this is the same requirement

discussed in Section 4.2.

14 Wayne Mitchell ET AL

Compared to a standard AMG V-cycle, the AlgFAC V-cycle shown in Algorithm 4 contains a few extra operations, but

the extra computational cost of these operations is not too significant. Simple operations on each point that do not involve

multiplication by a matrix (e.g. accumulation of the updates due to relaxation, or resetting vectors to zero) have small cost

relative to mat-vecs. Most of the mat-vecs in Algorithm 4 also occur in a standard AMG V-cycle (i.e., relaxation, interpolation,

and restriction) with the same cost. The only additional mat-vec required in Algorithm 4 is the coarse-grid residual recalculation,

fl+1 ← fl+1 − Al+1ul+1. This additional mat-vec need not occur on the initial downsweep, however, since ul+1 is initialized to

zero, and it never happens on the finest grid, meaning that this is a relatively small extra computational expense.

5 RESIDUAL COMMUNICATION ALGORITHM

Apart from the local AlgFAC solves, the other main piece of the AMG-DD algorithm that requires special attention is the residual

communication algorithm bywhich processors receive right-hand side values at composite-grid points outside their subdomains.

Denote processor p’s subdomain on level l as Ωpl and its composite grid on level l as Dp
l . Then, during the residual calculation

and restriction steps of Algorithm 2, a given processor obtains updated residuals at points in Ωpl , and then these updated values

must be distributed to other processors that use these points in their composite grids, that is, processors q such thatDq
l ∩Ω

p
l ≠ ∅.

This is a non-trivial process, since the processor that owns the updated information does not have global information about which

other processors’ composite grids overlap its subdomain (and thus need to receive information from this processor). In addition,

even if this information were available, a direct broadcast from the owning processor to all other processors that must receive

information from that processor would result in inefficient communication with far too many messages being sent. Some kind

of intelligent accumulation and distribution of information is needed, analogous to performing an efficient Allgather collective

communication as opposed to naive point-to-point communication.

The AMG-DD residual communication algorithm was originally proposed (but not implemented) in7, and this paper provides

empirical study of a parallel implementation of this algorithm in practice. The algorithm functions by recursively building up

composite grids starting from the coarsest level of the AMG hierarchy and moving to the finest level. On each level, l, processors

communicate with distance �l processor neighbors, where �l is the padding on level l and distance is measured through the graph

of Al. It is assumed that distance 1 processor neighbors are known, since this information is required to perform mat-vecs with

Al (and if this information is not available, algorithms exist to efficiently obtain it8). From this starting point, arbitrary-distance

neighbors may be found by recursively communicating with processor neighbors at longer and longer distances (growing the

set of processor neighbors with each communication).

Once distance �l processor neighbors are known, theAMG-DD residual communication algorithm proceeds as follows. Begin-

ning on the coarsest level,L, each processor, p, with a non-empty subdomain (note that if the coarsest level has fewer points than

Wayne Mitchell ET AL 15

there are processors, some processors will remain inactive here) communicates with each of its distance �L processor neigh-

bors, q, sending residuals at points in the set, Ψ = {i ∈ ΩpL ∶ dist(i,ΩqL) ≤ �L}, to processor q, where dist(⋅, ⋅) measures

distance through the graph of Al. This routine then repeats on the next finer level, L − 1, but in addition to points in the set

Ψ = {i ∈ ΩpL−1 ∶ dist(i,Ω
q
L−1) ≤ �L−1}, each processor, p, sends a composite-grid structure based on Ψ to processor q. More

precisely, take the C-points of Ψ on the next coarse level, add points within the padding distance, and call the resulting set Ψc .

Then residuals for all points in Ψ ∪ Ψc are communicated. After this communication, each processor has updated residuals in

a composite grid based on its subdomain from level L − 1 down. The recursion is now apparent. The same process is repeated

moving up to the finest level, with each processor sending distance �l points, Ψ, on level l plus a composite-grid structure, Ψc ,

containing points on coarser levels. By recursive argument, after communication on each level, l, all processors have correctly

updated residual values in a composite grid based on their subdomain on level l. A more detailed proof of the correctness of this

algorithm as well as some further illustration of the communicated Ψ and Ψc sets are given in7. Pseudocode for this residual

communication algorithm is given in Algorithm 5

Note that the communication stencils used for the residual communication algorithm are based on the padding, �l, used on

each level. In the case where �l = 1 ∀l, the communication stencils are exactly those used for mat-vecs on each level with Al

and the Ψ sets exactly comprise the mat-vec halo points (message sizes will be larger due to the need to send the Ψc sets as

well). Using larger �l may result in expanded communication stencils and subsequently more overall messages as well as a larger

total volume of data being communicated, as shown in more detail in Section 6. On finer levels, reaching further through the

graph of Al may not jump to more distant processors, but on coarse levels this is likely: on a coarse level where each processor

has single degree of freedom, for example, any increase to �l will expand the set of processor neighbors, potentially leading

to a significant increase in the total number of messages sent. This highlights the importance of rewriting restriction in the

AlgFAC cycle as described in Section 4. The more straightforward approach to restriction demands right-hand side information

at multiple layers of ghost points (typically 4 to 6 layers), which in turn demands that the residual communication algorithm

communicate information at distance �l plus the number of ghost layers, resulting in significantly more messages and total

volume sent. By rewriting restriction, however, right-hand side information is only needed at real degrees of freedom, enabling

the residual communication algorithm to communicate information only at the distance of the padding as described above.

Note also that the residual communication algorithm does not require processors to have global information about off-

processor composite grids (only distance �l processor neighbors and corresponding distance �l points are needed), nor does it

even require a given processor to know the size and shape of its own composite grid a priori. Thus, this algorithm may also be

used to setup the composite grids in an efficient manner. The top down process of expanding by the padding, coarsening, and

repeating is a convenient way to define composite grids, but is not an efficient way to construct them in practice in a distributed

setting. Thus, the residual communication algorithmmay be employed to construct the composite grids simply by passing matrix

16 Wayne Mitchell ET AL

information (rows ofAl, Pl, andRl) instead of residual values. Note that this does require communicating information at distance

�l + 1 on each level in order to obtain the matrix information at the ghost points.

One important caveat about the residual communication algorithm is that it communicates a significant amount of redundant

information if implemented as described above. This redundancy has two causes. First, processor p may send (or receive)

information at some point on a coarse level to (from) processor q and then send the same information to the same destination

again later if that point is included in a Ψc composite-grid structure being sent to processor q on some finer level. Second, it

is possible that two processors p and r have accumulated updated information at some point and both processors then send

information at this point to processor q. The first source of redundancy is easily rectified, since the redundant information may

be found a priori: when constructing a Ψc composite-grid structure to send, the sending processor may simply remove points

previously sent to (or received from) the same destination. The second source of redundancy is less trivial and requires a second

round of communication during the setup phase, during which each processor sends back a list of redundantly received points

to all processors it received from. This extra communication step need only happen once during the setup phase, however, and

then all redundancy is avoided during the solve phase residual communications.

6 NUMERICAL RESULTS

The model problems used throughout this section are variations on the diffusion problem,

−∇ ⋅K∇u = f , Ω (31)

u = 0 ,)Ω. (32)

The equation is discretized using linearH1 conforming finite elements on regular meshes, using the MFEM1 library to perform

the discretization and METIS2 to partition the problem among processors. Two versions of the problem are considered: 3D

Poisson (denoted Problem 1 below), whereK = I andΩ is the unit cube; and 2D rotated anisotropic diffusion (denoted Problem

2 below), where Ω is the unit square, K = QTDQ, and Q and D are the rotation and scaling matrices respectively defined by

Q =

⎡

⎢

⎢

⎢

⎣

cos(�) sin(�)

− sin(�) cos(�)

⎤

⎥

⎥

⎥

⎦

, D =

⎡

⎢

⎢

⎢

⎣

1 0

0 �

⎤

⎥

⎥

⎥

⎦

, (33)

with � = 3�∕16 and � = 0.001. A random initial guess and zero right-hand side are used throughout. These problems are

chosen because they are well-known to have significant growth in communication stencils on the coarse levels of classical AMG

hierarchies, leading to significant communication costs.

1mfem.org
2http://glaros.dtc.umn.edu/gkhome/views/metis

mfem.org
http://glaros.dtc.umn.edu/gkhome/views/metis

Wayne Mitchell ET AL 17

All implementation of AMG-DD discussed in this paper is done in hypre3 on top of BoomerAMG. Parameter choices for

the underlying AMG hierarchy as well as choices about the decomposition of the problem among processors all influence the

size of the composite grids and subsequently the storage and computation overhead and overall performance of AMG-DD.

Since the composite grids are constructed based on movement through the graph of Al on each level, the complexity of these

coarse-grid operators has a direct impact on the size of the composite grids. Classical AMG and its initial extensions to the

parallel setting generally yield higher complexity than current "best practices" for AMG10, 11. Significantly larger composite

grids result from Falgout coarsening and classical modified interpolation (classical AMG) compared to HMIS coarsening and

extended + i interpolation (best practices AMG), which are designed to reduce coarse-grid complexity. The tests shown here

use the latter settings for best practices. Default parameters for strength of connection, interpolation truncation, etc. are also

used and coarsening is allowed to proceed to a maximum of 25 levels or until the coarse grid size is less than 9, where Gaussian

elimination is used to solve the coarsest system. The use of these very small coarse grids helps to ensure that all processor

composite grids include the full coarsest grid even with minimal padding.

The size of the composite grids relative to the size of the subdomain on a processor also depends on the partitioning of

the problem. Assuming the partitioning of the degrees of freedom among processors corresponds to a spatial partitioning of

the underlying problem geometry, the size of a processor’s composite grid is roughly dependent on the surface area of its

subdomain. Thus, the overhead of the composite grids depends on the surface-area-to-volume ratio of the processor subdomains.

Algebraically, this is simply the percentage of the degrees of freedom that have connections through the graph of the matrix

to points on other processors. The dimensionality of the underlying problem as well as the number of degrees of freedom

per processor both impact the surface-area-to-volume ratio: higher dimensional problems and a smaller number of degrees of

freedom per processor both result in larger surface-area-to-volume ratio and, consequently, larger overheads for AMG-DD, as

shown throughout the results below.

The use of GPU acceleration is increasingly common in modern supercomputers, and provides a promising computational

environment for AMG-DD due to the relatively high cost of communication compared to computation. The fine-grained par-

allelism provided by the GPU enables very fast local computation, but also limits the choice of available smoothers. A typical

smoother for parallel AMG is some form of hybrid Gauss-Seidel (this is the default in hypre), but the sequential nature of the

on-processor computation in these smoothers mean that they are not viable on the GPU. Simple Jacobi smoothers, while easily

and efficiently implemented on the GPU, do not provide adequate smoothing for many problems. Thus, all results below use a

more robust variant of Jacobi, a CF l1-scaled Jacobi smoother23, that both runs efficiently on the GPU and retains good smooth-

ing properties. The cycle type used is a V(1,1)-cycle, i.e. one pre- and one post-smoothing on each level. Convergence results

3https://github.com/hypre-space/hypre The AMG-DD code used for this paper can be found at commit hash c38c9cc of the hypre-space repository and will soon be
included in the master branch.

https://github.com/hypre-space/hypre

18 Wayne Mitchell ET AL

and other statistics gathered on AMG-DD shown below were generated on the bwForCluster MLS&WISO4 and timing results

were obtained on the large GPU cluster, Piz Daint 5.

6.1 AMG-DD parameter choice

AMG-DD introduces a few new important parameters to choose (on top of the many parameter choices involved in setting up

the underlying AMG hierarchy for a given problem). One main question of interest, however, is how accurately each processor’s

composite-grid solution represents the desired correction to the global solution. There are two sources of error here: that due

to the approximation of the global fine grid with a composite grid; and that due to inexact solution of the composite problem.

The two primary parameters that affect these sources of error are the padding chosen in constructing the composite grids and

the number and type of AlgFAC cycles used to solve on the composite grid between each global residual recalculation. The

use of larger padding grows the overall size of the composite grid on each processor, allowing for the composite problem

to more accurately represent the global problem but also incurring the additional cost of communicating and computing on

more composite-grid degrees of freedom. Performing additional AlgFAC cycles between each global residual recalculation

should generate solutions on each processor that are more accurate to their corresponding composite problems at additional

computational cost but at no additional communication cost.

Figure 6 shows convergence of the relative residual by iteration for AMG vs. AMG-DD with different levels of padding for

each test problem with 256 processors and approximately 100,000 degrees of freedom per processor on the fine grid for the

3D Poisson problem and the rotated anisotropic problem, respectively. Here, the same padding is chosen on each level, and the

local composite problems on each processor are solved accurately (using 10 AlgFAC V-cycles) in order to isolate the effect

of padding on accuracy of the composite problems to the global problem. As shown in Figure 6, larger paddings yield better

AMG-DD convergence, as expected, but recall that larger paddings also incur larger costs both in terms of communication and

computation.

Figure 7 shows the overhead incurred by the AMG-DD composite grids with different paddings compared to AMG. Through-

out this section, "composite-grid overhead" is defined as the total number of nonzeros of Al for the real degrees of freedom on

all levels, l, stored across all composite grids (i.e., accounting for points stored redundantly in many composite grids) normal-

ized by the total number of nonzeros stored in AMG (i.e., with no redundant storage). The number of nonzeros in Al serves

here as a proxy for storage and computational costs of each method. As shown in Figure 7, increasing the padding dramatically

increases the storage and computational cost of AMG-DD relative to AMG, with significantly worse overheads in 3D due to

higher surface-area-to-volume ratios for each processor’s subdomain.

4https://wiki.bwhpc.de/e/Category:BwForCluster_MLS&WISO_Development
5https://www.cscs.ch/computers/piz-daint/

https://wiki.bwhpc.de/e/Category:BwForCluster_MLS&WISO_Development
https://www.cscs.ch/computers/piz-daint/

Wayne Mitchell ET AL 19

FIGURE 6 Relative residual convergence for AMG vs. AMG-DD with various paddings for 3D Poisson (left) and rotated
anisotropic diffusion (right).

FIGURE 7 Composite-grid overheads for AMG-DD as padding increases for 3D Poisson (left) and rotated anisotropic diffusion
(right).

Communication costs can also grow significantly with increased padding, as shown in Figure 8. Throughout this section,

"latency costs" are measured as the sum over each communication stage for one iteration of the maximum number of messages

sent from a single processor, and "bandwidth costs" are measured as the total volume of data (in MB) communicated over

one iteration. Recall that for AMG, communication costs are the result of mat-vecs on each level: two mat-vecs with Al for

each relaxation plus one for a residual calculation (for a total of five mat-vecs with Al) and single mat-vecs with Pl and Rl

for interpolation and restriction. AMG-DD must also do a mat-vec with A0 on the finest grid as well as mat-vecs with Rl

on each level to restrict the residual down through the hierarchy, but the dominant communication cost for AMG-DD is the

residual communication algorithm, Algorithm 5. The highest volume of data is communicated on the fine levels, and, for larger

paddings, AMG-DD communicates significantly more data due to the need to communicate deeper halos. The increase in the

number of messages on coarse grids for AMG is observed here and mirrored by AMG-DD. Recall that the AMG-DD residual

communication algorithm (which is the dominant communication cost) uses the same communication stencils as a mat-vec

20 Wayne Mitchell ET AL

FIGURE 8 Latency costs (top) and bandwidth costs (bottom) on each level for AMG vs. AMG-DD for different paddings for
3D Poisson (left) and rotated anisotropic diffusion (right).

with Al on each level in the padding 1 case, but these communication stencils expand with larger paddings. The growth in the

number of messages for AMG-DD with higher padding may be alleviated in some cases by replacing coarse-level point-to-

point communication with a collective Allgather of the global coarse grid (assuming a grid coarse enough that it is reasonable

to redundantly store on all processors) or by grouping processors together on coarse levels, treating the group as a single rank

in the residual communication algorithm, and doing some additional local collective communications. While these techniques

can limit the growth in the number of messages for AMG-DD with higher padding, higher padding always incurs additional

messages, and the volume of data communicated cannot be reduced.

For the test problems shown here, the convergence benefit generally does not justify the cost incurred by increased padding

for AMG-DD. Figure 9 combines the convergence and cost results described above by plotting the residual reduction per cost,

where, again, the costs are measured by the total number of nonzeros in Al for all l and all processors (computational cost),

the maximum number of messages sent by one processor summed over each communication stage (latency cost), and the total

volume of data communicated (bandwidth cost). As shown, AMG-DDwith padding 1 achieves better residual convergence with

less cost compared to higher paddings. Also, AMG-DDwith padding 1 achieves significantly better accuracy per communication

cost than AMG.

Wayne Mitchell ET AL 21

FIGURE 9 Residual convergence by computational cost (top), latency cost (middle), and bandwidth cost (bottom) for AMG
vs. AMG-DD for different paddings for 3D Poisson (left) and rotated anisotropic diffusion (right).

The number of inner AlgFAC cycles per AMG-DD iteration determines how well the composite grid problems are solved

on each problem. While additional AlgFAC cycles incur no additional communication cost, they do come at additional compu-

tational expense. Thus, it is desirable to optimize the number of AlgFAC cycles in terms of accuracy per computational cost,

where accuracy is measured by outer AMG-DD convergence rather than AlgFAC convergence to the composite solution. Figure

10 shows residual convergence by iteration and by computational cost for AMG vs. AMG-DD with padding 1 and different

numbers of AlgFAC V(1,1)-cycles. For the problems here, AMG-DD convergence begins to show diminishing returns beyond

4 AlgFAC cycles, indicating that the inner problem has sufficiently converged. More accurate composite solutions (obtained

22 Wayne Mitchell ET AL

FIGURE 10 Residual convergence by iteration (top) and computational cost (bottom) for AMG vs. AMG-DD for different
paddings for 3D Poisson (left) and rotated anisotropic diffusion (right).

through more AlgFAC cycles) generally yield better AMG-DD convergence, but interestingly, for the rotated anisotropic diffu-

sion problem, initial convergence can actually be better with less accurate composite solves, while asymptotic convergence is

better with more accurate composite solves. For both problems, however, the additional computational cost of multiple AlgFAC

cycles outweighs any benefits to convergence. AMG-DD achieves the best efficiency in terms of accuracy per computational

cost for a single AlgFAC cycle and achieves computationally efficiency comparable to AMG in that case. If the computer archi-

tecture has very fast local computation compared with communication (as on GPU accelerated clusters), however, it may still

be beneficial to do multiple AlgFAC cycles per AMG-DD iteration if the goal is to minimize time to solution.

6.2 Weak scaling results

With the above discussion on parameter choices in mind, weak scaling results comparing AMG and AMG-DD with padding

1 and two AlgFAC V(1,1) cycles for the composite solve are presented below. Timing results were obtained on the large GPU

cluster, Piz Daint, using up to 1,024 GPUs. The local computational acceleration provided by the GPUsmakes the use of multiple

AlgFAC cycles per AMG-DD iteration a practical choice. For these weak scaling studies, the number of degrees of freedom is

increased to 250,000 per processor.

Wayne Mitchell ET AL 23

First, it is necessary to consider the setup cost of AMG-DD. In order for AMG-DD to be a viable alternative to AMG in

practice, it must not introduce too much additional setup cost. From an algorithmic standpoint, the AMG-DD setup phase should

be significantly cheaper than the AMG setup phase. For the AMG setup, the dominant cost is typically the triple matrix product

used to generate the coarse-grid operators, Al on each level, l. The extra work of the AMG-DD setup then simply involves

moving and reorganizing the resulting matrix data using communication stencils determined by the padding (recall that the

setup requires communication of information for ghost points, so the communication stencils are based on distance �l + 1). In

practice, however, searching through the composite grids to generate the Ψc sets discussed in Section 5, modifying these sets

to eliminate redundant information, and the reindexing involved in incorporating received data to build up each processor’s

composite grid are non-trivial tasks to implement in an efficient manner. The code used for this paper is still under development,

and optimization of the setup phase is ongoing. Nevertheless, current timings and profiling of the setup phase show promising

results. Figure 11 shows weak scaling results for the setup time of AMG-DD vs. AMG as well as a rough breakdown of major

costs for the AMG-DD setup (note that the setup results shown here use finite difference discretizations of the problems as

opposed to finite elements). In the 2D case, the AMG-DD setup time scales well and is less than that required for AMG. In 3D,

the setup phase for AMG-DD appears to scale poorly with increasing number of processors. The rapid rise in setup costs in this

case may be due to the fact that, in 3D, moving form 8 to 64 to 512 processors drastically increases the number of processors

on the interior of the computational domain, which have more neighboring processors and thus more work to do compared with

boundary processors. The setup breakdown shows that packing the main send buffers (which involves generating theΨc sets and

checking them for redundant information) is a dominant cost, though time spent in other phases also grows with the number of

processors. Note also that, at the time of this paper, the AMG setup implemented in hypre has not been ported to the GPU, and

currently none of the AMG-DD setup routines utilize the GPU. Much of the local computational work in the AMG-DD setup

phase can be efficiently ported to the GPU, which should provide a significant boost to setup performance.

Next, some of the quantities of interests from Section 6.1 are examined in a weak scaling context. Figure 12 shows how the

composite-grid overhead changes with the number of processors. Again, the overhead here is defined as the number of nonzeros

of Al for the composite grid real degrees of freedom on all levels, l, divided by the total number of nonzeros of the Al’s stored

by AMG. As noted above, these results use more degrees of freedom per processor compared to the results in Section 6.1, so

AMG-DD achieves slightly smaller relative overhead in terms of storage and computation, and the growth of this overhead with

the number of processors is slow (note the logarithmic scale for the processor axis), especially in the 2D case. This suggests that

overheads should remain manageable when scaling AMG-DD to even larger processor counts.

Figure 13 shows the communication reduction achieved by AMG-DD over AMG as processor count grows. Large reductions

in latency costs and total volume communicated remain very consistent across processor counts. Recall that the latency costs

for AMG-DD may be directly related to those for AMG V-cycles in the padding 1 case since the communication stencils used

24 Wayne Mitchell ET AL

FIGURE 11 AMG and AMG-DD setup time weak scaling and AMG-DD setup time breakdown for finite difference
discretizations of 3D Poisson (left) and rotated anisotropic diffusion (right).

FIGURE 12Composite-grid overhead weak scaling for AMG-DD for 3D Poisson (left) and rotated anisotropic diffusion (right).

for the AMG-DD residual communication algorithm are the same as those used for mat-vecs with Al on each level. AMG-DD

performs a single communication per iteration with these stencils on each level (plus an additional mat-vec on the fine grid and

restriction to all levels) whereas AMG performs five communications with the same stencils (plus interpolation and restriction

on all levels). Similar rationale explains the consistent reduction in total communication volume. The volume communicated by

AMG-DD is roughly equal to the number of extra (non-owned) composite grid points on each processor (i.e. the composite-grid

Wayne Mitchell ET AL 25

FIGURE 13 Weak scaling of latency costs (top) and bandwidth costs (bottom) for AMG-DD scaled by the costs for AMG for
3D Poisson (left) and rotated anisotropic diffusion (right).

overhead). This composite-grid overhead is related to the size of the halo data for Al on each level, which again, AMG must

communicate for each mat-vec, i.e. five times per level.

Finally, Figure 14 shows solve time weak scaling results for AMG-DD vs. AMG. The timings reported are the minimums

achieved over several runs for a single AMG-DD iteration with two inner AlgFAC cycles and for a single AMG V(1,1)-cycle.

The methods exhibit similar scaling, with AMG-DD providing significant speedup up to about 1.5x over AMG. Note that

AMG-DD achieves this speedup despite doing significantly more computational work compared with AMG, indicating much

better utilization of the computational capabilities of the GPU. In addition, Figure 15 shows that AMG-DD also achieves better

asymptotic convergence factors than AMG for these problems. An "effective" convergence factor for AMG-DD is also shown

that incorporates the speedup achieved by AMG-DD over AMG: if � is the AMG-DD convergence factor andS is the speedup of

AMG-DD over AMG, then the effective convergence factor is �S . Thus, the effective convergence factor gives a better illustration

of AMG-DD’s improvement in terms of convergence per time. Additionally, Figure 16 shows the reduction in relative residual

over time in the 1,024 processor case for AMG-DD vs. AMG, most clearly illustrating the advantage of AMG-DD over AMG

in terms of accuracy per wallclock time.

26 Wayne Mitchell ET AL

FIGURE 14 AMG and AMG-DD solve time weak scaling for 3D Poisson (left) and rotated anisotropic diffusion (right).

FIGURE 15 Convergence factor weak scaling for AMG vs. AMG-DD (also showing effective convergence factor by time for
AMG-DD) for 3D Poisson (left) and rotated anisotropic diffusion (right).

In practice, AMG is often accelerarted by Krylov methods. The components of AMG may be chosen such that the V-cycle

forms a symmetric preconditioner suitable for preconditioning conjugate gradient for symmetric problems. The AMG-DD cycle,

on the other hand, produces a non-symmetric preconditioner, and this must be taken into account when choosing an acompanying

Krylov method. Figure 17 shows the scaling of the convergence factors for AMG and AMG-DD wrapped with BiCGSTAB.

Similar to the standalone solver results, AMG-DD produces better asymptotic convergence compared with AMG. Thus, AMG-

DD is suitable both as a standalone solver and preconditioner, with the caveat that it is a non-symmetric preconditioner.

6.3 A more difficult test problem

The final results of this section are for a more difficult variant of the model problem,

−∇ ⋅K∇u + du = f , Ω (34)

u = 0 ,)Ω. (35)

Wayne Mitchell ET AL 27

FIGURE 16 Convergence by time for AMG vs. AMG-DD on 1,024 processors for 3D Poisson (left) and rotated anisotropic
diffusion (right).

FIGURE 17 Convergence factor weak scaling for AMG vs. AMG-DD wrapped with BiCGSTAB for 3D Poisson (left) and
rotated anisotropic diffusion (right).

Similar to the anisotropic problem above, define K = QTDQ and

Q =

⎡

⎢

⎢

⎢

⎣

cos(�) sin(�)

− sin(�) cos(�)

⎤

⎥

⎥

⎥

⎦

, D =

⎡

⎢

⎢

⎢

⎣

1 0

0 �

⎤

⎥

⎥

⎥

⎦

. (36)

For this problem, the domain is a 2D star shape centered on the origin, and different difficulties are included in different parts

of the domain by setting

� = 1, d = 10, 000 x ≤ 0, y ≤ 0, (37)

� = 1, d = 0 x > 0, y ≤ 0, (38)

� = 0.001, � = 0, d = 0 x ≤ 0, y > 0, (39)

� = 0.001, � = 3�∕16, d = 0 x > 0, y > 0. (40)

(41)

28 Wayne Mitchell ET AL

FIGURE 18Asymptotic convergence factors for different processor counts (left) and convergence by time with 1,024 processors
(right) for AMG vs. AMG-DD on Problem 3 with multiple difficulties.

Thus the lower left quadrant has a strong reaction term, the upper left is simple isotropic diffusion, and the right half plane is

anisotropic diffusion with different directions of anisotropy in the upper and lower quadrants. Thus, this test problem (referred

to as Problem 3 below) has multiple difficulties localized to different parts of the domain. Again, a random initial guess and zero

right-hand side are used. The odd shape of the domain (and subsequently of its partitioning) as well as the different characteristics

of the PDE in different parts of the domain are meant to challenge the ability of AMG-DD to represent the global problem on

each processor’s composite grid.

For this problem, there are about 328,000 fine-grid degrees of freedom per processor, and AMG-DD uses 4 inner AlgFAC

cycles per iteration. The composite-grid overhead and communication reduction achieved by AMG-DD are very similar to that

achieved for the 2D test problem in the previous subsections, so these plots are omitted. Convergence rates for both AMG and

AMG-DD are much slower on this more difficult problem, as shown in Figure 18. The use of more AlgFAC cycles per AMG-DD

iteration for this test case results in AMG-DD iterations that take roughly the same time as the corresponding AMG V-cycles,

but the extra computational work performed by AMG-DD results in swifter convergence. Note that AMG-DD’s asymptotic

convergence factor of about 0.8 is more than twice as fast as the convergence factor of more than 0.9 for AMG V-cycles (since

0.8 < 0.92). That is, a single AMG-DD iteration achieves similar error reduction as two AMG V-cycles, but in about half the

time. This shows the strengths of AMG-DD in a different light. Although AMG-DD is no faster than AMG in terms of time

per iteration in this case, AMG-DD provides an efficient algorithm for performing lots of local computation leading to swifter

convergence and ultimately better time to solution compared to AMG. Similar conclusions can be drawn when wrapping AMG

and AMG-DD with BiCGSTAB, as shown in Figure 19, where again, AMG-DD provides better convergence factors.

Wayne Mitchell ET AL 29

FIGURE 19 Convergence factor weak scaling for AMG vs. AMG-DD wrapped with BiCGSTAB on Problem 3 with multiple
difficulties.

7 CONCLUSIONS

This paper continues the development of algebraic multigrid domain decomposition (AMG-DD), a novel, low-communication

algorithm built on top of an algebraic multigrid (AMG) hierarchy and designed to achieve similar or better convergence with

reduced communication cost compared to AMG V-cycles. An algebraic variant of fast adaptive composite (AlgFAC) cycling is

developed that allows for efficient local solution of the composite problems with minimal storage and communication require-

ments due to the reformulatedAlgFACvariant of restriction. Numerical results are shown for the first full parallel implementation

of the algorithm, which outperforms AMG V-cycles on a large GPU cluster. Optimal parameters for AMG-DD are discovered

via empirical study and then used to produce weak scaling studies that suggest that AMG-DD retains manageable computational

overheads, significant communication cost reductions, and superior convergence per iteration compared to AMG as processor

counts grow. As a result, AMG-DD is able to achieve better convergence in less time compared with AMG V-cycles on the

corresponding hierarchy. In addition, the increased arithmetic intensity of AMG-DD means that it is able to better utilize the

local computational power provided by GPU accelerated systems and is thus more suitable for such architectures than traditional

AMG.

The underlying AMG hierarchies and smoothers used throughout this paper have been developed and tuned throughout

decades of research focused on optimizing AMG V-cycle performance. The next phase of research for AMG-DD will involve

developing new strategies for constructing the underlying AMG hierarchy (as well as different methods for AMG-DD composite

grid construction) that are best suited to AMG-DD performance. In particular, since smoothing in AMG-DD is performed inde-

pendently on each processor, AMG-DD presents a favorable algorithmic environment for the development of strong smoothers

such as block relaxation methods that are difficult to implement or are severely communication-limited in parallel. Development

of such smoothers and their associated coarsening schemes with AMG-DD as the target use-case will be a major area of future

research.

30 Wayne Mitchell ET AL

8 ACKNOWLEDGMENTS

The authors acknowledge support by the state of Baden-Württemberg through bwHPC and the German Research Foundation

(DFG) through grant INST 35/1134-1 FUGG as well as PRACE for awarding access to Piz Daint at ETH Zurich/CSCS, Switzer-

land as part of PRACE Preparatory Access Type B from December 2019 to June 2020. This work was performed under the

auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United

States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed

or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein

to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessar-

ily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore

National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United

States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement

purposes.

References

1. Brandt A, McCormick SF, and Ruge JW. Algebraic multigrid (AMG) for sparse matrix equations. In: Sparsity and its

applications. Cambridge Univ. Press, Cambridge; 1984. p. 257–284.

2. Stüben K, and Ruge JW. Algebraic Multigrid. In: McCormick SF, editor. Multigrid Methods, vol. 3, Frontiers in Applied

Mathematics. Philadelphia: SIAM; 1987. p. 73–130.

3. Briggs WF, Henson VE, and McCormick SF. A Multigrid Tutorial, 2nd ed. Edition. SIAM; 2000.

4. Baker AH, Falgout RD, Kolev TV, and Yang UM. Scaling hypre’s multigrid solvers to 100,000 cores. In: Berry M, editor.

High Performance Scientific Computing Algorithms and Applications. Springer; 2012. .

5. Gahvari H, Baker AH, Schulz M, Yang UM, Jordan KE, and GroppW. Modeling the performance of an algebraic multigrid

cycle on HPC platforms. In: Proceedings of the 25th International Conference on Supercomputing (ICS 2011). Tuscon,

AZ; 2011. p. 172–181.

6. Bienz A, Falgout RD, Gropp W, Olson LN, and Schroder JB. Reducing parallel communication in algebraic multigrid

through sparsification. SIAM Journal on Scientific Computing. 2016;38(5):S332–S357.

Wayne Mitchell ET AL 31

7. Bank RE, Falgout RD, Jones TM, Manteuffel TA, McCormick SF, and Ruge JW. Algebraic multigrid domain and range

decomposition (AMG-DD/AMG-RD). SIAM Journal on Scientific Computing. 2015;37(5):S113–S136.

8. Baker AH, Falgout RD, and Yang UM. An assumed partition algorithm for determining processor inter-communication.

Parallel Computing. 2006;32(5-6):394–414.

9. Bienz A, Gropp WD, and Olson LN. Node aware sparse matrix-vector multiplication. Journal of Parallel and Distributed

Computing. 2019;.

10. De Sterck H, Falgout RD, Nolting JW, and Yang UM. Distance-two interpolation for parallel algebraic multigrid. Numerical

Linear Algebra with Applications. 2008 Mar;15(2-3):115–139.

11. De Sterck H, Yang UM, and Heys JJ. Reducing Complexity in Parallel Algebraic Multigrid Preconditioners. SIAM Journal

on Matrix Analysis and Applications. 2006 Jan;27(4):1019–1039.

12. Yang UM. On long-range interpolation operators for aggressive coarsening. Numerical Linear Algebra with Applications.

2010;17(2-3):453–472.

13. Falgout RD, and Schroder JB. Non-Galerkin coarse grids for algebraic multigrid. SIAM Journal on Scientific Computing.

2014;36(3):C309–C334.

14. Lee B, McCormick SF, Philip B, and Quinlan DJ. Asynchronous Fast Adaptive Composite-Grid Methods for Elliptic

Problems: Theoretical Foundations. SIAM Journal on Numerical Analysis. 2004 Jan;42(1):130–152.

15. Vassilevski PS, and Yang UM. Reducing communication in algebraic multigrid using additive variants. Numerical Linear

Algebra with Applications. 2014;21(2):275–296.

16. Bank RE, and Holst M. A new paradigm for parallel adaptive meshing algorithms. SIAM Journal on Scientific Computing.

1999;.

17. Mitchell WF. Parallel adaptive multilevel methods with full domain partitions. ANACM Applied Numerical Analysis and

Computational Mathematics. 2004;1(1-2):36–48.

18. Mitchell WF. A parallel multigrid method using the full domain partition. Electronic Transactions on Numerical Analysis.

1998;6:224–233.

19. Appelhans DJ, Manteuffel T, McCormick S, and Ruge J. A low-communication, parallel algorithm for solving PDEs based

on range decomposition. Numerical Linear Algebra with Applications. 2017;24(3):e2041.

32 Wayne Mitchell ET AL

20. Mitchell WB, and Manteuffel TA. Advances in implementation, theoretical motivation, and numerical results for the nested

iteration with range decomposition algorithm. Numerical Linear Algebra with Applications. 2018;25(3):e2149–26.

21. Vaněk P, Mandel J, and Brezina M. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic

problems. Computing. 1996 Sep;56(3):179–196.

22. McCormick SF. Multilevel Adaptive Methods for Partial Differential Equations. Cambridge University Press; 1989.

23. Baker AH, Falgout RD, Kolev TV, and Yang UM. Multigrid smoothers for ultraparallel computing. SIAM Journal on

Scientific Computing. 2011 Jan;33(5):2864–2887.

How to cite this article: Mitchell W.B., R. Strzodka, and R.D. Falgout (2020), Parallel Performance of Algebraic Multigrid

Domain Decomposition (AMG-DD), , .

Wayne Mitchell ET AL 33

Algorithm 1 AMG V(�1, �2)-cycle

for Downsweep: l = 0, ..., (L − 1) do
Relax �1 times on Alul = fl.
Restrict residual: fl+1 ← Rl(fl − Alul).
Initialize: ul+1 ← 0.

end for
Coarse solve: uL ← A−1L fL.
for Upsweep: l = (L − 1), ..., 0 do

Interpolate correction: ul ← ul + Plul+1.
Relax �2 times on Alul = fl.

end for

(mat-vec communications with Al)
(mat-vec communications with Al and Rl)
(no communication)

(mat-vec communication with AL)

(mat-vec communications with Pl)
(mat-vec communications with Al)

Algorithm 2 AMG-DD cycle

Calculate fine-grid residual: r0 ← f0 − A0u0.
Restrict residual to all levels: rl+1 ← Rlrl,∀l.
Obtain residual values at all composite-grid points.
Perform local AlgFAC cycles to obtain �up0.
Add fine-grid correction, u0 ← u0 + �u

p
0, in Ω

p
0.

(mat-vec communication with A0)
(mat-vec communications with Rl)
(communication with distance �l neighbors)
(no communication)
(no communication)

Algorithm 3 Hybrid AMG-DD V(�1, �2)-cycle

for Downsweep: l = 0, ..., (L̃ − 1) do
Relax �1 times on Alul = fl.
Restrict residual: fl+1 ← Rl(fl − Alul).
Initialize: ul+1 ← 0.

end for
AMG-DD cycle: uL̃ ← AMG-DD(AL̃, fL̃) .
for Upsweep: l = (L̃ − 1), ..., 0 do

Interpolate correction: ul ← ul + Plul+1.
Relax �2 times on Alul = fl.

end for

34 Wayne Mitchell ET AL

Algorithm 4 AlgFAC V-cycle
Initialize solution/corrections: ul ← 0,∀l
Initialize updates: tl ← 0, sl ← 0,∀l
for Iterate: i = 0, 1, ... do

for Downsweep: l = 0, ..., (L − 1) do
If l ≠ 0, initialize: ul ← 0
Relax: ul ← ul + �1l
Accumulate update: tl ← tl + �1l
Restrict update: sl+1 ← Rl(sl + Altl)
Recalculate coarse residual: fl+1 ← fl+1 − Al+1ul+1
Subtract restricted update: fl+1 ← fl+1 − sl+1
Reset updates: tl ← 0, sl ← 0

end for
Coarse solve: uL ← A−1L fL
for Upsweep: l = (L − 1), ..., 0 do

Interpolate: ul ← ul + Plul+1
Relax: ul ← ul + �2l .
Accumulate update: tl ← tl + �2l

end for
end for

Algorithm 5 AMG-DD residual communication algorithm
for Loop over levels: l = L, ..., 0 do

for Loop over distance �l processor neighbors: q = 1, ... do
Let Ψ = {i ∈ Ωpl ∶ dist(i,Ω

q
l) ≤ �l}

Form a composite grid Ψc based on Ψ
Send residuals at points in Ψ ∪ Ψc to processor q

end for
end for

	Parallel Performance of Algebraic Multigrid Domain Decomposition (AMG-DD)
	Abstract
	Introduction
	Review of AMG
	AMG-DD algorithm description
	Hybrid AMG-DD

	Algebraic fast adaptive composite cycling
	Relaxation
	Interpolation
	Traditional restriction
	AlgFAC restriction
	AlgFAC cycle

	Residual communication algorithm
	Numerical results
	AMG-DD parameter choice
	Weak scaling results
	A more difficult test problem

	Conclusions
	Acknowledgments
	References

