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SUMMARY

Linear systems arising from discretizations of systems of partial differential equations can be challenging for
algebraic multigrid (AMG), since the design of AMG relies on assumptions based on the near-nullspace properties
of scalar diffusion problems. For elasticity applications, the near-nullspace of the operator includes the so-called
rigid body modes, which are not adequately represented by the classical AMG interpolation operators. In this paper
we investigate several approaches for improving AMG convergence on linear elasticity problems by explicitly
incorporating the near-nullspace modes in the range of the interpolation. In particular, we propose two new
methods for extending any initial AMG interpolation operator to exactly fit the rigid body modes based on the
introduction of additional coarse degrees of freedom at each node. Though the methodology is general and can be
used to fit any set of near-nullspace vectors, we focus on the rigid body modes of linear elasticity in this paper.
The new methods can be incorporated easily into existing AMG codes, do not require matrix inversions, and do
not assume an aggregation approach or a finite element framework. We demonstrate the effectiveness of the new
interpolation operators on several 2D and 3D elasticity problems. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. Introduction

Algebraic multigrid (AMG) methods [3, 2, 19, 22] are increasingly popular in scientific computing
due to their robustness when solving large unstructured sparse linear systems of equations, Ax = b,
particularly when A results from the discretization of a scalar second-order elliptic partial differential
equation (PDE). A distinguishing feature of AMG is that problem geometry is not needed; the “grid” is
simply the set of variables. This flexibility is useful for situations when the grid is not known explicitly
or is unstructured. The key to an effective multigrid method, whether geometric or algebraic, is that
the error not reduced by the relaxation (or smoothing) process must be eliminated by the coarse grid
correction process. Therefore, the coarse grid correction must be designed to eliminate the type of error
that relaxation leaves behind, and this “algebraically smooth error” must be approximated well in the
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IMPROVING AMG INTERPOLATION FOR ELASTICITY 1

range of the interpolation operator (see, e.g., [4]). In particular, if e is a smooth error vector in AMG
that satisfies Ae = 0 in all interior nodes, then e should be interpolated exactly on the fine grid.

In general, a linear system of equations resulting from the discretization of a system of PDEs consists
of multiple scalar functions. We refer to the original AMG algorithm designed for scalar PDEs as
classical AMG, which typically fails when applied without modification to a system of PDEs. Some
of the assumptions for classical AMG simply do not carry over to systems of PDEs (see, e.g., the
discussions in [18, 14, 8]). For example, interpolation schemes for classical AMG assume that the
nullspace of the operator is comprised only of constant vectors. For a system of PDEs, however,
the nullspace is typically larger than this, and its elements may not necessarily be “constant-like”.
In addition, because classical AMG does not distinguish between variables corresponding to different
functions, its coarsening process applied to a system of PDEs may not necessarily produce a grid
suitable for effective relaxation. Intuitively, a scalar approach would only be effective for a PDE system
if the coupling between the scalar functions is quite weak (see, e.g., [8]).

In this paper we address the efficient solution of linear systems arising from linear elasticity
problems, which are challenging for AMG due to the presence of the rigid body modes in the nullspace
of the continuous operator. Because elements in the near-nullspace of the operator should lie in the
range of interpolation to obtain good AMG convergence, the rigid body modes need to be interpolated
well (see, e.g. [8, 21, 14]). Since rigid body modes are typically available from application codes,
our aim is to develop techniques for improving existing AMG interpolation operators by explicitly
incorporating this given set of (smooth) vectors in their range.

The remainder of the paper is organized as follows. In Section 2, we review some facts regarding
AMG interpolation and discuss the linear elasticity model. We also provide an overview of relevant
prior work and detail our goals and strategy. In Section 3, we discuss a least-squares approach for
improving the interpolation weights, which leads to approximate rigid body mode interpolation. In
Sections 4 and 5, we present two new methods that exactly interpolate the rigid body modes using
additional coarse degrees of freedom. We give the results from numerical experiments with the two
new methods in Section 6. Finally, we make some concluding remarks in Section 7.

2. Background

2.1. AMG interpolation

A principal task in AMG when solving Ax = b is the construction of the interpolation operator, which
determines the values of the fine degrees of freedom (dofs) given the values of the coarse dofs. In what
follows, we assume the typical situations where the coarse dofs are a subset of the fine dofs and the
interpolation restricted to the coarse grid is simply the identity matrix. Furthermore, we assume that
the coarse degrees of freedom have already been determined, e.g. by one of the coarsening algorithms
from [22] or [10].

Let i be a fixed fine degree of freedom, the value at which we want to interpolate from the coarse
grid. Define the following neighborhood sets based on the sparsity pattern of A:

Ci = {coarse neighbors of i} , Fi = {fine neighbors of i} , Ni = Ci ∪Fi , Xi = {i}∪Ci . (1)

Below we will drop the subscript i when it is implied from the context.
Let e be an arbitrary vector of algebraically smooth error, which satisfies Ae ≈ 0. Because
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2 BAKER, KOLEV, AND YANG

interpolation should represent such vectors well, ideally the value ei will be determined from
Aiiei +AiCeC +AiFeF = 0 . (2)

Here, and in the rest of the paper, we use a subscript to denote the restriction of vectors and matrices
to the corresponding sets of indices.

Since the error at the fine neighbors, eF , is not known, it must be eliminated from (2) using “stencil
collapsing” [12], or by defining an “extension operator” [15]. An extension operator is simply a linear
representation of eF in terms of eC and possibly ei:

eF = WFCeC +WFiei . (3)
Because (3) is linear, it can be viewed as an interpolation process from eX to eF . For example, when
WFi = 0, we have the two-step interpolation procedure eC 7→ eN 7→ ei. From this perspective, it is natural
to require that the local “interpolation” (3) also represents well the near-nullspace components, though
probably in some weaker sense. We will make use of this point in Section 5.

Once the local interpolation matrices WFC and WFi in (3) are given, the interpolation operator for the
degree of freedom i is defined by the following harmonic extension from (2):

ei = −(Aii +AiFWFi)
−1(AiC +AiFWFC)eC .

Note that if WFi is not zero, it must be chosen such that Aii + AiFWFi is invertible, see [15]. However,
the most commonly-used interpolation schemes have WFi = 0, yielding

ei = −A−1
ii (AiC +AiFWFC)eC , (4)

or equivalently,
ei = −

1
aii

∑
j∈Ci

(ai j + ∑
k∈Fi

aikwk j)e j .

Therefore, if we use P to denote the matrix representation of the corresponding global interpolation
operator, then Pi j =−(ai j +∑k∈Fi

aikwk j)/aii. The coefficients {w} above can be viewed as the weights
in the local interpolation of each fine neighbor k ∈ Fi:

ek = ∑
j∈Ci

wk je j . (5)

As an example, the simple interpolation scheme known as direct interpolation (see, e.g., [22]) defines
wk j such that

ek = ∑
j∈Ci

ai j

∑n∈Ci
ain

e j .

A more effective interpolation is the commonly used “classical” AMG interpolation (see, e.g., [6]),
which uses the concept of “strength of connection” to divide the fine neighbors into those that strongly
influence i, Fs

i , and those that weakly influence i, Fw
i . Then, wk j in (5) are defined such that

ek = ∑
j∈Ci

ak j

∑n∈Ci
akn

e j for k ∈ F s
i , ek = ei for k ∈ Fw

i .

In other words, we set ek equal to ei in the weak fine neighbors and define it for the rest using an
operator-weighted averaging.

Note that the interpolation weights for both classical and direct interpolation are chosen such that
constant vectors are interpolated exactly, both locally on Ni, and globally in all interior points where
the matrix has a zero row sum. This is a good choice for a scalar elliptic PDE, where the nullspace is
typically represented only by constant vectors, but it is not sufficient when AMG is applied to systems
of PDEs.
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IMPROVING AMG INTERPOLATION FOR ELASTICITY 3

2.2. AMG for systems

Consider a linear system of equations resulting from the discretization of a system of PDEs with p
scalar functions (or “unknowns”). Each unknown corresponds to a different physical quantity, such as
a component of the displacement field in the case of elasticity. We refer to the n physical points on the
grid as nodes or points, and we use the term variable or dof to refer to a specific unknown at a specific
point. When solving systems of PDEs with AMG, the two standard approaches are the unknown-based
approach and the node-based approach.

The unknown-based approach was first described in the early works [18] and [19]. Its strategy is
to treat variables corresponding to the same unknown separately. For example, consider the unknown-
wise ordering of a matrix with three unknowns u, v, and w:

A =




Auu Auv Auw

Avu Avv Avw

Awu Awv Aww



 . (6)

Treating each unknown independently translates into applying classical AMG coarsening and
interpolation strategies only to the diagonal blocks of matrix (6). In other words, inter-variable
couplings, such as Auv, are ignored, and the resulting interpolation and restriction operators are block-
diagonal. For example, with an unknown-based approach, the interpolation matrix for (6) has the form

P =




Pu 0 0
0 Pv 0
0 0 Pw


 .

The coarse grid operators are formed using the standard Galerkin formulation and the full operator
matrix A. The unknown-based approach is popular due in part to its simplicity to implement and its
low computational cost. Intuitively, an unknown-based approach will be effective for problems for
which the cross-couplings between unknowns are not too strong and the block-diagonals of A, e.g. in
(6), are matrices that are amenable to classical AMG. If this is the case, and the smoother produces
error that is algebraically smooth within each unknown, then one would expect an unknown-based
approach to be quite effective.

A second approach, called the node-based approach, considers all of the unknowns at a physical grid
point together such that the coarsening, relaxation, and interpolation all occur in a point-wise fashion.
This approach is outlined in early AMG papers (see, e.g., [18, 19]) and studied more recently in [14]
and extensively in [8]. Specifically, if each of the p unknowns is discretized on the same n grid points,
then we have p variables at each point and can write A with a point-wise ordering:

A =




A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
...

An1 An2 · · · Ann


 . (7)

Note that the “nodal” matrices Ai j in (7) are size p× p. A node-based coarsening results in each
unknown sharing the same set of coarse grids, so the variables at each point are either all coarse or
all fine. The key difference between a node-based coarsening and a classical AMG coarsening is that
determining strength of connection between points i and j, for example, involves comparing the nodal
matrices Aii and Ai j. This comparison is most easily done by “condensing” the nodal matrices in (7) to
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4 BAKER, KOLEV, AND YANG

scalars 


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
...

An1 An2 · · · Ann


=⇒




c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
...

cn1 cn2 · · · cnn


= C

via an inexpensive norm like the Frobenius-norm ‖ · ‖F or the row-sum norm ‖ · ‖∞ (see, e.g.,
[14, 13, 8]), though other useful metrics are possible (see examples in [8]). The scalar entries {ci j}
of the “condensed” matrix C are then used to determine strength of connection as in classical AMG.
Note that a node-based coarsening permits the use of a block smoother, where all variables at each
point are relaxed simultaneously. This may be advantageous for strongly-coupled problems (see, e.g.,
[8]). The node-based approach for forming interpolation consists of the straightforward generalization
of classical AMG interpolation schemes to use nodal matrices instead of scalars.

We refer to the combination of a node-based coarsening with an unknown-based interpolation as a
“hybrid” approach. The two new methods for extending AMG interpolation operators that we present
in Sections 4 and 5 are based on this hybrid approach.

2.3. Linear elasticity

Mathematical models of elasticity are concerned with the deformation, stress, and strain of materials
due to applied external forces, which are of interest in many practical applications. The Lamé equations
for linearized elasticity on a domain Ω (see, e.g., [20] or Chapter 6 of [1]) are

µ∆~U +(λ+µ)∇(∇ ·~U) = ~f in Ω, (8)

where ~U is the displacement vector, and λ, µ are the so-called Lamé constants. These can be expressed
in terms of the material properties described by the Poisson ratio, ν, and the Young’s modulus, E, as
follows:

µ =
E

2(1+ν)
, λ =

νE
(1+ν)(1−2ν)

.

Typically, the boundary conditions are a mix of fixed boundary (Dirichlet) conditions, e.g., ~U =~0 on
Γ0, and a force applied on the boundary, σ(~U) ·~n =~g on Γ1, which reduces to a free boundary condition
when~g =~0. Here, σ is the stress tensor and~n is the outward unit normal. The Lamé formulation is valid
for modeling small displacements due to external forces, and the equations are elliptic. When a material
is nearly incompressible (λ � µ, or equivalently ν → 0.5) the problem becomes very ill-conditioned,
and one has to be careful with the discretization [1].

When (8) is discretized, e.g., with a linear finite element method (FEM) in 3D, the resulting matrix
has the form given in (6), where ~U = (u,v,w) are the components of the displacement field. If µ � λ,
the matrix A is spectrally equivalent to its block-diagonal, which consists of the Laplacian matrices for
the unknowns u, v and w. In this case, the unknown-based AMG approach discussed in the previous
section will be an efficient solver for problems with A. Note that the nullspace of the block-diagonal
contains only component-wise constants (i.e. displacements which are translations) and can be handled
well by classical AMG.

In general, however, A will not be strongly block-diagonally dominated, and when applying the
unknown-based approach one has to take into account the full nullspace of the matrix. In the case of
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IMPROVING AMG INTERPOLATION FOR ELASTICITY 5

free boundary conditions, this nullspace, known as the set of rigid body modes (RBMs), has dimension
6 in 3D (3 in 2D) and can be defined by:

{RBMs}=
{

~a+~b×~X : ~a,~b ∈ R
3
}

.

Besides the previously mentioned translations, i.e. displacement discretizations of (1,0,0), (0,1,0) and
(0,0,1), its basis also contains the discretizations of the so-called “rotations” (−y,x,0), (z,0,−x) and
(0,−z,y). Here ~X = (x,y,z) is the coordinate of a point in Ω, which is restricted to the vertices of the
mesh in the linear finite element discretization. The computation of the vectors of dofs representing the
RBMs is straightforward in this situation and only uses the coordinates of the mesh vertices.

Recall that for good AMG convergence it is crucial to construct the interpolation operator such that
near-nullspace elements are well represented in the range. However, while unknown-based classical
AMG interpolation schemes interpolate the translations exactly (constants are interpolated exactly
within each unknown), the linear rotations are generally not reproduced. In fact, it is well-known that
AMG convergence tends to degrade for elasticity problems as the number of free boundaries increases
(and A is nearly singular) due, in part, to poor interpolation of the rotation near-nullspace modes (see,
e.g. [19, 8, 7]). In other words, unknown-based classical AMG interpolation schemes will address part
of the RBMs space, but not all of it. This is the motivation to consider extending such interpolations so
that they also represent the “rotation” modes.

2.4. Relevant prior work

Here we describe several works related to the goal of improving AMG interpolation for linear elasticity
problems, a number of which explicitly use the RBMs space. We begin by noting that the general idea
of modifying classical AMG interpolation to better fit a particular set of test vectors was first proposed
in the early work [19]. Later, in [21], Stüben discusses improving AMG interpolation specifically
for elasticity problems based on using coordinate information. Essentially, he describes a method
for improving the interpolation of the RBMs by doing a local least-squares fit and modifying the
initial interpolation weights. His preliminary results on a cantilever beam appear to be an improvement
over standard AMG, and we investigate this idea further in Section 3. The work in [25] proposes the
use of geometric grid information to build a new AMG interpolation for 2D elasticity problems that
reproduces the two translations and one rotation mode. It is not clear that this technique could be easily
extended to 3D problems.

In [14], the authors investigate the node-based AMG approach for linear elasticity problems. They
show that for a specific simple mesh and set of boundary conditions, the RBMs are reproduced by
a node-based interpolation scheme. Their numerical results, however, generally demonstrate that an
unknown-based interpolation (which they call direct-point interpolation) does as well or better than
the node-based interpolation. In our experience, node-based interpolation is generally too costly and
suffers from problems with inverting ill-conditioned matrices.

The smoothed aggregation (SA) variant of AMG is quite effective on linear elasticity problems as
the RBMs are explicitly incorporated in and are exactly reproduced by the interpolation [23]. One of
the more recent developments in this direction is the work in [5], where a parallel generalized variant
of SA is developed to solve large-scale elasticity problems. This method requires a FEM framework
and improves interpolation based on low-energy eigenvectors.

Another AMG approach that has been applied with success to elasticity is AMGe [4]. This method
requires access to the element stiffness matrices and attempts to improve interpolation by determining
the smooth error that needs to be interpolated well (approximations of the local near-nullspace
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6 BAKER, KOLEV, AND YANG

components are determined from the element stiffness matrices). However, the computational and
storage costs for AMGe can be high and constructing coarse elements is non-trivial. A similar approach
that does not require the individual element stiffness matrices is element-free AMGe [15]. Element-free
AMGe builds “pseudo-element” matrices that require defining an extended neighborhood for each fine
point and using an extension operator scheme to obtain interpolation coefficients. As with AMGe, this
approach can also be effective, but it is computationally expensive (especially for parallel computing).
Also notable is the work in [24] which proposes how to incorporate any given set of test vectors into
an agglomeration-based AMG method.

Finally, one of the more promising non-aggregated AMG approaches to date was proposed by
Dohrmann in [11]. His method is similar to element-free AMGe, but directly incorporates the rigid
body modes in the local interpolation. The coarse grid nodes have both translational and rotational
degrees of freedom, and local minimization problems are solved such that the rigid body modes are
exactly interpolated. The results presented for this approach as compared with smoothed aggregation
AMG are encouraging, though this approach is somewhat expensive and may be more difficult to
parallelize. We discuss a connection with Dohrmann’s approach in Section 5.

2.5. Discussion of goals and strategy

While the unknown-based approach is the typical choice for linear elasticity problems, its performance
is often not good enough for use in practical application codes. Our goal is to improve its robustness by
explicitly incorporating the RBMs into the unknown-based interpolation operators. As we noted earlier,
RBMs are often available directly from the application code or indirectly via the grid coordinates.
While the use of additional RBMs information takes away from the “black-box” nature of AMG, it is
worthwhile to exploit in the case of elasticity.

Our strategy is to pursue algorithms that fit easily into an existing AMG framework so that we
can utilize AMG machinery that is already in place (i.e., coarsening and interpolation algorithms).
We also require that the approaches considered can be easily parallelized and are computationally
inexpensive like the unknown-based approach. In particular, we avoid solving local minimization
problems, and, more generally, performing matrix inversions. Furthermore, we do not assume a finite
element framework or use an aggregation approach.

In the next three sections, we describe three methods that execute the above general strategy by
modifying and/or augmenting an initial interpolation operator to fit the near-nullspace modes. The
three methods are: a least-squares based approach, a global matrix approach, and a local neighborhood
approach. The first approach is suggested in [21] and fits the near-nullspace modes only approximately.
In contrast, our second approach fits the near nullspace modes exactly in a SA-like fashion by adding
additional dofs to the coarse grids. Our third approach is similar to the second in that exact interpolation
of the nullspace modes is achieved via additional coarse dofs, but the overall approach is more localized
as the modes are fit via the extension operator.

3. A least-squares based approximation of rigid body modes

First, we explore the idea suggested in [21] of improving existing interpolation weights by doing a local
least-squares (LS) fit that incorporates the RBMs space. Specifically, we form an initial interpolation
matrix P in a standard way, e.g., by classical interpolation, and then apply a post-processing step that
performs the LS fit. This LS fit does not change the size, or the sparsity pattern, of P and is done in a
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IMPROVING AMG INTERPOLATION FOR ELASTICITY 7

row-wise manner, i.e. the minimization is performed over the neighborhood of each point i.
In general, we assume that we have k “smooth vectors” to fit,

S = [s1 s2 · · · sk],

where S is a column matrix and sr, r = 1 : k, are the RBMs. For each fine point i, we have m coarse
interpolatory points, {c j}

m
j=1, that correspond to the new interpolation weights,

w = [w1,w2, · · · ,wm].

We let ai = S(i) be the k× 1 vector corresponding to the values of the k RBMs at fine point i and
Bi j = S(c j) be the k×m matrix corresponding to the values of the k RBMs at the m coarse interpolatory
points of i. Then, for each fine point i, we determine the vector w as the minimizer of

δ‖a−Bw‖2 +(1−δ)‖w−wold‖
2 7→ min ,

where wold denotes the original interpolation weights and δ ∈ [0,1] is a parameter which balances the
deviation from the original matrix with the quality of approximation of a. Note that by the Woodbury
formula, when δ 6= 1, this minimization problem has a unique solution that can be written as

w = wold +δBT M−1
k (a−Bwold),

where Mk = δBBT +(1−δ)Ik, and Ik denotes the k× k identity matrix. In other words, we correct the
original interpolation weights to better fit the smooth vectors in S. For elasticity we determine our initial
P via an unknown-based interpolation, so we only fit the non-zero components of the “rotations”, i.e.
k = 1 in 2D and k = 2 in 3D. Therefore, the inversion of Mk is cheap. Furthermore, one can introduce
different weighting of the different smooth vector fits in the LS minimization by simply replacing Ik in
the definition of Mk with a diagonal weight matrix Dk.

Overall, the AMG-LS approach and its implementation are very simple (even in parallel). In terms
of effectiveness, however, while using δ = 0.5 generally gives the best results, we find minimal
improvements, if any, compared to δ = 0. For example, for the 3D linear elasticity problem described
below with size n = 27027, we list results in Table I comparing AMG performance to that of AMG-LS.

Problem 1: 3D cube - This simple 3D elasticity problem is discretized on the unit cube using linear
FEM and contains 3 subdomains, one with ν = 0.2 and E = 100, and two pyramids with ν = 0.4 and
E = 1. The bottom face is fixed, and there is push at an angle on two of the adjacent boundary planes.
The material subdomains and the mesh with the solution are shown in Figure 1.

Note that all experiments in this paper are done using a modified implementation of AMG based on
the version available in hypre 2.4 [16]. In Table I, we vary the coarsening (RS = Ruge-Stüben or HMIS
[9]), relaxation (GS = Gauss-Seidel, Sym = symmetric, CF = coarse-fine relaxation) and interpolation
(Ext+i(5) = extended interpolation [10] with a max of 5 elements per row) choices to demonstrate that
the results for this approach are sensitive to parameter choices. We note that the results for Problem
1 are representative of the typical results we observe in a range of test problems. Using the modified
strength of connection scheme described in [21, 8], or an expanded neighborhood that includes all
unknowns at a grid point, did not lead to improved performance.

The numerical results in Table I support the conclusion that, while the least-squares modification of
existing weights is cheap, it does not seem to have a significant impact on convergence. Therefore, it
is natural to consider schemes which may be more expensive (have more coarse degrees of freedom),
but allow for the exact interpolation of the RBMs. We propose two such schemes in the next sections.

Copyright c© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0–0
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8 BAKER, KOLEV, AND YANG

Figure 1. The (pyramidal) parts of the domain with ν = 0.4 (left) and the mesh together with the magnitude of the
deformation (right) for Problem 1.

Table I. A comparison of AMG to AMG-LS for Problem 1 with n = 27027.

Relaxation Sym-GS GS GS + CF Sym-GS GS + CF
Coarsening RS RS RS (Node-based) HMIS HMIS
Interpolation Classical Classical Classical Ext+i(5) Classical

AMG 64 74 63 60 138
AMG-LS (δ = 0.5) 58 75 60 74 148

4. Exact interpolation using additional degrees of freedom: global matrix approach

In this section, we present a new method for extending a given interpolation, which we call the global
matrix (GM) approach. The main idea of this approach is to add new coarse degrees of freedom,
similarly to the smoothed aggregation variant of AMG, which ensure exact interpolation of the RBMs,
instead of approximate interpolation as with a least-squares approach. One of the motivations behind
the GM approach is that the effectiveness of smoothed aggregation on linear elasticity problems can be
partially explained by the fact that it interpolates the RBMs exactly via additional degrees of freedom
at each coarse node.

The name of the GM approach is derived from the fact that it takes any initial global AMG
interpolation matrix P and augments it with a sequence of matrices Q, each of which is responsible
for the exact interpolation of a specified near-nullspace (smooth) vector. In other words, if sF is a fixed
smooth vector on the fine grid, then the new interpolation operator is

P̃ =
[

P Q
]

s.t. sF ∈ range(P̃) . (9)

When defining Q, we want to keep the new interpolation P̃ local, so we require that Q has (at most) the
same sparsity pattern as the initial P.

There are a number of possible choices for Q that satisfy (9). Below we discuss the two that we
found to be most general and useful in practice.
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IMPROVING AMG INTERPOLATION FOR ELASTICITY 9

GM variant 1: As in SA, we let

sF = P̃

[
0
1

]
=⇒ sF = Q1 =⇒ sF

i = ∑
j∈Ci

Qi j, (10)

where i is a fine point, cf. (1), and 1 is a vector of ones. Then for each i, we let

Qi j =
Pi j

∑ j∈Ci
Pi j

sF
i . (11)

Note that when P interpolates constants exactly (which is typically the case with unknown-based
classical AMG interpolation schemes), we have P1C = 1F , so the above formula simplifies to Qi j =
Pi j sF

i .
While other choices for Q that satisfy (10) are possible, we find (11) to be the most effective in

practice. Note that if we were to restrict our initial P to have a single element per row, then the new
interpolation defined by GM variant 1 is comparable to SA, where the aggregates are defined by the
columns of Q.

A second choice for Q that satisfies (9) is as follows.
GM variant 2: Let sC be the coarse grid restriction of sF and let

sF = P̃

[
sC

1

]
. (12)

Now Q has the following form:

Qi j = Pi j

(
sF

i

∑ j∈Ci
Pi j

− sC
j

)
, (13)

which simplifies to Qi j = Pi j(sF
i − sC

j ) when P interpolates constants exactly. If we let Q be defined as
in (11), one can easily show that

Range
([

P Q
])

= Range
([

P Q−PsC
])

.

Therefore, the two variants have the same range for the final interpolation matrix P̃ and thus perform
equivalently for a 2-level method (where an exact solver is used on the first coarse grid). Their
multilevel versions differ however, as will be discussed later.

Our approach for both variants is to determine the initial P using an unknown-based interpolation,
so P is a block-diagonal matrix. We require a node-based coarsening such that all unknowns share the
same grid. For example, a 2D linear elasticity problem with unknowns u and v has one “rotation” rigid
body mode, [y;−x]. We let sF = [y;−x] and compute P̃ in the following form:

P̃ =

[
Pu 0 Qu

0 Pv Qv

]
.

This new interpolation adds one degree of freedom at each coarse node which represents the rotation.
Note that if node-based coarsening is not required, then, in the 2D case, two new unknowns would
be added by P̃ instead of one, though the number of non-zeros would remain the same. We have not
investigated this option thoroughly yet, and instead focus on node-based coarsening which is more
natural in elasticity problems.

Now, if we have k smooth vectors to interpolate, then (9) becomes

P̃ =
[

P Q1 · · · Qk
]

s.t. S ∈ range(P̃), (14)
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10 BAKER, KOLEV, AND YANG

where S is a column matrix of k smooth vectors. For both variants, matrix Qr is determined using
sF = {S}r, r = 1 : k. For example, for a 3D linear elasticity problem, three rotation vectors need to
be interpolated exactly. Therefore, we add a column of Q matrices for each rotation, resulting in the
addition of three new dofs at each coarse node:

P̃ =




Pu 0 0 Q1
u Q2

u Q3
u

0 Pv 0 Q1
v Q2

v Q3
v

0 0 Pw Q1
w Q2

w Q3
w


 .

To extend the method beyond two levels, we must now consider the coarsening and interpolation for
the coarse grid matrix A1. The Galerkin coarse grid matrix has the following form:

A1 = P̃T AP̃ =

[
PT AP PT AQ
QT AP QT AQ

]
. (15)

In this discussion, we use only the 2D problem to outline the algorithm, since the 3D case is analogous.
As on the finest level, we perform a node-based coarsening on A1 and form an initial P1 with any
unknown-based interpolation approach in the usual manner. This way, we obtain

P1 =




P1u 0 0
0 P1v 0
0 0 P1C̃


 , (16)

where C̃ indicates the set of new coarse degrees of freedom.
At this point, the difference between the two GM variants is notable. For variant 1, (10) indicates

that P1 must exactly interpolate the columns of



1 0 0
0 1 0
0 0 1


 . (17)

Therefore, P1 as defined in (16) is sufficient (provided the unknown-based interpolation preserves
constants). In contrast, for variant 2, (12) indicates that P1 must exactly interpolate the columns of




1 0 sC
u

0 1 sC
v

0 0 1


 . (18)

This means that we must augment P1 from the unknown-based approach with Q on all coarse levels.
In particular, we coarsen sC to determine sC2 and modify P1:

P̃1 =




P1u 0 Q1u

0 P1v Q1v

0 0 P1C̃



 . (19)

As before, the entries of Q1 are defined per (13):

(Q1)i j = (P1)i j

(
sC

i

∑ j∈C2,i
(P1)i j

− sC2
j

)
. (20)

The key difference here is that variant 1 only needs to have the initial interpolation augmented with
Q on the first coarse grid, whereas variant 2 requires augmentation on all levels as well as storage of
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IMPROVING AMG INTERPOLATION FOR ELASTICITY 11

coarse grid versions of the smooth vectors. In addition, we find that for variant 2, the QT AQ block is
not amenable to classical AMG interpolation. Therefore, we use the following definition for PC̃ on each
level:

(PC̃)i j = (w1Pu +w2Pv)i j, (21)
with equal weights w1 = w2 = 1

2 . This formula ensures that constants are interpolated correctly by
PC̃ and incorporates information from both u and v to determine the rotations. While the above choice
appears to work well in practice, it is not clear that this is the best manner in which to form interpolation
for the QT AQ block, and we intend to further investigate this issue in subsequent work.

The addition of new coarse dofs naturally increases the operator complexity for AMG, particularly
in the 3D case. To reduce the complexity, we truncate the entries in Qr, r = 1 : k, either by using an
absolute or relative threshold, or by specifying a maximum number of entries for Qr in each row. The
total value of the dropped entries is distributed equally among the remaining entries of Qr such that the
row sum of Qr remains the same after truncation. Note that the blocks corresponding to the initial P
are not modified, and the Qr corresponding to each smooth vector (rotation) is truncated separately.

Because “Q-truncation” is a necessity for controlling complexity, particularly for 3D problems,
variant 2 has a distinct advantage over variant 1 in that is it more straightforward to effectively truncate.
The elements of Q may vary greatly in size for variant 1, making truncation difficult. In contrast, for
variant 2, a small value for Q indicates that the value of the smooth vector in a coarse neighbor is close
to the value at the fine point, so it makes sense to drop such a value for Q. Therefore, while variant 1
is computationally cheaper and more directly correlated to SA, we use variant 2 in practice and for all
results with the GM approach due to its amenability for truncation.

While an efficient parallel variant of the GM approach is the subject of future work, we note that its
parallelization is straightforward. The primary issues are that the smooth vector information residing
on neighbor processors must be shared, and the column partitioning of the new interpolation matrix
will need to be adjusted. Neither of these are difficult to handle with the structures provided in modern
parallel AMG libraries, such as [16].

Finally, we observe that when forming the first new interpolation operator P̃ in (9), P̃ is not
guaranteed to be full rank. (We cannot easily orthogonalize the smooth vectors as is done in SA.)
While the probability that the columns of Q are linearly dependent (and therefore P̃T AP̃ is singular)
is small, in general, it is safest to solve the coarse grid with an iterative method like the Conjugate
Gradient (CG) method. In practice, we have not encountered rank deficiency issues when coarsening
many times (we typically coarsen until the coarse grid size is less than 9 variables).

5. Exact interpolation using additional degrees of freedom: a local neighborhood approach

We next describe a “local” version of the GM approach which incorporates the exact representation of
the RBMs in the local extension interpolation (3). We call this the local neighborhood (LN) approach,
and we describe it below based on the notation introduced in Section 2.1. We also point out the
connections with the previous works [11] and [17].

The GM approach presented in the last section finds a new interpolation operator P̃ that exactly
interpolates the smooth vectors. Recall that

C = {coarse neighbors of i},

and let
C̃ = {new coarse neighbors of i}.
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12 BAKER, KOLEV, AND YANG

As before, we let S be a column matrix of k smooth vectors and SC be S at the original coarse dofs. We
also set SC̃ = 1, i.e. the smooth vectors are extended to be 1 at the new coarse dofs, cf. (10), (12). For
the GM approach, variant 2, we have

P̃ =
[

P Q
]

s.t. Si = PiCSC +QiC̃SC̃.

In other words, P̃ exactly interpolates the smooth vectors in S. We now consider a “local neighborhood”
approach to ensure the above property, where we assume that P is formed via harmonic extension as
described in Section 2.1.

Specifically, we assume that the initial interpolation P has the form (4), where ei is determined using
the extension operator

eF = WFCeC . (22)

The key idea in the LN approach is to use the new coarse dofs to exactly interpolate the k smooth
vectors via this extension operator:

eF = WFCeC +WFC̃eC̃ s.t. SF = WFCSC +WFC̃SC̃. (23)

We then define the LN interpolation P̃ by harmonic extension based on the local extension

W̃FC = [WFC,WFC̃] ,

i.e. (cf. (4)),
ei = −A−1

ii (AiCeC +AiFWFCeC +AiFWFC̃eC̃) . (24)

One can also view this approach in terms of a harmonic extension that includes the operator AiC̃, i.e.
we start from

Aiiei +AiFeF +AiCeC +AiC̃eC̃ = 0,

where AiC̃ = 0. This local neighborhood is illustrated for 2D elasticity in Figure 2, where one new dof
is added at each coarse node to represent the rotation (coarse points are denoted by solid circles).

We note that the idea of defining an extension operator (23) which preserves the RBMs was already
proposed and developed by Dohrmann in [11]. His definition of WFC and WFC̃ however, is significantly
more complicated and is based on solving local minimization problems.

Recall that for elasticity, S contains nullspace vectors for A, i.e. for any interior point i we have

AiiSi +AiFSF +AiCSC = 0 . (25)

Combining this with (24) for e = S, we see that P̃ will interpolate the smooth vectors S exactly
provided that (23) holds. In other words, we have localized the interpolation problem to the augmented
extension operator W̃FC. We expect this local version to be better than the GM approach since any local
approximation in W̃FC does not affect the general harmonic extension principle (24), which is valid for
any near-nullspace vector, not just those in S.

As in the GM approach, variant 2, in order to exactly interpolate the smooth vectors S = {sr},
r = 1 : k, we define

WFC̃ = [DF
s1WFC −WFCDC

s1 , · · · , DF
sk

WFC −WFCDC
sk
], (26)

where Ds = diag(s), and the superscript denotes restriction to the corresponding dofs. While this
definition ensures (23), there are two important points regarding the LN approach that remain to be
addressed: how to avoid the restriction on the form of the initial interpolation, and what to do if (25)
does not hold exactly. These topics are discussed in the following paragraphs.
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IMPROVING AMG INTERPOLATION FOR ELASTICITY 13

Figure 2. For 2D elasticity, one new dof (labeled “r”) is added to each coarse point. Coarse connections to fine
point i are denoted by solid lines and fine connections by dashed lines.

First, in order to be able to improve any interpolation operator determined by the AMG solver, we
add a pre-processing step that will put P into the harmonic extension form required above. Specifically,
given an initial interpolation matrix P = {Pi j}, we form a new interpolation matrix Pα via harmonic
extension where the local extension operators are defined by the entries of P:

(Pα)i j = −
1
aii

(ai j + ∑
k∈Fi

aikwk j), (27)

where
wk j =

Pk j

∑n∈Ci
Pkn

.

A procedure of this type (e.g., “iterative weight interpolation” in [7]) can improve the interpolation
weights. However, equally significantly for us, without any assumptions on the form of P, we now
have a new interpolation matrix, Pα, that is based on harmonic extension, and from which we can
determine the LN analog of Q. From (24) and (26), we have that

Qr
i j = −

1
aii

∑
k∈Fi

aikwk j ((sr)k − (sr) j) (28)

for r = 1 : k. The matrices Pα and Qr together form the new LN interpolation operator

P̃ =
[

Pα Q1 · · · Qk
]
.

The second point we want to address relates to our goal of a computationally inexpensive approach
which does not require matrix inversions. This can lead to a situation where (25) is not true, and below
we discuss how to handle this case.

Following the recent indirect Bootstrap AMG work by M. Park et al. [17], for a given smooth vector
s we define the residual

ri = Aiisi +AiFsF +AiCsC. (29)

For the LN approach, we assume that As = 0, or ri = 0. However, if we use something inexact for A,
for example we let A be a diagonal block of the whole matrix, then we may have ri 6= 0.

For any interpolation operator P based on harmonic extension (4), we can rewrite ri as

ri = Aii(si −PiCsC)+AiF(sF −WFCsC) . (30)
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14 BAKER, KOLEV, AND YANG

This holds for any matrix or vector sC and arbitrary si and sF . Equation (30) is particularly interesting
because it illuminates a connection between local and global interpolation. In particular, when ri = 0,
then (30) indicates that if we make the local interpolation WFC exact, i.e. sF = WFCsC, then the global
interpolation PiC will also be exact, i.e. si = (PsC)i, which is exactly our goal. Note that the converse is
not true: exact global interpolation does not imply exact local interpolation due to the nullspace of AiF .
Similarly, (30) shows that the local least-squares fit WFCSCST

C = SFST
C implies the global least-squares

minimization PiCSCST
C = SiST

C , when ri = 0, see [17].
Now, when we apply an unknown-based approach, the interpolation uses only the diagonal blocks

of A. Because this choice yields ri 6= 0, we need to distribute the non-zero residual in order to ensure
that exact interpolation by WFC results in exact interpolation by PiC. One simple and effective option to
do that is to incorporate the residual ri into sF by choosing a s̃F such that

Aii(si −PiCsc)+AiF(s̃F −WFCsC) = 0,

where
AiF s̃F = AiF sF − ri.

For example, let Auu be the block of u-to-u connections of A, then

ri = Auus = (Auu)iisi +(Auu)iF sF +(Auu)iCsC 6= 0.

If we choose s̃F such that
(Auu)iF s̃F = (Auu)iF sF − ri ,

then we can replace (28) with the following:

Qr
i j = −

1
(auu)ii

∑
k∈Fi

(auu)ikwk j((s̃r)k − (sr) j), (31)

where, for example,
(s̃r)k = (sr)k −

ri

∑k∈Fi
(auu)ik

.

With the above modification, we can apply the LN approach in an unknown-based fashion and still
guarantee exact interpolation of the RBMs, even though (25) is violated.

When extending the LN approach beyond two levels, the additional considerations are analogous to
that of the GM approach (variant 2). Specifically, the initial P on all coarse levels must be modified
to include Q. We also modify PC̃ on each level as in (21). In addition, the requirements for a parallel
implementation are straightforward as for the GM approach.

Complexity is also an issue, though how to best perform Q-truncation for the LN approach is
currently under investigation. The most straightforward manner of truncation is to use the same
technique as for the GM approach: truncate the entries in Qr, r = 1 : k, and distribute the value of
the dropped entries equally such that the row sum of Qr remains the same. This is the technique we
used for the experimental results in the next section. However, an alternative truncation approach that
is more in line with the local nature of the LN approach is to reduce the sparsity of Q by removing
columns of WFC̃. One possibility for implementing this is to examine the connections for each fine
point and determine whether one or more coarse connections can be removed such that all the fine
neighbors remain connected to at least one coarse neighbor. In a sense, this technique will determine a
locally optimal coarse set. Investigating local truncation approaches is the subject of future work, and,
while the setup costs would be slightly higher, preserving the harmonic extension principle and the
local nature of the algorithm may be beneficial.
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Figure 3. Cross-section of the initial mesh (left) and the deformed configuration (right) for the 3D pile problem.

Figure 4. The deformed mesh for the 3D beam problem.

6. Numerical experiments

We first briefly describe the 2D and 3D linear elasticity problems that we use for the numerical
experiments in this section. We then present 2-level and multilevel results for the GM and LN
interpolations.

6.1. Example problems

All of these problems use linear elements and were discretized with the unstructured finite element
package aFEM. (Recall that Problem 1 is described in Section 3.)

Problem 2: 3D pile - This 3D elasticity problem is discretized on a cube with 5 subdomains (4
soil layers plus a pile driver). For the pile, ν = 0.4 and E = 3150, and for the surrounding domains
ν = 0.1,0.3,0.3, and 0.2 and E = 0.71. The mesh in the initial and deformed state is given in Figure 3.
The bottom is fixed and the pile is pushed downward at a slight angle.

Problem 3: 3D beam - This 3D elasticity problem on a long beam has an aspect ratio of 8:1. There
is one material with ν = 0.2 and E = 1. One end of the beam is fixed, and the opposite end is pushed
downward. Tetrahedral elements are used as shown in Figure 4.

Problem 4: 2D square - This simple 2D linear elasticity problem has zero Dirichlet boundary
conditions and ν = 0.25 and E = 1 on a single subdomain. The problem is discretized on an
unstructured grid on the unit square. The mesh is shown on the left in Figure 5.

Problem 5: 2D pile - This 2D linear elasticity problem has 3 subdomains: 2 pile drivers plus the
remaining soil material. The piles have ν = 0.1 and E = 103 and the soil area has ν = 0.4 and E = 1.
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16 BAKER, KOLEV, AND YANG

Figure 5. Unstructured mesh for 2D square problem (left) and for the 2D pile problem (right).

The piles are being pushed downwards, and the outside edges of the domain are fixed. The mesh is
shown on the right in Figure 5.

Problem 6: 2D beam - This 2D elasticity problem on a long beam has an aspect ratio of 10:1. The
beam has ν = 0.2 and E = 1. One end of the beam is fixed, and the opposite end is pushed downward.
The elements are triangular, and the mesh and deformation is analogous to that of the 3D beam.

6.1.1. Two-level results We first show 2-level results on small discretizations of the six test problems
to illustrate the effect of incorporating the rotations into the interpolation operator. For these problems,
we used CG on the coarse grid, unknown-based classical interpolation, node-based Ruge-Stüben
coarsening, and a relative convergence tolerance of 10−8. We denote the AMG method by H-AMG
(H = hybrid). CG preconditioned with AMG is the solver for the beam and pile problems (2,3,5, and
6), while the easier square and cube problems (1 and 4) are solved with AMG alone. We denote H-
AMG with GM interpolation by H-AMG-GM and with LN interpolation by H-AMG-LN. We do not
perform any Q-truncation here as we aim to illustrate the maximum benefit of the new approach. (We
focus on practicalities with the multilevel results in the next section.)

Table II. A comparison of iteration counts for the 2-level methods H-AMG, H-AMG-GM, and H-AMG-LN.
(Problems 2,3,5 and 6 use H-AMG/H-AMG-GM/H-AMG-LN as a preconditioner for CG.)

Problem Description Problem Size H-AMG H-AMG-GM H-AMG-LN

1 3D cube 3723 31 14 10
2 3D pile 4225 42 7 7
3 3D beam 3995 43 9 8
4 2D square 1178 15 11 11
5 2D pile 4225 34 12 11
6 2D beam 3995 51 10 8

In general, Table II shows nice improvements in iteration counts for both H-AMG-GM and H-AMG-
LN, particularly for the more difficult beam and pile problems. The 2-level results for the LN approach
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are all either comparable or slightly better than the GM approach, which supports the claim in Section
5 that the LN approach has the potential to be even more effective than the GM approach.

6.1.2. Multilevel results In this section, we show experimental results for H-AMG, H-AMG-GM,
and H-AMG-LN on larger versions of the six example problems. We also compare with an unknown-
based approach (U-AMG). For these problems, we coarsen such that the coarse grid size is less than
50 variables for the beams (Problems 3 and 6) and less than 9 variables for the remaining problems.
We use a relative convergence tolerance of 10−6 and use a direct solver (Gaussian elimination) on the
coarse grid. As before, CG preconditioned with AMG is the solver for the more difficult beam and pile
problems, while the square and cube problems are solved with AMG alone. Relaxation is symmetric
Gauss-Seidel for the problems solved by CG and Gauss-Seidel otherwise. Block smoothing is used
with the hybrid approaches (H-AMG, H-AMG-GM,and H-AMG-LN) for some of the problems (the
“blk. sm.” column in Tables III - VIII). In addition, the type of node-based coarsening (see Section 2.2)
is indicated in the “nodal” column.

For these problems, we made an effort to control the operator complexity. The initial interpolation
matrix P is typically truncated for all four approaches (U-AMG, H-AMG, H-AMG-GM, and H-AMG-
LN) using either a relative threshold or a maximum number of elements per row; a value of Pmax/tr
below one indicates a truncation threshold, whereas integers greater than one indicate the maximum
number of elements per row. To compare iteration counts between methods in a meaningful way, we
attempted as much as possible to obtain reasonably similar complexities for all four (or at least two)
approaches. In particular, for H-AMG-GM and H-AMG-LN, we typically perform a large amount of
Q-truncation using an absolute threshold (Q-th) and/or a maximum number of Q elements per smooth
vector (Q-max). In most cases we also truncated the initial P more for H-AMG-GM and H-AMG-LN
than for the other two approaches. Of course, if we do not Q-truncate H-AMG-GM and H-AMG-LN
(and use the same P-truncation as H-AMG), then lower iteration counts will be obtained. However,
the complexity will be higher, and our emphasis in this section is on practical results. To illustrate the
trade-offs between low complexity and robustness, we also include some “less-truncated” results for
H-AMG-GM in the tables.

We begin with the 2D problems, and results for Problem 4 with n = 70338 are given in Table III.
This 2D square is a very easy problem for AMG, and thus does not benefit much from the GM or LN
interpolation.

Table III. Problem 4: 2D square size n = 70338

solver blk. sm. nodal coarsen interp. (Pmax/tr) Q-th Its (Cop)

U-AMG – – HMIS Ext+i(.3) – 13 (2.4)
H-AMG no Frobenius HMIS Ext+i(4) – 12 (2.4)
H-AMG-GM no Frobenius HMIS Ext+i(4) 0.1 11 (2.5)
H-AMG-LN no Frobenius HMIS Ext+i(4) 0.1 11 (2.5)
H-AMG-GM no Frobenius HMIS Ext+i(4) none 10 (4.4)

Results for Problem 5, the 2D pile problem, are shown in Table IV. This 2D problem is more
difficult than the previous problem, even with CG, and the new approaches are more beneficial. For
this problem we list results for two different types of node-based coarsening, one with block smoothing
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and one without. Note that “max-element” denotes that the condensed matrix is formed using the
maximum element of the corresponding nodal matrix. A comparison of U-AMG to H-AMG indicates
that node-based coarsening is not as effective for this problem as unknown-based coarsening, which is a
disadvantage for H-AMG-GM and H-AMG-LN. We are interested in further investigating node-based
coarsening for systems, but that work is beyond the scope of the current paper.

Table IV. Problem 4: 2D pile n = 111314

solver blk. sm. nodal coarsen interp. (Pmax/tr) Q-th Its (Cop)

U-AMG/CG – – HMIS Ext+i(.2) – 45 (2.7)
H-AMG/CG yes Frobenius HMIS Ext+i(5) – 51 (2.7)
H-AMG-GM/CG yes Frobenius HMIS Ext+i(4) 0.001 33 (2.7)
H-AMG-LN/CG yes Frobenius HMIS Ext+i(4) 0.0008 32 (2.7)
H-AMG-GM/CG yes Frobenius HMIS Ext+i(4) none 27 (4.3)
U-AMG/CG – – HMIS Ext+i(6) – 43 (3.0)
H-AMG/CG no max-element HMIS Ext+i(5) – 49 (2.9)
H-AMG-GM/CG no max-element HMIS Ext+i(4) 0.001 34 (3.1)
H-AMG-LN/CG no max-element HMIS Ext+i(4) 0.00075 33 (3.1)
H-AMG-GM/CG no max-element HMIS Ext+i(4) none 30 (5.0)

Results for the 2D beam with n = 83330, Problem 6, are given in Table V. The new methods H-
AMG-GM and H-AMG-LN show nice improvements for this problem with both classical interpolation
and extended interpolation.

Table V. Problem 6: 2D beam n = 83330

solver blk. sm. nodal coarsen interp.(Pmax/tr) Q-th Its (Cop)

U-AMG/CG – – RS Classical(.5) – 23 (2.4)
H-AMG/CG no row-sum RS Classical – 20 (2.3)
H-AMG-GM/CG no row-sum RS Classical 0.07 13 (2.4)
H-AMG-LN/CG no row-sum RS Classical 0.07 13 (2.4)
H-AMG-GM/CG no row-sum RS Classical none 10 (4.4)
U-AMG/CG – – HMIS Ext+i(.22) – 20 (2.8)
H-AMG/CG no row-sum HMIS Ext+i(5) – 19 (2.8)
H-AMG-GM/CG no row-sum HMIS Ext+i(4) 0.1 14 (2.8)
H-AMG-LN/CG no row-sum HMIS Ext+i(4) 0.1 14 (2.8)
H-AMG-GM/CG no row-sum HMIS Ext+i(4) none 10 (5.1)

We now consider the 3D problems, and for the easiest one, the 3D cube with n = 27027, Table
VI shows that node-based coarsening is beneficial: H-AMG performs better than U-AMG with both
classical interpolation and extended interpolation. As in the case of the 2D square, the new methods
with Q-truncation provide only modest improvement for this simple problem.

The 3D pile Problem 2 with n = 32079 is a fairly challenging problem, and we obtain nice reductions
in iterations using both H-AMG-GM and H-AMG-LN in Table VII. We show results for both classical
and extended interpolation, for which U-AMG is better with extended and H-AMG is better with
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Table VI. Problem 1: 3D cube n = 27027

solver blk. sm. nodal coarsen interp. (Pmax/tr) Q-th Its (Cop)

U-AMG – – HMIS Ext+i(5) – 69 (2.4)
H-AMG yes row-sum HMIS Ext+i(5) – 56 (1.7)
H-AMG yes row-sum HMIS Ext+i – 49 (2.5)
H-AMG-GM yes row-sum HMIS Ext+i(3) 0.01 37 (2.5)
H-AMG-LN yes row-sum HMIS Ext+i(4) 0.006 33 (2.5)
H-AMG-GM yes row-sum HMIS Ext+i(3) none 36 (3.1)
U-AMG – – RS Classical – 70 (3.6)
U-AMG – – RS Classical(.7) – 184 (2.0)
H-AMG no row-sum RS Classical – 65 (1.6)
H-AMG-GM no row-sum RS Classical 0.1 54 (1.8)
H-AMG-LN no row-sum RS Classical 0.1 54 (1.8)
H-AMG-GM no row-sum RS Classical none 28 (3.7)

classical interpolation. The GM and LN interpolations are helpful even with the extra truncation that
has been applied to the initial P.

Table VII. Problem 2: 3D pile n = 32079

solver blk. sm. nodal coarsen interp. (Pmax/tr) Q-th Q-max Its (Cop)

U-AMG/CG – – HMIS Ext+i(4) – – 69 (1.9)
H-AMG/CG no Frobenius HMIS Ext+i(6) – – 82 (1.9)
H-AMG-GM/CG no Frobenius HMIS Ext+i(2) 0.001 1 43 (2.0)
H-AMG-LN/CG no Frobenius HMIS Ext+i(2) 0.001 1 37 (2.0)
H-AMG-GM/CG no Frobenius HMIS Ext+i(4) none none 30 (3.8)
U-AMG/CG – – RS Classical(.75) – – 92 (2.2)
H-AMG/CG yes Frobenius RS Classical(3) – – 69 (2.2)
H-AMG-GM/CG yes Frobenius HMIS Classical(2) none none 34 (2.1)
H-AMG-LN/CG yes Frobenius HMIS Classical(2) 0.001 none 35 (2.1)

Finally, Table VIII lists two different sizes and node-based coarsenings of the 3D beam Problem 3.
Here we also obtain improvement with the new GM and LN interpolations.

In general, we are able to obtain good results with H-AMG-GM and H-AMG-LN, even with the
extra efforts to control the complexity, making the new methods very competitive. While the 2-level
results indicate an advantage for the LN approach, the distinction is not as sharp in the multilevel case,
because the GM approach performs slightly better on some problems.

7. Summary

We have proposed two new methods for extending an initial AMG interpolation operator to exactly
interpolate a given set of near-nullspace vectors. Our experiments indicate that interpolating near-
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Table VIII. Problem 3: 3D beam n = 19683 and n = 85155

solver size blk. sm. nodal coarsen interp. (Pmax/tr) Q-th Q-max Its (Cop)

U-AMG/CG 19683 – – HMIS Ext+i(3) – – 50 (3.2)
H-AMG/CG 19683 no max-element HMIS Ext+i(4) – – 50 (3.0)
H-AMG-GM/CG 19683 no max-element HMIS Ext+i(2) 0.1 1 24 (3.1)
H-AMG-LN/CG 19683 no max-element HMIS Ext+i(2) 0.06 1 27 (3.1)
U-AMG/CG 85155 – – HMIS Ext+i(3) – – 59 (3.0)
H-AMG/CG 85155 yes row-sum HMIS Ext+i(7) – – 43 (2.2)
H-AMG-GM/CG 85155 yes row-sum HMIS Ext+i(4) 0.1 1 31 (2.3)
H-AMG-LN/CG 85155 yes row-sum HMIS Ext+i(5) 0.1 none 28 (2.3)

nullspace vectors exactly, rather than approximately, is important. While the addition of coarse dofs
is required to obtain exact interpolation, we demonstrate that reasonable complexities can be achieved
through aggressive truncation of the new interpolation operator. The new approaches have a number
of practical advantages, including low-complexity (due to the unknown-based interpolation), low-cost
(no matrix inversions or need to solve minimization problems), and generality (no requirement for a
finite element framework). More significantly, though, is the ability to derive robust interpolation by
modifying existing AMG interpolation operators, rather than creating new ones. This feature is of great
practical importance because it enables us to take advantage of the numerous (parallel) interpolation
strategies available in AMG libraries such as [16]. Finally, while the focus of this work is interpolating
the rigid body modes for linear elasticity problems, the GM and LN techniques can be used for
interpolating given near-nullspace vectors in general problems.
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