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Abstract
Applications in geosciences, such as reservoir modeling, continue to grow in both size and complexity. Simulations are increasingly

complex as they couple more physical phenomena over larger physical domains. As a result, the linear system that arises from the
numerical solution of these problems can be challenging to solve by iterative methods. Simulators require advanced algebraic solvers
that are robust enough to handle the anisotropies, heterogeneities and coupling between the physical variables, and scalable enough to
handle large-scale solution on high performance parallel systems. Multigrid solvers are a class of iterative solvers that are scalable and
efficient for solving linear systems that arise from Large-scale applications. However, applications with multiple physical unknowns
pose a challenge for standard multigrid techniques, particularly when the coupling between the unknowns is strong. In this paper, we
present our efforts to develop a multigrid- preconditioned Krylov solver, where the preconditioner is based on the multigrid reduction
framework. This preconditioner is designed to represent the coupling between the physical variables of the reservoir modeling equations
and account for the underlying physics of the system. Two-stage preconditioners, such as the well-known constrained pressure residual
(CPR) approach and its variants like CPR-AMG, have been commonly used in reservoir simulation applications. We discuss how
these current solver strategies may be interpreted within the multigrid reduction framework to better understand the different variations.
Finally, we present techniques for improving the MGR approach and present results on solver performance on examples from reservoir
modeling.

Introduction
Linear systems which originate from the equations of reservoir modeling are among the most difficult to solve by iterative methods.

These linear systems typically represent coupling between multiple physical unknowns at different scales and are non-symmetric and
very ill-conditioned. This makes it difficult to extract effective preconditioners that adequately account for the underlying physics of the
problem. Solving these linear systems consumes most of the computational time in all modern reservoir simulators. Furthermore, the
demand for more accurate simulations have led to larger and more complex reservoir models. This makes the linear systems even more
difficult to solve by direct or iterative methods.

In the past, incomplete LU factorization (ILU) methods have been used for solving the equations of reservoir simulations, primarily
due to their robust nature (Watts, 1981; Behie & Vinsome, 1982; Appleyard & Cheshire, 1983). These methods provide an approximation
of the exact LU factorization by introducing sparsity in the L and U factors. However, as simulations cover larger and larger domains and
are deployed over high performance parallel architectures, there is an apparent need for robust solvers that scale and the use of standard
(single-level) ILU methods become less favorable.

In recent years, two-stage preconditioners have been widely used within the reservoir modeling community. See for instance (Wallis
et al. , 1985; Scheichl et al. , 2003; Lacroix et al. , 2001, 2003; Zhou et al. , 2013; Al-Shaalan et al. , 2009; Liu et al. , 2015; Hu et al. ,
2011, 2013b,a) and references therein. In this approach, the solution process for the coupled linear system is split into two main stages,
based on the properties of the physical variables as prescribed by the dynamics of the underlying physics. This splitting enables an
effective preconditioner to be constructed for each stage, allowing for a balance between robustness and scalability of the linear solver.
It is worth noting that adaptations of the two-stage approach to deal with additional variables or contributions such as well equations
have been explored in the context of a multi-scale approach (Zhou et al. , 2013; Liu et al. , 2015). The constrained pressure residual
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(CPR) method (Wallis, 1983; Wallis et al. , 1985) is one variant of the two-stage preconditioning strategy. In this approach, the first stage
consists of solving a reduced linear system for the variables that typically control the flow, such as the pressure variables. This linear
system can be poorly conditioned, making it challenging to solve. As a result, an effective preconditioner is needed for this first stage.
The global solution is then updated with the solution from the first stage. In the second stage of the CPR method, the solution for the
remaining unknowns, describing the saturation or mole fraction related variables, are obtained by solving the linear system on the global
problem. Assuming the first stage preconditioner was effective enough, a cheaper preconditioner may be used for the second stage solve
to achieve an efficient global solution strategy. The effectiveness of the CPR method has led to various adaptations of the approach.
For instance, it is common practice to perform an additional preconditioning step known as decoupling before or after the first stage in
order to improve the performance and convergence of the global solution strategy. Decoupling after the first stage transforms the global
problem so that cheap yet effective preconditioners can be used for an efficient solution of the second stage linear system (Zhou et al. ,
2013). Decoupling prior to the first stage transforms the global system so that reduced linear system has algebraic properties that favor
the construction of an efficient preconditioner for the first stage linear system. Since the convergence of the CPR method depends on
the convergence of the first stage linear system solve, recent work in the area has focused on the development of effective and efficient
preconditioners for the first stage linear system. Techniques such as the recent CPR-MS method (Cusini et al. , 2015) use multiscale
finite volume or finite element methods to solve the reduced linear system. A more common alternative is the CPR-AMG method (Clees
& Ganzer, 2007; Lacroix et al. , 2001, 2003; Stueben et al. , 2007; Al-Shaalan et al. , 2009; Scheichl et al. , 2003; Tchelepi & Jiang,
2009a; Dubois et al. , 2009; Gries et al. , 2013), which uses algebraic multigrid (AMG) solvers as preconditioners for the reduced linear
system, in order to benefit from the robustness and scalability of AMG. Here, the work has focused primarily on constructing a reduced
system such that the coefficient matrix has elliptic or M-matrix properties that are favorable for AMG, while yielding good convergence
for the overall CPR strategy (Liu et al. , 2015; Gries et al. , 2013).

In this paper, we present a general multigrid framework for constructing two-stage preconditioners, based on the multigrid reduction
method (MGR) (Ries et al. , 1983). Multigrid reduction techniques have been around for many years and can be considered as a
generalization of the CPR method in a standard multigrid framework. Adaptations of the reduction approach based on ILU strategies
include the ARMS (Saad & Suchomel, 2002) and Multigraph (Bank & Smith, 2002) algorithms. One benefit of this generalization of
two-stage preconditioners within the MGR framework is that we can derive a closed form of the error propagator for the approach, which
is based on standard multigrid components such as the restriction, prolongation, and coarse grid operators. This enables us to show the
effect of the different multigrid components on the convergence of the linear solver. Furthermore, the MGR framework provides a
theoretical foundation to better understand and develop improved strategies, which can lead to more effective and scalable two-stage
preconditioners.

The paper is organized as follows: In the Model Formulation section, we introduce the reservoir simulation equations and briefly
discuss properties of the resulting linear system. We also describe the two-stage solver framework based on CPR. In the Multigrid
Reduction section, we present the MGR approach and show how existing two-stage preconditioners may be represented in the general
MGR framework. We also present different strategies for improving MGR for reservoir models. The Numerical Results section presents
some numerical results on applications from standard industry tests like SPE 10 as well as simulation models from real fields. We
conclude in section Discussion and Conclusion.

Model Formulation
Fully-implicit reservoir modeling equations We follow a general formulation of the fully-implicit modeling equations, in which each
phase consists of several components. The components are transported within phases and exchanged across phase boundaries. In what
follows, we present the equations that describe such phenomena in the isothermal case under the assumption of local thermodynamic
equilibrium. Here, we assume Nc components are distributed between Np phases that are in thermodynamic equilibrium. The unknowns
are the mole fractions ni, i = 1, . . . ,Nc and a reference pressure P. Consequently, we have that

Nc

∑
i=1

ni = 1 (1)

The mass conservation equation for component i in volume V is given by:

∂

∂t

∫
V

Wi +
∫

∂V
Ui ·n=

∫
V

Ri, i = 1,2, · · · ,Nc (2)

where Wi is the total concentration of component i, Ui is the total flow rate of component i, and Ri represents the sources and sinks,
which include productions and reactions. The total quantities in the above equation can be formally expressed as follows:

Wi = φξT ni, where ξT =
Np

∑
j=1

ξ jS j for i = 1,2, · · · ,Nc; (3)
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and

Ui =
Np

∑
j=1

ni jξ jv j, i = 1,2, · · · ,Nc (4)

where φ is the porosity defined as pore volume per bulk volume; ξ j is the molar density of phase j; S j is the saturation of phase j defined
as the volume of phase j per pore volume; ni j is the mole fraction of component i in phase j; and v j is the volumetric flow rate of phase
j. Therefore, the mass conservation equation can be written with respect to the components as:

∂

∂t

∫
V

φξT nidV +
Np

∑
j=1

∫
∂V

ni jξ jv j ·ndA = Q̄i, i = 1,2, . . . ,Nc. (5)

The quantity v j is given by multiphase Darcy’s law

v j =−kλi∇Φ j, ∇Φ j = ∇(P+Pcap, j)−ρ jg∇z, j = 1,2, . . . ,Np, (6)

where k is the absolute permeability, λi is the mobility of phase j, Pcap, j is the capillary pressure of phase j, ρ j is the mass density of
phase j, g is the gravity constant, z is the vertical coordinate direction. In addition to (5), we note that the equation related to the pressure
primary variable is given by (1).

To complete the set of equations we shall restrict ourselves to the isothermal setting and local thermodynamic equilibrium. This
means that the flow is slow enough that the partitioning of a component i across the phases can be determined by thermodynamic
equilibrium considerations. Without going into the details, this yields algebraic expressions of the form

ni j

nik
= Zi jk(T,P,ni j,nik) (7)

for each phase j 6= k, and where T is the temperature and Z represents some algebraic function. See (Allen et al. , 1992; Falta, 1992;
Helmig, 1997; Bastian, 1999) for a more detailed treatment of the thermodynamics.

Discretization The equations are discretized by the finite volume method, with the two-point flux approximation scheme, on an un-
structured mesh. On a grid block Vm, the nonlinear equations satisfy:

Ψi =
[
(φξT ni)

n+1− (φξT ni)
n]m(Vm)−∆t ∑

`∈Π(Vm)

Tm`

[
Np

∑
j=1

ni jξ jλ j∆Φ j

]n+1

m`

− Q̄im(Vm), i−1,2, · · · ,Nc (8)

where Π(Vm) is the set of the indices of the neighbors of Vm; m(Am) and m(Am`
) are the volume of the grid block Vm and the area of the

face Am` between Vm and V` correspondingly; and Tm` is the transmissibility of connection ` given by:

Tm` =
m(Am`)

dist(xm,x`)
2kmk`

km + k`
.

Here, xm and x` are the cell centers of the cells Vm and V`; and km and k` are the absolute permeabilities in these cells.
The nonlinear system is solved by the fully implicit method with Newton-Raphson linearization. Recall that the equations cor-

responding to the pressure unknowns come from (1). The constraint in (1) suggests that the discrete system will have only Nc− 1
independent component unknowns. Thus, we can reduce the system by eliminating one of the component unknowns, yielding a consis-
tent set of pressure equations and a non-defective linearized system. Using Ψ′i to denote the reduced from of the discretized equations (
Ψ′i in (8) ), the resulting Jacobian linear system that needs to be solved at each Newton step is

Aδx = b. (9)

Here, A is the Jacobian matrix, given by

A =
∂(Ψ′1, · · · ,Ψ′Nc

)

∂(P,n1, · · · ,nNc−1)
; (10)

b = (ΨP,Ψ1, · · · ,ΨNc)
T is the right-hand side; and δx = (δ(P,n1, · · · ,nNc))

T is the Newton update solution.
Let N represent the total number of cells, and define N′c = Nc−1. Then the matrix A can be written in block form as:

A =


A11 A12 · · · A1N
A21 A22 · · · A2N

...
...

. . .
...

AN1 AN2 · · · ANN

 , (11)
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where each block Ai j corresponds to a matrix prescribed by the equations within one cell, and has the following structure

Ai j =



ai j
pp ai j

p1 ai j
p2 · · · ai j

pN′c
ai j

1p ai j
11 ai j

12 · · · ai j
1N′c

ai j
2p ai j

21 ai j
22 · · · ai j

2N′c
...

...
...

. . .
...

ai j
N′c p ai j

N′c1 ai j
N′c2 · · · ai j

N′cN′c


(12)

Reordering the system by the unknowns, we have

A =


App Ap1 Ap2 · · · ApN′c
A1p A11 A12 · · · A1N′c
A2p A21 A22 · · · A2N′c

...
...

...
. . .

...
AN′c p AN′c1 AN′c2 · · · AN′cN′c

=

(
App Apn
Anp Ann

)
. (13)

We note that in this form, each submatrix Aip represents separate discretized elliptic equations.

Two-stage Preconditioners To solve the linear system (9) from the reservoir simulations, regular Krylov subspace solvers are em-
ployed. In order to speed up these solvers, in practice, the following equivalent linear system is solved instead:

M−1Ax = M−1b, (14)

where M is a left preconditioner.
A proper preconditioner can reduce the condition number of matrix M−1A, which accelerates the convergence of the Krylov solver.

For reservoir simulation, the ILU(k) and the ILU(p, tol) are widely applied methods, since they are simple to implement and effective
on problems with moderate complexity. However, when the problem scale is large or the simulation models are more complex, more
stable and robust preconditioners are needed.

Wallis et al. (1985) developed the constrained pressure residual (CPR) method as a preconditioner to speed up the convergence
of the linear system solver. This method has been adopted by many researchers and commercial simulators, and various adaptations to
the approach have been developed. The CPR preconditioner is a two-stage preconditioner that begins by first solving for the pressure
variables from a reduced linear system corresponding to the App block. The pressure solution is then used as an approximate solution
to the global problem, which is then solved by the restricted additive Schwarz (RAS) method at the second stage. In the classical
preconditioner developed by Wallis et al. (1985), the pressure problem is solved by the ILU method. Recently, algebraic multigrid
(AMG) methods have been preferred to solve the pressure problem due to their scalability properties and effectiveness on elliptic
problems. In practice, Ms is chosen as ILU or block SOR methods. To be efficient on parallel computers, the second stage preconditioner
is prescribed by a RAS or block Jacobi method with an ILU solver for the subdomain problem on each processor. Details of the RAS
method can be read in Cai & Sarkis (1999). The two-stage preconditioner has been demonstrated to be the most efficient preconditioner
for reservoir simulation Cao (2002); Cao et al. (2005). For a detailed description of the two-stage methods, see Tchelepi & Jiang
(2009b); Al-Shaalan et al. (2009).

Multigrid
Multigrid methods are so-called scalable or optimal methods because they can solve a linear system with N unknowns with only

O(N) work. This property gives them the potential to solve larger problems on proportionally larger parallel machines in constant time.
Multigrid methods achieve this optimality by employing two complementary processes: smoothing and coarse-grid correction. In the
classical setting of scalar elliptic problems, the smoother (or relaxation method) is a simple iterative algorithm like Gauss-Seidel that is
effective at reducing high-frequency error. The remaining low-frequency error is then accurately represented and efficiently eliminated
on coarser grids via the coarse-grid correction step. Applying this simple multigrid idea to get a scalable method can be challenging for
some classes of problems, however. The “right” choice of smoother and intergrid transfer operators (restriction and interpolation) is not
straightforward in general. This is especially true for systems of PDEs such as those that arise in reservoir simulation. When designed
properly, a multigrid solver is algorithmically scalable, because it will uniformly damp all error frequencies with a computational cost
that depends only linearly on the problem size.

Multigrid Reduction
Multigrid Reduction (MGR) is a type of multigrid method that is derived by making certain approximations to an underlying direct

method called total reduction to yield an efficient iterative solver (Ries et al. , 1983). MGR and its variants have been shown to be
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effective for Poisson-like equations and anisotropic problems. They have also been used to do non-intrusive parallel time integration
(Falgout et al. , 2014). To describe the MGR method, we start by decomposing the unknowns into two sets conventionally known as
C-points and F-points. In the context of this paper, the C-points are the pressure unknowns (denoted by ‘p’) and the F-points are the
mole fraction unknowns (denoted by ‘n’). This gives the following two-by-two matrix decomposition:

A =

(
App Apn
Anp Ann

)
=

(
Ip ApnA−1

nn
0 In

)(
App−ApnA−1

nn Anp 0
0 Ann

)(
Ip 0

A−1
nn Anp In

)
, (15)

where Is and Ip are identity operators. We define the so-called ideal restriction R∗, ideal prolongation P∗, and injection operator S by

R∗ =
(
Ip −ApnA−1

nn
)
, P∗ =

(
Ip

−A−1
nn Anp

)
, S =

(
0
In

)
. (16)

Then, since Ann = ST AS and App−ApnA−1
nn Anp = R∗AP∗, it is easy to see that

A−1 = P∗(R∗AP∗)−1R∗+S(ST AS)−1ST

and

0 = I−A−1A = I−P∗(R∗AP∗)−1R∗A−S(ST AS)−1ST A (17)

= (I−P∗(R∗AP∗)−1R∗A)(I−S(ST AS)−1ST A) (18)

= (I−S(ST AS)−1ST A)(I−P∗(R∗AP∗)−1R∗A), (19)

where the equivalence occurs since R∗AS = ST AP∗ = 0. This identity defines the two-level multigrid method with the ideal Petrov-
Galerkin coarse-grid operator R∗AP∗ and the F-relaxation S(ST AS)−1ST . Equation (17) is the additive MGR identity and (18) and (19)
are multiplicative identities with pre-smoothing and post-smoothing. In this paper, we only consider the multiplicative variants of the
algorithm. In practice, MGR methods replace ideal restriction and prolongation with approximations R and P respectively, where

R =
(
Ip WR

)
, P =

(
Ip

WP

)
, (20)

WR ≈−ApnA−1
nn , and WP ≈−A−1

nn Anp. Consequently, RAP is an approximation to the Schur complement R∗AP∗:

RAP = App +WRAnp +ApnWP +WRAnnWP (21)

≈ App−ApnA−1
nn Anp.

The F-relaxation in (19) is also generally replaced with a more efficient method and often extended to all unknowns, not just F-points.
In general, we define the MGR operator in either pre-smoothing or post-smoothing form by

I−M−1
MGRA = (I−PM−1

C RA)(I−M−1
S A), (22)

I−M−1
MGRA = (I−M−1

S A)(I−PM−1
C RA), (23)

where M−1
C ≈ (RAP)−1 is the coarse grid correction and M−1

S is the smoother. The smoother can be (approximate) F-relaxation, such that
M−1

S = SM−1
n ST with M−1

n ≈ (ST AS)−1. It can also be extended to a global fine-grid relaxation method such as Jacobi, Gauss-Seidel,
ILU, etc. Previous (optimal) variants of MGR replace F-relaxation with FCF-relaxation and apply the two-level method recursively to
achieve a multilevel method (Foerster et al. , 1981; Ries et al. , 1983; Parter, 1987; MacLachlan et al. , 2006; Falgout et al. , 2014).
Other methods in the literature that are closely related to MGR, such as ARMS (Saad & Suchomel, 2002; Li et al. , 2003) and multigraph
(Bank & Smith, 2002, 1999), often use ILU factorizations to approximate Ann and the Schur complement.

Interpretation of preconditioners in MGR MGR is a general framework. The two-stage preconditioner can be rewritten as a special
case of MGR. In particular, consider the case

CPR:
{

WR =−blockdiag(Apn) blockdiag(Ann)
−1,

WP = 0, (24)

where blockdiag(Ann) is the matrix of nonzeros of Ann that are on the main block diagonal of A (i.e., only nonzero couplings between
unknowns in the same grid cell) and similarly for blockdiag(Apn). With this, the MGR method in (23) is the same as the quasi-IMPES
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variant of CPR (Lacroix et al. , 2003; Hammersley & Ponting, 2008). Here, by (21) and (24), the coarse-grid (pressure) system MC
approximates the Schur complement as follows:

M(CPR)
C = App−blockdiag(Apn) blockdiag(Ann)

−1Anp. (25)

Note that an alternative approach for using (25) in CPR is to transform the system in (15) by first left-muliplying it with the matrix(
Ip −WR
0 In

)
. (26)

This makes the upper-right block of the matrix “nearly zero” (it is exactly zero when WR is ideal), effectively decoupling the pressure
system from the mole fraction equations. Once the system is transformed, the CPR algorithm can again be interpretted as an MGR
method, but with trivial injection operators for R and P. We do not consider this variant of MGR here.

Improving MGR for reservoir models The CPR operators R and P given by (20)/(24) approximate the ideal operators R∗ and P∗.
Although CPR has proven to be a highly effective solver for reservoir simulation, in the framework of MGR, it is easy to imagine
alternative approximations that can be more robustness for difficult classes of problems. One simple approach is to first note that the WR
and WP for the ideal case satisfy the following linear systems:

AT
nnW T

R =−AT
pn; AnnWP =−Anp. (27)

Hence, one good approach for computing WR and WP is to apply an iterative method to these systems as in Algorithm 1.

Algorithm 1 Prolongation Relaxation algorithm

Let W 0
R = 0 and W 0

P = 0
For k = 1, ...,kmax :

W k
R ←W k−1

R +(−Apn−W k−1
R Ann)M−1

nn
W k

P ←W k−1
P +M−1

nn (−Anp−AnnW k−1
P )

Any smoother can be used as the relaxation method Mnn. In practice, just one step of block Jacobi is often good enough and produces
nearly the same operators as the CPR method in (24):

Block Jacobi:
{

WR =−Apn blockdiag(Ann)
−1,

WP =−blockdiag(Ann)
−1 Anp.

(28)

Other methods such as ILU and larger values of kmax can also be used. This typically improves the robustness of MGR, but at the cost
of a higher computational complexity. Finding the right balance between these competing factors is important.

One way to reduce operator complexity is to notice that the reduction method in (17)–(19) does not require both R∗ and P∗. For
example, we can define restriction to be the injection operator RI =

(
Ip 0

)
and we have

(I−P∗(RIAP∗)−1RI)(I−S(ST AS)−1ST A)

=

(
I− (App−ApnA−1

nn Anp)
−1App −(App−ApnA−1

nn Anp)
−1Apn

A−1
nn Anp(App−ApnA−1

nn Anp)
−1App I +A−1

nn Anp(App−ApnA−1
nn Anp)

−1Apn

)(
I 0

−A−1
nn Anp 0

)
= 0

The same result holds if we keep R∗ and define interpolation to be the injection operator PI instead. With this version of the reduction
method, we can choose to set either WR or WP to be zero and use Algorithm 1 to compute the other one.

For the MGR method studied in the numerical results section, we set WR = 0 and define WP as in (28). We use the pre-smoothing
variant of MGR in (22) with smoother given by global block Jacobi relaxation followed by block Jacobi F-relaxation. We use the MGR
preconditioner in Algorithm 2 to precondition GMRES.

Algorithm 2 MGR preconditioner for Reservoir Simulation
Let r = b and e0 = 0
Global Relaxation: e1← e0 +M−1r, where M = blockdiag(A)
F-Relaxation: e2← e1 +SM−1

nn ST (r−Ae1) where Mnn = blockdiag(Ann)
Coarse Grid Correction: e3← e2 +PM−1

C RI(r−Ae2) where M−1
C is approximated by a classical AMG method
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Numerical Results
In this section, numerical experiments are performed for the MGR preconditioner. The MGR preconditioner is implemented as a

part of system solver in HYPRE (Falgout et al. , 2006). The HYPRE software library is a collection of high performance preconditioners
and solvers for large sparse linear systems of equations on massively parallel machines. All of the experiments are preformed on a
multi-socket Linux cluster at LLNL with 324 compute nodes connected by InfiniBand QDR (QLogic). All compute nodes have dual
socket 8-core Intel Xeon E5-2670 (2.6 GHz) processors for 16 cores per node and 64 GB memory per node. The code is compiled using
gcc-4.9.2 as the compiler and openmpi-1.6.5 for the MPI implementation.

The details of the MGR preconditioner for the tests are as follows. The pressure unknowns are marked as the C-points and other
mole fractions unknowns are marked as F-points. The block Jacobi smoother is already efficient for using as the F-relaxation and global
relaxation. Each block for global relaxation and F-relaxation corresponds to one cell. Since the coarse grid matrix is mostly elliptic
in nature and AMG methods are efficient for solving this problem, BoomerAMG has been used as the solver for the coarse grid. The
coarsening scheme is HIMS, the interpolation is with extended+i interpolation truncated to at most 4 elements per row. The smoothers is
one step of lexicographic ordered hybrid Gauss-Seidel relaxation. For the full simulations, Newton method is applied and the termination
tolerance is 10−6. The number of maximal Newton iterations is 20. The linear solver is preconditioned GMRES(50) and its maximal
inner iterations is 100.

The first test is a 2-phase oil-water model. It has a simple domain of size 20m× 20m× 20m. The permeability and porosity are
homogenous. The porosity is 0.2 and the permeability is set to kx = ky = kz = 100 mD. There is one injection well at one corner and one
production well at the opposite corner. The total simulation time is 200 days. We use this test to study the convergence and scalability
of the proposed MGR preconditioners. In order to test the convergence, we use a sequence of different structured grids. There sizes are
10×10×10, 20×20×20, 40×40×40, 80×80×40, and 160×160×40. Note that although the grid size decreases as we refine it, this
does not lead to higher heterogeneity. However for the problem on real field, higher grid resolution usually leads to higher heterogeneity
and hence to more difficult Jacobian systems to solve. In Table 1 shows the total number of Newton iterations, total number of linear
iterations, total wall time, and the average linear solver time. From this table, we can see that the CPU time for solving one Jacobian
system is proportional to the size of the test problem. This means that the MGR precondiitoner has optimal computational complexity
for this test problem.

Problem Size # Newton steps #linear iterations total wall time Average solver time
10×10×10 40 520 13.03s 0.025s
20×20×20 39 624 109.83s 0.176s
40×40×40 39 683 1029.93s 1.508s
80×80×40 40 741 4503.50s 6.077s

160×160×40 39 758 19507.37s 25.735s

Table 1: Convergence test for the MGR preconditioner

Then, we test this model to investigate the scalability of MGR preconditioner. For the weak scalability test, we fix the local problem
size as 64000 cells on each core. Table 2 shows the number of Newton iterations, linear iterations, and total wall time of the numerical
test. As shown in the table, the number of iterations for the linear solver is stable as we increase the problem size and number of cores.
Almost linear scalability was achieved up to 64 cores. The strong scalability is tested on multiple nodes for the test problem too. Table 3
shows the results of strong scalability with up to 128 cores. From the table, we observe that the total number of linear iterations does not
increase as the number of processes increases. It shows that the preconditioner is stable even with multiple cores. However, as shown
in Figure 1 the strong scalability of the total wall time of the solver deteriorates as number of processes increases. The main reason is
because of the low linear solver parallel efficiency. This is mainly due to the dominant cost of communication of the AMG solver on the
coarse grid.

#nodes # cores # Problem size # Newton steps #linear iterations total wall time
1 4 40×40×40 40 725 1643.05s
1 8 80×40×40 39 686 1757.35s
2 16 80×80×40 39 697 1802.53s
4 32 80×80×80 39 706 1926.63s
4 64 160×80×80 38 656 2041.30s

Table 2: Weak scalability tests for the MGR preconditioner

The second test is to evaluate the performance and the scalability of the MGR preconditioner for a large and more complex model,
the SPE10 benchmark problem. This test problem uses the dataset from the Tenth SPE Comparative Solution Project, which was
designed to compare the ability of upscaling approaches used by various participants to predict the performance of a water-flooding in a
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#nodes # cores # Newton steps #linear iterations total wall time speed up
1 8 39 685 196.98s 5.228
2 16 39 683 109.22s 9.430
3 24 39 683 80.63s 12.774
4 32 39 674 62.19s 16.561
5 40 39 683 60.25s 17.094
6 48 39 691 55.74s 18.470
7 56 39 674 50.92s 20.226
8 64 39 674 46.49s 22.154

16 128 39 677 41.06s 25.083

Table 3: Strong scalability tests

Figure 1: Scalability of MGR preconditioner

simple but highly heterogeneous reservoir. The model is generated on a 60×220×85 regular Cartesian grid. The model dimensions are
1200×2200×170( f t). The top 70 ft (35 layers) represents the Tarbert format and the bottom 100 ft (50 layers) represents Upper Ness.
There is one injector in the center of the field and four produces at each of the four corners. The simulation time is 100 days. Table 4
shows the total wall time and the total number of linear iterations. By using more processors, the number of linear iterations slightly
increases. However the scalability of the computing time is still good.

# nodes # cores Total time # linear Iterations
8 64 404.64s 1474

16 128 198.42s 1499
32 256 132.58s 1539

Table 4: Scaling tests for SPE10 model

Lastly, we investigate the robustness of the proposed MGR preconditioners with real field problem. The problem is a 3-phase
(water, gas, oil) model. The fine grid contains 3 million cells in total. It has 53 wells, 25 injection wells, and 28 production wells. The
matrices we are testing is the Jacobian systems of the second Newton step at t = 100. Table 5 presents the numerical results for the
Jacobian system of the model problem. It shows that the linear solver is robust. Even using more processors, the convergence rate is
similar. It has good scalability for the solve time. Although the speedup of the sequential MGR preconditioner over ILU(5) is only 1.13,
MGR precondiitoner is almost scalable with problem size the processors, which is very important for large-scale problems. Due to the
complexity of the problem, ILU preconditioner with smaller fill-in number are not converging for these problems. Although ILU(5)
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works well for these two models because the problem size is relatively small. It is very inefficient for large size of problem and difficult
to develop a parallel ILU(5). However in the test our new algorithm still performs more efficiently and robustly. The numerical results
shows the efficiency of our new approach for practical reservoir simulation problems.

# nodes # cores method # iterations solve time speed up
1 1 MGR 9 24.67 1.13
1 2 MGR 8 11.02 2.53
1 4 MGR 9 7.05 3.95
1 8 MGR 9 4.58 6.08
4 32 MGR 10 1.45 19.19
1 1 ILU(5) 8 27.83 1

Table 5: Convergence test for the MGR preconditioner

Discussion and Conclusion
We presented the MGR framework and applied it to reservoir modeling. Lots of the existing preconditioners for reservoir modeling,

like The two stage preconditioners, can be rewritten as a special case of MGR. The general framework provides Based on the framework
we also proposed an effective and robust preconditioner for solving the large-scale Jacobian systems arising from a fully implicit
discretization.

We tested the efficiency and robustness of the new MGR preconditioner by applying it to several reservoir models. We also tested
the scalability of the MGR preconditioner with both simple benchmark models and real field problem with more complicated features.
The numerical results show that our method is quite robust and also has good scalability, both of which are important for field-scale
reservoir simulation.

However, more testing is certainly needed to draw any final conclusions for the proposed MGR preconditioner. In particular, the
influence of wells especially the hydraulic wells, models with fractures or other geophysical properties, or multi-phase models should be
carefully investigated. In all of the numerical tests, a two level MGR with the block Jacobi relaxation is already good enough. However
this cannot always be expected to be true. some more complex cases should be considered to design a more robust multilevel MGR
preconditioner with stronger relaxation.
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