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Abstract. The need to solve linear systems arising from problems posed
on extremely large, unstructured grids has sparked great interest in par-
allelizing algebraic multigrid (AMG). To date, however, no parallel AMG
algorithms exist. We introduce a parallel algorithm for the selection of
coarse-grid points, a crucial component of AMG, based on modifica-
tions of certain parallel independent set algorithms and the application of
heuristics designed to insure the quality of the coarse grids. A prototype
serial version of the algorithm is implemented, and tests are conducted
to determine its effect on multigrid convergence, and AMG complexity.

1 Introduction

Since the introduction of algebraic multigrid (AMG) in the 1980’s [4, 2, 3, 5, 19,
16, 18, 17] the method has attracted the attention of scientists needing to solve
large problems posed on unstructured grids. Recently, there has been a major
surge of interest in the field, due in large part to the need to solve increasingly
larger systems, with hundreds of millions or billions of unknowns. Most of the
current research, however, focuses either on improving the standard AMG algo-
rithm [9, 7], or on dramatic new algebraic approaches [20, 6]. Little research has
been done on parallelizing AMG. The sizes of the modern problems, however,
dictate that large-scale parallel processing be employed.

Methods for parallelizing geometric multigrid methods have been known for
some time [10], and most of the AMG algorithm can be parallelized using existing
technology. Indeed, much of the parallelization can be accomplished using tools
readily available in packages such as PETSc or ISIS++. But, the heart of the
AMG setup phase includes the coarse-grid selection process, which is inherently
sequential in nature.

In this note we introduce a parallel algorithm for selecting the coarse-grid
points. The algorithm is based on modifications of parallel independent set algo-
rithms. Also, we employ heuristics designed to insure the quality of the coarse
grids. A prototype serial code is implemented, and we examine the effect the
algorithm has on the multigrid convergence properties.

In Section 2 we outline the basic principles of AMG. Section 3 describes
our parallelization model and the underlying philosophy, while the details of the
parallel algorithm are given in Section 4. Results of numerical experiments with
the serial prototype are presented and analyzed in Section 5. In Section 6 we
make concluding remarks and indicate directions for future research.



2 Algebraic Multigrid

We begin by outlining the basic principles of AMG. Detailed explanations may
be found in [17]. Consider a problem of the form Au = f, where A is an n x n
matrix with entries a;;. For AMG, a “grid” is simply a set of indices of the
variables, so the original grid is denoted by 2 = {1,2,...,n}. In any multigrid
method, the central idea is that error e not eliminated by relaxation is eliminated
by solving the residual equation Ae = r on a coarser grid, then interpolating
e and using it to correct the fine-grid approximation. The coarse-grid problem
itself is solved by a recursive application of this method. Proceeding through all
levels, this is known as a multigrid cycle. One purpose of AMG is to free the
solver from dependence on geometry (which may not be easily accessible, if it is
known at all). Hence, AMG fixes a relaxation method, and its main task is to
determine a coarsening process that approximates error the relaxation cannot
reduce.

Using superscripts to indicate level number, where 1 denotes the finest level
so that A' = A and 2! = 2, the components that AMG needs are: “grids”
2'' o 22 5 ... > M, grid operators A, A%, ..., AM; interpolation operators
I,’jﬂ,k =1,2,... M — 1; restriction operators I,':H,k: =12,...M —1; and a
relaxation scheme for each level. Once these components are defined, the recur-
sively defined multigrid cycle is as follows:

Algorithm: MV*(u* f*). The (u;,ps) V-cycle.
If k = M, set uM = (AM)~1fM,
Otherwise:
Relax p; times on A¥u® = f* .
Perform coarse grid correction:
Set uf 1l =0, fF+1 = [FF(FF — Akub).
“Solve” on level k + 1 with MV +1(uk+l ghtl)
Correct the solution by u* « u* + If, ju¥+t.
Relax v times on A*¥uk = f*.

For this to work efficiently, two principles must be followed:

P1: Errors not efficiently reduced by relazation must be well-approximated
by the range of interpolation.

P2: The coarse-grid problem must provide a good approximation to fine-
grid error in the range of interpolation.

AMG satisfies P1 by automatically selecting the coarse grid and defining inter-
polation, based solely on the algebraic equations of the system. P2 is satisfied
by defining restriction and the coarse-grid operator by the Galerkin formulation

[14]:
T
L= (7841 and A= I/?HAkI/]:ﬂ- (1)

Selecting the AMG components is done in a separate preprocessing step:



AMG Setup Phase:

1. Set k=1.

2. Partition £2* into disjoint sets C* and F*.
(a) Set 2kl =CF .
(b) Define interpolation I} ;.

3. Set IFT! = (1¢,,)" and AR+ = TFTTARTE,

4. If 2*+1 is small enough, set M = k + 1 and stop. Otherwise, set
k =k + 1 and go to step 2.

2.1 Selecting Coarse Grids and Defining Interpolation

Step 2 is the core of the AMG setup process. The goal of the setup phase is to
choose the set C' of coarse-grid points and, for each fine-grid point i € F = 2—-C,
a small set C; C C of interpolating points. Interpolation is then of the form:

uf“ if i eC,
(Illcc+1“k+1)i = Z wiju;?“ if i€ F. (2)
JjeC;

We do not detail the construction of the interpolation weights w;;, instead refer-
ring the reader to [17] for details.

An underlying assumption in AMG is that smooth error is characterized by
small residuals, that is, Ae ~ 0, which is the basis for choosing coarse grids and
defining interpolation weights. For simplicity of discussion here, assume that A
is a symmetric positive-definite M-matrix, with a;; > 0,a;; < 0 for j # ¢, and
E [£2%] Z 0.

We say that point ¢ depends on point j if a;; is “large” in some sense, and
hence, to satisfy the ith equation, the value of u; is affected more by the value
of u; than by other variables. Specifically, the set of dependencies of i is defined
by

S; = {j Fi:—ay > arilz((—aik)} , (3)

with a typically set to be 0.25. We also define the set S} = {j :i € S;}, that
is, the set of points j that depend on point i, and we say that S! is the set of
influences of point i.

A basic premise of AMG is that relaxation smoothes the error in the direction
of influence. Hence, we may select C; = S; N C as the set of interpolation points
for ¢, and adhere to the following criterion while choosing C' and F"

P3: For each i € F, each j € S; is either in C or S; N C; # 0.

That is, if i is a fine point, then the points influencing ¢ must either be coarse
points or must themselves depend on the coarse points used to interpolate u;.

The coarse grid is chosen to satisfy two criteria. We enforce P3 in order to
insure good interpolation. However, we wish to keep the size of the coarse-grid
as small as possible, so we desire that



P4: C is a mazimal set with the property that no C-point influences
another C-point.

It is not always possible to enforce both criteria. Hence, we enforce P3 while
using P4 as a guide in coarse-point selection.

AMG employs a two-pass process, in which the grid is first “colored”, pro-
viding a tentative C'/F choice. Essentially, a point with the largest number of
influences (“influence count”) is colored as a C' point. The points depending on
this C' point are colored as F' points. Other points influencing these F' points
are more likely to be useful as C' points, so their influence count is increased.
The process is repeated until all points are either C or F' points. Next, a second
pass is made, in which some F' points may be recolored as C' points to ensure
that P3 is satisfied. Details of the coarse-grid selection algorithm may be found
in [17], while a recent study of the efficiency and robustness of the algorithm is
detailed in [7].

Like many linear solvers, AMG is divided into two main phases, the setup
phase and the solve phase. Within each of these phases are certain tasks that
must be parallelized to create a parallel AMG algorithm. They are:

— Setup phase:
e Selecting the coarse grid points, 281,
o Construction of interpolation and restriction operators, If, |, Iy ",
e Constructing the coarse-grid operator A¥*1 = I,’:HA’“I,I:“.
— Solve phase:
e Relaxation on A*uf = f*.
e Calculating the residual r* < f¥ — AFu”.
e Computing the restriction f¥1 = [F+1pk
e Interpolating and correcting u* + u* + I,{f+1uk+1.

3 Parallelization Model

In this work we target massively parallel distributed memory architectures,
though it is expected that the method will prove useful in other settings, as well.
Currently, most of the target platforms support shared memory within clusters
of processors (typically of size 4 or 8), although for portability we do not utilize
this feature. We assume explicit message passing is used among the processors,
and implement this with MPI [15]. The equations and data are distributed to the
processors using a domain-partitioning model. This is natural for many problems
of physics and engineering, where the physical domain is partitioned by subdo-
mains. The actual assignment to the processors may be done by the application
code calling the solver, by the gridding program, or by a subsequent call to a
graph partitioning package such as Metis [12]. The domain-partitioning strategy
should not be confused with domain decomposition, which refers to a family of
solution methods.

We use object-oriented software design for parallel AMG. One benefit of this
design is that we can effectively employ kernels from other packages, such as



PETSc [1] in several places throughout our code. Internally, we focus on a matriz
object that generalizes the features of “matrices” in widely-used packages. We
can write AMG-specific routines once, for a variety of matrix data structures,
while avoiding the necessity of reinventing widely available routines, such as
matrix-vector multiplication.

Most of the required operations in the solve phase of AMG are standard, as
are several of the core operations in the setup phase. We list below the standard
operations needed by AMG:

— Matriz-vector multiplication: used for residual calculation, for interpolation,
and restriction (both use rectangular matrices; restriction multiplies by the
transpose). Some packages provide all of the above, while others may have
to be augmented, although the coding is straightforward in these cases.

— Basic iterative methods: used for the smoothing step. Jacobi or scaled Ja-
cobi are most common for parallel applications, but any iterative method
provided in the parallel package could be applied.

— Gathering/scattering processor boundary equations: used in the construction
of the interpolation operators and in the construction of coarse-grid operators
via the Galerkin method. Each processor must access “processor-boundary
equations” stored on neighboring processors. Because similar functionality
is required to implement additive Schwarz methods, parallel packages imple-
menting such methods already provide tools that can be modified to fulfill
this requirement.

4 Parallel Selection of Coarse Grids

Designing a parallel algorithm for the selection of the coarse-grid points is the
most difficult task in parallelizing AMG. Classical AMG uses a two-pass algo-
rithm to implement the heuristics, P3 and P4, that assure grid quality and
control grid size. In both passes, the algorithm is inherently sequential. The first
pass can be described as:

1) Find a point j with maximal measure w(j). Select j as a C' point.
2) Designate neighbors of j as F points, and update the measures of
other nearby points, using heuristics to insure grid quality.
Repeat steps 1) and 2) until all points are either C' or F' points.

This algorithm is clearly unsuitable for parallelization, as updating of measures
occurs after each C point is selected. The second pass of the classical AMG
algorithm is designed to enforce P3, although we omit the details and refer the
reader to [17]. We can satisfy P8 and eliminate the second pass through a simple
modification of step 2).

Further, we may allow for parallelism by applying the following one-pass
algorithm. Begin by performing step 1) globally, selecting a set of C' points, D,
and then perform step 2) locally, with each processor working on some portion
of the set D. With different criteria for selecting the set D, and armed with



various heuristics for updating the neighbors in 2), a family of algorithms may
be developed. The overall framework is:

Input: the n x n matrix A* (level k).

Initialize:
F=0,C=0.
Vi e {l.n},

w(i) «initial value.
Loop until |C| + |F| =n:
Select an independent set of points D.
Vj € D:
C =CUj.
V k in set local to j, update w(k).
ifw(k)=0, F=FUk.
End loop

4.1 Selection of the set D

For the measure w(i), we use |S7| + o(i), the number of points influenced by
the point 4 plus a random number in (0,1). The random number is used as a
mechanism for breaking ties between points with the same number of influences.
The set D is then selected using a modification of a parallel maximal independent
set algorithm developed in [13, 11, 8].

A point j will be placed in the set D if w(j) > w(k) for all k that either
influence or depend on j. By construction, this set will be independent. While our
implementation selects a maximal set of points possessing the requisite property,
this is not necessary, and may not be optimal. An important observation is that
this step can be done entirely in parallel, provided each processor has access to
the w values for points with influences that cross its processor boundary.

4.2 Updating w(k) of neighbors

Describing the heuristics for updating w(k) is best done in terms of graph theory.
We begin by defining S, the auxiliary influence matria:

0 otherwise.

That is, S;; = 1 only if i depends on j. The ith row of S gives the dependencies
of ¢ while the ith column of S gives the influences of i. We can then form the
directed graph of S, and observe that a directed edge from vertex i to vertex
J exists only if S;; # 0. Notice that the directed edges point in the direction
of dependence. To update the w(k) of neighbors, we apply the following pair of
heuristics.



P5: Values at C' points are not interpolated; hence, neighbors that in-
fluence a C' point are less valuable as potential C' points themselves.

P6: If £ and j both depend on ¢, a given C' point, and j influences k, then
j is less valuable as a potential C' point, since k can be interpolated
from c.

The details of how these heuristics are implemented are:

Vec e D,
P5:
VijlSe #0, (each j that influences c)
w(j) « w(j) —1 (decrement the measure)
Sej <0 (remove edge c¢j from the graph)
Pé6:
VjilSje#0 (each j that depends on c),
Sje <0 remove edge jc from the graph)
Vk|Sk #0, each k that j influences),

w(j) < w(j) — 1 (decrement the measure)

(
(
if Sge #0 (if k depends on c¢),
(
Skj <0 (remove edge kj from the graph)

The heuristics have the effect of lowering the measure w(k) for a set of neighbors
of each point in D. As these measures are lowered, edges of the graph of S are
removed to indicate that certain influences have already been taken into account.
Frequently the step w(j) — w(j) — 1 causes |w(j)] = 0. When this occurs j is
flagged as an F' point.

Once the heuristics have been applied for all the points in D, a global com-
munication step is required, so that each processor has updated w values for all
neighbors of all their points. The entire process is then repeated. C points are
added by selecting a new set, D, from the vertices that still have edges attached
in the modified graph of S. This process continues until all n points have either
been selected as C' points or F' points.

5 Numerical Experiments

To test its effect on convergence and algorithmic scalability, we include a serial
implementation of the parallel coarsening algorithm in a standard sequential
AMG solver. Obviously, this does not test parallel efficiency, which must wait
for a full parallel implementation of the entire AMG algorithm.

Figure 1 shows the coarse grid selected by the parallel algorithm on a stan-
dard test problem, the 9-point Laplacian operator on a regular grid. This test is
important because the grid selected by the standard sequential AMG algorithm
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Fig. 1. Coarse grids for the structured-grid 9-point Laplacian operator. The dark circles
are the C' points. Left: Grid selected by the standard algorithm. Right: Grid selected by
the parallel algorithm.

=Ll
@ %
Z
f Vi
=\

Fig. 2. Coarse grids for an unstructured grid. The large circles are the C' points. Left:
Grid selected by the standard algorithm. Right: Grid selected by the parallel algorithm.
Graph connectivity is shown on the left, while the full digraph is shown on the right.

is also the optimal grid used in geometric multigrid for this problem. Examining
many such test problems on regular grids, we find that the parallel coarsening
algorithm typically produces coarse grids with 10-20% more C points than the
sequential algorithm. On unstructured grids or complicated domains, this in-
crease tends to be 40-50%, as may be seen in the simple example displayed in
Figure 2.

The impact of the parallel coarsening algorithm on convergence and scal-
ability is shown in two figures. Figure 3 shows the convergence factor for the
9-point Laplacian operator on regular grids ranging in size from a few hundred
to nearly a half million points. Several different choices for the smoother and the
parameter o are shown. In Figure 4 the same tests are applied to the 9-point
Laplacian operator for anisotropic grids, where the aspect ratios of the under-
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Fig. 3. Convergence factors for parallel AMG for the 9-point Laplacian

lying quadrilateral finite elements are extremely high. In both figures, we see
that convergence factors for the grids chosen by the parallel algorithm are sig-
nificantly larger than standard AMG (shown as “AMG” in Figure 3; not shown
in Figure 4), although the parallel algorithm still produce solutions in a reason-
able number of iterations. Of more concern is that the convergence factors do
not scale well with increasing problem size. We believe that this may be caused
by choosing too many coarse grid points at once, and that simple algorithmic
modifications mentioned below may improve our results.

Figure 5 shows the grid and operator complexities for the parallel algorithm
applied to the 9-point Laplacian operator. Grid complexity is the total number
of grid points, on all grids, divided by the number of points on the original grid.
Operator complexity is the total number of non-zeros in all operators A', A%, ...
divided by the number of non-zeros in the original matrix. Both the grid and
operator complexities generated using by the parallel algorithm are essentially
constant with increasing problem size. While slightly larger than the complexities
of the sequential grids, they nevertheless appear to be scalable.

The framework described in Section 4 permits easy modification of the al-
gorithm. For example, one may alter the choice of the set D of C points. We
believe that the convergence factor degradation shown in our results may be due
to selecting too many coarse grid points. One possibility is to choose the minimal
number of points in D, that is, one point per processor. This amounts to running
the sequential algorithm on each processor, and there a number of different ways
to handle the interprocessor boundaries. One possibility is to coarsen the pro-
cessor boundary equations first, using a parallel MIS algorithm, and then treat
each domain independently. Another option is to run the sequential algorithm
on each processor ignoring the nodes on the boundary, and then patch up the



0.45
04 -+

0.35 -
ozl & —s— Jacabi, 0.10

0.25 + Jacabi, 0.25
02+ —&— 5-5, 010
015 + &-5, 0.25

01+

0.05 +

Q f f t

0 200 400 GO0 200

M{Nx Ngrid)

factor

Fig. 4. Convergence rates for parallel AMG for the anisotropic grid problem.

grids on the processor boundaries.

6 Conclusions

Modern massively parallel computing requires the use of scalable linear solvers
such as multigrid. For unstructured-grid problems, however, scalable solvers have
not been developed. Parallel AMG, when developed, promises to be such a solver.
AMG is divided into two main phases, the setup phase and the solve phase. The
solve phase can be parallelized using standard techniques common to most paral-
lel multigrid codes. However, the setup phase coarsening algorithm is inherently
sequential in nature.

We develop a family of algorithms for selecting coarse grids, and prototype
one member of that family using a sequential code. Tests with the prototype
indicate that the quality of the selected coarse grids are sufficient to maintain
constant complexity and to provide convergence even for difficult anisotropic
problems. However, convergence rates are higher than for standard AMG, and do
not scale well with problem size. We believe that this degradation may be caused
by choosing too many coarse grid points at once, and that simple algorithmic
modifications may improve our results. Exploration of these algorithm variants
is the subject of our current research.
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