ELEMENT-FREE AMGEe: GENERAL ALGORITHMS FOR
COMPUTING INTERPOLATION WEIGHTS IN AMG

VAN EMDEN HENSON AND PANAYOT S. VASSILEVSKI

ABSTRACT. We propose a new general algorithm for constructing interpolation
weights in algebraic multigrid (AMG). It exploits a proper extension mapping out-
side a neighborhood about a fine degree of freedom (dof) to be interpolated. The
extension mapping provides boundary values (based on the coarse dofs used to per-
form the interpolation) at the boundary of the neighborhood. The interpolation
value is then obtained by matrix dependent harmonic extension of the boundary
values into the interior of the neighborhood.

We describe the method, present examples of useful extension operators, pro-
vide a two—grid analysis on model problems, and, by way of numerical experiments,
demonstrate the successful application of the method to discretized elliptic prob-
lems.

1. INTRODUCTION

The classical algebraic multigrid (AMG) algorithm [2, 3, 9] was developed for op-
erators represented by symmetric, positive-definite, M-matrices. While the algorithm
works well for many real-world problems [10, 6, 11], there are situations in which
it does not perform particularly well. One reason for this is that in some instances
the classical definition of interpolation does not adequately interpolate the smooth
modes of the error. More specifically, standard AMG interpolation makes certain as-
sumptions about the nature of the smooth error which may not be valid for operators
that are not M-matrices. A more sophisticated characterization of smooth error is
required to develop an adequate interpolation formula.

To provide a better characterization of smooth error, a method known as AMGe,
for element-based algebraic multigrid, was developed recently [4] for finite-element
discretizations. AMGe provides an accurate interpolation formula by using the in-
dividual element stiffness matrices to construct a neighborhood matrix for each fine
degree of freedom (dof). The sum of the individual stiffness matrices for all the el-
ements containing the point at which the dof is defined, the neighborhood matrix
acts as a local “Neumann”-type version of the original operator. According to AMGe
theory, once the local matrix is developed and coarse-grid points are chosen, solving
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a simple minimization problem yields the optimal interpolation operator for each dof.
It is shown in [4] that the method indeed produces superior interpolation and leads
to improved convergence rates on several types of problems, including both scalar
problems and systems of PDEs, such as elasticity problems.

An obvious drawback to AMGe, naturally, is that it requires that the element
stiffness matrices be available. While this is often the case, their storage can be
expensive. Further, AMGe requires that coarse level elements be constructed and
their individual stiffness matrices be available. Determining the coarse elements is a
difficult and laborious task.

In this paper we examine the construction of the interpolation operator in both clas-
sical AMG and AMGe, and present them within a common framework. Our purpose
is to extend and generalize the classical interpolation, which was originally motivated
for M-matrices, to develop a rule applicable in more general settings. Accordingly,
we propose a new method for determining the interpolation weights that attempts to
capture the benefits of AMGe interpolation without requiring access to the individual
element stiffness matrices. This method is applicable to finite difference, finite ele-
ment, or finite volume discretizations, and we concentrate on the symmetric positive
definite case. Essentially, it seeks to determine, for each fine dof, a neighborhood
matrix that can be utilized in the same manner that the local assembled stiffness
matrix is used in AMGe. We do this by defining a neighborhood for the fine dof and
examining the rows of the original matrix that correspond to the points in that neigh-
borhood. A set of exterior dofs is defined, and a mapping developed that extends
functions on the neighborhood to the exterior dofs. This essentially imposes a set of
boundary conditions on the neighborhood. Here we propose a unified way of building
these boundary conditions. One may view them as an extension (extrapolation) of a
vector defined on the neighborhood to its immediate exterior. This extension can be
performed using constant vectors or any other vectors that may be of interest (such
as the rigid body motions in elasticity problems). The extension can be built for each
dof in the exterior based on the matrix sparsity pattern.

By incorporating the action of the extension operator into the local connections
of the neighborhood, a modified local matrix is created. This matrix is then used
in a manner similar to that employed in AMGe, that is, by solving a minimization
problem, to create the interpolation operator. The construction of the extension
operator and the respective minimization procedure to build the interpolation weights
we consider as our main contribution. We give examples of several extension operators
and show how they relate to both classical AMG and other, more recently proposed
algorithms. A two—grid model analysis of the properties of the resulting interpolation
mappings is provided as well. In particular, we prove that they exhibit approximately
“harmonic” property as well as “partition of unity” property, desirable in standard
two-grid analyses of the AMG methods.

Numerical results are presented demonstrating the method. We include both scalar
problems and systems of PDEs in the form of elasticity problems. Finally, we draw
some conclusions and comment on the direction that continued research will take.

It is important to note that while the choice of coarse-grid points, like the con-
struction of the interpolation operator, is crucial to the success of the AMG method,
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we do not consider the coarse-grid selection here; rather, we leave that topic to future
research while focusing on the interpolation problem here. Furthermore, we observe
that neither AMGe nor the method proposed here are intended to replace or compete
with classical AMG on problems characterized by simple M-matrices, such as the
model Laplacian problem on a regular grid. Instead, they are intended for compli-
cated problems, such as thin-body elasticity, posed typically on unstructured grids.
Nonetheless, we apply the new method (and AMGe) to model problems because they
illustrate, in simple fashion, the features of the methods. We therefore compare re-
sults of our method with AMGe on these problems, but do not include comparisons
to classical AMG, which would be used in practice.

Some notational convention: to denote a vector we will use boldface, e.g., v, w, ....
The ith component of v will be denoted in different contexts as v(i), v(i) or v;. In
the latter two cases v (i.e., not in boldface) will have a meaning of a “grid” function.

2. A FRAMEWORK FOR AMG INTERPOLATION

Assume that the problem Ax = f is to be solved, where A is a sparse, symmetric,
positive-definite matrix. AMG is a multigrid method in which no geometric grid
information is used (and often isn’t available or doesn’t even exist). Accordingly,
all of the components of a multigrid algorithm, the hierarchy of grids, interpolation
and restriction operators, and the coarse-grid versions of the original operator, must
be constructed using only the information contained in the entries of A. For any
multigrid algorithm, several basic components are required. In the case of AMG,
they can be described as follows:

e A fine grid is required. For AMG, this is generally a set D comprising the degrees
of freedom of the original problem.

e A coarse grid D, is necessary. This set of dofs is typically a subset of D.

e An interpolation operator P is necessary to map vector functions defined on the
coarse grid D, to the fine grid D, P: D, — D.

e A restriction operator R : D — D,., mapping fine-grid functions to the coarse
grid, is needed. For AMG the restriction is frequently defined by R = PT, and
we will use that definition here.

e A coarse-grid version of the original operator A is needed. For AMG the coarse
operators are generally defined by the Galerkin relation A, = PTAP.

e A smoothing iteration, GG, is used. It is typical to use a point-relaxation method
such as Gauf3-Seidel or Jacobi relaxation.

The basic two-grid algorithm can then be described as follows: Begin with an initial
approximation xg to the solution of Ax = f.

1. Smooth the error by xy - G(A, f,xp).

Compute the residual r = f — Ax,.

Restrict the residual to the coarse grid f. = Rr.

Solve the coarse-grid residual equation e, = AJ'f...

Interpolate the coarse-grid error to the fine grid and correct the fine-grid ap-
proximation xg < xq + Pe,.

O W
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For a multigrid method, a hierarchy of coarse grids D = Dy D D; D Dy D ... D
Dy is present, and the two-grid algorithm is applied recursively, i.e., the two-grid
algorithm is repeated each time step 4 is encountered, except that a direct solve is
employed at the coarsest-grid.

For the multigrid method an interpolation operator P; is required mapping func-
tions on each grid (level 7) to the next finer grid (level i—1). Unlike many conventional
(geometric) multigrid algorithms, in AMG the interpolation operators are rarely the
same for different levels. Similarly, the Galerkin relation is employed to define versions
of the original operator A on all levels, thusly: A;,1 = R; A; P;.

There are many ways in which to select the coarse-grid dofs in AMG [9, 11, 5].
Commonly, the coarse set D, is a maximally independent subset of D, but this is not
required. We will not discuss the question of coarse-grid selection further, except to
note that each fine-grid dof i is connected to its nearest neighbors (e.g., j) by way of
having a nonzero coefficient a;;, and that the value of a interpolated function at 7 is
typically a weighted average of the values of its nearest neighbors that are coarse-grid
dofs. For the remainder of this paper, we shall simply assume that a coarse grid has
been selected and that the coarse neighbors are known for any fine dof.

With this description of the basic components of AMG, we can describe a simple
framework for computing the entries of the interpolation operator. Let ¢ € D be a
fine-grid dof whose value is to be interpolated. We first define a subset (i) C D to
be the neighborhood of i. For now we place no particular restrictions on what dofs
can be in Q(i). For example, the set (i) could consist of i and all of its nearest
neighbors, or 7 and its nearest coarse neighbors, or i, its neighbors, and all of their
neighbors. Indeed, within the framework we describe here, the exact character of the
interpolation operator will depend largely on what sort of neighborhood is defined.
Since the value at ¢ will be interpolated from coarse points in the neighborhood, it is
useful to denote the set of coarse dofs in the neighborhood to be €. (7).

To construct the interpolation for 7, we examine the entries of the operator A in
the following way. We begin, without loss of generality, by permuting the rows and
columns of A and partitioning it so the first set of rows and columns corresponds to
i and the fine dofs in the neighborhood, that is, to (i)\€.(z). The next set of rows
and columns corresponds to the coarse neighbors €.(7), while the final set of rows
and columns corresponds to the rest of the grid D\Q(7). Hence the partitioning of A,
along with the identity of the rows corresponding to the partitions, appears as

App Ape x|} Q0)\Q(9)
A= * x % Q1)

For our purposes we are only concerned with two blocks of the partitioned matrix.
The block Afy gives the connections among ¢ and the fine-grid neighbors while the
block Ay, links ¢ and the fine neighbors to the coarse neighbors.

Armed with these concepts of neighborhood partitioning of the operator, we can
examine classical AMG, AMGe, and our proposed method in terms of choices of
neighborhood and definition of the neighborhood matrices.
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3. INTERPOLATION IN CLASSICAL AMG

For classical AMG [9], the interpolation is computed in the following fashion. The
neighborhood (i) is defined to be the dof ¢ and all dofs connected to it (all j for
which a;; # 0). We then replace both A;; and A, with modified versions, A\ff and
A\fc, respectively.

Ayris modified in two ways. Let S; denote the set of dofs that are strongly connected
to the dof 7, C; denote the set of C-points in the neighborhood €(7), and let W; denote
the dofs that are weakly connected to the dof i. (By strongly (weakly) connected we
mean that the magnitude of a;; is greater (smaller) than some pre-defined threshold.
A common choice is that if the magnitude of a;; is less than 6 times the largest
magnitude of all off-diagonal entries in the ith row then j is considered to be weakly
connected to i.) Then we modify the row of A;; corresponding to the dof ¢ (which

we will hereafter refer to as the ith row, regardless of the actual numerical ordering)
by

(31) El\m = a; + Z az-j
JEW;
[0 jew,
(3.2) Q;; = { a; j€Si
For j € W; we replace the jth row of As; by a zero row, and then place a 1 in
column j and —1 in column 4. For all other rows of Ay, i.e., for j € S;, we zero out
the off-diagonal entries, and replace the diagonal entry a;; with

ajj = — E :aj,k'

keC;

The block Ay, is modified to Efc by zeroing the jth row of for j € W;.

Once the modified blocks A;; and Ay, are computed, the entries of the ith row of
the interpolation matrix P are determined by taking the entries of the ¢th row of the
matrix

~
4. INTERPOLATION IN AMGE

For AMGe a similar description of the interpolation is easily given. In this setting,
the neighborhood (i) is defined naturally as the union of all finite elements having i
as a vertex (Figure 1). In the figure, the set Q(i) consists of all vertices in the shaded
region, including i (the open circle in the center). The shaded region consists of the
six triangular finite elements having i as a vertex. Members of €.(i) are indicated by
the square vertices. Since AMGe gives us access to the individual element stiffness
matrices, we may create a neighborhood matrix Ag() simply by summing together
all the individual element stiffness matrices of the elements in the neighborhood. In
AMGe the interpolation operator for the dof i is determined by solving a constrained
min-max problem, that is, by finding interpolation coefficients that minimize a certain
measure from finite element theory. The solution to the min-max problem can be
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FIGURE 1. The neighborhood of the fine dof i (large open circle).

computed in several ways, one of which fits into the framework we are developing
here. We partition the neighborhood matrix into the rows and columns associated
with the fine dofs in the neighborhood and the rows and columns associated with the
coarse dofs, as

_( App Ape Q) \Q2(9)
AQ@)—( Fs ) V().

Again, our only interest is in the rows of the neighborhood matrix corresponding to
the fine dofs, including ¢. With this partitioning, it turns out that one way to solve
the min-max problem is to take, as the coefficients for the interpolation operator for
7, the entries of the ith row of the matrix

= (A7 Az) -
It is useful to note that, unlike the classical AMG case, there is no need to modify
the matrix A;; prior to computing the interpolation coefficients. Essentially, this is
because the element stiffness matrices have built in to them local versions of the null
space and near-null space of the operator; we do not need to make alterations to the
local matrices to insure that these spaces are represented.

For many problems the AMGe method produces a superior interpolation, and re-
sults in good convergence rates [4]. In the remainder of this paper our goal is to
accomplish a superior interpolation without the knowledge (and hence, expense) of
the individual stiffness matrices.

5. INTERPOLATION FOR ELEMENT-FREE AMGE

The process we propose for building the interpolation operator is very similar to
the processes described for AMG and AMGe. Once again, we will proceed by defining
a neighborhood of the fine dofs and an associated neighborhood matrix. Let v be
a set of fine dofs whose values we wish to interpolate. We define Q(¢)) to be the
neighborhood of v, which includes the coarse dofs that will be used to interpolate the
dofs in 1. The set of coarse dofs in the neighborhood we denote Q.(¢).

Now, however, we define a third set of dofs

Qr () = {jEUY) | aij # 0 for some i € Q())\Qe(¢)} -
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X

x X

FIGURE 2. The extended neighborhood Q(v), including the fine dofs
to be interpolated (solid circles), the coarse interpolatory set Q.(1)
(squares), and the extension dofs (open circles marked X ).

That is, (1)) can be viewed as the interior of the set Q(¢0) = Q(¢0) U Qx(¢). Figure
2 gives an example of such a neighborhood.

We begin the construction of a neighborhood matrix by examining the rows of the
matrix A that correspond to the fine dofs in ©(1)); that is, we will be concerned with
the following partitioning of A:

App Ape Agax O bQ¥) \Qe(¥)
s * * x % } Q.(v)
- * * x % } Qx(v)
* * * ok } everything else on grid.

5.1. Local (neighborhood) quadratic form. Our task next is to define a matrix
associated with 1) that yields a local version of the operator A, performing the same
function as does the neighborhood matrix in AMGe. To do this we first build an
extension mapping (matrix) E (1) that maps a vector defined on Q() to Q(¢)

A%
E() : ( Vi ) SN vi
Ve vy

using the relation

vy = Ex;(¢Y)vy + Exc.(¥)ve

That is, the extension operator looks like

I 0
E= 0 I
Exp(¢) Exc(¥)

For now we will not be specific about the exact nature of the extension operator.
Rather, we will describe how it may be used to develop an interpolation formula,
after which we shall discuss desirable properties of the operator.
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We construct a neighborhood matrix from the first block of rows of the partitioned
matrix

1 0
(AffaAfc> = (Ayps Age, Ag) 0 I
EXf(w) EXc(w)

so that
Eff:Aff—i-AfxExf(w) and AA\fC:AfC—i-Af;\/EXC(’Q/)).

Vi
v . . . L
For any vector [ vf ], consider its extension v = | v, |, where vy is given by
C
Vx

Vy = Ex;(¢Y)vy + Exc(¢¥)v.. Let
—A;} (AfCVC + AfXVX)

V= Ve
Vxy
be the so-called harmonic extension of v|g (0, () ito () \ Qc(4). That is, one
extends v, restricted to the “boundary” .(¢) U Qx(¢), into the “interior” (1)) \
Qc(v).

We use the v, that minimizes the difference v — ¥ in energy norm in the interpo-
lation procedure. Since

vi—(V)y
0

its energy norm is computable and equals

v =vIZ = (vi=())" Ags(vs = ()y)
1 1
= (Vf + Aij (Achc + AfXVX))TAff(Vf + A;f (Achc + Af,yVX)).

Since Ay is positive definite, this implies that if we solve the equation

0 = Appvy+ (Apeve + Apavr)
= (Ass + ApxExp)ve + (Age + Apx Exe)ve
= Affo + AfCVC,

the minimization of ||vy— (V) (|| 4 is attained with zero minimum by v = —A\;}A\fcvc.
We can actually show (see Remark 7.1 and Lemma 7.1) that in the model finite
element case considered in Section 7 the minimization procedure is equivalent to a
quadratic functional minimization involving Neumann assembled matrices, as in the
AMGe method (cf., [4]).
It is natural to ask whether A\ff is invertible. If Fy; = 0, there is no difficulty,

since then A\ff = Ajs. In general, if Ey is sufficiently small in norm A;; + A;x Exy
will be invertible.
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6. EXAMPLES OF EXTENSION OPERATORS

We describe here four extension operators E that can be used to construct the
interpolation operator in the element-free approach. These are by no means all the
useful extensions that we could concoct; they form, however, a simple set of exam-
ples that will allow us to demonstrate the efficacy of the method and its underlying
philosophy.

The first we call the Lo-extension because it is a simple averaging method. Given
v defined on Q(7), we wish to extend it to vy, defined on Qx(¢). Suppose that iy is
an exterior dof, that is, a point from Qx (1)) whose value we wish to determine from
the values of the dofs in Q(¢). Let S = {j € Q(i) : a;,; # 0}; that is, S comprises
those dofs in €(7) to which the point iy is connected. It seems natural to consider
using a simple average over these dofs as the extension at iy. Thus, the extension
formula, for the dof iy, is given by

. 1 .
vy(iv) = —=— v(J).
> lie
j€S
A somewhat more sophisticated extension we call the A-extension because it is a
simple operator-induced method. The A-extension operator for the dof iy is given

by the formula
Z (|aix,j

1
Z [ jes

j€S

v (7))

vx(ix) =

It may be seen that in this case the extension to the exterior is a simple weighted
average of the values of the neighborhood dofs to which the exterior point is connected.
The weights in the average are given by the absolute values of the matrix coefficients.

The two methods just described share the property that they are computed point-
by-point. That is, the extension formulas for the dofs in Qy(¢)) are determined
independently. A second feature shared by the methods is that if the neighborhood
vector v is constant, then the extended values are also constant, and have the same
value as the entries of the neighborhood vector. This feature is clearly desirable for
many elliptic PDEs, where the constant vector is in the null space or near-null space
of the operator A.

The third example we describe is based on the minimization of a quadratic func-
tional. Again, let v be a vector defined on Q(7) that we wish to extend to Qxy(¢).
We construct the extension to be that operator which produces vy that minimizes
the functional @Q(vy), where

(6.1) Qvr) = D laipy

ix €EQxy (1/))
JEQ()

2
(Uix - Uj) :

It is evident that, like the previous extension operators, if v is constant on €(7)
then the dofs in Qx (1) will also have the same constant value. Unlike the previous
extension operators, which are determined one dof at a time, this is a “simultaneous”
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extension, computing formulas for extending to all of the exterior dofs together. As
such, it is necessarily more expensive to compute. We also note that this extension,
and the interpolation it generates, is equivalent to the method recently proposed in

[1].

A final example is given by minimizing the following “cut—off” quadratic functional:
(GV)TAf )(6v) — min
where Q(¢) = Q(¢) U Qx (1), subject to vy, v, fixed. Here

9:[6 02«] ! outh

is a diagonal matrix. A good choice is, a diagonal matrix y formed from the vector
_ 1
QX = —(AXX) 1 [AXfa AXc] |: ((1))'£ :| .

Here we used the blocks of A corresponding to its Qx (1) rows.
It is easily seen that the extension mapping is actually defined as

vy = By v+ Exsvy
— —GEI(AX‘;V)il [Axf, AXC] |: ::_f :| .

Note that this extension mapping is also a simultaneous extension operator and an
averaging one; i.e., if v, = (1), and vy = (1), then vy = (1)x.

6.1. Classical AMG as an extension method. The interpolation method of the
classical AMG algorithm popularized by Ruge and Stiiben [9] may be viewed as an
extension method. Here the neighborhood is just the dof to be interpolated together
with the dofs that will be used to compute the interpolated value. That is, Q(i) =
{i}UQ.(7). The extended neighborhood then includes all fine dofs that are connected
to i,

Qr () = {7 ¢Q0) : ay # 0}

An A-extension is defined in the following manner. For each iy € Qxy (1)), set v;, = v;
if iy is weakly connected to i (Recall that in classical AMG, as developed for M-
matrices, the dof 7 is said to be strongly connected to the dof j if

—Q5 > 0 Iil%z)((—azk)

where @ is a user-specified parameter, and weakly-connected otherwise). If iy is
strongly connected to ¢ the extension is defined by

E : Qix,j jeQu(y

JEQ(VY)
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FIGURE 3. The neighborhood of the fine dofi (large solid circle) for the
stretched quadrilateral element problem. The problem is semicoarsened;
squares denote the coarse neighbors Q.(i) while the open circles are the
exterior points Qx ().

6.2. An Example of the Extensions. A simple example should suffice to illustrate
these extension methods. Suppose the problem —U,, — U, = f(x,y) is discretized
using a regular Cartesian grid of points making up the vertices of quadrilateral ele-
ments. Suppose further that the elements had dimension h, x h, where h, > h,. As
hy/hy — 0 the operator stencil tends toward

-1 -4 -1
2 8 2
-1 -4 -1

Since there is effectively no coupling between a given point and its neighbors to the
east or west, the appropriate choice is to semicoarsen, selecting every other line of
points with constant y-coordinate to be coarse points. Using the same logic, the
natural interpolation is to have each fine dof interpolated only using the values to the
north and south of it, each with equal weighting of 1/2. Consider the interpolation of
one point, ¢, shown in the center of its neighborhood in Figure 3. For either the Lo-
or A-extensions, we might select (i) = {i} U Q.(i) where, in this instance, Q.(7) =
{N,S,SW,NW,SE,NE}. Then Qx(yp) = {W,E}. We see then that Ay = [§],
Ajfe=[—-4 -4 -1 -1 -1 —1],and Asx =] 2 2 ]. For the A-extension it is
easy to compute the extension operators

1 1 1 4 4 1 2
EXC_E(]. 1 44> and EXf_E<2>

from which

~ 104 ~ 1
App = (E) and Afczg( -11 —-11 -1 -1 -1 —1)
which yields an interpolation operator

1
PA:2—6(11 11111 1).

We see that the values to the north and south are used in the interpolation with
weights 11/26 =~ 0.423 and that the four points diagonally adjacent to i all are
weighted 1/26 ~ 0.038. The ideal weights, of course, are 0.5 and 0, respectively, so
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the interpolation weights computed by the A-extension method, while quite good, are
not perfect.

A similar calculation for the weights using the Ly-extension yields the interpolation
operator

1
PL2_44(16 16 3 3 3 3).
Here the dofs to the north and south are weighted 16/44 ~ 0.364 while the diagonally
adjacent dofs are weighted by 3/44 & 0.068. For this problem, then, the A-extension
is significantly better than the L,-extension.

By contrast, it is a straightforward calculation to show that classical AMG produces
the interpolation operator

PAMG=%(4 4111 1),

where the north and south dofs are weighted by 4/12 ~ 0.333 and the diagonally
adjacent dofs are weighted by 1/12 & 0.083; these weights are farther from the ideal
than the weights produced by either the A- or Lo-extension.

Finally consider the extension operator based on minimizing the “cut—oftf” qua-
dratic functional. The additional matrix blocks involved read:

(8 0
AXX_-()Sa
2
AXf: 2:|7
1 -1 -1 -4 —4 0 0
YT l-1 -1 0 0 —4 —4]

The vector 0 = —A 5 [Ax; Axe] { ((P)f

Axr(D)y =20, Axe(l)e = —10(1)x,

] = (1)x. This is seen as follows

and hence
AXf(l)f + AXC(I)C = _8(1)2(7
which implies
QX = _Aé_k'.lX(AXf(]')f + AXC(]-)C) = —Z [_S(I)X] = (]-)X

That is, the diagonal matrix # is the identity and hence the extension matrices then
read:

Exy = —AyyAxy =—

_ -1 1
EXC — _AXXAXC )

1 &=
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The modified matrices A\ff and A\fc take the form:

-~ 1
Arp =Apr+ApxExy =8— 2, 2]% { 1 ]

Y

R 1 14400

Afc :Afc+AfXEXc :[_47_47_17_17_1’_1]+[2’ 2]% 1100 4 4
=[-4,-4,-1,-1,-1,-1] +[4,4,1,1,1,1]
:[_%7_;70707070]'

That is, the interpolation coefficients are the “perfect” ones (corresponding to semi-
coarsening):

SO 11
<(_Aff) 1Af¢>z. = [57570707070]'

7. TWO—GRID ANALYSIS FOR A MODEL FINITE ELEMENT PROBLEM

Before providing numerical results, we present an analysis of the quality of the
“element-free AMGe” interpolation. That is, we prove an “approximate” harmonic
property of the interpolation mapping and show that it provides a partition of unity.
Specifically, we assume that the problem is a standard finite element discretization of
a second order elliptic problem

a(u, v) E/a(x)Vu-Vv de = (f, v) veV,

where V' is a finite element space of piecewise linear functions over quasiuniform tri-
angular elements that cover a given 2-d polygonal domain. For simplicity, we assume
that homogeneous Neumann boundary conditions are imposed and that (f, 1) =0
(to insure solvability).

Let us denote, for any element e,

T
(7.1) o(e) = sup max éaTﬂ .
zce EER? § §

In the following, we assume that the differential operator coefficients are essentially
constant in each element, so that o(e) gives rise to the local ellipticity constant.

Further, we assume (only for simplicity) that the neighborhood Q(i) = Q(i) UQ (4)
for any fine dof 7 is formed by union of triangles that share dof 7 as a common vertex.
Thus we will use i instead of ¢ denoting the neighborhoods (€2(7), Qx (i), and Q.(7))
and the extension mappings. In particular, we denote E; = [Exs, Ex.| where for
brevity Exy = Exf(i) and Ex. = Ex.(i). A closer look at the analysis to follow,
however, shows that it applies as well to more general (i.e., larger) neighborhoods.

In what follows, for any subdomain (union of triangles) G, we let aq(.,.) denote
the bilinear form a restricted to G. The corresponding subdomain matrix (assem-
bled from the individual element matrices A,) will be denoted by AY. We omit the
superscript N when there is no confusion between AY and Ag, the submatrix of
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the original matrix A (corresponding to ). Note that in the latter case Ag cor-
responds to a matrix with homogeneous Dirichlet boundary conditions imposed on
O(G U {elements neighboring G'}).

For this discussion we assume that E;, the local extension mapping used to build the
interpolation coefficients, is based on averaging, although no specific rule is assumed.
We do, however, assume that E' = E(i) has the particular form

I 0 71906
0 I | ()
0 Exe | YQux(i)

That iS, E_;yf =0 and Ez = [0, EXC]-

Remark 7.1. The general case of E; = [Exy, Ex.| can be reduced to the particular

case above by using the modified extension mapping E = [0, EXC] where
Exc = Exy (_A;}Afc> + Ex..

To see this, recall that A\ff =Asp+ArxExy and A\fc = Ajc+ Ay Ex., and note that
the modified extension mapping extends a constant vector defined on Q.(i) to be the
same constant on Qx (i), that is,

Z/j/\’c(l)c - _EXf;{\;}AA\fc(l)c + EXc(l)c
= Ex;(1); + Exc(1)c
= (D).

Here we have used the fact that since (for the model second order elliptic problem)
A+ Arx(Da+Ape(l)e = 0 then App(1) s+ Agx (Bxp(1)s + Exe(1)e) +Age(1)e =
0. That is, Asr(1) s+ Ase(1). = 0, implying that (1) = —A;}Afc(l)c.

We still must show that the modified extension mapping E, leads to the same in-
terpolation as does Ej;, i.e., that

— A7} (AfXEXC + Afc) = —A7} Ape.
For this we observe that
A ApwBac+ Ap) = = A7} [Apx (Bag (3710 + Bae) + ]
= A} [Ape B+ Ao — ApxFxg A7} Ay
= —A7} _Efc _ AfXEXfE;}EfC]
— A7} Ay - AfXEXf] A7} Ay,
= —A7} (Ag) A7} Ay,

~T N

_ -1
= A} 4.

Consider the minimization problem



ELEMENT-FREE AMGE 15

v 1" v
f f
N o .
(7.2) find v; such that Ve Agy | ve | = w:gif;vc ag (W, w).
EZ’U EZ’U wy=F;w

Thus we seek vy, the value of w on (7) \ €.(¢), which minimizes the quadratic form

ag; (w, w) when the values of w are fixed at the coarse points and are “slave” at the
exterior points (Qx(7)); that is, they are extrapolated from the interior (i) and the
coarse points Q.(i) by Ew.

Lemma 7.1. The solution to the minimization problem (7.2) produces the same in-
terpolation coefficients as does element-free AMGe, namely, those given by —A;} (ApyExc+
Ag.). That is, the minimizer is given by wy = vy = —A}Tfl(AfXEXC + Age)ve.

Proof. Consider the Neumann matrix

We use the superscript “/N” for the blocks which differ from the corresponding blocks
of Ag(i), the principal submatrix of the original matrix A corresponding to the sub-

domain Q(i). Note that the “N” blocks are not accessible (available) and not used
in our algorithm. We have EiU|QX(i) = Ey.v.. Hence, aﬁ(i)(w, w) for w, = v, and
wy = Ewlg, ;) leads to the following matrix expression:

T

wy Ay Ape Apx wy
gy (W, w) = Ve Ay AN AN Ve
EXcUc A_;yf Agc A%X EXcUc
_ | wy ! Agy Ape+ ArxEx,
| . A+ EX Avy AN+ AN Ex.+ E%L (AY, + AY v Ex.)

x[m.

Minimizing this symmetric positive semi-definite quadratic form with respect to wy
is equivalent to solving the equation

Appws + (Ape + AppExe)ve = 0,

which is the same equation that specifies vy in the element—free AMGe interpolation
procedure. O

In the next lemma we will remove the constraint on v being fixed at the Qy(7)
points.

Lemma 7.2. The following quadratic forms are spectrally equivalent,

¢1(ve, ve) = inf  agy (v, v), and  @(ve,v) = inf  aggy (v, v).
v: "‘nc(i):% V: Ve jgzed
Vx =050
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That is, there exists a positive constant n such that

q1 (Uca UC) < qQ(Uca UC) <nq (Uca UC) for all v.

Proof. We show the proof for two-dimensional domains. For other domains, we must
scale o by the local mesh size appropriately; otherwise, the proof remains the same.
It suffices to show that the two quadratic forms have the same null-space. The null-
space of ¢, is v, = const and the null-space of gy is the same as that of ag; (v, v)
with v : v, = const and E;v = const on Qx(i). Note that ag, (v, v) = 0 implies vy is
the same constant as v.. Then E;v is also the same constant, since it is an averaging
operator based on the values of v, and v;. Hence the forms ¢; and ¢, both vanish
only for constant v.. In order to show that the constant 7 is bounded independently
of E;, one first easily sees that

gy (0,0) <C Y ole) Y (v() —v(k))*.

eC (i) [, kee

The constant C depends only on the number of points used in the averaging procedure
(E;), i.e., it is bounded by the total number of coarse points .(i) (plus the interior
point 7). The dofs [ and k in the summation are either coarse dofs or i, and p(e) is
defined in (7.1) to be the maximal value of the local ellipticity bound associated with
the original elliptic operator coefficient a(x). More specifically, for each iy € Qy(7)

v(iv) = (Bw)(iv) = > iy, (k)

keQc(i)U{i}

where

Z iy, k=1, and ag, > 0.
keQc(i)U{i}

Then, for any j € Q.(i) U {i},

(i) =v() = Y i k(v(k) = 0(5),

keQe(3)U{s}

and hence
(Wiiv) —0()?* < D ol >, (k) =)’
keQe(1)U{i} keQe(1)U{i}

< (v(k) = v(5))*.
keQc(i)U{i}
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As a result we see that, for vy = E;v,

Q2(Um Uc) S aﬁ(i)(va U)

eCQ(i) lkee

max p(e)

e€Q(i) .
<Ol e D (k=)

min o(e) 4= _ o

e€Q(i) eCQ(i) k,jeen(Qc(i)u{i})

Finally, since vy is arbitrary on the right-hand side of this inequality,

max o(e)

ecQ(i) . .
q2(ve, ve) < C “min o(e) lgf Z o(e) Z (v(k) —v(j))?
ecqa(i) eCQu(i)  kjeen(Re(i)Ufi})

It is also true that

¢1(ve,ve) >~ inf Z o(e) Z (v(l) — v(k))?

v: ve fixed —
eCQ(i) [, kce

This shows that n can be chosen bounded independently of the actual averaging
extension mapping F;. O

The above estimates involve the factor
max o(e)
e€Q(7)
min o(e)’
ecQ(i)
Whether it is large or small depends on the selection of the coarse grid (the coarse
grid reflects the form of the neighborhood €2(7)), which we do not consider in the
present paper.
Then the following corollary, involving the element-free AMGe interpolated vector
Pu,, is proved in the same way as Lemma 7.2.

Corollary 7.1. Consider the extended neighborhood of i, Qi) = U{e, e C Qi) ore C
Q(j), forallj € Qx(i)}. There is a constant k = Koy > 0, locally estimated, such
that the following bound holds:

agy (Pve, Pue) <w inf ag (w, w).

Proof. Let v be defined on Q(i) as follows:

(Pue)(k), ke Q(i),
v(k) = ¢ we(k), k is a coarse dof outside Q(i),
(Ejv)(k), k€ Qx(j), for some j € Qx (7).

We see that v at every fine dof k in @(2) is an average value of some neighboring
coarse dofs from €(i). Hence, in the same way as in the proof of Lemma 7.2, we
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establish the inequality

gy (v,v) <k inf ag, (w, w).

W: We="UVe

Since ag (Pve, Pue) < ag (v, v), the desired result follows. O

For each fine dof i, define Z(i) to be the number of overlapping domains on €(3),
that is, the number of domains Q(j) such that Q(j) N Q(i) # (). Then we may state
the following theorem.

Theorem 7.1. The element—free interpolation mapping P exhibits the following ap-
proximate harmonic property:

a(Pv., Pv.) <k inf a(w, w),

W: We="0e¢
where the constant k = max KQ(Z.)Z(Z'), and the kg, are the local constants from

i=fine dof
Corollary 7.1.

Proof. The proof simply follows from the fact that
a(Pv., Pv.) < Z ag) (Pve, Puc)

i=fine dof
and by summation of the local estimates from Corollary 7.1. O

Another important property of the element—free interpolation mapping P is that
it partitions unity, as we show in the following theorem.

Theorem 7.2. P provides a partition of unity. Specifically, the row sums of P are
1.

Proof. Let vy = Puv, be given by vy = > ;i v:(ic). Assume that v.(i.) = 1
i €Q0(i)

on Q.(i). Now, P uses the formula that minimizes (7.2) and the minimum (zero) is

achieved for F;v(j) =1 at Qx(¢) and vy = 1. That is, we find that

1 = : : aza ic?
i€ (1)

which is the desired unity row-sum property of P. O

Remark 7.2. Theorems 7.1 and 7.2 are the main goals of many two—grid convergence
analyses and they imply convergence of the respective two—grid AMG methods, cf.,
.., [14], (8], [13], and [7].

8. NUMERICAL EXPERIMENTS

We describe here several sets of numerical experiments designed to test the efficacy
of the element-free AMGe methods described above. For each of several problems we
apply a set of interpolation rules within an AMG code. The problems are then solved
using a CG solver, preconditioned with one V-cycle of AMG.

The interpolation rules are:

e the AMGe rule [7] for the finite element problems;
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o three element—free AMGe rules from Section 6:
1. Ly—extension;
2. A-extension;
3. (only for scalar PDE) the simultaneous extension based on minimizing the
quadratic functional (6.1) described in Section 6.

For systems problems the unknowns are split into physical variables. That is, for
scalar problems the rule is as described in Section 6, while for 2-d elasticity, with
physical variables u and v (displacement in the z- and y-directions, respectively) we
perform the extensions (and associated interpolation) of exterior dofs of type u using
only neighborhood dofs of type u; similarly, the extension to exterior dofs of type v
are carried out using neighborhood dofs of type v; this applies both to L, and A-
extensions. The local neighborhood about a point is defined by the sparsity pattern
of the matrix about that point and the averaging involves only dofs from the sparsity
pattern set S (see Section 6).

8.1. An elliptic problem on a triangular element mesh. We apply the various
interpolation rules to a second order elliptic PDE

(8.1) -V - (A(z,y)Vu) = f(z,y) onG
(8.2) uw(z,y) = g(x,y) on dG

where G is the unit square. The matrix of diffusion coefficients includes functions
with relatively benign characteristics— there is both spatial variability and jump dis-
continuity in the coefficients, but the jumps are of relatively small magnitude and the
variation is mild. The discretization is by a finite-element method on an unstructured
triangular mesh. The coarsening algorithm is one of element agglomeration. That
is, the coarse grids are the vertices of coarse elements produced by an agglomeration
algorithm proposed in [7]. Figure 4 displays the coarsening sequence for a typical
problem. Here the fine grid comprises 1600 elements, the first coarse grid has 382
elements, and the remaining grids have 93, 33, 15, 7, 3, and 1 elements. Table 1 gives
the coarsening details for four different versions of this problem. It may be seen that
the number of elements decreases by about 75% at each coarsening for the first few
coarsenings, after which it decreases by about 50% per level. The number of nonzero
entries in the matrix decreases by approximately 50% per level, while the number of
degrees of freedom tends to decrease by 50-60% with each successive level.

For each of the four interpolation rules, the problem is solved using a preconditioned
conjugate gradient method, where the preconditioning consists of a single V(1,1)-
cycle of AMG, with a Gaufl-Seidel smoother. The iteration is run until the residual
is less than 107® in norm. We report the results in Table 2. For each problem size
we display, for each interpolation rule, the number of preconditioned CG iterations
required to achieve the desired residual size and o, the average convergence factor
over the iterations.

Examination of the results reveals that all three of the extension methods, A-
extension, Ls-extension, and quadratic functional minimization, perform at least as
well on this problem as does AMGe. In some cases the performance of the exten-
sion methods is marginally better than AMGe. The amount of work entailed for
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FIGURE 4. Sequence increasingly coarse elements, formed by element agglomeration.

the A-extension and the Lo-extension methods is comparable to that of AMGe, pro-
vided that the neighborhoods are selected to be of comparable size as the element
neighborhoods (which is the case in these experiments). For the quadratic functional
minimization the work is somewhat greater, but still comparable. The advantage
of the element-free methods is, of course, that there is no requirement to have the
actual individual stiffness matrices that are required in AMGe. For this experiment
this represents a considerable savings in storage.

8.2. Two dimensional elasticity, the thin beam. We consider next the two di-

mensional plane-stress elasticity problem on a cantilevered beam, fixed at one end.
The domain of the problem is G = (0,1) x (0, d) with d < 1. For d < 1 this is the
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TABLE 1. Coarsening history for the problem —V-A(z.y)Vu = f on an
unstructured triangular fine grid. For each level of each problem size,
“nz” is the number of nonzero entries in the operator matriz, “dofs”
gives the number of degrees of freedom, and “elts” gives the number of
finite elements in the agglomerated grid.

No. of elements
level 25600 | 6400 | 1600 | 400

0 nz | 90321 | 22761 | 5781 | 1491
dofs | 13041 | 3321 | 861 | 231
elts | 25600 | 6400 | 1600 | 400
1 nz | 32898 | 9540 | 2602 | 1094
dofs | 4108 | 1152 | 330 | 114
elts | 6013 | 1427 | 382 76
2 nz | 14305 | 4361 | 1397 | 470
dofs | 1507 | 451 143 50
elts | 1489 374 93 26
3 nz | 7193 | 2098 | 634 | 199
dofs | 643 198 64 23
elts | 392 117 33 11
4 nz | 3458 975 304 | 88
dofs | 302 91 32 12
elts | 158 47 15 5

5 nz | 1580 453 126 36
dofs | 140 45 16 6
elts 70 22 7 2

6 nz 714 188 46 16
dofs | 68 22 8 4
elts 33 10 3 1

7 nz 274 84 16
dofs 30 12 4
elts 14 5 1
8 nz 120 30
dofs 16 6

elts 7 2
9 nz 42 16

dofs 8 4

elts 3 1
10 nz 16

dofs 4

elts 1

thin-beam problem. The problem is

1—v 1+v
um—l—Tuyy+—

1+v 1—v

T umy+TUmm+Uyy - f27
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TABLE 2. CG convergence results; unstructured triangular fine grid;
second order elliptic problem; V(1,1)-cycle MG, Gaufs—Seidel smoother
used as preconditioner.

| Interp. rule || | 400 elts | 1600 elts | 6400 elts | 25600 elts |
AMGe iterations 14 16 21 23
0 0.115 0.172 0.252 0.289
A-extension iterations 13 15 19 20
0 0.118 0.158 0.218 0.247
Ls-extension iterations 13 16 19 21
0 0.119 0.161 0.227 0.249
quadratic funct. || iterations 13 15 19 19
min. 0 0.105 0.152 0.222 0.231
TSP q ceeeeeeeeeneee et -
—
01T O U O O O O B "
e
h

FI1GURE 5. The thin-beam elasticity problem domain. Homogeneous
Dirichlet boundary conditions are applied at x = 0.

where v and v are displacements in the  and y directions, respectively. This can
be a difficult problem for standard multigrid methods, especially when the domain is
long and thin [6]. The problem is discretized using uniform square finite elements of
size h. Nodal coarsening is used, with the coarse nodes being the vertices of elements
created by the agglomeration algorithm from [7]. After certain levels of coarsening
the algorithm agglomerates only along the z—direction.

We present results in both the thick beam (d = 1.0) and thin beam (d = 0.05)
cases. In both cases we use v = 1/3. For each case we present results for three
sizes of the discretization parameter: h = 0.05,0.025, and 0.0125 for the thick beam
and and A = 0.025,0.0125, and 0.00625 for the thin beam. The coarsening histories
of the agglomeration algorithm are shown in Table 3. Table 4 shows the results of
the experiments for the beam problem. As in section 8.1, preconditioned conjugate
gradient is used as the solver, with a single V(1,1)-cycle of AMG as the preconditioner,
with a Gaufl-Seidel smoother. For this problem we show the number of iterations
required to achieve a residual norm less than 1078, and also the convergence factor of
the final iteration. For this problem we do not implement the quadratic minimization
method described in section 6. That method is for scalar problems, while this problem
is a system of PDEs. We use the AMGe method described in [4] and compare it with
the A- and Ls-extension methods described above. Our expectation is that AMGe
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TABLE 3. Coarsening history; structured rectangular fine grid; 2-d
elasticity, d =1

Thick Beam d = 1.0 Thin Beam d = 0.05
level h =0.050 [ A =0.025 [ A =0.0125 [ . = 0.025 | h = 0.0125 | h = 0.00625
0 [ nz | 14884 58564 232324 3388 12532 48100
dofs | 882 3362 13122 246 810 2898
1 | nz | 10440 40880 161760 1664 7328 30656
dofs | 264 924 3444 88 252 820
2 || nz | 4128 17248 70488 784 3744 10152
dofs 84 264 924 44 132 252
3 | nz | 1000 4956 19056 384 1152 3816
dofs 32 94 284 24 48 132
4 | nz 256 1404 6128 144 384 1152
dofs 16 38 104 12 24 43
5 | nz 64 324 1668 64 144 384
dofs 8 18 42 8 12 24
6 | nz 144 576 64 144
dofs 12 24 8 12
7 nz 64 144 64
dofs 8 12 8
8 | nz 64
dofs 8

should outperform the element-free methods, at least on the thin beam problem; this
is the problem for which AMGe was originally developed. We observe, however, that
for the thick beam problems the element-free methods both outperform AMGe. First,
we note that it takes fewer iterations to reach the tolerance. It is also apparent that
the element-free methods are more scalable, in that the number of iterations does not
grow with the problem size. The AMGe method requires more iterations for larger
problems.

For the thin beam problem, we observe the results we naturally expect. That is,
AMGe outperforms the element-free methods, requiring fewer iterations. Further,
AMGe appears to be more scalable on this problem than the extension methods.
The Ls-extension method exhibits a distinct lack of scalability as the problem grows
larger.

9. CONCLUSIONS

In this paper we propose a general rule for building interpolation weights in AMG,
thus extending the applicability of AMG to more general settings than the traditional
M-matrix case. The applications include elliptic problems on unstructured finite
element grids, where both scalar problems and systems (like elasticity) are considered.
The element-free AMGe method seems as competitive as the AMGe methods but
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TABLE 4. CG convergence results; structured rectangular fine grid; 2-d
elasticity, d = 1, V/(1,1)-cycle MG, Gaufi—Seidel smoother used as pre-

conditioner.
Thick Beam, d = 1.0
Interp. rule | | h=0.050 ] h=0.025 | h =0.0125 |
AMGe iterations 16 18 20
0 0.172 0.206 0.234
A-extension || iterations 12 12 12
0 0.099 0.098 0.097
Lo-extension || iterations 13 13 13
0 0.101 0.102 0.104
Thin Beam, d = 0.05
Interp. rule | | h =0.025 | h =0.0125 | h = 0.00625 |
AMGe iterations 17 18 19
0 0.180 0.198 0.22
A-extension || iterations 20 23 22
0 0.227 0.286 0.280
Ls-extension || iterations 18 20 27
0 0.203 0.243 0.254

entail much less overhead. The element information and the element matrices, in
particular, are essential for the AMGe methods but are not required for element-free
AMGe. If we assume more information is available (such as the rigid body modes in
the case of elasticity) it may be incorporated into the construction of the extension
mappings. Thus element—free AMGe can be made to reproduce the extra modes in
the interpolation from their coarse values. This property is important in the AMG
methods for elasticity problems (cf. [12]), and incorporating it into element-free
AMGe is a subject of ongoing research.
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