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Abstract� We propose a new general algorithm for constructing interpolation
weights in algebraic multigrid �AMG�� It exploits a proper extension mapping out�
side a neighborhood about a �ne degree of freedom �dof� to be interpolated� The
extension mapping provides boundary values �based on the coarse dofs used to per�
form the interpolation� at the boundary of the neighborhood� The interpolation
value is then obtained by matrix dependent harmonic extension of the boundary
values into the interior of the neighborhood�

We describe the method� present examples of useful extension operators� pro�
vide a two�grid analysis on model problems� and� by way of numerical experiments�
demonstrate the successful application of the method to discretized elliptic prob�
lems�

�� Introduction

The classical algebraic multigrid �AMG� algorithm ��� �� 	
 was developed for op�
erators represented by symmetric� positive�de�nite� M�matrices� While the algorithm
works well for many real�world problems ��
� �� ��
� there are situations in which
it does not perform particularly well� One reason for this is that in some instances
the classical de�nition of interpolation does not adequately interpolate the smooth
modes of the error� More speci�cally� standard AMG interpolation makes certain as�
sumptions about the nature of the smooth error which may not be valid for operators
that are not M�matrices� A more sophisticated characterization of smooth error is
required to develop an adequate interpolation formula�

To provide a better characterization of smooth error� a method known as AMGe�
for element�based algebraic multigrid� was developed recently ��
 for �nite�element
discretizations� AMGe provides an accurate interpolation formula by using the in�
dividual element sti�ness matrices to construct a neighborhood matrix for each �ne
degree of freedom �dof�� The sum of the individual sti�ness matrices for all the el�
ements containing the point at which the dof is de�ned� the neighborhood matrix
acts as a local �Neumann��type version of the original operator� According to AMGe
theory� once the local matrix is developed and coarse�grid points are chosen� solving
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a simple minimization problem yields the optimal interpolation operator for each dof�
It is shown in ��
 that the method indeed produces superior interpolation and leads
to improved convergence rates on several types of problems� including both scalar
problems and systems of PDEs� such as elasticity problems�

An obvious drawback to AMGe� naturally� is that it requires that the element
sti�ness matrices be available� While this is often the case� their storage can be
expensive� Further� AMGe requires that coarse level elements be constructed and
their individual sti�ness matrices be available� Determining the coarse elements is a
di�cult and laborious task�

In this paper we examine the construction of the interpolation operator in both clas�
sical AMG and AMGe� and present them within a common framework� Our purpose
is to extend and generalize the classical interpolation� which was originally motivated
for M�matrices� to develop a rule applicable in more general settings� Accordingly�
we propose a new method for determining the interpolation weights that attempts to
capture the bene�ts of AMGe interpolation without requiring access to the individual
element sti�ness matrices� This method is applicable to �nite di�erence� �nite ele�
ment� or �nite volume discretizations� and we concentrate on the symmetric positive
de�nite case� Essentially� it seeks to determine� for each �ne dof� a neighborhood
matrix that can be utilized in the same manner that the local assembled sti�ness
matrix is used in AMGe� We do this by de�ning a neighborhood for the �ne dof and
examining the rows of the original matrix that correspond to the points in that neigh�
borhood� A set of exterior dofs is de�ned� and a mapping developed that extends
functions on the neighborhood to the exterior dofs� This essentially imposes a set of
boundary conditions on the neighborhood� Here we propose a uni�ed way of building
these boundary conditions� One may view them as an extension �extrapolation� of a
vector de�ned on the neighborhood to its immediate exterior� This extension can be
performed using constant vectors or any other vectors that may be of interest �such
as the rigid body motions in elasticity problems�� The extension can be built for each
dof in the exterior based on the matrix sparsity pattern�

By incorporating the action of the extension operator into the local connections
of the neighborhood� a modi�ed local matrix is created� This matrix is then used
in a manner similar to that employed in AMGe� that is� by solving a minimization
problem� to create the interpolation operator� The construction of the extension
operator and the respective minimization procedure to build the interpolation weights
we consider as our main contribution� We give examples of several extension operators
and show how they relate to both classical AMG and other� more recently proposed
algorithms� A two�grid model analysis of the properties of the resulting interpolation
mappings is provided as well� In particular� we prove that they exhibit approximately
�harmonic� property as well as �partition of unity� property� desirable in standard
two�grid analyses of the AMG methods�

Numerical results are presented demonstrating the method� We include both scalar
problems and systems of PDEs in the form of elasticity problems� Finally� we draw
some conclusions and comment on the direction that continued research will take�

It is important to note that while the choice of coarse�grid points� like the con�
struction of the interpolation operator� is crucial to the success of the AMG method�
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we do not consider the coarse�grid selection here� rather� we leave that topic to future
research while focusing on the interpolation problem here� Furthermore� we observe
that neither AMGe nor the method proposed here are intended to replace or compete
with classical AMG on problems characterized by simple M�matrices� such as the
model Laplacian problem on a regular grid� Instead� they are intended for compli�
cated problems� such as thin�body elasticity� posed typically on unstructured grids�
Nonetheless� we apply the new method �and AMGe� to model problems because they
illustrate� in simple fashion� the features of the methods� We therefore compare re�
sults of our method with AMGe on these problems� but do not include comparisons
to classical AMG� which would be used in practice�

Some notational convention� to denote a vector we will use boldface� e�g�� v�w� ����
The ith component of v will be denoted in di�erent contexts as v�i�� v�i� or vi� In
the latter two cases v �i�e�� not in boldface� will have a meaning of a �grid� function�

�� A framework for AMG interpolation

Assume that the problem Ax � f is to be solved� where A is a sparse� symmetric�
positive�de�nite matrix� AMG is a multigrid method in which no geometric grid
information is used �and often isn�t available or doesn�t even exist�� Accordingly�
all of the components of a multigrid algorithm� the hierarchy of grids� interpolation
and restriction operators� and the coarse�grid versions of the original operator� must
be constructed using only the information contained in the entries of A� For any
multigrid algorithm� several basic components are required� In the case of AMG�
they can be described as follows�

� A �ne grid is required� For AMG� this is generally a setD comprising the degrees
of freedom of the original problem�

� A coarse grid Dc is necessary� This set of dofs is typically a subset of D�
� An interpolation operator P is necessary to map vector functions de�ned on the
coarse grid Dc to the �ne grid D� P � Dc �� D�

� A restriction operator R � D �� Dc� mapping �ne�grid functions to the coarse
grid� is needed� For AMG the restriction is frequently de�ned by R � P T � and
we will use that de�nition here�

� A coarse�grid version of the original operator A is needed� For AMG the coarse
operators are generally de�ned by the Galerkin relation Ac � P TAP �

� A smoothing iteration� G� is used� It is typical to use a point�relaxation method
such as Gau��Seidel or Jacobi relaxation�

The basic two�grid algorithm can then be described as follows� Begin with an initial
approximation x� to the solution of Ax � f �

�� Smooth the error by x� � G�A� f �x���
�� Compute the residual r � f � Ax��
�� Restrict the residual to the coarse grid fc � Rr�
�� Solve the coarse�grid residual equation ec � A��

c fc�
�� Interpolate the coarse�grid error to the �ne grid and correct the �ne�grid ap�

proximation x� � x� � Pec�
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For a multigrid method� a hierarchy of coarse grids D � D� � D� � D� � � � � �
DJ is present� and the two�grid algorithm is applied recursively� i�e�� the two�grid
algorithm is repeated each time step � is encountered� except that a direct solve is
employed at the coarsest�grid�

For the multigrid method an interpolation operator Pi is required mapping func�
tions on each grid �level i� to the next �ner grid �level i���� Unlike many conventional
�geometric� multigrid algorithms� in AMG the interpolation operators are rarely the
same for di�erent levels� Similarly� the Galerkin relation is employed to de�ne versions
of the original operator A on all levels� thusly� Ai�� � RiAiPi�

There are many ways in which to select the coarse�grid dofs in AMG �	� ��� �
�
Commonly� the coarse set Dc is a maximally independent subset of D� but this is not
required� We will not discuss the question of coarse�grid selection further� except to
note that each �ne�grid dof i is connected to its nearest neighbors �e�g�� j� by way of
having a nonzero coe�cient aij� and that the value of a interpolated function at i is
typically a weighted average of the values of its nearest neighbors that are coarse�grid
dofs� For the remainder of this paper� we shall simply assume that a coarse grid has
been selected and that the coarse neighbors are known for any �ne dof�

With this description of the basic components of AMG� we can describe a simple
framework for computing the entries of the interpolation operator� Let i � D be a
�ne�grid dof whose value is to be interpolated� We �rst de�ne a subset ��i� � D to
be the neighborhood of i� For now we place no particular restrictions on what dofs
can be in ��i�� For example� the set ��i� could consist of i and all of its nearest
neighbors� or i and its nearest coarse neighbors� or i� its neighbors� and all of their
neighbors� Indeed� within the framework we describe here� the exact character of the
interpolation operator will depend largely on what sort of neighborhood is de�ned�
Since the value at i will be interpolated from coarse points in the neighborhood� it is
useful to denote the set of coarse dofs in the neighborhood to be �c�i��

To construct the interpolation for i� we examine the entries of the operator A in
the following way� We begin� without loss of generality� by permuting the rows and
columns of A and partitioning it so the �rst set of rows and columns corresponds to
i and the �ne dofs in the neighborhood� that is� to ��i�n�c�i�� The next set of rows
and columns corresponds to the coarse neighbors �c�i�� while the �nal set of rows
and columns corresponds to the rest of the grid Dn��i�� Hence the partitioning of A�
along with the identity of the rows corresponding to the partitions� appears as

A �

�
� Aff Afc 	

	 	 	
	 	 	

�
A g ��i�n�c�i�

g �c�i�
g Dn��i��

For our purposes we are only concerned with two blocks of the partitioned matrix�
The block Aff gives the connections among i and the �ne�grid neighbors while the
block Afc links i and the �ne neighbors to the coarse neighbors�

Armed with these concepts of neighborhood partitioning of the operator� we can
examine classical AMG� AMGe� and our proposed method in terms of choices of
neighborhood and de�nition of the neighborhood matrices�
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�� Interpolation in Classical AMG

For classical AMG �	
� the interpolation is computed in the following fashion� The
neighborhood ��i� is de�ned to be the dof i and all dofs connected to it �all j for

which aij 
� 
�� We then replace both Aff and Afc with modi�ed versions� bAff andbAfc� respectively�
Aff is modi�ed in two ways� Let Si denote the set of dofs that are strongly connected

to the dof i� Ci denote the set of C�points in the neighborhood ��i�� and letWi denote
the dofs that are weakly connected to the dof i� �By strongly �weakly� connected we
mean that the magnitude of aij is greater �smaller� than some pre�de�ned threshold�
A common choice is that if the magnitude of aij is less than � times the largest
magnitude of all o��diagonal entries in the ith row then j is considered to be weakly
connected to i�� Then we modify the row of Aff corresponding to the dof i �which
we will hereafter refer to as the ith row� regardless of the actual numerical ordering�
by

baii � aii �
X
j�Wi

aij�����

bai�j �

�

 j � Wi�
ai�j j � Si�

�����

For j � Wi we replace the jth row of Aff by a zero row� and then place a � in
column j and �� in column i� For all other rows of Aff � i�e�� for j � Si� we zero out
the o��diagonal entries� and replace the diagonal entry ajj with

bajj � �
X
k�Ci

aj�k�

The block Afc is modi�ed to bAfc by zeroing the jth row of for j � Wi�

Once the modi�ed blocks bAff and bAfc are computed� the entries of the ith row of
the interpolation matrix P are determined by taking the entries of the ith row of the
matrix

�
� bA��

ff
bAfc

�
�

�� Interpolation in AMGe

For AMGe a similar description of the interpolation is easily given� In this setting�
the neighborhood ��i� is de�ned naturally as the union of all �nite elements having i
as a vertex �Figure ��� In the �gure� the set ��i� consists of all vertices in the shaded
region� including i �the open circle in the center�� The shaded region consists of the
six triangular �nite elements having i as a vertex� Members of �c�i� are indicated by
the square vertices� Since AMGe gives us access to the individual element sti�ness
matrices� we may create a neighborhood matrix A��i� simply by summing together
all the individual element sti�ness matrices of the elements in the neighborhood� In
AMGe the interpolation operator for the dof i is determined by solving a constrained
min�max problem� that is� by �nding interpolation coe�cients that minimize a certain
measure from �nite element theory� The solution to the min�max problem can be
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Figure �� The neighborhood of the �ne dof i �large open circle��

computed in several ways� one of which �ts into the framework we are developing
here� We partition the neighborhood matrix into the rows and columns associated
with the �ne dofs in the neighborhood and the rows and columns associated with the
coarse dofs� as

A��i� �

�
Aff Afc

	 	

�
g ��i� n�c�i�
g �c�i��

Again� our only interest is in the rows of the neighborhood matrix corresponding to
the �ne dofs� including i� With this partitioning� it turns out that one way to solve
the min�max problem is to take� as the coe�cients for the interpolation operator for
i� the entries of the ith row of the matrix

�
	
A��
ffAfc



�

It is useful to note that� unlike the classical AMG case� there is no need to modify
the matrix Aff prior to computing the interpolation coe�cients� Essentially� this is
because the element sti�ness matrices have built in to them local versions of the null
space and near�null space of the operator� we do not need to make alterations to the
local matrices to insure that these spaces are represented�

For many problems the AMGe method produces a superior interpolation� and re�
sults in good convergence rates ��
� In the remainder of this paper our goal is to
accomplish a superior interpolation without the knowledge �and hence� expense� of
the individual sti�ness matrices�

�� Interpolation for Element�free AMGe

The process we propose for building the interpolation operator is very similar to
the processes described for AMG and AMGe� Once again� we will proceed by de�ning
a neighborhood of the �ne dofs and an associated neighborhood matrix� Let � be
a set of �ne dofs whose values we wish to interpolate� We de�ne ���� to be the
neighborhood of �� which includes the coarse dofs that will be used to interpolate the
dofs in �� The set of coarse dofs in the neighborhood we denote �c����

Now� however� we de�ne a third set of dofs

�X ��� � fj������ j aij 
� 
 for some i � ����n�c���g �
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χ χ

χ χ

χ

Figure �� The extended neighborhood ����� including the �ne dofs
to be interpolated �solid circles�� the coarse interpolatory set �c���
�squares�� and the extension dofs �open circles marked X ��

That is� ���� can be viewed as the interior of the set ���� � ���� � �X ���� Figure
� gives an example of such a neighborhood�

We begin the construction of a neighborhood matrix by examining the rows of the
matrix A that correspond to the �ne dofs in ����� that is� we will be concerned with
the following partitioning of A�

A �

�
BB�

Aff Afc AfX 

	 	 	 	
	 	 	 	
	 	 	 	

�
CCA

g ���� n�c���
g �c���
g �X ���
g everything else on grid�

���� Local �neighborhood� quadratic form� Our task next is to de�ne a matrix
associated with � that yields a local version of the operator A� performing the same
function as does the neighborhood matrix in AMGe� To do this we �rst build an
extension mapping �matrix� E��� that maps a vector de�ned on ���� to ����

E��� �

�
vf
vc

�
��

�
� vf

vc
vX

�
A

using the relation

vX � EXf ���vf � EX c���vc�

That is� the extension operator looks like

E �

�
� I 



 I
EXf ��� EX c���

�
A �

For now we will not be speci�c about the exact nature of the extension operator�
Rather� we will describe how it may be used to develop an interpolation formula�
after which we shall discuss desirable properties of the operator�
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We construct a neighborhood matrix from the �rst block of rows of the partitioned
matrix

� bAff � bAfc

�
� �Aff � Afc� AfX �

�
� I 



 I
EXf ��� EX c���

�
A

so that

bAff � Aff � AfXEXf ��� and bAfc � Afc � AfXEX c����

For any vector

�
vf
vc

�
� consider its extension v �



� vf
vc
vX

�
�� where vX is given by

vX � EXf ���vf � EX c���vc� Let

bv �



� �A��

ff �Afcvc � AfXvX �
vc
vX

�
�

be the so�called harmonic extension of vj�c�����X ��� into ���� n�c���� That is� one

extends v� restricted to the �boundary� �c��� � �X ���� into the �interior� ���� n
�c����

We use the vf that minimizes the di�erence v � bv in energy norm in the interpo�
lation procedure� Since

v � bv �



� vf � �bv�f






�
� �

its energy norm is computable and equals

jjv � bvjj�A � �vf � �bv�f�TAff �vf � �bv�f�
� �vf � A��

ff �Afcvc � AfXvX ��
TAff�vf � A��

ff �Afcvc � AfXvX ���

Since Aff is positive de�nite� this implies that if we solve the equation


 � Affvf � �Afcvc � AfXvX �
� �Aff � AfXEXf�vf � �Afc � AfXEX c�vc
� bAffvf � bAfcvc�

the minimization of jjvf��bv�f jjA is attained with zero minimum by vf � � bA��
ff
bAfcvc�

We can actually show �see Remark ��� and Lemma ���� that in the model �nite
element case considered in Section � the minimization procedure is equivalent to a
quadratic functional minimization involving Neumann assembled matrices� as in the
AMGe method �cf�� ��
��

It is natural to ask whether bAff is invertible� If EXf � 
� there is no di�culty�

since then bAff � Aff � In general� if EXf is su�ciently small in norm Aff �AfXEXf

will be invertible�
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�� Examples of extension operators

We describe here four extension operators E that can be used to construct the
interpolation operator in the element�free approach� These are by no means all the
useful extensions that we could concoct� they form� however� a simple set of exam�
ples that will allow us to demonstrate the e�cacy of the method and its underlying
philosophy�

The �rst we call the L��extension because it is a simple averaging method� Given
v de�ned on ��i�� we wish to extend it to vX � de�ned on �X ���� Suppose that iX is
an exterior dof� that is� a point from �X ��� whose value we wish to determine from
the values of the dofs in ��i�� Let S � fj � ��i� � aiX �j 
� 
g� that is� S comprises
those dofs in ��i� to which the point iX is connected� It seems natural to consider
using a simple average over these dofs as the extension at iX � Thus� the extension
formula� for the dof iX � is given by

vX �iX � �
�X

j�S

�

X
j�S

v�j��

A somewhat more sophisticated extension we call the A�extension because it is a
simple operator�induced method� The A�extension operator for the dof iX is given
by the formula

vX �iX � �
�X

j�S

jaiX �jj

X
j�S

�jaiX �jjv�j�� �

It may be seen that in this case the extension to the exterior is a simple weighted
average of the values of the neighborhood dofs to which the exterior point is connected�
The weights in the average are given by the absolute values of the matrix coe�cients�

The two methods just described share the property that they are computed point�
by�point� That is� the extension formulas for the dofs in �X ��� are determined
independently� A second feature shared by the methods is that if the neighborhood
vector v is constant� then the extended values are also constant� and have the same
value as the entries of the neighborhood vector� This feature is clearly desirable for
many elliptic PDEs� where the constant vector is in the null space or near�null space
of the operator A�

The third example we describe is based on the minimization of a quadratic func�
tional� Again� let v be a vector de�ned on ��i� that we wish to extend to �X ����
We construct the extension to be that operator which produces vX that minimizes
the functional Q�vX �� where

Q�vX � �
X

iX��X ���
j���i�

jaiX �jj �viX � vj�
� ������

It is evident that� like the previous extension operators� if v is constant on ��i�
then the dofs in �X ��� will also have the same constant value� Unlike the previous
extension operators� which are determined one dof at a time� this is a �simultaneous�
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extension� computing formulas for extending to all of the exterior dofs together� As
such� it is necessarily more expensive to compute� We also note that this extension�
and the interpolation it generates� is equivalent to the method recently proposed in
��
�

A �nal example is given by minimizing the following �cut�o�� quadratic functional�

��v�TA������v� �� min

where ���� � ���� � �X ���� subject to vf � vc �xed� Here

� �

�
I 


 �X

�
g ����
g �X ���

is a diagonal matrix� A good choice is� a diagonal matrix �X formed from the vector

�X � ��AXX �
�� �AXf � AX c


�
���f
���c

�
�

Here we used the blocks of A corresponding to its �X ��� rows�
It is easily seen that the extension mapping is actually de�ned as

vX � EX cvc � EXfvf

� ����X �AXX �
�� �AXf � AX c


�
vf
vc

�
�

Note that this extension mapping is also a simultaneous extension operator and an
averaging one� i�e�� if vc � ���c and vf � ���f � then vX � ���X �

���� Classical AMG as an extension method� The interpolation method of the
classical AMG algorithm popularized by Ruge and St�uben �	
 may be viewed as an
extension method� Here the neighborhood is just the dof to be interpolated together
with the dofs that will be used to compute the interpolated value� That is� ��i� �
fig��c�i�� The extended neighborhood then includes all �ne dofs that are connected
to i�

�X ��� � fj ����i� � aij 
� 
g �

An A�extension is de�ned in the following manner� For each iX � �X ���� set viX � vi
if iX is weakly connected to i �Recall that in classical AMG� as developed for M �
matrices� the dof i is said to be strongly connected to the dof j if

�aij � �max
k �	i

��aik�

where � is a user�speci�ed parameter� and weakly�connected otherwise�� If iX is
strongly connected to i the extension is de�ned by

viX �
�X

j��c���

aiX �j

X
j��c���

aiX �jvj�



ELEMENT�FREE AMGE ��

N

S

NW

SW SE

NE

EW

Figure �� The neighborhood of the �ne dof i �large solid circle� for the
stretched quadrilateral element problem� The problem is semicoarsened�
squares denote the coarse neighbors �c�i� while the open circles are the
exterior points �X ����

���� An Example of the Extensions� A simple example should su�ce to illustrate
these extension methods� Suppose the problem �Uxx � Uyy � f�x� y� is discretized
using a regular Cartesian grid of points making up the vertices of quadrilateral ele�
ments� Suppose further that the elements had dimension hx
 hy where hx � hy� As
hy�hx � 
 the operator stencil tends toward


� �� �� ��
� � �

�� �� ��

�
� �

Since there is e�ectively no coupling between a given point and its neighbors to the
east or west� the appropriate choice is to semicoarsen� selecting every other line of
points with constant y�coordinate to be coarse points� Using the same logic� the
natural interpolation is to have each �ne dof interpolated only using the values to the
north and south of it� each with equal weighting of � �� Consider the interpolation of
one point� i� shown in the center of its neighborhood in Figure �� For either the L��
or A�extensions� we might select ��i� � fig � �c�i� where� in this instance� �c�i� �
fN� S� SW�NW� SE�NEg� Then �X ��� � fW�Eg� We see then that Aff � ��
�
Afc � � �� �� �� �� �� �� 
� and AfX � � � � 
� For the A�extension it is
easy to compute the extension operators

EX c �
�

��

�
� � � �
� � � �

�
and EXf �

�

��

�
�
�

�
from which

bAff �

�
�
�

��

�
and bAfc �

�

�

	
��� ��� �� �� �� ��



which yields an interpolation operator

PA �
�

��

	
�� �� � � � �



�

We see that the values to the north and south are used in the interpolation with
weights ����� � 
���� and that the four points diagonally adjacent to i all are
weighted ���� � 
�
��� The ideal weights� of course� are 
�� and 
� respectively� so
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the interpolation weights computed by the A�extension method� while quite good� are
not perfect�

A similar calculation for the weights using the L��extension yields the interpolation
operator

PL� �
�

��

	
�� �� � � � �



�

Here the dofs to the north and south are weighted ����� � 
���� while the diagonally
adjacent dofs are weighted by ���� � 
�
��� For this problem� then� the A�extension
is signi�cantly better than the L��extension�

By contrast� it is a straightforward calculation to show that classical AMG produces
the interpolation operator

PAMG �
�

��

	
� � � � � �



�

where the north and south dofs are weighted by ���� � 
���� and the diagonally
adjacent dofs are weighted by ���� � 
�
��� these weights are farther from the ideal
than the weights produced by either the A� or L��extension�

Finally consider the extension operator based on minimizing the �cut�o�� qua�
dratic functional� The additional matrix blocks involved read�

AXX �

�
� 


 �

�
�

AXf �

�
�
�

�
�

AX c �

�
�� �� �� �� 
 

�� �� 
 
 �� ��

�
�

The vector �X � �A��
XX �AXf AX c


�
���f
���c

�
� ���X � This is seen as follows

AXf���f � ����X � AX c���c � ��
���X �

and hence

AXf ���f � AX c���c � �����X �

which implies

�X � �A��
XX �AXf ���f � AX c���c� � �

�

�
������X 
 � ���X �

That is� the diagonal matrix � is the identity and hence the extension matrices then
read�

EXf � �A��
XXAXf � ��




�
�
�

�
�

EX c � �A��
XXAX c � �

�

�
� � � � 
 

� � 
 
 � �

�
�
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The modi�ed matrices bAff and bAfc take the form�

bAff � Aff � AfXEXf � �� ��� �
�



�
�
�

�
� ��bAfc � Afc � AfXEX c � ������������������
 � ��� �
�

�

�
� � � � 
 

� � 
 
 � �

�
� ������������������
 � ��

�
� �
�
� �� �� �� �


� ���
�
���

�
� 
� 
� 
� 

�

That is� the interpolation coe�cients are the �perfect� ones �corresponding to semi�
coarsening�� �

�� bAff �
�� bAfc

�
i
� �

�

�
�
�

�
� 
� 
� 
� 

�

�� Two�grid analysis for a model finite element problem

Before providing numerical results� we present an analysis of the quality of the
�element�free AMGe� interpolation� That is� we prove an �approximate� harmonic
property of the interpolation mapping and show that it provides a partition of unity�
Speci�cally� we assume that the problem is a standard �nite element discretization of
a second order elliptic problem

a�u� v� �

Z
a�x�ru � rv dx � �f� v� v � V�

where V is a �nite element space of piecewise linear functions over quasiuniform tri�
angular elements that cover a given ��d polygonal domain� For simplicity� we assume
that homogeneous Neumann boundary conditions are imposed and that �f� �� � 

�to insure solvability��

Let us denote� for any element e�

��e� � sup
x�e

max
��R�

�Ta�x��

�T �
������

In the following� we assume that the di�erential operator coe�cients are essentially
constant in each element� so that ��e� gives rise to the local ellipticity constant�

Further� we assume �only for simplicity� that the neighborhood ��i� � ��i���X �i�
for any �ne dof i is formed by union of triangles that share dof i as a common vertex�
Thus we will use i instead of � denoting the neighborhoods ���i�� �X �i�� and �c�i��
and the extension mappings� In particular� we denote Ei � �EXf � EX c
 where for
brevity EXf � EXf �i� and EX c � EX c�i�� A closer look at the analysis to follow�
however� shows that it applies as well to more general �i�e�� larger� neighborhoods�

In what follows� for any subdomain �union of triangles� G� we let aG��� �� denote
the bilinear form a restricted to G� The corresponding subdomain matrix �assem�
bled from the individual element matrices Ae� will be denoted by AN

G � We omit the
superscript N when there is no confusion between AN

G and AG� the submatrix of
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the original matrix A �corresponding to G�� Note that in the latter case AG cor�
responds to a matrix with homogeneous Dirichlet boundary conditions imposed on
	�G � felements neighboring Gg��

For this discussion we assume that Ei� the local extension mapping used to build the
interpolation coe�cients� is based on averaging� although no speci�c rule is assumed�
We do� however� assume that E � E�i� has the particular form


� I 


 I

 EX c

�
� g��i�
g�c�i�
g�X �i�

That is� EXf � 
 and Ei � �
� EX c
�

Remark ���� The general case of Ei � �EXf � EX c
 can be reduced to the particular

case above by using the modi�ed extension mapping bEi �
h

� bEX c

i
where

bEX c � EXf

�
� bA��

ff
bAfc

�
� EX c�

To see this� recall that bAff � Aff �AfXEXf and bAfc � Afc�AfXEX c� and note that
the modi�ed extension mapping extends a constant vector de�ned on �c�i� to be the
same constant on �X �i�� that is�

bEX c���c � �EXf
bA��
ff
bAfc���c � EX c���c

� EXf���f � EX c���c
� ���X �

Here we have used the fact that since �for the model second order elliptic problem�
Aff ���f�AfX ���X�Afc���c � 
 then Aff ���f�AfX �EXf���f � EX c���c��Afc���c �


� That is� bAff���f � bAfc���c � 
� implying that ���f � � bA��
ff
bAfc���c�

We still must show that the modi�ed extension mapping bEi leads to the same in�
terpolation as does Ei� i�e�� that

�A��
ff

�
AfX

bEX c � Afc

�
� � bA��

ff
bAfc�

For this we observe that

�A��
ff �AfX

bEX c � Afc� � �A��
ff

h
AfX

�
EXf�� bA��

ff
bAfc� � EX c

�
� Afc

i
� �A��

ff

h
AfXEX c � Afc � AfXEXf

bA��
ff
bAfc

i
� �A��

ff

h bAfc � AfXEXf
bA��
ff
bAfc

i
� �A��

ff

h bAff � AfXEXf

i bA��
ff
bAfc

� �A��
ff �Aff � bA��

ff
bAfc

� � bA��
ff
bAfc�

�

Consider the minimization problem
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�nd vf such that



� vf

vc
Eiv

�
�
T

AN
��i�



� vf

vc
Eiv

�
� � inf

w
 wc	vc
wX	Eiw

a��i��w� w�������

Thus we seek vf � the value of w on ��i� n�c�i�� which minimizes the quadratic form
a��i��w� w� when the values of w are �xed at the coarse points and are �slave� at the

exterior points ��X �i��� that is� they are extrapolated from the interior ��i� and the
coarse points �c�i� by Eiw�

Lemma ���� The solution to the minimization problem ����� produces the same in�
terpolation coe	cients as does element�free AMGe� namely� those given by �A��

ff �AfXEX c�

Afc�� That is� the minimizer is given by wf � vf � �A��
ff �AfXEX c � Afc�vc�

Proof� Consider the Neumann matrix

AN

��i�
�



� Aff Afc AfX

Acf AN
cc AN

cX

AXf AN
X c AN

XX

�
� �

We use the superscript �N� for the blocks which di�er from the corresponding blocks
of A��i�� the principal submatrix of the original matrix A corresponding to the sub�

domain ��i�� Note that the �N� blocks are not accessible �available� and not used
in our algorithm� We have Eivj�X �i� � EX cvc� Hence� a��i��w� w� for wc � vc and

wX � Eiwj�X �i� leads to the following matrix expression�

a��i��w� w� �



� wf

vc
EX cvc

�
�
T 

� Aff Afc AfX

Acf AN
cc AN

cX

AXf AN
X c AN

XX

�
�


� wf

vc
EX cvc

�
�

�

�
wf

vc

�T �
Aff Afc � AfXEX c

Acf � ET
X cAXf AN

cc � AN
cXEX c � ET

X c�A
N
X c � AN

XXEX c�

�




�
wf

vc

�
�

Minimizing this symmetric positive semi�de�nite quadratic form with respect to wf

is equivalent to solving the equation

Affwf � �Afc � AfXEX c�vc � 
�

which is the same equation that speci�es vf in the element�free AMGe interpolation
procedure�

In the next lemma we will remove the constraint on v being �xed at the �X �i�
points�

Lemma ��	� The following quadratic forms are spectrally equivalent�

q��vc� vc� � inf
v
 vj�c�i�

	vc
a��i��v� v�� and q��vc� vc� � inf

v
 vc �xed
vX	Eiv

a��i��v� v��
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That is� there exists a positive constant 
 such that

q��vc� vc� � q��vc� vc� � 
 q��vc� vc� for all vc�

Proof� We show the proof for two�dimensional domains� For other domains� we must
scale � by the local mesh size appropriately� otherwise� the proof remains the same�
It su�ces to show that the two quadratic forms have the same null�space� The null�
space of q� is vc � const and the null�space of q� is the same as that of a��i��v� v�
with v � vc � const and Eiv � const on �X �i�� Note that a��i��v� v� � 
 implies vf is
the same constant as vc� Then Eiv is also the same constant� since it is an averaging
operator based on the values of vc and vf � Hence the forms q� and q� both vanish
only for constant vc� In order to show that the constant 
 is bounded independently
of Ei� one �rst easily sees that

a��i��v� v� � C
X
e���i�

��e�
X
l� k�e

�v�l�� v�k����

The constant C depends only on the number of points used in the averaging procedure
�Ei�� i�e�� it is bounded by the total number of coarse points �c�i� �plus the interior
point i�� The dofs l and k in the summation are either coarse dofs or i� and ��e� is
de�ned in ����� to be the maximal value of the local ellipticity bound associated with
the original elliptic operator coe�cient a�x�� More speci�cally� for each iX � �X �i�

v�iX � � �Eiv��iX � �
X

k��c�i��fig

�iX � kv�k��

where

X
k��c�i��fig

�iX � k � �� and �iX � k � 
�

Then� for any j � �c�i� � fig�

�v�iX �� v�j�� �
X

k��c�i��fig

�iX � k�v�k�� v�j���

and hence

�v�iX �� v�j��� �
X

k��c�i��fig

��
iX � k

X
k��c�i��fig

�v�k�� v�j���

�
X

k��c�i��fig

�v�k�� v�j����



ELEMENT�FREE AMGE �	

As a result we see that� for vX � Eiv�

q��vc� vc� � a��i��v� v�

� C
X
e���i�

��e�
X
l�k�e

�v�l�� v�k���

� C

max
e���i�

��e�

min
e���i�

��e�

X
e���i�

��e�
X

k�j�e���c�i��fig�

�v�k�� v�j����

Finally� since vf is arbitrary on the right�hand side of this inequality�

q��vc� vc� � C

max
e���i�

��e�

min
e���i�

��e�
inf
vf

�
� X

e��c�i�

��e�
X

k�j�e���c�i��fig�

�v�k�� v�j���

�
A �

It is also true that

q��vc� vc� � inf
v
 vc �xed

�
� X

e���i�

��e�
X
l� k�e

�v�l�� v�k���

�
A �

This shows that 
 can be chosen bounded independently of the actual averaging
extension mapping Ei�

The above estimates involve the factor

max
e���i�

��e�

min
e���i�

��e�
�

Whether it is large or small depends on the selection of the coarse grid �the coarse
grid re!ects the form of the neighborhood ��i��� which we do not consider in the
present paper�

Then the following corollary� involving the element�free AMGe interpolated vector
Pvc� is proved in the same way as Lemma ����

Corollary ���� Consider the extended neighborhood of i� b��i� � �fe� e � ��i� or e �
��j�� for all j � �X �i�g� There is a constant � � ����i� � 
� locally estimated� such
that the following bound holds


a��i��Pvc� P vc� � � inf
w
 wc	vc

a���i��w� w��

Proof� Let v be de�ned on b��i� as follows�
v�k� �

��
�

�Pvc��k�� k � ��i��
vc�k�� k is a coarse dof outside ��i��
�Ejv��k�� k � �X �j�� for some j � �X �i��

We see that v at every �ne dof k in b��i� is an average value of some neighboring

coarse dofs from b��i�� Hence� in the same way as in the proof of Lemma ���� we
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establish the inequality

a���i��v� v� � � inf
w
 wc	vc

a���i��w� w��

Since a��i��Pvc� P vc� � a���i��v� v�� the desired result follows�

For each �ne dof i� de�ne Z�i� to be the number of overlapping domains on "��i��

that is� the number of domains "��j� such that "��j� � "��i� 
� �� Then we may state
the following theorem�

Theorem ���� The element�free interpolation mapping P exhibits the following ap�
proximate harmonic property


a�Pvc� P vc� � � inf
w
 wc	vc

a�w� w��

where the constant � � max
i	�ne dof

����i�Z�i�� and the ����i� are the local constants from

Corollary ��
�

Proof� The proof simply follows from the fact that

a�Pvc� P vc� �
X

i	�ne dof

a��i��Pvc� P vc�

and by summation of the local estimates from Corollary ����

Another important property of the element�free interpolation mapping P is that
it partitions unity� as we show in the following theorem�

Theorem ��	� P provides a partition of unity� Speci�cally� the row sums of P are

�

Proof� Let vf � Pvc be given by vf �
P

ic��c�i�

�i� icvc�ic�� Assume that vc�ic� � �

on �c�i�� Now� P uses the formula that minimizes ����� and the minimum �zero� is
achieved for Eiv�j� � � at �X �i� and vf � �� That is� we �nd that

� �
X

ic��c�i�

�i� ic �

which is the desired unity row�sum property of P �

Remark ��	� Theorems ��
 and ��� are the main goals of many two�grid convergence
analyses and they imply convergence of the respective two�grid AMG methods� cf��
e�g�� ���
� ��
� ���
� and ��
�

�� Numerical experiments

We describe here several sets of numerical experiments designed to test the e�cacy
of the element�free AMGe methods described above� For each of several problems we
apply a set of interpolation rules within an AMG code� The problems are then solved
using a CG solver� preconditioned with one V�cycle of AMG�

The interpolation rules are�

� the AMGe rule ��
 for the �nite element problems�
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� three element�free AMGe rules from Section ��
�� L��extension�
�� A�extension�
�� �only for scalar PDE� the simultaneous extension based on minimizing the

quadratic functional ����� described in Section ��

For systems problems the unknowns are split into physical variables� That is� for
scalar problems the rule is as described in Section �� while for ��d elasticity� with
physical variables u and v �displacement in the x� and y�directions� respectively� we
perform the extensions �and associated interpolation� of exterior dofs of type u using
only neighborhood dofs of type u� similarly� the extension to exterior dofs of type v
are carried out using neighborhood dofs of type v� this applies both to L� and A�
extensions� The local neighborhood about a point is de�ned by the sparsity pattern
of the matrix about that point and the averaging involves only dofs from the sparsity
pattern set S �see Section ���

���� An elliptic problem on a triangular element mesh� We apply the various
interpolation rules to a second order elliptic PDE

�r � �A�x� y�ru� � f�x� y� on G�����

u�x� y� � g�x� y� on 	G�����

where G is the unit square� The matrix of di�usion coe�cients includes functions
with relatively benign characteristics� there is both spatial variability and jump dis�
continuity in the coe�cients� but the jumps are of relatively small magnitude and the
variation is mild� The discretization is by a �nite�element method on an unstructured
triangular mesh� The coarsening algorithm is one of element agglomeration� That
is� the coarse grids are the vertices of coarse elements produced by an agglomeration
algorithm proposed in ��
� Figure � displays the coarsening sequence for a typical
problem� Here the �ne grid comprises ��

 elements� the �rst coarse grid has ���
elements� and the remaining grids have 	�� ��� ��� �� �� and � elements� Table � gives
the coarsening details for four di�erent versions of this problem� It may be seen that
the number of elements decreases by about ��# at each coarsening for the �rst few
coarsenings� after which it decreases by about �
# per level� The number of nonzero
entries in the matrix decreases by approximately �
# per level� while the number of
degrees of freedom tends to decrease by �
��
# with each successive level�

For each of the four interpolation rules� the problem is solved using a preconditioned
conjugate gradient method� where the preconditioning consists of a single V������
cycle of AMG� with a Gau��Seidel smoother� The iteration is run until the residual
is less than �
�� in norm� We report the results in Table �� For each problem size
we display� for each interpolation rule� the number of preconditioned CG iterations
required to achieve the desired residual size and �� the average convergence factor
over the iterations�

Examination of the results reveals that all three of the extension methods� A�
extension� L��extension� and quadratic functional minimization� perform at least as
well on this problem as does AMGe� In some cases the performance of the exten�
sion methods is marginally better than AMGe� The amount of work entailed for
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Figure �� Sequence increasingly coarse elements� formed by element agglomeration�

the A�extension and the L��extension methods is comparable to that of AMGe� pro�
vided that the neighborhoods are selected to be of comparable size as the element
neighborhoods �which is the case in these experiments�� For the quadratic functional
minimization the work is somewhat greater� but still comparable� The advantage
of the element�free methods is� of course� that there is no requirement to have the
actual individual sti�ness matrices that are required in AMGe� For this experiment
this represents a considerable savings in storage�

���� Two dimensional elasticity
 the thin beam� We consider next the two di�
mensional plane�stress elasticity problem on a cantilevered beam� �xed at one end�
The domain of the problem is G � �
� ��
 �
� d� with d � �� For d � � this is the
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Table �� Coarsening history for the problem �r�A�x�y�ru � f on an
unstructured triangular �ne grid� For each level of each problem size�
�nz� is the number of nonzero entries in the operator matrix� �dofs�
gives the number of degrees of freedom� and �elts� gives the number of
�nite elements in the agglomerated grid�

No� of elements

level ����� ���� ���� ���

� nz 	�
�� ����� ���� ��	�

dofs �
��� 

�� ��� �
�

elts ����� ���� ���� ���

� nz 
��	� 	��� ���� ��	�

dofs ���� ���� 

� ���

elts ���
 ���� 
�� ��

� nz ��
�� �
�� �
	� ���

dofs ���� ��� ��
 ��

elts ���	 
�� 	
 ��


 nz ��	
 ��	� �
� �		

dofs ��
 �	� �� �


elts 
	� ��� 

 ��

� nz 
��� 	�� 
�� ��

dofs 
�� 	� 
� ��

elts ��� �� �� �

� nz ���� ��
 ��� 
�

dofs ��� �� �� �

elts �� �� � �

� nz ��� ��� �� ��

dofs �� �� � �

elts 

 �� 
 �

� nz ��� �� ��

dofs 
� �� �

elts �� � �

� nz ��� 
�

dofs �� �

elts � �

	 nz �� ��

dofs � �

elts 
 �

�� nz ��

dofs �

elts �

thin�beam problem� The problem is

uxx �
�� 


�
uyy �

� � 


�
vxy � f��

� � 


�
uxy �

�� 


�
vxx � vyy � f��
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Table �� CG convergence results� unstructured triangular �ne grid�
second order elliptic problem� V ��� ���cycle MG� Gau��Seidel smoother
used as preconditioner�

Interp� rule �

 elts ��

 elts ��

 elts ���

 elts

AMGe iterations �� �� �� ��
� 
���� 
���� 
���� 
���	

A�extension iterations �� �� �	 �

� 
���� 
���� 
���� 
����

L��extension iterations �� �� �	 ��
� 
���	 
���� 
���� 
���	

quadratic funct� iterations �� �� �	 �	
min� � 
��
� 
���� 
���� 
����
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�
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Figure 	� The thin�beam elasticity problem domain� Homogeneous
Dirichlet boundary conditions are applied at x � 
�

where u and v are displacements in the x and y directions� respectively� This can
be a di�cult problem for standard multigrid methods� especially when the domain is
long and thin ��
� The problem is discretized using uniform square �nite elements of
size h� Nodal coarsening is used� with the coarse nodes being the vertices of elements
created by the agglomeration algorithm from ��
� After certain levels of coarsening
the algorithm agglomerates only along the x�direction�

We present results in both the thick beam �d � ��
� and thin beam �d � 
�
��
cases� In both cases we use 
 � ���� For each case we present results for three
sizes of the discretization parameter� h � 
�
�� 
�
��� and 
�
��� for the thick beam
and and h � 
�
��� 
�
���� and 
�

��� for the thin beam� The coarsening histories
of the agglomeration algorithm are shown in Table �� Table � shows the results of
the experiments for the beam problem� As in section ���� preconditioned conjugate
gradient is used as the solver� with a single V������cycle of AMG as the preconditioner�
with a Gau��Seidel smoother� For this problem we show the number of iterations
required to achieve a residual norm less than �
��� and also the convergence factor of
the �nal iteration� For this problem we do not implement the quadratic minimization
method described in section �� That method is for scalar problems� while this problem
is a system of PDEs� We use the AMGe method described in ��
 and compare it with
the A� and L��extension methods described above� Our expectation is that AMGe
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Table �� Coarsening history� structured rectangular �ne grid� ��d
elasticity� d � �

Thick Beam d � ��
 Thin Beam d � 
�
�
level h � 
�
�
 h � 
�
�� h � 
�
��� h � 
�
�� h � 
�
��� h � 
�

���


 nz ����� ����� ������ ���� ����� ���


dofs ��� ���� ����� ��� ��
 ��	�

� nz �
��
 �
��
 �����
 ���� ���� �
���
dofs ��� 	�� ���� �� ��� ��


� nz ���� ����� �
��� ��� ���� �
���
dofs �� ��� 	�� �� ��� ���

� nz �


 �	�� �	
�� ��� ���� ����
dofs �� 	� ��� �� �� ���

� nz ��� ��
� ���� ��� ��� ����
dofs �� �� �
� �� �� ��

� nz �� ��� ���� �� ��� ���
dofs � �� �� � �� ��

� nz ��� ��� �� ���
dofs �� �� � ��

� nz �� ��� ��
dofs � �� �

� nz ��
dofs �

should outperform the element�free methods� at least on the thin beam problem� this
is the problem for which AMGe was originally developed� We observe� however� that
for the thick beam problems the element�free methods both outperform AMGe� First�
we note that it takes fewer iterations to reach the tolerance� It is also apparent that
the element�free methods are more scalable� in that the number of iterations does not
grow with the problem size� The AMGe method requires more iterations for larger
problems�

For the thin beam problem� we observe the results we naturally expect� That is�
AMGe outperforms the element�free methods� requiring fewer iterations� Further�
AMGe appears to be more scalable on this problem than the extension methods�
The L��extension method exhibits a distinct lack of scalability as the problem grows
larger�

	� Conclusions

In this paper we propose a general rule for building interpolation weights in AMG�
thus extending the applicability of AMG to more general settings than the traditional
M�matrix case� The applications include elliptic problems on unstructured �nite
element grids� where both scalar problems and systems �like elasticity� are considered�
The element�free AMGe method seems as competitive as the AMGe methods but
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Table �� CG convergence results� structured rectangular �ne grid� ��d
elasticity� d � �� V ��� ���cycle MG� Gau��Seidel smoother used as pre�
conditioner�

Thick Beam� d � ��

Interp� rule h � 
�
�
 h � 
�
�� h � 
�
���

AMGe iterations �� �� �

� 
���� 
��
� 
����

A�extension iterations �� �� ��
� 
�
		 
�
	� 
�
	�

L��extension iterations �� �� ��
� 
��
� 
��
� 
��
�

Thin Beam� d � 
�
�
Interp� rule h � 
�
�� h � 
�
��� h � 
�

���

AMGe iterations �� �� �	
� 
���
 
��	� 
���

A�extension iterations �
 �� ��
� 
���� 
���� 
���


L��extension iterations �� �
 ��
� 
��
� 
���� 
����

entail much less overhead� The element information and the element matrices� in
particular� are essential for the AMGe methods but are not required for element�free
AMGe� If we assume more information is available �such as the rigid body modes in
the case of elasticity� it may be incorporated into the construction of the extension
mappings� Thus element�free AMGe can be made to reproduce the extra modes in
the interpolation from their coarse values� This property is important in the AMG
methods for elasticity problems �cf� ���
�� and incorporating it into element�free
AMGe is a subject of ongoing research�
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