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Abstract The hypre software library provides a variety of parallel linear solvers
designed for high performance computers. It focuses on algebraic multigrid methods
(AMG), which provide excellent scalability. With the expanding use of accelerators
in current and future high-performance computers, new programming models have
been added to take advantage of the increased performance potential of graphics
processing units (GPUs). This chapter will discuss porting strategies and present
results for hypre’s GPU-enabled multigrid solvers within three application codes.

1 Introduction

The solution of large linear systems is an essential and often computationally expen-
sive component of many large-scale simulations on high-performance computing
(HPC) machines. Such simulations would not be feasible without linear solvers that
are algorithmically scalable and tailored to particular HPC architectures. These de-
mands have only increased in the new age of exascale computers, where performance
is achieved through vast parallelism and highly specialized GPU architectures.

The hypre [12, 18] library of high-performance solvers and preconditioners is
developed and maintained at Lawrence Livermore National Laboratory (LLNL) and
provides scalable and portable algorithms that are relied upon by many large-scale
application codes around the world. The goals of hypre are three-fold: first, to provide
a variety of general and adaptable interfaces that can be easily used across many
disparate application areas (Section 2); second, to provide scalable and effective
algorithms for a wide set of applications and problem sizes (Section 2); and finally,
to provide performant and portable implementations of these solvers on a wide
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variety of computing architectures (Section 3). Through pursuing these goals, hypre
has seen widespread success in application codes, and three examples are given here
(Section 4). The applications cover three scientific areas: combustion, subsurface
flow, and computational fluid dynamics (CFD); they use different hypre interfaces
and solvers and run on HPC systems, including the exascale computer Frontier at
Oak Ridge National Laboratory (ORNL), with scalability demonstrated up to tens of
thousands of GPUs. The paper concludes with a synthesis of the findings and future
research directions in Section 5.

2 Interfaces and solvers

The hypre library provides three different interfaces [12] to allow users to represent
their problems in a way they prefer: a structured interface that uses grids and stencils,
a semi-structured interface for problems that are mostly structured, such as adaptive
mesh refinement grids, or block-structured grids, defined with stencils or finite
elements, and a linear-algebraic interface, where problems are expressed in terms of
matrices and vectors.

Data Layouts

Structured Composite Block-Struc Unstruc CSR

Linear Solvers
PFMG, ... FAC, ... Split, ... AMS, ... AMG, ...

Linear System Interfaces

Fig. 1: Illustration of the idea behind hypre’s conceptual interfaces.

Figure 1 shows the notion of hypre’s conceptual interfaces and how they connect
to solvers. The top row shows various concepts, such as structured grids, composite
grids, block-structured grids, unstructured grids, or standard matrices. The second
row lists various solvers and preconditioners. These require different information
from the user provided through the interfaces. The bottom row lists different data
layouts. The most efficient solvers, such as PFMG, can only be used through the struc-
tured interface on the left. In contrast, unstructured solvers such as (Boomer)AMG
can be used with all interfaces, albeit at a cost, since they use less efficient data
layouts but can solve more complex problems.
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Fig. 2: Selected hypre solvers and their association with interfaces and data layouts.

Figure 2 shows a list of available solvers in hypre and indicates the interfaces
that can be accessed along with the data layouts used for their implementation. The
term ‘matrix free’ means the solver can be run with any of the three data layouts,
whereas all other solvers have been implemented using the data layout mentioned
in Figure 2. Most of hypre’s solvers are multigrid methods. Exceptions are the
Krylov solvers, the incomplete LU factorization preconditioner ILU, and the sparse
approximate inverse preconditioner FSAI. These methods have been included for
difficult systems that cannot be solved with multigrid methods and can also be used
as smoothers within hypre’s unstructured AMG solver BoomerAMG for more robust
convergence if needed. All methods in Figure 2 have been GPU-enabled for NVIDIA,
AMD, and Intel GPUs via CUDA, HIP, and SYCL. However, not all options and
configurations of these solvers are fully ported to GPUs. SMG, PFMG [3], SysPFMG,
pAIR [23, 15], and BoomerAMG [16] can be described by the general AMG method
described in Section 2.1, whereas ADS, AMS and MGR are more specialized solvers
that internally use BoomerAMG. AMS [19] has been developed for systems derived
from H-curl discretizations of the Maxwell equations, ADS [20] for H-div systems,
and MGR [27], described in Section 2.2, for block linear systems. The solvers used
in the applications considered in Section 4 are PFMG, BoomerAMG, and MGR,
which are described in more detail below.
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2.1 Algebraic multigrid

AMG methods consist of a setup phase and a solve phase. The setup phase consists
of the coarsening algorithm that determines the variables to be used on the next
coarser level, the generation of restriction and prolongation operators, 𝑅 (𝑚) and
𝑃 (𝑚) , needed to move between different levels, 𝑚 and 𝑚 + 1, and the generation of
the coarse grid operator, which is generally accomplished by the Galerkin product,
𝐴(𝑚+1) = 𝑅 (𝑚) 𝐴(𝑚)𝑃 (𝑚) , where 𝐴(0) = 𝐴 is the original linear system to be solved.
Often restriction is defined as the transpose of interpolation, 𝑅 (𝑚) = (𝑃 (𝑚) )𝑇 ,
particularly when dealing with a symmetric matrix, 𝐴. Figure 3 shows two levels of
an AMG V-cycle, beginning with a few steps of smoothing followed by a restriction of
the residual to the next level. This process is then applied recursively until the coarsest
level, where the system can be solved directly. The coarse-grid error correction, 𝑒𝑚+1,
is then interpolated to the next finer level and added to the approximation, 𝑢𝑚, before
performing some additional smoothing.

Fig. 3: Two levels of an AMG V-cycle.

PFMG, hypre’s most efficient solver, is based on the structured data layout, which
is defined by grids and stencils and is well suited for GPUs. It uses semi-coarsening
and a simple two-point interpolation operator. This strategy is highly efficient, since
it limits stencil sizes on lower levels. The solve phase uses an efficient point smoother.

BoomerAMG, hypre’s most widely used preconditioner, is based on a parallel
compressed sparse row (CSR) matrix data layout. It has a large variety of different
options. Default settings for GPUs include PMIS coarsening [11] and interpolation
operators based on matrix operations [21]. Smoothing is generally done with simple
methods, such as L1-Jacobi [4], but more complex smoothers such as ILU or FSAI
can also be employed.
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2.2 Multigrid Reduction Framework

Multigrid reduction (MGR) is an approximation of the total reduction method to
yield an efficient iterative solver. Originally introduced by Ries, Trottenberg and
Winter in 1983 [24], various adaptations of the algorithm have been developed,
including [22, 28, 2, 13, 27]. The MGR framework developed in hypre is designed
to enable the efficient solution of systems of coupled equations, which are known to
be problematic for scalar multigrid methods. The approach generalizes multi-stage
and block preconditioners, typically used in multiphysics applications, in a stan-
dard multigrid framework [27]. Following standard multigrid convention, consider
a splitting of a coupled system of discretized partial differential equations (PDEs)
into two sets of C-points and F-points:

𝐴 =

(
𝐴𝐹𝐹 𝐴𝐹𝐶

𝐴𝐶𝐹 𝐴𝐶𝐶

)
=

(
𝐼𝐹𝐹 0

𝐴𝐶𝐹𝐴
−1
𝐹𝐹

𝐼𝐶𝐶

) (
𝐴𝐹𝐹 0

0 𝑆∗

) (
𝐼𝐹𝐹 𝐴−1

𝐹𝐹
𝐴𝐹𝐶

0 𝐼𝐶𝐶

)
, (1)

where 𝐼𝐶𝐶 and 𝐼𝐹𝐹 are identity operators and 𝑆∗ = 𝐴𝐶𝐶 − 𝐴𝐶𝐹𝐴
−1
𝐹𝐹

𝐴𝐹𝐶 is the
Schur complement. The idea is to construct approximate restriction and interpolation
operators, R and P, so that 𝑅𝐴𝑃 ≈ 𝑆∗. The resulting two-grid error propagation
operator for the MGR solution can be expressed as

𝐼 − 𝑀−1
𝑀𝐺𝑅𝐴 = (𝐼 − 𝑃𝑀−1

𝐶 𝑅𝐴) (𝐼 − 𝑀−1
𝐹 𝐴), (2)

which describes the complementary processes of F-relaxation, with smoother 𝑀−1
𝐹

,
followed by coarse grid correction, with 𝑀−1

𝐶
≈ (𝑅𝐴𝑃)−1. For a detailed description

and theory of the two-grid approach, as well as equivalences to multi-stage and block
preconditioners used in the multiphysics community, see [27].

Algorithm 1 Multigrid Reduction Solve Phase.
1: 𝑀𝐺𝑅(𝑙)
2: if 𝑙 is coarsest level, 𝐿 then
3: solve coarse grid system 𝐴𝐿𝑒𝐿 = 𝑟𝐿 by classical AMG
4: else
5: Let 𝑟 = 𝑏 and 𝑒0 = 0
6: Global Relaxation: 𝑒𝑙 ← 𝑒𝑙 + 𝑀−1

𝑙
𝑟 , where 𝑀𝑙 ≈ 𝐴𝑙

7: F-Relaxation: 𝑒𝑙 ← 𝑒𝑙 + 𝑀𝐹
−1
𝑙
(𝑟𝑙 − 𝐴𝑙𝑒𝑙)

8: Restriction: 𝑟𝑙+1 = 𝑅𝑙 (𝑟𝑙 − 𝐴𝑙𝑒𝑙)
9: Recursion: 𝑒𝑙+1 = 𝑀𝐺𝑅(𝑙 + 1)

10: Update solution: 𝑒𝑙 ← 𝑒𝑙 + 𝑃𝑙𝑒𝑙+1
11: end if

Algorithm 1 describes the multigrid reduction’s solve phase, which extends the
two-level method in (2) via recursion. The subscript 𝑙 denotes the operator at level 𝑙 of
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the multilevel hierarchy. The algorithm presents a general approach, which includes
pre-smoothing by a global smoother at each level. The global smoother may be used
instead of F-relaxation (as a more potent smoother) or as an additional smoothing
step. In general, block relaxation schemes such as Jacobi or hybrid Gauss-Seidel
are sufficient as a global smoother. However, ILU smoothers are more effective
for problems with complicated coupling of unknowns. The framework provides a
flexible interface to prescribe the splitting of unknowns into C-points and F-points for
various block linear systems. Assuming this splitting is done based on the different
physical variables in the system, a typical approach reduces a physical variable
at each level until a scalar problem is reached at the coarsest level. In practice,
however, variables with similar physical properties can be prescribed together at
the same level and treated as a scalar problem. The implementation admits various
compositions of smoothers to handle different physical regimes across the levels.
Typically, using cheaper yet more efficient smoothers for F-relaxation and a more
robust solver for the coarse grid correction leads to a reasonable preconditioner.
The framework supports standard smoothers such as Jacobi, Chebyshev, and ILU;
multilevel options like AMG; and direct solvers at each level. At the coarsest level,
the coarse grid correction uses classical AMG, which is important to maintain
good scalability for large-scale simulations. Thus, it is favorable to have a reduction
strategy that has good M-matrix properties on the coarsest grid. At each level in the
hierarchy, the coarse grid matrix can be constructed via a Galerkin product (𝑅𝐴𝑃)
or a non-Galerkin approach, which provides additional flexibility in approximating
the Schur Complement. The MGR framework offers GPU support for various solver
options and linear algebra operations. It has been successfully applied to large-scale
applications of subsurface flow with geomechanical processes [27, 8, 7]. Numerical
examples in Section 4.2.2 will demonstrate the performance of MGR on a multiphase
subsurface flow problem with thermal effects and poromechanics.

3 Porting strategies to exascale computers

Adapting hypre for GPU-based exascale machines necessitates the migration of op-
erations within the algorithms from CPUs to GPUs, provided they remain suitable for
the fine-grained parallelism inherent to GPUs. Otherwise, entirely new algorithms
may need to be developed specifically for GPUs. For example, porting the original
extended and extended+i interpolation algorithms [10] directly to GPUs poses var-
ious challenges. Consequently, new versions of the algorithms have been devised,
formulated as sparse matrix-matrix multiplications (SpGEMM) [21]. This approach
not only leverages existing high-performance SpGEMM kernels but also maintains
the interpolation properties in the original forms.

Our porting strategies to develop high-performance GPU-accelerated AMG code
adopt the following 3 approaches in sequence:
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1. Utilize existing dense or sparse kernels from vendor libraries: cuBLAS, cuS-
PARSE, cuSOLVER (NVIDIA); rocBLAS, rocSPARSE, rocSOLVER (AMD);
oneAPI, oneMKL (Intel).

2. Leverage high-level libraries that provide parallel primitives on GPUs of the
algorithms in the C++ Standard library: thrust (CUDA); rocprim (HIP); oneDPL
(SYCL). These primitives often times serve as building blocks of complicated
AMG algorithms.

3. As necessary, develop custom device functions.

This sequence balances the extent of new code development while achieving optimal
performance portability across GPUs and multicore CPUs. More details on the
porting strategies of hypre to GPUs can be found in [14].

An example of the initial approach pertains to a critical operation, specifically
sparse matrix-vector product (SpMV), which is essential in the AMG solve phase.
Notably, sparse linear algebra libraries offered by vendors all include highly efficient
algorithms for matrices in the CSR format.

As an illustrative example of the second approach, consider a fundamental op-
eration used at many places in constructing AMG: transforming the row pointer
array of the CSR matrix into the array of row indices of all nonzeros of a matrix.
The following implementation, utilizing a double for-loop, can efficiently execute
on CPUs, where nrows is the number of rows, RowPtr is the row pointer array of
CSR, and RowIdx is the output array of row indices of all the nonzeros. To further
improve performance on multi-core architectures, multi-threaded parallelism can be
implemented for the outer for-loop.
#pragma omp parallel for
for (i = 0; i < nrows; i++)
for (j = RowPtr[i]; j < RowPtr[i+1]; j++) { RowIdx[j] = i; }

Alternatively, for a GPU implementation aimed at maximizing parallelism, par-
ticularly in this case with respect to the number of nonzero coefficients, an effi-
cient approach involves leveraging three parallel primitives: fill, scatter if, and
inclusive scan. The first two primitives are in the C++ Standard Library, while
the last one is available in the Boost C++ Libraries [25], and all of them are in the
C++ parallel algorithms library Thrust [1]. Here, empty row is a straightforward
function that returns true if a row contains no nonzeros.
fill(RowIdx, RowIdx + nnz, 0);
scatter_if(counting_iterator <int>(0), counting_iterator <int>(nrows), RowPtr,
transform_iterator(zip_iterator(make_tuple(RowPtr, RowPtr+1)), empty_row()),
RowIdx);

inclusive_scan(RowIdx, RowIdx + nnz, RowIdx, maximum<int>());

Compared to the CPU implementation, this approach offers several advantages when
running on GPUs: 1) enhanced granularity of parallelism, particularly on a per-
nonzero basis within the first and last primitives; 2) improved memory coalescing
patterns from adjacent threads; 3) better workload balancing, especially when the
distribution of nonzeros among rows is far from an even distribution. Seamless
unification of primitive function calls across different languages (i.e., CUDA, HIP
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and SYCL) can be achieved effortlessly through straightforward macro definitions
within distinct namespaces.

The final approach of writing custom device functions is commonly employed
when developing complicated AMG algorithms that are challenging to organize into
standard linear algebra operations or even into standard parallel primitives. Imple-
mentations of these algorithms often diverge significantly from parallel CPU imple-
mentations for multi-core CPUs. Consequently, porting these algorithms presents
nontrivial challenges, stemming from factors like thread granularity and the par-
titioning of computations among threads. We carefully implemented these device
functions by exploiting low level hardware and language support, e.g., on-chip shared
memory, warp-level primitives, thread synchronizations. Unifying device function
implementations for CUDA and HIP is straightforward due to the similarity and
compatibility of these two languages, requiring only the resolution of minor dis-
crepancies such as the size of warps and maximum shared memory size. The syntax
for launching device kernel functions remains identical across both languages. On
the other hand, transitioning to SYCL presents remarkable challenges. While the
mapping of functions between thrust and rocprim is straightforward, manual trans-
lation is often required for oneDPL. Additionally, while OneMKL provides sparse
BLAS routines, caution must be exercised to navigate potential pitfalls, such as the
matrix sorting requirement in the SpGEMM routine. Moreover, differences in kernel
specification and launch syntax add further complexity to the process. To facilitate
code reuse and efficiency, we defined macros as follows.
sycl::range<1> : gridsize , blocksize
void hypreGPUKernel_* (sycl::nd_item &item, ...) {

get_grid_thread_id <1, 1>(item) }
#define HYPRE_GPU_LAUNCH {sycl::queue->submit([&](sycl::handler& cgh) {
cgh.parallel_for (sycl::nd_range <1>(gridsize*blocksize , blocksize),[=](sycl::
nd_item <1> item)[[intel:: reqd_sub_group_size(HYPRE_WARP_SIZE)]] {(
kernel_name)(item, __VA_ARGS__);});}).wait_and_throw();}

Finally, basic infrastructure elements, such as SYCL devices and warp/group-level
functions, differ and thus necessitate re-implementation.

4 Use of hypre in applications

Hypre’s recent advances, especially its GPU capabilities, have significantly enhanced
the ability of application codes to leverage modern supercomputers. In this section,
we demonstrate the use of hypre in three application codes, emphasizing its critical
role in achieving scalability and reducing overall execution times.
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4.1 Uintah1

The Uintah framework is utilized for simulating boilers and conducting combustion
research at the University of Utah. The code employs hypre’s PFMG to solve pressure
equations. Figure 4 shows a scaling study of the ARCHES turbulent combustion
component that simulates a helium plume on a single-level structured grid, which
is a cube divided into patches. The experiment was performed for three problem
sizes using two different patch sizes on the Summit computer at ORNL and used
both GPUs and CPUs for the Uintah components of the code through Kokkos
enabling OpenMP threading for the CPU cores and CUDA for the GPUs. The hypre
library was exclusively run on GPUs using CUDA, with PFMG and micro-kernel
fusion for enhanced performance [17]. The results, shown in Figure 4, demonstrate
excellent weak and strong scaling. Larger patch sizes yield better performance,
while smaller patch sizes allow for a higher degree of fine-grained parallelism.
Approximately 50 % of the total simulation time is attributed to hypre, indicating its
significant contribution to the achieved scalability. Additionally, the Uintah team has
successfully run their framework with hypre on two exascale computers: Frontier
at ORNL (utilizing HIP for hypre) and Aurora at Argonne National Laboratory
(utilizing SYCL for hypre).
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Fig. 4: Helium plume run to 24,576 NVIDIA V100 GPUs and 8,192 IBM POWER9
processors with 172,032 CPU threads using MPI+Kokkos for Uintah components
and CUDA for PFMG.

1 http://uintah.utah.edu
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4.2 GEOS2

GEOS is an open-source and GPU-enabled simulation code written in C++ specifi-
cally designed to solve tightly-coupled multiphysics problems, with a primary focus
on subsurface reservoir applications. It offers robust capabilities for modeling com-
positional flow, poromechanics, faults and fractures slip, and thermal effects in
underground reservoirs, setting it apart from traditional simulators. The mathemat-
ical models in GEOS typically result in challenging linear systems of equations.
These systems are primarily solved using hypre, employing its MGR preconditioner,
or the BoomerAMG preconditioner for simpler single-phase flow scenarios. In this
section, we present weak and strong scalability results for two simulations performed
with GEOS, highlighting hypre’s performance and efficiency.

4.2.1 Weak scaling - Single-phase flow model

We used GEOS to simulate fluid flow in the vicinity of a wellbore, a scenario that is
important for optimizing extraction processes and enhancing reservoir management.
The model considers a single fluid type and solves for the pressure distribution in
a radially structured mesh. The resulting linear systems generated in the transient
simulation are solved with hypre ’s GMRES preconditioned with BoomerAMG.

Figure 5 presents a weak scalability study in the Frontier supercomputer. We show
average execution times per time step of the simulation and distinguish between hypre
and GEOS times. The x-axis represents the number of GPUs3 used followed by total
number of degrees of freedom (DOFs) in millions (M) and billions (B). As the
number of GPUs increases from 4 to 16384, corresponding to an increase in DOFs
from 6.6 million to 27 billion, the execution times for both the overall GEOS simu-
lation and the hypre solver components exhibit moderate increases. Specifically, the
total GEOS execution time rises from 0.06 seconds to 0.08 seconds, demonstrating
the framework’s efficiency and scalability in handling larger problem sizes. hypre’s
(BoomerAMG) setup time increases from 0.12 seconds to 0.47 seconds, reflecting
the additional distributed communication overhead required to build the precondi-
tioner with larger compute node counts. Lastly, hypre’s (BoomerAMG-GMRES)
solve time shows a gradual increase from 0.18 seconds to 0.50 seconds, maintaining
a relatively consistent performance despite the growing complexity. We highlight
that the largest scale run used a little less than one-forth of the whole machine.

2 https://www.geos.dev/
3 In the context of the Frontier system, the term “GPU” refers to a Graphics Compute Die (GCD)
and not a physical GPU card. Each AMD MI250X GPU contains 2 GCDs, and with 4 MI250X cards
per node, this results in 8 GCDs per node, each treated as a separate GPU in system configurations
and programming.
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Fig. 5: Average execution time (left y-axis) and iteration count (right y-axis) per time
step for a single-phase flow simulation in GEOS. As the number of GPUs and DOFs
increase by a factor of 4096, both hypre setup and solve times increase slightly by a
factor less than 4, demonstrating the excellent weak scalability of hypre’s algebraic
multigrid solver (BoomerAMG).

4.2.2 Strong scaling - Thermo-Hydro-Mechanical (THM) model

This test problem uses hypre’s MGR as a preconditioner to GMRES to solve a
real-world simulation of underground carbon storage and sequestration (CSS) [9,
Section 4.4] including thermal effects. The primary variable types of this multi-
physics problem are seven: three displacement degrees of freedom, two component
densities (water and gas), one pressure, and one temperature. The MGR strategy
consists of four levels. In the first level, the displacement degrees of freedom are
eliminated, followed by the water component density, and then gas component den-
sity. At the last level, pressure and temperature are treated together since, in this
test problem, they share elliptic properties that are amenable to AMG. To address
the pressure-temperature coarse grid problem, we apply a single V(1,1)-cycle of
an unknown-based BoomerAMG [5]. This approach improves setup and solution
times by creating an algebraic multigrid hierarchy with interpolation operators that
do not take into account inter-variable couplings, in this case, pressure and temper-
ature degrees of freedom. For more information on the isothermal version (without
temperature) of this MGR preconditioning technique, see [9, Section 3].

Figure 6 shows strong scaling results obtained using Ruby, an HPC cluster at
LLNL equipped with 2x 28-core Intel® Xeon® Platinum 8276 CPUs. The results
indicate that as the number of MPI ranks increases, there is a significant reduction
in the total execution time for the application and hypre times (setup and solve),
demonstrating efficient parallel scalability. Notably, the execution time decreases al-
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Fig. 6: Strong scaling results for a THM simulation in GEOS, showing average
execution times (left y-axis) and iterations (right y-axis) for different numbers of
MPI ranks on Ruby. Both hypre phases and GEOS exhibit parallel efficiencies of up
to nearly 70% after a 16-fold increase in computational resources.

most linearly with the increase in MPI ranks, maintaining high efficiency percentages
across different configurations. For instance, the hypre setup time drops from approx-
imately 32 seconds with 28 ranks to around 2 seconds with 448 ranks, reflecting a
62% efficiency at the highest rank count. Similarly, the hypre solve and GEOS times
exhibit substantial reductions, achieving around 66% and 78% parallel efficiency,
respectively, at the maximum rank count (448). The average number of iterations
required for convergence remains relatively stable, with a slight decrease, highlight-
ing the robustness of the MGR preconditioner. These results demonstrate hypre’s
scalability and effectiveness in leveraging high-performance computing resources
for large-scale multiphysics simulations.

4.3 Chombo4

Chombo is a software framework designed for CFD simulations on block-structured
and adaptively refined grids. Chombo is capable of handling complex geometries
and dynamic mesh refinement, making it suitable for high-resolution simulations
at various Reynolds numbers capturing both laminar and turbulent flow regimes.
BoomerAMG is used by Chombo through PETSc [6] as a preconditioner to GMRES
in order to solve its pressure projection equation.

4 https://commons.lbl.gov/display/chombo
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Fig. 7: Average execution time (left y-axis) and iteration count (right y-axis) per linear
system for the pressure projection solve in Chombo. As the problem size scales up, the
execution times for both setup and solve phases show moderate increase, highlighting
hypre’s performance and scalability in handling large-scale elliptic systems arising
from computational fluid dynamics simulations.

Figure 7 illustrates the weak scaling results obtained on Frontier (ORNL) for
simulating flow inside a cylinder packed with spheres [26]. The chart shows Boomer-
AMG’s construction time (hypre setup), which is performed only once at the start of
the simulation; average application time (hypre apply); and average iteration counts
(hypre iters) per linear system across different numbers of GPUs, ranging from 8 to
32,768 (almost half of the entire machine). As the number of GPUs increases, the
preconditioner application times and iterations scales very well, increasing by only
a factor of 2.5 and 1.6, respectively, despite a 4,096-fold increase in the number of
GPUs. BoomerAMG setup times shows excellent scaling up to 2,048 GPUs, although
performance degrades beyond this point, which requires further investigation.

5 Conclusions

We analyzed the impact of three different hypre solvers on three HPC systems:
Ruby at LLNL, Summit, and Frontier at ORNL. For the applications presented here,
solving linear systems consistently took up more than half of the total simulation
time, emphasizing the crucial role of efficient solvers for sparse linear systems in
HPC simulation codes. Additionally, hypre achieves good strong and weak scaling
for these applications, effectively leveraging tens of thousands of GPUs.
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As we enter the era of exascale computing, optimizing solver performance be-
comes increasingly important. The insights gained from these applications and many
others will inform future developments in hypre to reduce computational costs and
enhance scalability at large node counts. Continued efforts will focus on refining
hypre solvers to fully utilize the potential of exascale systems, particularly for the
El Capitan system at LLNL, which is based on AMD accelerated processing units.
This will ultimately enable more sophisticated and accurate scientific simulations at
faster execution times and finer resolutions.
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