
An Ecosystem of Numerical Libraries to Support
and Accelerate Scientific Discoveries

Hartwig Anzt[0000−0003−2177−952X], Satish Balay[0000−0003−4407−205X], Cody J.
Balos[0000−0001−9138−0720], David J. Gardner[0000−0002−7993−8282], Pieter
Ghysels[0000−0002−5981−5234], Tzanio Kolev[0000−0002−2810−3090], Xiaoye S.
Li[0000−0002−0747−698X], Piotr R. Luszczek[0000−0002−0089−6965], Lois Curfman
McInnes[0000−0002−6381−4736], Sarah Osborn[0000−0003−3256−3337], Viktor
Reshniak[0000−0003−1545−4462], James M. Willenbring[0000−0002−0418−9264], Carol S.
Woodward[0000−0002−6502−8659], Ulrike M. Yang[0000−0002−6957−0445]

Abstract The emergence of heterogeneous computers with increasingly complex
architectures necessitates continuous adaptation of software to take advantage of
increased performance potential. Thus, the use of multiple mathematical libraries
designed by expert mathematicians and software developers is crucial for scientific
application codes. These libraries are often interconnected, and so, as each library
is ported to a new computer architecture, it is also important that these libraries
continue to work together. Maintaining such interoperability requires a healthy well-
designed software ecosystem with engagement and coordination between library
developers who share a common goal of improving software quality, usability, per-
formance portability, and sustainability. This chapter discusses the importance of
an ecosystem of high-performance numerical math libraries, including community-
driven guidelines to facilitate long-term sustainability and interoperability, and the

S. Balay, L.C. McInnes
Argonne National Laboratory, Lemont, IL, USA, e-mail: {balay,mcinnes}@mcs.anl.gov.

P. Ghysels, X.S. Li
Lawrence Berkeley Laboratory, Berkeley, CA, USA, e-mail: {pghysels,xsli}@lbl.gov.

C.J. Balos, D.J. Gardner, T. Kolev, S. Osborn, C.S. Woodward, U.M. Yang
Lawrence Livermore National Laboratory, Center for Applied Scientific Computing, Livermore,
CA, USA, e-mail: {balos1,gardner48,kolev1,osborn9,woodward6,yang11}@llnl.gov.

P.R. Luszczek
MIT Lincoln Laboratory, LLSC, Lexington, MA, USA, e-mail: piotr.luszczek@ll.mit.edu.

V. Reshniak
Oak Ridge National Laboratory, Oak Ridge, TN, USA, e-mail: reshniakv@ornl.gov.

J. Willenbring
Sandia National Laboratories, Albuquerque, NM, USA, e-mail: jmwille@sandia.gov.

H. Anzt
Technical University of Munich, Munich, Germany, e-mail: hartwig.anzt@tum.de.

1

{balay, mcinnes}@mcs.anl.gov
{pghysels, xsli}@lbl.gov
{balos1, gardner48, kolev1, osborn9, woodward6, yang11}@llnl.gov
piotr.luszczek@ll.mit.edu
reshniakv@ornl.gov
jmwille@sandia.gov
hartwig.anzt@tum.de

2 Short author list

positive impact of the ecosystem on applications; in particular, the focus is on the
Extreme-Scale Scientific Software Development Kit (xSDK)1.

1 Introduction

Application scientists want to create larger and more detailed simulations of physical
phenomena. Achieving these goals required the development of exascale computers,
i.e., systems capable of exceeding a quintillion, or 1018, floating point calculations
per second. This has led to the rise of ever more complex computer architectures.
The increase in computational power and the availability of more memory provided
the opportunity for application scientists to solve larger more complex problems
with higher fidelity. However, in order to take advantage of the full potential of
these high-performance computers, a variety of challenges had to be overcome.
Application codes and third-party libraries needed to be adapted to leverage the
new computing capabilities, often requiring the introduction of new programming
models. More complex science models required new and improved mathematical
algorithms to enable the solution of harder problems. These challenges go beyond
the ability of a single team of application developers, since they require expertise
in a variety of different disciplines, including software development skills for new
computer architectures and deep understanding ofmathematics in various areas, such
as discretization of models on structured and unstructured grids, solution of linear
and nonlinear systems, optimization, and so on. Dealing with these issues requires
an ecosystem of libraries and tools that can support these application codes.

While the word “ecosystem” usually evokes images of an environment comprised
of living organisms, like plants and animals, here it is more generally defined as a
group of independent but interrelated elements that comprise a unified whole. One
example of such an ecosystem that can support applications is E4S,2 the Extreme-
Scale Scientific Software stack [12, 21], which is comprised of packages from a large
variety of different software categories, including programming models, runtime
systems, development tools, numerical libraries, data and visualization software,
and workflows. However, we focus here on a smaller ecosystem, which is also
contained within E4S, the Extreme-Scale Scientific Software Development Kit, in
short xSDK,3 which consists of a variety of independently developed numerical
libraries [6, 24, 22], including parallel, often GPU-enabled, software for solvers,
meshes, discretizations, and more. It provides application developers a variety of the
building blocks they need.

An efficient ecosystem requires that all its elements work well together, i.e.,
it needs to enable an application to smoothly build when using components of
the system in combination. Achieving this cohesion presents several challenges,

1 xSDK: https://xsdk.info/
2 E4S: https://e4s-project.github.io/
3 xSDK: https://xsdk.info/

https://xsdk.info/
https://e4s-project.github.io/
https://xsdk.info/

An Ecosystem of Numerical Libraries to Support and Accelerate Scientific Discoveries 3

particularly when the individual libraries are managed by independent teams. To
facilitate the combined build and use of multiple packages in the kit, the xSDK
community developed a set of guidelines, known as the xSDK community policies,
which are periodically reevaluated and updated. All xSDKmember packages have at
least one interoperable connection with another xSDKmember, leading to additional
challenges, particularly when testing the entire xSDK. A cohesive build of these
packages is enabled by the Spack4 package manager.

The rest of this chapter is organized as follows. We discuss the history of the
xSDK in Section 2, the xSDK community policies in Section 3, and delve deeper
into interoperability in Section 4, including the introduction of a suite of example
codes demonstrating interoperability. Section 5 discusses the release process and
testing challenges of the xSDK. Before concluding in Section 8, we highlight some
examples of the impact the xSDK has made on applications in Section 6 and the
benefits of automatic performance tuning of xSDK libraries in Section 7.

2 History

While there have been several efforts to address challenges inherent in a numerical
software ecosystem in the past (e.g., see [11] and references therein), the xSDK was
the first to truly deliver on this promise. The xSDK effort began in 2014 as part of the
Interoperable Design of Extreme-scale Application Software (IDEAS) project [17].5
While the original IDEAS project (now dubbed IDEAS-Classic) focused on use
case requirements for multiphysics and multiscale terrestrial ecosystem modeling,
the compatibility, usability, quality, and process improvements made for important
DOE libraries – including hypre6, PETSc7, SuperLU8, and Trilinos9 – were broadly
beneficial and laid the groundwork for the expansion of the xSDK.

The first release of the xSDK in 2016 included only the four numerical libraries
listed above and the two domain components Alquimia10 and PFLOTRAN11. At the
time of the release, this was a significant accomplishment, since previously it was not
possible to link the four libraries into a single executable due to incompatibilities.
The dependency graph for the IDEAS ecosystem of 2016 is shown in Figure 1.
The xSDK libraries are shown in green. Another significant benefit from the early
days of the xSDK was breaking down barriers between the development teams of
different libraries by establishing compatible goals as well as a common vocabulary.

4 Spack: https://spack.io/
5 https://ideas-productivity.org/activities/ideas-classic/

6 https://llnl.gov/casc/hypre

7 https://petsc.org

8 http://portal.nersc.gov/project/sparse/superlu/

9 https://trilinos.org/

10 https://ideas-watersheds.github.io/software-ecosystem/codes/alquimia

11 https://pflotran.org

https://spack.io/
https://ideas-productivity.org/activities/ideas-classic/
https://llnl.gov/casc/hypre
https://petsc.org
http://portal.nersc.gov/project/sparse/superlu/
https://trilinos.org/
https://ideas-watersheds.github.io/software-ecosystem/codes/alquimia
https://pflotran.org

4 Short author list

Fig. 1: Application packages (black, blue, and orange) and mathematical libraries
(green) needed to generate multiscale, multiphysics integrated surface-subsurface
hydrology models.

A tangible outcome of establishing these goals was the creation of the initial xSDK
Community Policies, which are discussed in Section 3.

As a result of the early successes under the IDEAS project, the xSDK was funded
as its own project as part of the Software Technologies focus area of the Exascale
Computing Project (ECP) [14, 8] under the Math Libraries thrust, while the IDEAS-
ECP project was funded to help mitigate the challenges of software development in
emerging exascale environments and thereby to enhance the productivity and sus-
tainability of the software ecosystem. The ECP brought together the developers of
70 distinct software technologies to create a rich and sustainable scientific software
ecosystem [18] that supported a diverse suite of applications in chemistry, materials,
energy, Earth and space science, data analytics, optimization, AI, and national secu-
rity [1]. Projects targeted portable performance across multiple exascale computer
architectures. ECPâĂŹs aggressive goals required intensive software refactoring and
development [3], involving more than 1,000 researchers across DOE labs and collab-
orating universities, as well as partnerships with DOE computing facilities, industry,
and other US agencies.

During the ECP, xSDK membership grew over the years. It currently includes
26 math libraries: AMReX12, ArborX13, ButterFlyPACK14, DataTransferKit15,

12 https://amrex-codes.github.io/amrex/

13 https://github.com/arborx/arborx

14 https://github.com/liuyangzhuan/ButterflyPACK

15 https://github.com/ORNL-CEES/DataTransferKit

https://amrex-codes.github.io/amrex/
https://github.com/arborx/arborx
https://github.com/liuyangzhuan/ButterflyPACK
https://github.com/ORNL-CEES/DataTransferKit

An Ecosystem of Numerical Libraries to Support and Accelerate Scientific Discoveries 5

deal.ii16, ExaGO17, Ginkgo18, heFFTe19, HiOp20, hypre, libEnsemble21,MAGMA22,
MFEM23, Omega_h24, PETSc/TAO, PHIST25, PLASMA26, preCICE27, PUMI28,
SLATE29, SLEPc30, STRUMPACK31, SUNDIALS32, SuperLU, TASMANIAN33,
and Trilinos, and 2 application packages: PFLOTRAN34, and Alquimia35.

3 xSDK Community Policies

The ecosystem of numerical libraries for scientific applications is a confluence
of the developer community with the hardware platforms and software tools they
target. To address a range of technical and social challenges that arise when building
and sustaining a rich software ecosystem a shared set of policies and practices
agreed to by all members was developed. This helps maintain community cohesion
while keeping the common goals in clear view of the members. Akin to a founding
document, the policies first and foremost indicate that the community is in agreement
on core principles which define expectations that must be fulfilled by all participating
libraries.

Drawing on decades of open-source library development experience in the U.S.
Department of Energy, the xSDK community policies are intended to create a highly
productive, sustainable, and interoperable software library ecosystem. The short
form of the latest version of the community policies is presented in Figure 2 and
a detailed version is available on GitHub.36 The mandatory policies can be seen

16 http://www.dealii.org/

17 https://github.com/pnnl/ExaGO

18 https://github.com/ginkgo-project/ginkgo

19 https://bitbucket.org/icl/heffte

20 https://github.com/LLNL/hiop

21 https://github.com/Libensemble/libensemble

22 http://icl.utk.edu/magma/

23 https://mfem.org/

24 https://github.com/sandialabs/omega_h

25 https://bitbucket.org/essex/phist

26 http://icl.utk.edu/plasma/

27 https://www.precice.org/

28 https://github.com/SCOREC/core

29 https://bitbucket.org/icl/slate

30 http://slepc.upv.es/

31 http://portal.nersc.gov/project/sparse/strumpack/

32 https://computing.llnl.gov/projects/sundials

33 https://ornl.github.io/TASMANIAN

34 http://www.pflotran.org/

35 https://github.com/LBL-EESA/alquimia-dev/

36 https://github.com/xsdk-project/xsdk-community-policies

http://www.dealii.org/
https://github.com/pnnl/ExaGO
https://github.com/ginkgo-project/ginkgo
https://bitbucket.org/icl/heffte
https://github.com/LLNL/hiop
https://github.com/Libensemble/libensemble
http://icl.utk.edu/magma/
https://mfem.org/
https://github.com/sandialabs/omega_h
https://bitbucket.org/essex/phist
http://icl.utk.edu/plasma/
https://www.precice.org/
https://github.com/SCOREC/core
https://bitbucket.org/icl/slate
http://slepc.upv.es/
http://portal.nersc.gov/project/sparse/strumpack/
https://computing.llnl.gov/projects/sundials
https://ornl.github.io/TASMANIAN
http://www.pflotran.org/
https://github.com/LBL-EESA/alquimia-dev/
https://github.com/xsdk-project/xsdk-community-policies

6 Short author list

as quality assurance for participation in the xSDK ecosystem and is complemented
by a set of recommended policies that have been identified to improve software
productivity and sustainability but that cannot be fulfilled or do not apply to all
software libraries. The policies are regularly reviewed and reevaluated as necessary
to stay relevant with current software development and deployment best practices.
Revisions or additions to the community policies can be suggested at anytime by
opening a GitHub issue for discussion. Changes will then be voted on for inclusion
by xSDK members.

Fig. 2: xSDK community policies version 1.0.0

An Ecosystem of Numerical Libraries to Support and Accelerate Scientific Discoveries 7

4 Interoperability

For a software package to become an xSDK member it must comply with the
mandatory community policies and have interoperability with at least one other
xSDK member package. There are different levels of interoperability:

• Packages are used side by side in an application.
• Libraries exchange (or control) data with each other
• A library calls another library to perform a unique computation.

Fig. 3: Interoperability matrix for mathematical libraries in xSDK 1.0.0 (Nov. 2023).
A filled in cell indicate that the row package can use capabilities from the column
package e.g., AMReX can use linear solvers from hypre or PETSc or time integrators
fromSUNDIALS.Cell colors denote interoperability exists (yellow); interoperability
exists and is enabled in the xSDK Spack package (blue); interoperability exists, is
enabled in the Spack package, and is tested by the GitLab CI or in xsdk-examples
(magenta); and interoperability is planned (green).

Today’s complexmultiphysics scientific and engineering simulation codes require
a broad array of efficient implementations of numerical algorithms. As a result, many

8 Short author list

of these codes combine multiple numerical methods from different libraries to help
achieve their goals. Interoperability between these libraries, each targeting a partic-
ular need in the overall simulation code, has proven to be a significant challenge
with problems falling in two main areas. First, packages must be able to be compiled
together when generating a single executable. Issues often arise through namespace
clashes, specific dependencies on software versions or compilers and their flags, or
assumptions made at development time, like floating point precision. Many of the
xSDK Community Policies were designed to address these challenges. The second
challenge is in developing deeper interoperabilities between packages and largely
stem from creating interfaces between packages to allow use of one package from
another. Here decisions on how data is passed from one package to the other have
significant bearing on the overall efficiency of the resulting capabilities, especially
when the simulation code requires flexibility in the target computing platform archi-
tecture and programming model. Deeper interoperabilities, e.g., a common interface
to several solver libraries, provide added functionalities for application codes and
can accelerate application development.

The xSDK Community Policies work in conjunction with the Spack package
manager to address the challenge of compiling the packages together. For example,
policyM9 ensures namespace clashes do not happen, while policy R8 helps packages
more easily support multiple versions of dependencies. With Spack, a package
describes their dependencies, variants (compile-time options), and conflicts between
variants, with specific versions of dependencies, compilers, etc. When installing a
package with Spack, a user will tell Spack the abstract specification (spec) that they
want to build and install, and Spack then turns this abstract spec into a concrete
spec with all conflicts (to the extent possible based on the package description)
resolved. The xSDK itself is a Spack meta-package which includes the individual
xSDK packages as dependencies. The dependencies of the xSDK are described with
abstract specs that are known to work together but are not unnecessarily descriptive.
A typical dependency spec in the meta-package includes the version or version range
of the dependency to be used, the floating point precision(s), the ordinal/index size(s),
and relevant variants (such as GPU support) which may be enabled or disabled.

As noted above, to be a member package of the xSDK, there must be a deeper
interoperabilitywith at least one othermember package. These interoperabilities have
been greatly expanded in recent years to build greater flexibility and capability in the
available numerical software stack. Figure 3 shows the current state of these deeper
interoperabilities between the packages. A colored square in a row in this figure
indicates that the package in the row name uses the package in the respective column
name. In general, we see that discretization packages have fuller rows while solver
packages have fuller columns. Colors indicate the maturity of the interoperability
with magenta indicating that a deeper interoperability is in place, enabled in the
xSDK Spack package, and regularly tested by the xSDK GitLab CI as discussed in
Section 5. As the xSDK has matured, this matrix has become larger with more rows
and columns and fuller with deeper interoperabilities in place.

An Ecosystem of Numerical Libraries to Support and Accelerate Scientific Discoveries 9

A suite of example codes, called xsdk-examples,37 demonstrate the use of various
xSDK packages emphasizing the interoperability among packages to solve problems
of interest. The examples provide both a training tool for users and a test suite as part
of the testing of the xSDK that confirms correct xSDK builds. In its most recent re-
lease, xsdk-examples v0.4.0, the suite showcases 26 example codes, where 20 of the
xSDKmember packages are featured. Additionally, 10 examples are CUDA-enabled
and 6 examples are HIP-enabled to demonstrate GPU interoperability between pack-
ages.

5 Release process and testing

Once a year, xSDK members create a new xSDK release that includes synchronized
versions of all member packages and is installable with Spack. The most recent
release, v1.0.0 from November 2023, can be installed via spack install xsdk@1.0.0.
If onewants to build xSDK forNVIDIA,AMD, or IntelGPUarchitectures, additional
specifications are required, as shown in the examples below:

spack install xsdk@1.0.0 +cuda cuda_arch=70
spack install xsdk@1.0.0 +rocm amdgpu_target=gfx90a
spack install xsdk@1.0.0 +sycl ∼trilinos ∼dealii %oneapi@2023.2.0

As the xSDK member packages are independent projects with developers work-
ing towards the packages’ primary goals and requirements, the generation of a new
release requires increased coordination between the individual packages. Participa-
tion within xSDK requires a public recent release of the package to be included in
the new xSDK release. As part of this release process, installation and interoper-
ability are tested to make sure the xSDK, as a whole, is installable via Spack. This
process includes portability testing across multiple compilers (e.g., GNU, Clang,
and Intel), workstations (e.g., Intel, AMD, and ARM CPUs), GPU platforms (i.e.,
NVIDIA/CUDA, AMD/ROCm and Intel/SYCL), and leadership computing facility
(LCF) machines at ALCF, OLCF, NERSC, and LLNL. Any problems that come up
need to be solved collectively by the xSDK project members. Each issue might need
to be addressed and resolved by a different set of developers, thus improving the
xSDK package ecosystem as a whole.

An early stage of xSDK release testing involves building development versions of
packages against each other during their development cycles to identify regressions,
API changes, or other updates that could potentially break interoperability between
packages or the xSDK build as a whole. These jobs includes builds of different
subsets of the xSDK that have dependencies between them. Detecting and fixing
any problems that arise early in the release cycle can alleviate problems that would
otherwise come up closer to the release date as packages coordinate on release
versions. This testing is automated via GitLab CI which schedules and runs build
tests daily.

37 https://github.com/xsdk-project/xsdk-examples

https://www.alcf.anl.gov/
https://www.olcf.ornl.gov
https://www.nersc.gov
https://www.llnl.gov
https://github.com/xsdk-project/xsdk-examples

10 Short author list

As the xSDK release approaches, testing turns towards the full xSDK build and
stabilization of individual package releases. This process is intertwined with the
release process of individual packages with the goal of building the full xSDK
collection to identify and address issues that need to be fixed before the release
of individual member packages. This process includes changes to xSDK member
package Spack recipes to enable building pre-release snapshots using the xSDK
build process and is initially done with manual build testing on workstations. Once
the builds can be automated, the tests are added to the GitLab CI. This automated
testing captures new changes introduced in the member packages, the xSDK Spack
meta package, or within Spack itself. This process is spread over several weeks with
many xSDKmember projects producing public releases at their convenient schedule,
during this stage.

As the xSDK collection of package builds improves on workstations, it is also
manually tested on LCFmachines to find and address issues specific to those environ-
ments. LCFmachines have more complex compiler and build software infrastructure
compared to workstations as well as scheduler requirements, allocation limits, and
wait times to access compute nodes. These extra considerations add to the complex-
ity of testing xSDK builds on LCF systems. Moreover, xSDK builds are resource
intensive. As some systems impose resource limits on the common use front-end
nodes, xSDK builds are attempted on the corresponding compute nodes of such sys-
tems. Utilizing the compute nodes has the benefit of addressing potential differences
in builds between compute and front end nodes. As member package developers
might not have access to these resources, reproducing issues that come up during
testing and addressing them further adds to the testing complexity.

After successful builds onworkstations and LCFmachines, the new xSDKversion
is released andmade available via Spack, with documentation at xsdk.info/installing-
the-software. Once the new version is available via Spack, additional testing of this
release is scheduled via GitLab CI in order to test it against the daily changes that
are added to Spack. Again any issues that come up are addressed and resolved.

6 Impact on applications

A variety of application codes—including ECP teams working in chemistry, mate-
rials, energy, Earth and space science, data analytics, optimization, AI, and national
security [1] as well as many others in the broader community—have been and are
benefiting from the greater availability of cutting edge numericalmathematicalmeth-
ods hardened into robust implementations through the establishment of the xSDK;
whether it is from easier, more user-friendly builds of the whole application code or
the availability of additional mathematical features from new library interoperability.

The first application to benefit from the xSDK was the one that sparked the whole
endeavor, the Advanced Terrestrial Simulator or ATS38 [19, 23], pictured in Figure

38 https://github.aamanzi.io

https://xsdk.info/installing-the-software
https://xsdk.info/installing-the-software
https://github.aamanzi.io

An Ecosystem of Numerical Libraries to Support and Accelerate Scientific Discoveries 11

1. It used the mathematical libraries hypre, Trilinos, PETSc, and SuperLU, and the
domain components PFLOTRAN and Alquimia. The geochemistry reaction engine
in PFLOTRAN was accessed through Alquimia. Updating the involved packages to
adhere to the xSDK community policies removed version incompatibilities, names-
pace collisions, and other inter-package conflicts. The efforts also led to improved
interoperability between some of the libraries and to the development of needed new
features.With these improvements to the ecosystem, the application teamwas able to
test a conceptual model of the Copper Creek catchment in the East River watershed,
Colorado, in a quantitative manner with integrated-hydrology and a fully coupled
surface/subsurface reactive transport model, see top left image in Figure 4. In this
model, they simulated the hydrology, solute transport, and chemical reactive pro-
cesses of 17 major chemical components in pyrite oxidation and calcite dissolution
reactions along with more than 40 secondary species.

Another project that was able to take advantage of the xSDK is the ECP ExaWind
team. This projects examines the flow physics governing whole wind plant per-
formance, including wake formation, complex terrain impacts, and turbine-turbine
interaction effects, see the top right image in Figure 4. The ExaWind team utilizes
xSDK libraries AMReX, hypre, and Trilinos. The interoperability of xSDK libraries
of Trilinos and hypre enabled the team to discover that hypre was able to solve some
of their problems more efficiently.

The PeleLMeX39 code [9] for simulating low-mach reacting flows, see the bottom
image in Figure 4, also benefits from the xSDK ecosystem. PeleLMeX is built on top
of the AMReX software framework for block-structured adaptive mesh refinement
(AMR) applications and GPU portability. It utilizes AMReX’s interoperability with
hypre to solve elliptic systems that arise in a projection method to update advection
velocities and with SUNDIALS for evolving numerous chemical reaction systems in
time.When implicit time integrationmethods in SUNDIALS are employed to handle
stiff chemistry mechanisms, PeleLMeX also utilizes SUNDIALS’ interoperability
with MAGMA and Ginkgo for solving linear systems. With the help from these
libraries in the xSDK, PeleLMeX has demonstrated good scaling on the Frontier
exascale supercomputer while simulating combustion processes typical of modern
combustion systems [5].

In addition, xSDK played a critical role in the CEED40 ECP co-design cen-
ter, where hypre was vital in preconditioning matrix-free high-order finite element
discretizations in NekRS and MFEM-based applications, including ExaSMR 41. In
addition toMFEM, the CEED software and applications also utilized GPU dense lin-
ear algebra routines from MAGMA, meshing algorithms from PUMI, linear algebra
from PETSc and additional solvers from Gingko and STRUMPACK. See [13, 20, 2]
for more details.

39 https://github.com/AMReX-Combustion/PeleLMeX

40 https://ceed.exascaleproject.org

41 https://www.exascaleproject.org/research-project/exasmr/

https://github.com/AMReX-Combustion/PeleLMeX
https://ceed.exascaleproject.org
https://www.exascaleproject.org/research-project/exasmr/

12 Short author list

Fig. 4: Top left: Integrated hydrology simulation of Copper Creek shows the ponded
depth of water on the surface (visualized above the subsurface), and the water satura-
tion in the subsurface (Credit: David Moulton and Zexuan Xu). Top right: Flowfield,
isosurfaces of Q-criterion colored by votricity magnitude and a plane with vorticity-
magnitude iso-contours, for the NREL 5-MW rotor with rigid blades operating
in uniform inflow of 8 m/s (Credit: Shreyas Ananthan, and Ganesh Vijayakumar).
Bottom: Turbulent combustion of n-dodecane in a high-pressure piston chamber
computed using PeleLMeX with an adaptive mesh hierarchy on Frontier (Credit:
Nicholas Brunhart-Lupo and Marc Day).

7 Automatic performance (co-)tuning

In the xSDK ecosystem, apart from installation, testing and interoperability, an-
other critical element is performance optimization—such as runtime, memory us-
age, energy usage—on an actual HPC machine. The performance of each library
is a complex function depending on the input problems and the underlying com-
puter architectures, including the inter-node communication network. Each library
usually exposes a set of parameters to the users that can influence the library’s
performance. Most of the time the users simply apply default parameter settings

An Ecosystem of Numerical Libraries to Support and Accelerate Scientific Discoveries 13

Fig. 5: GPTune tunning results: (left) two-objective tuning for SuperLU_DIST; (mid-
dle) ITER fusion reactor structure; (right) two algorithms in GPTune used to tune
NIMROD for ITER two-fluid flow simulation.

which may be far from optimum. Worse yet, a bad choice of parameters may lead
to non-convergence with solver libraries. When an application code uses multiple
libraries, the dimension of the parameter space becomes intractably large for manu-
ally searches for the best configuration. We have been developing an autotuning tool
to ease performance optimization tasks for users. Given the large number of libraries
in the xSDK collection that provide diverse functionalities, the best strategy is to
treat the performance optimization as “black-box” optimization. In particular, we
employ the statistical Bayesian optimization framework to build performance surro-
gate models via Gaussian Process (GP) regression. The surrogate models are based
on the execution results of the program collected on the actual machines with an
automatically-chosen subset of parameter configurations. The tool is called GPTune.
It features multitask/transfer-learning algorithms [15], multi-objective optimization,
multi-fidelity tuning [25], clustered GP for non-smooth functions, hybrid models for
mixture of real, integer and categorical variables [16], and a history database for
crowd tuning.

We have applied GPTune to optimize parameters for the math libraries in xSDK
as well as real simulation codes. Figure 5 shows the tuning results of two codes. The
left subfigure shows pareto optimization for SuperLU_DIST with four parameters
and two objectives: time and memory, for a sparse matrix Si2 from the PARSEC
quantum chemistry application [15], using eight Cori nodes at NERSC with 256
MPI tasks. The default parameter setting is about 5× slower and uses 14× more
memory compared to the tuned setting. The right subfigure shows the tuning of the
multiphysics simulation code NIMROD to predict microscopic MHD instabilities of
burning plasma in the ITER fusion reactor (middle). The code uses SuperLU_DIST
as a preconditioner for the GMRES iterative linear solver. We co-tuned five param-
eters, 2 from NIMROD and 3 from SuperLU_DIST, and achieved an approximately
10% performance gain on 16 Cory nodes with 512 MPI tasks. The plot also shows
that the multi-fidelity algorithmGPTuneBand is superior to the vanilla single-fidelity
GPTune [25]. Another demonstration of GPTune can be seen in the paper on the
application of Anderson acceleration for fusion applications in this volume [10].

https://gptune.lbl.gov/

14 Short author list

8 Conclusion

This article discusses the motivation for and many benefits of an ecosystem of high-
performance numerical mathematics libraries for scientific applications, as achieved
through the xSDK. Development of the xSDK has been a critical step in getting
new, highly performant, and robust implementations of mathematical methods into
the hands of applications scientists to use in their simulations. These implementa-
tions are the products of decades of numerical methods research. However, as noted
throughout this paper, there are significant challenges in ensuring these implementa-
tions work well together. The xSDK and the work discussed in this paper on policies,
interoperabilities, testing, releases, deploying to applications, and performance tun-
ing are critical to ensuring new numerical methods are highly performant on today’s
computing platforms, performing as an ecosystem of numerical libraries. With the
conclusion of the DOE Exascale Computing Project in December 2023, work on the
stewardship of numerical libraries and other ECP software technologies is transition-
ing to the newly established Consortium for the Advancement of Scientific Software
(CASS) [7]. To address the continuing challenges of heterogeneous computer archi-
tectures at all scales of computing and the increasing complexities of application
codes, we see a growing need for even broader collaboration on numerical software
ecosystems [4] throughout the international community.

Acknowledgements This work has been supported by the Exascale Computing Project (17-SC-
20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration. This work was performed in part under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-
07NA27344. Lawrence Livermore National Security, LLC,(LLNL-JRNL-864981), by Lawrence
Berkeley National Laboratory under contract No. DE-AC02-05CH11231.

Research was sponsored by the Department of the Air Force Artificial Intelligence Accelerator
and was accomplished under Cooperative Agreement Number FA8750-19-2-1000. The views and
conclusions contained in this document are those of the authors and should not be interpreted as
presenting the official policies, either expressed or implied, of the Department of the Air Force or
the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation herein.

Support for this work was provided in part by the U.S. Department of Energy, Office of Sci-
ence, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced
Computing (SciDAC) Program through the Frameworks, Algorithms, and Scalable Technologies
for Mathematics (FASTMath) Institute.

Sandia National Laboratories is a multi-mission laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC (NTESS), a wholly owned subsidiary of
Honeywell International Inc., for the U.S. Department of EnergyâĂŹs National Nuclear Security
Administration (DOE/NNSA) under contract DE-NA0003525. This written work is co-authored
by an employee of NTESS. The employee, not NTESS, owns the right, title and interest in and to
the written work and is responsible for its contents. Any subjective views or opinions that might be
expressed in the written work do not necessarily represent the views of the U.S. Government. The
publisher acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this written work or allow others
to do so, for U.S. Government purposes. The DOE will provide public access to results of federally
sponsored research in accordance with the DOE Public Access Plan.

An Ecosystem of Numerical Libraries to Support and Accelerate Scientific Discoveries 15

We would like to thank the users of xSDK libraries for motivating advances in library func-
tionality and the developers of all the xSDK libraries for engaging in collaboration on community
policies and other software advances. We also thank the reviewers for their helpful comments on
how to improve the paper.

Competing Interests The authors have no conflicts of interest to declare that are relevant to the
content of this chapter.

References

1. Alexander, F., et al.: Exascale applications: skin in the game. Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences 378(2166), 20190056
(2020). DOI 10.1098/rsta.2019.0056

2. Andrej, J., Atallah, N., Dobrev, V., Kolev, T., Pazner, W., Tomov, V., et al.: High-performance
finite elements with MFEM. The International Journal of High Performance Computing
Applications (2024). To appear

3. Anzt, H., Huebl, A., Li, X.S.: Then and now: Improving software portability, productivity, and
100× performance. IEEEComput. Sci. Eng. 25(6) (2023). DOI 10.1109/MCSE.2024.3387302.

4. Bader, M., Ltaief, H., McInnes, L., Yokota, R.: How we can all play the high-performance
game: From laptops to supercomputers. SIAM News (2023)

5. Balos, C.J., Day, M., Esclapez, L., Felden, A.M., Gardner, D.J., Hassanaly, M., Reynolds,
D.R., Rood, J., Sexton, J.M., Wimer, N.T., Woodward, C.S.: SUNDIALS time integrators for
exascale applications with many independent ODE systems. arXiv preprint arXiv:2405.01713
(2024)

6. Bartlett, R., Demeshko, I., Gamblin, T., Heroux, M., Johnson, J., Klinvex, A., Li, X., McInnes,
L., Moulton, J., Osei-Kuffuor, D., Sarich, J., Smith, B., Willenbring, J., Yang, U.: xSDK
Foundations: Towrd an Extreme-scale Scientific Development Kit. Supercomputing Frontiers
and Innovation 4, 69–82 (2017)

7. Consortium for the Advancement of Scientific Software (CASS). https://cass.community
8. DOE Exascale Computing Project (ECP). https://www.exascaleproject.org
9. Esclapez, L., Day, M., Bell, J., Felden, A., Gilet, C., Grout, R., de Frahan, M.H., Motheau, E.,

Nonaka, A., Owen, L., Perry, B., Rood, J., Wimer, N., Zhang, W.: PeleLMeX: An AMR low
mach number reactive flow simulation code without level sub-cycling. Journal of Open Source
Software 8(90), 5450 (2023). DOI 10.21105/joss.05450

10. Gardner, D.J., LoDestro, L.L., Woodward, C.S.: Towards the use of Anderson acceleration in
fusion simulations. In: This volume (2024)

11. Henderson, M.E., Anderson, C.R., Lyons, S.L., et al.: Object Oriented Methods for Interopera-
ble Scientific and Engineering Computing: Proceedings of the 1998 SIAMWorkshop, vol. 99.
SIAM (1999)

12. Heroux, M., Willenbring, J., Shende, S., Coti, C., Spear, W., Peyralans, J., Skutnik, J., Keever,
E.: E4S: Extreme-Scale Scientific Software Stack. In: 2020CollegevilleWorkshop onScientific
Software Whitepapers (2020)

13. Kolev, T., Fischer, P., Min, M., Dongarra, J., Brown, J., Dobrev, V., Warburton, T., Tomov, S.,
Shephard, M.S., et al.: Efficient exascale discretizations: high-order finite element methods.
The International Journal of High Performance Computing Applications pp. 527–552 (2021).
DOI 10.1177/10943420211020803

14. Kothe, D., Lee, S., Qualters, I.: Exascale computing in the United States. Computing in Science
and Engineering 21(1), 17 – 29 (2019). https://doi.org/10.1109/MCSE.2018.2875366

15. Liu, Y., Sid-Lakhdar, W., Marques, O., Zhu, X., Meng, C., Demmel, J., Li, X.: GPTune:
multitask learning for autotuning exascale applications. In: PPoPP ’21: Proceedings of the

https://cass.community
https://www.exascaleproject.org
https://doi.org/10.1109/MCSE.2018.2875366

16 Short author list

26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp.
234–246. San Francisco, USA (2021). DOI 10.1145/3437801.3441621

16. Luo, H., Cho, Y., Demmel, J.W., Li, X.S., Liu, Y.: Hybrid parameter search and dynamic model
selection for mixed-variable Bayesian optimization. Computational and Graphical Statistics
(2024). DOI 10.1080/10618600.2024.2308216

17. McInnes, L.C., Heroux, M.A., Bernholdt, D.E., Dubey, A., Gonsiorowski, E., Gupta, R.,
Marques, O., Moulton, J.D., Nam, H.A., Norris, B., Raybourn, E., Willenbring et al., J.: A cast
of thousands: How the IDEAS productivity project has advanced software productivity and
sustainability. IEEE Comput. Sci. Eng. 25(6) (2023). DOI 10.1109/MCSE.2024.3383799

18. McInnes, L.C., Heroux, M.A., Draeger, E.W., Siegel, A., Coghlan, S., Antypas, K.: How
community software ecosystems can unlock the potential of exascale computing. Nature Com-
putational Science 1, 92–94 (2021). https://doi.org/10.1038/s43588-021-00033-y

19. Molins, S., Svyatsky, D., Xu, Z., Coon, E., Moulton, J.: A multicomponent reactive transport
model for integrated surface-subsurface hydrology problems. Water Resources Research 58
(2022). DOI 10.1029/2022WR032074

20. Vargas, A., Stitt, T., Weiss, K., Tomov, V., Camier, J.S., Kolev, T., Rieben, R.: Matrix-free
approaches for GPU acceleration of a high-order finite element hydrodynamics application
using MFEM, Umpire, and RAJA. The International Journal of High Performance Computing
Applications 36(4), 492–509 (2022)

21. Willenbring, J.M., Shende, S.S., Gamblin, T.: Providing a flexible and comprehensive software
stack via Spack, E4S, and SDKs. IEEE Comput. Sci. Eng. 25(6) (2023). DOI 10.1109/MCSE.
2024.3395016

22. xSDK: Extreme-scale Scientific Software Development Kit. URL https://xsdk.info/
23. Xu, Z., Molins, S., nI. Dwivedi, Svyatsky, D., Moulton, J., Steefel, C.: Understanding the

hydrogeochemical response of a mountainous watershed using integrated surface-subsurface
flow and reactive transport modeling. Water Resources Research 58 (2022). DOI 10.1029/
2022WR032075

24. Yang, U., McInnes, L.: xSDK: Building an ecosystem of highly efficient math libraries for
exascale. SIAM News 54, 8–10 (2021)

25. Zhu, X., Liu, Y., Ghysels, P., Bindel, D., Li, X.: GPTuneBand: multi-task and multi-fidelity
autotuning for large-scale high performance computing applications. In: SIAM PP22: Pro-
ceedings of the SIAM Conference on Parallel Processing for Scientific Computing (2022)

https://doi.org/10.1038/s43588-021-00033-y
https://xsdk.info/

	An Ecosystem of Numerical Libraries to Support and Accelerate Scientific Discoveries
	 Hartwig Anzt[0000-0003-2177-952X], Satish Balay[0000-0003-4407-205X], Cody J. Balos[0000-0001-9138-0720], David J. Gardner[0000-0002-7993-8282], Pieter Ghysels[0000-0002-5981-5234], Tzanio Kolev[0000-0002-2810-3090], Xiaoye S. Li[0000-0002-0747-698X], Piotr R. Luszczek[0000-0002-0089-6965], Lois Curfman McInnes[0000-0002-6381-4736], Sarah Osborn[0000-0003-3256-3337], Viktor Reshniak[0000-0003-1545-4462], James M. Willenbring[0000-0002-0418-9264], Carol S. Woodward[0000-0002-6502-8659], Ulrike M. Yang[0000-0002-6957-0445]
	Introduction
	History
	xSDK Community Policies
	Interoperability
	Release process and testing
	Impact on applications
	Automatic performance (co-)tuning
	Conclusion
	References
	References

