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SUMMARY

Algebraic multigrid (AMG) is a very efficient scalable preconditioner for solving sparse linear systems
on unstructured grids. Currently AMG solvers with good numerical scalability can still have larger than
desired complexities, while variants with very low complexities exhibit decreased numerical scalability,
which presents a problem for future high performance computers with millions of cores and decreased
memory per core. It is therefore necessary to design more sophisticated interpolation operators to
improve numerical scalability while preserving low memory usage. Two new long range interpolation
operators to be used in combination with aggressive coarsening are presented. Their convergence and
performance is examined and compared to multipass interpolation, the interpolation currently most
commonly used with aggressive coarsening, and a higher complexity AMG variant. While the new
interpolation operators require a more complex setup, leading to larger setup times, they exhibit
better convergence than multipass interpolation, often resulting in better solve times. Copyright (©
2000 John Wiley & Sons, Ltd.

1. Introduction

Sparse iterative linear solvers are an important part of many application codes, and can
consume a significant portion of the total run time. Therefore efficient linear solvers are critical
to enabling large-scale simulations on high performance computers. Algebraic multigrid (AMG)
preconditioners have the potential to be weakly scalable on large number of processors, i.e.
run times remain constant or close to constant if both the problem size and the number
of processors are increased proportionally. Currently AMG solvers with good numerical
scalability, i.e. the number of iterations stays constant while scaling up the problem, can
still have larger than desired complexities, while convergence decreases for variants with very
low complexities. However, with the prospect of large scale systems with millions of cores and
decreasing memory per core, it is important to further decrease memory usage [4], while at
the same time preserve numerical scalability.

There are several approaches on generating coarse level variables for AMG. Classical AMG
[2, 3, 5, 12] coarsens by choosing a subset of the fine level variables, whereas aggregation-
based AMG methods [13, 1] determine the coarse level variables by agglomerating several
fine level variables, a method that often leads to very low complexities. A very effective tool
to reduce computational complexities in classical AMG has been aggressive coarsening [12],
however it has been difficult to generate an interpolation operator to deal effectively with
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the long distances between coarse grid points. Usually aggressive coarsening is combined with
multipass interpolation, an interpolation based on direct interpolation, which is fairly simple,
and often not very accurate, leading to decreased numerical scalability. While this interpolation
can be improved when followed with one or two iterations of Jacobi iterations, this process
can be expensive.

In this paper, we investigate ways on incorporating distance-two interpolation operators,
which are of higher quality than direct interpolation, into multipass interpolation, and so to
obtain long distance interpolation schemes with better convergence properties and numerical
scalability than multipass interpolation. Two approaches are considered. The first one is an
operator in the spirit of the original multipass interpolation, i.e. using various passes, but
starting with a distance-two interpolation, and is denoted here as distance-two multipass
interpolation. The second approach takes advantage of the stages of aggressive coarsening
and consists effectively of the use of two different sets of coarse points, the evaluation of
interpolation operators for different points, followed by a matrix multiplication to obtain the
final interpolation operator. We will denote this interpolation two stage interpolation. We
give a brief overview of AMG in Section 2, followed by the description of the coarsening
algorithms (Section 3) and interpolation operators (Section 4) considered here. Section 5
contains comments on the complexities of the new algorithms Finally a variety of numerical
experiments, on both sequential (Section 6) and parallel (Section 7) computers, are presented.

2. Algebraic Multigrid

In this section we give a brief outline of the basic principles and techniques that comprise AMG,
and we define terminology and notation. Detailed explanations may be found in [11, 12, 3].
Consider a problem of the form

Au=f, (1)

where A is an n X n matrix with entries a;;. Furthermore, we assume that a;; > 0. For
convenience, the indices are identified with grid points, so that u; denotes the value of u at
point 7, and the grid is denoted by = {1,2,...,n}. In any multigrid method, the central idea
is that “smooth error,” e, that is not eliminated by relaxation must be removed by coarse-
grid correction. This is done by solving the residual equation Ae = r on a coarser grid, then
interpolating the error back to the fine grid and using it to correct the fine-grid approximation.

Using superscripts to indicate level number, where 1 denotes the finest level so that A; = A
and Q; = Q, AMG needs the following components: “grids” Q; D Q9 D ... D Qypy, grid
operators Ay, ..., Ay, interpolation operators Py, restriction operators Ry (often Ry, = (Py)7),
and smoothers Sy, where £k = 1,2,... M — 1. These components of AMG are determined in a
first step, known as the setup phase. During the setup phase, on each level k, k=1,..., M —1,
QF*1 i determined using a coarsening algorithm, P and Ry are defined, and Ax4+1 = R Ak P.

Once the setup phase is completed, the solve phase, a recursively defined cycle, can be
performed as follows, where f(® = f and «(? is an initial guess for u:

Copyright (© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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Algorithm: MGV (Ag, Ry, Py, Sk, u®, f(F).

If k= M, solve ApuM) = f(M).
Otherwise:
Apply smoother Sy pq times to Apu®) = f(k).
Perform coarse grid correction:
Set r(¥) = f(k) _ A, 4,(F),
Set r(F+1) = Ryr(F),
Set eF+1) = 0.

Apply MGV (Ak1, Rii1, Py, Skgr, eFHD  p (1)),

Interpolate %) = Pe+1),

Correct the solution by u®) — u®*) 4 )
Apply smoother Sy po times to Apu®) = f(k).

The algorithm above describes a V(u1, p2)-cycle; other more complex cycles such as W-cycles
are described in [3]. In every V-cycle, the error is reduced by a certain factor, which is called
the convergence factor. A sequence of V-cycles is executed until the error is reduced below a
specified tolerance. For a scalable AMG method, the convergence factor is bounded away from
one and independent of the problem size n, and the computational work in both the setup and
solve phases is proportional to the problem size n.

3. Coarsening Algorithms

We briefly describe the two coarsening algorithms HMIS and PMIS [6], considered here, and
the aggressive coarsening strategy[12], which can be applied to any coarsening algorithm, but
here will be only applied to HMIS and PMIS.

One of the concepts used here and in the following sections is strength of connection. A point
j strongly influences a point ¢ or i strongly depends on j if

—Q55 > Offil;}f((—aik)a (2)

where 0 < a < 1. This definition was originally motivated by the assumption that the matrix
A is a symmetric M-matrix, i.e. positive definite and off-diagonally nonpositive, it can however
formally be applied to more general matrices. Note that with this definition positive F-to-F
couplings are always treated as weak connections. Several approaches for special treatment
of positive connections are presented in [12], however, these are not pursued here. In the
remainder of the paper, a = 0.25. All coarsening algorithms considered here proceed by first
generating the directed graph of the strength matrix S with coefficients s;; = 1 if point ¢
strongly depends on point j and s;; = 0 otherwise. The measure of a point 4, A;, is defined
as the number of points that strongly depend on ¢ or, equivalently, the number of nonzero
elements of the i-th column of the strength matrix S.

PMIS (short for Parallel Maximal Indepent Set algorithm) is based on a parallel algorithm
proposed by Luby [10], which uses random numbers to find maximal independent sets. PMIS
proceeds by first determining the measures );. Then a random number between 0 and 1

Copyright (© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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H1 coarsening P1 coarsening

Figure 1. Examples of H1 (left) and P1 (right) coarsening applied to a 10 x 10 5-point 2D Laplace
operator, black points are coarse points, grey points are fine points.

is added to each measure. This helps to distinguish neighbor points with equal numbers of
strong connections and allows us to determine local maxima, a completely parallel process.
All points with a local maximal measure now become coarse points (C-points) and make up
the first independent set. Then those points that strongly depend on the new C-points are
determined to be fine points (F-points). Both C- and F-points are eliminated from the graph,
and the process proceeds for the remaining undetermined points until all points are either F-
or C-points. Points with a measure smaller than 1 are determined to be F-points. For a more
formal description of the PMIS algorithm and further details see [6]. Note that this algorithm
is independent of the number of processors if the random numbers are chosen independently
of the number of processors.

The second coarsening algorithm, HMIS (Hybrid Maximal Independent Set algorithm),
which is a hybrid between PMIS and the classical coarsening algorithm, is not independent
of p. Here the first pass of the classical coarsening algorithm, described in [11], is performed
independently on each processor. Each point ¢ is assigned a measure A;. Then a point with a
maximal \; (there are usual several) is selected to be the first C-point. Now all points that
strongly depend on i become F-points. For each point j that strongly influences one of these
new F-points, ); is increased to improve j’s chances to become a new C-point. This highly
sequential process is repeated until all points are either F- or C-points. Now we use all interior
C-points, i.e. those C-points that are not located on the processor boundaries, as the first
independent set to be fed into the PMIS algorithm, which proceeds as described above.

In order to generate sparser coarse grids than those obtained by HMIS or PMIS, it is
necessary to extend the definition of strong connectivity, as can be seen in [12] in the following
way: A point i strongly depends on j along a path of length [ if there exists a sequence of
variables g, i1,...,% with ¢ = ig and j = 4; such that i strongly depends on iy4; for
k=0,1,...1 — 1. A point ¢ strongly depends on j w.r.t. (p,l) if at least p paths of length <
exist such that 4 strongly depends on j along each of these paths.

Aggressive coarsening proceeds by applying any coarsening algorithm to the graph of a

Copyright (© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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strength matrix based on the new concept of strength. This matrix is just S’. Note that the
coefficients of S! indicate the number of paths between i and j. In practice usually only the
cases | = 2 and p = 1 or p = 2 are considered, and we will focus here on p = 1, and [ = 2, which
leads to sparser coarse grids than choosing p = 2. Since applying the coarsening algorithm to
S? can be expensive, it is more efficient to implement aggressive coarsening in two stages. In
the first stage one applies a coarsening algorithm (here PMIS or HMIS) to .S and receives a set
of coarse points C, which is larger than desired. In the second stage the coarsening algorithm
is applied to points in C only, the measures now being defined as the number of all points ¢
in C that strongly depend on j w.r.t. (1,2), or, equivalently, to the matrix S?, restricted to all
variables belonging to C.

For p = 1, aggressive coarsening with HMIS coarsening is denoted as H1 coarsening and with
PMIS coarsening as P1 coarsening. H1 coarsening performed on one processor is equivalent to
A1 coarsening as described in [12]. Figure 1 shows both H1 and P1 coarsening applied to a
10x10 5-point 2D Laplace problem. In general, P1 coarsening leads to slightly coarser grids
than H1 coarsening. It is important to mention that when aggressive coarsening is implemented
in two stages, certain special cases need to be treated differently in the second stage. For
example, while it makes sense that for PMIS a point that has no connections to any other
points is turned into a fine point, this is the wrong strategy now that we are actually dealing
with C-points, since eliminating such a point might lead to the elimination of a whole area of
points that depend on the eliminated C-point. Therefore such a point stays a C-point in the
second stage of aggressive coarsening.

4. Interpolation Operators

Before we describe various interpolation operators that will be used in the remainder of the
paper, we will define the following sets:

Ni = {j#ilay #0},

S; = {j € N,|j strongly influences i},
F' = FnS§S;,

ci = Ons§;,
N = Ni\(F7UC7).

Based on assumptions on small residuals for smooth error [2, 3, 11, 12], an interpolation
formula can be derived as follows. The assumption that algebraically smooth error has small
residuals after relaxation

Ae~0,

can be rewritten as
ai€i R = en, Gij€5;
or
A;;€; <= — ZjECf Ai;€5 — ZjEF,f ai;€5 — ZjEN;” Aij€j.
From this expression, various interpolation formulae can be derived. We use the terminology

of [12] for the various interpolation strategies.

Copyright (© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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We now introduce various interpolation operators that will be used in the remainder of the
paper.

4.1. Direct Interpolation

The so-called ‘direct interpolation’ strategy [12] has one of the most simple interpolation

formulae.
Qi ZkENi, ik . s
wij:——uiz —, J€eC}, (3)
Qg keCs Ak

where C7 is the coarse interpolatory set.

4.2. Distance-Two Interpolation Operators

We describe two distance-two interpolation operators, standard interpolation and extended+i
interpolation.

For standard interpolation (std) [12], the stencil obtained through (3) is extended via
substitution of every e; with j € F? by 1/a;; ZkeN,- a;rex. This leads to the following formula

aiiei + Z ajje; ~0 (4)

jEN'i

with the new neighborhood Nz = N;U U N; and the new coarse point set a =C;U U C;
JEF? JEFE
This can greatly increase the size of the interpolatory set.
Standard interpolation is now defined by applying direct interpolation to the new stencil,
leading to
dij Zke]\?,; &ik
@ii Y opee Qi

Wi5 =

(5)

Another distance-two interpolation, which is an extension of the classical interpolation
described in [11] with a slight modification, was introduced in [7]. It differs from a
straightforward extension by using not only connections a;; from strong fine neighbors j of i
to points k of the interpolatory set but also connections aj; from j to ¢ itself and is therefore
named extended-+i interpolation (ei). It is given by the following formula:

Wi5 = _~_ Qi + Z i~ = | > .] € Cia (6)
i oy Zlec Uiy Tkt
with
an = a;; + Z Ain + Z (277 S— Z a (7)
nENI\G kEFS 1eCuugi) Tt
and a;; = ai; if a;; > 0 and a;; = 0 otherwise, i.e. positive coefficients are ignored, a

modification suggested in [8] to avoid very small numbers or cancellations in the denominator.

Copyright (© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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4.8. Multipass Interpolation

Since any of the previously mentioned interpolation schemes require coarse grids with coarse
points that are not too far apart (and therefore are not adequate for use with aggressive
coarsening), in [12], a further reaching interpolation, denoted as multipass interpolation (mp),
was developed. It proceeds as follows:

1. Use direct interpolation for all F-points i, for which Cf # (). Place these points in set
F*.

2. For all i € F\ F* with F* N F? # 0, replace, in Equation (3), for all j € F N F*, e; by
Zkecj wjrer, where C; is the interpolatory set for e;. Apply direct interpolation to the
new equation. Add i to F'*. Repeat step 2 until F* = F.

Figure 2a. shows the various passes for multipass interpolation as illustrated for a 8 x 8
5-point 2D Laplace problem for H1 (or Al) coarsening, and Figure 3a. shows them for P1
coarsening. Points marked ¢ are processed in the i-th pass. For both examples, three passes
are required to generate the final interpolation operator. It is certainly possible to have more
than 3 passes. Larger numbers can for example occur when increasing the strength threshold «,
leading to larger numbers of weak connections. For the example chosen here the set of variables
belonging to all fine points can be divided into three sets F' = F' U F?U F3, where I’ consists
of the variables belonging to the points marked i. We define operators P; by applying direct
interpolation to F* and treating their range as a set of coarse points, (I is the identity):

I :C — C
pP:C — F!
Py :F'' — F?
Py F? — F3

If we assume that the variables are ordered in the following way, first the coarse points C
followed by F', F2?, and then F3, then multipass interpolation can be presented for this
example as the following operator:

I

Py

PP | (8)
P,PP,

Py =

Multipass interpolation is fairly cheap and can be efficiently implemented. However, it is
not very powerful, since it is based on direct interpolation. This leads very often to only
constant interpolation, and to overall deteriorated convergence and scalability, For an example
see Figure 4, where many fine points are interpolated by one C-point only.

4.4. Distance-Two Multipass Interpolation

Our goal is to incorporate an interpolation of higher quality, such as a distance-two
interpolation operator, into multipass interpolation. If we look at the examples in Figure 1, we
see that many coarse points are distance 4 away from each other. Therefore the set of points
that are connected to an element of F!, i.e. an immediate neighbor of a C-point, by a path of

Copyright (© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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Figure 2. Processing order of F-points for various long range interpolation operators (a. multipass

interpolation, b. distance-two multipass interpolation, two-stage interpolation) for H1 coarsening

applied to an 8 x 8 5-point 2D Laplace operator, black points are coarse points, points marked
with ¢ are processed in i-th pass.

length <=2 contains generally only one C-point. Applying a distance-two interpolation to such
a point will therefore not improve the situation. It is better to use distance-two interpolation
for points that are distance two away from the C-points, e.g. points in F?2, since they often
have several C-points in their distance-two neighborhood.

There are several ways to choose the points for the first pass. A first option is to use the
passes generated in the original multipass interpolation algorithm, see Figures 2a. and 3a., and
start with all points that are processed in the second pass of multipass interpolation, i.e. points
in F2. Since they are processed first in the new algorithm, they are now marked ‘1°, see Figures
2b. and 3b. A second option is to start with all points that are strongly influenced by a C-point
along a path of length 2. For the example in Figure 2b., both approaches generate the same
set of points. However in the example in Figure 3c., the second strategy generates more points
for the first pass and leads to less points interpolated by one C-point only, see Figure 4c.,
than the first strategy, see Figure 4b. Since the first strategy can be implemented significantly
more efficiently, and our experiments showed no significant difference in convergence for both
versions, we consider only the first option in the remainder of the paper.

After applying distance-two interpolation to the first set of points and so completing the
first pass, the algorithm proceeds by (possibly several times) performing step 2 of multipass
interpolation, using now direct interpolation, until all remaining points are processed. We will
denote this interpolation by distance-two multipass interpolation (d2-mp).

To facilitate comparison between d2-mp and mp, we use the order of variables and definition
of sets of Section 4.3. Q : C — F? is a distance-two interpolation operator, and Py : F? — F'!
is the direct interpolation operator that interpolates variables in F'* from variables in F2. Then

Copyright (© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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Figure 3. Processing order of F-points for various long range interpolation operators (a.

multipass interpolation, b. distance-two multipass interpolation, option 1, c. distance-two multipass

interpolation, option 2, d. two-stage interpolation) for P1 coarsening applied to an 8 x 8 5-point 2D
Laplace operator, black points are coarse points, points marked with ¢ are processed in ¢-th pass.

the new interpolation for the examples in Figure 1 is given by

I
P+ P
Pd2—7np = ! +Q OQ ; (9)
PQ

Table I presents two-level convergence factors for a few Laplace problems (ei-mp stands for
distance-two multipass interpolation using extended+i interpolation and std-mp uses standard
interpolation for the distance-two interpolation operator). There is clearly an improvement for
this new interpolation operator over multipass interpolation when using H1 coarsening and a 5-
point or a 7-point stencil, however the difference becomes very small when using P1 coarsening
or larger stencils. When investigating the quality of the new interpolation on the P1 grid, we
find still a fairly large amount of points interpolated by one C-point only, see Figure 4b, albeit

Copyright (© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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Coarsening | Problem mp | ei-mp | std-mp | 2s-ei | 2s-std
5pt 2D, 32x32 0.45 | 0.35 0.35 0.35 | 0.35
H1 9pt 2D, 32x32 0.58 | 0.54 0.49 0.49 | 0.43

7pt 3D, 10x10x10 | 0.37 | 0.22 0.23 0.22 | 0.23
27pt 3D, 10x10x10 | 0.47 | 0.45 0.42 0.37 | 0.36
opt 2D, 32x32 0.69 | 0.68 0.68 0.56 | 0.55
P1 9pt 2D, 32x32 0.65 | 0.61 0.61 0.49 | 0.53
7pt 3D, 10x10x10 | 0.47 | 0.41 0.41 0.35 | 0.35
27pt 3D, 10x10x10 | 0.39 | 0.37 0.34 0.31 | 0.29

Table I. Two grid convergence factors for various problems using Gauss-Seidel as a smoother

significantly less than for multipass interpolation.

4.5. Two Stage Interpolation

To further improve convergence we decided to completely eliminate the use of direct
interpolation and develop a long range interpolation operator suited for aggressive coarsening
that uses distance-two interpolation only. Since distance-two interpolation was designed to
work well with both HMIS and PMIS, it appears that just as aggressive H1 and P1 coarsening
consists of two stages of HMIS and PMIS coarsening, we should be able to take advantage of
the results of the two coarsening stages. A good set to use in a first pass appear to be the
C-points that are discarded after the first coarsening stage. Let us denote the set of variables
associated with these points by F©. This leads us to three sets of variables, F¢, F'F' the set of
variables associated with the remaining F-points, and C', where the complete set of fine points
is F=FFUFCY and C U F¢ is the set of coarse points generated during the first stage.

Since the points in F© are distance two away from points in C' by construction, we can
now apply a distance-two formula for these points interpolating from points in C' obtaining
interpolation operator Q1 : C' — F¢. Next we apply a distance-two formula for all points in F'F,
but now interpolating from C' U F¢, leading to the interpolation operator Qs : CUF¢ — FF,
Q- is essentially the distance-two interpolation operator that interpolates from a coarse grid
obtained by just applying HMIS or PMIS to the original grid. (2 can be decomposed into
the two operators QS : C — FF and Qf : F¢ — FF Q, = (QS QF), leading to the final
interpolation operator

I
PQS = Ql ’ (10)
QY + QF

assuming the variables are ordered with C first, followed by F¢, and FI last.

Figure 4d shows that for this interpolation significantly less points are interpolated by one
C-point only, and convergence also improves for all test problems in Table I. (2s-ei denotes
two stage interpolation using extended+i interpolation, 2s-std uses standard interpolation).

Copyright (© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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Figure 4. Gray points are interpolated by one C-point only for a. multipass interpolation, b. distance-
two multipass interpolation, option 1, c. distance-two multipass interpolation, option 2, d. two-stage
interpolation.

5. Some Comments on Complexity

While our preliminary two grid convergence tests show that the new interpolation operators
lead to improved convergence, we have not addressed their actual computational complexities
yet. Clearly, distance-two interpolation require more operations than direct interpolation, see
[7] for the detailed analysis of these methods. Consequently generating distance-two multipass
interpolation or stage two interpolation is more expensive than multipass interpolation.
Comparing the operators Py, in (8) and Pga_mp in (9) it is obvious that the first pass
in multipass interpolation (Pj) is cheaper than the second pass in distance-two multipass
interpolation (P; + Py@), since the number of interpolatory points increases when applying
Q@ to the first pass, leading to larger complexities. Two stage interpolation requires the use
of distance-two interpolation for all fine points and requires an additional matrix-matrix
multiplication to obtain the final operator. Depending on the stencil sizes of the matrices

Copyright (© 2000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2000; 00:0-0
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Figure 5. Grid used in Problem 4

Figure 6. Grid used in Problem 7

involved this can be very expensive. In [7] large complexities in distance-two interpolation
were controlled by truncation. It makes sense to use truncation here also.

There are various ways to use truncation here. One can compute the complete interpolation
operator and truncate at the end. Another option is to use a truncated distance-two
interpolation within the new interpolation operators. We only examined this for stage two
interpolation, where this can lead to much smaller setup times and a significantly cheaper
matrix-matrix multiplication. Of course for this to be efficient it is necessary that the truncated
operators are of sufficiently high quality to not deteriorate convergence too much.

In order to get some indication of computational complexity as well as memory usage when
using these interpolation operators within AMG, we will present for every problem considered
here the resulting operator complexity, which is defined as C,, = Y.i" nnz(A;)/nnz(A;)
(nnz(A) denotes the number of nonzeroes of the matrix A).

6. Numerical Experiments on one Processor

In this section, we present results obtained when applying the various interpolation operators
to a few test problems. The goal was to test both two-dimensional as well as three-dimensional
problems, and structured problems generated using finite differences as well as unstructured
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problems using finite elements. We considered standard Laplace problems, problems with
rotated anisotropies as well as diffusion problems with jumps. The unstructured problems
were generated with the unstructured finite element package aFEM. For all problems we
used AMG as a preconditioner for conjugate gradient with symmetric Gauss-Seidel as a
smoother. Convergence was halted when a convergence tolerance of 10~% was reached. We
used a modification of the code BoomerAMG in the hypre software library [9].

We consider the following problems:

Problem 1 is the 2 dimensional 5-point Laplace problem with Dirichlet boundary conditions
on a 1000x 1000 uniform grid.

Problem 2 is a 2-dimensional rotated anisotropic problem on a uniform 1000x1000 grid:
—(c? + €s?)ugy + 2(1 — €)scugy — (8% + €c®)uyy = 1 where ¢ = cos~, s = sin~, and € = 0.01.
Here v = 45°.

Problem 3 is the partial differential equation given in Problem 2, but now v = 60°.

Problem 4 is the diffusion problem —(a(x,y)us)s — (a(z,y)uy)y = f with Dirichlet
boundary conditions on an unstructured square using triangular finite elements shown in
Figure 5 with 1,383,617 degrees of freedom. There are four regions as shown in the right figure
with a(z,y) =1 on the three inner domains and a(z,y) = 0.001 on the outer domain.

Problem 5 is a 3-dimensional 7-point Laplace problem with Dirichlet boundary conditions
on a 100x100x 100 uniform grid.

Problem 6 is a diffusion problem with jumps on a 100x100x100 uniform grid. The
domain is the unit cube. The partial differential equation is —(a(z,y, 2)ug)s — (a(z,y, 2)uy)y —
(a(z,y,2)u;), = f with Dirichlet boundary conditions, where a(z,y,z) = 1000 for 0.1 <
x,y,2z < 0.9, a(z,y,z) = 0.1 for 0 < z,y,z < 0.1 and the cubes of size 0.1 x 0.1 x 0.1 that are
located at the corners of the domain, and a(z,y, z) = 1 elsewhere.

Problem 7 is a diffusion problem with jumps on an unstructured sphere using tetrahedral
final elements divided in two domains as illustrated in Figure 6 with 453,001 degrees of freedom.
Its PDE is given in Problem 6 with a(z,y,2) = 1 on one domain and a(z,y, z) = 1000 on the
other domain.

Table II lists the number of iterations and the operator complexities for these problems. We
include results for an AMG variant without aggressive coarsening. For interpolation we used
extended-Hi interpolation truncated to 4 elements per row, denoted with ‘ei(4)’, because it in
general achieves the best performance with HMIS and PMIS coarsening (see [7]).

Although in practice aggressive coarsening is generally used on only one or two levels, we will
also present results using aggressive coarsening on all levels. While it is known that convergence
decreases significantly for aggressive coarsening with multipass interpolation when used on
more than one or two levels, we expect the new interpolation operators to perform better,
and a comparison of these methods on all levels is at least of theoretical interest. Also, on
future architectures with millions of processors, which will allow to solve even larger systems,
leading to an increasing number of levels, it might be desirable to use aggressive coarsening on
more than one or two levels for better performance. Therefore Table II contains also results
for aggressive coarsening on all levels using multipass, ei-mp, and 2s-ei interpolation. as well
as results with aggressive coarsening on one level only, denoted with ‘mp-1’ for multipass
interpolation, and ‘2s-ei(4)-1’ for 2s-ei interpolation truncated to at most 4 elements per row,
to control complexities and setup times. On the levels without aggressive coarsening, ei(4) is
used as the interpolation operator. While we also tested std-mp and 2s-std interpolation, we
did not include the results here, since (except for Problem 2 with H1 coarsening) ei-mp and
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Coarsening | Problem ei(4) mp el-mp 2s-ei mp-1 2sei(4)-1
1 8(2.72) || 46(1.26) | 17(1.24) | 9(1.26) | 15(1.61) | S(1.41)

2 7(2.59) || 47(1.36) | 14(1.42) | 11(1.42) || 15(1.99) | 11(1.95)

HI, 3 9(3.20) || 72(1.21) | 15(1.31) | 14(1.31) || 30(1.31) | 13(1.55)
HMIS 4 10(2.58) || 96(1.13) | 41(1.31) | 19(1.49) || 23(1.28) | 17(1.44)
5 7(3.26) || 24(1.22) | 9(1.42) | 8(1.45) | 14(1.37) | 8(1.58)

6 8(3.27) || 33(1.23) | 15(1.42) | 10(1.44) || 15(1.38) | 11(1.55)

7 10(2.22) || 26(1.07) | 20(1.09) | 13(1.11) || 17(1.09) | 12(1.08)

1 0(2.40) || 88(1.16) | 65(1.19) | 27(1.27) || 23(1.29) | 15(1.37)

2 9(2.02) || 80(1.28) | 59(1.33) | 28(1.33) || 24(1.47) | 16(1.51)

P1, 3 16(2.61) || 124(1.13) | 97(1.15) | 44(1.23) || 50(1.22) | 28(1.33)
PMIS 4 10(1.87) || 115(1.09) | 78(1.13) | 36(1.18) || 26(1.15) | 19(1.23)
5 10(2.75) || 31(1.18) | 27(1.23) | 14(1.46) || 19(1.32) | 13(1.45)

6 11(2.85) || 40(1.21) | 36(1.29) | 19(1.57) || 20(1.37) | 14(1.51)

7 10(1.95) || 29(1.04) | 25(1.06) | 16(1.11) || 18(1.07) | 13(1.09)

Table II. No. of iterations (C,p for AMG-CG using various interpolation operators on various test
problems using H1 or P1 coarsening on levels with aggressive coarsening and HMIS or PMIS on levels
without

2s-ei interpolation performed at least as well.

The results show that generally H1 (or HMIS) coarsening leads to better convergence than
P1 (or PMIS), but also has higher complexities. Without aggressive coarsening one achieves the
lowest number of iterations but also the highest complexities, which are often twice as large.
When using aggressive coarsening on all levels, as expected, multipass interpolation converges
the slowest, ei-mp shows better convergence, and 2s-ei exhibits the best convergence. When
using H1 coarsening, the convergence for 2s-ei is often only about 50% slower than that of ei(4)
with significantly lower complexities and is always better than mp-1. However its convergence
deteriorates when using P1 coarsening. Using aggressive coarsening on one level only improves
convergence for both mp and 2s-ei, with 2sei(4)-1 converging faster than mp-1.

Since numbers of iterations and operator complexities do not necessarily reflect the actual
run times, those are listed in Table ITI. While 2sei(4)-1 exhibits better total times than mp-1
for the structured two dimensional problems, somewhat lower complexities and much more
efficient setup lead to total times that are only slightly larger and sometimes even better for
the remaining problems.

7. Parallel Experiments

In this section, we examine parallel performance of the previous algorithms. We are both
interested in run times as well as weak scalability. While in the previous section we saw that
most often H1 coarsening led to better results than P1 coarsening, we need to remember that
on one processor H1 coarsening is just Al coarsening and completely sequential. If running
truly in parallel, H1 coarsening is a hybrid of A1 coarsening and P1 coarsening, and one might
expect its performance to be worse than that of Al coarsening.
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Coarsening | Problem || ei(4) mp | ei-mp | 2s-ei || mp-1 | 2sei(4)-1

1 9.7 208 | 102 | 7.0 9.8 6.8

2 9.3 25.9 10.5 8.8 12.8 10.6

H1, 3 14.0 35.5 10.9 | 10.5 17.0 10.7
HMIS 4 31.2 || 97.5 | 53.7 | 35.2 || 304 30.4
5 16.8 16.1 13.8 | 15.8 12.6 11.8

6 17.6 204 16.6 | 144 12.8 13.2

7 24.7 26.5 25.6 | 21.0 194 174

1 10.2 36.4 28.8 | 14.6 12.0 9.7

2 9.9 42.3 33.2 17.7 15.9 12.0

P1, 3 18.7 58.5 47.8 | 25.1 26.1 17.8
PMIS 4 25.6 || 113.7 | 84.2 | 45.8 31.3 29.2
5 18.0 18.1 17.7 | 149 13.2 12.8

6 19.1 22.8 22.9 | 18.8 14.0 13.6

7 22.3 26.9 26.9 | 22.9 18.6 18.0

Table III. Run times for AMG-CG using various interpolation operators on various test problems
using H1 or P1 coarsening on levels with aggressive coarsening and HMIS or PMIS on levels without

Since our previous experiments showed that two stage interpolation leads generally to better
results than distance-two multipass interpolation, we only coded a parallel version of two stage
interpolation and distance-two multipass interpolation is not considered here. Just as in the
previous section we also omit results for standard two stage interpolation since for all problems
considered here extended+i two stage interpolation gave better or equivalent results.

We consider Problems 3, 4, 5 and 7 from the previous section and examine their weak
scalability. Problem 3 (now using a grid size of 500x500 per processor) and Problem 5 (with
50x50% 50 grid points per processor) were run on BG/L, which allowed us to use larger numbers
of processors. Problem 4 (with approximately 86,000 degrees of freedom per processor) and
Problem 7 (with approximately 58,000 degrees of freedom per processor) were run on Hera, a
quadcore quadsocket Opteron Linux system, since aFEM was not available to us on BG/L.

Since the use of distance-two interpolation operators generally leads to large complexities for
three dimensional problems, we employ truncation for 2s-ei to at most 4 elements per row for
Problems 5 and 7, denoted with 2s-ei(4). For Problems 4, 5 and 7, we truncate the operators
@1 and @2 to at most 4 elements per row in addition to the final interpolation operator, and
denote this approach with ‘2s-ei(444)’; to further control complexities and so receive smaller
setup times. Using this approach on all levels generally leads to worse convergence than using
2sei(4) on all levels, however improves timings when used on one or two levels. Particularly
for three-dimensional problems the use of truncation is crucial to achieve lower setup times.

For all problems, two stage interpolation shows better numerical scalability than multipass
interpolation when used on all levels. However when aggressive coarsening is used on one
or two levels only, as is usually the case in practice, numerical scalability improves for
multipass interpolation significantly, approaching that of two stage interpolation, with two
stage interpolation generally exhibiting a lower number of iterations.

Using 2s-ei on all levels for the rotated anisotropic Problem 3 (see Table IV and Figure 7)),
led to a larger decrease in numerical scalability than desired, requiring the number of levels
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No. of procs | €i(4) | mp | mp-1 | 2s-ei | 2s-ei-1
64 10 145 28 24 19
256 11 205 30 33 19
1024 11 312 33 42 21
4096 12 | > 400 | 35 51 21
16384 13 | > 400 | 37 78 22
32400 13 | > 400 | 38 91 22
65536 14 | > 400 | 39 106 23
Cop 3.21 1.20 1.31 | 1.31 1.55

15

Table IV. No. of iterations for AMG-CG using various interpolation operators to Problem 3 with
500500 grid points per processor using H1 coarsening, operator complexities were obtained for largest

times In seconds
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Figure 7. Run times for Problem 3 (2D 5pt) with 500x500 grid points per processor using H1

coarsening
No. of procs ei(4) mp mp-1 2s-ei 25 ei(4) | 2s-ei(444)-1

1 15(9) | 2.8(54) | 1.3(20) | 1.6(16) | 1.4(16) | L.4(15)
64 3.5(12) | 17.3(161) | 3.4(24) | 5.0(20) | 4.8(32) | 3.7(18)
256 4.4(13) | 20.2(268) | 4.6(27) | 6.0(34) | 5.5(35) | 4.6(20)
1024 6.6(15) | 32.8(280) | 5.8(28) | 9.4(55) | 6.3(3%) | 5.3(21)
4096 11.2(16) | 70.9(449) | 7.8(29) | 12.0(47) | 10.9(47) | 7.3(21)
Cop 2.65 1.13 1.30 1.49 1.32 1.45

Table V. Total times (No. of iterations) for AMG-CG applying various interpolation operators to
Problem 4 (LLNL) with 500x500 grid points per processor using H1 coarsening, operator complexities
were obtained for largest run
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Figure 8. Solve times for Problem 4 (LLNL) with approximately 86,000 grid points per processor using
H1 coarsening

No. of procs | ei(4) | mp | mp-1 | mp-2 | 2s-ei | 2s-ei(4) | 2s-ei(444)-2
512 13 49 16 23 15 17 14
4096 16 75 20 27 17 21 15
8000 18 85 21 28 18 21 16
15625 26 95 21 29 18 22 17
32768 25 | 107 | 23 30 19 23 18
Cop 3.17 | 1.22 | 1.35 1.22 | 1.40 1.36 1.35

Table VI. No. of iterations for AMG-CG applying various interpolation operators to Problem 5 (7pt
3D) with 50x50x 50 grid points per processor using H1 coarsening, operator complexities were obtained
for largest run

No. of procs ei(4) mp mp-1 2s-¢ei 2s-ei(4) | 2s-ei(444)-1
1 2.0(10) | 2.0(23) | 2.5(19) | 2.6(14) | 2.4(15) | 2.3(14)
64 0.0(12) | 10.0(40) | 6.2(19) | 9.7(17) | 8.4(21) | 7.0(14)
512 20.5(15) | 18.8(55) | 13.1(19) | 18.4(19) | 14.8(22) | 13.1(14)
4096 36.4(17) | 31.7(77) | 23.6(27) | 40.2(24) | 24.3(27) | 23.1(19)
Cop 2.31 1.08 1.11 1.13 1.08 1.11

Table VII. Total times (No. of iterations) for AMG-CG applying various interpolation operators to
Problem 7 (sphere) with approximately 58,000 grid points per processor using H1 coarsening, operator
complexities were obtained for largest run
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Figure 9. Total times (left) and solve times (right) for Problem 5 (7pt 3D) with 50x50x 50 grid points
per processor using H1 coarsening
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Figure 10. Solve times for Problem 7 (phere) with approximately 58,000 grid points per processor
using H1 coarsening

of aggressive coarsening to be restricted. 2s-ei-1 converges faster than mp-1 here and exhibits
lower total run times.

For Problem 4, 2s-ei and 2s-ei(4), exhibit also a larger than desired increase in number of
iterations with increasing number of processors. Total times are almost identical for 2s-ei(444)-
1 and mp-1, see Table V, but solve times are faster for 2s-ei(444)-1, see Figure 8.

For Problem 5, both 2s-ei and 2s-ei(4), show good convergence and numerical scalability
when used on all levels. As a matter of fact, timings for 2s-ei(4) were almost identical to those
of mp-1. However they were further improved, when using two levels of aggressive coarsening
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with 2s-ei(444), denoted with ‘2s-ei(444)-2’. 2s-ei(444)-2 was also about 20-30% faster than 2s-
ei(444)-1, due to better complexities,and number of iterations. Using two levels for multipass
interpolation led to a deterioration in number of iterations (see Table VI), about 20 % slower
solve times, but faster setup times, leading to overall similar total times compared to one level
of multipass interpolation. Total times and solve times for ei(4), mp-1 and 2s-ei(444)-1 are
presented in Figure 9.

For Problem 7, the unstructured diffusion problem with jumps on a sphere, aggressive
coarsening with 2s-ei(4) on all levels, shows reasonable performance, see Table VII. Total
times are almost identical for 2s-ei(444)-1 and mp-1, with lower solve times for 2s-ei(444)-1,
see Figure 10.

Using two stage interpolation on all levels led to decreasing numerical scalability for the two-
dimensional problems, however gave reasonable results for the three-dimensional problems.

For all problems considered here, number of iterations and solve times for two stage
interpolation are smaller than those of multipass interpolation. This makes this method
attractive for situations where the preconditioner is set up only occasionally and reused many
times, and where possibly a reevaluation of the preconditioner would not be required as often
as for preconditioners using multipass interpolation.

In Figures 7, 8 and 10, the gap between mp-1 and 2sei-1 or 2sei(444)-1 appears to widen
when increasing the number of processors, which, if this trend continues, would make two
stage interpolation the better choice for millions of processors, our target architecture, for
these problems. Whether this actually will be the case will have to be seen, since the final
performance of the considered algorithms will depend on many factors, such as convergence,
implementation, etc.

Setting up two stage interpolation is more expensive than multipass interpolation. We
should note here that while we have a fairly efficient multipass interpolation routine, our
implementation of two stage interpolation is straightforward, i.e. evaluates @)1 and 2, followed
by a sparse matrix-matrix multiplication to generate the operators. No effort has been made
to increase its efficiency, by e.g. taking advantage of the cache. A better implementation
will decrease the setup time, leading to better overall times. This however is the focus of
future research. Nevertheless due to the low number of operations required to set up multipass
interpolation, we expect its setup to always be faster.

8. Conclusion

Two new interpolation operators, distance-two multipass interpolation and two stage
interpolation, designed to be used with aggressive coarsening have been introduced. Both
of them are generated using distance-two interpolation, which are of higher quality than direct
interpolation, the method used in multipass interpolation.

Our experiments show that both exhibit overall better convergence behavior than multipass
interpolation, with two stage interpolation converging faster than distance-two multipass
interpolation. While performing aggressive coarsening with multipass interpolation on all levels
generally leads to decreasing convergence and numerical scalability (and has therefore not
been used in practice), combining aggressive coarsening with two stage interpolation on all
levels leads to fairly good numerical scalability for the three-dimensional diffusion problems
considered here.
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When aggressive coarsening is used on only one or two levels, total runtimes for two stage
interpolation are only slightly lower or comparable to those for multipass interpolation, since
it requires a more complex, and hence expensive, setup. Solve times are generally lower due
to its better convergence and lower number of iterations. This makes this method attractive
for situations where the preconditioner is set up only occasionally and reused many times,
and where possibly a reevaluation of the preconditioner would not be required as often as for
preconditioners using multipass interpolation.
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