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A NOTE ON THE RELATIONSHIP BETWEEN ADAPTIVE AMG

AND PCG

ROBERT D. FALGOUT∗

Abstract. In this note, we will show that preconditioned conjugate gradients (PCG) can be
viewed as a particular adaptive algebraic multigrid algorithm (adaptive AMG). The relationship
between these two methods provides important insight into the construction of effective adaptive
AMG algorithms.

1. Introduction. The adaptive multigrid method employs the idea of “using the
method to improve the method.” Recent algorithms that utilize this basic idea are
Wagner and Wittum’s adaptive filtering [7, 8], Brandt’s bootstrap algebraic multigrid
(bootstrap AMG) [2], adaptive smoothed-aggregation [3], and the Ruge-Stüben-based
adaptive AMG algorithm described in [4]. These methods exhibit the optimal con-
vergence properties of multigrid, but are generally more robust (i.e., they apply to
larger classes of problems) than their non-adaptive counterparts.

The preconditioned conjugate gradient (PCG) method [1, 5] is a generalization of
the classic conjugate gradient (CG) method of Hestenes and Stiefel [6]. These so-called
Krylov methods are well-known and widely used in practice. Unlike multigrid, they
are not (in general) optimal. In particular, the convergence rate of CG (resp., PCG)
depends on the condition number of the system matrix (resp., the preconditioned
system matrix). However, CG and PCG are extremely robust. For example, CG is
provably convergent for all symmetric positive definite systems.

At first glance, adaptive multigrid looks nothing like PCG. However, we will
show in this note that PCG, preconditioned by any symmetric fixed-point residual
correction method (e.g., Jacobi, symmetric Gauss-Seidel, multigrid), can be viewed as
a particular adaptive AMG algorithm. The relationship between these two seemingly
different methods provides important insight into the construction of effective adaptive
AMG algorithms.

2. Preliminaries. Consider solving the linear system

Au = f, (2.1)

where A is a real symmetric positive definite (SPD) matrix on a Euclidean vector
space V. Now consider a residual correction method of the form (j ≥ 1)

uj = uj−1 + M−1rj−1, (2.2)

where M is symmetric and rj is the residual at the jth iteration, f −Auj . This is the
iterative method that we will use to precondition CG and to produce the so-called
prototypes in the adaptive method. The operator M must satisfy additional criteria
in order to insure convergence of the two methods, but for this paper it is sufficient
to simply assume that the methods are convergent. The iteration in (2.2) can be
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rewritten in terms of the initial data as follows

uj = Hju0 +

j−1∑

i=0

HiM−1f, (2.3)

where

H = (I −M−1A). (2.4)

The error propagation iteration can similarly be written as

ej = Hje0, (2.5)

where ej = u − uj is the error such that rj = Aej . These equations will be useful
later in the discussion.

3. PCG. PCG is just the CG method applied to the preconditioned system

Âu = f̂ ; Â = CA; f̂ = Cf, (3.1)

where C is the preconditioning matrix given by the second term in (2.3). The three-
term recurrence of CG results from an algebraic simplification of the following itera-
tion, applied here to (3.1):

ek = (I −Qk)e0, (3.2)

where Qk is the A-orthogonal projection onto the Krylov subspace

Kk = {r̂0, Âr̂0, ..., Â
k−1r̂0}

= {Cr0, (CA)Cr0, ..., (CA)k−1Cr0}

= {(CA)e0, (CA)2e0, ..., (CA)ke0}. (3.3)

So, the above iteration describes the error propagation for the PCG method being
considered here. But, from (2.3) and (2.4), we have that

CA =

j−1∑

i=0

HiM−1A =

j−1∑

i=0

Hi(I −H) =

j−1∑

i=0

Hi −

j∑

i=1

Hi = I −Hj .

Hence, we can rewrite the space in (3.3) as

Kk = {(I −Hj)e0, H
j(I −Hj)e0, ..., H

(k−1)j(I −Hj)e0}. (3.4)

To see this, consider the second vector in (3.3). This vector is just the sum of two
components,

(I −Hj)2e0 = (I −Hj)e0 −Hj(I −Hj)e0,

the first of which is already in the space. Hence, only the second component is needed
in (3.4). The rest of (3.4) is derived similarly.
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4. Adaptive AMG. In this section, we will simultaneously describe the adap-
tive algorithm being considered here, and characterize it in a form that will make it
possible to compare to the PCG method in the previous section. We will compare the
two methods in the next section.

Step 1: Relax on Ax = 0 using the iterative method in (2.2) with initial guess x0.
Hence, from (2.3),

x1 = Hjx0.

Define interpolation by

P1 = [x1].

Then, the error propagation for the new method is given by

e1 = (I −Q1)H
je0; Q1 = P1(P

T
1 AP1)

−1PT
1 A,

so that Q1 is just an A-orthogonal projection onto the space

K1 = {Hjx0}.

Step 2: Relax on Ax = 0 using the new adaptive method with initial guess x1.
Hence, we have that

x2 = (I −Q1)H
jx1 = (I −Q1)H

2jx0.

Define interpolation by

P2 = [P1, x2].

Then, the error propagation for the new method is given by

e2 = (I −Q2)H
je0; Q2 = P2(P

T
2 AP2)

−1PT
2 A,

so that Q2 is just an A-orthogonal projection onto the space

K2 = {Hjx0, H
2jx0}.

Step k: Relax on Ax = 0 using the new adaptive method with initial guess xk−1.
Hence, we have that

xk = (I −Qk−1)H
jxk−1

= (I −Qk−1)H
j(I −Qk−2)H

(k−1)jx0

= (I −Qk−1)H
kjx0 − (I −Qk−1)H

jQk−2H
(k−1)jx0

= (I −Qk−1)H
kjx0.

The last step above follows since HjQk−2H
(k−1)jx0 is in the space Kk−1 and since

Qk−1 is a projection onto that space. Define interpolation by

Pk = [Pk−1, xk].

Then, the error propagation for the new method is given by

ek = (I −Qk)H
je0; Qk = Pk(P

T
k APk)

−1PT
k A,

so that Qk is just an A-orthogonal projection onto the space

Kk = {Hjx0, H
2jx0, ..., H

kjx0}.
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5. The Connection. In the previous two sections, we characterized the PCG
method and a particular adaptive method both as subspace projection methods. Be-
fore we compare them, let’s first summarize what we have done.

• The PCG method can be characterized by the following error iteration

e
p
k = (I −Q

p
k)e

p
0,

where Q
p
k is the A-orthogonal projection onto the space

Kp
k = {(I −Hj)ep

0, ..., H
(k−1)j(I −Hj)ep

0}.

• The adaptive method can be characterized by the following error iteration

ea
k = (I −Qa

k)H
jea

0 ,

where Qa
k is the A-orthogonal projection onto the space

Ka
k = {Hjx0, ..., H

kjx0}.

From the above, it is clear that the two methods have essentially the same prop-
erties. However, by choosing appropriate initial guesses for the two methods, it is
also possible to get them to produce exactly the same iterates. To do this, let ua

0 (the
initial guess for the adaptive method) be some arbitrary initial guess u0, and let u

p
0

(the initial guess for the PCG method) be the result of applying j steps of (2.2) to
the system (2.1) with initial guess u0. From this, we have that

ea
0 = e0, e

p
0 = Hje0. (5.1)

Now, let x0 be the preconditioned initial residual, i.e. let

x0 = Cr0 = (I −Hj)e0. (5.2)

Substituting (5.1) and (5.2) into the methods above, we see that both PCG and the
adaptive method have the following error iteration

ek = (I −Qk)H
je0,

where Qk is the A-orthogonal projection onto the space

Kk = {Hj(I −Hj)e0, ..., H
kj(I −Hj)e0}.

6. Comments and Conclusions. The adaptive method considered here differs
in a number of ways from most other adaptive AMG methods:

• It starts out with a single coarse grid point, and adds a new degree of freedom
to the coarse grid every time a new prototype is generated.

• It is only a 2-level method.

• It does not start with a random initial guess to form each consecutive pro-
totype. Note, however, that if x0 is rich in all eigenmodes of A, then the
approach used here is reasonable.

• It does not test the prototype being generated to see whether it really is a
good representative. Instead, it just assumes that each xk must automatically
be dealt with on a “coarse grid”.
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However, the adaptive idea of “using the method to improve the method” is definitely
present in this algorithm. So, why should we expect adaptive multigrid methods to
be any better than PCG?

The reason lies in the way the prototypes are used. A subtle, yet crucial point
about adaptive AMG methods is that the prototype is only a representative for con-

structing what it means to be smooth locally. The key word here is locally. The
adaptive algorithm in this note only deals with the xk globally, and that is why it is
no better than PCG.
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