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Abstract

For non-M-matrices, this paper proposes an unstructured multigrid method that only
attempts to interpolate in the directions of geometrical smoothness. These directions are
determined by analyzing samples of algebraically smooth error, e. Neighboring grid points 4
and j are called smoothly coupled if e; and e; are consistently nearby in value. In addition,
these differences may be used to define interpolation weights. These new ideas may be
incorporated into the algebraic multigrid method. Test results show that the new method
can have much lower grid and operator complexities compared to AMG, leading to lower
solve timings.

1 Introduction

In the algebraic multigrid (AMG) method, algebraically smooth error is the error that remains
after the smoother has been applied and that must be reduced at the next level. AMG defines
the strong couplings between a grid point and its neighboring grid points, and depends on being
able to interpolate the algebraically smooth error along these strong couplings. Strong couplings
are generally defined to be the large negative matrix entries, i.e., the coupling between points
¢+ and j is strong when the matrix entry a;; is large and negative. For symmetric M-matrices
and matrices where the positive off-diagonal entries are small (“essentially positive-type”) [2],
the algebraically smooth error varies slowly along strong couplings and is relatively easy to
interpolate.

When the positive off-diagonal entries are large but the matrix is (weakly) diagonally domi-
nant, algebraically smooth error still varies slowly along strong couplings [9]. Along large positive
couplings, the algebraically smooth error is oscillatory [11] such that the absolute value of the
smooth error is slowly-varying. This makes it possible to interpolate algebraically smooth but
geometrically oscillating error for these problems.

When the matrix is not diagonally dominant and there exist large positive off-diagonal
entries, algebraically smooth error no longer varies slowly along strong couplings in general.
Further, it is not clear that it is possible to interpolate geometrically non-smooth error for
these problems. Matrices of this sort arise commonly, for example, in linear quadrilateral or
hexahedral finite element discretizations for anisotropic elliptic problems, but traditional AMG
methods have difficulty with them. This paper proposes a multigrid method for these problems
by directly identifying the directions of slowly-varying algebraically smooth error, and only
interpolating in these directions.
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Figure 1: Stencil for Poisson’s equation using elements with 1/10 aspect ratio.

For reference, we state AMG’s definition of a strong coupling, also called strong connection
or strong dependence [6], for interpolating grid point i. Point 4 is strongly coupled to j if

—aij > QIggf{—aik} (1)

where 0 < 0 < 1 is called the strength threshold. We additionally say that for § = 0, point 7 is
strongly coupled to j if a;; < 0.

As a motivational example, consider solving Poisson’s equation in a rectangular domain
(0,1) % (0,10) with Dirichlet boundary conditions using linear quadrilateral elements on a 20 x 20
element mesh. Each element has aspect ratio 1/10. The AMG method by Ruge and Stiiben
[10] with 2-levels (2 symmetric Gauss-Seidel pre-smoothing steps, direct solve on the coarse
level) using a strength threshold of 0.25 (the value suggested in the literature) requires 32
cycles to reduce the residual by six orders of magnitude. The stencil, shown in Figure 1, shows
that this choice of strength threshold defines all connections except the positive connections
as strong. However, the smooth error varies slowly only in the east-west direction in this
problem; the smooth errors in the grid lines above and below the given point are unrelated,
and interpolation using points in these grid lines is erroneous. A strength threshold of 0.26 or
higher correctly classifies the couplings and AMG requires only 7 cycles for convergence with this
choice. (When the anisotropy is stronger, the detrimental effect of the wrong strength threshold
is even stronger.) For unstructured problems, the size of moderately negative entries does not
clearly indicate whether smooth error is slowly-varying. To rectify this problem, it is possible to
increase the strength threshold so that only the most negative connections are considered strong
connections, erring on the side of misclassifying some strong directions. However, this strategy
entails using large coarse grids (i.e., requiring more levels) and may degrade interpolation.

This paper suggests the use of geometrically smooth couplings instead of strong couplings
for problems that are not (weakly) diagonally dominant such as the above. The proposed
method explicitly identifies geometrically smooth couplings by using differences in samples of
algebraically smooth error. Interpolation only uses these smooth couplings. Thus we do not
attempt to interpolate across jumps in PDE coeflicients, for example, since we assume that we
do not know how to interpolate across these jumps. The method is identical to AMG except that
it redefines strong couplings and that it uses geometrically-based interpolation. The coarsening
algorithm, constructing the coarse grid matrix, and smoothers remain the same.

Other multigrid techniques have been proposed for problems with matrices with large positive
off-diagonal entries. Stiiben [12] suggests eliminating the off-diagonal positive entries in a stencil
(or row) by substituting stencils corresponding to the positive entries. The resulting stencil can
be used to determine which couplings are strong. It may be difficult, however, to interpret
the resulting stencil, especially if not all positive entries can be eliminated. Another multigrid
method is called AMGe, an algebraic multigrid method for finite element problems [5]. AMGe
agglomerates elements to form coarse grid matrices, and utilizes a measure of interpolation
quality to define interpolation for these problems.

This paper is organized as follows. A method for identifying geometrically smooth cou-
plings is described in Section 2. Interpolation along couplings that are geometrically smooth is
described in Section 3. Section 4 shows the results of numerical investigations and Section 5
concludes this paper.
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Figure 2: Samples of algebraically smooth error for two finite element discretizations.

2 Identifying geometric smoothness

2.1 Smoothness matrix

Given a coefficient matrix A at a given grid level, a sample of algebraically smooth error may be
generated as the result of applying the smoother (to be used in the multigrid solution process)
to the homogeneous equations

Ae =0 (2)

with a random initial guess for e. This relaxed vector e is representative of the actual errors
remaining after smoothing that are generated in the multigrid solution process. As we will see,
however, many samples of algebraically smooth error will be needed to fully characterize this
error. Relaxed vectors produced this way have been used in other algorithms, for example,
Bootstrap AMG [4].

Figure 2 shows samples of algebraically smooth error for two linear quadrilateral finite ele-
ment discretizations of Poisson’s equation on a segment of an annulus. The smoother was two
steps of symmetric Gauss-Seidel (SGS). The figure shows that when the grid is stretched, the
smooth error is only geometrically smooth in the radial direction; there is no relation in the
error components that can be discerned in the angular direction.

To try to quantitatively characterize geometrically smooth error, we proceed as follows. Let
n be the dimension of a sample of algebraically smooth error e. Define an n-by-n sparse matrix
M that specifies a sparsity pattern that does not include the diagonal, and define dist(s,j) as
the graph distance between grid points 7 and j. We then define the “difference matrix” as a

function of e ‘ ‘
1 €;i—€j . y
Dij(e) = [le]l2 dist(4,7) if Mzg 7é 0 (3)
undefined otherwise

whose entries can be interpreted as the directional derivatives of e. Large values of D;; indicate
geometric non-smoothness in the grid; small values of D;; do not imply smoothness unless
the same entries are small for many samples of algebraically smooth error. We thus define the
“smoothness matrix” using the average of R difference matrices (using R samples of algebraically



smooth error)

71 .
6= | [RTE D] ity 20 (4)
0 otherwise

Note the reciprocal used in (4); now large values of S;; indicate geometric smoothness and small
values of S;; indicate geometric non-smoothness.

Finally, we define a “smooth coupling” as a coupling between points ¢ and j such that S;; > 7,
where 7 is a threshold to be discussed in Section 2.2. A thresholded version of S may be passed
to AMG to use as its “strength matrix” which is used to define the coarse grid and interpolation.

A few notes about these definitions are in order.

e D is an approximation to a derivative in a graph sense rather than a geometric sense. This
is reasonable because coarsening is defined in terms of graph neighbors rather than points
in a geometric neighborhood.

e The matrix M is used to make sure that differences are only computed between nearby grid
points. Most often, the pattern of M will be taken to be the pattern of the matrix A less the
diagonal. This definition of M implies that a grid point will at most be interpolated using
its nearest graph neighbors. An expanded pattern for M (e.g., the pattern of A? less the
diagonal) may be useful for non-grid-aligned problems or to generate very coarse grids, but
interpolation using farther graph neighbors is required. In AMG, strength of connection
is only defined for the nearest graph neighbors of a node, but the above technique can be
used to identify smooth couplings that are not these nearest graph neighbors.

e The scaling by ||e||2 in (3) makes the difference matrix independent of how much the error
was reduced by the smoother. Localized scalings may be appropriate in some cases, and
will be discussed in Section (2.3).

e Instead of defining the smoothness matrix using an average of difference matrices, it is
possible to define it using a component-wise maximum of difference matrices. However,
we did not find the latter to give significantly different results.

e The matrix S is symmetric, i.e., S;; = Sj;, which is suited for symmetric problems. We
plan to investigate how to extend the above ideas to nonsymmetric problems.

The calculation of the smoothness matrix is adapted to the smoother being used in the
multigrid solution process. In a parallel processing example, if a non-overlapping block Jacobi
smoother is used, then the smoothness matrix will automatically prevent interpolation across
processor boundaries. Another technique, called compatible relaxation [3] uses the smoother to
help select the coarse grid, and is similar in that it is also adapted to the smoother chosen for
the solution process.

2.2 Smoothness threshold

A smoothness threshold 7 discriminates between geometrically smooth and non-smooth cou-
plings. It is not clear that a fixed value of 7 is appropriate for all problems. Further, different
smoothness thresholds may be required on different coarse grid levels.

The following procedure for automatically choosing the smoothness threshold at each level
is surprisingly effective. We assume that the smoother generates algebraically smooth error
such that every grid point should have at least one smooth coupling. Then, given a smoothness
matrix S, we choose

7 = min max Sj;.
? J

Now, points ¢ and j are called smoothly coupled if S;; is greater than or equal to 7.



2.3 Local scaling of the smoothness matrix

The scaling by ||e||2 in (3) is required to make the difference matrix independent of how much
the error was reduced by the smoother and independent of the scaling of the initial guess for (2).
For some problems, it is possible that the error is reduced at different rates in different parts of
the grid, and local scalings of the relaxed vectors may be appropriate. For a relaxed vector e,
an obvious local scaling is to scale e; by maxyy,; 2o(e;).-

We use a simpler approach, which is to scale the smoothness matrix such that S;; is scaled
by maxy S;r. When only one relaxed vector is used, this is identical to scaling this relaxed vector
as described above. Our local scaling is also similar to to the way strong connections are defined
in AMG; see (1).

A smoothness threshold, 0 < 7 < 1, is also used to classify smooth and non-smooth couplings
when local scaling is used. However, we do not have an automatic procedure for choosing the
smoothness threshold in this case.

2.4 Grid and operator complexity

The following definitions, from [6], are useful to quantify the storage and work required by a
multigrid V-cycle. Grid complezity is the total number of grid points, on all grids, divided by
the number of grid points on the finest grid. Operator complexity is the total number of nonzero
entries, in all coarse and fine grid matrices, divided by the number of nonzero entries in the
fine grid matrix. Operator complexity is an indication of the work per V-cycle of the multigrid
process.

It turns out (see Section 4) that the coarsening procedure based on smooth couplings chooses
fewer coarse grid points (C-points) than coarsening based on approximately the same number of
AMG strong couplings. This leads to smaller-dimension coarse grids, fewer levels, and smaller
operator and grid complexities. To try to understand why these coarsenings behave differently,
we examine the number of smooth or strong couplings at each grid point. Figure 3 plots the
histograms of the number of strong or smooth couplings at each grid point on the finest grid for
three methods. The figure shows that the AMG rule for strong couplings limits the maximum
number of strong couplings at a grid point. This is due to its use of local scaling, which assumes
that not all couplings at a grid point can be strong. Local scaling of the smoothness matrix has
the same difficulty (although it is not as evident from this figure) but it is not as severe.

2.5 Number of samples of algebraically smooth error

Using more samples of algebraically smooth error gives more accurate discrimination of the
smooth couplings, but obviously incurs greater cost. Figure 4 plots the sorted entries in the
smoothness matrix for an anisotropic diffusion problem on a 20-by-20 grid, as a function of the
number of samples of algebraically smooth error. In this example, the smooth couplings are
known, and the optimal threshold is at the knee near 40. The knee develops after averaging
about ten samples, but there is no knee in general.

The plot gives an idea of the values in the smoothness matrix, but not necessarily the number
of couplings that are classified correctly. The number of sample vectors will be investigated
further in Section 4.3 with respect to convergence rate and solution time.

2.6 Implementation details

Algorithm 1 shows the calculation of the entries of the smoothness matrix S (without local
scaling). These entries will typically be stored using a sparse data structure, and it is more
efficient to completely compute each entry or each column of S before beginning to compute
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Figure 3: Histograms of the number of strong or smooth couplings at each grid point. (The
y-axis shows the number of grid points with the number of strong or smooth couplings on the
z-axis.) These results are for the test matrix UU-2, described in Section 4.1. Each row of the
test matrix typically has 27 nonzeros per row. The grid points with zero couplings are grid
points specifying Dirichlet boundary conditions.
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Figure 4: Plots of the entries in the smoothness matrices for 1 to 20 samples of algebraically
smooth error (size of entries in smoothness matrix is sorted along the z-axis). The entries for
20 samples has the most developed knee.

the next entry or column. It is also more efficient to smooth a block a vectors than to smooth
vectors individually (although this optimization is not used in the tests in this paper). If the
computation is organized this way, then the number of samples R of algebraically smooth error
must be known beforehand. In addition, since S is symmetric, only its upper or lower triangular
portion needs to be computed.

2.7 Examples

Finite elements with stretched quadrilaterals

Figure b shows typical entries in the smoothness matrix for the stencil in Figure 1. The smoother
was 2 steps of SGS. Larger entries indicate smoother couplings. In the figure, it is now clear
that the couplings to the points in the grid lines above and below the given point are equally
non-smooth.

22.7 | 20.8 | 21.8
51.7 54.8
155 | 15.4 | 159

Figure 5: Entries in the smoothness matrix for the stencil in Figure 1.

Figure 6 plots the weighted graph of the smoothness matrix for an anisotropic diffusion
problem using stretched elements on a segment of an annulus. The edges of the graph are colored
according to the entries in the smoothness matrix. As expected for this problem, geometrically
smooth connections are in the radial direction. Some nearly horizontal connections can also be
classified as smooth due to the anisotropy preferring the = direction. The boundary regions are
shown to be less smooth since error at the boundaries is removed fastest.

Domain decomposition

As mentioned, the smoothness matrix is adapted to the smoother being used. Consider a non-
overlapping block Jacobi smoother (using SGS for approximate solves within the blocks) for a
diffusion problem partitioned for two processors. Figure 7 shows that the smoothness matrix
detects the geometric non-smoothness across the processor boundary in the algebraically smooth
error. The illustration is similar for problems with jumps in PDE coefficients.



Algorithm 1 Calculate smoothness matrix S (without local scaling)

1:

Define the number of samples R

2: Initialize the sparse data structure for S, given the chosen sparsity pattern of M

@

10:

12:
13:
14:

Construct R samples of algebraically smooth error e®), & = 1,..., R by relaxing Ae = 0
with random initial guesses

Scale &) = k) /|| e(®) ||,

for all (i,7) such that ¢ < j and (7, 7) is in the pattern of M do

(k) (K
d:mzlfjﬂ‘eg)*e;)\

{d can be zero if there are explicit zeros in the matrix A}
if d # 0 then
Sij =1/d
else
Sz'j =0
end if
Sji = Sij
end for
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Figure 6: Weighted graph of the smoothness matrix for an anisotropic diffusion problem (coef-
ficients k, = 10, k, = 1) using stretched elements on a segment of an annulus. The edges of the
graph are colored according to the entries in the smoothness matrix.
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(a) Smooth error when two subdomains are used. (b) Graph of smoothness matrix.

Figure 7: Smooth error and graph of smoothness matrix for a problem partitioned for parallel
computing. (This figure should be viewed in color.)

Rotated anisotropic diffusion

The smoothness matrix can identify smooth couplings that are not immediate couplings in the
graph of the matrix. For problems where strong anisotropy is not aligned with the grid points,
these couplings may provide better interpolation. Figure 8 illustrates a rotated anisotropic dif-
fusion problem, where the direction of anisotropy is in the horizontal direction. The smoothness
matrix was computed using the sparsity pattern of A? less the diagonal. The graph correspond-
ing to the largest entries in this smoothness matrix is plotted (the other entries complicate the
graph). In passing, we note that geometric smoothness in the algebraically smooth error is not
perfectly aligned with the anisotropy unless many smoothing steps are used.

3 Interpolation

In this very short section, we describe a few alternatives for choosing the interpolation matrix
when the important couplings for a grid point are the geometrically smooth couplings defined
above. These interpolation schemes are geometric. The common interpolations defined for AMG
would not work, or would work poorly, because they would lead to many negative interpolation
weights.

3.1 Linear interpolation

Given that points ¢ and j are smoothly coupled, point j contributes to the value of point i
proportionally to the reciprocal of its geometric distance from point ¢. If only couplings to coarse
points are used, this is called linear interpolation using direct couplings only. The interpolation
weights are scaled such that the constant vector is interpolated perfectly.

If 5 is not a coarse grid point, then point can j contribute to the value at point ¢ indirectly
using the coarse points that are smoothly coupled to point j. This is called linear interpolation
with both direct and indirect couplings, and is similar to the way grid points are interpolated
indirectly in AMG. Again, the weights are scaled to interpolate the constant vector perfectly.
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Figure 8: Algebraically smooth error.

3.2 Interpolation using the geometric smoothness matrix

The entries in the smoothness matrix S may be used directly to define the interpolation weights.
Large entries in S indicate geometric smoothness and provide better interpolation, while smaller
entries in S should be less relied upon in interpolation. In our version, if a fine grid point
is smoothly coupled to another fine grid point, indirect interpolation is used. This is called
GS-weighted interpolation. Again, the weights are scaled to interpolate the constant vector
perfectly. GS-weighted interpolation may be appropriate for problems that have multiple degrees
of freedom at each grid point.

4 Numerical investigations

Geometrically smooth couplings may be used instead of AMG’s strong couplings, and linear or
GS-weighted interpolation may replace the interpolation in AMG to define a new unstructured
multigrid method. We call this method GSMG (Geometric Smoothness Multigrid). When we
need to refer to the specific variant of GSMG that uses local scaling of the smoothness matrix,
we call it GSMG-L.

GSMG has been implemented by adding modules to BoomerAMG [8], an AMG code based
on algorithms by Ruge and Stiiben [10]. In this section, we first describe our test problems, then
show results for AMG (using BoomerAMG), GSMG, GSMG-L, and GSMG using different types
of interpolation. The tests were run on an 850 MHz Pentium III computer with 256 kbytes of
cache memory and 256 Mbytes of main memory.

4.1 Test problems

Our test problems arise from preconditioning the iterative solution of the finite element equations
Ku = f for a 3-D elasticity problem. When K is ordered such that the z-, y-, and z-direction
displacements are grouped among themselves, K has the block structure

[Km Ky K]
K = Kyz Kyy Kyz
K.o K. K. |
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Figure 9: Gridding of an octant of three concentric spherical shells with (s1, s9, a1) = (2, 5, 10).

The block diagonal matrix blockdiag(K s, Kyy, K.) is spectrally equivalent to K with respect
to the meshsize parameter [1] and forms a good preconditioner if solves with the diagonal blocks
are efficient. These blocks correspond to anisotropic second order operators, with the strength
of the anisotropy depending on the material Poisson ratio. Our test problems are the diagonal
blocks K, from different finite element discretizations of the same physical problem.

The physical problem of interest is three concentric spherical shells; two steel shells surround
a third shell composed of lucite. Thus there are material coefficient discontinuities in this
problem. An octant of the physical problem is discretized using linear hexahedral finite elements
on a block-structured grid. The steel shells are 0.5 units thick, the lucite shell is 2.0 units thick,
and the outer radius of the outer shell is 20.5 units. In the discretization, the steel shells are
s1 elements thick, the lucite shell is s9 elements thick, and a; elements are used in the angular
direction along the side of an octant. Figure 9 shows a gridding of the problem with (s, s9, a1)
= (2, 5, 10). As is typical for these test problems, the elements have poor aspect ratios.

Table 1 describes the three test problems used in the following numerical investigations. The
second and third problems are more difficult since they have poorer element aspect ratios. The
third problem is a scaled-up version of the second problem, and allows a comparison of results
on large and small problems.

s1 S2 a1 | aspect ratio n nnz
UU-1 | 3 10 40 1/4.8 21437 538069
UvU-2 | 3 10 20 1/9.7 5627 136759
UU-3 | 6 20 40 1/9.7 41613 | 1065157

Table 1: Test problems: the K, matrices for three griddings of the spherical shells problem,
showing the gridding parameters, the worst element aspect ratio, and the number of equations
n and number of nonzeros nnz in the matrices.

One-point integration for the finite elements is used, combined with hourglass damping [7] to
eliminate spurious zero modes. We have found experimentally that this integration and damping
procedure leads to matrices whose algebraically smooth error is very geometrically non-smooth
unless very many smoothing steps are used. When only 1 or 2 smoothing steps are used, as is
typical, AMG and GSMG converge very slowly. For this reason, in our tests below, we will use
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up to 20 steps for the SGS smoother. Both pre- and post-smoothing are used.

The results tabulated in the sections below show the number of V-cycles for convergence
(assumed when the initial residual (with a zero initial guess) is reduced by six orders of magni-
tude), the convergence rate on the final step (not the average convergence rate), the setup and
solve timings, and the grid and operator complexities. Further, the tables show the number of
smooth or strong couplings (S-couplings) found on the finest grid, the number of coarse points
(C-points) found on the finest grid, and the number of levels.

4.2 AMG results

Tables 2—4 show sample results for AMG (many other strength thresholds 6 were tested). The
best convergence rates are achieved for 6 from about 0.75 to 1, which is much higher than the
nominal value of 0.25 suggested in the literature. Higher values of 8 are required to ensure that
the strong couplings are indeed good couplings to use for interpolation. The best timings are
achieved for 6 of 0.95 (not shown) for UU-1 and 0.99 (not shown) or 1.00 for the other two
problems. This is because the grid and operator complexities can be extremely large, and the
best timings are achieved when these complexities are small. AMG is not scalable for these
large values of 6 (based on comparing UU-2 and UU-3 results); AMG is scalable for § where the
best convergence rate is achieved. In summary, better convergence rates and complexities are
limited for these problems due to poor choices of strong couplings.

| 20 step smoother |

0 S-couplings  C-points levels | cycles conv. time (s) complexity
(1st lev)  (1st lev) rate | setup solve | grid operator
0.00 347954 12023 6 13 0.433 | 37.11 144.08 | 1.72 5.57
0.25 245480 10678 12 15 0.481 | 11.38 424.59 | 2.16 14.49
0.50 125917 9998 14 25  0.657 4.85 49485 | 2.21 10.31
0.75 54094 10075 12 8 0.304 1.49 66.83 | 2.12 4.24
1.00 20782 9661 11 17 0.587 0.47  63.93 | 1.82 1.80

| 10 step smoother |

0 S-couplings  C-points levels | cycles conv. time (s) complexity
(1st lev)  (1st lev) rate | setup solve | grid operator
0.00 347954 12023 6 18 0.542 | 37.14 100.13 | 1.72 5.57
0.25 245480 10678 12 20 0.581 | 11.46 278.44 | 2.16 14.49
0.50 125917 9998 14 30 0.709 4.90 302.76 | 2.21 10.31
0.75 54094 10075 12 9 0.354 1.49 37.73 | 2.12 4.24
1.00 20782 9661 11 22 0.664 0.50 40.43 | 1.82 1.80

| 5 step smoother |

0 S-couplings  C-points levels | cycles conv. time (s) complexity
(1st lev)  (1st lev) rate | setup solve | grid operator
0.00 347954 12023 6 25 0.643 | 36.89 71.88 | 1.72 5.57
0.25 245480 10678 12 29  0.679 | 11.45 210.50 | 2.16 14.49
0.50 125917 9998 14 38 0.753 4.86 195.20 | 2.21 10.31
0.75 54094 10075 12 12 0.406 1.49 26.78 | 2.12 4.24
1.00 20782 9661 11 29 0.737 0.49 29.54 | 1.82 1.80

Table 2: AMG results for UU-1 as a function of the strength threshold 6.
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20 step smoother

0 S-couplings  C-points levels | cycles conv. time (s) complexity
(Ist lev)  (1st lev) rate | setup solve | grid operator
0.00 83456 2480 6 39 0.769 3.01  72.88 | 1.59 4.12
0.25 64457 2480 11 30 0.720 1.83 132.21 | 2.06 9.64
0.50 30350 2480 12 43  0.784 0.66 119.46 | 2.19 6.47
0.75 14441 2480 11 11 0.397 0.21 11.87 | 1.95 2.61
1.00 5271 2477 9 12 0.455 0.11 8.57 | 1.80 1.66

10 step smoother

0 S-couplings  C-points levels | cycles conv. time (s) complexity
(Ist lev)  (1st lev) rate | setup solve | grid operator
0.00 83456 2480 6 58 0.851 3.02  58.36 | 1.59 4.12
0.25 64457 2480 11 45  0.808 1.82  100.95 | 2.06 9.64
0.50 30350 2480 12 53  0.822 0.65  76.68 | 2.19 6.47
0.75 14441 2480 11 19 0.589 0.21 10.67 | 1.95 2.61
1.00 5271 2477 9 14  0.515 0.10 5.44 | 1.80 1.66

| 5 step smoother

0 S-couplings  C-points levels | cycles conv. time (s) complexity
(Ist lev)  (1st lev) rate | setup solve | grid operator
0.00 83456 2480 6 91 0.902 3.00 45.27 | 1.59 4.12
0.25 64457 2480 11 66 0.858 1.83 77.14 | 2.06 9.64
0.50 30350 2480 12 65 0.852 0.66  49.95 | 2.19 6.47
0.75 14441 2480 11 34 0.743 0.22 10.18 | 1.95 2.61
1.00 5271 2477 9 19  0.586 0.11 3.88 | 1.80 1.66

Table 3: AMG results for UU-2 as a function of the strength threshold 6.

20 step smoother

0 S-couplings C-points levels | cycles conv. time (s) complexity
(Ist lev)  (1st lev) rate setup solve | grid operator
0.00 679552 19520 7 38 0.777 | 188.09 872.36 | 1.62 5.69
0.25
0.50
0.75 115709 20776 14 11 0.407 2.45 150.53 | 2.07 3.42
1.00 40272 19332 11 22 0.671 0.93 163.85 | 1.83 1.76
| 10 step smoother
0 S-couplings C-points levels | cycles conv. time (s) complexity
(Ist lev)  (1st lev) rate setup solve | grid operator
0.00 679552 19520 7 55 0.842 | 184.26 602.29 | 1.62 5.69
0.25
0.50
0.75 115709 20776 14 18 0.586 2.46 12543 | 2.07 3.42
1.00 40272 19332 11 27 0.717 0.94 99.97 | 1.83 1.76
| 5 step smoother
0 S-couplings C-points levels | cycles conv. time (s) complexity
(Ist lev)  (1st lev) rate setup solve | grid operator
0.00 679552 19520 7 81 0.889 | 180.65 490.04 | 1.62 5.69
0.25
0.50
0.75 115709 20776 14 32 0.740 2.44 11883 | 2.07 3.42
1.00 40272 19332 11 37 0.775 0.94 73.55 | 1.83 1.76

Table 4: AMG results for UU-3 as a function of the strength threshold 8. Blanks in the table

indicate that AMG failed due to excessive memory requirements.
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4.3 GSMG results, and number of sample vectors

Tables 5 7 show results for GSMG as a function of the number of sample relaxed vectors used.
The smoothness threshold was chosen automatically. It is immediately clear that the grid and
operator complexities are much smaller than those for AMG, although more couplings are used
for interpolation. A related result is that GSMG uses fewer coarse grid points and fewer levels.
The GSMG convergence rate is generally better or comparable, except when only 5 steps are
used in the smoother.

GSMG has a relatively large setup cost, but the lower operator complexity generally makes
the solve cost much lower than AMG’s solve cost. This can be advantageous in situations where
multiple systems need to be solved with the same matrix. The total (setup and solve) time may
be larger or smaller depending on the problem.

For these problems, GSMG requires about 5 to 10 sample relaxed vectors to give the best
total time. However, the number of V-cycles and the solve time can be reduced further if more
sample vectors are used, up to about 20 or 25. The best number of samples to use does not
seem to depend on the number of smoother steps.

GSMG operates scalably (by comparing results for UU-2 and UU-3) for these problems when
a large number of smoothing steps (e.g., 20) is used.

For UU-2 and UU-3, the number of smooth couplings seems to increase when the number of
smoothing steps is decreased. This implies that 1) the selected smoothness threshold depends
on the number of smoothing steps, and/or 2) the relaxed vectors appear geometrically smoother
if less smoothing is used.

| 20 step smoother |

sample | S-couplings C-points levels | cycles conv. time (s) complexity

vectors (Ist lev)  (1st lev) rate | setup solve | grid operator
5 413118 3982 5 9 0.291 9.87 26.39 | 1.22 1.40
10 395234 4282 7 7 0209 | 1777 2229 | 1.27 1.54
15 401322 4282 7 7 0203 | 24.77 21.52 | 1.26 1.50
20 404530 4138 7 7 0.210 | 32.19 21.35 | 1.26 1.47
25 389628 4562 6 7 0217 | 40.23 21.61 | 1.27 1.52

| 10 step smoother |

sample | S-couplings C-points levels | cycles conv. time (s) complexity

vectors (Ist lev)  (1st lev) rate | setup solve | grid operator
5 397814 4278 5 13 0413 6.62 19.57 | 1.24 1.46
10 378938 4762 6 10 0.318 | 10.15 17.29 | 1.29 1.57
15 370308 4801 5 9 0.344 | 1391 14.10 | 1.28 1.53
20 378622 4639 6 8 0299 | 17.16 12.30 | 1.28 1.53
25 363602 5147 6 9 0314 | 21.54 1397 | 1.29 1.52

| 5 step smoother |

sample | S-couplings C-points levels | cycles conv. time (s) complexity

vectors (Ist lev)  (1st lev) rate | setup solve | grid operator
5 460252 3573 5 20 0.607 4.52 15.63 | 1.20 1.36
10 470442 3238 6 18 0.541 5.79 13.36 | 1.18 1.29
15 471892 3233 b) 18  0.533 7.71 13.43 | 1.18 1.29
20 480870 2978 5 17 0.508 9.02 12.19 | 1.17 1.24
25 488626 2828 6 19 0.604 | 10.35 13.30 | 1.16 1.20

Table 5: GSMG results for UU-1 as a function of the number of sample relaxed vectors.
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| 20 step smoother |

sample | S-couplings C-points levels | cycles conv. time (s) complexity

vectors (1st lev)  (1st lev) rate | setup solve | grid operator
5 66340 1537 6 13  0.421 2.45 9.96 | 1.37 1.78
10 60420 1646 6 10 0.359 4.24 7.52 | 1.40 1.77
15 50024 1881 7 9 0.362 6.38 7.06 | 1.44 1.83
20 48390 1894 6 9 0.334 8.09 6.84 | 1.43 1.77
25 51474 1831 6 9 0.351 9.80 6.80 | 1.43 1.75

| 10 step smoother |

sample | S-couplings C-points levels | cycles conv. time (s) complexity

vectors (1st lev)  (1st lev) rate | setup solve | grid operator
5 93754 1131 5 34 0.754 1.39 12.01 | 1.27 1.53
10 83410 1336 6 16  0.503 2.31 6.05 | 1.34 1.64
15 77654 1429 6 17 0.539 3.37 6.47 | 1.34 1.62
20 70336 1553 6 13 0.443 4.21 4.99 | 1.37 1.65
25 65636 1633 6 15  0.495 5.44 6.01 | 1.39 1.74

5 step smoother

sample | S-couplings C-points levels | cycles conv. time (s) complexity

vectors (1st lev)  (1st lev) rate | setup solve | grid operator
5 119578 747 5 68 0.871 0.86 10.55 | 1.18 1.25
10 118906 778 b) 54 0.827 1.25 8.56 | 1.18 1.28
15 117028 851 5 53 0.827 1.66 8.55 | 1.19 1.31
20 114298 849 5 47 0.822 2.07 7.67 | 1.18 1.29
25 110540 957 b) 43  0.808 2.51 7.19 | 1.20 1.32

Table 6: GSMG results for UU-2 as a function of the number of sample relaxed vectors.

| 20 step smoother |

sample | S-couplings C-points levels | cycles conv. time (s) complexity

vectors (1st lev)  (1st lev) rate | setup solve | grid operator
5 687806 9621 6 19  0.579 | 23.95 129.46 | 1.30 1.65
10 671350 10134 6 13 0473 | 39.51 90.91 | 1.32 1.67
15 633350 10810 8 11 0413 | 56.62 76.65 | 1.35 1.72
20 620908 11043 7 12 0434 | 73.68 83.83 | 1.36 1.71
25 599488 11275 7 11 0.392 | 93.43 78.89 | 1.37 1.74

| 10 step smoother |

sample | S-couplings C-points levels | cycles conv. time (s) complexity

vectors (1st lev)  (1st lev) rate | setup solve | grid operator
5 834420 7656 6 35 0.757 | 13.03 106.01 | 1.22 1.47
10 859320 7265 6 28 0.693 | 19.30 80.89 | 1.21 1.38
15 887646 6763 6 37 0.765 | 25.22 102.31 | 1.19 1.34
20 898644 6672 6 28 0.678 | 31.55 77.86 | 1.19 1.34
25 896832 6757 7 23 0.637 | 39.67 67.34 | 1.22 1.41

5 step smoother

sample | S-couplings C-points levels | cycles conv. time (s) complexity

vectors (1st lev)  (1st lev) rate | setup solve | grid operator
5 979128 5302 6 67 0.857 7.59 94.71 | 1.15 1.21
10 980378 5173 6 58 0.833 | 10.67 81.14 | 1.15 1.19
15 977984 5400 7 55 0.830 | 14.28 78.28 | 1.16 1.21
20 976900 5249 6 57 0.831 | 17.60 80.29 | 1.15 1.19
25 982190 5574 7 55 0.831 | 20.72 77.33 | 1.16 1.19

Table 7: GSMG results for UU-3 as a function of the number of sample relaxed vectors.
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4.4 GSMG-L results

The GSMG-L results in Tables 8 10 show that the grid and operator complexities are larger than
those of GSMG, but smaller than those of AMG. Further, GSMG-L is able to achieve slightly
better convergence rates than both GSMG and AMG. However, the total time for GSMG-L
is larger than the total time for GSMG due to its larger complexities, and the total time for
GSMG-L may be larger or smaller than the total time for AMG depending on its setup cost.
Twenty sample vectors were used in these tests.

Whereas AMG needs approximately the same number of C-points regardless of the strength
threshold, GSMG-L needs far fewer C-points when the smoothness threshold is small. Thus
GSMG-L seems to have a better distribution of its smooth couplings than AMG has of its
strong couplings.

Like AMG, the GSMG-L results are somewhat problematic since the best timings are gen-
erally achieved when the grid and operator complexities are smallest rather than when the
convergence rate is fastest. This similarity in the AMG and GSMG-L results can be explained
by the similar way they use local scalings to select the relevant couplings.

| 20 step smoother |

T S-couplings C-points levels | cycles conv. time (s) complexity
(1st lev)  (1st lev) rate | setup solve | grid operator
0.00 499542 2400 5 8 0.228 | 23.81 17.92 | 1.13 1.12
0.25 277751 6648 8 6 0.158 | 69.77 37.84 | 1.47 3.17
0.50 147494 9103 10 6 0193 | 84.33 48.75 | 1.74 4.04
0.75 53504 10820 12 7 0.248 | 61.33 41.88 | 2.03 3.03
1.00 20740 9976 11 12 0485 | 35.32 41.71 | 1.83 1.65

10 step smoother

T S-couplings C-points levels | cycles conv. time (s) complexity
(Ist lev)  (1st lev) rate | setup solve | grid operator
0.00 499542 2400 5 13 0433 | 1391 16.16 | 1.13 1.12
0.25 287391 6558 7 8 0.279 | 36.25 23.88 | 1.46 3.01
0.50 145395 9248 9 6 0209 | 43.14 2395 | 1.75 4.06
0.75 51801 10845 12 8 0306 | 30.32 23.22 | 2.03 2.98
1.00 20740 9961 11 18 0.619 | 17.62 30.74 | 1.83 1.65

| 5 step smoother |

T S-couplings C-points levels | cycles conv. time (s) complexity
(Ist lev)  (1st lev) rate | setup solve | grid operator
0.00 499542 2400 5 25 0.648 8.01 16.18 | 1.13 1.12
0.25 406307 4894 7 23 0643 | 17.74 2842 | 1.33 2.30
0.50 211570 8771 9 11 0365 | 25.96 24.26 | 1.71 4.18
0.75 67649 11165 12 9 0378 | 19.55 16.04 | 2.06 3.33
1.00 20740 9607 10 27 0721 | 10.01 25.24 | 1.80 1.65

Table 8: GSMG-L results for UU-1 as a function of the smoothness threshold 7.

4.5 Alternative interpolations

Table 11 shows the number of GSMG V-cycles required for convergence using linear interpola-
tion, linear interpolation using direct connections only, and interpolation using weights from the
smoothness matrix (GS-weighted). AMG interpolation did not lead to convergence when the
relevant couplings were based on geometric smoothness.

The results show essentially the same performance except when GS-weighted interpolation
was used with a small number of smoothing steps. Thus the use of geometric coordinates (for
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20 step smoother

T S-couplings C-points levels | cycles conv. time (s) complexity
(Ist lev)  (1st lev) rate | setup solve | grid operator
0.00 122522 600 5 22 0.638 5.74 11.87 | 1.12 1.11
0.25 64953 1736 6 8§ 0.252 | 13.12 9.50 | 1.48 2.81
0.50 23694 2443 8 7 0.230 | 14.85 10.07 | 1.75 3.30
0.75 10607 2592 10 8 0.242 9.24 7.27 | 1.90 2.25
1.00 5270 2552 9 10 0.355 7.10 6.99 | 1.81 1.64

| 10 step smoother |

T S-couplings C-points levels | cycles conv. time (s) complexity
(Ist lev)  (1st lev) rate | setup solve | grid operator
0.00 122522 600 5 44  0.796 298 11.58 | 1.12 1.11
0.25 67244 1778 7 14 0.467 8.26 9.43 | 1.48 2.87
0.50 24567 2459 8 8 0.254 7.99 6.00 | 1.76 3.33
0.75 10009 2641 10 9 0.284 5.19 449 | 1.92 2.30
1.00 5270 2536 9 13 0.476 3.97 5.01 | 1.80 1.63

| 5 step smoother |

T S-couplings  C-points  levels | cycles conv. time (s) complexity
(Ist lev)  (1st lev) rate | setup solve | grid operator
0.00 122522 600 5 86 0.891 1.86 12,99 | 1.12 1.11
0.25 95171 1317 6 54 0.839 3.54 1342 | 1.35 2.11
0.50 45808 2357 8 23 0.646 5.60 11.08 | 1.73 3.92
0.75 14364 2787 10 12 0.408 3.29 3.62 | 1.95 2.63
1.00 5270 2449 9 19  0.591 2.11 3.79 | 1.77 1.61

Table 9: GSMG-L results for UU-2 as a function of the smoothness threshold 7.

| 20 step smoother

T S-couplings C-points levels | cycles conv. time (s) complexity
(Ist lev)  (1st lev) rate setup solve | grid operator
0.00 989686 4800 5 20 0.599 48.39 90.90 | 1.13 1.12
0.25 517821 15008 8 7 0.225 | 253.85 150.08 | 1.59 5.45
0.50 170967 19798 11 7 0.241 | 169.43 114.48 | 1.87 411
0.75 86516 19297 13 8 0.305 | 107.46 84.24 | 1.96 2.55
1.00 40260 18689 11 17 0.591 71.09 119.27 | 1.76 1.64

| 10 step smoother

T S-couplings C-points levels | cycles conv. time (s) complexity
(Ist lev)  (1st lev) rate setup solve | grid operator
0.00 989686 4800 5 38 0.769 | 28.17  95.87 | 1.13 1.12
0.25 577647 13944 9 24 0.653 | 165.16 252.02 | 1.56 5.42
0.50 190193 19778 11 11 0.389 90.17 92.10 | 1.88 4.23
0.75 81996 19825 13 10 0.371 54.97  52.55 | 1.98 2.57
1.00 40260 18164 11 26 0.703 | 34.18 86.01 | 1.74 1.60

| 5 step smoother

T S-couplings  C-points levels | cycles conv. time (s) complexity
(Ist lev)  (1st lev) rate setup solve | grid operator
0.00 989686 4800 5 74 0.875 16.19  97.16 | 1.13 1.12
0.25 846116 9238 8 57 0.854 | 70.70 190.16 | 1.35 3.21
0.50 404468 17774 10 36 0.740 64.96 197.95 | 1.80 5.29
0.75 124615 21112 13 19 0.611 38.54  66.83 | 2.03 3.20
1.00 40260 17338 11 40 0.798 19.24  71.99 | 1.70 1.58

Table 10: GSMG-L results for UU-3 as a function of the smoothness threshold 7.
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linear interpolation) is not mandatory in GSMG.

smoother || linear linear GS-weighted
steps (direct only)
UU-1 20 7 7 7
10 8 9 8
5 17 18 20
UU-2 20 9 9 8
10 13 16 13
5 47 44 60
UU-3 20 12 13 11
10 28 26 31
5 57 54 75

Table 11: GSMG results showing the number of V-cycles required for convergence using linear
interpolation, linear interpolation using direct connections only, and interpolation using weights
from the smoothness matrix.

5 Conclusions

This paper has argued that geometric smoothness may more accurately determine the relevant
couplings in AMG for matrices that are not diagonally dominant. Determining the geometrically
smooth couplings comes at additional setup cost, but methods based on geometric smoothness,
such as GSMG, may have much smaller solve timings. The smaller solve timings are primarily the
result of smaller operator complexities. On the negative side, GSMG is much more sensitive to
the geometric smoothness of the algebraically smooth error. GSMG may require many smoothing
steps for some problems.

One of the main differences between AMG and GSMG is that AMG uses a local definition
of strong couplings (i.e., the strength of the coupling is based on local information) whereas in
GSMG, a global threshold is used to determine whether a coupling is smooth for the entire grid.
The latter strategy seems to lead to a method that results in better complexities for the finite
element problems tested here.

The geometric character of algebraically smooth error needs to be better understood. For
example, can smooth error vary sharply in some regions of the grid, but can still be interpo-
lated geometrically? Methods can be designed that test how well neighboring points provide
interpolation in order to decide on the most relevant couplings for a grid point.
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