
An Unstru
tured Multigrid Method Based onGeometri
 Smoothness�Edmond ChowyAbstra
tFor non-M-matri
es, this paper proposes an unstru
tured multigrid method that onlyattempts to interpolate in the dire
tions of geometri
al smoothness. These dire
tions aredetermined by analyzing samples of algebrai
ally smooth error, e. Neighboring grid points iand j are 
alled smoothly 
oupled if ei and ej are 
onsistently nearby in value. In addition,these di�eren
es may be used to de�ne interpolation weights. These new ideas may bein
orporated into the algebrai
 multigrid method. Test results show that the new method
an have mu
h lower grid and operator 
omplexities 
ompared to AMG, leading to lowersolve timings.1 Introdu
tionIn the algebrai
 multigrid (AMG) method, algebrai
ally smooth error is the error that remainsafter the smoother has been applied and that must be redu
ed at the next level. AMG de�nesthe strong 
ouplings between a grid point and its neighboring grid points, and depends on beingable to interpolate the algebrai
ally smooth error along these strong 
ouplings. Strong 
ouplingsare generally de�ned to be the large negative matrix entries, i.e., the 
oupling between pointsi and j is strong when the matrix entry aij is large and negative. For symmetri
 M-matri
esand matri
es where the positive o�-diagonal entries are small (\essentially positive-type") [2℄,the algebrai
ally smooth error varies slowly along strong 
ouplings and is relatively easy tointerpolate.When the positive o�-diagonal entries are large but the matrix is (weakly) diagonally domi-nant, algebrai
ally smooth error still varies slowly along strong 
ouplings [9℄. Along large positive
ouplings, the algebrai
ally smooth error is os
illatory [11℄ su
h that the absolute value of thesmooth error is slowly-varying. This makes it possible to interpolate algebrai
ally smooth butgeometri
ally os
illating error for these problems.When the matrix is not diagonally dominant and there exist large positive o�-diagonalentries, algebrai
ally smooth error no longer varies slowly along strong 
ouplings in general.Further, it is not 
lear that it is possible to interpolate geometri
ally non-smooth error forthese problems. Matri
es of this sort arise 
ommonly, for example, in linear quadrilateral orhexahedral �nite element dis
retizations for anisotropi
 ellipti
 problems, but traditional AMGmethods have diÆ
ulty with them. This paper proposes a multigrid method for these problemsby dire
tly identifying the dire
tions of slowly-varying algebrai
ally smooth error, and onlyinterpolating in these dire
tions.�Submitted to Numeri
al Linear Algebra with Appli
ations. This work was performed under the auspi
es of theU.S. Department of Energy by University of California Lawren
e Livermore National Laboratory under 
ontra
tNo. W-7405-Eng-48.yCenter for Applied S
ienti�
 Computing, Lawren
e Livermore National Laboratory, L-560, Box 808, Liver-more, CA 94551 (e
how�llnl.gov). 1



-1.0 1.9 -1.0-3.9 8.0 -3.9-1.0 1.9 -1.0Figure 1: Sten
il for Poisson's equation using elements with 1/10 aspe
t ratio.For referen
e, we state AMG's de�nition of a strong 
oupling, also 
alled strong 
onne
tionor strong dependen
e [6℄, for interpolating grid point i. Point i is strongly 
oupled to j if�aij � �maxk 6=i f�aikg (1)where 0 < � � 1 is 
alled the strength threshold. We additionally say that for � = 0, point i isstrongly 
oupled to j if aij < 0.As a motivational example, 
onsider solving Poisson's equation in a re
tangular domain(0; 1)�(0; 10) with Diri
hlet boundary 
onditions using linear quadrilateral elements on a 20�20element mesh. Ea
h element has aspe
t ratio 1/10. The AMG method by Ruge and St�uben[10℄ with 2-levels (2 symmetri
 Gauss-Seidel pre-smoothing steps, dire
t solve on the 
oarselevel) using a strength threshold of 0.25 (the value suggested in the literature) requires 32
y
les to redu
e the residual by six orders of magnitude. The sten
il, shown in Figure 1, showsthat this 
hoi
e of strength threshold de�nes all 
onne
tions ex
ept the positive 
onne
tionsas strong. However, the smooth error varies slowly only in the east-west dire
tion in thisproblem; the smooth errors in the grid lines above and below the given point are unrelated,and interpolation using points in these grid lines is erroneous. A strength threshold of 0.26 orhigher 
orre
tly 
lassi�es the 
ouplings and AMG requires only 7 
y
les for 
onvergen
e with this
hoi
e. (When the anisotropy is stronger, the detrimental e�e
t of the wrong strength thresholdis even stronger.) For unstru
tured problems, the size of moderately negative entries does not
learly indi
ate whether smooth error is slowly-varying. To re
tify this problem, it is possible toin
rease the strength threshold so that only the most negative 
onne
tions are 
onsidered strong
onne
tions, erring on the side of mis
lassifying some strong dire
tions. However, this strategyentails using large 
oarse grids (i.e., requiring more levels) and may degrade interpolation.This paper suggests the use of geometri
ally smooth 
ouplings instead of strong 
ouplingsfor problems that are not (weakly) diagonally dominant su
h as the above. The proposedmethod expli
itly identi�es geometri
ally smooth 
ouplings by using di�eren
es in samples ofalgebrai
ally smooth error. Interpolation only uses these smooth 
ouplings. Thus we do notattempt to interpolate a
ross jumps in PDE 
oeÆ
ients, for example, sin
e we assume that wedo not know how to interpolate a
ross these jumps. The method is identi
al to AMG ex
ept thatit rede�nes strong 
ouplings and that it uses geometri
ally-based interpolation. The 
oarseningalgorithm, 
onstru
ting the 
oarse grid matrix, and smoothers remain the same.Other multigrid te
hniques have been proposed for problems with matri
es with large positiveo�-diagonal entries. St�uben [12℄ suggests eliminating the o�-diagonal positive entries in a sten
il(or row) by substituting sten
ils 
orresponding to the positive entries. The resulting sten
il 
anbe used to determine whi
h 
ouplings are strong. It may be diÆ
ult, however, to interpretthe resulting sten
il, espe
ially if not all positive entries 
an be eliminated. Another multigridmethod is 
alled AMGe, an algebrai
 multigrid method for �nite element problems [5℄. AMGeagglomerates elements to form 
oarse grid matri
es, and utilizes a measure of interpolationquality to de�ne interpolation for these problems.This paper is organized as follows. A method for identifying geometri
ally smooth 
ou-plings is des
ribed in Se
tion 2. Interpolation along 
ouplings that are geometri
ally smooth isdes
ribed in Se
tion 3. Se
tion 4 shows the results of numeri
al investigations and Se
tion 5
on
ludes this paper. 2
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(b) Stret
hed elementsFigure 2: Samples of algebrai
ally smooth error for two �nite element dis
retizations.2 Identifying geometri
 smoothness2.1 Smoothness matrixGiven a 
oeÆ
ient matrix A at a given grid level, a sample of algebrai
ally smooth error may begenerated as the result of applying the smoother (to be used in the multigrid solution pro
ess)to the homogeneous equations Ae = 0 (2)with a random initial guess for e. This relaxed ve
tor e is representative of the a
tual errorsremaining after smoothing that are generated in the multigrid solution pro
ess. As we will see,however, many samples of algebrai
ally smooth error will be needed to fully 
hara
terize thiserror. Relaxed ve
tors produ
ed this way have been used in other algorithms, for example,Bootstrap AMG [4℄.Figure 2 shows samples of algebrai
ally smooth error for two linear quadrilateral �nite ele-ment dis
retizations of Poisson's equation on a segment of an annulus. The smoother was twosteps of symmetri
 Gauss-Seidel (SGS). The �gure shows that when the grid is stret
hed, thesmooth error is only geometri
ally smooth in the radial dire
tion; there is no relation in theerror 
omponents that 
an be dis
erned in the angular dire
tion.To try to quantitatively 
hara
terize geometri
ally smooth error, we pro
eed as follows. Letn be the dimension of a sample of algebrai
ally smooth error e. De�ne an n-by-n sparse matrixM that spe
i�es a sparsity pattern that does not in
lude the diagonal, and de�ne dist(i; j) asthe graph distan
e between grid points i and j. We then de�ne the \di�eren
e matrix" as afun
tion of e Dij(e) = ( 1kek2 jei�ej jdist(i;j) if Mij 6= 0unde�ned otherwise (3)whose entries 
an be interpreted as the dire
tional derivatives of e. Large values of Dij indi
ategeometri
 non-smoothness in the grid; small values of Dij do not imply smoothness unlessthe same entries are small for many samples of algebrai
ally smooth error. We thus de�ne the\smoothness matrix" using the average of R di�eren
e matri
es (using R samples of algebrai
ally3



smooth error) Sij = 8<: h 1R PRk=1Dij(e(k))i�1 if Mij 6= 00 otherwise : (4)Note the re
ipro
al used in (4); now large values of Sij indi
ate geometri
 smoothness and smallvalues of Sij indi
ate geometri
 non-smoothness.Finally, we de�ne a \smooth 
oupling" as a 
oupling between points i and j su
h that Sij � � ,where � is a threshold to be dis
ussed in Se
tion 2.2. A thresholded version of S may be passedto AMG to use as its \strength matrix" whi
h is used to de�ne the 
oarse grid and interpolation.A few notes about these de�nitions are in order.� D is an approximation to a derivative in a graph sense rather than a geometri
 sense. Thisis reasonable be
ause 
oarsening is de�ned in terms of graph neighbors rather than pointsin a geometri
 neighborhood.� The matrixM is used to make sure that di�eren
es are only 
omputed between nearby gridpoints. Most often, the pattern ofM will be taken to be the pattern of the matrix A less thediagonal. This de�nition of M implies that a grid point will at most be interpolated usingits nearest graph neighbors. An expanded pattern for M (e.g., the pattern of A2 less thediagonal) may be useful for non-grid-aligned problems or to generate very 
oarse grids, butinterpolation using farther graph neighbors is required. In AMG, strength of 
onne
tionis only de�ned for the nearest graph neighbors of a node, but the above te
hnique 
an beused to identify smooth 
ouplings that are not these nearest graph neighbors.� The s
aling by kek2 in (3) makes the di�eren
e matrix independent of how mu
h the errorwas redu
ed by the smoother. Lo
alized s
alings may be appropriate in some 
ases, andwill be dis
ussed in Se
tion (2.3).� Instead of de�ning the smoothness matrix using an average of di�eren
e matri
es, it ispossible to de�ne it using a 
omponent-wise maximum of di�eren
e matri
es. However,we did not �nd the latter to give signi�
antly di�erent results.� The matrix S is symmetri
, i.e., Sij = Sji, whi
h is suited for symmetri
 problems. Weplan to investigate how to extend the above ideas to nonsymmetri
 problems.The 
al
ulation of the smoothness matrix is adapted to the smoother being used in themultigrid solution pro
ess. In a parallel pro
essing example, if a non-overlapping blo
k Ja
obismoother is used, then the smoothness matrix will automati
ally prevent interpolation a
rosspro
essor boundaries. Another te
hnique, 
alled 
ompatible relaxation [3℄ uses the smoother tohelp sele
t the 
oarse grid, and is similar in that it is also adapted to the smoother 
hosen forthe solution pro
ess.2.2 Smoothness thresholdA smoothness threshold � dis
riminates between geometri
ally smooth and non-smooth 
ou-plings. It is not 
lear that a �xed value of � is appropriate for all problems. Further, di�erentsmoothness thresholds may be required on di�erent 
oarse grid levels.The following pro
edure for automati
ally 
hoosing the smoothness threshold at ea
h levelis surprisingly e�e
tive. We assume that the smoother generates algebrai
ally smooth errorsu
h that every grid point should have at least one smooth 
oupling. Then, given a smoothnessmatrix S, we 
hoose � = mini maxj Sij :Now, points i and j are 
alled smoothly 
oupled if Sij is greater than or equal to � .4



2.3 Lo
al s
aling of the smoothness matrixThe s
aling by kek2 in (3) is required to make the di�eren
e matrix independent of how mu
hthe error was redu
ed by the smoother and independent of the s
aling of the initial guess for (2).For some problems, it is possible that the error is redu
ed at di�erent rates in di�erent parts ofthe grid, and lo
al s
alings of the relaxed ve
tors may be appropriate. For a relaxed ve
tor e,an obvious lo
al s
aling is to s
ale ei by maxMij 6=0(ej).We use a simpler approa
h, whi
h is to s
ale the smoothness matrix su
h that Sij is s
aledby maxk Sik. When only one relaxed ve
tor is used, this is identi
al to s
aling this relaxed ve
toras des
ribed above. Our lo
al s
aling is also similar to to the way strong 
onne
tions are de�nedin AMG; see (1).A smoothness threshold, 0 � � � 1, is also used to 
lassify smooth and non-smooth 
ouplingswhen lo
al s
aling is used. However, we do not have an automati
 pro
edure for 
hoosing thesmoothness threshold in this 
ase.2.4 Grid and operator 
omplexityThe following de�nitions, from [6℄, are useful to quantify the storage and work required by amultigrid V-
y
le. Grid 
omplexity is the total number of grid points, on all grids, divided bythe number of grid points on the �nest grid. Operator 
omplexity is the total number of nonzeroentries, in all 
oarse and �ne grid matri
es, divided by the number of nonzero entries in the�ne grid matrix. Operator 
omplexity is an indi
ation of the work per V-
y
le of the multigridpro
ess.It turns out (see Se
tion 4) that the 
oarsening pro
edure based on smooth 
ouplings 
hoosesfewer 
oarse grid points (C-points) than 
oarsening based on approximately the same number ofAMG strong 
ouplings. This leads to smaller-dimension 
oarse grids, fewer levels, and smalleroperator and grid 
omplexities. To try to understand why these 
oarsenings behave di�erently,we examine the number of smooth or strong 
ouplings at ea
h grid point. Figure 3 plots thehistograms of the number of strong or smooth 
ouplings at ea
h grid point on the �nest grid forthree methods. The �gure shows that the AMG rule for strong 
ouplings limits the maximumnumber of strong 
ouplings at a grid point. This is due to its use of lo
al s
aling, whi
h assumesthat not all 
ouplings at a grid point 
an be strong. Lo
al s
aling of the smoothness matrix hasthe same diÆ
ulty (although it is not as evident from this �gure) but it is not as severe.2.5 Number of samples of algebrai
ally smooth errorUsing more samples of algebrai
ally smooth error gives more a

urate dis
rimination of thesmooth 
ouplings, but obviously in
urs greater 
ost. Figure 4 plots the sorted entries in thesmoothness matrix for an anisotropi
 di�usion problem on a 20-by-20 grid, as a fun
tion of thenumber of samples of algebrai
ally smooth error. In this example, the smooth 
ouplings areknown, and the optimal threshold is at the knee near 40. The knee develops after averagingabout ten samples, but there is no knee in general.The plot gives an idea of the values in the smoothness matrix, but not ne
essarily the numberof 
ouplings that are 
lassi�ed 
orre
tly. The number of sample ve
tors will be investigatedfurther in Se
tion 4.3 with respe
t to 
onvergen
e rate and solution time.2.6 Implementation detailsAlgorithm 1 shows the 
al
ulation of the entries of the smoothness matrix S (without lo
als
aling). These entries will typi
ally be stored using a sparse data stru
ture, and it is moreeÆ
ient to 
ompletely 
ompute ea
h entry or ea
h 
olumn of S before beginning to 
ompute5
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(
) AMG strong 
ouplings, �=0.25, 64457 
ou-plings (2480 C-points, 11 levels).Figure 3: Histograms of the number of strong or smooth 
ouplings at ea
h grid point. (They-axis shows the number of grid points with the number of strong or smooth 
ouplings on thex-axis.) These results are for the test matrix UU-2, des
ribed in Se
tion 4.1. Ea
h row of thetest matrix typi
ally has 27 nonzeros per row. The grid points with zero 
ouplings are gridpoints spe
ifying Diri
hlet boundary 
onditions.
6
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Figure 4: Plots of the entries in the smoothness matri
es for 1 to 20 samples of algebrai
allysmooth error (size of entries in smoothness matrix is sorted along the x-axis). The entries for20 samples has the most developed knee.the next entry or 
olumn. It is also more eÆ
ient to smooth a blo
k a ve
tors than to smoothve
tors individually (although this optimization is not used in the tests in this paper). If the
omputation is organized this way, then the number of samples R of algebrai
ally smooth errormust be known beforehand. In addition, sin
e S is symmetri
, only its upper or lower triangularportion needs to be 
omputed.2.7 ExamplesFinite elements with stret
hed quadrilateralsFigure 5 shows typi
al entries in the smoothness matrix for the sten
il in Figure 1. The smootherwas 2 steps of SGS. Larger entries indi
ate smoother 
ouplings. In the �gure, it is now 
learthat the 
ouplings to the points in the grid lines above and below the given point are equallynon-smooth. 22.7 20.8 21.851.7 54.815.5 15.4 15.9Figure 5: Entries in the smoothness matrix for the sten
il in Figure 1.Figure 6 plots the weighted graph of the smoothness matrix for an anisotropi
 di�usionproblem using stret
hed elements on a segment of an annulus. The edges of the graph are 
oloreda

ording to the entries in the smoothness matrix. As expe
ted for this problem, geometri
allysmooth 
onne
tions are in the radial dire
tion. Some nearly horizontal 
onne
tions 
an also be
lassi�ed as smooth due to the anisotropy preferring the x dire
tion. The boundary regions areshown to be less smooth sin
e error at the boundaries is removed fastest.Domain de
ompositionAs mentioned, the smoothness matrix is adapted to the smoother being used. Consider a non-overlapping blo
k Ja
obi smoother (using SGS for approximate solves within the blo
ks) for adi�usion problem partitioned for two pro
essors. Figure 7 shows that the smoothness matrixdete
ts the geometri
 non-smoothness a
ross the pro
essor boundary in the algebrai
ally smootherror. The illustration is similar for problems with jumps in PDE 
oeÆ
ients.7



Algorithm 1 Cal
ulate smoothness matrix S (without lo
al s
aling)1: De�ne the number of samples R2: Initialize the sparse data stru
ture for S, given the 
hosen sparsity pattern of M3: Constru
t R samples of algebrai
ally smooth error e(k), k = 1; : : : ; R by relaxing Ae = 0with random initial guesses4: S
ale ~e(k) = e(k)=ke(k)k25: for all (i; j) su
h that i < j and (i; j) is in the pattern of M do6: d = 1dist(i;j)�R PRk=1 j~e(k)i � ~e(k)j j7: fd 
an be zero if there are expli
it zeros in the matrix Ag8: if d 6= 0 then9: Sij = 1=d10: else11: Sij = 012: end if13: Sji = Sij14: end for
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Figure 6: Weighted graph of the smoothness matrix for an anisotropi
 di�usion problem (
oef-�
ients kx = 10, ky = 1) using stret
hed elements on a segment of an annulus. The edges of thegraph are 
olored a

ording to the entries in the smoothness matrix.
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(b) Graph of smoothness matrix.Figure 7: Smooth error and graph of smoothness matrix for a problem partitioned for parallel
omputing. (This �gure should be viewed in 
olor.)Rotated anisotropi
 di�usionThe smoothness matrix 
an identify smooth 
ouplings that are not immediate 
ouplings in thegraph of the matrix. For problems where strong anisotropy is not aligned with the grid points,these 
ouplings may provide better interpolation. Figure 8 illustrates a rotated anisotropi
 dif-fusion problem, where the dire
tion of anisotropy is in the horizontal dire
tion. The smoothnessmatrix was 
omputed using the sparsity pattern of A2 less the diagonal. The graph 
orrespond-ing to the largest entries in this smoothness matrix is plotted (the other entries 
ompli
ate thegraph). In passing, we note that geometri
 smoothness in the algebrai
ally smooth error is notperfe
tly aligned with the anisotropy unless many smoothing steps are used.3 InterpolationIn this very short se
tion, we des
ribe a few alternatives for 
hoosing the interpolation matrixwhen the important 
ouplings for a grid point are the geometri
ally smooth 
ouplings de�nedabove. These interpolation s
hemes are geometri
. The 
ommon interpolations de�ned for AMGwould not work, or would work poorly, be
ause they would lead to many negative interpolationweights.3.1 Linear interpolationGiven that points i and j are smoothly 
oupled, point j 
ontributes to the value of point iproportionally to the re
ipro
al of its geometri
 distan
e from point i. If only 
ouplings to 
oarsepoints are used, this is 
alled linear interpolation using dire
t 
ouplings only. The interpolationweights are s
aled su
h that the 
onstant ve
tor is interpolated perfe
tly.If j is not a 
oarse grid point, then point 
an j 
ontribute to the value at point i indire
tlyusing the 
oarse points that are smoothly 
oupled to point j. This is 
alled linear interpolationwith both dire
t and indire
t 
ouplings, and is similar to the way grid points are interpolatedindire
tly in AMG. Again, the weights are s
aled to interpolate the 
onstant ve
tor perfe
tly.9
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(a) Smooth error (
oeÆ
ients kx = 10, ky = 0.1). (b) Smoothness graph.Figure 8: Algebrai
ally smooth error.3.2 Interpolation using the geometri
 smoothness matrixThe entries in the smoothness matrix S may be used dire
tly to de�ne the interpolation weights.Large entries in S indi
ate geometri
 smoothness and provide better interpolation, while smallerentries in S should be less relied upon in interpolation. In our version, if a �ne grid pointis smoothly 
oupled to another �ne grid point, indire
t interpolation is used. This is 
alledGS-weighted interpolation. Again, the weights are s
aled to interpolate the 
onstant ve
torperfe
tly. GS-weighted interpolation may be appropriate for problems that have multiple degreesof freedom at ea
h grid point.4 Numeri
al investigationsGeometri
ally smooth 
ouplings may be used instead of AMG's strong 
ouplings, and linear orGS-weighted interpolation may repla
e the interpolation in AMG to de�ne a new unstru
turedmultigrid method. We 
all this method GSMG (Geometri
 Smoothness Multigrid). When weneed to refer to the spe
i�
 variant of GSMG that uses lo
al s
aling of the smoothness matrix,we 
all it GSMG-L.GSMG has been implemented by adding modules to BoomerAMG [8℄, an AMG 
ode basedon algorithms by Ruge and St�uben [10℄. In this se
tion, we �rst des
ribe our test problems, thenshow results for AMG (using BoomerAMG), GSMG, GSMG-L, and GSMG using di�erent typesof interpolation. The tests were run on an 850 MHz Pentium III 
omputer with 256 kbytes of
a
he memory and 256 Mbytes of main memory.4.1 Test problemsOur test problems arise from pre
onditioning the iterative solution of the �nite element equationsKu = f for a 3-D elasti
ity problem. When K is ordered su
h that the x-, y-, and z-dire
tiondispla
ements are grouped among themselves, K has the blo
k stru
tureK = 264 Kxx Kxy KxzKyx Kyy KyzKzx Kzy Kzz 375 :10



Figure 9: Gridding of an o
tant of three 
on
entri
 spheri
al shells with (s1, s2, a1) = (2, 5, 10).The blo
k diagonal matrix blo
kdiag(Kxx, Kyy, Kzz) is spe
trally equivalent to K with respe
tto the meshsize parameter [1℄ and forms a good pre
onditioner if solves with the diagonal blo
ksare eÆ
ient. These blo
ks 
orrespond to anisotropi
 se
ond order operators, with the strengthof the anisotropy depending on the material Poisson ratio. Our test problems are the diagonalblo
ks Kxx from di�erent �nite element dis
retizations of the same physi
al problem.The physi
al problem of interest is three 
on
entri
 spheri
al shells; two steel shells surrounda third shell 
omposed of lu
ite. Thus there are material 
oeÆ
ient dis
ontinuities in thisproblem. An o
tant of the physi
al problem is dis
retized using linear hexahedral �nite elementson a blo
k-stru
tured grid. The steel shells are 0.5 units thi
k, the lu
ite shell is 2.0 units thi
k,and the outer radius of the outer shell is 20.5 units. In the dis
retization, the steel shells ares1 elements thi
k, the lu
ite shell is s2 elements thi
k, and a1 elements are used in the angulardire
tion along the side of an o
tant. Figure 9 shows a gridding of the problem with (s1, s2, a1)= (2, 5, 10). As is typi
al for these test problems, the elements have poor aspe
t ratios.Table 1 des
ribes the three test problems used in the following numeri
al investigations. These
ond and third problems are more diÆ
ult sin
e they have poorer element aspe
t ratios. Thethird problem is a s
aled-up version of the se
ond problem, and allows a 
omparison of resultson large and small problems. s1 s2 a1 aspe
t ratio n nnzUU-1 3 10 40 1/4.8 21437 538069UU-2 3 10 20 1/9.7 5627 136759UU-3 6 20 40 1/9.7 41613 1065157Table 1: Test problems: the Kxx matri
es for three griddings of the spheri
al shells problem,showing the gridding parameters, the worst element aspe
t ratio, and the number of equationsn and number of nonzeros nnz in the matri
es.One-point integration for the �nite elements is used, 
ombined with hourglass damping [7℄ toeliminate spurious zero modes. We have found experimentally that this integration and dampingpro
edure leads to matri
es whose algebrai
ally smooth error is very geometri
ally non-smoothunless very many smoothing steps are used. When only 1 or 2 smoothing steps are used, as istypi
al, AMG and GSMG 
onverge very slowly. For this reason, in our tests below, we will use11



up to 20 steps for the SGS smoother. Both pre- and post-smoothing are used.The results tabulated in the se
tions below show the number of V-
y
les for 
onvergen
e(assumed when the initial residual (with a zero initial guess) is redu
ed by six orders of magni-tude), the 
onvergen
e rate on the �nal step (not the average 
onvergen
e rate), the setup andsolve timings, and the grid and operator 
omplexities. Further, the tables show the number ofsmooth or strong 
ouplings (S-
ouplings) found on the �nest grid, the number of 
oarse points(C-points) found on the �nest grid, and the number of levels.4.2 AMG resultsTables 2{4 show sample results for AMG (many other strength thresholds � were tested). Thebest 
onvergen
e rates are a
hieved for � from about 0.75 to 1, whi
h is mu
h higher than thenominal value of 0.25 suggested in the literature. Higher values of � are required to ensure thatthe strong 
ouplings are indeed good 
ouplings to use for interpolation. The best timings area
hieved for � of 0.95 (not shown) for UU-1 and 0.99 (not shown) or 1.00 for the other twoproblems. This is be
ause the grid and operator 
omplexities 
an be extremely large, and thebest timings are a
hieved when these 
omplexities are small. AMG is not s
alable for theselarge values of � (based on 
omparing UU-2 and UU-3 results); AMG is s
alable for � where thebest 
onvergen
e rate is a
hieved. In summary, better 
onvergen
e rates and 
omplexities arelimited for these problems due to poor 
hoi
es of strong 
ouplings.20 step smoother� S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 347954 12023 6 13 0.433 37.11 144.08 1.72 5.570.25 245480 10678 12 15 0.481 11.38 424.59 2.16 14.490.50 125917 9998 14 25 0.657 4.85 494.85 2.21 10.310.75 54094 10075 12 8 0.304 1.49 66.83 2.12 4.241.00 20782 9661 11 17 0.587 0.47 63.93 1.82 1.8010 step smoother� S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 347954 12023 6 18 0.542 37.14 100.13 1.72 5.570.25 245480 10678 12 20 0.581 11.46 278.44 2.16 14.490.50 125917 9998 14 30 0.709 4.90 302.76 2.21 10.310.75 54094 10075 12 9 0.354 1.49 37.73 2.12 4.241.00 20782 9661 11 22 0.664 0.50 40.43 1.82 1.805 step smoother� S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 347954 12023 6 25 0.643 36.89 71.88 1.72 5.570.25 245480 10678 12 29 0.679 11.45 210.50 2.16 14.490.50 125917 9998 14 38 0.753 4.86 195.20 2.21 10.310.75 54094 10075 12 12 0.406 1.49 26.78 2.12 4.241.00 20782 9661 11 29 0.737 0.49 29.54 1.82 1.80Table 2: AMG results for UU-1 as a fun
tion of the strength threshold �.
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20 step smoother� S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 83456 2480 6 39 0.769 3.01 72.88 1.59 4.120.25 64457 2480 11 30 0.720 1.83 132.21 2.06 9.640.50 30350 2480 12 43 0.784 0.66 119.46 2.19 6.470.75 14441 2480 11 11 0.397 0.21 11.87 1.95 2.611.00 5271 2477 9 12 0.455 0.11 8.57 1.80 1.6610 step smoother� S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 83456 2480 6 58 0.851 3.02 58.36 1.59 4.120.25 64457 2480 11 45 0.808 1.82 100.95 2.06 9.640.50 30350 2480 12 53 0.822 0.65 76.68 2.19 6.470.75 14441 2480 11 19 0.589 0.21 10.67 1.95 2.611.00 5271 2477 9 14 0.515 0.10 5.44 1.80 1.665 step smoother� S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 83456 2480 6 91 0.902 3.00 45.27 1.59 4.120.25 64457 2480 11 66 0.858 1.83 77.14 2.06 9.640.50 30350 2480 12 65 0.852 0.66 49.95 2.19 6.470.75 14441 2480 11 34 0.743 0.22 10.18 1.95 2.611.00 5271 2477 9 19 0.586 0.11 3.88 1.80 1.66Table 3: AMG results for UU-2 as a fun
tion of the strength threshold �.20 step smoother� S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 679552 19520 7 38 0.777 188.09 872.36 1.62 5.690.250.500.75 115709 20776 14 11 0.407 2.45 150.53 2.07 3.421.00 40272 19332 11 22 0.671 0.93 163.85 1.83 1.7610 step smoother� S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 679552 19520 7 55 0.842 184.26 602.29 1.62 5.690.250.500.75 115709 20776 14 18 0.586 2.46 125.43 2.07 3.421.00 40272 19332 11 27 0.717 0.94 99.97 1.83 1.765 step smoother� S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 679552 19520 7 81 0.889 180.65 490.04 1.62 5.690.250.500.75 115709 20776 14 32 0.740 2.44 118.83 2.07 3.421.00 40272 19332 11 37 0.775 0.94 73.55 1.83 1.76Table 4: AMG results for UU-3 as a fun
tion of the strength threshold �. Blanks in the tableindi
ate that AMG failed due to ex
essive memory requirements.13



4.3 GSMG results, and number of sample ve
torsTables 5{7 show results for GSMG as a fun
tion of the number of sample relaxed ve
tors used.The smoothness threshold was 
hosen automati
ally. It is immediately 
lear that the grid andoperator 
omplexities are mu
h smaller than those for AMG, although more 
ouplings are usedfor interpolation. A related result is that GSMG uses fewer 
oarse grid points and fewer levels.The GSMG 
onvergen
e rate is generally better or 
omparable, ex
ept when only 5 steps areused in the smoother.GSMG has a relatively large setup 
ost, but the lower operator 
omplexity generally makesthe solve 
ost mu
h lower than AMG's solve 
ost. This 
an be advantageous in situations wheremultiple systems need to be solved with the same matrix. The total (setup and solve) time maybe larger or smaller depending on the problem.For these problems, GSMG requires about 5 to 10 sample relaxed ve
tors to give the besttotal time. However, the number of V-
y
les and the solve time 
an be redu
ed further if moresample ve
tors are used, up to about 20 or 25. The best number of samples to use does notseem to depend on the number of smoother steps.GSMG operates s
alably (by 
omparing results for UU-2 and UU-3) for these problems whena large number of smoothing steps (e.g., 20) is used.For UU-2 and UU-3, the number of smooth 
ouplings seems to in
rease when the number ofsmoothing steps is de
reased. This implies that 1) the sele
ted smoothness threshold dependson the number of smoothing steps, and/or 2) the relaxed ve
tors appear geometri
ally smootherif less smoothing is used. 20 step smoothersample S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexityve
tors (1st lev) (1st lev) rate setup solve grid operator5 413118 3982 5 9 0.291 9.87 26.39 1.22 1.4010 395234 4282 7 7 0.209 17.77 22.29 1.27 1.5415 401322 4282 7 7 0.203 24.77 21.52 1.26 1.5020 404530 4138 7 7 0.210 32.19 21.35 1.26 1.4725 389628 4562 6 7 0.217 40.23 21.61 1.27 1.5210 step smoothersample S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexityve
tors (1st lev) (1st lev) rate setup solve grid operator5 397814 4278 5 13 0.413 6.62 19.57 1.24 1.4610 378938 4762 6 10 0.318 10.15 17.29 1.29 1.5715 370308 4801 5 9 0.344 13.91 14.10 1.28 1.5320 378622 4639 6 8 0.299 17.16 12.30 1.28 1.5325 363602 5147 6 9 0.314 21.54 13.97 1.29 1.525 step smoothersample S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexityve
tors (1st lev) (1st lev) rate setup solve grid operator5 460252 3573 5 20 0.607 4.52 15.63 1.20 1.3610 470442 3238 6 18 0.541 5.79 13.36 1.18 1.2915 471892 3233 5 18 0.533 7.71 13.43 1.18 1.2920 480870 2978 5 17 0.508 9.02 12.19 1.17 1.2425 488626 2828 6 19 0.604 10.35 13.30 1.16 1.20Table 5: GSMG results for UU-1 as a fun
tion of the number of sample relaxed ve
tors.
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20 step smoothersample S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexityve
tors (1st lev) (1st lev) rate setup solve grid operator5 66340 1537 6 13 0.421 2.45 9.96 1.37 1.7810 60420 1646 6 10 0.359 4.24 7.52 1.40 1.7715 50024 1881 7 9 0.362 6.38 7.06 1.44 1.8320 48390 1894 6 9 0.334 8.09 6.84 1.43 1.7725 51474 1831 6 9 0.351 9.80 6.80 1.43 1.7510 step smoothersample S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexityve
tors (1st lev) (1st lev) rate setup solve grid operator5 93754 1131 5 34 0.754 1.39 12.01 1.27 1.5310 83410 1336 6 16 0.503 2.31 6.05 1.34 1.6415 77654 1429 6 17 0.539 3.37 6.47 1.34 1.6220 70336 1553 6 13 0.443 4.21 4.99 1.37 1.6525 65636 1633 6 15 0.495 5.44 6.01 1.39 1.745 step smoothersample S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexityve
tors (1st lev) (1st lev) rate setup solve grid operator5 119578 747 5 68 0.871 0.86 10.55 1.18 1.2510 118906 778 5 54 0.827 1.25 8.56 1.18 1.2815 117028 851 5 53 0.827 1.66 8.55 1.19 1.3120 114298 849 5 47 0.822 2.07 7.67 1.18 1.2925 110540 957 5 43 0.808 2.51 7.19 1.20 1.32Table 6: GSMG results for UU-2 as a fun
tion of the number of sample relaxed ve
tors.20 step smoothersample S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexityve
tors (1st lev) (1st lev) rate setup solve grid operator5 687806 9621 6 19 0.579 23.95 129.46 1.30 1.6510 671350 10134 6 13 0.473 39.51 90.91 1.32 1.6715 633350 10810 8 11 0.413 56.62 76.65 1.35 1.7220 620908 11043 7 12 0.434 73.68 83.83 1.36 1.7125 599488 11275 7 11 0.392 93.43 78.89 1.37 1.7410 step smoothersample S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexityve
tors (1st lev) (1st lev) rate setup solve grid operator5 834420 7656 6 35 0.757 13.03 106.01 1.22 1.4710 859320 7265 6 28 0.693 19.30 80.89 1.21 1.3815 887646 6763 6 37 0.765 25.22 102.31 1.19 1.3420 898644 6672 6 28 0.678 31.55 77.86 1.19 1.3425 896832 6757 7 23 0.637 39.67 67.34 1.22 1.415 step smoothersample S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexityve
tors (1st lev) (1st lev) rate setup solve grid operator5 979128 5302 6 67 0.857 7.59 94.71 1.15 1.2110 980378 5173 6 58 0.833 10.67 81.14 1.15 1.1915 977984 5400 7 55 0.830 14.28 78.28 1.16 1.2120 976900 5249 6 57 0.831 17.60 80.29 1.15 1.1925 982190 5574 7 55 0.831 20.72 77.33 1.16 1.19Table 7: GSMG results for UU-3 as a fun
tion of the number of sample relaxed ve
tors.15



4.4 GSMG-L resultsThe GSMG-L results in Tables 8{10 show that the grid and operator 
omplexities are larger thanthose of GSMG, but smaller than those of AMG. Further, GSMG-L is able to a
hieve slightlybetter 
onvergen
e rates than both GSMG and AMG. However, the total time for GSMG-Lis larger than the total time for GSMG due to its larger 
omplexities, and the total time forGSMG-L may be larger or smaller than the total time for AMG depending on its setup 
ost.Twenty sample ve
tors were used in these tests.Whereas AMG needs approximately the same number of C-points regardless of the strengththreshold, GSMG-L needs far fewer C-points when the smoothness threshold is small. ThusGSMG-L seems to have a better distribution of its smooth 
ouplings than AMG has of itsstrong 
ouplings.Like AMG, the GSMG-L results are somewhat problemati
 sin
e the best timings are gen-erally a
hieved when the grid and operator 
omplexities are smallest rather than when the
onvergen
e rate is fastest. This similarity in the AMG and GSMG-L results 
an be explainedby the similar way they use lo
al s
alings to sele
t the relevant 
ouplings.20 step smoother� S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 499542 2400 5 8 0.228 23.81 17.92 1.13 1.120.25 277751 6648 8 6 0.158 69.77 37.84 1.47 3.170.50 147494 9103 10 6 0.193 84.33 48.75 1.74 4.040.75 53504 10820 12 7 0.248 61.33 41.88 2.03 3.031.00 20740 9976 11 12 0.485 35.32 41.71 1.83 1.6510 step smoother� S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 499542 2400 5 13 0.433 13.91 16.16 1.13 1.120.25 287391 6558 7 8 0.279 36.25 23.88 1.46 3.010.50 145395 9248 9 6 0.209 43.14 23.95 1.75 4.060.75 51801 10845 12 8 0.306 30.32 23.22 2.03 2.981.00 20740 9961 11 18 0.619 17.62 30.74 1.83 1.655 step smoother� S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 499542 2400 5 25 0.648 8.01 16.18 1.13 1.120.25 406307 4894 7 23 0.643 17.74 28.42 1.33 2.300.50 211570 8771 9 11 0.365 25.96 24.26 1.71 4.180.75 67649 11165 12 9 0.378 19.55 16.04 2.06 3.331.00 20740 9607 10 27 0.721 10.01 25.24 1.80 1.65Table 8: GSMG-L results for UU-1 as a fun
tion of the smoothness threshold � .4.5 Alternative interpolationsTable 11 shows the number of GSMG V-
y
les required for 
onvergen
e using linear interpola-tion, linear interpolation using dire
t 
onne
tions only, and interpolation using weights from thesmoothness matrix (GS-weighted). AMG interpolation did not lead to 
onvergen
e when therelevant 
ouplings were based on geometri
 smoothness.The results show essentially the same performan
e ex
ept when GS-weighted interpolationwas used with a small number of smoothing steps. Thus the use of geometri
 
oordinates (for16



20 step smoother� S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 122522 600 5 22 0.638 5.74 11.87 1.12 1.110.25 64953 1736 6 8 0.252 13.12 9.50 1.48 2.810.50 23694 2443 8 7 0.230 14.85 10.07 1.75 3.300.75 10607 2592 10 8 0.242 9.24 7.27 1.90 2.251.00 5270 2552 9 10 0.355 7.10 6.99 1.81 1.6410 step smoother� S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 122522 600 5 44 0.796 2.98 11.58 1.12 1.110.25 67244 1778 7 14 0.467 8.26 9.43 1.48 2.870.50 24567 2459 8 8 0.254 7.99 6.00 1.76 3.330.75 10009 2641 10 9 0.284 5.19 4.49 1.92 2.301.00 5270 2536 9 13 0.476 3.97 5.01 1.80 1.635 step smoother� S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 122522 600 5 86 0.891 1.86 12.99 1.12 1.110.25 95171 1317 6 54 0.839 3.54 13.42 1.35 2.110.50 45808 2357 8 23 0.646 5.60 11.08 1.73 3.920.75 14364 2787 10 12 0.408 3.29 3.62 1.95 2.631.00 5270 2449 9 19 0.591 2.11 3.79 1.77 1.61Table 9: GSMG-L results for UU-2 as a fun
tion of the smoothness threshold � .20 step smoother� S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 989686 4800 5 20 0.599 48.39 90.90 1.13 1.120.25 517821 15008 8 7 0.225 253.85 150.08 1.59 5.450.50 170967 19798 11 7 0.241 169.43 114.48 1.87 4.110.75 86516 19297 13 8 0.305 107.46 84.24 1.96 2.551.00 40260 18689 11 17 0.591 71.09 119.27 1.76 1.6410 step smoother� S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 989686 4800 5 38 0.769 28.17 95.87 1.13 1.120.25 577647 13944 9 24 0.653 165.16 252.02 1.56 5.420.50 190193 19778 11 11 0.389 90.17 92.10 1.88 4.230.75 81996 19825 13 10 0.371 54.97 52.55 1.98 2.571.00 40260 18164 11 26 0.703 34.18 86.01 1.74 1.605 step smoother� S-
ouplings C-points levels 
y
les 
onv. time (s) 
omplexity(1st lev) (1st lev) rate setup solve grid operator0.00 989686 4800 5 74 0.875 16.19 97.16 1.13 1.120.25 846116 9238 8 57 0.854 70.70 190.16 1.35 3.210.50 404468 17774 10 36 0.740 64.96 197.95 1.80 5.290.75 124615 21112 13 19 0.611 38.54 66.83 2.03 3.201.00 40260 17338 11 40 0.798 19.24 71.99 1.70 1.58Table 10: GSMG-L results for UU-3 as a fun
tion of the smoothness threshold � .17



linear interpolation) is not mandatory in GSMG.smoother linear linear GS-weightedsteps (dire
t only)UU-1 20 7 7 710 8 9 85 17 18 20UU-2 20 9 9 810 13 16 135 47 44 60UU-3 20 12 13 1110 28 26 315 57 54 75Table 11: GSMG results showing the number of V-
y
les required for 
onvergen
e using linearinterpolation, linear interpolation using dire
t 
onne
tions only, and interpolation using weightsfrom the smoothness matrix.5 Con
lusionsThis paper has argued that geometri
 smoothness may more a

urately determine the relevant
ouplings in AMG for matri
es that are not diagonally dominant. Determining the geometri
allysmooth 
ouplings 
omes at additional setup 
ost, but methods based on geometri
 smoothness,su
h as GSMG, may have mu
h smaller solve timings. The smaller solve timings are primarily theresult of smaller operator 
omplexities. On the negative side, GSMG is mu
h more sensitive tothe geometri
 smoothness of the algebrai
ally smooth error. GSMGmay require many smoothingsteps for some problems.One of the main di�eren
es between AMG and GSMG is that AMG uses a lo
al de�nitionof strong 
ouplings (i.e., the strength of the 
oupling is based on lo
al information) whereas inGSMG, a global threshold is used to determine whether a 
oupling is smooth for the entire grid.The latter strategy seems to lead to a method that results in better 
omplexities for the �niteelement problems tested here.The geometri
 
hara
ter of algebrai
ally smooth error needs to be better understood. Forexample, 
an smooth error vary sharply in some regions of the grid, but 
an still be interpo-lated geometri
ally? Methods 
an be designed that test how well neighboring points provideinterpolation in order to de
ide on the most relevant 
ouplings for a grid point.A
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