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A NOVEL ALGEBRAIC MULTIGRID-BASED APPROACH FOR
MAXWELL’S EQUATIONS

B. LEE ∗ AND C. TONG ∗

Abstract. This paper presents a new algebraic multigrid-based method for solving the curl-curl
formulation of Maxwell’s equations discretized with edge elements. The ultimate goal of this approach
is two-fold. The first is to produce a multiple-coarsening multigrid method with two approximately
decoupled hierarchies branching off at the initial coarse level, one resolving the divergence-free error
and the other resolving the curl-free error, i.e., a multigrid method that couples only on the finest
level and mimics a Helmholtz decomposition on the coarse levels. The second consideration is to
produce the hierarchies using a non-agglomerate coarsening scheme. To roughly attain this two-fold
goal, this new approach constructs the first coarse level using topological properties of the mesh.
In particular, a discrete orthogonal decomposition of the finest edges is constructed by dividing
them into two sets, those forming a spanning tree and the complement set forming the cotree.
Since the cotree edges do not form closed cycles, these edges cannot support “complete” near-
nullspace gradient functions of the curl-curl Maxwell operator. Thus, partitioning the finest level
matrix using this tree/cotree decomposition, the cotree-cotree submatrix does not have a large near-
nullspace. Hence, a non-agglomerate algebraic multigrid method (AMG) that can handle strong
positive and negative off-diagonal elements can be applied to this submatrix. This cotree operator
is related to the initial coarse-grid operator for the divergence-free hierarchy. The curl-free hierarchy
is generated by a nodal Poisson operator obtained by restricting the Maxwell operator to the space
of gradients. Unfortunately, because the cotree operator itself is not the initial coarse-grid operator
for the divergence-free hierarchy, the multiple-coarsening scheme composed of the cotree matrix
and its coarsening, and the nodal Poisson operator and its coarsening does not give an overall
efficient method. Algebraically, the tree/cotree coupling on the finest level, which is accentuated
through smooth divergence-free error, is too strong to be handled sufficiently only on the finest
level. In this new approach, these couplings are handled using oblique/orthogonal projections onto
the space of discretely divergence-free vectors. In the multigrid viewpoint, the initial coarsening
from the target fine level to the divergence-free subspace is obtained using these oblique/orthogonal
restriction/interpolation operators in the Galerkin coarsening procedure. The resulting coarse grid
operator can be preconditioned with a product operator involving a cotree-cotree submatrix and a
topological matrix related to a discrete Poisson operator. The overall iteration is then a multigrid
cycle for a nodal Poisson operator (the curl-free branch) coupled on the finest grid to a preconditioned
Krylov iteration for the fine grid Maxwell operator restricted to the subspace of discretely divergence-
free vectors. Numerical results are presented to verify the effectiveness and difficulties of this new
approach for solving the curl-curl formulation of Maxwell’s equations.

Key words. Maxwell’s equations, multigrid method, edge finite elements, span-
ning tree, cotree.

AMS(MOS) subject classifications. 65N55, 65N30

1. Introduction. In a recent paper ([19]), the first author co-presented a multi-
grid method for the curl-curl formulation of Maxwell’s equations discretized with edge
elements. The focus of that paper was to advocate the explicit use of nodal and edge
interpolation operators in order to give good coarse grid approximation to both the
curl-free and divergence-free error components. The nodal interpolation operators can
be constructed using a Dendy operator-collapsing approach ([11]-[13]) or a standard
Ruge-Stuben AMG approach ([25] and [27]), both which are known to handle Poisson
equations well. The edge interpolation operators can be constructed using an AMGe
element agglomeration approach ([9]), which involves small local inversions to deter-
mine the interpolation weights. With these two types of interpolation operators, the
coarse grid problems are generated. On any level, viewing the “hybrid” node-edge
relaxation as a block Gauss-Seidel process, the nodal equations are first relaxed and
then the edge equations are relaxed with an adjustment to the right-hand side given
by a node-to-edge transformation of the computed nodal correction. Hence, at each
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level the node and edge degree of freedoms are coupled through a node-to-edge trans-
formation operator. This is a shortfall of that method, i.e., node-to-edge operators
must be computed and stored on all levels. Another shortfall is the need to construct
topological relations on all levels for the element agglomeration routine. Yet another
problem is that a scheme for defining the interpolation weights for the interior edges
of faces for 3-d problems has not been fully developed. In this paper, we develop
an approach that evades these shortfalls. In particular, this approach requires the
node-to-edge variables to couple only on the finest level, and produces matrices that
are more amenable to non-agglomerate AMG coarsening procedures.

An initial method that seemly achieves the above goals is to directly apply a
standard AMG method to the finest level nodal Poisson operator and edge Maxwell
operator. These two operators are coarsened separately so that decoupled multigrid
structures are produced, with the node and edge variables coupled only on the finest
level. However, a problem with this naive approach is that the generated edge coarse
grid operators generally will have poor quality. Not only does the discrete edge op-
erator have large positive off-diagonal elements, but it also has many near-nullspace
gradient components. Hence, a standard AMG coarsening procedure may generate
interpolation operators with poor approximation properties. But since these gradient
components are handled through the Poisson solve, they should not even be con-
sidered when coarsening the edge equations. Thus, unless special care is taken in
avoiding the complete gradient functions in the coarsening procedure, the quality of
the interpolation and coarse grid operators will be poor. This is so even for an AMG
method that handles matrices with large positive off-diagonal elements.

Although the above method fails, its multilevel structure is desirable. With the
node and edge hierarchies decoupled on all coarse levels, the coarse node-to-edge trans-
formation operators are not used. On the other hand, these transformation operators
are needed for incorporating into the overall iteration the gradient error components
re-introduced by the edge correction. These two conflicting conditions illustrate an
inability to construct and preserve a discrete Helmholtz decomposition in the multi-
level structure. Specifically, the decoupled multigrid hierarchies for the node and edge
variables form a multiple coarsening of the target fine grid problem. The node branch
is for the curl-free error and the edge branch is for the divergence-free error. Since the
edge correction re-introduces gradient error, the coarse grid problems are not defined
for orthogonal components, i.e., the branches do not mimic a Helmholtz decompo-
sition. Hence, the branches must be bridged using the node-to-edge transformation
operators. Now, because it is generally impossible even to orthogonally decouple the
coarse degrees of freedom into gradients and weakly divergence-free components (since
an edge element always has a gradient component), the Helmholtz decomposition
should be compromised. An alternative, computable decomposition is a partitioning
of the edges into those that can form “complete” gradients and those that cannot1.
The obvious reason for choosing this partitioning is to insure a separate hierarchy
for the edges that can form the troublesome complete gradients. This hierarchy in
turn can be replaced by the nodal Poisson hierarchy. Moreover, although the com-
plement set of edges do not correspond to divergence-free functions (i.e., the Nedelec
basis functions on these edges do not form divergence-free functions), if the discretely
divergence-free functions can be expressed in terms of the complementary set of edges,
then this decomposition can lead to a good multiple-coarsening scheme. Of course,
such a decomposition generally does not produce orthogonal branch hierarchies, but
chosen correctly, it can lead to hierarchies that are only weakly coupled on the coarse
levels. One incorrect partitioning consists of a complete gradient edge set that spans

1Throughout this paper, we will indiscriminately call a Nedelec basis function an edge, and vice
versa. Thus, the phrase “the set of edges span a subspace” translates to “the set of Nedelec basis
functions located on the set of edges span a subspace”.
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all gradients. In this case, the complete gradient set contains all the edges, and thus,
the complement set cannot represent the divergence-free functions. Thus, the strat-
egy considered in this paper is to form the edge set that cannot support a gradient
function, so that its complementary set supports only some of the gradients. The
former set is also chosen under the constraint that divergence-free functions can be
expressed in terms of its edges. Having determined these orthogonal sets, the finest
level edge matrix can be explicitly re-ordered into a 2-2 block matrix with each di-
agonal sub-block coupling within only one of these two sets. It would appear then
that a multiple-coarsening scheme should involve the nodal Poisson operator and the
diagonal submatrix for the edges that cannot form gradients. However, we will see
that this is not so, although a modification to this approach can lead to an efficient
scheme.

To extract the edges that cannot form complete gradients with the constraint that
discretely divergence-free vectors can be expressed in terms of these edges, we use a
simple graph search algorithm. Given a node-to-edge relation on the finest grid (for
example, through the fine level gradient matrix), a graph relating the nodes and edges
is available. With this graph, the edges making up a spanning tree form one of the two
sets of edges, the tree edges. The remaining edges form the other edge set, the cotree
edges. Such tree/cotree extraction can be achieved within O(|EL|) comparisons, where
|EL| is the number of finest level edges. Hence, this procedure is computationally
negligible. The cotree edges cannot support complete gradients and can be used to
express the discretely divergence-free vectors. Also, the tree edges support only some
of the gradient functions. Having extracted the tree and cotree edge sets, the fine
edge matrix can be re-ordered so that the block diagonal sub-matrices involve only
tree-tree or cotree-cotree connections. Since it is well-known that the edge subspace of
gradients span the tree edges ([1], [15], [20], [22], [24], [26], [28]), as mentioned earlier,
one would expect that only the cotree-cotree and nodal Poisson operators are needed in
the solver. Such a solver would consists of a multigrid branch generated for the cotree-
cotree operator and a multigrid branch generated for the nodal Poisson operator.
The first step of this iteration would be to apply multigrid cycles to the Poisson
equation for the purpose of sufficiently reducing the gradient error components. Error
components that are not gradient-like are next reduced by applying multigrid cycles
to the cotree-cotree branch. However, this method generally converges slowly. A
partial explanation for this poor performance is that the tree edges are corrected only
on the finest level through the nodal correction via the fine level discrete gradient
operator. But including an additional multigrid branch for the tree edges does not
guarantee a resolution to this problem. The poor convergence occurs because the
cotree-cotree operator itself does not give a good initial coarse-grid operator for the
divergence-free hierarchy. Viewing the cotree operator as the result of a Galerkin
coarsening procedure applied to the target level Maxwell operator, the corresponding
interpolation operator gives poor approximation to the divergence-free subspace. In
particular, there are a few smooth divergence-free near-nullspace vectors that cannot
be approximated through the cotree edges, and so clearly cannot be resolved by the
cotree-cotree branch. These smooth vectors are supported by tree and cotree edges.
Algebraically, these vectors expose the cotree-tree coupling connections. Thus, the
cotree-cotree and tree-tree multigrid branches cannot eliminate these components.
Now the approach presented in this paper uses an interpolation operator that relates
the cotree edge vectors to the divergence-free vectors. With this interpolation and
a restriction operator, the Galerkin coarsening procedure generates a good initial
coarse-grid operator for the divergence-free hierarchy. The corresponding coarse-grid
problems are solved using a preconditioned Krylov iteration with a preconditioner
that includes a cotree-cotree multigrid branch. The complete preconditioner consists
of a cotree-cotree multigrid branch and multigrid branches for operators that can
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be factored into a product that includes a discrete Poisson operator. The overall
solver then consists of a multigrid branch for the nodal Poisson problem and this
preconditioned Krylov iteration for the divergence-free coarse grid problems.

An immediate question one may consider is whether multilevel exactness is pre-
served or approximated by this new method. Clearly, since the multigrid hierarchies
are decoupled on the coarse levels, multilevel exactness is not even defined. But De
Rham and exactness sequences exist on the finest level. Neither is multilevel exact-
ness approximated in this method as in [19], where the nodal equations are explicitly
introduced on all levels. But as expounded in [19], multilevel exactness is required
only to generate representable near-nullspace gradients of all scales. Thus, the pur-
pose of multilevel exactness is to preserve the gradient near-nullspace on the coarse
levels. With this preservation, a relaxation scheme can be developed to handle these
near-nullspace gradient components on all scales, countering any re-introduction of
these components from the edge corrections. However, if the hierarchy of edge grids
is chosen so that edge corrections cannot re-introduce complete gradients, then this
counter-action may not even be needed. This is indeed what the new solver is de-
signed to accomplish since the cotree edge correction cannot re-introduce complete
gradients.

To the authors’ knowledge, this is the first method based on non-agglomerate
AMG for solving the curl-curl formulation of Maxwell’s equations discretized with edge
elements. In [5] though, an AMG method for the edge elements is derived through
an auxiliary component splitting of the edge elements into Lagrangian bases. But the
construction of the prolongation operator between the Langrangian bases and Nedelec
bases requires a fair amount of geometric information from the triangulation, and the
generated finest edge matrix used in the solver is substantially denser than the original
edge matrix. The methods of [5] and this paper are totally different. As for other
AMG methods for Maxwell’s equations, they are based on aggregation/agglomeration
coarsening, which results in coarse degree of freedoms defined on non-nested edges.
These AMG methods also require multilevel exactness or an approximation to it ([23],
[6], and [19]).

Turning to tree and cotree partitioning, tree extraction approaches for solving
the magnetostatic problem has been utilized in the electromagnetic community for
decades ([1], [7], [15], [20], [24], [28]). The basis for this extraction is the enforcement
of a gauge condition, which is required in magnetostatics. Solving this problem over
just the cotree edges indeed enforces this condition. Similar tree extraction methods
were also developed in [14] and [26] for solving saddle-point problems. But in [26],
the cotree is used to determine a divergence-free basis set. The continuous problem is
then discretized over this subspace. In all these studies, tree/cotree extractions were
not used in developing a solver.

This paper is organized as follow. In section 2, we introduce the curl-curl formu-
lation of the definite Maxwell’s equations, the functional setting for the variational
problem, and the finite element spaces for the discretization. In section 3, for self-
containment and since the new approach somewhat continues to adhere to the general
technique, we describe the basic structure of a multigrid method for Maxwell’s equa-
tion. Brief descriptions of some existing methods also are given in this section. In
section 4, we review graphs, trees, and cotrees, and relate these objects to the edge
finite element discretization of Maxwell’s equations. We examine the cotree-cotree
submatrix of the re-ordered target fine grid matrix to show why it is more amenable
to AMG processing. In particular, we show that the near-nullspace of this submatrix
is much smaller than the near-nullspace of the full target grid matrix. Also in this
section, we perform a frequency analysis to determine which modes the cotree can and
cannot eliminate. This analysis reveals the poor quality of the cotree operator for the
divergence-free hierarchy. Section 5 presents the new approach. We first introduce
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an interpolation operator that relates the cotree edge values to the tree edge values
for discretely divergence-free vectors. With this operator, we form the initial coarse
grid operator for the divergence-free branch. We relate this coarse grid operator to a
product operator involving a cotree-cotree submatrix and a discrete Poisson matrix.
This then leads to the preconditioned Krylov method for the divergence-free coarse
grid problem. Finally, section 5 ends with descriptions of two simplified methods for
regularized magnetostatics and structured 2-d problems with structured tree/cotree
extractions. In section 6, we present some preliminary numerical results illustrating
the effectiveness of these new approaches.

2. Curl-Curl Formulation for the Electric Field. Let Ω be a bounded
simply-connected domain Ω ∈ �n, n = 2, 3. To guarantee appropriate regularity of the
problem, let Ω have a smooth or polygonal boundary Γ. Assuming that the boundary
surface is perfectly conducting, the curl-curl boundary-value problem for the electric
field E is

∇×α∇×E + βE = f in Ω,
n × E = 0 on Γ,

(2.1)

where α and β are positive functions (in L∞(Ω)). For time-dependent problems, the
parameter β is related to the time step size (β = O( 1

Δt )) and may be quite small if
large time steps are taken. In this case, at each time step of the solution process, an
equation of the form (2.1) must be solved.

To describe the variational formulation of (2.1), several functional spaces are
needed. So, we will denote the usual k′th order Sobolev spaces by Hk(Ω) and their
homogeneous trace subspaces by Hk

0 (Ω). We also need spaces

H(div; Ω) = {v ∈ [L2(Ω)]n : ∇ · v ∈ L2(Ω)}
H(curl; Ω) = {v ∈ [L2(Ω)]n : ∇×v ∈ [L2(Ω)]2n−3}.

We denote their homogeneous trace subspaces by H0(div; Ω) and H0(curl; Ω), respec-
tively. The variational formulation of (2.1) is then to find E ∈ H0(curl; Ω) such that

(α∇×E,∇×v) + (βE,v) = (f ,v) ∀v ∈ H0(curl; Ω).(2.2)

To discretize variational problem (2.2), the lowest-order Nedelec finite elements
are used. Let Th := {Ti} be a quasi-uniform and shape-regular triangulation of Ω
with mesh-size h ([8]). The lowest-order local Nedelec finite element space is

ND(Ti) := {v = a + b × x; x ∈ Ti, a,b ∈ �n} .

The degrees of freedom are the tangential components along the edges of Ti- along
the l′th edge el, ∫

el

t · v ds.

The global finite element space is

ND(Th) :=
{
vh ∈ H0(curl; Ω) : vh|Ti

∈ ND(Ti) ∀Ti ∈ Th

}
.

This choice of finite element space guarantees continuity of the tangential component
of vh. With Eh denoting the discrete approximation to the solution of (2.2), the
discrete variational problem is to find Eh ∈ ND(Th) such that

(α∇×Eh,∇×vh) + (βEh,vh) = (f ,vh) ∀vh ∈ ND(Th).(2.3)
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We further will need the standard first-order scalar Lagrange finite element space:

Hh(Th) :=
{
v ∈ H1

0 (Ω) : v|Ti
∈ P1(Ti) ∀Ti ∈ Th

}
with the usual nodal degrees of freedom. Note that the gradient of an element of
Hh(Th) is not just in ND(Th) but is also in the nullspace of the curl operator. In
fact, the assumption of simple-connectedness of Ω guarantees that the nullspace of
the curl operator consists of only gradients. By cohomology theory, this is also true in
the triangulated domain ([7]). (The algorithm of this paper as with other multigrid
algorithms for solving (2.3) requires simple-connectedness of Ω. For a domain such as
a torus, an additional procedure is needed to handle special troublesome subspaces of
low dimension. These subspaces can be treated on a coarse grid ([17]).)

3. Review of Existing Methods. As noted in the previous section, the im-
portant property of ND(Th) is its explicit representation of the curl nullspace of
gradients. Since the leading order term of (2.3) is the curl part, this means that
the near-nullspace of (2.3) is representable in ND(Th). These components exist on
a number of scales, from the target fine scale down to extremely coarser scales. It
is in fact this multiscale, high-dimensional characteristic of the near-nullspace that
hampers easy construction of efficient multigrid solvers for the Maxwell equations.
In particular, there are many of these components, coarse scale ones must be both
representable on the coarse grids and approximately in the range of the interpola-
tion operators, and relaxation must effectively reduce them. Furthermore, a scheme
that handles these problems must also effectively eliminate non-gradient troublesome
components.

Existing multigrid solvers have been designed to handle some or all of the above
problems. For geometric methods, Hiptmair is the original developer of an effective
scheme ([16]). All methods, both geometric and algebraic, have essentially followed
the structure of this method. The form of it is

Given EL and a righthand side fL on the finest level L
MG(l, El, f l) Cycle:

1. if l = 0, the coarsest level, solve exactly, E0 ← [A0
ee]

−1f0.
2. else,

a. pre-smooth El ← Sl(El, f l)
b. El−1 ← 0
c. MG(l − 1, El−1, [P l

l−1]
t(f l − Al

eeE
l) )

d. coarse grid correction El ← El + P l
l−1E

l−1

e. post-smooth El ← Sl(El, f l),

where Al
ee is the l′th level discretized edge operator, and Sl and P l

l−1 are respectively
the l′th level smoothing and interpolation operators. The smoother has the form

Sl(El, f l) Sweep:
1. Gauss-Seidel sweep on edge equations Al

eeE
l = f l

2. edge residual computation, rl ← f l − Al
eeE

l

3. transfer to scalar “potential” space (or set up of distributive relaxation),
wl ← [Gl

en]trl

4. Gauss-Seidel sweep on scalar potential equation Al
nnφl = wl

5. potential solution correction El, El ← El + Gl
enφl,

where Gl
en is the level l discrete gradient operator mapping a node-based scalar po-

tential into the Nedelec element space, and Al
nn is a discrete node-based diffusion

operator obtained by post- and pre-multiplying Al
ee with Gl

en and [Gl
en]t.
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For the geometric case, when the coefficients α and β are very smooth, the in-
terpolation can be the natural Nedelec interpolation. This interpolation operator
satisfies not only the property that coarse gradients are in its range, but also that
the coarse edges linearly interpolate to fine edges. This second property permits good
handling of non-gradient error components.

AMG extensions of Hiptmair’s method have been presented in [23], [6], and [19].
The methods of [6] are generalizations to [23]’s scheme. The central theme of [23]
and [6] is to construct interpolation operators that satisfy multilevel commutativity.
This means that edge interpolation operators are designed particularly to map coarse
gradients to fine gradients. In the two-level case, this is symbolically expressed by the
relation

∇hPh
H1 = Ph

H(curl)∇2h,(3.1)

where ∇h and ∇2h are fine and coarse gradient operators, and Ph
H1 and Ph

H(curl)

are the nodal and edge interpolation operators, respectively. Hence, (3.1) says that
edge interpolating the gradient of a coarse nodal function is equivalent to nodally
interpolating this function and then taking its gradient, i.e., the end result of edge
interpolating a coarse gradient is a fine gradient. Of course, edge interpolation op-
erators constructed to satisfy this constraint generally will not handle non-gradient
error components well, which in turn may lead to scalability difficulties. Nonetheless,
the approach of [23] and [6] generate these interpolation operators by first applying a
standard aggregration AMG procedure to the Poisson equation obtained by restrict-
ing the Maxwell operator to the gradient subspace. The chosen aggregated coarse
nodal points are then joined to form non-nested coarse edges, and the constructed
nodal interpolation operator is used in determining an edge interpolation operator
that satisfies (3.1). With these two interpolation operators, a Galerkin procedure is
applied to create the nodal and edge coarse grid operators. This whole procedure is
then recursively applied down to the coarsest level. Except for the nodal interpolation
operator, every part of the resulting multigrid hierarchy is used in the solve phase.

The method of [19] does not create edge interpolation operators that satisfy (3.1).
Hence, it does not produce multilevel commutativity complexes. To guarantee that
gradients are represented and resolved on coarser levels, the multigrid hierarchy is
built for the overdetermined system operator[

AL
ee AL

en

AL
ne AL

nn

]
,(3.2)

where AL
ne = (AL

en)t is a discretization of (∇q, r), q ∈ HL, r ∈ NDL. (This overde-
termined system is used only in the solve phase, not in the continuous formulation.)
The nodal interpolation Pn is constructed using a standard AMG or Dendy operator-
collapsing scheme applied to AL

nn, and the edge interpolation operator Pe is con-
structed using an AMGe scheme on AL

ee. The block diagonal interpolation operator[
Pe 0

0 Pn

]

is then utilized in a Galerkin procedure applied to (3.2). A recursive application of
this procedure generates the multigrid hierarchy, which can be viewed as multiple-
coarsening with a branch for the edge problem (AL

ee) and a branch for the node
problem (AL

nn). Unlike the methods of [23] and [6], both the Pn’s and Pe’s are
used in the solve phase. Pn guarantees that gradients are interpolated well and
Pe, constructed without the multilevel commutativity constraint (3.1), guarantees
that non-gradient near-nullspace components are interpolated well. Note that this
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unconstrained method of building interpolation operators permits a level of decoupling
for the choice of coarse degrees of freedom. Specifically, coarsening of nodes and edges
can be performed to an extent independently, and coarse gradient operators are not
needed (gradient operators couple the choice of nodes and edges).

A disadvantage of the method of [19] is the need to compute and store the Ane’s
at all levels. These operators describe the coupling between the edges making up
gradients and the collection of edges not forming gradients, i.e., edges making up
divergence-free functions. They are particularly needed in the hybrid relaxation: an
edge relaxation of the whole edge grid re-introduces gradients, and hence, the nodal
problem must be adjusted using Aen to reflect this re-introduction. An intriguing
question to examine is, to what extent are these matrices needed at all levels, or
equivalently, to what extent can the node and edge multigrid hierarchies be decoupled
on all coarse levels? Clearly, these hierarchies can be decoupled if the node and edge
problems are defined and remain in orthogonal subspaces.

4. Tree/Cotree Edge Decomposition. The obvious orthogonal decomposi-
tion we would like the node and edge multigrid hierarchies to reflect is the Helmholtz
decomposition: for arbitrary E ∈ NDh,

E = ∇p + Ed,(4.1)

where Ed is divergence-free. More precisely, Ed is weakly divergence-free in the sense
that

(Ed,∇q) = 0 for all q ∈ Hh.

The purpose of the node and edge solvers should be to eliminate only the gradient and
weakly divergence-free components of the error, respectively. In this ideal situation,
the two hierarchies decouple on all coarse levels. However, to attain this decoupling,
the exact Helmholtz decomposition must be obtainable in NDh, and this is just as
difficult as solving (2.3) itself. Thus, we opt for a more practical decomposition.

The form of this practical, computable decomposition can be determined by not-
ing that branch coupling is needed to handle complete gradient functions re-introduced
by the edge correction. The nodal correction does not re-introduce error components
that can be resolvable only by the edge solver. For complete gradient error, a simple
analysis shows that the smoother slowly reduces them, e.g., Gauss-Seidel is slow on
an error vector which is a gradient of a nodal function, whereas Gauss-Seidel can be
satisfactory on an error vector that has components of gradients but does not contain
a complete gradient. In the overall iteration then, error containing only components
of complete gradients can be sufficiently handled on the edge branch, but error con-
taining complete gradients must be transferred to the nodal branch using AL

ne. Thus,
in order to decouple the branches, a property of the decomposition is that one of
the resulting sets, the set that will be used in the divergence-free hierarchy, should
not contain complete gradients. This property is moreover advantageous for AMG
processing since the Maxwell operator restricted to the corresponding subspace of
edge elements will not have a large near-nullspace. To obtain such decomposition,
the simplest strategy is to choose a set of edges that cannot geometrically support
complete gradients. With this objective, we turn to the seemingly unrelated topic of
graph theory.

Definition: A graph G is a pair (X ,U), where X is a set of elements {xi} called
nodes, and U is a subset of X ×X called edges. For any edge (xi, xj) ∈ X ×X , node
xi is the initial point and xj is the terminal point.

Definition: A walk W is an alternating sequence of nodes and edges that begins and
ends with a node and with each of its edges connecting the node preceding it to the
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node following it.

Definition: A cycle C is a walk consisting of distinct edges and nodes except the
initial and terminal nodes, which are the same.

Definition: A path P is a walk that contains distinct nodes.

Definition: A graph is connected if there us a path between every pair of nodes.

Definition: A tree is a connected graph that has no cycles. A spanning tree is a tree
that connects every node of G.

Of particular interest is the extraction of a spanning tree from a graph. This can
be achieved in O(|U|) comparisons using a standard first-in/first-out (FIFO) search
algorithm [10]. The subset of edges removed from the graph is called the cotree. Each
cotree edge can be added to a path in the tree to create a cycle.

Now let GL be the target fine grid where Maxwell equation (2.3) is discretized
on. Since GL consists of nodes and edges, it forms a graph. The first step in our
proposed algorithm is to decompose GL into a spanning tree and cotree. Clearly, this
creates a discrete orthogonal decomposition of the edges of GL. More relevant are the
properties of the cotree and tree. First, there does not exist a non-trivial gradient
function supported by only cotree edges. For suppose otherwise, that there is an edge
function Ẽ =

∑
i∈cotree ẼiNi = ∇φ for some φ ∈ Hh. Consider cotree edge ei with

initial and terminal nodes xi and xj . Since a spanning tree connects all nodes of GL,
there is a path in the tree that connects xi to xj such that adding cotree edge ei to
this path forms a closed loop l. Because Ẽ is defined on the whole grid but is non-zero
only on the cotree edges, and because the domain is simply-connected, we have

0 =
∮

l

∇φ · t dΓ =
∮

l

Ẽ · t dΓ =
∫

cotree edgei

Ẽ · t dΓ = Ẽi.

Repeating this procedure for each cotree edge, Ẽ must be identically zero.
Although a complete gradient cannot be supported by only cotree edges, it defi-

nitely will be shared between the tree and cotree edges. Such partitioning fragments
a majority of the full gradients suported on GL. This implies that the tree supports
far fewer gradients than the whole grid. An example of this reduction is illustrated in
Figure 4.1 for a structured 2-d grid. In the interior of the grid, there exists 9 gradient
functions given by taking the gradient of the bilinear hat functions centred at each
of the interior nodes. Each of these local gradient functions are fragmented into tree
and cotree edges so that none of them are supported only on the tree or cotree grids,
although the gradients of appropriate linear combinations of hat functions can be
supported on the tree grid.

Fig. 4.1. Left diagram: whole grid GL; right diagram: tree= solid lines and cotree= hashed lines.

Thus, the cotree grid does not support a full near-nullspace vector of the Maxwell
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operator and the tree grid supports a dramatically fewer number of them. The next
task, which pertains to AMG coarsening of the edges, is to determine precisely the
near-nullspace components of the Maxwell operator restricted to the cotree and tree
grids. Re-ordering matrix AL

ee into[
AL

ee,cc AL
ee,ct

AL
ee,tc AL

ee,tt

]
,(4.2)

where AL
ee,cc and AL

ee,tt are respectively the cotree-cotree and tree-tree submatrices,
and AL

ee,ct and AL
ee,tc are the cotree-tree and tree-cotree cross-coupling submatrices,

we examine the near-nullspaces of the diagonal blocks.
In the preceding, we will distinguish between the near-nullspace functions that

are annihilated by the curl term of the Maxwell operator and the near-nullspace
functions that give relatively small H(curl) semi-norm, ‖∇×·‖. We will call the former
oscillatory, although they may not be geometrically nor algebraically oscillatory. The
latter functions will be called smooth. In the continuum, disregarding boundary
conditions, gradients are oscillatory and divergence-free eigenfunctions corresponding
to the small eigenvalues of the vector Laplacian are smooth:

(∇× E,∇× E) = |(∇×∇× E,E)|
= |(−ΔE + ∇∇ · E,E)|
= λ(E,E).

For example, in 2-d, a smooth function is E = (sin πx sin πy, cos πx cos πy)t with
λ = 2π2.

We first consider the oscillatory components of the cotree-cotree operator. As-
sume that there is an oscillatory coefficient vector Ec ∈ �nc , where nc is the dimension
of the cotree set. The finite element function, which we denote by Ec also, corresponds
to the padded extension of the coefficient vector. Since α > 0,

0 = (α∇× Ec,∇× Ec) ≥ αmin(∇× Ec,∇× Ec)

so that ∇×Ec = 0. But since the domain is simply-connected, this implies the contra-
diction that Ec is a non-trivial gradient supported only on the cotree edges. Turning
to the tree-tree operator, clearly the gradients supported on the tree edges are os-
cillatory. Using the above padded extension argument, all other functions supported
on only tree edges are not oscillatory. Thus, the only oscillatory near-nullspace com-
ponents of the restricted Maxwell operators are the gradients supported on the tree
grid.

Observe that applying the padded extension procedure and using the positive-
definiteness of AL

ee, both AL
ee,cc and AL

ee,tt are also positive-definite. Moreover, because
AL

ee,cc has no oscillatory components, the curl part of AL
ee,cc is positive-definite itself.

This will be relevant later when we introduce a preconditioner based on the curl part
of AL

ee,cc.

To examine the smooth near-nullspace of AL
ee,cc and AL

ee,tt, we consider the fre-
quencies of the full matrix AL

ee and assume that β is constant and relatively small so
that the gradients are indeed the near-nullspace components of AL

ee. In fact, we will
assume that the gradients satisfy

[∇p]tAL
ee∇p = (β∇p,∇p) = ε,

for small ε. Now for an arbitrary function E ∈ NDL with a discrete version of
Helmholtz decomposition (4.1), we have

EtAL
eeE = [Ed]tAL

eeEd + (β∇p,∇p)
= [Ed]tAL

eeEd + ε.
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Moreover, for weakly divergence-free functions in NDL, there exists the bound

‖Ed‖2 ≤ C‖∇ × Ed‖2

[18], and hence, for arbitrary E ∈ NDL,

C1‖∇ × Ed‖2 + ε ≤ EtAL
eeE ≤ C‖∇ × Ed‖2 + ε.(4.3)

In particular, E is a smooth frequency of AL
ee if and only if it contains a smooth

divergence-free frequency. Next, consider a coefficient vector defined on the cotree or
tree grid, Ẽi, i = c, t. Appropriately padding Ẽi with zeros so that it belongs in �|EL|,
this extension has decomposition (4.1). Thus, Ẽi is a smooth near-nullspace of AL

ee,ii

if and only if its padded extension contains a smooth divergence-free component of
AL

ee. For example, with (∇p + Ed), Ed 
= 0, denoting the Helmholtz decomposition
of the padded extension of the cotree vector Ẽc, we have

[Ẽc]tAL
ee,ccẼc =

(
Ẽc

0

)t
[

AL
ee,cc AL

ee,ct

AL
ee,tc AL

ee,tt

] (
Ẽc

0

)

= (∇p + Ed)tAL
ee(∇p + Ed)

= [Ed]tAL
eeEd + ε,

so that (4.3) gives the desired result. This relation expresses the fact that the
tree/cotree decomposition is not a Helmholtz decomposition.

A special type of smooth cotree frequencies are ones whose padded extensions
are themselves approximately divergence-free. This special form will be exploited
to develop a multigrid-based solver for regularized magnetostatics. On the other
hand, the above analysis shows that the cotree correction can resolve only some of
the divergence-free error of AL

ee. There are smooth divergence-free components of AL
ee

that cannot be approximated well by the smooth cotree and tree frequencies. For
example, consider the smooth divergence-free component E = (Ec,Et)t, Et 
= 0, of
AL

ee. Then for any smooth cotree frequency (Ec,0)t, we have∥∥∥∥E −
(

Ec

0

)∥∥∥∥ ≥ ‖Et‖,

which can be large. Similarly, the smooth tree frequencies can give poor approxi-
mation to E. This shows that a multiple-coarsening scheme consisting of a multigrid
hierarchy for the cotree-cotree submatrix and a multigrid hierarchy for the nodal Pois-
son matrix will converge slowly because these smooth divergence-free components are
handled only by the finest level relaxation. In general, adding a multigrid hierarchy
for the tree-tree submatrix will not substantially improve the rate either. This is
especially true if these smooth divergence-free components expose strong cotree-tree
connections.

Summarizing, the ideal structure we would like the multiple-coarsening scheme to
reflect is a Helmholtz decomposition. But to obtain a sufficient branch decoupling, the
computable tree/cotree decomposition can be used instead. This latter decomposition
though does not permit good approximation to all smooth divergence-free functions
of the target fine edge matrix. In fact, as of now, a connection between the cotree
space and the divergence-free space has not even been established.

5. The New Approach. The purpose of the cotree subspace is to weaken the
coupling between the edge and node branches and to approximate the divergence-free
subspace. So far, we have shown that the cotree subspace indeed weakens the branch
coupling, but this subspace by itself cannot approximate the whole divergence-free
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subspace. In fact, the only established connection between these two subspaces is that
padded smooth frequencies of the cotree-cotree operator contain smooth divergence-
free frequencies of the target fine edge operator. Unfortunately, because of the form
of these padded frequencies, only certain types of divergence-free functions can be
extracted from the cotree corrections. To enable a better approximation to the
divergence-free subspace, a relation, i.e., an interpolation, between the cotree and
divergence-free subspaces must be developed. To this end, we consider the discrete
gradient and divergence operators.

The fine discrete gradient operator GL
en has dimensions |EL| × nL, where nL is

the size of fine nodal grid. To be precise, one node is taken to be grounded and the
corresponding column removed from GL

en. Let this grounded operator be denoted also
by GL

en. Its transpose is the discrete divergence operator defined on the fine edge grid.
Using the tree/cotree partitioning, GL

en can be re-ordered as

Ĝen :=
[

Gen,c

Gen,t

]
,

where Gen,c and Gen,t correspond respectively to the cotree and tree rows of GL
en.

Now, Gen,t is sparse and invertible. Thus,

G̃ := ĜenG−1
en,t =

[
F
I

]
,

where F = Gen,cG
−1
en,t. G̃ is an incidence matrix for the independent cutsets of

graph GL [21]. It can be constructed without computing G−1
en,t in the traditional

way. Throughout this paper, we will assume that G̃ has been formed using a graph
algorithm or G−1

en,t has been efficiently decomposed (or factorized so that only the
action of solving a linear system involving Gen,t) using a sparse matrix algorithm so
that its formation is comparatively cheap (recall that the number of nodes can be
substantially smaller than the number of edges and GL

en has only two elements per
row). Corresponding to G̃ is a transformed divergence operator whose nullspace is
again the discrete divergence-free space: for divergence-free E,

0 = Ĝt
enE =

[
Gt

en,c Gt
en,t

] (
Ec

Et

)
,

and hence,

0 = G−1,t
en,t Ĝt

enE =
[

G−1,t
en,t Gt

en,c I
] (

Ec

Et

)

=
[

F t I
] (

Ec

Et

)
= G̃tE.

The last expression gives a relation between the cotree vectors and the divergence-free
vectors:

0 =
[

F t I
] (

Ec

Et

)
⇒ Et = −F tEc.

The interpolation operator taking a cotree function to a divergence-free function is
then [

I
− F t

]
.

Consider the subspace of discretely divergence-free vectors

V :=
{
E ∈ �|EL| : E =

(
I

− F t

)
Ec

}
.
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Given the re-ordered fine linear system[
AL

ee,cc AL
ee,ct

AL
ee,tc AL

ee,tt

] (
Ec

Et

)
=

(
fc
ft

)
,(5.1)

the systems

[
I −F

] [
AL

ee,cc AL
ee,ct

AL
ee,tc AL

ee,tt

] [
I

− F t

]
Ec = fc − F ft(5.2)

and

[
I 0

] [
AL

ee,cc AL
ee,ct

AL
ee,tc AL

ee,tt

] [
I

− F t

]
Ec = fc(5.3)

are respectively orthogonal and oblique projections onto V. Equivalently, (5.2) and
(5.3) can be viewed as the initial Galerkin coarsening onto the divergence-free subspace

with interpolations and restrictions P =
[

I
− F t

]
and R = P t, and P =

[
I

− F t

]
and R =

[
I 0

]
. The coarse grid operators are[

AL
ee,cc − AL

ee,ctF
t − FAL

ee,tc + FAL
ee,ttF

t
]

(5.4)

and [
AL

ee,cc − AL
ee,ctF

t
]
.(5.5)

These two coarse grid operators clearly are not suitable for further coarsening since
they themselves would require explicit formation. However, because their actions
do not require their formation, these initial coarse grid problems can be solved us-
ing preconditioned Krylov iterations with preconditioners that are more amenable to
multigrid coarsening.

To develop such preconditioners, let ÂL
ee denote the curl part of AL

ee. ÂL
ee can be

factored as

ÂL
ee = CtMαC,

where C is the discrete edge-to-face curl operator and Mα is the mass matrix weighted
by coefficient α :

[Mα]ij =
∫

Ω

α Ni · Nj dΩ.

Re-ordering C also with the tree/cotree partitioning and using the topological relation
CGL

en = 0, we have

C ⇒
[

Cc Ct

]
=

[
Cc −CcF

]
= Cc

[
I −F

]
so that

ÂL
ee = CtMαC ⇒

[
I

− F t

]
Ct

cMαCc

[
I −F

]
=

[
Ct

cMαCc −Ct
cMαCcF

− F tCt
cMαCc F tCt

cMαCcF

]
.

But this is latter block matrix is exactly[
ÂL

ee,cc ÂL
ee,ct

ÂL
ee,tc ÂL

ee,tt

]
.
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Thus, we obtain [
ÂL

ee,cc ÂL
ee,ct

ÂL
ee,tc ÂL

ee,tt

]
=

[
ÂL

ee,cc −ÂL
ee,ccF

− F tÂL
ee,cc F tÂL

ee,ccF

]
,(5.6)

which expresses the tree-tree and cross-coupling submatrices in terms of the cotree-
cotree submatrix. To utilize (5.6) in preconditioners for (5.4) and (5.5), recall that
for the subspace of divergence-free functions in NDL, the equivalence

‖E‖H(curl) ∼ ‖∇× E‖, E ∈ NDL and divergence − free

holds. Thus, ÂL
ee and AL

ee are equivalent in this subspace with an equivalence constant
dependent on the material coefficients α and β. We hence can assume that this is
approximately so in V. With this assumption, (5.6) implies[

AL
ee,cc − AL

ee,ctF
t − FAL

ee,tc + FAL
ee,ttF

t
]

∼
[
ÂL

ee,cc − ÂL
ee,ctF

t − FÂL
ee,tc + FÂL

ee,ttF
t
]

=
[
ÂL

ee,cc + ÂL
ee,ccFF t + FF tÂL

ee,cc + FF tÂL
ee,ccFF t

]
= ÂL

ee,cc

[
I + FF t

]
+ FF tÂL

ee,cc

[
I + FF t

]
=

[
I + FF t

]
ÂL

ee,cc

[
I + FF t

]
(5.7)

and [
AL

ee,cc − AL
ee,ctF

t
]
∼

[
ÂL

ee,cc − ÂL
ee,ctF

t
]

= ÂL
ee,cc

[
I + FF t

]
.(5.8)

These are the preconditioner operators for (5.4) and (5.5). But, whereas ÂL
ee,cc can be

coarsened using an appropriate AMG algorithm that can handle matrices with strong
positive and negative off-diagonals, since [I + FF t] must be formed and can be dense,
a naive application of (5.7) and (5.8) is not efficient. To obtain an efficient procedure,
note that [

I + F tF
]

=
[

I F t
] [

I
F

]

=
[

I G−1,t
en,t Gt

en,c

] [
I

Gen,cG
−1
en,t

]
.

Pre- and post-multiplying this expression with Gt
en,t and Gen,t gives

Gt
en,t

[
I + F tF

]
Gen,t =

[
Gt

en,t Gt
en,c

] [
Gen,t

Gen,c

]
= Ĝt

enĜen,

a discrete Poisson operator that can be computed efficiently since Ĝen is sparse (two
elements per row). A standard Ruge-Stuben coarsening procedure then can be applied
to Ĝt

enĜen. This can be utilized in solving equation[
I + FF t

]
x = y,(5.9)

which is required in (5.4) and (5.5). Specifically, multiplying (5.9) by F t, we obtain

F t
[
I + FF t

]
x =

[
I + F tF

]
F tx = F ty.(5.10)

Having determined F tx, (5.9) gives

x = y − FF tx.(5.11)

Thus, the whole algorithm for solving (5.9) is
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Algorithm
[
I + FFt

]
Solve:

1. w1 = F ty
2. w2 = Gt

en,tw1

3. solve Ĝt
enĜenz1 = w2

4. z2 = Gen,tz1

5. x = y − Fz2.

Steps 2-4 solve [I + F tF ]F tx = F ty using the transformed operator Ĝt
enĜen. Note

that steps 1-2 can be combined so that just w2 = Gt
en,cy has to be computed:

w2 = Gt
en,tw1 = Gt

en,tF
ty = Gt

en,tG
−1,t
en,t Gt

en,cy = Gt
en,cy.

Also note that neither FF t nor F tF need to be explicitly formed, and step 3 can be
replaced by several multigrid cycles. A full application of preconditioners (5.7) and
(5.8) thus requires three and two sets of multigrid cycles, respectively. The algorithm
for solving the preconditioner systems[

I + FF t
]
ÂL

ee,cc

[
I + FF t

]
x = y(5.12)

or

ÂL
ee,cc

[
I + FF t

]
x = y(5.13)

is
Algorithm Preconditioner Solve:

1. For system (5.12), solve [
I + FF t

]
z = y

using “Algorithm [I + FF t] Solve”.
Else, for system (5.13),

z = y.

2. Solve

ÂL
ee,ccw = z

using several multigrid cycles.
3. Solve [

I + FF t
]
x = w

using “Algorithm [I + FF t] Solve”.

Finally, the complete multiple-coarsening algorithm for solving Maxwell’s equation
(2.3) given the tree/cotree partitioning is

Nodal/Cotree Multiple-Coarsening Cycle:
1. Fine grid edge relaxation on AL

eeE
L = fL

2. Residual computation: rL = fL − AL
eeE

L

3. Nodal problem: multigrid cycles on AL
nnpL = Gt

enrL

4. Nodal correction: EL ← EL + GenpL

5. Cotree righthand side: respectively for coarse grid problems (5.4) and
(5.5),

rc =
[

I −F
] {(

fc
ft

)
−

[
AL

ee,cc AL
ee,ct

AL
ee,tc AL

ee,tt

] (
Ec

Et

)}

rc =
{
fc −

[
AL

ee,cc AL
ee,ct

] (
Ec

Et

)}
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6. Cotree problem: respectively for (5.4) and (5.5), solve[
AL

ee,cc − AL
ee,ctF

t − FAL
ee,tc + FAL

ee,ttF
t
]
w = rc

[
AL

ee,cc − AL
ee,ctF

t
]
w = rc

using a preconditioned Krylov iteration with “Algorithm Preconditioner
Solve”

7. Edge correction:

EL ← EL +
(

w
− F tw

)

The effectiveness of this overall method depends on the performance of the precon-
ditioned Krylov iteration. This performance in turn depends on the equivalence be-
tween AL

ee and ÂL
ee. For smooth coefficients with β < α, this equivalence is favourable.

But for α 
 β, this equivalence degrades. In this latter case, replacing steps 5-6 with
a diagonal scaled conjugate gradient iteration applied to

AL
eev = fL − AL

eeE
L

can be used instead.

5.1. Special Case: Regularized Magnetostatics. The equation for regular-
ized magnetostatics is

∇× α∇× E + ε̂E = f(5.14)

with ε̂ 
 1. Assuming that α = O(1), the method just described is ideal for solving
the Nedelec discretization of (5.14). But because of the special form of (5.14), a
simpler, more efficient algorithm can be used. We give an intuitive derivation of this
algorithm.

Consider (5.14) with ε̂ constant and f divergence-free. Then the solution E must
be divergence-free itself:

∇ · [∇× α∇× E + ε̂E] = ε̂∇ · E = ∇ · f = 0.

Moreover, since ε̂ 
 1, not only is the equivalence between AL
ee and ÂL

ee favourable,
but also for the re-ordered matrices, we have

[
AL

ee,cc AL
ee,ct

AL
ee,tc AL

ee,tt

]
≈

[
ÂL

ee,cc −ÂL
ee,ccF

− F tÂL
ee,cc F tÂL

ee,ccF

]
.

Further, if f is discretely divergence-free, then
[

AL
ee,cc AL

ee,ct

AL
ee,tc AL

ee,tt

] (
EL

c

EL
t

)
≈

[
ÂL

ee,cc −ÂL
ee,ccF

− F tÂL
ee,cc F tÂL

ee,ccF

] (
EL

c

EL
t

)

=
(

fc
− F tfc

)
.(5.15)

Observe that the two equations of the equality relation are compatible, i.e.,

ÂL
ee,ccE

L
c − ÂL

ee,ccFEL
t = fc ⇒ −F t[ÂL

ee,ccE
L
c − ÂL

ee,ccFEL
t ] = −F tfc.
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Thus, only the first equation needs to be satisfied. Since ÂL
ee,cc is positive-definite, a

particular solution of the first equation is(
EL

c

EL
t

)
=

(
EL

c

0

)

=
(

ÂL,−1
ee,cc fc
0

)
,(5.16)

the padded extension of the cotree solution. Hence, (5.16) is an approximate solution
to [

AL
ee,cc AL

ee,ct

AL
ee,tc AL

ee,tt

] (
EL

c

EL
t

)
=

(
fc

− F tfc,

)
(5.17)

and therefore, must be approximately divergence-free.
We would like to know if the padded cotree corrections from a node/edge multiple-

coarsening scheme can suitably represent smooth divergence-free frequencies of AL
ee.

So consider an error component that contains a smooth divergence-free frequency ed,

e = ed + ∇p.

The error equation to be solved is

AL
eee = r.

Since we can assume without loss of generality that the initial approximation is 0,
the first step in the multiple-coarsening scheme is to solve the nodal equation

AL
nnp = [GL

en]tAL
eeG

L
enp = [GL

en]tr.

Assuming that this is solved exactly, the fine edge correction equation for ed is

AL
eeed = r̂ = r − AL

eeG
L
enp,

which has a discretely divergence-free righthand side:

[GL
en]tr̂ = [GL

en]t
[
r − AL

eeG
L
enp

]
= [GL

en]tr − [GL
en]tAL

eeG
L
enp

= 0.

Thus, from the above discussion,
(

ÂL,−1
ee,cc r̂c

0

)
is a good approximation to ed, and

hence, smooth divergence-free frequencies can be suitably represented by padded
cotree corrections. This suggests that an effective solver for regularized magneto-
statics is a multiple-coarsening scheme with a branch for the nodal Poisson operator
and a branch ÂL

ee,cc. Note that now the cotree solution of ÂL
ee,ccEc = fc is used di-

rectly to correct EL since
(

ÂL,−1
ee,cc fc
0

)
is an approximate solution to (5.17), not(

AL,−1
ee,cc fc
0

)
. To insure that the righthand sides of the edge correction equations are

approximately divergence-free, a sufficient number of multigrid cycles must be applied
to the nodal Poisson problem. The full algorithm is

Algorithm for Regularized Magnetostatics:
1. Fine grid edge relaxation on AL

eeE
L = fL

2. Residual computation: rL = fL − AL
eeE

L



18 Lee & Tong

3. Nodal problem: sufficient number of multigrid cycles on AL
nnpL = Gt

enrL

4. Nodal correction: EL ← EL + GenpL

5. Cotree righthand side:

rc =
{
fc −

[
AL

ee,cc AL
ee,ct

] (
Ec

Et

)}

6. Cotree problem: solve

ÂL
ee,ccEc = rc

using multigrid cycles
7. Edge correction:

EL ← EL +
(

Ec

0

)
.

5.2. Special Case: Structured 2-d with Structured Tree/Cotree Extrac-
tions. Another special case that does not require the preconditioned Krylov iteration
is structured 2-d problems with structured tree/cotree extractions. In this case, the
smooth divergence-free frequencies of the whole edge matrix can be decoupled into
cotree and tree components.

The problem of interest is equation (2.3) discretized on structured quadralaterals
with no special restrictions on coefficients α and β. To get some intuition on this
algorithm though, let α and β be constant. The smooth divergence-free frequencies
of the continuous operator are eigenvectors corresponding to the small eigenvalues of

[−αΔ + βI] =

[
−αΔ + β 0

0 −αΔ + β

]
.

The x, y-components of these eigenvectors decouple. Thus, if the tree/cotree extrac-
tion permits a similar component decoupling of E, then these smooth divergence-free
functions can be resolvable on decoupled tree and cotree equations.

Fig. 5.1. Left diagram: structured tree/cotree extraction on the whole grid with solid and dashed
lines respectively denoting the tree and cotree edges. Right diagram: structured tree/cotree extraction
with the boundary edges removed.

Consider the tree/cotree extractions of the same underlying graph depicted in
Figures 5.1 and 5.2. Since the boundary values are known, only the interior edge
values need to be determined. For Figure 5.1, the unknown cotree values lie on the
horizontal edges, which correspond to the x-component of E (because for structured
quadralaterals, horizontal edges correspond to the x-components of E) and the un-
known tree values lie on the vertical edges, which correspond to the y-component
of E. In terms of AL

ee,cc and AL
ee,tt, the stencil connections are “structured”, i.e., at

each horizontal/vertical edge, the same 3-point stencil pattern describes the hori-
zontal/vertical connections. For Figure 5.2, even though the full edge matrix has a
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Fig. 5.2. Left diagram: unstructured tree/cotree extraction on the whole grid with solid and
dashed lines respectively denoting the tree and cotree edges. Right diagram: unstructured tree/cotree
extraction with the boundary edges removed.

structured stencil pattern (see stencils (5.18-5.19)), AL
ee,cc and AL

ee,tt have unstruc-
tured stencil patterns. For the structured extraction, the components of E decouple.
Thus, the continuous smooth divergence-free functions can be approximated through
decoupled tree and cotree problems. A reasonable algorithm is then

Algorithm for Structured Extractions:
1. Fine grid edge relaxation on AL

eeE
L = fL

2. Residual computation: rL = fL − AL
eeE

L

3. Nodal problem: multigrid cycles on AL
nnpL = Gt

enrL

4. Nodal correction: EL ← EL + GenpL

5. Cotree righthand side:

rc =
{
fc −

[
AL

ee,cc AL
ee,ct

] (
Ec

Et

)}

6. Cotree problem: multigrid cycles on AL
ee,ccEc = rc

7. Cotree edge correction:

EL ← EL +
(

Ec

0

)

8. Tree righthand side:

rt =
{
ft −

[
AL

ee,tc AL
ee,tt

] (
Ec

Et

)}

9. Tree problem: multigrid cycles on AL
ee,ttEt = rt

10. Tree edge correction:

EL ← EL +
(

0
Et

)
.

Note that because the horizontal and vertical stencil connections for the target edge
equations are ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
− α

h2 + β
6

)
− α

h2
α
h2(

2α
h2 + 2β

3

)
α
h2 − α

h2(
− α

h2 + β
6

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.18)
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and ⎡
⎢⎢⎣

− α
h2

α
h2(

− α
h2 + β

6

) (
2α
h2 + 2β

3

) (
− α

h2 + β
6

)
α
h2 − α

h2

⎤
⎥⎥⎦ ,(5.19)

the stencils for AL
ee,cc and AL

ee,tt are respectively⎡
⎢⎢⎢⎢⎣

(
− α

h2 + β
6

)
(

2α
h2 + 2β

3

)
(
− α

h2 + β
6

)

⎤
⎥⎥⎥⎥⎦

and [ (
− α

h2 + β
6

) (
2α
h2 + 2β

3

) (
− α

h2 + β
6

) ]
.

These latter stencils correspond to diffusion operators. Thus, a standard Ruge-Stuben
coarsening procedure can be applied to AL

ee,cc and AL
ee,tt.

6. Numerical Results. The methods described in Section 5 have been tested
on a number of problems. We list some of the details of these experiments:

Since convergence is the focus of these experiments, all the problems consist of
an edge element discretization of (2.1) on a unit square, with a random initial guess
and zero righthand side. Except for the method of Subsection 5.2, the tree/cotree
extractions were generated randomly by choosing a random seed tree edge in the
FIFO algorithm. For the method of Subsection 5.2, the seed was chosen so that
structured tree/cotree extractions were generated. For all experiments, one sweep of
the overlapping Schwarz relaxation described in [2] was performed on the target fine
level. As for multigrid solvers, a standard Ruge-Stuben AMG method was used on the
nodal Poisson problems (AL

nn) and the discrete Poisson problems (Ĝt
enĜen), as well as

on the cotree and tree problems for the method of Subsection 5.2 (see the discussion at
the end of that subsection). Observe that applying a Ruge-Stuben AMG algorithm
to the discrete Poisson problem would explicitly require the matrix Ĝt

enĜen. This
matrix can be formed without a sparse matrix-matrix product: at node i, the centre
coefficient is equal to the sum of the edges emanating from node i and the off-diagonal
coefficients, which correspond to the connecting coefficients of node i to the nodes at
the other ends of the emananting edges, are each -1. Note that Ĝt

enĜen is sparser than
AL

nn, for example, for a structured grid, Ĝt
enĜen corresponds to 5 and 7-point stencils

in 2 and 3-d, whereas AL
nn corresponds to 9 and 27-point stencils. Thus, a multigrid

cycle for this constant coefficient Poisson operator is noticably cheaper than a cycle for
the material coefficient operator AL

nn. As for multigrid solver for the cotree problems of
the unstructured tree/cotree schemes, the algebraic multilevel multigraph algorithm
of Bank et. al. ([3] and [4]) was employed. V(1,0) cycles with an ILU smoother
were used in this code. Although this multilevel method is not optimally scalable, its
performance is exceptionally good. The development of a scalable solver for ÂL

ee,cc is
the topic of a future paper. Finally, the actions of F = ĜenG−1

en,t and F t are obtained
through a sparse direct solve and a matrix-vector product. As noted earlier, these
can be avoided by forming F using a graph independent cutset algorithm.

Convergence is considered to be attained when the initial residual is reduced by
8 orders of magnitude. The convergence rate of the overall iteration is taken to be

max
i

‖ri‖
‖ri−1‖



A NOVEL ALGEBRAIC MULTIGRID-BASED METHOD FOR MAXWELL’S EQUATIONS21

for iteration i.

Preconditioner (5.12): We consider results for the nodal/cotree multiple-coarsening
cycle with preconditioner (5.12). Table 6.1 summarizes results for the constant coef-
ficient case. Here, α = 1 and β is varied. The 4-number column data registers the
total number of overall multiple-coarsening cycles, the total number of inner precon-
ditioned GMRES iterations, the total number of multigraph iterations for the total
run, and the convergence rate. For example, for β = 10−2 and h = 1/128, the data
2/3/7/2.1e-5 indicates 2 outer multiple-coarsening cycles, a total of 3 preconditioned
GMRES for solving the 2 cotree problems (1 per multiple-coarsening cycle), a total
of 7 multigraph V(1,0) cycles for all the preconditioning steps, and an outer iteration
convergence rate of 2.1e-5. Here, since 5 V(1,1) cycles were performed for each nodal
Poisson solve and discrete Poisson solve, a total of 10 V(1,1) cycles were used on the
nodal branch and a total of 30 V(1,1) cycles were used on the sparser, discrete Pois-
son problems. Also, for the rates attained, a simple calculation reveals that initial
residual reductions of more than 8 orders of magnitude are obtained for these exper-
iments. However, the data also shows a performance degradation in the multigraph
algorithm, and an increase in the number of GMRES iterations as β increases. The
latter is expected since the equivalence between AL

ee and ÂL
ee degrades as β increases.

β/h 1/32 1/64 1/128 1/256
10−4 2/2/2/2.0e-6 2/2/2/1.7e-6 2/2/4/2.1e-6 2/2/12/1.7e-5
10−3 2/2/2/1.9e-5 2/2/2/1.8e-5 2/2/6/1.8e-5 2/2/10/1.8e-5
10−2 2/3/3/1.4e-5 2/3/3/1.9e-5 2/3/7/2.1e-5 2/3/21/2.0e-5
10−1 2/4/4/1.6e-6 2/4/4/1.5e-6 2/4/12/1.3e-6 2/4/31/1.3e-6
100 2/6/6/5.4e-6 2/6/6/1.5e-6 2/6/24/9.7e-7 2/6/38/6.4e-7
101 2/9/9/6.2e-5 2/9/9/1.8e-5 2/9/9/3.2e-5 2/9/60/1.5e-5
102 3/25/25/5.1e-4 3/25/25/1.5e-4 3/24/48/4.6e-5 3/24/170/7.0e-4

Table 6.1

Algorithm “Nodal/Cotree Multiple-Coarsening Cycle” using preconditioner (5.12)- random
tree/cotree extraction, one finest level multiplicative Schwarz sweep, data= (number of outer cy-
cles)/(number of GMRES iterations)/(total number of multigraph amg cycles)/(convergence rate).

We also consider a variable coefficient problem. As the equivalence between AL
ee

and ÂL
ee depends on the coefficients α and β, dramatic jump differences between these

coefficients were not permitted. However, the random coefficients

α = (1 + | sin δ(x, y)|)(4 + cos 20πy)2(2 + sin 5πx)(20 + sin 5πx)
β = (1 + | sin δ(x, y)|)(4 + sin 20πy)2(2 + cos 5πx)(20 + cos 5πx),

where δ(x, y) is a random integer between 0 and the rand max variable in C, were
chosen (see Figure 6.1). Table 6.2 tabulates the results. As can be observed, the
convergence of these runs have the same general behaviour as the constant coefficient
case.

Problem/h 1/32 1/64 1/128 1/256
1a 4/12/12/1.9e-2 4/10/11/1.8e-2 3/8/47/1.8e-2 3/8/69/1.8e-2

Table 6.2

Problem 1a, Algorithm “Nodal/Cotree Multiple-Coarsening Cycle” using preconditioner (5.12)-
random tree/cotree extraction, one finest level multiplicative Schwarz sweep, data= (number of outer
cycles)/(number of GMRES iterations)/(total number of multigraph amg cycles)/(convergence rate).

Preconditioner 5.13: Next, we consider results for the nodal/cotree multiple-
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Fig. 6.1. Log scale of jumps in α and β for Problems 1a & 2a.

coarsening cycle with preconditioner (5.13) applied to the same problems. Tables 6.3
and 6.4 contain the results. Clearly, the only difference between the results of pre-
conditioners (5.13) and (5.12) is a slight increase in the total number of multigraph
V(1,0) cycles.

β/h 1/32 1/64 1/128 1/256
10−4 2/2/2/6.4e-7 2/2/2/1.9e-6 2/2/6/7.6e-7 2/2/10/2.6e-6
10−3 2/2/2/6.6e-6 2/2/2/7.0e-6 2/2/4/6.6e-6 2/2/15/1.8e-5
10−2 2/4/4/7.3e-7 2/4/4/1.0e-6 2/4/12/7.9e-7 2/4/30/2.8e-7
10−1 2/4/4/7.1e-6 2/4/4/3.9e-6 2/4/16/2.0e-6 2/4/26/1.9e-6
100 2/6/6/6.2e-5 2/6/6/2.3e-5 2/6/12/6.6e-6 2/6/45/6.3e-6
101 3/14/14/1.0e-3 3/14/14/2.0e-4 2/9/36/1.0e-4 2/9/54/2.0e-5
102 4/33/33/8.0e-3 3/24/24/2.0e-3 3/24/97/7.0e-4 2/16/125/5.5e-4

Table 6.3

Algorithm “Nodal/Cotree Multiple-Coarsening Cycle” using preconditioner (5.13)- random
tree/cotree extraction, one finest level multiplicative Schwarz sweep, data= (number of outer cy-
cles)/(number of GMRES iterations)/(total number of multigraph amg cycles)/(convergence rate).

Problem/h 1/32 1/64 1/128 1/256
2a 5/15/15/3.0e-2 5/15/15/2.6e-2 4/12/70/2.2e-2 4/12/86/2.5e-2

Table 6.4

Problem 2a, Algorithm “Nodal/Cotree Multiple-Coarsening Cycle” using preconditioner (5.13)-
random tree/cotree extraction, one finest level multiplicative Schwarz sweep, data= (number of outer
cycles)/(number of GMRES iterations)/(total number of multigraph amg cycles)/(convergence rate).

Regularized Magnetostatics: The scheme for regularized magnetostatics is sub-
stantially cheaper than the preconditioned methods. No Krylov wrapper is needed,
and neither (I + FF t) nor F even arises in this method. However, this method is
applicable only to small regularization terms, as is the case for practical magneto-
statics problems. Table 6.5 shows the results for constant coefficient problems. The
3-number column data registers the number of outer cycles, the total number of multi-
graph V(1,0) cycles, and the convergence rate. As expected, when ε̂ → 0, the solver
converges faster. For comparison with the preconditioned method, when β = 10−2

and h = 1/128, since the regularized magnetostatics scheme requires only 2 outer
iterations, a total of 10 nodal V(1,1) cycles are needed, rather than 40 (10 for the AL

nn

and 30 for Ĝt
enĜen).

We also consider two jump coefficient problems. Only α varies since ε̂ is a user
tuning parameter. The profiles of α are displayed in Figure 6.2. For these coefficients,
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β/h 1/32 1/64 1/128 1/256
10−6 1/1/2.0e-9 1/1/1.0e-9 1/4/3.0e-10 1/8/2.0e-10
10−4 2/2/1.0e-4 2/2/1.0e-4 2/8/5.0e-4 2/16/4.0e-4
10−2 3/3/1.0e-3 2/2/5.0e-4 2/5/7.0e-4 2/17/8.0e-4
100 7/7/1.0e-1 6/6/1.0e-1 6/18/1.0e-1 5/39/1.0e-1

Table 6.5

Algorithm for regularized magnetostatics-random tree/cotree extraction, one finest level multi-
plicative Schwarz sweep, 5 V(1,1) cycles for the nodal branch, data= (number of outer cycles)/(total
number of multigraph amg cycles)/(convergence rate).

ε̂ was chosen to be ≤ min α. Table 6.6 summarizes the results. The performance is
even better than when the coefficients are constant.
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Fig. 6.2. Log scale of jumps in α for Problems 3a (left) and 3b (right).

Problem/h 1/32 1/64 1/128 1/256
3a 1/4/4.6e-10 1/5/5.0e-9 1/9/7.8e-9 1/4/1.9e-9
3b 1/5/1.6e-10 1/1/9.0e-10 1/2/3.0e-11 1/6/9.0e-7

Table 6.6

Problems 3a & 3b, regularized magnetostatics-random tree/cotree extraction, one finest level
multiplicative Schwarz sweep, 5 V(1,1) cycles for the nodal branch, data= (number of outer cy-
cles)/(total number of multigraph amg cycles)/(convergence rate). ε̂ =1.0e-6 for Problem 3a and
ε̂ =1.0e-4 for Problem 3b.

Structured Tree/Cotree Extraction: Our final set of experiments are for struc-
tured 2-d problems with structured tree/cotree extractions. As already stated, a
standard Ruge-Stuben AMG method is applied to the tree and cotree multigrid hi-
erarchies. Table 6.7 contain results for constant coefficient problems. Here, only 1
V(1,1) cycle is used for each branch. Clearly, we observe scalability for this special
method.

Jump coefficients also were considered. Figures 6.3-6.5 illustrate the coefficients.
The coefficients in Figure 6.5 is particularly interesting since the magnitude jumps in α
and β are in the opposite direction. In the continuum, this leads to characteristically
different singularities in the curl-free and divergence-free components of the error.
Table 6.8 shows the results. For the first two sets of coefficients (Figures 6.3 and
6.4), the results are even better than for the constant coefficient case. This may be
due to the 4 additional V(1,1) cycles applied to the nodal Poisson problem. These
additional cycles were added to handle the jumps in β. Only 1 V(1,1) cycle was
applied to each tree and cotree branch. However, for the coefficients of Figure 6.5,
a Restart(10) GMRES wrapper around the cotree/tree branches was needed to give
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β/h 1/32 1/64 1/128 1/256
10−4 7/0.10 7/0.10 7/0.10 7/0.11
10−3 7/0.10 7/0.10 7/0.10 7/0.11
10−2 7/0.10 7/0.11 7/0.11 7/0.11
10−1 7/0.10 7/0.11 7/0.11 7/0.11
100 7/0.10 7/0.11 7/0.11 7/0.11
101 7/0.12 7/0.11 7/0.11 7/0.11
102 7/0.10 7/0.13 7/0.12 7/0.12

Table 6.7

Structured 2-d problem with structured tree/cotree extraction. One finest level overlapping
Schwarz relaxation and V(1,1) cycle for each branch, nodal, cotree, and tree. Iteration counts and
convergence rates are for the overall outer iteration.

good performance. For a total of n outer multiple-coarsening cycles, a total of 10n
GMRES iterations were needed, giving a total of 10n tree and cotree V(1,1) cycles.
Although the convergence rates are not too good, only a few outer cycles were needed
to attain the 8-order magnitude drop of the initial residual. Figure 6.6 shows the
slowly converging error modes.
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Fig. 6.3. Log scale of jumps in α and β for Problem 4a.
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Problem/h 1/32 1/64 1/128 1/256
4a 4/3.0e-2 4/2.0e-2 4/1.0e-2 4/8.0e-3
4b 3/1.0e-3 3/1.0e-3 3/1.0e-3 3/4.0e-3
4c 5/4.3e-1 4/4.0e-1 3/2.2e-1 2/6.0e-2

Table 6.8

Structured 2-d problem with structured tree/cotree extraction. One finest level overlapping
Schwarz relaxation and 5 V(1,1) cycles for the nodal branch. For Problems 4a & 4b, 1 V(1,1) cycle
is applied to the cotree and tree branches. For Problem 4c, an outer GMRES wrapper is put around
the edge equations. 10 GMRES iterations are taken, with the preconditioner being 1 V(1,1) cycle
each for the cotree and tree branches.

REFERENCES

[1] R. Albanese and G. Rubinacci, Integral formulation for 3D eddy-current computation using
edge elements, IEE Proceedings A, 135 (1988), pp. 457-462.

[2] D. N. Arnold, R. S. Falk, and R. Winther, Multigrid in H(div) and H(curl), Numer. Math.,
85 (2000), 197-218.

[3] R. E. Bank and T. F. Chan, An analysis of the composite step biconjugate gradient method,
Num. Math., 66 (1993), 295-319.

[4] R. E. Bank and R. K. Smith, An algebraic multilevel multigraph algorithm, SIAM J. Sci.
Comp., 23 (2002), 1572-1592.

[5] R. Beck, Algebraic multigrid by component splitting for edge elements on simplicial triangu-
lations, Preprint SC 99-40, Konrad-Zuse-Zentrum fur Informationstechnic Berlin, 1999.

[6] P. B. Bochev, C. J. Garasi, J. J. Hu, A. C. Robinson, R. S. Tuminaro, An improved
algebraic multigrid method for solving Maxwell’s equations, SIAM J. Sci. Comp., to appear.

[7] A. Bossavit, Computational Electromagnetism: Variational Formulations, Complementarity,
Edge Elements, Academic Press, San Diego, 1998.

[8] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,
Springer, New York, 1994.

[9] M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuf-

fel, S. F. McCormick, J. W. Ruge, Algebraic multigrid based on element interpolation
(AMGe), SIAM J. Sci. Comp., 22 (2000), 1570-1592.

[10] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
1997.

[11] J. E. Dendy, Jr., Black box multigrid, J. Comput. Phys., 48 (1982), 366-386.
[12] J. E. Dendy, Jr., Black box multigrid for systems, Appl. Math. Comp., 19 (1986), 57-74.
[13] J. E. Dendy, Jr., Semicoarsening multigrid for systems, ETNA, 6 (1997), 97-105.
[14] F. Dubois, Discrete vector potential representation of a divergence-free vector field in three-

dimensional domains: numerical analysis of a model problem, SIAM J. Numer. Anal., 27
(1990), pp. 1103-1141.

[15] N. A. Golias and T. D. Tsiboukis, Magnetostatics with edge elements: a numerical investi-
gation in the choice of the tree, IEEE Trans. Magn., 30 (1994), pp. 2877-2880.

[16] R. Hiptmair, Multigrid method for Maxwell’s equations, SIAM J. Numer. Anal., 36 (1999),
204-225.

[17] R. Hiptmair, Multilevel gauging for edge elements, Comput., 64 (2000), 97-122.
[18] R. Hiptmair and R. W. Hoppe, Multilevel methods for mixed finite elements in three dimen-

sions, Numer. Math, 82 (1999), 253-279.



26 Lee & Tong

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Fig. 6.6. Slowly converging modes for Problem 4c: left diagram without GMRES, right diagram
with GMRES.

[19] J. Jones and B. Lee, A multigrid method for variable coefficient Maxwell’s equations, to
appear in Siam J. Sci. Comp..

[20] J. B. Magnes and Z. J. Cendes, A generalized tree-cotree gauge for magnetic field computa-
tion, IEEE Trans. Magn., 31 (1995), pp. 1342-1347.

[21] I. Munteanu, Tree-cotree condensation properties, preprint, 2004.
[22] F. Rapetti, F. Dubois, and A. Bossavit, Discrete vector potentials for nonsimply connected

three-dimensional domains, SIAM J. Numer. Anal., 41 (2003), pp. 1505-1527.
[23] S. Reitzinger and J. Schoberl, An algebraic multigrid method for finite element discretiza-

tions with edge elements, Num. Lin. Alg. Appl., 9 (2002), 223-238.
[24] Z. Ren and A. Razek, Boundary edge elements and spanning tree technique in three-dimensional

electromagnetic field computation, Int. J. Numer. Meth. Engng., 36 (1993), pp. 2877-2893.
[25] J. W. Ruge and K. Stuben, Algebraic multigrid (AMG), in Multigrid Methods, S. F. McCormick,

ed., SIAM Frontiers in Applied Mathematics, Vol. 5, Philadelphia, 1986.
[26] R. Scheichl, Decoupling three-dimensional mixed problems using divergence-free finite elements,

SIAM J. Sci. Comput., 23 (2002), pp. 1752-1776.
[27] U. Trottenberg, C.W.Oosterlee and A. Schuller, Multigrid, Academic Press, 2001.
[28] J. P. Webb, Edge elements and what they can do for you, IEEE Trans. Magn., 29 (1993), pp.

1460-1465.




