
A PARALLEL MULTIGRID PRECONDITIONED CONJUGATE GRADIENT
ALGORITHM FOR GROUNDWATER FLOW SIMULATIONS∗

STEVEN F. ASHBY† AND ROBERT D. FALGOUT‡

Abstract. This paper discusses the numerical simulation of groundwater flow through heterogeneous porous
media. The focus is on the performance of a parallel multigrid preconditioner for accelerating convergence of con-
jugate gradients, which is used to compute the pressure head. The numerical investigation considers the effects of
boundary conditions, coarse grid solver strategy, increasing the grid resolution, enlarging the domain, and varying
the geostatistical parameters used to define the subsurface realization. Scalability is also examined. The results were
obtained using the ParFlow groundwater flow simulator on the CRAY T3D massively parallel computer.

Key words. multigrid, conjugate gradients, preconditioning, groundwater

AMS subject classifications. 65M55, 65F10, 65Y10, 76S05

1. Motivation. The numerical simulation of subsurface fluid flow and chemical migration plays
an increasingly important role in several environmental applications, including groundwater remedi-
ation studies and groundwater resource management. Although sophisticated simulations have been
used for decades in the petroleum industry with considerable success, they have been less widely
used in environmental applications, but they are gaining in popularity as sites become larger and
more complex. Computational environmental remediation is particularly attractive for the design,
evaluation, and management of engineered remediation procedures [23], especially for large indus-
trial and government sites. Simulations can be used, for instance, to choose the best cleanup strategy
for a given site, and then, once a scheme is chosen, to manage it in the most cost effective fashion.
They also can be used to perform more realistic risk assessment in support of key decision-making,
as well as an aid in demonstrating regulatory compliance.

Mathematically, the key to such simulations is the solution of the large, sparse system of linear
equations resulting from the discretization of a second order elliptic partial differential equation with
a widely varying coefficient function. The solution of this system yields the subsurface fluid flow
velocities, which are then used to track groundwater flow and contaminant migration. In this paper,
we introduce a multigrid preconditioned conjugate gradient algorithm for solving these systems,
and we investigate its performance on a variety of realistic problems. Since we are interested in
detailed simulations with millions of spatial zones, we employ massively parallel processing power.
In particular, we will describe the parallel implementation and performance of our algorithm on the
CRAY T3D computer.

1.1. The need for improved modeling. Many of the computer codes in use today make
unrealistic assumptions about the nature of the subsurface medium and the associated flow behavior.
For example, many codes assume that the subsurface is homogeneous in composition and spatial
distribution, and ignore altogether variations in the vertical dimension. As a result, these codes
may fail to represent accurately many important processes. Consequently, the conclusions drawn
from simulations made with these codes are open to question, as are the decisions based on these
conclusions.

In reality, the subsurface is three-dimensional and heterogeneous. This means that some regions
of the subsurface are more permeable to water flow than others; this is represented by a spatially

∗ This work was supported by Laboratory Directed Research and Development, and by the Mathematical, Infor-
mation, and Computational Sciences Division of the Office of Energy Research, Department of Energy, by Lawrence
Livermore National Laboratory under contract W-7405-ENG-48.
† Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O. Box 808, L-561, Liver-

more, CA 94551 (sfashby@llnl.gov).
‡ Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O. Box 808, L-561, Liver-

more, CA 94551 (rfalgout@llnl.gov).

1

variable flow parameter known as the hydraulic conductivity. The heterogeneous nature of the
subsurface gives rise to preferential flow channels in the subsurface velocity field, which can have
a dramatic impact on fluid flow and contaminant transport [1, 3]. For example, these channels
can lead to fingering in contaminant migration, that is, nonuniform dispersion over time. It is
essential to resolve this behavior because it can drastically alter the conclusions one makes about
a given remediation procedure. For example, a homogeneous model may yield simulations that
predict that the procedure under study will meet regulatory requirements. However, a more accurate
heterogeneous model (with adequate resolution) may predict the opposite. Regulatory agencies are
now recognizing this and demanding the increased use of detailed, three-dimensional modeling.

1.2. The role of high performance computing. Researchers have recognized the deficien-
cies of the simplified homogeneous codes for some time, but have been unable to consider running
more realistic simulations until recently. Current simulations often lack sufficient spatial resolution
(to capture fingering) because of a paucity of subsurface data and the inability to solve the resulting
problems on even the largest of conventional vector supercomputers.

The size of the site to be modeled (typically several square kilometers) and the need to resolve
these heterogeneities adequately (on the order of meters), leads to computational domains with up-
wards of one billion spatial zones. The use of adaptive gridding and local refinement can reduce the
total number of zones needed by one or two orders of magnitude, but one is still left with huge prob-
lems that quickly overwhelm all but the largest of conventional supercomputers. Moreover, we need
to run hundreds of such simulations as we conduct time-dependent studies, examine different reme-
diation or production strategies, or run the code in a Monte Carlo fashion or within an optimization
code. In light of these considerations, it is necessary to employ massively parallel processing power,
and toward this end, we are building a parallel flow simulator called ParFlow. It is designed to be
portable and scalable across a variety of distributed memory MIMD machines with message passing,
ranging from workstation clusters to large MPPs.

Massively parallel processing may be necessary for detailed simulations, but it is not sufficient.
One also needs to employ high performance algorithms, that is, accurate and fast numerical tech-
niques that can be implemented efficiently on these machines. As we will see, simply changing the
linear-equation solver can result in two orders of magnitude reduction in CPU time. This is espe-
cially important in time-dependent simulations, where the right numerical method can mean the
difference between a 30-hour run and a 30-minute run on an MPP.

1.3. Overview of paper. In this paper, we will investigate the performance of a parallel
multigrid preconditioner for accelerating convergence of conjugate gradients, which is used to com-
pute a pressure quantity. Our numerical investigation considers the effects of boundary conditions,
coarse grid solver strategy, increasing the grid resolution, enlarging the domain, and varying the
geostatistical parameters used to define the subsurface realization. Scalability is also examined. The
results were obtained using the ParFlow groundwater flow simulator on the CRAY T3D massively
parallel computer.

The paper is organized as follows: We present our mathematical model and numerical dis-
cretization in §2. Our multigrid preconditioned conjugate gradient algorithm, MGCG, is described
in detail in §3, and its implementation is discussed in §4. The results of our numerical investigation
and parallel performance study are given in §5.

2. Numerical simulation of groundwater flow. We consider steady state saturated (i.e.,
single phase) flow, which is of practical interest because contaminant transport is most rapid in
this region. It is essential that we be able to solve such problems quickly and accurately because
a similar elliptic problem will constitute the main computational cost of the multiphase, time-
dependent simulations in which we are ultimately interested. In particular, we need an efficient and
scalable elliptic solver, which we have found in the MGCG algorithm described in this paper.

Our mathematical model of groundwater flow is based on Darcy’s law and conservation of mass

2

in a porous medium, which may be combined and rewritten as

(2.1) −∇ · (K∇(h+ z))−Q = 0

where h is the pressure head, K is the hydraulic conductivity (i.e., problem specification), and Q is
a source term (used to represent pumping wells, for example). At present, the problem domain is
assumed to be a parallelepiped; the boundary conditions may be Dirichlet or flux.

The hydraulic conductivity realization is central to the problem definition; it is embodied in the
K function in equation (2.1). Of course, one never has enough data (i.e., direct measurements) to
characterize a given site completely (i.e., to completely specify K). To develop the detailed subsur-
face characterization needed for the type of simulation described above, hydrogeologists typically
employ geostatistical techniques to create statistically accurate realizations of key subsurface prop-
erties, particularly the hydraulic conductivity [22]. Monte Carlo and optimization techniques can
be used to quantify the inherent uncertainty and enable site managers to perform more realistic risk
assessments. Although these realizations cannot give the precise value of the hydraulic conductivity
at an (x, y, z) coordinate, they do reproduce the statistical patterns of heterogeneity observed in real
systems, and can be used to evaluate various remediation strategies, say, determining the optimal
pumping configuration in a pump-and-treat scheme.

We use Tompson’s turning bands algorithm [22] to generate K. This is a technique for computing
a spectral random field with given statistical properties. Specifically, one specifies a geometric mean
µ for the K field, a variance σ2 for the ln(K) field, and correlation lengths λx, λy, and λz. See
[22] for a description of the turning bands algorithm, and see [5] for a discussion of its parallel
implementation.

The heterogeneous nature of the subsurface manifests itself in the variability of K, that is, in the
variability of the coefficient function for the elliptic PDE. In practice, this coefficient function may
vary by as many as ten orders of magnitude, and so the function is effectively discontinuous. This
results in an ill-conditioned linear system. In designing our multigrid algorithm, we must be careful
to consider the discontinuous nature of the function when defining the interpolation and restriction
operators, as well as the coarse grid operator.

2.1. Discrete solution approach. We employ a standard 7-point finite volume spatial dis-
cretization on a uniform mesh. After discretization, we obtain a large system of linear equations,
Ah = f . The coefficient matrix A is symmetric positive definite and has the usual seven stripe
pattern. The matrix has order N = nx×ny ×nz, where the ni are the number of grid points in the
x, y, and z directions, respectively. For problems of interest, N is in the millions; the large number
is dictated by the size of the physical site and the need to resolve heterogeneities adequately. Once
the pressure head is computed, the velocity field can be calculated easily using a simple differencing
scheme. This field is then passed to a transport code to simulate contaminant migration.

The solution of the large linear system is computationally intensive and must be done efficiently
and accurately. Since we are interested in detailed simulations (i.e., high resolution), we must use
an iterative scheme. Within the hydrology community, the most commonly used methods are SIP
and SSOR. Recently, however, the more powerful conjugate gradient method of Hestenes and Stiefel
(CGHS) [16], and its preconditioned version (PCG) [9], have been used with great success. For
example, polynomial preconditioned conjugate gradients was shown [18] to be an order of magnitude
faster than SIP and SSOR on groundwater problems.

Multigrid algorithms also are attractive for these types of problems. These techniques are among
the fastest currently available for the solution of linear systems arising from the discretization of
elliptic partial differential equations. Unlike most other iterative methods, a good multigrid solver’s
rate of convergence is independent of problem size, meaning that the number of iterations remains
fairly constant. Hence, both the multigrid algorithm and its parallel implementation are highly
scalable (see §4.1). On the other hand, multigrid algorithms tend to be problem specific and less
robust than Krylov iterative methods such as conjugate gradients. Fortunately, it is easy to combine

3

the best features of multigrid and conjugate gradients into one algorithm: multigrid preconditioned
conjugate gradients. The resulting algorithm is robust, efficient, and scalable. Another advantage
of this approach is that one can quickly implement a simple multigrid algorithm that is extremely
effective as a preconditioner, but perhaps less effective as a stand-alone solver. This is especially
valuable when the underlying PDE has a nearly discontinuous coefficient function, as in our case.

In this paper, we present results for multigrid and 2-step Jacobi preconditionings. Our emphasis
will be on the multigrid preconditioner, MG, described in the next section. The 2-step Jacobi
preconditioner is implemented via an inner iteration consisting of two steps of the basic Jacobi
method; see, e.g., [14, pages 384-385] for details.

3. The MGCG algorithm. In this section, we define our multigrid preconditioned conjugate
gradient algorithm, MGCG. We first describe our multigrid preconditioner, MG, the key components
of which are discussed in each of the following sections. These include: the coarsening strategy; the
prolongation and restriction operators, P and R; the coarse grid operator, Ac; the smoother, S; and
the coarsest grid solver.

The 2-level MG algorithm is defined as follows:

for i = 0, 1, . . . until convergence:

h− = S(hi, A, f,m)(3.1a)

rc = R(f −Ah−)(3.1b)

ec = (Ac)−1rc(3.1c)

h+ = h− + Pec(3.1d)

hi+1 = S(h+, A, f,m)(3.1e)

end for

In (3.1a) we perform m smoothing steps on the fine system of equations (we choose m = 1 in
this paper). We then restrict the residual to the coarse grid in (3.1b). In step (3.1c) we solve the
coarse system of equations, yielding a coarse grid approximation to the fine grid error. This coarse
grid error is then prolonged (i.e., interpolated) to the fine grid, and added to the current fine grid
solution approximation in step (3.1d). Finally, in (3.1e), we carry out m more smoothing steps on
the fine system of equations. Steps (3.1b)–(3.1d) together are called the correction step, and the
above algorithm describes a 2-level multigrid V-cycle. The full multilevel algorithm is defined by
recursively applying the 2-level method to the system of equations in (3.1c). In other words, instead
of solving (3.1c) exactly, we obtain an approximate solution by applying one V-cycle of the 2-level
algorithm. This yields a new, coarser system of equations, which we may also solve approximately
by applying the 2-level algorithm. This process is continued until we reach some coarsest system of
equations, which is then solved to complete the V-cycle.

Before we continue, we need to introduce some notation. The fine grid matrix A has the following
stencil structure:

(3.2) A =
[
−aLi,j,k

]


−aNi,j,k

−aWi,j,k aCi,j,k −aEi,j,k

−aSi,j,k

 [−aUi,j,k]

where W , E, S, N , L, U , and C are used mnemonically to stand for west, east, south, north, lower,
upper, and center, respectively. Now, split A such that

(3.3) A = T + B

4

fine grid coarse grid

Fig. 3.1. Semi-coarsening in the x direction.

where

(3.4) T =
[

0
]


0

−aWi,j,k ti,j,k −aEi,j,k

0

 [0
]

(3.5) B =
[
−aLi,j,k

]


−aNi,j,k

0 bi,j,k 0

−aSi,j,k

 [−aUi,j,k]

and where

ti,j,k = aCi,j,k − bi,j,k
bi,j,k = aSi,j,k + aNi,j,k + aLi,j,k + aUi,j,k.

Note that A is split in the x direction: T contains the off-diagonal coefficients of A corresponding
to the x direction and B describes the coupling in the y and z directions. We similarly split A in
the y and z directions, but for clarity, we will use only the above x splitting in the discourse that
follows. Note that since A is diagonally dominant, we have that

(3.6) ti,j,k ≥ aWi,j,k + aEi,j,k,

with strict equality holding away from Dirichlet boundaries.

3.1. Heuristic semi-coarsening strategy. Because the ground subsurface is generally strat-
ified in nature, our computational grids typically have skewed cell aspect ratios. This produces
anisotropy in the problem which causes “standard” multigrid algorithms to converge slowly. To
ameliorate this problem, we employ a semi-coarsening strategy in which the grid is coarsened in one
spatial direction at a time. Semi-coarsening in the x direction is illustrated in Figure 3.1; the coarse
grid is defined by taking every other yz plane.

To determine the direction of semi-coarsening, we use a heuristic based on the grid spacing.
The algorithm chooses a direction with smallest spacing (i.e., strongest coupling). If this minimum
spacing occurs in one or more directions, the algorithm attempts to coarsen first in x, then in y,
and finally in z. One important issue in this scheme is determining how and when to terminate the
coarsening algorithm. As we will see in §5, this issue can have a dramatic impact on the performance
of multigrid. The results presented there indicate that, in our MG algorithm, semi-coarsening down
to a 1× 1× 1 grid is optimal for typical groundwater problems.

5

In our numerical experiments, we show that this semi-coarsening strategy effectively ameliorates
anisotropies due to large grid cell aspect ratios. However, it does not take into account anisotropies
in the rock matrix (i.e., the permeability tensor). We are currently investigating this issue, especially
the relevant work discussed in [12, 15, 19, 20].

3.2. Operator-induced prolongation and restriction. One of the keys to a successful
multigrid algorithm is the definition of the prolongation operator, P , which defines how vectors on a
coarse grid are mapped onto the next finer grid. In the case of constant coefficient elliptic PDEs, P
is usually defined via a simple interpolation scheme. However, when the coefficient function varies
greatly, as in our problem, this is inadequate. Instead, one should use operator-induced prolongation,
meaning that P is defined in terms of the coefficients of the fine grid matrix. Our prolongation
operator is similar to those described in [2, 10, 13].

To elucidate, consider the prolongation of an error vector, ec, from the coarse grid, Gc, to the
fine grid, G. For the sake of discussion, let us assume that Gc is obtained by coarsening G in the
x direction, as in Figure 3.1. (To be precise, we actually have prolongation operators Px, Py, and
Pz, corresponding to each of the directions of semi-coarsening, but we will drop the subscripts for
clarity below.) Prolongation is then defined by

(3.7) Pec =

{
pWi,j,ke

c
i−1,j,k + pEi,j,ke

c
i+1,j,k , xi,j,k ∈ G \ Gc

eci,j,k , xi,j,k ∈ Gc

where

pWi,j,k = aWi,j,k/ti,j,k

pEi,j,k = aEi,j,k/ti,j,k.

In other words, at points on the fine grid that are not also on the coarse grid, the value of the
prolonged error vector is defined as a weighted average of x-adjacent coarse grid error components.
At points on the fine grid that are also on the coarse grid, the value of the prolonged error vector
is the same as the corresponding coarse grid error component. Prolongation in y and z is defined
analogously.

The restriction operator, R, is used to project from a fine grid to a coarse grid. As is commonly
done, we define R = PT .

3.3. Definition of coarse grid operator. Another important issue in multigrid is the defini-
tion of the coarse grid operator, Ac. In the literature, this matrix is often taken to be the Galerkin
matrix, PTAP . This choice for Ac is optimal in the sense that the quantity ‖e+Pec‖A, the norm of
the error after a multigrid correction step, is minimized over all coarse grid vectors ec. In particular,
if the error before correction is in the range of prolongation, then the correction step yields the exact
solution. The drawback of this coarse grid operator is that it has a 27-point stencil, which requires
additional storage and does not allow us to define the multi-level algorithm by recursively applying
the 2-level algorithm.

Another way to define Ac is to re-discretize the differential equation on the coarse grid. This
has the benefit of yielding a 7-point stencil structure, which requires less storage than the 27-point
stencil, and allows recursive definition of a multi-level algorithm. On the other hand, this operator
lacks the minimization property of the Galerkin operator.

In our algorithm, we attempt to combine the best of both approaches by algebraically defining
Ac as (again assuming semi-coarsening in the x direction)

(3.8) Ac = T c + Bc

6

where

(3.9) T c = PTTP =
[

0
]


0

−ac,Wi,j,k tci,j,k −ac,Ei,j,k

0

 [0
]

ac,Wi,j,k = aWi,j,kp
W
i−1,j,k

ac,Ei,j,k = aEi,j,kp
E
i+1,j,k

tci,j,k = ti,j,k − aWi,j,kp
E
i−1,j,k − aEi,j,kp

W
i+1,j,k

and

(3.10) Bc =
[
−ac,Li,j,k

]


−ac,Ni,j,k

0 bci,j,k 0

−ac,Si,j,k


[
−ac,Ui,j,k

]

ac,Si,j,k = aSi,j,k +
1
2a

S
i−1,j,k +

1
2a

S
i+1,j,k

ac,Ni,j,k = aNi,j,k +
1
2a

N
i−1,j,k +

1
2a

N
i+1,j,k

ac,Li,j,k = aLi,j,k +
1
2a

L
i−1,j,k +

1
2a

L
i+1,j,k

ac,Ui,j,k = aUi,j,k +
1
2a

U
i−1,j,k +

1
2a

U
i+1,j,k

bci,j,k = ac,Si,j,k + ac,Ni,j,k + ac,Li,j,k + ac,Ui,j,k.

In other words, Ac is a Galerkin operator in x (the direction of semi-coarsening) plus a weighted
sum of y and z stencil coefficients. The coefficients in (3.10) describe the connections in y and z of
the coarse grid variables, and our reason for choosing these particular weights is illustrated below.
Note that Ac is diagonally dominant and an inequality analogous to (3.6) holds.

Away from the domain boundaries, the algebraic definition of Ac in (3.8)–(3.10) also may be
interpreted geometrically as the result of a finite volume discretization of (2.1) on the coarse grid
Gc. Consider the grid point marked “◦” in Figure 3.2 (where we illustrate only two dimensions for
simplicity). The finite volume discretization requires hydraulic conductivity values on the cell faces
about this grid point. To generate the matrix coefficients, these values are first multiplied by the
area of the cell face, then divided by the grid spacing in the perpendicular direction. So, if grid
point “◦” in Figure 3.2 has index (i, j, k), then on the fine grid we have

aWi,j,k =
∆y∆z

∆x
Ki−1/2,j,k(3.11)

aEi,j,k =
∆y∆z

∆x
Ki+1/2,j,k

aSi,j,k =
∆x∆z

∆y
Ki,j−1/2,k

aNi,j,k =
∆x∆z

∆y
Ki,j+1/2,k.

7

Fig. 3.2. Definition of the coarse grid operator (2-d illustration with x semi-coarsening).

Now, consider the finite volume discretization on the coarse grid. We first compute hydraulic
conductivity values on coarse-grid cell faces as in Figure 3.2; for vertical faces, we take a harmonic
average of values on adjacent fine-grid cell faces, and for horizontal cell faces, we take an arithmetic
average of values on corresponding fine-grid cell faces. Since the x grid spacing on Gc is twice that
on G, we have that

ac,Wi,j,k =
∆y∆z

2∆x

(
2Ki−3/2,j,kKi−1/2,j,k

Ki−3/2,j,k +Ki−1/2,j,k

)
(3.12)

ac,Ei,j,k =
∆y∆z

2∆x

(
2Ki+3/2,j,kKi+1/2,j,k

Ki+3/2,j,k +Ki+1/2,j,k

)
ac,Si,j,k =

2∆x∆z

∆y

(
1
2Ki,j−1/2,k +

1
4Ki−1,j−1/2,k +

1
4Ki+1,j−1/2,k

)
ac,Ni,j,k =

2∆x∆z

∆y

(
1
2Ki,j+1/2,k +

1
4Ki−1,j+1/2,k +

1
4Ki+1,j+1/2,k

)
.

Using (3.11) in (3.12), and noting that equality holds in (3.6) in the interior of the domain, it is easy
to see that the coefficients produced by this finite volume discretization on the coarse grid are the
same as those given in (3.8)–(3.10).

3.4. Smoothers. The smoother is another important part of a multigrid algorithm. A “good”
smoother complements the correction step by damping modes that the correction step does not.
However, as is often the case with numerical algorithms, the smoother that does the best job of
damping these errors is typically the most computationally expensive. For example, line and plane
methods are generally better than are pointwise methods at damping high frequency error compo-
nents, but they are computationally more expensive and less parallelizable.

We use simple pointwise damped Jacobi (with weighting factor 2/3) and red/black Gauss-Seidel
(GS) smoothers in our MG algorithm. Although these smoothers are easy to implement scalably
in parallel, the resulting MG algorithm lacks robustness. However, as we will see (§3.6), we regain
robustness by using MG as a preconditioner within a conjugate gradient algorithm—without the
additional coding complexity (and possibly greater overhead) of a line or plane smoothing.

3.5. Coarsest grid solvers. To complete the multigrid algorithm, we must decide when to
stop the coarsening procedure, and how to solve the coarsest system of equations. For example,
should we solve the coarsest system of equations exactly, or just do a few smoothing steps to obtain
an approximate solution? In §5.1, we run several experiments in this regard, and we conclude that
coarsening down to a 1×1×1 grid is optimal for our algorithm and for this application. The 1×1×1
“system” is solved exactly via one sweep of red-black GS. (We employ CGHS and red/black GS as
our coarse grid solvers. One could also consider a direct solution of the coarsest grid system via
Gaussian elimination, but the iterative solvers are adequate for our purposes.)

3.6. Stand-alone multigrid versus multigrid as a preconditioner. Although multigrid
algorithms are extremely fast, they tend to be problem-specific and less robust than Krylov iterative
methods such as conjugate gradients. Fortunately, it is easy to combine the best features of multigrid
and conjugate gradients into a multigrid preconditioned conjugate gradient algorithm that is robust,
efficient, and scalable. The main advantage of this approach is that one can quickly implement a
simple multigrid algorithm that is extremely effective as a preconditioner, but perhaps less effective
as a stand-alone solver.

8

The well-known PCG method (Orthomin implementation) [6, 9] is given by

p0 = s0 = Cr0(3.13a)

for i = 0, 1, . . . until convergence:

αi =
〈ri, si〉
〈Api, pi〉

(3.13b)

xi+1 = xi + αipi(3.13c)

ri+1 = ri − αiApi(3.13d)

si+1 = Cri+1(3.13e)

βi =
〈ri+1, si+1〉
〈ri, si〉

(3.13f)

pi+1 = si+1 + βipi(3.13g)

end for

In the MGCG algorithm, the preconditioning operator, C, is never explicitly formed. Instead, (3.13e)
is effected by applying the MG algorithm (3.1) to the residual system of equations, Ae = r, using
an initial guess of e0 = ~0. The resulting approximate solution is si+1.

When designing a preconditioner for PCG, one needs to insure that the preconditioning matrix is
symmetric, and preferably positive definite. For multigrid preconditioning, this condition is satisfied
by doing an equal number of symmetric smoothing steps both before and after each coarse grid
correction. (The smoothing step is symmetric if the iteration matrix of the associated method is
symmetric.) However, this is not necessarily required (see, e.g., [21]). Multigrid algorithms also can
be applied to nonsymmetric problems (e.g., [11]) and to problems with irregular meshes (e.g., [17]).

Our current implementation of MGCG is simple but effective. The MG preconditioning step
consists of a single V-cycle (as defined above) with a choice of weighted Jacobi or symmetric red/black
GS smoothing. We use an equal number, m, of smoothing steps before and after correction. (In this
paper, m = 1.)

4. Parallel implementation. The MGCG algorithm described above has been implemented
in ParFlow, a portable and scalable parallel flow simulator. The algorithms in ParFlow all
employ a straightforward data decomposition approach to parallelism. Specifically, problem data
is distributed across a logical three-dimensional process grid topology consisting of P = p × q × r
processes. The data within a process is viewed as a three-dimensional subgrid of grid points (as
defined by the discretization of equation (2.1)). Vector data owned by a process is called a subvector,
and each element of a subvector is associated with a grid point in the process’ subgrid. Similarly,
matrix data owned by a process forms a submatrix. The rows of this submatrix are viewed as
stencils, and each stencil is associated with a grid point in the process’ subgrid. Note that although
we distribute the problem data by decomposing the problem domain, we are not doing domain
decomposition in the algorithmic sense. We are solving the full problem rather than independent
subproblems.

Computations in ParFlow proceed in an owner computes fashion. That is, processes only do
computations associated with their local subgrid, taking care to exchange data with neighboring
processes when needed. For example, consider the matrix-vector multiplication (matvec), y = Ax,
a key operation in the MGCG solver. To compute the matvec result at a given grid point (i, j, k),
we “apply” the stencil to the grid: For each neighboring grid point specified by the stencil, we
multiply the vector value at that point by the corresponding stencil coefficient, and then sum these
products. (This is equivalent to multiplying a row of the matrix A by the vector x.) However,
at subgrid boundary points, some stencil coefficients may reach outside of the process’ subgrid.
At these points, we must first communicate data from neighboring processes. In general, these
communications patterns can be quite complicated. Take, for example, pointwise red/black GS.

9

Before a process can do a red sweep, it must exchange black boundary data with neighboring
processes. Likewise, red boundary data must be exchanged before a black sweep can be completed.
In order to simplify coding and speed application development, subvectors and submatrices have an
additional layer of space set aside for storing this communicated boundary data. The grid points
associated with this layer are called ghost points.

When possible, the communications and computations in ParFlow are scheduled so that they
overlap. For example, in our matvec operation—for which the matrix A has a standard 7-point
stencil—the computations away from subgrid boundaries can be done independently of the boundary
data communications. If the parallel machine has the appropriate hardware support, we can do these
computations and communications simultaneously. On most machines, and for most large problems,
the communications will finish before the internal computations have completed, effectively masking
the communications costs. Unfortunately, the CRAY T3D does not provide this support.

We remark that ParFlow was designed to be parallel from its inception. In particular, com-
putations are organized so as to avoid explicit data redistribution, thereby improving the code’s
efficiency and parallel performance. The choice of process grid topology P can have a significant
impact on performance, largely due to cache issues [5]. Thus, in choosing the topology P , one must
weigh the competing needs of various portions of the code and determine the best overall topology.
One should not choose different topologies for different stages of the calculations and redistribute
data within the simulation.

4.1. Scalability. One of the attractive features of multigrid is that it can be a scalable algo-
rithm, meaning that the number of iterations required for convergence remains roughly constant as
the grid is refined. This is true for both stand-alone multigrid and multigrid preconditioned conju-
gate gradients. The emphasis on “can be” is meant to stress the importance of properly defining the
various key ingredients, especially the prolongation/restriction operators and the coarse grid opera-
tor. However, having a scalable algorithm is only half the equation: one also must have a scalable
parallel implementation. Since we semi-coarsen to a 1 × 1 × 1 problem, it is impossible for us to
have a truly scalable parallel implementation since the number of semi-coarsenings increases with
the size of the problem (in a logarithmic fashion). Although the amount of work and the amount of
communicated data per processor remains the same, the number of communication calls increases
as the problem size increases (since communications are needed at each grid level in the V-cycle).
This increased communication overhead is the only impediment to perfect scalability of the MG
algorithm. For all practical purposes, however, both our algorithm (number of iterations) and its
implementation (CPU time) are scalable, as we will show in §5.

Since we semi-coarsen the fine grid to a 1×1×1 problem, a rather severe load imbalance results
from the infamous “idle processor problem”. However, this is not as serious as it might at first seem.
In simulating groundwater flow through heterogeneous porous media for large sites, one must use a
large number of spatial zones—often in the tens of millions. For such large problems, comparatively
little work is being done while processes are idle (usually processes are idle at only a few of the
coarsest grid levels). Hence, the effects of this inefficient use of resources is usually negligible. See,
for example, [7, 8].

Finally, we comment that the conjugate gradient part of the MGCG algorithm also is not
perfectly scalable. This is because process data must be globally summed in order to compute the
inner products needed in the algorithm. The communications required to do this grow logarithmically
with the number of processes, but the effects of this increased communications is negligible (§5.5).

4.2. Portability via message-passing. We have successfully run ParFlow (in various in-
carnations) on the following platforms: a single Sparcstation, a cluster of Sparcstations, a multi-
processor SGI Onyx, an nCUBE/2, an IBM SP-1, and the CRAY T3D. Portability is realized via
message-passing. All message-passing primitives are localized within a machine-dependent library
called AMPS, which has been layered on top of several message-passing systems, including the
Reactive Kernel, PVM, Chameleon, and CRAY SHMEM calls. An MPI implementation is under

10

way.

5. Numerical Results. In this section, we will investigate the performance of our multigrid
algorithm in several contexts. In particular, we will study the effect of the following on the rate
of convergence: (i) choice of boundary conditions, coarsest grid size, and coarsest grid solver; (ii)
increasing the resolution (fixed domain size); (iii) enlarging the domain size (fixed grid spacing); and
(iv) increasing the degree of subsurface heterogeneity. We also will describe the algorithm’s parallel
performance on the CRAY T3D massively parallel computer.

All of the experiments in this section are of the following form: The domain, Ω = Lx×Ly ×Lz,
is a parallelepiped, where Lx, Ly, and Lz represent the domain lengths (in meters) in the x, y, and z
directions, respectively. The grid is Cartesian with N = nx×ny×nz points and ∆ = ∆x×∆y×∆z

spacing. The subsurface is assumed to be a single, heterogeneous hydrostratigraphic unit with
variable hydraulic conductivity K. To generate K, we use a turning bands algorithm [22] with
geostatistical parameters µ, σ, λx, λy, and λz. Here lnµ and σ represent the mean and standard
deviation of the lnK field (µ also may be thought of as the geometric mean of K), and λx, λy,
and λz represent the correlation lengths in the x, y, and z directions, respectively. Unless otherwise
stated, we impose Dirichlet boundary conditions (hydraulic head, H = h + z, equal 1) on the four
vertical sides of the domain, and no flow conditions on the top and bottom.

We consider three multigrid algorithms for solving the symmetric positive definite system of
linear equations that results from the discretization of the elliptic pressure equation. Specifically,
we compare the following: MG with symmetric pointwise red/black GS smoothing; MGCG with
symmetric pointwise red/black GS smoothing; and MGCG with damped Jacobi smoothing (MJCG).
The preconditioning step in both MGCG and MJCG consists of a single MG V-cycle. As discussed
in the previous section, the smoothing operation should be implemented in a symmetric fashion
when multigrid is used as a preconditioner for PCG. For comparison, we also consider PCG with
2-step Jacobi preconditioning (J2CG). Each of the algorithms was halted once the 2-norm of the
relative residual was less than 10−9. Unless otherwise noted, we used P = 2×4×4 processors of the
CRAY T3D. (Some of the larger problems required a larger number of processors because of their
memory needs.) All times are wall-clock times, and they are given in seconds. Although the test
problems are contrived, they serve to illustrate the performance of the MGCG algorithm.

5.1. Effect of coarsest grid solver strategy. In this section we study the effect on con-
vergence rate of the choice of coarsest grid solver strategy with respect to the type of boundary
conditions. The experiment details are as follows:

Ω = 1024× 1024× 25.6
N = 65× 65× 33, ∆ = 16× 16× 0.8
µ = 4, σ = 1.5, λx = 32, λy = 32, λz = 1.6

The results are shown in Tables 5.1 and 5.2 for four variants of the basic MG and MGCG algorithms.
In variant 1, we coarsen to a 3×3×3 coarsest grid and then do one step of red/black GS. In variant
2, we again coarsen to a 3× 3× 3 coarsest grid, but solve the coarsest system “exactly” via CGHS.
In variant 3, we coarsen as in variant 2, except that we stop at a 5× 5× 3 coarsest grid. In variant
4, we coarsen to one equation in one unknown and solve it exactly via one step of red/black GS. To
simplify the discussion below, we will refer to these variants of MG as MG1, MG2, MG3, and MG4.
The MGCG variants will be named similarly.

Let us consider first the results in Table 5.1. In these experiments, we employ our “standard”
boundary conditions: no flow on the top and bottom faces, and constant head (H = 1) on the
remaining vertical faces. Let us also focus first on the issues related to multigrid. From the table,
we see that convergence of MG2 is considerably better than that of MG1. The reason for this is
that the system of equations on the 3 × 3 × 3 coarsest grid is “almost singular” because of the
strong coupling in the direction of a flux boundary condition (i.e., the z direction). Consequently,
errors with “smooth” z components are not damped well by one step of GS smoothing. Note that the

11

Table 5.1
Coarse grid solution strategy: no-flow boundary conditions on the top and bottom; Dirichlet (H = 1) conditions

on the four vertical faces.

MG MGCG
Variant Coarse Grid Solver iters time iters time

1 1 step of RB on 3× 3× 3 111 18.6 21 3.8
2 CGHS on 3× 3× 3 58 10.9 19 3.9
3 CGHS on 5× 5× 3 22 4.9 14 3.5
4 1 step of RB on 1× 1× 1 19 3.5 10 2.1

Table 5.2
Coarse grid solution strategy: Dirichlet (H = 1) boundary conditions on all faces.

MG MGCG
Variant Coarse Grid Solver iters time iters time

1 1 step of RB on 3× 3× 3 12 2.0 8 1.6
2 CGHS on 3× 3× 3 12 2.2 8 1.7
3 CGHS on 5× 5× 3 12 2.1 8 1.7
4 1 step of RB on 1× 1× 1 15 2.8 10 2.1

CGHS coarsest grid solver of MG2 converged to machine tolerance in three iterations. We see further
significant improvement in convergence with algorithm MG3. To explain this, consider coarsening
the 5 × 5 × 3 grid first in x, and then in y, to a 3 × 3 × 3 grid (as in algorithm MG2). In each of
these coarsening steps, we are coarsening in a direction orthogonal to the direction with strongest
coupling (i.e., the z direction). These non-optimal coarsening steps actually slow convergence. Note
that here the CGHS coarsest grid solver took 34-36 iterations to solve the coarsest grid problems to
the specified tolerance (relative residual less than 10−9). Algorithm MG4 is the best method for this
problem. Here, the heuristic semi-coarsening strategy coarsens in z in the “optimal” way until the z
direction is eliminated altogether (thereby eliminating anisotropy in the z direction). This results in
a coarse grid operator that looks like a 2D Laplacian. The remainder of the V-cycle (which involves
coarsening only in the x and y directions) gives a good approximation to the solution of this system.
Hence, this multigrid algorithm performs quite well.

The MGCG algorithms perform similarly, except that they are much faster. Note that there is
only a slight difference in iteration count between MGCG1 and MGCG2, unlike for the corresponding
MG algorithms. This is an indication that algorithm MG1 is having trouble with just a few of the
modes, which the conjugate gradient part of MGCG1 easily eliminates.

Now consider the results in Table 5.2. Here, we repeat the above experiments with constant
head (H = 1) on all six faces. The results are entirely different. First, we observe much faster
convergence in this set of all-Dirichlet experiments. This is largely due to the near-singularity of the
coarse grid matrices in the previous table, as discussed earlier. For the all-Dirichlet problems, it can
be shown that both red/black GS and CGHS will solve the 3× 3× 3 coarse grid problem in just one
iteration. Since red/black GS is cheaper than CGHS, it is faster, as observed in the table. It also can
be shown that CGHS will solve the 5× 5× 3 coarse grid problems in just nine iterations. Although
algorithm MG3 takes a bit longer to solve the coarsest grid problems, there is less semi-coarsening
than in MG1 and MG2, and the overall algorithm is competitive. Second, we notice that the variant
4 algorithms produce the worst results in Table 5.2 and the best results in Table 5.1. Since our finite
volume discretization is vertex-centered, the boundary condition equations are not coupled to the
other matrix equations. This, combined with our algebraic definition of the prolongation operator,
results in prolongation coefficients that are zero at grid points near Dirichlet boundaries. Hence, the
nx×ny× 3 coarse grid obtains no effective correction from the coarser nx×ny× 2 grid, which slows
convergence of the variant 4 algorithms.

12

Table 5.3
Increasing the spatial resolution: the domain size is fixed while the number of grid points is increased.

Problem Size J2CG MJCG MGCG MG
nx ny nz iters time iters time iters time iters time
17 17 9 456 1.1 12 0.3 9 0.4 12 0.4
33 33 17 963 5.7 13 0.5 10 0.7 17 1.1
65 65 33 1895 57.1 15 1.9 10 2.1 18 3.4

129 129 65 3706 772.1 16 10.8 11 12.6 21 20.6
257 257 129 7391 *1549.5 NA 11 *12.9 23 *23.9

*These times are for 256 processors (P = 4× 8× 8)

We remark that the mixed boundary conditions used in the experiments of Table 5.1 are more
likely to arise in practice, and so we prefer the coarsening strategy of the variant 4 algorithms.

5.2. Increasing the Spatial Resolution. In this section we study the effect on convergence
rate of increasing the spatial resolution. Specifically, we increase the number of grid points used to
resolve each correlation length, but keep the problem domain fixed. (We start with two grid points
per correlation length and increase to 32 grid points per correlation length.) The experiment details
are as follows:

Ω = 1024× 1024× 25.6
∆ = 1024.0/(nx − 1)× 1024.0/(ny − 1)× 25.6/(nz − 1)
µ = 4, σ = 1.5, λx = 128, λy = 128, λz = 6.4

The results are shown in Table 5.3.
We see that increasing the spatial resolution has a significant effect on the convergence rate

of J2CG (as expected), but has little effect on the MG-based algorithms. Specifically, the J2CG
iteration count doubles when the resolution doubles (i.e, problem size increases by 23), but MGCG
converges in about ten iterations independent of resolution. As the resolution increases, J2CG
becomes increasingly impractical, and one must use a multigrid approach. For example, in the
257×257×129 case, J2CG takes about 120 times longer to converge than MGCG, and this multiplier
would grow if we increased the problem size further. Note also, that although MJCG takes more
iterations to converge than MGCG, it converges a little faster. This is due to two things: (i) Jacobi
has less communication overhead and, in general, runs at a higher MFLOP rate than red/black GS;
and (ii) in MJCG we do two smoothings per grid level, but in MGCG, we do three smoothings because
of an extra half sweep that is done to insure symmetry. Note that the stand-alone MG algorithm is
not as effective as MGCG because of problems with a few extraneous modes (as explained earlier).

We remark that if we did not semi-coarsen to a grid with only 1 grid point in the z direction,
the iteration counts in the first few rows of the table would be higher. This is because the first
semi-coarsening in an x or y direction would occur not because the coupling in these directions was
strongest (“optimal” coarsening strategy), but as a result of having too few z points. As discussed
in §5.1, this would have an adverse effect on convergence which would be more pronounced for the
smaller problem sizes. See [4] for related experiments.

Remark: The overall slow convergence of J2CG results partly from anisotropy in the problem
due to the skewed grid cell aspect ratio. This is a consequence of how the eigenvalues of A are
distributed. When the grid cell aspect ratio is near 1:1:1, the eigenvalues are more tightly clustered
in the middle of the spectrum, and the effective condition number is less than the true condition
number. (Recall that the rate of convergence for conjugate gradient methods is governed by the
effective condition number, not the true condition number, because conjugate gradients is able to
damp outlying eigenvalues quickly.) When the grid cells are skewed, the eigenvalues cluster near
the endpoints of the spectrum, and the effective and true condition numbers are nearly identical.

13

Table 5.4
Enlarging the domain size: the grid spacing is fixed while the number of grid points is increased.

Problem Size J2CG MJCG MGCG MG
nx ny nz iters time iters time iters time iters time
17 17 9 453 1.1 11 0.3 9 0.4 12 0.4
33 33 17 957 5.7 13 0.5 10 0.7 14 0.9
65 65 33 1860 56.0 16 2.0 10 2.1 19 3.6

129 129 65 3665 763.4 18 12.1 11 12.6 21 20.6
257 257 129 6696 *1403.8 NA 13 *15.1 22 *22.8

*These times are for 256 processors (P = 4× 8× 8)

Table 5.5
Varying the degree of heterogeneity.

Heterogeneity J2CG MGCG MG
σ σ2

K iters time iters time iters time
0.0 0× 100 1701 354.4 9 10.4 13 12.8
0.5 6× 100 3121 650.3 9 10.4 13 12.8
1.0 7× 101 3388 705.7 9 10.4 12 11.8
1.5 1× 103 3670 764.6 11 12.5 22 21.6
2.0 4× 104 4273 889.5 17 18.8 diverged
2.5 4× 106 5259 1094.4 26 28.2 diverged

Moreover, the flux boundary conditions on the z faces result in a larger effective condition number
than would Dirichlet conditions, reducing further the effectiveness of J2CG on this problem.

5.3. Enlarging the size of the domain. In this section we study the effect on convergence
rate of growing the domain size. In some remediation studies, one wishes to enlarge the initial site
to encompass neighboring property. This might be necessary, for instance, if a contaminant were
discovered to have migrated off-site. In such a scenario, the engineer might wish to use the same
geostatistics and grid spacing, but enlarge the domain by increasing the number of spatial zones.
In our experiments, we maintain a constant two grid points per correlation length. The experiment
details are as follows:

Ω = (nx − 1)∆x × (ny − 1)∆y × (nz − 1)∆z

∆ = 4× 4× 0.2
µ = 4, σ = 1.5, λx = 8, λy = 8, λz = 0.4

The results are shown in Table 5.4.
The results here are qualitatively and quantitatively similar to the results in Table 5.3. The

minor differences in the two tables are due to the differing subsurface realizations (produced by
turning bands) in the two experiments.

5.4. Increasing Degree of Heterogeneity. In this section we study the effect on convergence
rate of increasing the degree of heterogeneity. This heterogeneity is represented by the parameter σ
described earlier. The experiment details are as follows:

Ω = 1024× 1024× 25.6
N = 129× 129× 65, ∆ = 8× 8× 0.4
µ = 4, λx = 16, λy = 16, λz = 0.8

The results are shown in Table 5.5.
When σ = 0.0, the subsurface medium is homogeneous, in which case the coefficient function K

is constant, and so the matrix A is Laplacian-like. As σ increases, so does the degree of heterogeneity.

14

J2CG

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 1000 2000 3000 4000 5000 6000

Number of Iterations

N
o

rm
 o

f
R

el
at

iv
e

R
es

id
u

al 0.0
0.5
1.0
1.5
2.0
2.5

MGCG

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

0 5 10 15 20 25 30

Number of Iterations

N
o

rm
 o

f
R

el
at

iv
e

R
es

id
u

al 0.0
0.5
1.0
1.5
2.0
2.5

Fig. 5.1. Convergence plots for J2CG and MGCG for several values of σ (as in Table 5.5). As σ increases, the
subsurface realization becomes more heterogeneous, and the underlying matrix problem becomes more difficult.

Specifically, the variance, σ2
K , of the lognormally distributed conductivity field K increases exponen-

tially. This variability in K causes the coefficient matrix A to becomes increasingly ill-conditioned.
The effect on MG of this increasing heterogeneity is significant, and we see that for two of the runs,
it actually diverges. However, when MG is used as a preconditioner for PCG (MGCG), convergence
is obtained in each case. Note that the iterations for MGCG grow like the order of the variance.
The convergence of J2CG is poor, as expected.

Convergence plots for J2CG and MGCG are given in Figure 5.1 for each of the values of σ in
Table 5.5. Notice that the MGCG convergence curves are nearly linear and quite steep in comparison
to J2CG, indicating that MGCG is making rapid and steady progress toward the solution. (The
log of the 2-norm of the relative residual is plotted against the number of iterations required for
convergence.)

5.5. Parallel performance on the CRAY T3D. In earlier experiments [5], we examined
the parallel performance of the ParFlow simulator and its component routines. In this section, we
reprise those experiments with respect to the multigrid algorithm. Specifically, we will examine the
scalability of the MGCG algorithm on the CRAY T3D massively parallel computer system. The
results given here differ from those in [5] for several reasons, including compiler upgrades, algorithm
enhancements, and coding improvements.

In Figures 5.2–5.3, we present scaled speedups for the matvec, MG preconditioning, and MGCG
routines on the CRAY T3D. Our machine has 256 nodes, each consisting of a 150MHz DEC Alpha
processor and 64MB of memory; our AMPS message-passing library is layered on top of Cray’s
SHMEM library. In our experiments, each processor is given a 64 × 64 × 32 subgrid, so that the
total problem size on P = p × q × r processors is NP = 64p × 64q × 32r. In other words, we allow
the total problem size to grow with P . Moreover, the shape of the problem domain is determined
by the process grid topology p× q× r. The point of this study is to see how well the routines make
use of additional processors. Our goal is to obtain nearly flat curves (good scalability) that are near
one (good scaled efficiency).

The first three graphs in Figures 5.2–5.3 illustrate the scalability of our implementations of the
matvec, MG, and MGCG routines in terms of MFLOPs. Specifically, we define scaled speedup to be
MP /(PM1), where MP is the MFLOPs achieved by the operation in question on P processes. The
scaled speedup graphs are all fairly flat, indicating good scalability. The MG and MGCG routines
have nearly identical performance (about 80% scaled efficiency) because MGCG spends most of its
time in the MG preconditioning routine. The matvec routine has lower scaled efficiency (about 65%)
because it has a much higher MFLOP rate than the other routines, and so communication costs are
relatively higher. (The matvec, MG, and MGCG routines averaged 2.12, 1.25, and 1.37 GFLOPs,

15

Matvec

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 128 256

Number of Processors

S
ca

le
d

 S
p

ee
d

u
p

MG

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 128 256

Number of Processors

S
ca

le
d

 S
p

ee
d

u
p

Fig. 5.2. Scaled speedup of the ParFlow matvec and MG preconditioning routines on the CRAY T3D.

MGCG (MFLOP)

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 128 256

Number of Processors

S
ca

le
d

 S
p

ee
d

u
p

MGCG (Time)

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 128 256

Number of Processors

S
ca

le
d

 S
p

ee
d

u
p

0

5

10

15

20

25

30 M
G

C
G

 Iteratio
n

s

Scaled Speedup

MGCG Iterations

Fig. 5.3. Scaled speedup of the ParFlow MGCG routine on the CRAY T3D. The figure on the left shows the
scalability of the MGCG implementation (via MFLOP rates); the figure on right shows the scalability of the MGCG
implementation and algorithm (via timings that include the effects of differing iteration counts).

respectively, on 256 processors.) Thus, all three routines are scalable, meaning, for example, that the
time per MGCG iteration remains constant as we increase the problem size and number of processes
in tandem.

In the last graph (Figure 5.3), we present scaled speedup for MGCG in terms of CPU time.
That is, we define scaled speedup to be T1/TP , where TP is the time required to execute the
MGCG algorithm (to convergence) on P processes. Since the number of iterations required for
convergence fluctuates with P , this graph illustrates the combined scalability of the algorithm itself
and our implementation of it. We also plot MGCG iteration count, which varies between 20 and
26 iterations (using the C-norm stopping criterion). Notice the inverted relationship between scaled
speedup and iteration count (as one would expect).

Remark: One might expect the number of MGCG iterations to increase monotonically with the
size of the problem (which grows with the number of processors), but this is not the case. Recall
that in our definition of scaled speedup, the computational domain is growing with P—and changing
shape as we move from one process grid topology to the next. This means that the eigenstructures
of the underlying matrices change from one run to the next, which accounts for the up-and-down
iteration counts. We could largely eliminate this effect by keeping the domain fixed and increasing
the resolution as we grow the problem size, but this would require varying the topology of the
subgrid assigned to each processor. As discussed in [5], this can have a dramatic impact on node
performance, causing another set of problems. (In our experiments, we used the following process
grid topologies: 1× 1× 1, 1× 1× 2, 1× 2× 2, 1× 2× 4, 1× 4× 4, 1× 4× 8, 1× 8× 8, 1× 8× 16,
2× 8× 16.)

16

6. Summary. This paper focuses on the numerical simulation of groundwater flow through
heterogeneous porous media. The key computational challenge is the solution of a large, sparse
system of linear equations for the pressure head. The size of the sites to be modeled (on the order of
kilometers), and the need to resolve subsurface heterogeneities (to within a few meters), necessitates
the use of efficient numerical methods and the power of massively parallel processing. In this paper,
we introduce a parallel multigrid preconditioned conjugate gradient algorithm for solving these linear
systems.

After defining the various components of the multigrid algorithm, and discussing its parallel im-
plementation, we investigated its performance in a variety of numerical experiments. We considered
the effects of boundary conditions, coarse grid solver strategy, increasing the grid resolution, enlarg-
ing the domain, and varying the geostatistical parameters used to define the subsurface realization.
Our multigrid preconditioned conjugate gradient solver performed extremely well. For example, we
were able to solve a problem with more than 8M spatial zones in under 13 seconds on a 256-processor
CRAY T3D. We also demonstrated the scalability of both the algorithm and its implementation.
This solver has been incorporated in the ParFlow simulator and is being used to enable detailed
modeling of large sites.

7. Acknowledgements. We acknowledge the valuable participation of Charles Baldwin, John
Bell, William Bosl, Thomas Fogwell, Steven Smith, and Andrew Tompson in the ParFlow project.
In particular, we are indebted to Steven Smith for his fine implementation of the AMPS message-
passing routines on the CRAY T3D; and we thank Andrew Tompson for his patient tutoring in the
application area, especially in the use of geostatistics.

The CRAY T3D experiments described in this paper were run on the 256-processor machine
located at Lawrence Livermore National Laboratory as part of the H4P Industrial Computing Ini-
tiative funded by DOE Defense Programs.

REFERENCES

[1] R. Ababou, D. B. McLaughlin, L. W. Gelhar, and A. F. B. Tompson, Numerical simulation of three-
dimensional saturated flow in randomly heterogeneous porous media, Transport in Porous Media, 4 (1989),
pp. 549–565. 2

[2] R. E. Alcouffe, A. Brandt, J. E. Dendy, and J. W. Painter, The multi–grid method for the diffusion
equation with strongly discontinuous coefficients, SIAM J. Sci. Stat. Comput., 2 (1981), pp. 430–454. 6

[3] S. F. Ashby, W. J. Bosl, R. D. Falgout, S. G. Smith, A. F. B. Tompson, and T. J. Williams, A numerical
simulation of groundwater flow and contaminant transport on the CRAY T3D and C90 supercomputers, in
Proc. 34th Cray User Group Conference, Cray User Group, Inc., 1994, pp. 275–282. Held in Tours, France,
October 10–14, 1994. Also available as LLNL technical report UCRL-JC-118635. 2

[4] S. F. Ashby, R. D. Falgout, S. G. Smith, and T. W. Fogwell, Multigrid preconditioned conjugate gradients
for the numerical simulation of groundwater flow on the CRAY T3D, in Proc. ANS International Conference
on Mathematics and Computations, Reactor Physics, and Environmental Analyses, 1995. Held in Portland,
OR, April 30–May 4 1995. Refereed proceedings. 13

[5] S. F. Ashby, R. D. Falgout, S. G. Smith, and A. F. B. Tompson, The parallel performance of a groundwater
flow code on the CRAY T3D, in Proc. Seventh SIAM Conference on Parallel Processing for Scientific
Computing, Society for Industrial and Applied Mathematics, 1995, pp. 131–136. Held in San Francisco,
February 15–17, 1995. Also available as LLNL technical report UCRL-JC-118604. 3, 10, 15, 16

[6] S. F. Ashby, T. A. Manteuffel, and P. E. Saylor, A taxonomy for conjugate gradient methods, SIAM J.
Numer. Anal., 27 (1990), pp. 1542–1568. 9

[7] W. L. Briggs, L. Hart, S. F. McCormick, and D. Quinlan, Multigrid methods on a hypercube, in Multigrid
Methods: Theory, Applications, and Supercomputing, S. F. McCormick, ed., vol. 110 of Lecture Notes in
Pure and Applied Mathematics, Marcel Dekker, New York, 1988, pp. 63–83. 10

[8] T. F. Chan and R. S. Tuminaro, Design and implementation of parallel multigrid algorithms, in Proceedings
of the Third Copper Mountain Conference on Multigrid Methods, S. F. McCormick, ed., New York, 1987,
Marcel Dekker, pp. 101–115. 10

[9] P. Concus, G. H. Golub, and D. P. O’Leary, A generalized conjugate gradient method for the numerical
solution of elliptic partial differential equations, in Sparse Matrix Computations, J. R. Bunch and D. J.
Rose, eds., Academic Press, New York, 1976, pp. 309–332. 3, 9

[10] J. E. Dendy, Black box multigrid, J. Comput. Phys., 48 (1982), pp. 366–386. 6
[11] , Black box multigrid for nonsymmetric problems, Appl. Math. Comput., 13 (1983), pp. 261–284. 9

17

[12] J. E. Dendy and C. C. Tazartes, Grandchild of the frequency decomposition multigrid method, SIAM J. Sci.
Comput., 16 (1995), pp. 307–319. 6

[13] T. W. Fogwell and F. Brankhagen, Multigrid method for the solution of porous media multiphase flow
equations, in Nonlinear Hyperbolic Equations—Theory, Computation Methods, and Applications, vol. 24
of Notes on Numer. Fluid Mech., Vieweg, Braunschweig, 1989, pp. 139–148. 6

[14] G. H. Golub and J. M. Ortega, Scientific Computing: An Introduction with Parallel Computing, Academic
Press, San Diego, CA, 1993. 4

[15] W. Hackbusch, The frequency decomposition multigrid method, part I: Application to anisotropic equations,
Numer. Math., 56 (1989), pp. 229–245. 6

[16] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur.
Standards, 49 (1952), pp. 409–435. 3

[17] D. J. Mavriplis and A. Jameson, Multigrid solution of the Euler equations on unstructured and adaptive
meshes, in Multigrid Methods: Theory, Applications, and Supercomputing, S. F. McCormick, ed., vol. 110
of Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New York, 1988, pp. 413–429. 9

[18] P. D. Meyer, A. J. Valocchi, S. F. Ashby, and P. E. Saylor, A numerical investigation of the conjugate
gradient method as applied to three-dimensional groundwater flow problems in randomly heterogeneous
porous media, Water Resources Res., 25 (1989), pp. 1440–1446. 3

[19] N. H. Naik and J. R. Rosendale, The improved robustness of multigrid elliptic solvers based on multiple
semicoarsened grids, SIAM J. Numer. Anal., 30 (1993), pp. 215–229. 6

[20] S. Schaffer, A semi-coarsening multigrid method for elliptic partial differential equations with highly discon-
tinuous and anisotropic coefficients, SIAM J. Sci. Comput., (To appear). 6

[21] O. Tatebe, The multigrid preconditioned conjugate gradient method, in Sixth Copper Mountain Conference on
Multigrid Methods, N. D. Melson, T. A. Manteuffel, and S. F. McCormick, eds., vol. CP 3224, Hampton,
VA, 1993, NASA, pp. 621–634. 9

[22] A. F. B. Tompson, R. Ababou, and L. W. Gelhar, Implementation of of the three-dimensional turning bands
random field generator, Water Resources Res., 25 (1989), pp. 2227–2243. 3, 11

[23] A. F. B. Tompson, S. F. Ashby, R. D. Falgout, S. G. Smith, T. W. Fogwell, and G. A. Loosmore, Use of
high performance computing to examine the effectiveness of aquifer remediation, in Proc. X International
Conference on Computational Methods in Water Resources, A. Peters, G. Wittum, B. Herrling, U. Meissner,
C. Brebbia, W. Gray, and G. Pinder, eds., vol. 2, Kluwer Academic Publishers, Dordrecht, 1994. Held in
Heidelberg, Germany, July 19-22, 1994. Also available as LLNL technical report UCRL-JC-115374. 1

18

