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SUMMARY

This paper studies the use of a generalized hierarchical basis transformation at each level of a multilevel
block factorization. The factorization may be used as a preconditioner to the conjugate gradient method, or the
structure it sets up may be used to define a multigrid method. The basis transformation is performed with an
averaged piecewise constant interpolant and is applicable to unstructured elliptic problems. The results show
greatly improved convergence rate when the transformation is applied for solving sample diffusion and elasticity
problems. The cost of the method, however, grows and can get very high with the number of of nonzeros per row.
Copyright c© 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

Hierarchical basis (HB) preconditioners are composed of a transformation of the nodal basis coefficient
matrix A to a hierarchical basis, a preconditioning of this HB coefficient matrix, and a transformation
of this preconditioning back to the nodal basis [37, 3, 26]. For elliptic problems, the preconditioned
matrices have condition number O((log(h−1))2) in two dimensions and O(h−1) in three dimensions,
where h is the mesh size. Although these condition numbers are poorer than for multigrid methods,
HB preconditioners may be more robust, relying only on local properties of the mesh in their analysis,
while giving scalability that is better than for many other preconditioners.

HB preconditioners are typically applied to finite element matrices with adaptive local mesh
refinement where the hierarchical basis is clearly defined. Recently, however, methods have been
developed to construct “generalized” hierarchical bases for completely unstructured problems (i.e., no
nested meshes) so that HB preconditioners may be applied [8, 9, 10, 5]. These techniques sequentially
select “fine” grid points as those that are near the center of two or three other grid points; these latter
grid points are then labeled as “vertex parents”. The vertex parents serve as the grid points on the
coarser mesh.
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This paper proposes a method for unstructured problems that assumes that an approximate
hierarchical basis for the finite element space is not available or is difficult to find. Instead, a very simple
generalized hierarchical basis is used, based on coarsening and interpolation ideas from algebraic
multigrid (AMG) methods. The basis is constructed algebraically. The possibly poorer A-orthogonality
of the new basis vectors between different levels translates into a transformed matrix that is not as
strongly block diagonal and is less well-conditioned than when a good HB transformation can be
found. To compensate for this, we use a block factorization preconditioner instead of the usual block
diagonal or block Gauss-Seidel preconditioners at each level of the transformed matrix. In principle,
the block factorization preconditioner can be made more accurate if necessary when the generalized
HB transformation is poor. The combination of the HB transformation with the approximate block
factorization can be viewed as a modified block factorization in the sense that certain vectors that are
in the near-nullspace of A remain in the near-nullspace of the approximate Schur complement.

The approximate block factorization sets up a structure very similar to that of multigrid methods.
In particular, coarse grid operators are constructed, as well as operators that act as prolongators. The
multilevel block factorization that is recursively defined at each level may be used as a smoother to a
multigrid process with the above components. This defines a type of W -cycle multigrid. More precisely,
the kth coarse level grid is visited O(k) times (versus O(2k) times in a model 2-D or 3-D geometric
coarsening for a true W -cycle).

Methods that are related to HB preconditioners include those that use a hierarchical ordering of the
grid points, such as the classical two-level methods, e.g., [4, 1], and some incomplete LU factorization
techniques, e.g., [30, 13]. Multilevel block factorizations can also be connected to multigrid methods,
and indeed, for many problems, a hierarchical basis transformation is not necessary to get multigrid
convergence rates, e.g., [24, 25].

The proposed hierarchical basis block factorization (HBBF) is a middle ground between algebraic
multigrid methods and multilevel block factorization preconditioners. The former relies on coarse grids
and interpolation operators that match the problem being solved. The latter uses general purpose ILU
or sparse approximate inverse techniques. HBBF utilizes a simple interpolation technique. When this
interpolation is effective, the multilevel block factorization is economical to carry out; when it is less
effective, the method relies more on the block factorization to compute an accurate preconditioning.
HBBF can also be used to define a multigrid method, which we call BFMG. In section 2, these ideas
will be made precise. Section 3 reports numerical results that illustrate the behavior of the multilevel
block factorization with and without the generalized HB transformation.

2. HIERARCHICAL BASIS BLOCK FACTORIZATION

2.1. Hierarchical basis transformation

For simplicity, we will only discuss the hierarchical basis transformation for two levels; the multilevel
case is defined recursively. Consider the symmetric positive definite linear system in the nodal basis,
Ax = b, and a partitioning of the variables and corresponding equations into two sets, called fine and
coarse. The partitioning induces the block form(

Af f A f c
Ac f Acc

)(
x f
xc

)
=

(
b f
bc

)
(1)

where the subscripts (.) f and (.)c indicate the fine and coarse sets, respectively.
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HIERARCHICAL BASIS MULTILEVEL BLOCK FACTORIZATIONS 3

A hierarchical basis transformation J transforms a vector from a hierarchical basis to a nodal basis.
We consider hierarchical basis transformations of the form

J =
(

I P
0 I

)
(2)

where the partitioning of J is the same as the partitioning of A. In classical hierarchical basis methods,
P is a matrix with two nonzero entries of 1/2 in each row, corresponding to the contribution of the
coarse grid basis vectors to the fine variable. Our choice of P will be discussed below.

Given the transformation J , the linear system to be solved in the hierarchical basis is

Âx̂ = b̂ (3)

where Â = J T AJ and b̂ = J T b, with the solution in the nodal basis being recovered by x = J x̂.
The matrix Â has the block form (

Â f f Â f c

Âc f Âcc

)
(4)

where

Â f f = Af f

Â f c = Af f P +Af c

Âc f = PT A f f +Ac f

Âcc = PT A f f P +Ac f P +PT A f c +Acc

and

b̂ f = b f

b̂c = PT b f +bc

x f = x̂ f +P x̂c

xc = x̂c.

If P ≈ −A−1
f f A f c, then the off-diagonal blocks Â f c and Âc f are almost zero, i.e., the matrix is almost

block diagonal. Finally, an important property is that the inverse HB transformation is sparse,

J −1 =
(

I −P
0 I

)
and thus the preconditioning in the hierarchical basis is easily transformed back to the nodal basis.

From the implementation point of view, the transformed matrix Â, which is denser than the nodal
basis matrix, does not need to be stored during the solve phase—it is utilized in factored form.

The matrix P is analogous to the coarse-to-fine prolongation mapping in AMG. Our aim in the
remainder of this subsection is to establish some choices of P for the HBBF preconditioner.

2.1.1. Coarsening In AMG, coarsening refers to the partitioning of the variables into fine and coarse
sets. Almost all coarsening algorithms rely on some determination of whether a coupling between two
variables is “strong” or “weak.” From there, the algorithms may choose the coarse set to be a set of
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4 EDMOND CHOW AND PANAYOT S. VASSILEVSKI

variables that do not have any strong couplings between them. In graph theory terminology, this is
called an independent set.

In AMG defined in [29] (motivated mostly for M–matrices), a variable xi is strongly coupled to x j if

−ai j ≥ θs max
k �=i

{−aik

}
(5)

where 0 < θs ≤ 1 is called the strength threshold. We additionally say that for θs = 0, xi is strongly
coupled to x j if ai j < 0. In this paper, we coarsen by using this definition of strong coupling and select
an independent set as the coarse set.

Coarsening procedures are also used in some multilevel block factorizations to define the variables
that form the next level. Here, an objective of several practitioners is to select the fine set such that
Af f is diagonally dominant so that relaxation or solves with this matrix is efficient [14, 33, 19]. These
procedures, however, do not try to assure that the coarse set provides good interpolation for the fine
grid problem.

2.1.2. Interpolation Once the coarse and fine sets have been chosen, interpolation defines the weights
in the matrix P . The definition of strong couplings is also used here to define which coarse variables
contribute to which fine variables in the hierarchical basis.

Let the “smooth vector” e denote a vector from the “smooth” part of the spectrum of A, i.e., Ae ≈ 0.
For scalar elliptic PDEs, e can be the vector of all ones. Further let e f and ec denote the components
of e on the fine and coarse variables, respectively. It is desirable that P properly interpolates these
smooth vectors, i.e.,

Pec = e f . (6)

For a single vector e, this can always be exactly satisfied by scaling the rows of P . Combined with
Ae ≈ 0, condition (6) leads to

Âccec =
(

P
I

)T

A

(
P
I

)
ec = (PT A f f P +Ac f P +PT A f c +Acc)ec ≈ 0 (7)

which means that the smooth vector e is preserved in the near-nullspace of Âcc. Thus, as a coarse grid
operator, Âcc approximates the behavior of A, at least for the vector e.

A simple interpolant that satisfies (6) for e = (1) and that does not depend on matrix values is the
averaged piecewise constant or equally weighted interpolant. Given an ordering of the fine and coarse
variables, this interpolant is defined as

Pi j =
{

1/di the ith fine variable is strongly coupled to the jth coarse variable
0 otherwise

where di is the number of coarse variables that are strongly coupled to variable i.
Note that all strong couplings are used in this interpolant. In some cases, some of these strong

couplings are redundant and can be neglected. In [8, 9, 10, 5], only two or three couplings for each fine
variable are used in the generalized hierarchical basis transformation. In section 3.6, we experiment
with using only a single strong coupling (corresponding to a piecewise constant interpolant (denoted
by P1), and with using at most two strong couplings (denoted by P2), in order to reduce the cost of
the HB transformation.

More sophisticated choices for P can be used. For example, if access to the geometric coordinates
of the fine grid points is available, one may use 2 (in 2-D) or 3 (in 3-D) strongly coupled coarse nodes to
interpolate linear functions exactly. This will generally change the weights of P in the above formula.
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HIERARCHICAL BASIS MULTILEVEL BLOCK FACTORIZATIONS 5

2.2. Approximate block factorization

2.2.1. Approximate block factorization in the nodal basis Given a partitioning of the variables into
fine and coarse sets, the approximate block LU factorization of the matrix A in the nodal basis is(

Af f A f c
Ac f Acc

)
≈

(
Af f 0
Ac f S

)(
I −P
0 I

)
(8)

where S ≈ Acc −Ac f A
−1
f f A f c is an approximation to the Schur complement and P is an approximation

to −A−1
f f A f c. To solve approximately with this factorization, solves with Af f and S are required, either

of which may be performed exactly or approximately.
The multilevel factorization recursively applies this factorization to S [2, 32, 31, 6]. In order for this

process to be economical, a sparse approximation to S is typically needed. There are many proposed
approximations to S, including several based on multigrid ideas [27, 36, 28, 7, 5]. In this paper, we
use approximations based on algebraic techniques. For example, the following approximations are
possible.

• S1 = Acc −Ac f Ã
−1
f f

A f c, where Ã−1
f f

is a sparse approximation to A−1
f f .

• S2 = Acc +Ac f P where P is a sparse approximation to −A−1
f f A f c, which may or may not be the

same as the P in (8). This construction of S2 is not necessarily symmetric.

• S3 =
(
PT , I

)
A

(
P
I

)
, where P is again a sparse approximation to −A−1

f f A f c. We refer to this as

the Galerkin form. The matrix S3 is positive definite if A is positive definite. In addition, S3 is
the exact Schur complement if P = −A−1

f f A f c.
• Given an ILU factorization partitioned in the same way as (8), i.e.,(

Af f A f c
Ac f Acc

)
≈

(
Lf f 0
Lc f Lcc

)(
Uf f Uf c

0 Ucc

)
(9)

we have the approximation S4 = Acc−Lc fUf c. This approximation can be created from a partial
ILU factorization (the factors Lcc and Ucc are not computed) [31].

Once an approximation S has been computed on each level, the following algorithm may be used to
approximately solve (1) using a multilevel approximate block factorization. The algorithm is written
in a way to show its similarity to multigrid methods. The algorithm assumes that P in (8) has the form

−Ã−1
f f

A f c.

1: bH = bc −Ac f Ã
−1
f f

b f

2: Solve Sxc = bH recursively, with an exact solve on the final level

3: x f = −Ã−1
f f

A f cxc

4: x f = x f + Ã−1
f f

b f

Algorithm 1: BF, approximate solution of (1) using a multilevel block factorization

In the algorithm, bH can be interpreted as the restriction of b onto a coarse grid. The restriction

and prolongation operators are
(
−Ac f Ã

−1
f f

, I
)

and

(
−Ã−1

f f
A f c

I

)
respectively. The actions of Ã−1

f f

(required in steps 1 and 3) can be viewed as F-smoothing [35].
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6 EDMOND CHOW AND PANAYOT S. VASSILEVSKI

Unlike multigrid methods, approximate block factorization preconditionings do not give scalable
convergence rates because, in general, S is not a suitable coarse grid operator: smooth vectors of A
may not be preserved in the near-nullspace of S (see section 2.1.2). However, if S is constructed as

Acc −Ac f Ã
−1
f f

A f c, then the row-sum condition

Ã−1
f f

A f f e f ≈ e f (10)

on Ã−1
f f

leads to Sec ≈ 0 being satisfied (since Af f e f + Af cvc ≈ 0). The row-sum condition on the
approximate inverse is not easy to satisfy, however.

2.2.2. Approximate block factorization in a hierarchical basis In HBBF, the approximate block
factorization is performed in the hierarchical basis. Given the matrix Â in the block form (4), its
approximate block LU factorization is(

Â f f Â f c

Âc f Âcc

)
≈

(
Â f f 0

Âc f Ŝ

)(
I −P̂
0 I

)
(11)

where Ŝ ≈ Âcc − Âc f Â
−1
f f Â f c is an approximation to the Schur complement and P̂ is an approximation

to −Â−1
f f Â f c. We note that the exact Schur complement of the transformed matrix is equal to the exact

Schur complement of A in the nodal basis, i.e.,

Âcc − Âc f Â
−1
f f Â f c = Acc −Ac f A

−1
f f A f c. (12)

In this paper, for SPD problems, we focus on Schur complement approximations in Galerkin form.
We thus define the following three approximations to the Schur complement.

Definition 2.1. Âcc ≡ PT A f f P +Ac f P +PT A f c +Acc, where P was defined in section 2.1.2.

This leads to a method similar to the hierarchical basis multigrid method, HBMG.

Definition 2.2. S ≡ PT Af f P+Ac f P+PT Af c +Acc, where P is some approximation to −A−1
f f A f c.

This approximate Schur complement is defined for approximate block factorizations in the nodal basis.

If P has the form −Ã−1
f f

A f c, then

S = Acc +Ac f Ã
−1
f f

A f f Ã
−1
f f

A f c −2Ac f Ã
−1
f f

A f c. (13)

Definition 2.3. Ŝ ≡ P̂T Â f f P̂+ Âc f P̂+ P̂T Â f c + Âcc, where P̂ is some approximation to −A−1
f f Â f c.

This approximate Schur complement is defined for approximate block factorizations in a hierarchical

basis. If P̂ has the form −Ã−1
f f

Â f c, then

Ŝ = Âcc + Âc f Ã
−1
f f

A f f Ã
−1
f f

Â f c −2Âc f Ã
−1
f f

Â f c. (14)

If the generalized hierarchical basis transformation is good, then the terms Âc f and Â f c in (14)

will be small and Âcc ≈ Ŝ will be a good coarse grid operator. The approximation Ŝ is generally an
improvement over Âcc, especially when the transformation is poor.

Further, if the terms Âc f and Â f c are smaller in some sense than the terms Ac f and Af c, then Ŝ depends

less on the accuracy of Ã−1
f f

than S does. However, if Ã−1
f f

is very accurate, then the approximations Ŝ
and S have similar quality; they all approximate well the exact Schur complement.
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HIERARCHICAL BASIS MULTILEVEL BLOCK FACTORIZATIONS 7

Proposition 2.1. Assume that P̂ has the form −Ã−1
f f

Â f c and for some vector e =
[

e f
ec

]
let the

following properties hold:

• Ae ≈ 0 and in particular, A f f e f +Af cec ≈ 0, that is, e is in the near-nullspace of A. Such vectors are
commonly referred to as smooth vectors in AMG.

• the generalized HB transformation preserves e, that is, e f = Pec.

Then, the approximate Schur complement Ŝ contains ec in its near-nullspace, that is, Ŝec ≈ 0.

Proof. This property is seen from the identity

Ŝ =
(

P̂
I

)T

Â

(
P̂
I

)
,

and the fact that
P̂ec = −Ã−1

f f
Â f cec ≈ 0.

The latter holds since Â f cec = (Af f P +Af c)ec = Af f e f +Af cec ≈ 0. Hence

Ŝec ≈
(

P̂
I

)T

Â

[
0
ec

]
≈

(
P̂
I

)T [
0

Âccec

]
≈ Âccec

≈
[

P
I

]T

A

[
P
I

]
ec

=
[

P
I

]T

Ae

≈ 0.

�

Given an approximation Ŝ to the Schur complement, the following algorithm may be used to
approximately solve (3) using a multilevel approximate block factorization in a hierarchical basis.
Note that the transformed matrix is not stored. The algorithm for the solution in the nodal basis is

recovered if P = 0. The algorithm assumes that P̂ has the form −Ã−1
f f

Â f c.

1: x f = Ã−1
f f

b f

2: Solve Ŝxc = {bc +PT (b f −Af f x f )−Ac f x f } recursively, with an exact solve on the final level

3: x f = x f − Ã−1
f f
{Af f Pxc +Af cxc}+Pxc

Algorithm 2: HBBF, approximate solution of (3) using a multilevel block factorization in a generalized
hierarchical basis

Remark 2.1. It is clear that step (3) of Algorithm 2 can be rewritten as,

x f = x f +
[
(I− Ã−1

f f
A f f )P − Ã−1

f f
A f c

]
xc.
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8 EDMOND CHOW AND PANAYOT S. VASSILEVSKI

Hence, the expression

P̃ ≡ (I− Ã−1
f f

A f f )P − Ã−1
f f

A f c = P + P̂, (15)

can be viewed as a modified interpolation matrix. Note that, in the setting of Proposition 2.1, the

modified interpolation matrix satisfies P̃ec = e f . Finally, it is also clear that a better quality Ã−1
f f

implies

less importance of the HB transformation matrix P (the weight (I− Ã−1
f f

A f f ) is small in that case).

2.2.3. Approximating A−1
f f Â f c The efficiency of HBBF depends critically on how P̂ ≈ −A−1

f f Â f c is
computed. This choice may be related to the method chosen to solve with Af f . The following are some

of the options. Similar comments apply to the approximation P ≈−A−1
f f A f c.

Incomplete factorization with sparse approximate solves. It is popular to use an incomplete
factorization Lf fUf f ≈ Af f to solve approximately with Af f . It is too costly, however, to use these

solves to form P̂ since the matrix (Lf fUf f )
−1Â f c, is typically dense, and these solves do not take

advantage of the sparseness of Â f c. However, it is possible to solve approximately with the incomplete
factorization such that the result is sparse [11].

We use the “level 0” strategy described in [11], where the sparsity pattern of the approximate
(Lf fUf f )

−1Â f c is restricted to the pattern of Â f c. For Lf fUf f x = b where b is sparse, this strategy
only uses the nonzeros in rows and columns of Lf f and Uf f corresponding to nonzeros in b; the other
nonzeros are neglected.

Sparse approximate inverses. A variety of techniques are available for approximating a symmetric
positive definite A−1

f f by GT G, where G is sparse and approximates the inverse of the lower triangular
Cholesky factor, L, of Af f [12, 23, 34]. We restrict the pattern of G to the pattern of the lower triangular
part of Af f and perform the minimization

min
G

‖I−GL‖2
F .

The matrix L does not need to be known, and the minimization is easily performed in parallel if
necessary. The product GT GÂ f c is sparse and is efficient to compute.

The matrix P̂ = −GT GÂ f c may still contain too many nonzeros for HBBF to be efficient. For this

reason, small nonzeros in P̂ may be dropped. Since P̂ is usually constructed column-by-column, we
drop an entry P̂i j if it satisfies

|P̂i j| ≤ θp max
k

|P̂k j| (16)

where θp is a truncation threshold.
For nonsymmetric Af f , nonsymmetric factorizations are available, as well as nonfactorized forms

of the sparse approximate inverse [18, 20, 17]. We mention in passing that for nonfactorized sparse

approximate inverses, it is possible to find M = Ã−1
f f

such that the row-sum condition (10) is satisfied.
A matrix M satisfying this condition can be found by adding a constraint to the usual Frobenius norm
minimization, i.e.,

min
M

‖I−MAf f ‖F , MAf f e f = e f . (17)

However, whether or not the constraint is well-defined depends on the sparsity pattern of M; see [22].
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HIERARCHICAL BASIS MULTILEVEL BLOCK FACTORIZATIONS 9

Frobenius norm minimization for P̂. The matrix P̂ may be defined by performing the minimization

min
P̂

‖Af f P̂+ Â f c‖F

which is discussed in [16]. We choose the sparsity pattern of P̂ as the sparsity pattern of Â f c. The above

minimization may be very costly when columns of Â f c contain many nonzeros. We thus drop small

entries in Â f c prior to the minimization. The dropping is performed using the parameter θp in the same

way entries in P̂ are dropped via (16).

2.3. A multigrid method based on the approximate block factorization

As mentioned, the approximate block factorization sets up a structure very similar to that of multigrid
methods. Once the approximate block factorization is constructed, the following multigrid method can
be defined. The method uses the Ŝ matrices as coarse grid operators at each level, and the P̃ = P + P̂
matrices (see (15)) in the prolongation and restriction operators.

1: Relax Ax = b using HBBF defined at the current level, with x = 0 initially
2: Construct the residual r = b−Ax
3: Restrict the residual using rH = (P̃T , I)r
4: Solve ŜeH = rH recursively, with an exact solve on the final level
5: Prolong the error using e = (P̃T , I)T eH

6: Correct the approximate solution x = x+ e
7: Relax Ax = b using HBBF defined at the current level

Algorithm 3: BFMG, a multigrid method based on approximate block factorization for solving Ax = b

3. NUMERICAL INVESTIGATIONS

The main goal of this section is to numerically compare the multilevel block factorization
preconditioner with and without the generalized hierarchical basis transformation (the HBBF and BF
preconditioners, respectively). We also test BFMG as a solver and as a preconditioner. We primarily
use 2-D isotropic and anisotropic test problems with various mesh sizes, but include results on some
difficult 3-D elasticity problems as well. We initially compare the convergence rate and scalability of
the preconditioners with respect to some of the major options available, such as for Schur complement
approximation, and then examine timings and storage requirements for the more competitive options.

The 2-D test problems are finite element discretizations of

auxx +buyy = f in Ω = (0,1)2

u = 0 on ∂Ω

where the right-hand side f was chosen randomly. For the anisotropic problems, the PDE coefficients
were a = 1 and b = 1000. Linear triangular elements were used. The matrices were generated by a
code by Stan Tomov (Texas A&M University).

Table I shows the number of equations n and the number of nonzeros nnz in the test matrices. The
same grids were used for both the isotropic and anisotropic problems.

Copyright c© 2002 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2002; 01:1–22
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10 EDMOND CHOW AND PANAYOT S. VASSILEVSKI

Problem n nnz
UNI2/ANI2 231 1491
UNI3/ANI3 861 5781
UNI4/ANI4 3321 22761
UNI5/ANI5 13041 90321
UNI6/ANI6 51681 359841
UNI7/ANI7 205761 1436481

Table I. Isotropic (UNI) and anisotropic (ANI) test matrices, showing number of equations n, and number of
nonzeros nnz.

The storage required by the preconditioners is expressed in terms of grid and operator complexities.
These terms are common in the AMG literature, e.g., [15]. Grid complexity is the total number of grid
points, on all grids, divided by the number of grid points on the finest grid. Operator complexity is the
total number of nonzero entries, in all coarse and fine grid matrices, divided by the number of nonzero
entries in the fine grid matrix.

BF and HBBF were accelerated by the conjugate gradient method. A zero initial guess was used,
and the iterations were stopped when the preconditioned residual norm was decreased by 12 orders of
magnitude. The experiments were run on a Linux 1.5 GHz Intel Xeon computer with 256 kbytes of
cache memory and 512 Mbytes of main memory.

3.1. Convergence rate and scalability

In this section we investigate the convergence rate and scalability of BF and HBBF with respect to
the Schur complement approximation, the use of pre- and post-smoothing at each level, “modified”
(row-sum preserving) approximations for Af f , and the accuracy of the Af f solve.

Tables II and III show iteration counts for BF and HBBF when the number of levels was fixed at
4. For larger problems, the size of the coarsest grid is larger, which influences computation time, but
these tables allow a comparison of convergence rate when the number of levels is fixed.

The truncation threshold θp was 0.01, in order to reduce the cost of the preconditioning. In the base
case, the matrix Af f was approximated with a level 0 incomplete Cholesky factorization. Modified
and level 1 factorizations were used in other cases. Sparse approximate solves with the incomplete
factorizations were not used here. The smoother, if used, was symmetric Gauss-Seidel. The Schur
complement approximations described in section 2.2.2 are compared.

The following observations may be made:

• In all cases, HBBF(Ŝ) shows better convergence rate and scalability compared to the other
preconditioners.

• Adding a pre- and post-smoothing at each level improves the performance of all the
preconditioners, especially HBBF(Âcc). Without smoothing, HBBF(Âcc) is similar to a simple
coarse grid correction.

• Using modified approximations for Af f improves BF, as verified in the tables. However, the

next subsection shows that it is too costly to approximate A−1
f f A f c using incomplete factorization

techniques, and thus modified approximations may not be readily used in general.
• Increasing the accuracy of the Af f solve using IC(1) reduces the difference between the results

for HBBF(S) and HBBF(Ŝ), as expected.

In the remainder of this paper, BF refers to BF(S) and HBBF refers to HBBF(Ŝ).
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IC(0), no smoothing
UNI2 UNI3 UNI4 UNI5

BF(S) 12 19 31 55
HBBF(Âcc) 28 33 41 43
HBBF(S) 11 13 19 32
HBBF(Ŝ) 11 13 14 15

IC(0), one smoothing step
UNI2 UNI3 UNI4 UNI5

BF(S) 8 12 18 32
HBBF(Âcc) 10 12 15 16
HBBF(S) 6 9 15 26
HBBF(Ŝ) 5 7 7 8

Modified IC(0), no smoothing
UNI2 UNI3 UNI4 UNI5

BF(S) 12 16 18 21
HBBF(Âcc) 12 16 19 21
HBBF(S) 12 16 19 22
HBBF(Ŝ) 12 16 18 19

IC(1), no smoothing
UNI2 UNI3 UNI4 UNI5

BF(S) 8 11 15 24
HBBF(Âcc) 26 31 38 40
HBBF(S) 7 8 10 13
HBBF(Ŝ) 7 8 9 10

Table II. Iteration counts for the isotropic problems UNI2–UNI5 using BF and HBBF preconditioners with 4
levels.

IC(0), no smoothing
ANI2 ANI3 ANI4 ANI5

BF(S) 16 22 28 44
HBBF(Âcc) 35 53 65 80
HBBF(S) 14 18 18 27
HBBF(Ŝ) 13 17 16 18

IC(0), one smoothing step
ANI2 ANI3 ANI4 ANI5

BF(S) 10 14 17 25
HBBF(Âcc) 16 24 32 40
HBBF(S) 8 11 14 22
HBBF(Ŝ) 8 9 9 10

Modified IC(0), no smoothing
ANI2 ANI3 ANI4 ANI5

BF(S) 16 22 23 28
HBBF(Âcc) 36 60 72 93
HBBF(S) 14 21 21 27
HBBF(Ŝ) 14 21 22 27

IC(1), no smoothing
ANI2 ANI3 ANI4 ANI5

BF(S) 9 14 13 19
HBBF(Âcc) 33 50 61 74
HBBF(S) 8 12 11 13
HBBF(Ŝ) 8 12 11 12

Table III. Iteration counts for the anisotropic problems ANI2–ANI5 using BF and HBBF preconditioners with 4
levels.

3.2. Comparing approximations of A−1
f f Â f c

The techniques for approximating A−1
f f Â f c described in section 2.2.3 are compared in Table IV. Results

are shown for HBBF using the UNI6 test problem. The strength threshold θs = 0 was used in these
tests, and the recursion to the next level was stopped when the coarse grid matrix contained fewer than
100 equations. The table shows that incomplete factorization techniques for approximating A−1

f f Â f c
lead to high setup timings. The most efficient method is to use a factorized sparse approximate inverse
in making this approximation.

3.3. Timings for UNI7 and ANI7

This section reports detailed timings for the large UNI7 and ANI7 test problems using a variety of
values for the thresholds θs and θp. Unfortunately for these methods, there is not a simple way to
choose these thresholds that will give the lowest total computation time. A sparse approximate inverse
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Incomplete factorization for Af f
time (s) complexity

θp levels iterations setup solve total grid operator
0.003 4 17 68.91 1.24 70.15 1.31 4.20
0.010 4 18 65.44 1.13 66.57 1.31 3.55
0.030 4 21 63.21 1.19 64.40 1.32 2.97
0.100 5 45 60.92 2.17 63.09 1.33 2.35
0.300 5 103 60.22 4.22 64.44 1.35 1.84

Incomplete factorization for Af f with sparse approximate solves
time (s) complexity

levels iterations setup solve total grid operator
5 72 9.84 3.32 13.16 1.33 2.23

Sparse approximate inverse for A−1
f f

time (s) complexity
θp levels iterations setup solve total grid operator

0.003 4 28 3.50 1.65 5.15 1.32 3.21
0.010 4 27 3.05 1.56 4.61 1.32 3.06
0.030 4 28 2.40 1.54 3.94 1.32 2.78
0.100 5 45 1.70 2.23 3.93 1.33 2.34
0.300 5 108 1.13 4.68 5.81 1.35 1.82

Frobenius norm minimization for P̂
time (s) complexity

θp levels iterations setup solve total grid operator
0.003 5 97 4.64 4.46 9.10 1.35 2.22
0.010 5 98 3.76 4.50 8.26 1.35 2.19
0.030 5 98 2.90 4.45 7.35 1.35 2.16
0.100 5 100 2.23 4.52 6.75 1.35 2.11
0.300 5 108 1.62 4.78 6.40 1.35 2.02

Table IV. HBBF with UNI6 problem: Comparison of techniques for approximating A−1
f f Â f c.

was used in the approximation for A−1
f f Â f c. Further, no smoothing was added to the BF and HBBF

algorithms. Results of additional experiments (not shown here) revealed that the addition of smoothing
usually increased the overall timings for these problems.

Four tables are shown: Tables V and VI show results using BF and HBBF for the isotropic problem
UNI7, and Tables VII and VIII show these results for the anisotropic problem ANI7. For a wide range
of parameter values, the results clearly show that HBBF has lower iteration counts and lower total
timings than BF for these problems.

For a rough comparison, Table IX reports timings of the same problems solved using an AMG code
called BoomerAMG [21], which is based on algorithms in [29]. BoomerAMG was used as a solver,
rather than as a preconditioner. For the problem UNI7, BoomerAMG is faster than HBBF (accelerated
by CG), but the fastest timing for HBBF is comparable. For the problem ANI7, the best timings for
HBBF are better than the timing for BoomerAMG.
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time (s) complexity
θs θp levels iterations setup solve total grid operator

0.00 0.01 5 409 4.72 55.66 60.38 1.33 2.32
0.03 6 410 3.96 54.07 58.03 1.34 2.11
0.10 6 419 3.14 52.68 55.82 1.35 1.85
0.30 7 492 2.36 57.91 60.27 1.39 1.57

0.25 0.01 8 323 9.28 52.04 61.32 1.51 3.87
0.03 9 327 6.27 48.24 54.51 1.51 3.17
0.10 9 337 4.05 45.96 50.01 1.51 2.48
0.30 10 395 2.90 50.54 53.44 1.52 1.97

0.50 0.01 10 238 25.70 50.78 76.48 1.73 8.13
0.03 10 241 13.70 45.33 59.03 1.73 6.16
0.10 11 261 5.80 39.93 45.73 1.74 3.66
0.30 12 305 4.03 43.48 47.51 1.75 2.86

0.75 0.01 12 164 45.52 43.73 89.25 1.92 13.58
0.03 12 165 20.08 36.10 56.18 1.92 9.61
0.10 13 198 6.68 33.34 40.02 1.93 4.96
0.30 13 271 4.44 40.69 45.13 1.93 3.64

0.95 0.01 14 95 58.51 32.81 91.32 2.00 16.09
0.03 14 104 22.72 24.73 47.45 2.00 11.08
0.10 14 155 7.51 27.94 35.45 2.00 5.77
0.30 14 255 4.54 40.31 44.85 2.00 3.83

Table V. Results for the isotropic UNI7 with BF preconditioning.

time (s) complexity
θs θp levels iterations setup solve total grid operator

0.00 0.01 5 31 13.43 7.81 21.24 1.33 3.16
0.03 5 33 10.56 7.94 18.50 1.33 2.87
0.10 5 80 7.39 17.18 24.57 1.33 2.40
0.30 6 212 4.98 40.67 45.65 1.36 1.87

0.25 0.01 7 22 23.67 6.58 30.25 1.51 5.35
0.03 7 40 15.33 10.45 25.78 1.51 4.38
0.10 8 94 9.40 21.32 30.72 1.51 3.29
0.30 9 181 6.22 36.29 42.51 1.51 2.42

0.50 0.01 10 23 54.47 9.03 63.50 1.72 10.72
0.03 10 44 28.03 14.41 42.44 1.72 8.03
0.10 10 96 14.31 25.79 40.10 1.72 5.30
0.30 11 183 9.34 41.42 50.76 1.73 3.63

0.75 0.01 12 25 85.13 22.10 107.23 1.92 16.86
0.03 12 48 37.48 17.90 55.38 1.92 12.45
0.10 13 111 14.69 30.35 45.04 1.93 6.76
0.30 13 188 9.68 45.66 55.34 1.93 4.78

0.95 0.01 14 27 119.53 21.98 141.51 2.00 17.73
0.03 14 53 31.25 19.63 50.88 2.00 12.72
0.10 14 122 12.44 32.81 45.25 2.00 6.68
0.30 14 212 8.18 49.30 57.48 2.00 4.51

Table VI. Results for the isotropic UNI7 with HBBF preconditioning.
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time (s) complexity
θs θp levels iterations setup solve total grid operator

0.00 0.01 7 975 7.53 158.37 165.90 1.62 3.62
0.03 8 978 6.15 152.64 158.79 1.63 3.24
0.10 8 911 4.74 134.55 139.29 1.68 2.85
0.30 9 894 3.15 121.73 124.88 1.76 2.35

0.25 0.01 10 321 15.81 62.65 78.46 1.86 6.47
0.03 10 327 10.19 58.36 68.55 1.86 5.30
0.10 10 355 6.28 56.82 63.10 1.86 3.97
0.30 11 455 3.49 63.94 67.43 1.87 2.62

0.50 0.01 11 209 23.29 45.33 68.62 1.91 8.05
0.03 11 219 13.70 41.96 55.66 1.91 6.38
0.10 11 249 7.53 41.77 49.30 1.91 4.55
0.30 12 371 3.79 53.58 57.37 1.91 2.80

0.75 0.01 12 219 37.89 56.49 94.38 1.97 11.98
0.03 12 229 19.27 50.69 69.96 1.97 8.90
0.10 13 265 8.19 48.00 56.19 1.97 5.57
0.30 13 386 3.73 58.42 62.15 1.98 3.07

0.95 0.01 14 243 56.17 77.46 133.63 2.02 15.79
0.03 14 249 24.17 61.32 85.49 2.02 11.05
0.10 14 278 9.37 53.59 62.96 2.02 6.42
0.30 14 476 3.75 73.94 77.69 2.02 3.16

Table VII. Results for the anisotropic ANI7 with BF preconditioning.

time (s) complexity
θs θp levels iterations setup solve total grid operator

0.00 0.01 5 387 31.07 123.17 154.24 1.59 5.26
0.03 6 385 20.77 111.05 131.82 1.60 4.54
0.10 6 385 13.27 98.95 112.22 1.62 3.74
0.30 7 655 8.84 151.25 160.09 1.68 3.17

0.25 0.01 9 33 41.97 12.22 54.19 1.86 9.49
0.03 9 35 25.48 11.19 36.67 1.86 7.61
0.10 9 72 15.34 19.60 34.94 1.86 5.71
0.30 11 366 10.09 87.29 97.38 1.87 4.37

0.50 0.01 10 22 54.90 8.79 63.69 1.90 11.57
0.03 10 24 33.44 8.32 41.76 1.90 9.32
0.10 11 65 18.49 18.47 36.96 1.91 6.76
0.30 11 197 11.65 48.84 60.49 1.91 5.02

0.75 0.01 12 22 121.21 15.58 136.79 1.97 16.86
0.03 12 26 44.87 10.41 55.28 1.97 12.97
0.10 12 67 22.16 21.32 43.48 1.97 8.90
0.30 13 184 11.56 47.58 59.14 1.97 5.72

0.95 0.01 14 22 127.40 27.52 154.92 2.02 20.33
0.03 14 30 47.18 15.43 62.61 2.02 15.08
0.10 14 83 21.95 27.96 49.91 2.02 9.64
0.30 14 250 10.98 66.11 77.09 2.02 5.67

Table VIII. Results for the anisotropic ANI7 with HBBF preconditioning.
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time (s) complexity
problem levels iterations setup solve total grid operator
UNI7 11 21 4.55 9.53 14.08 1.87 2.94
ANI7 12 139 3.83 57.59 61.42 1.91 3.04

Table IX. AMG results using a V(1,1) cycle with CF Gauss-Seidel relaxation, and strength threshold 0.25.

3.4. Algorithmic scalability

For problems in 2-D, the iteration counts for hierarchical basis methods scale with the square of the
number of levels. The following results verify this theory by showing iteration counts for increasing
problem sizes. Again, the recursions were stopped when the the size of the coarse grid problem was less
than 100 equations. Table X tabulates the results and Figure 1 plots the iteration counts as a function
of the square of the number of levels.

UNI2–UNI7, θs = 0., θp = 0.03
time (s) complexity

levels iterations setup solve total grid operator
UNI2 2 16 0.01 0.00 0.01 1.17 1.60
UNI3 3 19 0.02 0.01 0.03 1.24 2.09
UNI4 3 23 0.10 0.06 0.16 1.28 2.42
UNI5 4 25 0.52 0.29 0.81 1.31 2.65
UNI6 4 28 2.39 1.53 3.92 1.32 2.78
UNI7 5 33 10.72 7.93 18.65 1.33 2.87

ANI2–ANI7, θs = 0.25, θp = 0.03
time (s) complexity

levels iterations setup solve total grid operator
ANI2 2 11 0.00 0.01 0.01 1.33 2.08
ANI3 4 14 0.03 0.01 0.04 1.64 4.20
ANI4 5 19 0.19 0.06 0.25 1.75 5.56
ANI5 7 23 1.14 0.36 1.50 1.81 6.66
ANI6 8 28 5.49 2.07 7.56 1.85 7.26
ANI7 9 35 25.83 11.22 37.05 1.86 7.61

Table X. HBBF results for increasing problem sizes.

3.5. Multigrid based on the approximate block factorization

Section 2.3 described BFMG, a multigrid method defined using an approximate block factorization.
The smoother for BFMG is the block factorization HBBF recursively defined at each level (HBBF
smoothing). The smoother may be accelerated by the conjugate gradient method (CG-HBBF
smoothing) if necessary. Further, BFMG itself may be used as a preconditioner to the conjugate
gradient method (CG-BFMG). Table XI shows iteration counts and timings for BFMG for the UNI7
and ANI7 test problems. The best timings are achieved when BFMG is used as a preconditioner. It
is interesting that when CG-HBBF smoothing is used, the total time decreases when more smoothing
steps are used (up to a limit).

The results show that BFMG timings are somewhat worse than the timings when HBBF is
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(a) Isotropic problem, UNI7
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(b) Anisotropic problem, ANI7

Figure 1. Plot of iteration count vs. square of number of levels. The plots suggest the linear relationship predicted
from theory.
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simply used as a preconditioner for the CG method. However, the number of iterations required for
convergence can be much lower. Overall, BFMG and CG-BFMG tend to be more scalable in terms of
convergence rate, and therefore should be preferred for large problems.

UNI7, θs = 0., θp = 0.03
BFMG BFMG CG-BFMG

HBBF smoothing CG-HBBF smoothing HBBF smoothing
smoothing total total total

steps iterations time (s) iterations time (s) iterations time (s)
1 40 44.83 36 67.81 12 22.21
2 24 48.36 15 45.53 9 26.81
3 18 52.19 10 41.29 7 29.25
4 14 52.96 6 33.25 6 31.95
5 12 55.62 5 34.48 6 37.04

ANI7, θs = 0.25, θp = 0.1
BFMG BFMG CG-BFMG

HBBF smoothing CG-HBBF smoothing HBBF smoothing
smoothing total total total

steps iterations time (s) iterations time (s) iterations time (s)
1 100 154.50 82 233.81 27 55.66
2 64 183.14 23 105.36 20 71.30
3 49 204.09 15 77.52 17 85.54
4 39 214.31 10 79.51 16 102.62
5 33 224.12 8 76.53 14 110.88

Table XI. Results related to BFMG for the UNI7 and ANI7 test matrices.

3.6. Elasticity problems

We conclude this section with some tests to illustrate how the BF, HBBF, and BFMG preconditioners
may perform on 3-D finite element elasticity problems. The physical problem is three concentric
spherical shells; two steel shells surround a third shell composed of lucite. An octant of these shells is
discretized using linear hexahedral elements with one-point integration and hourglass damping. Figure
2 illustrates the gridding of this problem using a very small number of elements. Two test matrices, as
listed in Table XII were used. Typical rows in these matrices contain 81 nonzeros per row. We note that
for these problems, the CG convergence criterion is the reduction of the residual norm by 8 orders of
magnitude.

Problem n nnz
SPH3103 16881 1230831
SPH6206 124839 9586413

Table XII. Two elasticity test problems, showing number of equations n, and number of nonzeros nnz.

For problems such as these that are derived from systems of PDEs, we consider all couplings between
variables of unlike type to be weak. This corresponds to the “unknown” approach described in [29].
Also, in the following tests, we used an incomplete Cholesky factorization to approximately solve with
Af f . Using a sparse approximate inverse gave poorer results, but a sparse approximate inverse was still
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18 EDMOND CHOW AND PANAYOT S. VASSILEVSKI

Figure 2. Gridding of an octant of three concentric spherical shells; this is a small example for illustration purposes.

used in the construction of P and P̂.
For matrices with many nonzeros per row, the HB transformed matrices may be very dense and

costly to use. This cost can be reduced with large values of the truncation threshold θp. In addition, we
can use the sparser interpolants, P1 and P2, described in section 2.1.2. For the problem SPH3103,
Table XIII compares BF and HBBF preconditionings, the latter using the sparser interpolants. Values
of θs of 0, 0.25, 0.5, 0.75, and 0.95 were tested; the table shows the results using θs of 0.25, which
were the best for all the preconditioners. Table XIV shows corresponding results for SPH6206.

The results show that the total solution timings for solves with the BF and HBBF preconditioners
are comparable. However, as expected, the iteration counts for HBBF are lower. For these matrices
coming from discretized elasticity problems, we further expect the results to improve if vectors in the
near-nullspace of A (so-called rigid body modes) are preserved in the interpolation. In our setting,
this can be ensured if P interpolates linear functions, that is, a fine degree of freedom or node is
interpolated from 2 or 3 strongly coupled coarse nodes in 2-D or 3-D, respectively.

Finally, Table XV shows iteration counts and timings when BFMG is used as a preconditioner. One
or two steps of HBBF is used as the smoother for BFMG. The P2 interpolant was used. Like the results
shown earlier, the total time to solution is higher, although the iteration counts are much lower. For the
test problem SPH6206, the results were obtained on a slightly slower (1 GHz EV6.8 Alpha) computer
with more memory.

4. CONCLUDING REMARKS

This paper has shown that a transformation to a generalized hierarchical basis can lead to improved
convergence rates for multilevel block factorization preconditioners. The transformation is simple, but
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time (s) complexity
θp levels iterations setup solve total grid operator

BF 0.3 6 296 20.76 14.08 34.84 1.66 2.60
0.5 6 485 3.98 17.47 21.45 1.67 1.86
0.7 6 584 2.55 19.36 21.91 1.67 1.71
0.9 6 548 1.90 17.01 18.91 1.64 1.53

HBBF 0.3 6 197 4.60 9.82 14.42 1.65 1.90
P1 interpolant 0.5 6 265 2.77 11.51 14.28 1.66 1.66

0.7 7 258 2.78 11.09 13.87 1.67 1.63
0.9 7 311 2.56 13.15 15.71 1.69 1.65

HBBF 0.3 6 135 21.14 9.90 31.04 1.64 2.84
P2 interpolant 0.5 6 145 8.52 8.26 16.78 1.65 2.15

0.7 6 190 5.63 9.62 15.25 1.65 1.93
0.9 6 211 4.83 10.33 15.16 1.65 1.87

Table XIII. Sample results for SPH3103 with BF and HBBF preconditioning. The parameter θs was 0.25.

time (s) complexity
θp levels iterations setup solve total grid operator

BF 0.5 9 781 60.39 269.27 329.66 1.79 2.23
0.7 8 903 25.72 259.25 284.97 1.74 1.78
0.9 8 975 16.84 254.29 271.13 1.74 1.58

HBBF 0.5 8 671 33.16 273.23 306.39 1.75 1.76
P1 interpolant 0.7 8 902 28.54 357.88 386.42 1.74 1.70

0.9 8 1338 26.90 524.44 551.34 1.74 1.69
HBBF 0.5 8 434 128.74 278.85 407.59 1.74 2.63
P2 interpolant 0.7 8 501 80.48 265.30 345.78 1.75 2.24

0.9 8 541 69.58 271.44 341.02 1.75 2.14

Table XIV. Sample results for SPH6206 with BF and HBBF preconditioning. The parameter θs was 0.25.

SPH3103
smoothing total

steps iterations time (s)
1 91 24.73
2 72 34.42

SPH6206
smoothing total

steps iterations time (s)
1 186 452.70
2 146 653.24

Table XV. Results for CG preconditioned with BFMG using one or two steps of HBBF as the smoother. The
parameters θs and θp were 0.25 and 0.9, respectively.
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increases the cost of constructing the preconditioner. The overall time required to solve unstructured
isotropic and anisotropic diffusion problems however, is generally reduced.

For matrices with many nonzeros per row, however, the cost of approximate block factorization
preconditioners may be very high. This cost is particularly due to the Galerkin approximation for the
Schur complement. In these cases, depending upon the size of the problem, BF, HBBF, and BFMG
may not be competitive with other, albeit less-scalable, preconditioners.
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