
The Design and Implementation of hypre, a
Library of Parallel High Performance
Preconditioners

Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang

Center for Applied Scientific Computing, Lawrence Livermore National
Laboratory, P.O. Box 808, L-561, Livermore, CA 94551, USA
rfalgout@llnl.gov,jjones@llnl.gov,umyang@llnl.gov

Summary. The hypre software library provides high performance preconditioners
and solvers for the solution of large, sparse linear systems on massively parallel com-
puters. One of its attractive features is the provision of conceptual interfaces. These
interfaces give application users a more natural means for describing their linear
systems, and provide access to methods such as geometric multigrid which require
additional information beyond just the matrix. This chapter discusses the design of
the conceptual interfaces in hypre and illustrates their use with various examples.
We discuss the data structures and parallel implementation of these interfaces. A
brief overview of the solvers and preconditioners available through the interfaces is
also given.

1 Introduction

The increasing demands of computationally challenging applications and the
advance of larger more powerful computers with more complicated architec-
tures have necessitated the development of new solvers and preconditioners.
Since the implementation of these methods is quite complex, the use of high
performance libraries with the newest efficient solvers and preconditioners
becomes more important for promulgating their use into applications with
relative ease.
The hypre library [16, 21] has been designed with the primary goal of pro-

viding users with advanced scalable parallel preconditioners. Multigrid pre-
conditioners are a major focus of the library. Issues of robustness, ease of use,
flexibility and interoperability have also been important. It can be used both
as a solver package and as a framework for algorithm development. Its ob-
ject model is more general and flexible than most current generation solver
libraries [10]. The hypre library also provides several of the most commonly
used solvers, such as conjugate gradient for symmetric systems or GMRES

2 Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang

for nonsymmetric systems to be used in conjunction with the preconditioners.
The code is open source and available for download from the web [21].
A unique and important design innovation in hypre is the notion of concep-

tual (linear system) interfaces. These interfaces make it possible to provide
an array of powerful solvers that have largely not been available before in
linear solver library form. By allowing users to access hypre in the way they
naturally think about their problems, these interfaces ease the coding burden
and provide extra application information required by certain solvers. For
example, application developers that use structured grids typically think of
their linear systems in terms of stencils and grids, so an interface that involves
stencils and grids is more natural. Such an interface also makes it possible to
supply solvers like geometric multigrid that take advantage of structure. In
addition, the use of a particular conceptual interface does not preclude users
from building more general sparse matrix structures (e.g., compressed sparse
row) and using more traditional solvers (e.g., incomplete LU factorization)
that do not use the additional application information. In fact, the construc-
tion of different underlying data structures is done internally by hypre and
requires almost no changes to user code. The conceptual interfaces currently
implemented include stencil-based structured and semi-structured interfaces,
a finite-element based unstructured interface, and a traditional linear-algebra
based interface.
The primary focus of this paper is on the design and implementation of

the conceptual interfaces in hypre. The paper is organized as follows. The
first two sections are of general interest. We begin in Section 2 with an intro-
ductory discussion of conceptual interfaces and point out the advantages of
matching the linear solver interface with the natural concepts (grids, stencils,
elements, etc.) used in the application code discretization. In Section 3, we
discuss hypre’s object model, which is built largely around the notion of an
operator. Sections 4 through 7 discuss specific conceptual interfaces available
in hypre and include various examples illustrating their use. These sections are
intended to give application programmers an overview of each specific concep-
tual interface. We then discuss some implementation issues in Section 8. This
section may be of interest to application programmers, or more likely, others
interested in linear solver code development on large scale parallel computers.
The next two sections are aimed at application programmers potentially in-
terested in using hypre. Section 9 gives a brief overview of the solvers and pre-
conditioners currently available in hypre, and Section 10 contains additional
information on how to obtain and build the library. The paper concludes with
some comments on future plans to enhance the library.

2 Conceptual Interfaces

Each application to be implemented lends itself to natural ways of thinking of
the problem. If the application uses structured grids, a natural way of formu-

hypre 3

lating it would be in terms of grids and stencils, whereas for an application
that uses unstructured grids and finite elements it is more natural to access
the preconditioners and solvers via elements and element stiffness matrices.
Consequently, the provision of different conceptual views of the problem be-
ing solved (hypre’s so-called conceptual interfaces) facilitates the use of the
library.
Conceptual interfaces also decrease the coding burden for users. The most

common interface used in linear solver libraries today is a linear-algebraic one.
This interface requires that the user compute the mapping of their discretiza-
tion to row-column entries in a matrix. This code can be quite complex; for
example, consider the problem of ordering the equations and unknowns on
the composite grids used in structured AMR codes. The use of a conceptual
interface merely requires the user to input the information that defines the
problem to be solved, leaving the forming of the actual linear system as a
library implementation detail hidden from the user.
Another reason for conceptual interfaces—maybe the most compelling

one—is that they provide access to a large array of powerful scalable linear
solvers that need the extra application information beyond just the matrix.
For example, geometric multigrid (GMG) cannot be used through a linear-
algebraic interface, since it is formulated in terms of grids. Similarly, in many
cases, these interfaces allow the use of other data storage schemes with less
memory overhead and provide for more efficient computational kernels.
Figure 1 illustrates the idea behind conceptual interfaces (note that the

figure is not intended to represent the current state within hypre, although it
is highly representative). The level of generality increases from left to right.
On the left are specific interfaces with algorithms and data structures that
take advantage of more specific information. On the right are more general
interfaces, algorithms and data structures. Note that the more specific inter-
faces also give users access to general solvers like algebraic multigrid (AMG)
or incomplete LU factorization (ILU). The top row shows various concepts:
structured grids, composite grids, unstructured grids, or just matrices. In the
second row, various solvers and preconditioners are listed. Each of these re-
quires different information from the user, which is provided through the con-
ceptual interfaces. For example, GMG needs a structured grid and can only
be used with the leftmost interface. AMGe [5], an algebraic multigrid method,
needs finite element information, whereas general solvers can be used with any
interface.
The bottom row contains a list of data layouts or matrix-vector storage

schemes that can be used for the implementation of the various algorithms.
The relationship between linear solver and storage scheme is similar to that
of interface and linear solver. One minor difference, however, is that solvers
can appear more than once. Consider ILU, for example. It is easy to imagine
implementing ILU in terms of a structured-grid data layout. In the figure,
such a solver would appear in the leftmost box (with the GMG solver) since
it requires information about the structure in the linear system.

4 Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang

Data Layout

structured composite block-struc unstruc CSR

Linear Solvers

GMG, ... FAC, ... Hybrid, ... AMGe, ... ILU, ...

Conceptual (Linear System) Interfaces

Fig. 1. Graphic illustrating the notion of conceptual interfaces.

In hypre, four conceptual interfaces are currently supported: a structured-
grid interface, a semi-structured-grid interface, a finite-element interface, and
a linear-algebraic interface. For the purposes of this paper, we will refer to
these interfaces by the names Struct, semiStruct, FEI, and IJ, respectively;
the actual names of the interfaces in hypre are slightly different. Similarly,
when interface routines are discussed below, we will not strictly adhere to the
prototypes in hypre, as these prototypes may change slightly in the future in
response to user needs. Instead, we will focus on the basic design components
and basic use of the interfaces, and refer the reader to the hypre documentation
[21] for current details.
Users of hypre only need to use one conceptual interface in their appli-

cation code. The best choice of interface depends on the application, but it
is usually better to use a more specific one that utilizes as much application
information as possible (e.g., something further to the left in Figure 1). Access
to more general solvers and data structures are still possible and require al-
most no changes to the user code. Note, finally, that hypre does not determine
the parallel partitioning of the problem, but builds the internal parallel data
structures (often quite complicated) according to the partitioning provided by
the user.

3 Object Model

In this section, we discuss the basic object model for hypre, illustrated in
Figure 2. This model has evolved since the version presented in [10], but the
core design ideas have persisted. We will focus here on the primary components
of the hypre model, but encourage the reader to see [10] for a discussion of
other useful design ideas also utilized in the library.

hypre 5

Note that, although hypre uses object-oriented (OO) principles in its de-
sign, the library is actually written in C, which is not an object-oriented
language (the PETSc library [3, 4, 25] employs a similar approach). The li-
brary also provides an interface for Fortran, still another non-OO language.
In addition, the next generation of interfaces in hypre are being developed
through a tool called Babel [2], which makes it possible to generate interfaces
automatically for a wide variety of languages (e.g., C, C++, Fortran77, For-
tran90, Python, and Java) and provides support for important OO concepts
such as polymorphism. An object model such as the one in Figure 2 is critical
to the use of such a tool.

View

(conceptual interface)

<
 is a
 >

IJ
M

at
rix

Vi
ew

IJ
Ve

ct
or

Vi
ew

St
ru

ct
M

at
rix

Vi
ew

St
ru

ct
Ve

ct
or

Vi
ew

…

<
is a
 >

<
is a
 >
 <

is

a

>

IJParCSRMatrix

(class)

Operator

(interface)

Solver

PrecondSolver

<
is an
 >

<
is a
 >

Vector

(interface)

<
 is a

 >
 <
 is an
 >

IJParVector

(class)

<
 is a
 >
<
 is a
 >

PCG

(class)

<
 is a
 >

<
 is a
 >

BoomerAMG

(class)

…

…

…

Fig. 2. Illustration of the hypre object model. Ovals represent abstract interfaces
and rectangles are concrete classes. The View interface encapsulates the conceptual
interface idea described in Section 2.

Central to the design of hypre is the use of multiple inheritance of inter-
faces. An interface is simply a collection of routines that can be invoked on
an object, e.g., a matrix-vector multiply routine (for readers familiar with OO
languages, the term interface is the same as in Java, and the same as an ab-
stract base class in C++). The base interfaces in the hypre model are: View,
Operator, and Vector (note that we use slightly different names here than
those used in the hypre library). The View interface represents the notion of
a conceptual interface as described in Section 2. This interface serves as our
means of looking at (i.e., “viewing”) the data in matrix and vector objects.
Specific views such as IJMatrixView are inherited from, or extend, the base

6 Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang

interface. That is, IJMatrixView contains the routines in View, plus routines
specific to its linear-algebraic way of looking at the data.
The Vector interface is fairly standard across most linear solver libraries.

It consists of basic routines such as Dot() (vector inner product) and Axpy()

(vector addition).
The Operator interface represents the general notion of operating on

vectors to produce an output vector, and primarily consists of the routine
Apply(). As such, it unifies many of the more common mathematical ob-
jects used in linear (and even nonlinear) solver libraries, such as matrices,
preconditioners, iterative methods, and direct methods. The Solver and
PrecondSolver interfaces are extensions of the Operator interface. Here,
Apply() denotes the action of solving the linear system, i.e., the action of
“applying” the solution operator to the right-hand-side vector. The two solver
interfaces contain a number of additional routines that are common to iter-
ative methods, such as SetTolerance() and GetNumIterations(). But, the
main extension is the addition of the SetOperator() routine, which defines
the operator in the linear system to be solved. The PrecondSolver extends
the Operator interface further with the addition of the SetPreconditioner()
routine.
One novel feature of the hypre object model is the extensive use of the

Operator interface. In particular, note that both Solver and PrecondSolver
are also Operator interfaces. Furthermore, the SetOperator() interface rou-
tine takes as input an object of type Operator, and the SetPreconditioner()
routine takes as input an object of type Solver (an Operator). The latter
fact is of interest. In hypre, there is currently no specific preconditioner type.
Instead, preconditioning is considered to be a role played by solvers. The abil-
ity to use solvers for preconditioning is available in many other packages, but
most employ additional design constructs to achieve this. For example, the
linear algebra part of the Diffpack package [26, 27] utilizes a special class that
bridges solvers and preconditioners.
Another fundamental design feature in the hypre library is the separation

of the View and Operator interfaces in matrix classes such as IJParCSRMatrix.
In this particular class, both interfaces are present, and the underlying data
storage is a parallel compressed sparse row format. This format is required
in solvers like BoomerAMG. However, the inherited IJMatrixView interface
is generic, which allows users to write generic code for constructing matrices.
As a result, the underlying storage format can be changed (giving access to
potentially different solvers) by modifying only one or two lines of code.
The separation of the View and Operator interfaces also makes it possi-

ble for objects to support one functionality without supporting the other. The
classic example is the so-called matrix-free linear operator (or matrix-free pre-
conditioner), which is an object that performs matrix-vector multiplication,
but does not offer access to the coefficients of the matrix. This has proven to
be a useful technique in many practical situations.

hypre 7

For the OO-aware reader and users of hypre, we comment that Figure 2 is
an accurate model for the current Babel interface in hypre, but it is not fully
reflective of the native C interface. In particular, much of the polymorphism
in the model is currently not implemented. Also, the native View interface
follows the “Builder” design pattern discussed in [19] instead of the model
in the figure, but the difference is trivial in practice. Finally, we remark that
since hypre is moving toward using Babel for all of its interfaces in the future,
the so-called native C interface mentioned here (and its shortcomings) will
soon be moot.

4 The Structured-Grid Interface (Struct)

The Struct interface is appropriate for scalar applications on structured grids
with a fixed stencil pattern of nonzeros at each grid point. It provides access to
hypre’s most efficient scalable solvers for scalar structured-grid applications,
the geometric multigrid methods SMG and PFMG. The user defines the grid
and the stencil; the matrix and right-hand-side vector are then defined in
terms of the grid and the stencil.
The Struct grid is described via a global d-dimensional index space, i.e.

via integer singles in 1D, tuples in 2D, or triples in 3D (the integers may have
any value, positive or negative). The global indices are used to discern how
data is related spatially, and how it is distributed across the parallel machine.
The basic component of the grid is a box: a collection of abstract cell-centered
indices in index space, described by its “lower” and “upper” corner indices (see
Figure 3). The scalar grid data is always associated with cell centers, unlike
the more general semiStruct interface which allows data to be associated
with box indices in several different ways. Each process describes the portion
of the grid that it “owns”, one box at a time. Note that it is assumed that
the data has already been distributed, and that it is handed to the library in
this distributed form.
The stencil is described by an array of integer indices, each representing a

relative offset (in index space) from some gridpoint on the grid. For example,
the geometry of the standard 5-pt stencil can be represented in the following
way:





(0, 1)
(−1, 0) (0, 0) (1, 0)

(0,−1)



 . (1)

After the grid and stencil are defined, the matrix coefficients are set using
the MatrixSetBoxValues() routine with the following arguments: a box spec-
ifying where on the grid the stencil coefficients are to be set; a list of stencil
entries indicating which coefficients are to be set (e.g., the “center”, “south”,
and “north” entries of the 5-point stencil above); and the actual coefficient
values.

8 Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang

Index Space

(−3,2)

(9,12)

(10,5)

(20,13)

(11,14)

(17,20)

box1

box2

box3

Fig. 3. A box is a collection of abstract cell-centered indices, described by its
minimum and maximum indices. Here, three boxes are illustrated.

5 The Semi-Structured-Grid Interface (semiStruct)

The semiStruct interface is appropriate for applications with grids that are
mostly—but not entirely—structured, e.g. block-structured grids, compos-
ite grids in structured AMR applications, and overset grids. In addition, it
supports more general PDEs than the Struct interface by allowing multiple
variables (system PDEs) and multiple variable types (e.g. cell-centered, face-
centered, etc.). The interface provides access to data structures and linear
solvers in hypre that are designed for semi-structured grid problems, but also
to the most general data structures and solvers.
The semiStruct grid is composed out of a number of structured grid

parts, where the physical inter-relationship between the parts is arbitrary.
Each part is constructed out of two basic components: boxes (see Section 4)
and variables. Variables represent the actual unknown quantities in the grid,
and are associated with the box indices in a variety of ways, depending on their
types. In hypre, variables may be cell-centered, node-centered, face-centered,
or edge-centered. Face-centered variables are split into x-face, y-face, and z-
face, and edge-centered variables are split into x-edge, y-edge, and z-edge. See
Figure 4 for an illustration in 2D.
The semiStruct interface uses a graph to allow nearly arbitrary relation-

ships between part data. The graph is constructed from stencils plus some
additional data-coupling information set by the GraphAddEntries() routine.
Another method for relating part data is the GridSetNeighborbox() rou-
tine, which is particularly suited for block-structured grid problems. Several
examples are given in the following sections to illustrate these concepts.

hypre 9

(i,
 j
)

Fig. 4. Grid variables in hypre are referenced by the abstract cell-centered index
to the left and down in 2D (and analogously in 3D). So, in the figure, index (i, j) is
used to reference the variables in black. The variables in grey, although contained
in the pictured cell, are not referenced by the (i, j) index.

5.1 Block-Structured Grids

In this section, we describe how to use the semiStruct interface to define
block-structured grid problems. We will do this primarily by example, pay-
ing particular attention to the construction of stencils and the use of the
GridSetNeighborbox() interface routine.
Consider the solution of the diffusion equation

−∇ · (D∇u) + σu = f (2)

on the block-structured grid in Figure 5, where D is a scalar diffusion co-
efficient, and σ ≥ 0. The discretization [29] introduces three different types
of variables: cell-centered, x-face, and y-face. The three discretization sten-
cils that couple these variables are given in Figure 6. The information in these
two figures is essentially all that is needed to describe the nonzero structure of
the linear system we wish to solve. Traditional linear solver interfaces require
that this information first be translated to row-column entries of a matrix
by defining a global ordering of the unknowns. This translation process can
be quite complicated, especially in parallel. For example, face-centered vari-
ables on block boundaries are often replicated on two different processes, but
they should only be counted once in the global ordering. In contrast, the
semiStruct interface enables the description of block-structured grid prob-
lems in a way that is much more natural.
Two primary steps are involved for describing the above problem: defining

the grid (and its associated variables) in Figure 5, and defining the stencils
in Figure 6. The grid is defined in terms of five separate logically-rectangular
parts as shown in Figure 7, and each part is given a unique label between 0 and
4. Each part consists of a single box with lower index (1, 1) and upper index
(4, 4) (see Section 4), and the grid data is distributed on five processes such
that data associated with part p lives on process p. Note that in general, parts
may be composed out of arbitrary unions of boxes, and indices may consist of

10 Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang

Fig. 5. Block-structured grid example with five logically-rectangular blocks and
three variables types: cell-centered, x-face, and y-face.

Fig. 6. Discretization stencils for the cell-centered (left), x-face (middle), and y-face
(right) variables for the block-structured grid example in Figure 5.

non-positive integers (see Figure 3). Also note that the semiStruct interface
expects a domain-based data distribution by boxes, but the actual distribu-
tion is determined by the user and simply described (in parallel) through the
interface.
For simplicity, we restrict our attention to the interface calls made by

process 3. Each process describes through the interface only the grid data that
it owns, so process 3 needs to describe the data pictured in Figure 8. That is,
it describes part 3 plus some additional neighbor information that ties part 3
together with the rest of the grid. To do this, the GridSetExtents() routine
is first called, passing it the lower and upper indices on part 3, (1, 1) and
(4, 4). Next, the GridSetVariables() routine is called, passing it the three
variable types on part 3: cell-centered, x-face, and y-face.
At this stage, the description of the data on part 3 is complete. How-

ever, the spatial relationship between this data and the data on neighboring
parts is not yet defined. To do this, we need to relate the index space for
part 3 with the index spaces of parts 2 and 4. More specifically, we need
to tell the interface that the two grey boxes neighboring part 3 in Figure 8
also correspond to boxes on parts 2 and 4. To do this, two calls are made to
the GridSetNeighborbox() routine. With this additional neighbor informa-

hypre 11

(1,1)
 (1,1)

(1,1)

(1,1)

(1,1)

(4,4)

(4,4)

(4,4)

(4,4)

part 0

part 1

part 2

part 3

part 4

(4,4)

Fig. 7. Assignment of parts and indices to the block-structured grid example in
Figure 5. In this example, the data for part p lives on process p.

(1,1)

(1,4)

(4,1)

(4,4)

(1,1)

(4,4)

part 2

part 3

part 4

Fig. 8. Grid information given to the semiStruct interface by process 3 for the
example in Figure 5. The shaded boxes are used to relate part 3 to parts 2 and 4.

tion, it is possible to determine where off-part stencil entries couple. Take, for
example, any shared part boundary such as the boundary between parts 2
and 3. Along these boundaries, some stencil entries reach outside of the part.
If no neighbor information is given, these entries are effectively zeroed out,
i.e., they don’t participate in the discretization. However, with the additional
neighbor information, when a stencil entry reaches into a neighbor box it is
then coupled to the part described by that neighbor box information.
An important consequence of the use of the GridSetNeighborbox() rou-

tine is that it can declare variables on different parts as being the same. For
example, consider the highlighted face variable at the bottom of Figure 8.
This is a single variable that lives on both part 2 and part 1. Note that pro-
cess 3 cannot make this determination based solely on the information in the
figure; it must use additional information on other processes. Also note that
a variable may be of different types on different parts. Take for example the

12 Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang

face variables on the boundary of parts 2 and 3. On part 2 they are x-face
variables, but on part 3 they are y-face variables.
The grid is now complete and all that remains to be done is to describe the

stencils in Figure 6. For brevity, we consider only the description of the y-face
stencil, i.e. the third stencil in the figure. To do this, the stencil entries are
assigned unique labels between 0 and 8 and their “geometries” are described
relative to the “center” of the stencil. This process is illustrated in Figure 9.
Nine calls are made to the routine StencilSetEntry(). As an example, the
call that describes stencil entry 5 in the figure is given the entry number 5,
the offset (−1, 0), and the identifier for the x-face variable (the variable to
which this entry couples). Recall from Figure 4 the convention used for ref-
erencing variables of different types. The geometry description uses the same
convention, but with indices numbered relative to the referencing index (0, 0)
for the stencil’s center.

7

2

4

5

8

1

3
 6

0

0

1

2

3

4

5

6

7

8

(0,0);

(0,-1);

(0,1);

(0,0);

(0,1);

(-1,0);

(0,0);

(-1,1);

(0,1);

(-1,0)

(-1,1)

(0,-1)

st
en

ci
l e

nt
rie

s

geom
etries

Fig. 9. Assignment of labels and geometries to the y-face stencil in Figure 6. Stencil
geometries are described relative to the (0, 0) index for the “center” of the stencil.
The (0, 0) index is located at the center of the cell just above the cell marked (0,−1).

With the above, we now have a complete description of the nonzero struc-
ture for the matrix. The matrix coefficients are then easily set using the
MatrixSetValues() routine in a manner similar to what is described in Sec-
tions 4 and 5.2. See the hypre documentation [21] for details.
An alternative approach for describing the above problem through the in-

terface is to use the GraphAddEntries() routine. In this approach, the five
parts are explicitly “sewn” together by adding non-stencil couplings to the
matrix graph (see Section 5.2 for more information on the use of this rou-
tine). The main downside to this approach for block-structured grid problems
is that variables along block boundaries are no longer considered to be the
same variables on the corresponding parts that share these boundaries. For
example, the face variable at the bottom of Figure 8 would now represent two
different variables that live on different parts. To “sew” the parts together cor-

hypre 13

rectly, we need to explicitly select one of these variables as the representative
that participates in the discretization, and make the other variable a dummy
variable that is decoupled from the discretization by zeroing out appropriate
entries in the matrix.

5.2 Structured Adaptive Mesh Refinement

We now briefly discuss how to use the semiStruct interface in a structured
AMR application. Consider Poisson’s equation on the simple cell-centered
example grid illustrated in Figure 10. For structured AMR applications, each
refinement level should be defined as a unique part. There are two parts in this
example: part 0 is the global coarse grid and part 1 is the single refinement
patch. Note that the coarse unknowns underneath the refinement patch (gray
dots in Figure 10) are not real physical unknowns; the solution in this region
is given by the values on the refinement patch. In setting up the composite
grid matrix [28] for hypre the equations for these “dummy” unknowns should
be uncoupled from the other unknowns (this can easily be done by setting all
off-diagonal couplings to zero in this region).

(4,4)

(1,1)

(2,4)

(3,1)

(9,9)

(6,6)

(7,9)

(8,6)

part 0

part 1

Fig. 10. Structured AMR grid example with one refinement patch (part 1) in
the upper-right quadrant of the coarse grid (part 0). Shaded regions correspond to
process 0, unshaded to process 1. The grey dots are dummy variables.

In the example, parts are distributed across the same two processes with
process 0 having the “left” half of both parts. For simplicity, we discuss the
calls made by process 0 to set up the composite grid matrix. First to set
up the grid, process 0 will make GridSetVariables() calls to set the one
variable type, cell-centered, and will make GridSetExtents() calls to identify
the portion of the grid it owns for each part: part 0, (1, 1) × (2, 4); part 1,
(6, 6) × (7, 9). Recall that there is no rule relating the indexing of different
parts. Also note that there is no way to define hierarchies in the interface. In

14 Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang

hypre, this additional information is passed directly into the solvers that need
it, e.g., in the Fast Adaptive Composite Grid method (FAC).
Next, the stencil is set up. In this example we are using a finite volume

approach resulting in the standard 5-point stencil (1) in both parts.
The grid and stencil are used to define all intra-part coupling in the graph,

the non-zero pattern of the composite grid matrix. The inter-part coupling at
the coarse-fine interface is described by GraphAddEntries() calls. This cou-
pling in the composite grid matrix is typically the composition of an inter-
polation rule and a discretization formula. In this example, we use a simple
piecewise constant interpolation, i.e. the solution value at any point in a coarse
cell is equal to the solution value at the cell center. Then the flux across a por-
tion of the coarse-fine interface is approximated by a difference of the solution
values on each side. As an example, consider the illustration in Figure 11.
Following the discretization procedure above results in an equation for the
variable at cell (6, 6) involving not only the stencil couplings to (6, 7) and
(7, 6) on part 1 but also non-stencil couplings to (2, 3) and (3, 2) on part 0.
These non-stencil couplings are described by GraphAddEntries() calls. The
syntax for this call is simply the part and index for both the variable whose
equation is being defined and the variable to which it couples. After these
calls, the non-zero pattern of the matrix (and the graph) is complete. Note
that the “west” and “south” stencil couplings simply “drop off” the part, and
are effectively zeroed out.

(3,2)

(2,3)
 (6,6)

Fig. 11. Coupling for equation at corner of refinement patch. Black lines (solid and
broken) are stencil couplings. Gray line are non-stencil couplings.

The remaining step is to define the actual numerical values for the com-
posite grid matrix. This can be done by either MatrixSetValues() calls to set
entries in a single equation, or by MatrixSetBoxValues() calls to set entries
for a box of equations in a single call. The syntax for the MatrixSetValues()
call is a part and index for the variable whose equation is being set and an ar-

hypre 15

ray of entry numbers identifying which entries in that equation are being set.
The entry numbers may correspond to stencil entries or non-stencil entries.

6 The Finite Element Interface (FEI)

The finite element interface is appropriate for users who form their systems
from a finite element discretization. The interface mirrors typical finite ele-
ment data structures. Though this interface is provided in hypre, its definition
was determined elsewhere [11]. A brief summary of the actions required by
the user is given below.
The use of this interface to build the underlying linear system requires

two phases: initialization and loading. During the initialization phase, the
structure of the finite-element data is defined. This requires the passing of
control data that defines the underlying element types and solution fields; data
indicating how many aggregate finite-element types will be utilized; element
data, including element connectivity information to translate finite-element
nodal equations to systems of sparse algebraic equations; control data for
nodes that need special handling, such as nodes shared among processes; and
data to aid in the definition of any constraint relations local to a given process.
These definitions are needed to determine the underlying matrix structure and
allocate memory for the load step.
During the loading phase, the structure is populated with finite-element

data according to standard finite-element assembly procedures. Data passed
during this step includes: boundary conditions (essential, natural, and mixed
boundary conditions); element stiffness matrices and load vectors, passed as
aggregate element set abstractions; and constraint relations, defined in terms
of nodal algebraic weights and tables of associated nodes.
For a more detailed description with specific function call definitions, the

user is referred to [11], the web site [17] which contains information on newer
versions of the FEI, as well as the hypre user manual. The current FEI version
used in hypre is version 2.x, and comprises additional features not defined in
[11].

7 The Linear-Algebraic Interface (IJ)

The IJ interface is the traditional linear-algebraic interface. Here, the user
defines the right hand side and the matrix in the general linear-algebraic
sense, i.e. in terms of row and column indices. This interface provides access
only to the most general data structures and solvers and as such should only
be used when none of the grid-based interfaces is applicable.
As with the other interfaces in hypre, the IJ interface expects to get the

data in distributed form. Matrices are assumed to be distributed across p

16 Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang

processes by contiguous blocks of rows. That is, the matrix must be blocked
as follows:











A0

A1

...
Ap−1











, (3)

where each submatrix Ak is “owned” by a single process k. Ak contains the
rows nk, nk+1, ..., nk+1−1, where n0 is arbitrary (n0 is typically set to either
0 or 1).
First, the user creates an empty IJ matrix object on each process by

specifying the row extents, nk and nk+1−1. Next, the object type needs to be
set. The object type determines the underlying data structure. Currently only
one data structure, the ParCSR matrix data structure, is available. However,
work is underway to add other data structures. Additional data structures are
desirable for various reasons, e.g. to be able to link to other packages, such
as PETSc [3, 4, 25]. Also, if additional matrix information is known, more
efficient data structures are possible. For example, if the matrix is symmetric,
it would be advantageous to design a data structure that takes advantage of
symmetry. Such an approach could lead to a significant decrease in memory
usage. Another data structure could be based on blocks and thus make better
use of the cache. Small blocks could naturally occur in matrices derived from
systems of PDEs, and be processed more efficiently in an implementation of
the nodal approach for systems AMG.
After setting the object type, the user can give estimates of the expected

row sizes to increase efficiency. Providing additional detail on the nonzero
structure and distribution of the matrix can lead to even more efficiency, with
significant savings in time and memory usage. In particular, if information
is given about how many column indices are “local” (i.e., between nk and
nk+1 − 1), and how many are not, both the ParCSR and PETSc matrix data
structures can take advantage of this information during construction.
The matrix coefficients are set via the MatrixSetValues() routine, which

allows a great deal of flexibility (more than its typical counterpart routines
in other linear solver libraries). For example, one call to this routine can
set a single coefficient, a row of coefficients, submatrices, or even arbitrary
collections of coefficients. This is accomplished with the following parameters,
describing which matrix coefficients are being set:

• nrows (scalar integer): the number of rows,
• ncols (array of integers): the number of coefficients in each row,
• rows (array of integers): the global indices of the rows,
• cols (array of integers): the column indices of each coefficient,
• values (array of doubles): the actual values of the coefficients.

It is also possible to add values to the coefficients with the MatrixAddValues()
call.

hypre 17

Figure 12 illustrates this for the example of an 11 × 11-matrix, distributed
across 3 processes. Here, rows 1–4 reside on process 0, rows 5–8 on process 1
and rows 9–11 on process 2. We now describe how to define the above param-
eters to set the coefficients in the boxes in Figure 12.

Fig. 12. An example of a ParCSR matrix, distributed across 3 processes.

On process 0, only one element a34 is to be set, which requires the following
parameters: nrows = 1, ncols = [1], rows = [3], cols = [4], values = [a34].
On process 1, the third (local) row is defined with the parameters: nrows =
1, ncols = [4], rows = [7], cols = [1,6,7,8], values = [a71, a76, a77, a78]. On
process 2, the values contained in two submatrices are to be set. This can
be done by two subsequent calls setting one submatrix at a time, or more
generally, all of the values can be set in one call with the parameters: nrows
= 3, ncols = [1, 3, 2], rows = [9, 10, 11], cols = [3, 4, 10, 11, 10, 11], values
= [a93, a10,4, a10,10, a10,11, a11,10, a11,11].

8 Implementation

This section discusses implementation issues of the various interfaces. It de-
scribes the data structures and discusses how to obtain neighborhood infor-
mation. The focus is on those issues which impact performance on a large
scale parallel computer. A more detailed analysis can be found in [14].

18 Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang

8.1 IJ Data Structure and Communication Package

Currently only one data structure, the ParCSR matrix data structure, is avail-
able. It is similar to the parallel AIJ matrix format in PETSc [3, 4, 25], but
is not the same. It is based on the sequential compressed sparse row (CSR)
data structure.
A ParCSR matrix consists of p parts Ak, k = 1, . . . , p (see (3)), where Ak

is stored locally on processor k. Each Ak is split into two matrices Dk and
Ok. Dk is a square matrix of order nk × nk, where nk = rk+1 − rk is the
number of rows residing on processor k. Dk contains all coefficients a

k
ij , with

rk ≤ i, j ≤ rk+1 − 1, i.e. column indices pointing to rows stored locally. The
second matrix Ok contains those coefficients of Ak, whose column indices j
point to rows that are stored on other processors with j < rk or j ≥ rk+1.
Both matrices are stored in CSR format. Whereas Dk is a CSR matrix in
the usual sense, in Ok, which in general is extremely sparse with many zero
columns and rows, all non-zero columns are renumbered for greater efficiency.
Thus, one needs to generate an array of length nOk

that defines the mapping
of local to global column indices, where nOk

is the number of non-zero columns
of Ok. We denote this array as col map Ok.
An example of an 11 × 11 matrix that illustrates this data structure is

given in Figure 13. The matrix is distributed across 3 processors, with 4
rows on processor 1 and processor 2, and 3 rows on processor 3. The 4 ×
4 matrices D1 and D2 and the 3 × 3 matrix D3 are illustrated as boxes.
The remaining coefficients are compressed into the 4 × 3 matrix O1 (with
col map O1 = (5,6,8)), the 4× 4 matrix O2 (with col map O2 = (1,2,4,9))
and the 3 × 4 matrix O3 (with col map O3 = (3,4,5,8)). Since often Op is
extremely sparse, efficiency can be further increased by introducing a row
mapping that compresses zero rows by renumbering the non-zero rows.
For parallel computations it is necessary to generate the neighborhood

information, which is assembled in a communication package. The communi-
cation package is based on the concept of what is needed for a matrix-vector
multiplication. Let us consider the parallel multiplication of a matrix A with
a vector x. Processor k owns rows rk through rk+1 − 1 as well as the corre-
sponding chunk of x, xk = (xrk

, . . . , xrk+1−1)
T . In order to multiply A with

x, processor k needs to perform the operation Akx = Dkxk + Okx̃k, where
x̃k = (xcol map Ok(1), . . . , xcol map Ok(nOk

))
T . While the multiplication of Dk

and xk can be performed without any communication, the elements of x̃k are
owned by the receive processors of k. Another necessary piece of information
is the amount of data to be received by each processor. In general processor
k owns elements of x that are needed by other processors. Consequently pro-
cessor k needs to know the indices of the elements that need to be sent to
each of its send processors.
In summary, the communication package on processor k consists of the

following information:

• the IDs of the receive processors

hypre 19

Fig. 13. An example of a ParCSR matrix, distributed across 3 processors. Matrices
with local coefficients, D1, D2 and D3, are shown as boxes within each processor.
The remaining coefficients are compressed into the matrices O1, O2 and O3.

• the size of data to be received by each processor
• the IDs of the send processors
• the indices of the elements that need to be sent to each send processor

Recall that each processor by design has initially only local information
available, i.e. its own range and the rows of the matrix that it owns. In order
to determine the communication package, it needs to get more information
from other processors. There are various ways of dealing with this situation.
We will overview two approaches here (for a more detailed analysis, see [14]).
The simpler approach is to allow each processor to own the complete par-

titioning information, which is easily communicated via MPI Allgather.
From this it can determine its receive processors. This is a reasonable approach
when dealing with computers with a few thousand processors. However, when
using a supercomputer with 100,000 or more processors, this approach is ex-
pensive, requiring O(p) computations and memory usage.
A better approach for this case would be to use a so-called distributed di-

rectory algorithm [30], which is a rendezvous algorithm that utilizes a concept
we refer to as an assumed partitioning [14]. The idea is to assume a parti-
tioning that is known by all processors, requires only O(1) storage, and can
be queried by an O(1) function. In general, this function does not describe
the actual partitioning, but should not be too far from it. This approach con-
sists of two main steps. In the first step, the so-called distributed directory

20 Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang

is set up. Here, each processor sends information about the data it owns in
the actual partitioning to the processors responsible for that data in the as-
sumed partitioning. Once this is done, each processor knows how the data in
its piece of the assumed partitioning is distributed in the actual partitioning.
Hence, it is now possible to answer queries through the distributed directory
(in O(log p) time) about where data lives in the actual partitioning. Step two
involves just such a set of queries. That is, each processor determines where
its needed receive data lives in the assumed partitioning, then contacts the
responsible processors for the needed receive processor information. In this
step, it is necessary to use a distributed termination detection (DTD) algo-
rithm to figure out when to stop servicing queries. This latter fact is the sole
reason for the O(log p) cost (instead of O(1)) [14].
If matrix A has a symmetric structure, the receive processors are also

send processors, and no further communication is necessary. However, this is
different in the non-symmetric case. In the current implementation, the IDs
of the receive processors and the amount of data to be obtained from each
receive processor are communicated to all processors via aMPI Allgatherv.
For a moderate number of processors, even up to 1000, this is a reasonable
approach, however it can become a potentially high cost if we consider 100,000
processors. This can be avoided by a using a DTD algorithm in a similar
manner to step two above.
When each processor knows its receive and send processors, the remaining

necessary information can be exchanged directly. For most PDE-based linear
systems and data partitionings, the number of neighbors and the amount of
data is independent of p. Hence, the computational complexity and the storage
requirement is O(1).

8.2 Struct Data Structure and Neighborhood Information

The underlying matrix data structure, Struct matrix, contains the following.

• Struct grid: describes the boxes owned by the processor (local boxes) as
well as information about other nearby boxes (the actual data associated
with these nearby boxes lives on other processors). Note that a box is
stored by its “lower” and “upper” indices, called the box’s extents.

• Struct stencil: an array of indices defining the coupling pattern in the
matrix.

• data: an array of doubles defining the coupling coefficients in the matrix.

The corresponding vector data structure is similar except is has no stencil
and the data array defines the vector values. In both the vector and matrix
the data array is stored so that all values associated with a given box are
stored contiguously. To facilitate parallel implementation of a matrix-vector
product, the vector data array includes space for values associated with a box
somewhat larger than the actual box; typically including one boundary layer
of cells or ghost cells (see Figure 14). Assuming that the boxes are large, the

hypre 21

additional storage of these ghost cells is fairly small as the boundary points
also take only a small percentage of the total number of points. Some of these
ghost cells may be part of other boxes, owned by either the same or a different
processor. Determining communication patterns for updating ghost cells is the
major task in implementing the Struct interface in a scalable manner.

box1

box2

box3

(9,4)

(21,14)

Fig. 14. For parallel computing, additional storage is allocated for cells nearby a
box (ghost cells). Here, the ghost cells for box2 are illustrated.

Recall that in the interface, a given processor k is passed only information
about the grid boxes that it owns. Determining how to update ghost cell values
requires information about nearby boxes on other processors. This information
is generated and stored when the Struct grid is assembled. Determining which
processors own ghost cells is similar to the problem in the IJ interface of
determining the receive processors. In the IJ case, this requires information
about the global partitioning. In the Struct case, it requires information
about the global grid.
The algorithm proceeds as follows. Here we let p denote the number of

processors and b denote the total number of boxes in the grid (note b ≥

p). First we accumulate information about the global grid by each processor
sending the extents of its boxes to all other processors. As in the IJ case, this
can be done usingMPI Allgather with O(log p) operations. Memory usage
is of order O(b), since the global grid contains b boxes.
Once the global grid is known, each local box on processor k is compared

to every box in the global grid. In this box-by-box comparison a distance
index is computed which describes the spatial relationship in the index space
of one box to another. This comparison of each local box to every global box
involves O(b) computations. Once the comparison is done, all global boxes
within a specified distance (typically 2) from a local box are stored as part of
a neighborhood data structure on processor k. Boxes not in this neighborhood

22 Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang

can be deleted from processor k’s description of the global grid. The storage
requirement for the neighborhood is independent of p.
To perform the matrix-vector product, processor k must have up-to-date

values in all ghost cells that will be “touched” when applying the matrix
stencil at the cells owned by processor k. Determining these needed ghost
cells is done by taking each box owned by the processor, shifting it by each
stencil entry and finding the intersection of the shifted box with boxes in
the neighborhood data structure. As an example, consider the same layout
of boxes as before with each box on a different processor (see Figure 15). If
the matrix has the 5-pt stencil (1), then shifting box2 by the “north” stencil
entry and intersecting this with box3 produces one of the dark shaded regions
labeled as a receive box. Using this procedure, a list of receive boxes and
corresponding owner processors is generated. The procedure for determining

proc1

Send Boxes

proc2

proc3
Receive Boxes

Fig. 15. The communication package for processor 2 contains send boxes (values
owned by processor 2 needed by other processors) and receive boxes (values owned
by other processors need by processor 2.)

the cells owned by processor k that are needed to update ghost cells on other
processors is similar.
The current Struct interface implementation shares some of the same

drawbacks as the current IJ interface implementation. The storage require-
ment in generating the neighborhood structure is O(b) as the global grid is
initially gathered to all processors and the box-by-box comparison to deter-
mine neighbors involves O(b) operations, again note b ≥ p . One possible
approach to eliminate these drawbacks would be similar to the assumed par-
titioning approach described in Section 8.1. The idea is to have a function
describing an assumed partitioning of the index space to processors and have
this function available to all processors. Unlike the one-dimensional IJ par-
titioning, this partition would be d-dimensional. A processor would be able
to determine its neighbors in the assumed partition in O(1) computations

hypre 23

and storage. A multi-phase communication procedure like that previously de-
scribed for the IJ case could be used to determine the actual neighbors with
O(log p) complexity.

8.3 semiStruct Data Structure

The semiStruct interface allows the user to choose from two underlying data
structures for the matrix. One option is to use the ParCSR matrix data type
discussed in Section 8.1. The second option is the semiStruct matrix data
type which is based on a splitting of matrix non-zeros into structured and
unstructured couplings A = S + U . The S matrix is stored as a collection of
Struct matrices and the U matrix is stored as a ParCSR matrix. In our current
implementation, the stencil couplings within variables of the same type are
stored in S, all other couplings are stored in U . If the user selects the ParCSR
data type, then all couplings are stored in U (i.e. S = 0.)
Since the semiStruct interface can use both Struct and ParCSR matrices,

the issues discussed in the previous two sections impact its scalability as well.
The major new issue impacting scalability is the need to relate the semi-
structured description of unknowns and the global ordering of unknowns in
the ParCSR matrix, i.e. the mapping M(part,var,index) = global rank.
The implementation needs this mapping to set matrix entries in U . The global
ordering of unknowns is an issue internal to the semiStruct implementation;
the user is not aware of this ordering, and does not need to be.
In our implementation of the semi-structured grid we include the concept

of BoxMap to implement this mapping. There is a BoxMap for each variable
on each part; the purpose is to quickly compute the global rank corresponding
to a particular index. To describe the BoxMap structure we refer to Figure 16.
By cutting the index space in each direction by lines coinciding with boxes
in the grid, the index space is divided into regions where each region is a
either empty (not part of the grid) or is a subset of a box defining the grid.
The data structure for the BoxMap corresponds to a d-dimensional table
of BoxMapEntries. In three dimensions, BoxMapEntry[i][j][k] contains
information about the region bounded by cuts i and i+1 in the first coordinate
direction, cuts j and j + 1 in the second coordinate direction, cuts k and
k + 1 in the third coordinate direction. Among the information contained in
BoxMapEntry is the first global rank (called offset) and the extents for the
grid box which this region is a subset of. The global rank of any index in this
region can be easily computed from this information.
The mapping M(part,var,index) = global rank is computed by ac-

cessing the BoxMap corresponding to part and var, searching in each coor-
dinate direction to determine which cuts index falls between, retrieving the
offset and box extents from the appropriate BoxMapEntry, and computing
global rank from this retrieved information. This computation has O(1)
(independent of number of boxes and processors) complexity except for the
searching step. The searching is done by a simple linear search so worst case

24 Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang

Index Space

(−3,2)

(9,12)

(10,5)

(20,13)

(11,14)

(17,20)

box1

box2

box3

Fig. 16. The BoxMap structure divides the index space into regions defined by
cuts in each coordinate direction.

complexity is O(b) since the number of cuts is proportional to the number of
boxes. However, we retain the current position in the BoxMap table, and in
subsequent calls to the mapping function, we begin searching from this posi-
tion. In most applications, subsequent calls will have map indices nearby the
previous index and the search has O(1) complexity. Further optimization is
accomplished by retrieving BoxMapEntries not for a single index but for
an entire box of indices in the index space.
TheBoxMap structure does allow quick mapping from the semi-structured

description to the global ordering of the ParCSR matrix, but it does have
drawbacks: storage and computational complexity of initial construction.
Since we store the structure on all processors, the storage costs are O(b)
where b is the global number of boxes (again b is at least as large as p, the
number of processors). Constructing the structure requires knowledge of all
boxes (accomplished by the MPI Allgather with O(log p) operations and
O(b) storage as in the Struct case), and then scanning the boxes to define the
cuts in index space (requiring O(b) operations and storage.) As in the IJ and
Struct cases, it may be possible to use the notion of an assumed partitioning
of the index space to remove these potential scalability issues.

9 Preconditioners and Solvers

The conceptual interfaces provide access to several preconditioners and solvers
in hypre (we will refer to them both as solvers in the sequel, except when
noted). Table 1 lists the current solver availability. We expect to update this
table continually in the future with the addition of new solvers in hypre, and
potentially with the addition of solvers in other linear solver packages (e.g.,
PETSc). We also expect to update the Struct interface column, which should
be completely filled in.

hypre 25

Conceptual Interfaces

Solvers Struct semiStruct FEI IJ

Jacobi x
SMG x
PFMG x
Split x
MLI x x x
BoomerAMG x x x
ParaSails x x x
PILUT x x x
Euclid x x x
PCG x x x x
GMRES x x x x
BiCGSTAB x x x x
Hybrid x x x x

Table 1. Current solver availability via hypre conceptual interfaces.

Great efforts have been made to generate highly efficient codes. Of par-
ticular concern has been the scalability of the solvers. Roughly speaking, a
method is scalable if the time required to produce the solution remains essen-
tially constant as both the problem size and the computing resources increase.
All methods implemented here are generally scalable per iteration step, the
multigrid methods are also scalable with regard to iteration count.
The solvers use MPI for parallel processing. Most of them have also been

threaded using OpenMP, making it possible to run hypre in a mixed message-
passing / threaded mode, of potential benefit on clusters of SMPs.
All of the solvers can be used as stand-alone solvers, except for ParaSails,

Euclid, PILUT and MLI which can only be used as preconditioners. For most
problems, it is recommended that one of the Krylov methods be used in con-
junction with a preconditioner. The Hybrid solver can be a good option for
time-dependent problems, where a new matrix is generated at each time step,
and where the matrix properties change over time (say, from being highly
diagonally dominant to being weakly diagonally dominant). This solver starts
with diagonal-scaled conjugate gradient (DSCG) and automatically switches
to multigrid-preconditioned conjugate gradient (where the multigrid precon-
ditioner is set by the user) if DSCG is converging too slowly. SMG [32, 7]
and PFMG [1, 15] are parallel semicoarsening methods, with the more robust
SMG using plane smoothing and the more efficient PFMG using pointwise
smoothing. The Split solver is a simple iterative method based on a regular
splitting of the matrix into its “structured” and “unstructured” components,
where the structured component is inverted using either SMG or PFMG. This
is currently the only solver that takes advantage of the structure information
passed in through the semiStruct interface, but solvers such as the Fast
Adaptive Composite-Grid method (FAC) [28] will also be made available in

26 Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang

the future. MLI [6] is a parallel implementation of smoothed aggregation [33].
BoomerAMG [20] is a parallel implementation of algebraic multigrid with
various coarsening strategies [31, 12, 18, 13] and smoothers (including the
conventional pointwise smoothers such as Jacobi, as well as more complex
smoothers such as ILU, sparse approximate inverse and Schwarz). ParaSails
[8, 9] is a sparse approximate inverse preconditioner. PILUT [24] and Euclid
[22, 23] are ILU algorithms, where PILUT is based on Saad’s dual-threshold
ILU algorithm, and Euclid supports variants of ILU(k) as well as ILUT pre-
conditioning.
After the matrix and right hand side are set up as described in the previous

sections, the preconditioner (if desired) and the solver are set up, and the linear
system can finally be solved. For many of the preconditioners and solvers, it
might be desirable to choose parameters other than the default parameters,
e.g. the strength threshold or smoother for BoomerAMG, a drop tolerance
for PILUT, the dimension of the Krylov space for GMRES, or convergence
criteria, etc. These parameters are defined using Set() routines. Once these
parameters have been set to the satisfaction of the user, the preconditioner is
passed to the solver with a SetPreconditioner() call. After this has been
accomplished, the problem is solved by calling first the Setup() routine (this
call may become optional in the future) and then the Solve() routine. When
this has finished, the basic solution information can be extracted using a
variety of Get() calls.

10 Additional Information

The hypre library can be downloaded by visiting the hypre home page [21]. It
can be built by typing configure followed by make. There are several options
that can be used with configure. For information on how to use those, one
needs to type configure --help. Although hypre is written in C, it can also
be called from Fortran. More specific information on hypre and how to use it
can be found in the users manual and the reference manual, which are also
available at the same URL.

11 Conclusions and Future Work

The introduction of conceptual interfaces in hypre gives application users a
more natural means for describing their linear systems, and provides access to
an array of powerful linear solvers that require additional information beyond
just the matrix. Work continues on the library on many fronts. We highlight
two areas: providing better interfaces and solvers for structured AMR appli-
cations and scaling up to 100,000’s of processors.
As in the example in Section 5.2, the current semiStruct interface can

be used in structured AMR applications. However, the user must explicitly

hypre 27

calculate the coarse-fine coupling coefficients which are typically defined by
the composition of two equations: a structured grid stencil coupling and an
interpolation formula. A planned extension to the semiStruct interface would
allow the user to provide these two equations separately, and the composition
would be done inside the hypre library code. This extension would make the
semiStruct interface more closely match the concepts used in AMR appli-
cation codes and would further ease the coding burden for potential users.
We are also finishing the implementation of a new FAC [28] solver in hypre.
This is an efficient multigrid solver specifically tailored to structured AMR
applications.
Another area of work is ensuring good performance on very large num-

bers of processors. As mentioned previously, the current implementations in
hypre are appropriate for thousands of processors but do have places where,
say, the storage needed is O(p). These potential bottlenecks may be of real
importance on machines with 100,000 processors. The crux of the problem is
that the interfaces only provide local information and determining neighbor-
ing processors requires global information. We have mentioned the assumed
partitioning approach as one way we are trying to overcome this hurdle.

Acknowledgments

This paper would not have been possible without the many contributions
of the hypre library developers: Allison Baker, Edmond Chow, Andy Cleary,
Van Henson, Ellen Hill, David Hysom, Mike Lambert, Barry Lee, Jeff Painter,
Charles Tong and Tom Treadway. This work was performed under the aus-
pices of the U.S. Department of Energy by University of California Lawrence
Livermore National Laboratory under contract No. W-7405-Eng-48.

References

1. Ashby, S. F. and Falgout, R. D.: A parallel multigrid preconditioned conjugate
gradient algorithm for groundwater flow simulations. Nuclear Science and En-

gineering, 124(1):145–159, (1996). Also available as LLNL Technical Report
UCRL-JC-122359

2. Babel: A language interoperability tool. www.llnl.gov/CASC/components/
3. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W., Knepley, M., McInnes,

L., Smith, B., and Zhang, H.: PETSc users manual. anl-95/11-revision 2.2.0.
Technical report, Aronne National Laboratory

4. Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F.: Efficient manage-
ment of parallelism in object oriented numerical software libraries. In Arge,
E., Bruaset, A. M., and Langtangen, H. P., editors, Modern Software Tools in

Scientific Computing, pages 163–202. Birkhauser Press, (1997)
5. Brezina, M., Cleary, A. J., Falgout, R. D., Henson, V. E., Jones, J. E., Man-

teuffel, T. A., McCormick, S. F., and Ruge, J. W.: Algebraic multigrid based on

28 Robert D. Falgout, Jim E. Jones, and Ulrike Meier Yang

element interpolation (AMGe). SIAM J. Sci. Comput., 22(5):1570–1592, (2000).
Also available as LLNL technical report UCRL-JC-131752

6. Brezina, M., Tong, C., and Becker, R.: Parallel algebraic multigrid for struc-
tural mechanics. SIAM J. Sci. Comput., submitted, (2004). Also available as
Lawrence Livermore National Laboratory technical report UCRL-JRNL-204167

7. Brown, P. N., Falgout, R. D., and Jones, J. E.: Semicoarsening multigrid on
distributed memory machines. SIAM J. Sci. Comput., 21(5):1823–1834, (2000).
Special issue on the Fifth Copper Mountain Conference on Iterative Methods.
Also available as LLNL technical report UCRL-JC-130720

8. Chow, E.: A priori sparsity patterns for parallel sparse approximate inverse
preconditioners. SIAM J. Sci. Comput., 21(5):1804–1822, (2000). Also available
as LLNL Technical Report UCRL-JC-130719 Rev.1

9. Chow, E.: Parallel implementation and practical use of sparse approximate in-
verses with a priori sparsity patterns. Int’l J. High Perf. Comput. Appl., 15:56–
74, (2001). Also available as LLNL Technical Report UCRL-JC-138883 Rev.1

10. Chow, E., Cleary, A. J., and Falgout, R. D.: Design of the hypre preconditioner
library. In Henderson, M., Anderson, C., and Lyons, S., editors, Proc. of the
SIAM Workshop on Object Oriented Methods for Inter-operable Scientific and

Engineering Computing, Philadelphia, PA, (1998). SIAM. Held at the IBM T.J.
Watson Research Center, Yorktown Heights, New York, October 21-23, 1998.
Also available as LLNL technical report UCRL-JC-132025

11. Clay, R. L., Mish, K. D., Otero, I. J., Taylor, L. M., and Williams, A. B.:
An annotated reference guide to the finite-element interface (fei) specification:
version 1.0. Sandia National Laboratories report SAND99-8229, (1999)

12. Cleary, A. J., Falgout, R. D., Henson, V. E., and Jones, J. E.: Coarse-grid se-
lection for parallel algebraic multigrid. In Proc. of the Fifth International Sym-

posium on: Solving Irregularly Structured Problems in Parallel, volume 1457 of
Lecture Notes in Computer Science, pages 104–115, New York, (1998). Springer–
Verlag. Held at Lawrence Berkeley National Laboratory, Berkeley, CA, August
9–11, 1998. Also available as LLNL Technical Report UCRL-JC-130893

13. De Sterck, H., Yang, U. M., and Heys, J.: Reducing complexity in parallel alge-
braic multigrid preconditioners. SIAM J. Matrix Anal. Appl., submitted, (2004).
Also available as LLNL Technical Report UCRL-JRNL-206780

14. Falgout, R., Jones, J., and Yang, U. M.: Pursuing scalability for hypre’s con-
ceptual interfaces. ACM Transaction on Mathematical Software, submitted,
(2003). Also available as Lawrence Livermore National Laboratory technical
report UCRL-JP-200044

15. Falgout, R. D. and Jones, J. E.: Multigrid on massively parallel architectures.
In Dick, E., Riemslagh, K., and Vierendeels, J., editors, Multigrid Methods VI,
volume 14 of Lecture Notes in Computational Science and Engineering, pages
101–107, Berlin, (2000). Springer. Proc. of the Sixth European Multigrid Con-
ference held in Gent, Belgium, September 27-30, 1999. Also available as LLNL
technical report UCRL-JC-133948

16. Falgout, R. D. and Yang, U. M.: hypre: a library of high performance pre-
conditioners. In Sloot, P., Tan., C., Dongarra, J., and Hoekstra, A., editors,
Computational Science - ICCS 2002 Part III, volume 2331 of Lecture Notes in
Computer Science, pages 632–641. Springer–Verlag, (2002). Also available as
LLNL Technical Report UCRL-JC-146175

17. The finite-element interface (fei). http://z.cz.sandia.gov/fei/

hypre 29

18. Gallivan, K. and Yang, U. M.: Efficiency issues in parallel coarsening schemes.
Technical Report UCRL-ID-513078, Lawrence Livermore National Laboratory,
(2003)

19. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: Design patterns: elements

of reusable object-oriented software. Addison-Wesley, (1995)
20. Henson, V. E. and Yang, U. M.: BoomerAMG: a parallel algebraic multigrid

solver and preconditioner. Applied Numerical Mathematics, 41:155–177, (2002).
Also available as LLNL technical report UCRL-JC-141495

21. hypre: High performance preconditioners. http://www.llnl.gov/CASC/hypre/
22. Hysom, D. and Pothen, A.: Efficient parallel computation of ILU(k) precondi-

tioners. In Proceedings of Supercomputing 99, New York, (1999). ACM. pub-
lished on CDROM, ISBN #1-58113-091-0, ACM Order #415990, IEEE Com-
puter Society Press Order # RS00197

23. Hysom, D. and Pothen, A.: A scalable parallel algorithm for incomplete factor
preconditioning. SIAM J. Sci. Comput., 22(6):2194–2215, (2001)

24. Karypis, G. and Kumar, V.: Parallel threshold-based ILU factorization. Tech-
nical Report 061, University of Minnesota, Department of Computer Sci-
ence/Army HPC Research Center, Minneapolis, MN 5455, (1998)

25. Knepley, M. G., Katz, R. F., and Smith, B. F.: Developing a geodynamics
simulation with PETSc. In Bruaset, A. M., Bjørstad, P., and Tveito, A., editors,
Numerical Solution of Partial Differential Equations on Parallel Computers.
Springer, (2004)

26. Langtangen, H. P.: Computational Partial Differential Equations. Numerical
Methods and Diffpack Programming, volume 1 of Texts in Computational Science
and Engineering. Springer, (2003). 2nd ed.

27. Langtangen, H. P. and Tveito, A., editors. Advanced Topics in Computational

Partial Differential Equations. Numerical Methods and Diffpack Programming,
volume 33 of Lecture Notes in Computational Science and Engineering. Springer,
(2003)

28. McCormick, S. F.: Multilevel Adaptive Methods for Partial Differential Equa-

tions, volume 6 of Frontiers in Applied Mathematics. SIAM Books, Philadelphia,
(1989)

29. Morel, J., Roberts, R. M., and Shashkov, M. J.: A local support-operators dif-
fusion discretization scheme for quadrilateral r-z meshes. Journal of Computa-
tional Physics, 144:17–51, (1998)

30. Pinar, A. and Henderson, B.: Communication support for adaptive commu-
nication. In Proceedings of 10th SIAM Conference on Parallel Processing for

Scientific computing, (2001)
31. Ruge, J. W. and Stüben, K.: Algebraic multigrid (AMG). In McCormick, S. F.,

editor, Multigrid Methods, volume 3 of Frontiers in Applied Mathematics, pages
73–130. SIAM, Philadelphia, PA, (1987)

32. Schaffer, S.: A semi-coarsening multigrid method for elliptic partial differential
equations with highly discontinuous and anisotropic coefficients. SIAM J. Sci.

Comput., 20(1):228–242, (1998)
33. Vaněk, P., Mandel, J., and Brezina, M.: Algebraic multigrid based on smoothed

aggregation for second and fourth order problems. Computing, 56:179–196,
(1996)

