Design of the hypre Preconditioner Library *

Edmond Chow Andrew J. Cleary Robert D. Falgout!

Abstract

We discuss the design of hypre, an object-oriented library for the solution of large
sparse linear systems on parallel computers. The mathematical emphasis of hypre is
on modern powerful and scalable preconditioners. The design of hypre allows it to be
used as both a solver package and a framework for algorithm development. The object
model used for hypre is more general and flexible than the current generation of solver
libraries. The design of hypre is proceeding in parallel with the standardization efforts
of the DOE/academia Linear Equation Solver Interface forum.

1 Introduction

In this paper, we discuss the design of hypre, an object-oriented library for the solution of
large sparse linear systems on parallel computers. The need for hypre is motivated by the
demands of computationally challenging applications such as those from the Accelerated
Strategic Computing Initiative (ASCI) in the Department of Energy. The linear systems
that arise in these applications are extremely large and difficult to solve, and require a new
generation of solvers and massively parallel computers for their solution. Current solver
technologies are insufficient by themselves for solving these problems, though they can
provide components out of which more advanced solvers can be built.

This paper represents work-in-progress. As of this writing, hypre reflects its origin as
a collection of subroutines more than a designed library. This paper documents our plans
to evolve hypre into an integrated, flexible, and coherent object-oriented library. We note
that the design of hypre is proceeding in parallel with the standardization efforts of the
DOE/academia Linear Equation Solver Interface forum [5].

We first review parallel linear solver libraries in Section 2. In Section 3, we discuss the
design goals for hypre in more detail. In Section 4, we describe the two key elements of
hypre that provide the framework for meeting the hypre design goals, and Section 5 finishes
with a summary.

2 Review of the state of the art

Many application developers code their own linear solvers directly into their application
codes. This is possible with simple solvers and sequential computer architectures, but
for more complicated situations, most applications utilize linear solver libraries. The older
linear solver libraries are generally organized as sets of monolothic, stand-alone subroutines,
and are procedural in nature. To use such a library, an application developer has to decide

*This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract number W-7405-Eng-48. The work was supported by the DOE2000
program and the ASCI PSE program.

tCenter for Applied Scientific Computing, Lawrence Livermore National Laboratory, P.O. Box 808, L-
561, Livermore, CA 94551.



ahead of time on a particular algorithm from a particular package, and then code the
application in terms of the solver’s data structure. This process is particularly difficult
for parallel sparse data structures, making the required investment of effort so large that
application developers rarely try more than one solver. However, it is very difficult a priori
to know which specific solver will work best for a particular application, meaning that the
ability to experiment with different solvers is very important. Also, the adoption of new
algorithms is often slow due to the investment necessary to switch solvers.

Increasingly, more modern solver libraries have adopted object-oriented techniques that
make them easier and more extensible to use. The object-oriented solver libraries in widest
use within the DOE are the PETSc library [2], and the ISIS++ library [7]. Although there
are several other object-oriented libraries in the wider community, in this paper we will
concentrate on these two libraries as representative of the state of the art.

The core object models for both libraries are similar. The model consists of base
classes capturing the mathematics, including Matrix, Vector, Solver, LinearSystem,
KrylovMethod, and Preconditioner, as well as an auxiliary class that encapsulates
information about the parallel computer and the distribution of objects to distributed
memories, generally called a Map class. Note that the names we use here do not necessarily
match exactly the names in these libraries but have obvious counterparts.

e The Vector class provides functions for inserting elements into the vector, as well as
the standard set of linear algebraic functions such as dot product. In both PETSc
and ISIS++4, its implementation is straightforward so that it can be used efficiently
within critical operations such as matrix-vector products.

e The Matrix class has several uses. It is used in the LinearSystem class to define
problems to be solved. Its matrix-vector multiply member function is used by the
KrylovMethod class to implement Krylov-based algorithms. In PETSc, building
preconditioners is the responsibility of the matrix class. In ISIS++, preconditioners
can be implemented in this way, but another paradigm is supported as well. Here,
subclasses of Matrix introduce access functions that provide abstractions for accessing
the underlying data structure, and preconditioners can be written in terms of these
access functions. In both libraries, interfaces are also defined for inserting coefficients
into matrices.

e The LinearSystem class is basically a composition of a Matrix and two vectors,
representing the equation Az = b.

e In both libraries, the Solver class is essentially a composition of a KrylovMethod
object and one (PETSc) or two (ISIS++) Preconditioner objects, along with
parameters such as convergence tolerances.

e The KrylovMethod class generalizes algorithms such as Generalized Minimum Resid-
ual (GMRES) and Conjugate Gradient (CG), of which there are many varieties. This
class is used by the Solver class, and has the functionality of providing the next it-
eration of the Krylov method based on the history of previous iterates and the action
of the preconditioner.

e The Preconditioner class includes iterative methods that are not Krylov algorithms,
such as simple iterative schemes like Jacobi’s method and Gauss-Seidel iterations,
along with more sophisticated algorithms such as incomplete factorizations and sparse



approximate inverses. Objects in this class use Matrix objects, as discussed above
under the Matrix class.

We note that while ISIS++ is written in C++, PETSc is written in C, and yet it is
entirely object-oriented, with encapsulation, inheritance, and polymorphism. Arguably,
implementing object-oriented code in C is more difficult and less natural than in C++
or other object-oriented languages, but it does illustrate the point that the object-
oriented design is far more important than the choice of language in which that design
is implemented. For this reason, we do not stress any particular language in this paper.
Indeed, the choice of language of implementation for hypre is not entirely settled, and in the
end, different parts of hypre may be implemented in different languages. In [8], a technique
for achieving language interoperability for object-oriented libraries is presented, and it is
our intention to leverage this project to allow flexibility in both the calling language and
the implementation language for hypre.

3 Design goals

We now present the design goals for hypre and compare them with the designs of the current
generation of object-oriented solver libraries.

One major difference is that the mathematical emphasis of hypre is on modern powerful
and scalable preconditioners, whereas the traditional emphasis has been on Krylov-type
solvers, splitting-based iterative methods like Jacobi’s method and Gauss-Seidel, and other
high level preconditioners like polynomial preconditioning. Libraries like PETSc and
ISIS++ are notably weak in parallel, scalable preconditioners, though this is more a function
of the paucity of such preconditioners rather than a design choice.

To fill this void, we are designing hypre so that it can be used in two different modes: like
existing libraries, it can be used as a stand-alone linear solver library, but in addition, it can
be used as an add-on package to existing solver libraries. The first mode allows us to leverage
existing libraries by allowing hypre to use Krylov solvers, basic iterative methods, and
concrete matrix classes from other libraries, but all from a hypre interface. The second mode
allows parallel scalable preconditioners from hypre to be used from other libraries through
their own interfaces. This dual-mode goal presents many new interoperability challenges.
For instance, the scalable preconditioners in hypre require access to the coefficients of
matrices to build data structures that implement the preconditioning step, whereas the
majority of algorithms in current libraries do not need significant access to coefficients.
Meeting this dual-mode goal requires relaxation of the standard library model in which a
library assumes it “owns the world” to a “peer model” where each library is equal.

Another area that impacts our design is the emergence of “physics-based interfaces”,
e.g., the Finite Element Interface [6]. For the most part, solver libraries have a linear-
algebraic interface that may not be particularly well matched to an application developer’s
view of a problem. Linear-algebraic interfaces are more appropriate for solver developers
than for application developers. The concept behind a physics-based layer is to allow
application developers to describe their linear system in the language of their problem
domain. For a problem discretized by the finite element method, for example, it is much
more natural for the application to describe the problem in terms of element stiffness
matrices and element connectivities than to describe the problem in terms of matrix columns
and rows. An implementation of the finite element interface performs the mapping from the
finite element interface to a data structure that is appropriate for the underlying solver.
These physics-based interfaces, to the extent they can be standardized, can provide a



Interfaces

- e

]

Algorithms

GMG, ... FAC, ... Hybrid, ... AMGe, ... ILU, ...
Data L ayouts

structured hybrid unstruc CSR

Fic. 1. Schematic of physics-based interfaces, with specialization and performance decreasing
from left-to-right.

single user-level entry point to multiple solver libraries, allowing application developers to
experiment with different libraries.

The physics-based interfaces are more than just conveniences for applications develop-
ers, however. As problems grow in size and difficulty, it becomes increasingly necessary for
solvers to have more information about the problem than what is encapsulated in the tra-
ditional matrix. Multigrid solvers, for instance, often need to know information about the
grids that defined the problem, and finite element-specific solvers like AMGe [3] must know
the element stiffness matrices in unassembled form. Some solvers are not even defined for
general matrices, for instance, alternating direction methods only make sense on structured
grids where “direction” is meaningful. The physics-based interfaces provide a mechanism
by which information other than just the matrix can be passed into solvers.

Figure 1 illustrates this concept. The level of generality moves from left-to-right in this
figure. On the left are specific interfaces with algorithms and data structures that take
advantage of this specificity. On the right are the more general interfaces, algorithms, and
structures. The arrows represent the fact that many of the more specific interfaces can be
mapped to more general algorithms and interfaces, and this property provides access to a
wide variety of general algorithms. However, there is a subsequent loss of performance, both
in the algorithms and the data structures, that results from the discarding of information.
The linear-algebraic interface is the most general and interoperable, but also the least
efficient. For example, we have defined an interface for finite differences on structured
grids. One implementation of this interface creates a structured-grid data structure very
close in definition to the interface, and this structure is used by a semi-coarsening multigrid
algorithm [4] designed specifically for problems defined on these types of grids. However,
another implementation of the interface creates PETSc matrices. For most problems, the
multigrid code is fastest, but the PETSc implementation provides access to a much richer
variety of algorithms for cases in which the structured multigrid code fails to converge.
Little or no source code change is required to switch from one implementation to the other.



Recent trends have introduced another evolution in requirements for linear solver
libraries that we are incorporating into the hypre design. Many of the newer solvers do
not conform to the current solver model of a Krylov method plus a preconditioner, as we
now illustrate. Parallelism, through domain partitioning, is encouraging the development of
hierarchical solvers that are really solvers within solvers, e.g., a Krylov solver on the outside,
block Jacobi as a preconditioner, a Krylov method to solve the individual blocks, and an
ILU method to precondition the block solves. Several research groups have developed
“inner-outer” iterations that consists of at least two nested algorithms. Some libraries
(e.g. ISIS++) provide composed preconditioners that are defined as several different
preconditioners applied in sequence. Coarse-grid correction schemes can be composed with
domain-decomposition preconditioners to form two-grid solvers. These examples illustrate
the fact that there is a trend towards algorithms that encompass an increasingly general
set of possible combinations of solvers, preconditioners, and matrices, and thus a new and
more flexible model that allows combining of methods is needed.

This viewpoint is important because hypre is intended for use by two mostly separate
groups: applications developers will use hypre for solving linear systems, while solver
developers will use hypre as a framework for developing new algorithms. It should be
noted that PETSc and ISIS++, as well as other libraries, are also intended to be used in
both of these modes and that they succeed in this endeavor to a certain extent. The more
general object model in hypre is designed to provide increased flexibility for this purpose.

Though it is our intent that hypre supports and promotes object-oriented programming
for linear solvers, the fact is that most new algorithms are developed by mathematicians
who are not trained in this paradigm. Therefore, it is a requirement that we provide a
relatively lightweight mechanism by which such a code can be included in hypre, while still
allowing for the inclusion of more interoperable and flexible solvers and matrices. To achieve
these goals, hypre has been designed to support an arbitrary level of interoperability of each
component, where the level is decided by the component developer rather than dictated by

hypre.

4 Object Model

In this section, we present the basic object model of hypre. Central to the design is the
use of multiple inheritance of interfaces for allowing solver developers a flexible system for
mixing and matching exactly the interfaces that they want to support for their objects (note
that we adopt the Java model of multiple inheritance in which at most one of the inherited
base classes can be concrete). The core object model is designed to be a generalization of
the model used in existing libraries, so that their classes are supportable through derivation
of appropriate classes in the core model of hypre.

Our core model consists of two layers, and is illustrated in Figure 2. The top layer
consists of three base abstract classes representing the mathematics of linear solver libraries,
and a Map class analogous to that in current libraries. This top layer’s main function is to
provide type safety and polymorphism. The second level consists of a myriad of separate
interfaces (where we define interface to mean a collection of functions that can be invoked
on an object). In C++ terms, these interfaces are pure virtual classes. The function of the
second layer is to provide a “menu” of interfaces out of which other classes can build their
more complete interfaces through multiple inheritance. This mix-and-match paradigm is
vital for supporting a wide variety of concrete classes developed by varied development
teams.



Py
g
<
2
3

Concrete Class

Fic. 2. Core object model for hypre.

The classes in the top layer are Map, Vector, Operator, and CoefficientAccess. The
Map and Vector classes are essentially unchanged from existing libraries, and thus we will
not discuss them any further. The other two classes are less obvious, and in particular,
there is a notable absence of standard objects such as matrices and solvers from our core
model. Our design builds these more standard objects from the latter two classes, and thus
it is important to justify their existence as peer classes. We use the matrix to illustrate the
intent of these classes.

As described in Section 2, the traditional matrix class supports both the linear-algebraic
matrix-vector multiply operation, as well as being a container for the matrix coefficients.
Fundamental to the hypre design is the notion that these are orthogonal functionalities,
and that it should be possible for objects to support one of these functionalities without
supporting the other. The Operator class in hypre contains (a more general form
of) matrix-vector product functionality, while the CoefficientAccess class represents
container functionality. Specific classes are built by multiply inheriting from subclasses
of the Operator and CoefficientAccess classes.

The classic example of an object that performs matrix-vector multiply but does not
offer access to coefficients is the so-called matriz-free linear operator (inlcuding matrix-free
preconditioners), which by definition can perform matrix-vector multiply through some
procedure (differencing formulas in non-linear methods, for example) without actually using
a matrix data structure. The matrix-free matrix is already supported in current libraries
through user-defined matrix operations. However, the classes that supply coefficient access
functionality inherit from the Matrix class in current libraries, and this precludes having
objects that provide coefficient access without providing matrix-vector multiply.

A coefficient-based preconditioner (i.e. one that must access coefficients and cannot
be implemented with just matrix-vector multiplications, e.g., incomplete factorization),
needs the coefficient container functionality from the input matrix object but does not care
whether that object can perform a matrix-vector multiply operation. Under the standard
model, the matrix used to form the preconditioner is also used to define an outer Krylov
method, in which case the matrix has to provide matrix-vector multiply. However, there
are occasions where it is appropriate to use iterative methods without Krylov wrappers, in
which case the matrix-vector multiply functionality is unnecessary, as we now illustrate.

Direct methods are the most straightforward example, as they clearly do not need
to be wrapped in a Krylov solver. A direct method like Gaussian elimination is not
usually considered an iterative method, but in the context of iterative refinement, it can



7

be considered as an iterative method that almost always converges in a single step. There
is precedent for this: PETSc treats direct methods as special cases of iterative methods.
Even if direct methods are not particularly practical for solving huge sparse problems, they
still have many uses as components for building algorithms, e.g. direct methods are often
used to solve the coarsest grid problem in multigrid.

The separation of the operator and coefficient access functionalities also provides a
natural place for implementations such as functions that return coefficients based on some
formula but do not explicitly store a matrix data structure, or databases that can be used to
access element stiffness matrices without implementing a matrix-vector multiply operation.
The Finite Element Interface has coefficient access functionality, in that it is used to input
coefficients, but it does not support a matrix-vector multiply operation.

In general, it is our claim that there is a spectrum of objects that support these two
functionalities in fairly arbitrary combinations, that is, some classes support (flavors of)
one or the other or both. Requiring the two interfaces to go hand in hand is too restrictive.

4.1 CoefficientAccess Class

The CoefficientAccess class is an abstraction of matrix data structures. As a simple
example, consider that many of the parallel solver libraries in use today have a matrix
data structure that consists of a contiguous block of rows of the parallel matrix stored in
each processor’s memory in a compressed sparse row (CSR) format. These data structures
are very similar and codes that implement a particular algorithm for these different data
structures are logically the same. Nonetheless, because of the minor differences, separate
code for each data structure is necessary. A solution that allows more re-use of algorithmic
code is to write algorithms on top of abstracted data structures, and then wrap each
compatible data structure in terms of the abstract data structure. Not all data structures
are compatible with all coefficient access patterns, but using an abstraction layer allows
interoperability of those data structures that are functionally equivalent in terms of the
access patterns that they support.

An alternate strategy is to provide conversion functions for transforming one data
structure to another. This solution is workable for a small number of data structures, but
the number of conversion routines grows as the square of the number of matrix structures
and quickly becomes unmanageable. It might make sense to provide conversion routines
for particularly common pairs of data structures, though this still breaks encapsulation and
thus makes it difficult to modify the data structures without introducing errors.

There are two basic dimensions of coefficient access, input and output (or “put” and
“get”). Again, we claim that these are orthogonal interfaces in that derived classes may mix
and match input and output coefficient access interfaces in arbitrary combinations through
multiple inheritance.

Input coefficient access is already fairly common. The finite element interface has an
input interface which is defined in the language of the finite element method. To the user of
this interface, the object looks like a matrix data structure that supports input of coefficients
in blocks corresponding to element stiffness matrices. This allows the user to build a
matrix through the abstractions of the FEI rather than building a particular data structure.
Likewise, PETSc’s base matrix class has a member function called MatSetValues. Users
build their matrix data structures through this member function, and PETSc transparently
does the work of placing coefficients into the requested data structure.

Generally, building a matrix is done only once and is a lower-order cost than solving



a linear system. This low cost means that these functions do not have to be particularly
efficient, which in turn means that input patterns can have a fairly loose coupling to the
underlying data structures.

Output coefficient access is more problematic. For the parallel CSR-based data
structures described above, the access is random to locally stored rows. This access can be
abstracted by providing an abstract class with a GetRow function. Given a row number,
this function returns the given row in a sparse format. The exact semantics need to be
decided, that is, whether the function should return a pointer, whether it should use copy
semantics, which format the row should be in, etc. The concept remains the same, however:
an algorithm written for one data structure in terms of GetRow will work with other
matrices that support the same function.

Note that we leave the decision about the level of interoperability of solvers up to the
developer of the solver. There is obviously some tradeoff between interoperability and
performance, and the developer should be allowed to make the design decision of where to
draw this line. Some developers consider performance too crucial for their preconditioners
to risk losing speed to abstraction layers.

Another way to look at output coefficient functionality is as a generalized Iterator. In
this context, an Iterator is a construct that allows the elements of complex data structures
to be accessed in some sequence. This concept has proven very powerful in allowing generic
algorithms for certain problem domains. Unfortunately, while some basic iterative methods
can be written with only serial access to the matrix, most sophisticated preconditioners
cannot. The idea behind CoefficientAccess is to establish other access patterns besides
pure serialization in which preconditioning algorithms can be expressed. Expressing
algorithms in terms of access patterns is more natural than it seems at first: there is
no sparse matrix data structure that supports efficient random access to its coeflicients,
and therefore there is no preconditioner that accesses the coefficients randomly.

The obvious benefit of the coefficient access classes is re-use of algorithmic code, but
there are other benefits. As stated in Section 2, one of our design goals is to use our core
object model as a framework for developing complicated algorithms out of components
developed across development teams. Assume that such an algorithm wants to use
Operator A, B, and C (the use of the Operator class to build algorithms is explained
more fully below). This use of multiple operators can only work if the input matrix data
structure is compatible with all of the operators. In an environment with many diverse
data structures, this will not be possible very often. However, with the coefficient access
concept, it is only necessary that the input data structure supports access patterns that
are compatible with all of the operators. It is hoped that there will be far fewer access
patterns than data structures, making this much more likely.

The output coefficient access concept may also be useful in capturing data locality,
much the same as the BLAS capture data locality for the LAPACK dense matrix library
[1]. As illustrated by the GetRow example, the return value of an access function does not
have to be floating point numbers representing coefficients. It is perfectly natural for some
access functions to return other coefficient access objects. Generally, these will encapsulate
some smaller portion of the matrix. At the right level of granularity, these intermediate
portions can be used to build efficient kernels that can be used as building blocks for codes
that are both efficient and interoperable.

The level to which these concepts are practical is still an area of research. While we
have worked through several examples as part of hypre’s design, it is an open question as to
what the ratio of algorithms-to-access patterns is across the spectrum of preconditioners,



and the concept can only be useful if this ratio is large. Likewise, it is not clear that
patterns can be found that are both expressive and efficient.

4.2 Operator Class

We discuss the Operator class, which is the concept that unifies many of the more commonly
used classes. The unification comes from the observation that the fundamental action of
most mathematical objects in linear solver libraries is operating on vectors to produce
an output vector. This includes the classical notions of matrices, preconditioners, Krylov
methods, other iterative methods, direct methods, etc. We believe that generalizing all
of these classes into subclasses of an Operator base class not only encapsulates common
behavior, but more importantly, it allows the flexibility for building complicated solvers
from nontrivial combinations of Operator objects. We illustrate with examples.

The Solver class in PETSc is composed of a KrylovMethod, a Preconditioner,
and optionally, a separate PreconditionerMatrix. It is not our intention to review
the mathematics of Krylov solvers in depth, but we point out that mathematically, a
preconditioner to a Krylov method is a matrix M such that M~ A is better conditioned
than A. Mathematically, then, any linear operator (subject to algorithm-specific restrictions
such as symmetry) can be used as a preconditioner, since a matrix and a linear operator
are equivalent. Since our goal is to provide a flexible framework for solver development,
we let the preconditioner be any linear operator rather than dictating that it be a
“preconditioner”. This obviously encompasses the standard preconditioner model: the
user inputs the Matrix to a LinearOperator object (LinearOperator is a restricted class
inheriting from Operator) that provides the action of the preconditioner, and then composes
that Operator object with the Preconditioner to form the solver. There is no need for
the Solver to know anything about the form or implementation of the preconditioner. It
only needs to know that it is a LinearOperator.

The concept of a preconditioning matrix is useful for applications that have a simpler
representation (a lower order discretization, for example, or the symmetric part of a mildly
nonsymmetric matrix) of the problem to be solved. In PETSc, there is special code
and special semantics surrounding the PreconditionerMatrix, namely, if one is supplied,
the “preconditioner” is the result of an iterative method applied to the preconditioning
matrix. In our model, a user or developer who wants to use this method first inputs the
preconditioning matrix to an appropriate LinearOperator like an iterative method or an
incomplete factorization method, and then composes this Operator with the KrylovMethod
within the Solver. No special code or semantics are necessary, since the core model
encompasses this combination of objects.

Should this user have a matrix that somehow approximates the inverse of A directly,
this matrix could be composed with the KrylovMethod as a preconditioner directly. The
key concept is that if the mathematical requirement of a preconditioner is that it should
be a linear operator, than we would prefer to let any linear operator be allowed to fill this
role. It is difficult to anticipate all possible future algorithmic developments, so we allow
full generality wherever it makes sense. The Operator class is our mechanism for providing
this generality.

5 Summary

We have presented the preliminary design of hypre as a framework for developing and
providing advanced linear solver algorithms for extremely large systems. We have reviewed



10

the standard object-oriented models for linear solver libraries. We presented a core object
model that replaces many of the common classes such as matrix, and preconditioner with
two classes, the CoefficientAccess class and the Operator class. We showed how the
former class supports physics-based interfaces, allows generic programming of algorithms,
and eases interoperability between modules developed independently, while the latter class
supports innovative algorithm development as well as interoperability. The fundamental
technique used to provide this framework is the use of multiple inheritance and a flat
inheritance tree to allow developers the freedom to implement objects with exactly the
interfaces that they think are appropriate for their objects.

Acknowledgements:

The design of hypre has been heavily influenced by two forums within the DOE and
academia. The Linear Equation Solver Interface forum ([5]) is attempting to define a
standard object model and standard interfaces for linear solvers, and the hypre design is
proceeding in parallel, influencing and being influenced by this effort. Much of the object
model presented in this work mirrors the object model being developed in this forum.
The other group is the Common Component Architecture forum, which is attempting to
standardize a component architecture for high performance scientific computing. The hypre
model of multiply inheriting desired interfaces is influenced in large part by the fact that it
maps one-for-one query-interfaces (or introspection), which is at the core of most component
models.

References

[1] E. Anderson, Z. Bai, C. H. Bischof, J. Demmel, J. J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and D. C. Sorensen, LAPACK Users’ Guide,
STAM, 2nd ed., 1995. (Also available in Japanese, published by Maruzen, Tokyo, translated
by Dr Oguni).

[2] S. Balay, W. Gropp, L. C. Mclnnes, and B. Smith, Petsc 2.0 user’s manual, Tech. Rep. ANL-
95/11, Argonne National Laboratory, Nov. 1995.

[3] M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel, S. F.
McCormick, and J. W. Ruge, Algebraic multigrid based on element interpolation (amge).
Submitted to the STAM Journal on Scientific Computing special issue on the Fifth Copper
Mountain Conference on Iterative Methods, 1998.

[4] P. N. Brown, R. D. Falgout, and J. E. Jones, Semicoarsening multigrid on distributed memory
machines. Submitted to the STAM Journal on Scientific Computing special issue on the Fifth
Copper Mountain Conference on Iterative Methods. Also available as Lawrence Livermore
National Laboratory technical report UCRL-JC-130720, 1998.

[5] R. Clay, Linear equation solver interface (ESI) standards multi-lab working group and interface
design effort. http://z.ca.sandia.gov/esi/, 1998.

[6] R. Clay, K. Mish, I. Otero, L. Taylor, and A. Williams, A proposed general fi-
nite element/solver interface specification for use with scalable algebraic solver packages.
http://z.ca.sandia.gov /fei/, 1998.

[7] R. Clay and A. Williams, ISIS++: Iterative scalable implicit solver (in C++).
http://z.ca.sandia.gov /isis/, 1998.

[8] A. Cleary, S. Kohn, S. Smith, and B. Smolinski, Language interoperability mechanisms for high-
performance scientific applications, in STAM Workshop on Object Oriented Methods for Inter-
operable Scientific and Engineering Computing, M. Henderson, C. Anderson, and S. Lyons,
eds., Philadelphia, PA, 1998, STAM.



