A MULTIGRID METHOD FOR VARIABLE COEFFICIENT
MAXWELL’S EQUATIONS
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Abstract. This paper presents a multigrid method for solving variable coefficient Maxwell’s
equations. The novelty in this method is the use of interpolation operators that do not produce mul-
tilevel commutativity complexes that lead to multilevel exactness. Rather, the effects of multilevel
exactness are built into the level equations themselves- on the finest level using a discrete 7' — V' for-
mulation, and on the coarser grids through the Galerkin coarsening procedure of a T'—V formulation.
These built-in structures permit the levelwise use of an effective hybrid smoother on the curl-free
near-nullspace components, and permit the development of interpolation operators for handling the
curl-free and divergence-free error components separately. The resulting block diagonal interpola-
tion operator does not satisfy multilevel commutativity but has good approximation properties for
both of these error components. Applying operator-dependent interpolation for each of these error
components leads to an effective multigrid scheme for variable coefficient Maxwell’s equations, where
multilevel commutativity-based methods can degrade. Numerical results are presented to verify the
effectiveness of this new scheme.
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1. Introduction. In recent years, there has been substantial interest in solving
the curl-curl formulation of Maxwell’s equations for the electric or magnetic field.
This formulation commonly arises in the time-domain and frequency-domain ap-
proaches for solving time-dependent electromagnetic problems. For both approaches,
the challenges in developing an efficient multigrid algorithm are formidable: the time-
domain leads to variable-coefficient equations with large near-nullspaces, as with the
frequency-domain but with the added challenge of being indefinite. In this paper, we
consider only the definite curl-curl formulation.

There exist several successful geometric ([16], [2]) and algebraic ([20], [5]) multi-
grid methods for solving the definite curl-curl equations. But the performance of
these methods degrade as the variation of the material coefficients increases. The
reason for this degradation can be traced back to the interpolation operator. For
geometric schemes, even with nested finite element spaces, the natural finite element
interpolation fails when the coefficients strongly vary much the same way natural
finite element interpolation fails for scalar diffusion equations with rapidly varying
coefficients, i.e. finite element interpolation leads to simple arithmetic averaging of
the coefficients on the coarser grids. For algebraic schemes, since the interpolation
operator is constructed with the constraint that a multilevel commutativity complex
is formed (see 3.4), divergence-free error components can be untouched or even ampli-
fied by this type of interpolation. In particular, interpolation operators constructed
in this manner can handle at most only the curl-free error components, and thus, only
half of the Helmholtz decomposition of the error. Thus, current geometric and alge-
braic multigrid methods do not satisfy the approximation property when the material
coefficients vary substantially.

Satisfying the approximation property is not the only difficulty. For Maxwell’s
equations, the smoothing property is hard to obtain. For this system pde, near-
nullspace components occur on all grid scales, and thus, relaxation must be designed
to handle error components of these form on all grid scales. This is in fact the purpose
of having a multilevel commutativity complex. Such complex permits easy movement
between two-term exact sequences on different grid levels. With a discretization that
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preserves this two-term exact sequence, nullspace components of the curl operator
are explicitly known, and hence, hybrid smoothers ([16], [2]) can be constructed to
effectively handle curl-free error components. Having this two-term sequence on each
level then guarantees level smoothers that eliminate curl-free error of any grid scale,
and having a multilevel commutativity complex guarantees curl-free coarse grid cor-
rections are indeed curl-free on the finer grid. But ideally, as previously explained,
one would like a multilevel commutativity complex that spans over an exact sequence
that also includes the divergence operator. This would involve developing separate
interpolation operators for the curl-free and divergence-free components, which im-
plicitly implies the existence of an exact discrete Helmholtz decomposition. Or, if
an exact discrete Helmholtz decomposition does not exist, one needs an interpolation
operator that acts appropriately (i.e., has good approximation) on both the curl-
free and divergence-free components. Such an interpolation operator is unfortunately
extremely difficult to construct.

The challenge in developing a multigrid scheme for variable coefficient curl-curl
equations is then constructing interpolation operators that have good approximation
property for both curl-free and divergence-free errors, and, such that the coarse grid
problems constructed using these operators have the relevant effects of two-term ex-
act sequences in order for a hybrid smoother or overlapping Schwarz smoother to
be effective on coarser levels. Rather than constructing interpolation operators that
satisfy these constraints, in this paper, we develop a multigrid scheme that relaxes
on the multilevel commutativity constraint, and hence, has more freedom in the con-
struction of interpolation operators to handle the curl-free and divergence-free error
components. This method involves a discrete T'— V' formulation ([19]) on the finest
level. The construction of this 7' — V' formulation can be obtained from the given
curl-curl formulation matrix and a discrete gradient on the finest level.

The goal of this formulation is to introduce the nullspace of the curl operator,
i.e. gradients, explicitly into the set of equations. This leads to a discrete system
for the curl-free and approximate divergence-free components of the solution, which
corresponds to a system pde for these solution components. Separate operator-based
interpolation operators are then constructed using the original curl-curl equations
and the Laplace operator derived from the introduction of the gradients. These block
diagonal interpolation operators are used in the Galerkin coarsening procedure to
generate coarse grid problems for the curl-free and divergence-free components of the
error. Thus, at all levels, the systems are blocked 2 x 2, with the diagonal blocks
describing the coupling within the curl-free or divergence-free components, and with
the off-diagonal blocks describing their coupling. Now equations for the curl-free, or
near-nullspace gradients, are explicitly available at all levels, and so a hybrid smoother
can be applied at each level.

It must be noted that the T—V formulation is introduced discretely only to obtain
an efficient multigrid solver. The target continuous curl-curl formulation of Maxwell’s
equations is not explicitly replaced by a continuous semi-definite 7" — V formulation.
Also, it must be noted that the above scheme resembles Griebel’s subspace correc-
tion method [14]. However, unlike Griebel’s scheme which creates linearly dependent
generating functions by collecting the finite element basis functions on all levels, the
above scheme considers the “generating functions” from a Helmholtz decomposition
perspective, at each level. Indeed, the Helmholtz decomposition perspective gives
guidance on developing effective interpolation operators and relaxation schemes, and
is much more insightful for H(div) and H(curl) system pdes than a general subspace
correction perspective. In fact, the T — V formulation exposes the extent to which
the components of the Helmholtz decomposition can be coarsened separately.

This paper is organized as follow. In section 2, we introduce the curl-curl formu-
lation of the definite Maxwell’s equations, the functional setting for the variational
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problem, and the finite element spaces for the discretization. In section 3, because of
their importance in understanding solution methods for the curl-curl formulation, we
review the de Rham complex for the curl-curl formulation and the multilevel commu-
tativity diagrams connecting the complexes on different levels. In particular, because
the multigrid scheme developed in this paper can be viewed as a generalization of
Hiptmair’s approach ([16]) that does not satisfy multilevel commutativity, we need
to examine what multilevel commutativity achieves and how much of it is needed
in a multigrid solver. In fact, one purpose of this paper is to “isolate” de Rham
sequences and commutativity from multigrid. To achieve this, in section 3, we will
distinguish between multilevel commutativity and multilevel de Rham complexes, and
show that multigrid schemes with commutativity-based interpolation operators gen-
erally only enforce exactness whereas multilevel de Rham complexes are really needed
for multigrid effectiveness. In section 4, we describe our 7' — V formulation and the
operator-based interpolation operators to handle variable coefficients. An intuitive
justification for our choice of operator-based interpolation operators is presented. In
particular, since the T' — V system is used in the multigrid procedure, we exam-
ine the near-nullspace components of this system to show that operator collapsing
([10]-[12]) can be used to handle the curl-free error components and AMGe element
agglomeration ([9]) can be used to handle the remaining error components. Finally, in
section 5, we present some preliminary numerical results illustrating the effectiveness
of this multigrid scheme, and equally important, illustrating no need for multilevel
commutativity complexes.

2. Curl-Curl Formulation in the Electric Field. Let 2 x T be the Cartesian
product of a bounded simply-connected domain Q € R",n = 2, 3, and a non-negative
time interval T. To guarantee appropriate regularity of the problem, let 2 have a
smooth or polygonal boundary I'. Electromagnetic phenomenom in Q x T can be
described by the differential equations

VxE= -28 in QxT
(2.1) ot
VxH = %—?+j in QxT

with the linear material constituitive relations

D= ¢eE in OQxT
(2.2) B= pH in OxT
j= oE in OxT

([19]). The equations in (2.1) are Faraday and Ampere’s laws of Maxwell’s equations,
and the third equation in (2.2) is a simple Ohm’s law. Here, E,D,H,B, and j
are respectively the electric field, electric flux, magnetic field, magnetic flux, and
electric current; and €, 4, and o are respectively the electric permittivity, magnetic
permeability, and electric conductivity, which we assume all to be spatially dependent
but independent of ¢. Using (2.1) and (2.2), we have

1 0’E OE
Vx—VXE + e—— — =0.
I te 0%t to ot
Differencing the time derivatives, and for simplicity, assuming that the boundary
surface is perfectly conducting, we obtain a boundary-value problem of the form

VxaVxE+BE =f in Q,

(2.3) nx E =0 on T,

where a and f are positive functions (in L. (Q2)). The parameter () is related to
the time step size (8 = {5 and may be quite small if large time steps are taken. We
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will call (2.3) the curl-curl formulation for the electric field. At each time step of the
solution process for the time-dependent problem, an equation of the form (2.3) must
be solved.

To describe the variational formulation of (2.3), several functional spaces are
needed. So, we will denote the usual k'th order Sobolev spaces by H*(2) and their
homogeneous trace subspaces by HE(£2). We also need spaces

H(div; Q) = {v € [L*(D)]": V-v € L*(N)}

H(curl; Q) = {v € [L*(Q)]" : Vxv € [L*(Q)]*"3}.
We denote their homogeneous trace subspaces by Hg(div; Q) and Hg(curl; ), respec-
tively. Now, the variational formulation of (2.3) is to find E € Hy(curl; ) such that

(2.4) (aVXE,Vxv) + (BE,v) = (f,v) Vv € Hy(curl; ).

To discretize variational problem (2.4), the lowest-order Nedelec finite elements
are used. Let Ty := {T;} be a quasi-uniform and shape-regular triangulation of Q2
with mesh-size h ([8]). The lowest-order local Nedelec finite element space is

ND(T;):={v=a+bxx; xeT;, a,be R"}.

The degrees of freedom are the tangential components along the edges of T;- along

the I'th edge e,
/ t-vds.
€l

ND(Tg) := {vh € Hy(curl; Q) : v T, € ND(T;) VT; € ﬂl}

The global finite element space is

This choice of finite element space guarantees continuity of the tangential component
of v,. With E; denoting the discrete approximation to the solution of (2.4), the
discrete variational problem is to find E;, € N'D(Ty) such that

(2.5) (CMVXEh, VXVh) + (ﬂEh, Vh) = (f, Vh) Vv, € N'D('ﬁl)
We also will need the standard first-order scalar Lagrange finite element space:
Hu(Tw) == {v € H}(Q) : v, € Po(Ti) VT; € Tw}

with the usual nodal degrees of freedom. Note that the gradient of an element of
Hp(Tr) is not only in N'D(T3) but also in the nullspace of the curl operator. In fact,
the assumption of simple-connectedness of ) guarantees that the nullspace of the
curl operator consists of only gradients. By cohomology theory, this is also true in
the triangulated domain ([7]). (The algorithm of this paper as with other multigrid
algorithms for solving (2.5) requires simple-connectedness of 2. For domains such as
tori, an additional procedure is needed to handle special troublesome subspaces of low
dimension. These subspaces can be treated on a coarse grid ([17]).)

3. De Rham and Commutativity Complexes, and Multigrid. The multi-
grid scheme we will develop is a generalization of the algorithm described in [16].
But a major difference between these two schemes is, the method described in this
paper does not produce multilevel commutativity complexes even when the levels are
nested, whereas the method described in [16] does. Because of this, we explore de
Rham and commutativity complexes and multigrid in this section. We examine if
multigrid efficiency is really a result of these multilevel complexes. In particular, our
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goal in this section is to isolate commutativity from the multigrid process, and to show
that effective multilevel complexes are too difficult to produce for variable coefficient
Maxwell’s equations. This will then lead to a simpler scheme, described in Section 4.
Before reviewing de Rham and commutativity complexes, we outline the algo-
rithm of [16] in order to have a base method to illustrate multilevel complexes. This
algorithm has the standard multigrid structure:
Given, an initial guess EX and a right hand side f¥ on the finest level L
MG(l, E!, f!) Cycle:
1. if I = 0, the coarsest level, solve exactly, E® « [A2,]1£0.
2. else,
pre-smooth E! + S;(E!, f!)
E-l1+o0
MG(l -1, B, [P] (f - ALE) )
coarse grid correction E! «+ E! + P! | E"1
post-smooth E! «+ S;(E! f!),

e oo

where AL, is the I'th level discretized edge operator, and S; and P/ ; are respectively
the I'th level smoothing and interpolation operators. However, the smoother is non-
standard:
S;(E!, f) Sweep:

1. Gauss-Seidel sweep on edge equations AL E! = f!

2. edge residual computation, r! + f' — Al _E!

3. transfer to scalar “potential” space (or set up of distributive relaxation),
wl [Glen]trl
Gauss-Seidel sweep on scalar potential equation Al ¢! = w!
5. potential solution correction E!, E! + E! + Gl ¢',

=~

where G!,, is the level [ discrete gradient operator mapping a node-based scalar po-
tential into the Nedelec element space, and Al is a discrete node-based diffusion
operator. When the level edges are nested and the Pl’_lls are the natural Nedelec fi-
nite element interpolation operators, then the multilevel de Rham and commutativity
complexes are hidden in the interpolation and discrete gradient operators. When the
level edges are non-nested, as generally is the case for unstructured grids, the Pllflls
can be constructed so that a multilevel commutativity complex is formed (see [20]
and [5]).

So, what are de Rham complexes? De Rham complexes describe a relationship
between the gradient, curl, and divergence operators over appropriate spaces. They
are an amazing tool for systematically describing stable discretizations of pde systems
([1])- Given a scalar or system of partial differential equations, subtle geometric
properties of the pde’s can be exposed by de Rham sequences. These properties
should be retained in the discretization for the sake of numerical stability. For the
Maxwell’s equations, which have intrinsic topological properties reflective of de Rham
complexes ([3]), these complexes have been used to explain the stablility of Nedelec
finite elements for the curl-curl formulation ([6], [1]).

In the continuum, the de Rham complex of interest for Maxwell’s equations is

(3.1) HY(Q) - H(curl; Q) 25 H(div; Q).

Here, we have a sequence of vector spaces defined on our domain Q and a sequence
of operators interrelating them. These vector spaces are ezact in the sense that the
range of an operator defined on the space to its left is in the kernel of the operator and
domain space to its right- e.g., the kernel of V x defined on H (curl; Q) is VH!(Q). Let
{H}, Hp(curl), Hp(div)} and {San, Wan, Var} be two sets of finite elements that
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need not be nested and of which the first set forms a discrete analogue to (3.1):

(3.2) H Q) 5 Hy(curl; Q) 25 Hy (div; Q).

Of course, exactness means that the finite element spaces in the first set cannot be
chosen separately. In our case, choosing the lowest-order Nedelec elements (NDy,) for
Hy (curl; Q), the other finite element spaces are the first-order Lagrangian elements
(Hn) and lowest-order Raviart-Thomas elements (R7 ) for H}(Q) and Hp(div; Q).
This consistent choice of finite element spaces is in fact a geometric property (e.g.,
for the above multigrid algorithm, E! is defined on edges (N'Dj) and ¢! is defined on
nodes (#)). This shows that a discrete de Rham sequence is not simply a discretiza-
tion of the functional spaces involved, but is a “discretization” of a calculus defined
over a smooth manifold and its sub-manifolds ([4], [13], and [15]). In particular, a
discrete de Rham sequence satisfies three properties. It is (i) a discretization of a
smooth n-dimensional manifold M with so-called p-cubes or Euclidean simplices; (ii)
a discretization of the p-forms defined on the manifold and its sub-manifolds; and
(iii) a discretization of a so-called exterior differential operator so that a generalized
Stokes theorem holds over the manifold and its sub-manifolds (this gives the exact-
ness property). These discretizations are constructed so that the p-forms are simple,
unisolvent, conforming, etc. ([15]). In our case, M is a domain in R, the p-cubes
are points, edges, and faces, and the p-forms are the above finite element spaces. The
location of the degrees of freedom for these finite element spaces indeed reflects a
consistent choice of simplices to guarantee exactness.

Now, denoting the induced finite element interpolation operators of Hy, N Dy,
and RT}, by I, T4, and T1% -, the following commutativity complex holds:

HY(Q) -5 H(ewl;Q) X5 H(div;Q)
(3-3) LIk 1 LI
vh Vxh
'Hh — ./\/'Dh — RTh.

This complex relates a set of continuous spaces to a set of discretizations, under a col-
lection of commuting differential and interpolation operators. For the above multigrid
algorithm and several others ([20] and [5]), additional hierarchies of commutativity
relating the level spaces are needed. These methods require a two-level commutativity
complex of the form

HY(Q) -5 H(ewl;Q) X5 H(div;Q)

VI, T LMy
(3.4) Hy, 5 NDy VS RT
T PIf-}l T PI’:II(curl) T PI’}(div)
v2h v 2h )
Son — Wap — Vo (le),

where P(’?) are multilevel interpolation operators that are constructed to satisfy com-
mutativity. Note that the second layer of (3.4) is a discrete de Rham sequence
since it satisfies the above three properties. However, depending on the choice of
{S2n, Wap, Vap}, the third layer only forms an exact sequence between these sets
since it may not satisfy condition (ii). Although multilevel exactness requires a
consistent choice of coarse simplices, a multilevel de Rham structure also requires
{S2n, Wap, Vap} to consists of proper p—forms. To stress this, consider the case
when the coarse edges do not nest the fine edges, as is the case for the algorithms of
[20] and [5]. Because of this non-nesting, {Sa2p, Wap} consists of weighted averages
generated by the P('f), which are not the proper p—forms for the coarse simplices.
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Let’s return to the above multigrid algorithm and reflect on these complexes. For
the curl-curl formulation of Maxwell’s equation, some of the near-nullspace compo-
nents are gradients, and these occur on all grid scales. Thus, not only must coarse
scale gradients be in the range of the interpolation operator, but also relaxation on a
level must effectively eliminate gradients of scale equal to the level’s mesh size. This
latter condition leads to the non-standard smoother, using the level gradient operator
G,,, in the algorithm at the beginning of this section. Of course, effective elimination
of these level gradients by level relaxation assumes that each level operator has a
curl-curl form. But all of this is reflective of a multigrid solver built on a multilevel
commutativity complex: level exactness guarantees the above smoother to be effective
on the level gradients.

A multilevel commutativity complex also guarantees good approximation to coarsell
scale near-nullspace gradient components. Consider the case where {Sazp, Wap} is a
nested subspace of {#H;, N'Dy} and the Py’s are the natural finite element inter-
polation operators. Because of our assumption of quasi-uniformity, finite element
approximation theory implies multilevel approximation property for the algebraically
smooth eigenfunctions that are gradients. For algebraic multigrid on non-nested finite
elements, a multilevel approximation property for the algebraically smooth gradient
eigenfunctions also holds. Physically, this seems strange since the coarse degrees of
freedom in algebraic multigrid are located on coarse edges that are generally not a
subset of fine edges, i.e. physically, electric fields that have zero circulation over a
given closed cycle (e.g., coarse cycle) generally do not have zero circulation over closed
cycles not contained in that given cycle (e.g., fine cycles). But this “strangeness” can
be explained away through the commutativity relation

(35) VhPII}I = PI’}(curl)v2h7

i.e. a field with zero circulation on a coarse cycle corresponds to a coarse gradient,
whose generating potential can be interpolated to a fine scalar function and then
operated on with the fine gradient operator, to produce a zero circulation field over
the fine cycles. Hence, non-nesting of the coarse edges does not pose a problem for
approximating gradient near-nullspace components.

Now, given an arbitrary coarse edge function that has a curl-free and a divergence-
free component, commutativity interpolation interpolates the curl-free component cor-
rectly, and achieves this without explicitly using P}L‘Il . But the fact that the divergence-
free component may not be interpolated correctly begs the question of overall multi-
grid efficiency. We contend that multilevel de Rham sequences are needed to give

multigrid efficiency. Suppose the {S2n, Wan} generated by P, and Pg(curl) contains

the proper discrete p—forms that approximate the continuous p—forms of { H'(Q), H(curl; Q)}.J}
i.e. P, and P! , are the natural finite element interpolation operators. Then the set
of coarse finite elements are stable, and by the finite element approximation property
for each of these spaces, we have good multigrid approximation property everywhere.
For example, let v; be any type of near-nullspace component and let v be the con-
tinuous function it approximates. On the fine and coarse grids, by finite element

approximation property, we have
||V - vh”curl S Ch and ||V - Pc’ixrlv2h||cur1 = ||V - V2h||cur1 S Ch;

where we used the induced finite element interpolation property of P
inequality. Thus, we have good coarse grid approximation to vy:

Ivh = Pl ivan|leun < Ch.

curl

, in the second

When a multilevel de Rham structure does not exists, Pfl}(cuﬂ) is generally not Nedelec
interpolation, and so,

v = Py (curty Vanlurt
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can be large for divergence-free v. Hence,

”Vh - P]I-}((;url)VQh”curl

can be large, and multigrid performance degrades.

Except for geometric multigrid, constructing multilevel de Rham complexes is
very difficult. Moreover, even if we have multilevel de Rham complexes, when the
material coeflicients vary substantially, PI’}(CMI) should depend on these coefficients,
which then may break multilevel commutativity. When multilevel de Rham complexes
do not exist, to obtain multilevel efficiency, an interpolation operator that acts like
PI’}(CUTI) on the curl-free components and Pﬁr( div) On the divergence-free components
is needed. Construction of such an operator is also difficult. The fundamental misun-
derstanding is that multilevel communativity considers only a subspace of the whole
space, whereas good multigrid performance requires good handling of the whole space
(i.e. good handling of the whole multilevel nodal decomposition [16]). For an efficient
multigrid scheme, one needs some explicit type of Helmholtz decomposition on each
level, and one needs interpolation operators that give good coarse grid approximation
to each part of this decomposition. To achieve both of these, explicitly having nodal
(to represent the curl-free vector) and edge (to represent the divergence-free vector)
degrees of freedom and separate interpolation operators for each part of the Helmholtz
decomposition is desirable. This will require more computer memory and additional
computational cost per multigrid cycle, but will give robustness and simplicity. We
consider such an algorithm in the next section.

4. T —V Formulation. As one can derive from the last section, commutativity
interpolation is difficult to construct and gives poor approximation to divergence-free
error components. There are some computational reduction in using these operators
since nodal interpolation is never performed in the solve phase. In some algebraic
multigrid algorithms ([20], [5]), though, this reduction is only minor since the for-
mation of auxiliary nodal interpolation and coarse grid operators are explicitly done
in the setup phase but then discarded afterwards. In this section, we will develop
an algorithm that recycles this discarded nodal information in the solve phase. Of
course, this will lead to actual nodal structures in the solve phase. But, by keep-
ing these structures, interpolation operators can be easily constructed without the
commutativity constraints, and be constructed such that the coarse grid approxima-
tion property holds for all required bad components. The motivation behind such an
approach is to develop an algorithm that can be easily fitted into the framework of
existing multigrid codes.

We note that we could present this algorithm as a subspace iteration, like the
one presented in [14]. However, we opt to present it in terms of a so-called T' —
V' formulation ([19]) since this formulation gives guidance on developing effective
interpolation operators. We also note that the T — V' formulation is used only in the
multigrid solution phase- we do not replace continuous problem (2.3) with a continuous
semi-definite 7' — V' formulation. Nevertheless, this multigrid solver iterates over the
pde system of the T'—V formulation. Hence, interpolation operators must be based on
the non-trivial near-nullspace components of this pde system. Thus, in this section,
we characterize these components. We consider the quantative form of these near-
nullspace components in order to justify our choice of interpolation operators.

So, consider curl-curl equation (2.4) with the solution decomposition

E=E, + V¢, E; € Ho(curl; ), ¢ € HL(Q),
and the variational problem: find (E;, ¢) € Ho(curl; Q) x H(Q2) such that

(4.1)  (@Vx(E1 + V), VX (v + V) + (B(E1 + V), (v + V) = (£, (v + V¢))
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for all v € Hoy(curl;Q), ¢ € H}(Q). Respectively denoting the basis functions of
Hy(curl; Q) and H}(Q) as {v;} and {1;}, (4.1) can be written as a system variational
problem

Aee Aen El [ fe ]
(4.2) = ,
Ane Ann ¢ fn
where
Ace = [(aVXV, Vxvy) + (Bvi, V)] Aen = [(Bvi, V)]
Ane = [(BVYi, vin)] Ann = [(BVi, V¢j)]
and

f, (£, V),
and for all (v;,0)",(0,4;)" € Ho(curl; Q) x HL(Q). To examine the near-nullspace
Lt .
component (E, ¢) of (4.2), let E have the Helmholtz decomposition

E:Ed+EC7

where Eg is divergence-free and E. is curl-free. We first consider the quantative form
of two special near-nullspace components, and then consider the quantative form of

. t .
a general near-nullspace component. The two special forms are (E, ¢) where E is

curl-free and E is divergence-free.

For near-nullspace component with curl-free E, E = E, = V7, let us determine
the corresponding nodal component ¢. From the second equation of (4.2), the nodal
component must satisfy

(BV$, Vibi) m —(BV9i, Ec) = —(BVui, Vi) Vi
Thus ¢ is approximately —n. Substituting this into the first equation of (4.2), we have

(aVXEc, Vxv) + (BE., vi) — (Bvi, V) = (BVn,vi) — (Bvi, V) = 0

so that (E, ¢)! = (Vn, —n)! is indeed a near-nullspace component.

Next, consider the near-nullspace component with divergence-free E, E = E,4. We
will assume that «, 8 are sufficiently smooth and consider only interior estimates so
that boundary terms produced by integration by parts can be omitted (near-nullspace
components are locally interior). From the second equation of (4.2) and integration
by parts,

~(V - BEq, i) + (BVY, Vibi) = —(VB - Ba + BV - Ea, 1) + (BV, V)

or
(BV$,Vip;) ~ (VB - Eq, ;) Vi.

If we further assume that 3 is smooth in the sense that || V|| < €, then using elliptic
regularity and the Cauchy-Schwarz inequality,

I8l < CIIVE - Eall < ClIVBIIIIE4|| < Cel|Eall-



10 Jones & Lee

That is, ¢ has small H1 energy, or equivalently, is a smooth eigenfunction of the
diffusion operator [V - fV]. Now for the first equation of (4.2), we have

(4.4) (aVxEgy, Vxv)) + (BEq,vi) = —(8V, V1) v,

and because qz has small H1 energy, E, has small scaled H (curl) energy in the order
of the size of the eigenvalue corresponding to ¢ i.e., coercivity of the curl-curl bilinear
form implies

I Edllzr(curty < ClIBVI
and ¢ being a smooth eigenfuction implies

N8l < l16ll2 < CA.

So, B is a smooth eigenfunction of the operator [VxaV x + BI]. Moreover, using the
identity

VxaVxv =Va x (Vxv)+aVxVxv
=Vax (Vxv) —aAv+VV v,

E, is a smooth eigenfunction of
(4.5) [-aA + Va x Vx + 8I.
Thus, quantative form of two types of near-nullspace components of (4.2) are
E Vn E small scaled H(curl) norm
46)| . |= and -] = .
0] -1 ¢ small scaled H1 norm
Multigrid interpolation operators must be designed to approximate at least these

components well. In fact, interpolation operators designed to handle these components
will also handle other near-nullspace components. For consider the general case,

E:Ed+EC:Ed+VU.
Again using the second equation of (4.2) first, integration by parts leads to

(Eq + Ee, BVe1) + (BV, Vibi) = (Ea, V) + (V, BV:) + (BV, Vi)

=~ 0,
or
(BY (1 + ), Vi) = (VB - Ea, ).
Elliptic regularity and the above smoothness assumption on S leads to
I+ Blli < Cel|Eyll-

Thus, (1 + ¢) has small scaled H1 norm, from which we conclude ¢ ~ —7. Using this
result in the first equation of (4.2) then gives

(QVXEd,VXVl) + (BEd;Vl) =~ 0.
Hence, the general near-nullspace components of (4.2) have the form

( E ) ( small scaled H(curl) norm + Vn )
é -7 '
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But the components that must be handled well by coarse grid correction are the
components that are left after relaxation. Applying a block relaxation on (4.2) for
the nodes and edges, 17 will be smooth after relaxation on the nodes. After relaxation
then, i will have small scaled H1 norm and E will have small scaled H(curl) norm.
Therefore, interpolation will be constructed based on (4.6).

Note that the E component of the system near-nullspace is the near-nullspace of
(2.4). These must be well approximated by PI’}(CMI). Note also that when «, 8 are
constants, the divergence-free near-nullspace components are smooth eigenfunctions
of [—aA + BI]. Hence, to obtain good approximation to these near-nullspace com-
ponents, PII}(curl) should act like linear interpolation on the edge degrees of freedom.
Constructing PI’}(CMI) under the commutativity constraints using PJ, generally will
not attain this property. A special case when this is attained occurs when the edges
are nested and P! is the Nedelec finite element interpolation operator (see Fig.

H(curl)
4.1).
0.25 0|5
0.25 ols '/\
0.5 | 0.5
0.25 10.25

F1g. 4.1. Nedelec linear interpolation of horizontal and vertical edges.

Having determined the quantative form of the near-nullspace of (4.2), we now
develop a multigrid algorithm. First, system (4.2) is discretized over ND(T;) X
Hp(Tr), which approximates the continuous near-nullspace well ([6]):

£2
)

From the above discussion, for the curl-free near nullspace, since n = —45, we need
only to approximate the diffusion operator [—V - fV] on the coarser grids. Good ap-
proximation to this same operator is also required in handling the nodal ¢ component
of the divergence-free near-nullspace. For the edge component of this divergence-
free vector, good approximation to vector “convection”-diffusion operator (4.5) or the
curl-curl operator itself is needed on the coarser levels. To accomplish both of these
approximation requirements, separate interpolation operators are used for the nodal
and edge degrees of freedom. The nodal interpolation P, will be based on the diffusion
operator and the edge interpolation P, will be based on the curl-curl operator. P, can
be constructed using AMG or BoxMG techniques ([10]), and P. can be constructed
using AMGe ([9]) or AMG techniques, since the convection-diffusion operator is being
implicitly coarsened. The overall interpolation operator for (4.7) is

h h
Aee Aen

h h
Ane Ann

E}

(4.7) o

P, 0
0 P,

The validity of this block-diagonal interpolation operator was based under the as-
sumption that ||[VS|| is small. When ||V ]| is large, a full 2 x 2 interpolation operator
may be needed (see [11], [12] for a numerical comparison of diagonal block and full
block interpolation operators on system pde’s).
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With block-diagonal interpolation, the coarse grid operator is formed using Galerkinl]
coarsening:
p o ]

0 P,

h h
Aee Aen

h h
Ane Ann

P, 0
0 P,

A2h A2h ‘|

2h 2h
Ane Ann

ptAh. P, P!AM P,
PLAM P, PLAM P,

n ne n nn

(4.8)

Applying this recursively, the coarse grid operator on level i can be constructed.

This algorithm requires the additional computation and storage of the off-diagonal
blocks A2F = (A2})t. However, as the above discussion suggests, the coarse grid
problems capture the divergence-free and curl-free components separately, i.e. re-
spectively using A2," and A2* only. Hence, omitting the off-diagonal blocks can also
lead to an effective scheme. With the off-diagonal blocks, curl-free error components
re-introduced when solving the edge correction can be surpressed.

This algorithm also appears to require more user data than just the fine grid
stiffness matrix A" and a fine grid discrete gradient operator G%, : nodes — edges,
as required by commutativity-based multigrid methods. But, as in the commutativity-
based methods, A" can be gotten using sparse matrix products and A" = (AR,)¢

nn
can be gotten freely from this same matrix product:

AL, = (G [ALGE]
Ah = Ah gl

Note that once these operators are formed, discrete gradient operators are not needed
on the coarser levels. This apparent minor detail actually implicates some structural
differences between this multigrid algorithm and commutativity-based ones. Because
these operators are not needed on the coarser grids, there need not be a connection
between the coarse nodal and edge grids, although the nodal and edge degrees of
freedom are connected through the off-diagonal blocks of (4.8). This implies that
the coarse simplices do not have to satisfy a consistency condition, i.e. nodes and
edges can be coarsened separately. In turn, this means that a two-term exactness
property does not hold on the coarser levels. Even if coarse simplices were consistency
chosen, an exactness property may still not hold because the weights generated by
the separate interpolation operators lead to discrete differential operators that may
not be consistent. All of this should not be surprising because we independently
constructed the edge interpolation to capture mainly the divergence-free error and
the nodal interpolation to capture the curl-free error, rather than having one edge
interpolation constructed to produce exactness to capture the curl-free error. There
also should be no concern that the exactness property does not hold on coarser levels
because the nodal coarse grid problem defines the equation for the curl-free error,
i.e. we have a relaxation procedure for these errors on the coarser levels. With no
exactness property on the coarser levels, the multilevel complex for this algorithm is

HY(Q) -5 H(curl; Q)

‘M M
h
Hy > NDy
(I
2h
Hj}, -*% Hap(curl)

Azih
1 en
Hy;, - Hyip(curl),
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2ih
where H;, and Haip(curl) are subspaces of H, and N'Djy, and -~ denotes only a
connection between the node and edge degrees of freedom, not an exactness relation.

4.1. Interpolation Schemes. There are many well-developed interpolation schemesfi
for variable-coefficient problems. In this paper, we will consider only structured grids,
and hence, employ a BoxMG scheme ([10]) for P, and an element agglomeration
scheme ([9]) for P,.

The BoxMG technique is well known. Let the 9-point stencil of A?_ be

nw n ne

a a a

nn nn nn
w C e
ann ann ann
sw 8 se
ann ann ann IJ

at coarse node IJ. This technique constructs P, to satisfy
(4.1) Al P,¢* = 0.

For fine nodes that underly a coarse node, the interpolation weight is one; for fine
nodes that are horizontally or vertically adjacent to a coarse node, stencil collapsing
is used to determine the weights- e.g. for fine nodes that are directly east or west of
node IJ, the interpolation weights are respectively

ne e se nw w sw
Pt = _ (ann +ay, + ann)IJ PY — _ (ann + apy t+ ann)l-]
n - n - -
(ann + ag, +a5n)1s (af, + ag, +ajn)1s

The weights for all other fine nodes are obtained using these computed weights and
relation (4.1).

To describe the AMGe technique to construct P,, we will refer to the two-
dimensional uniform agglomerate shown in Fig. 4.2. We divide the fine edges of

E

=
A e e A
e e e
e e
E E
e e g
e e
E

F1G. 4.2. Coarse cell agglomerate. Coarse edges are labeled with E and fine edges are labeled
with e.

this agglomerate into boundary (b) and interior (i) edges, and order them so that
locally A" and P, can be written as

Py

P |

bb  Abi
Agl A2

ee

ib it
Aee Aee

h _
Aee_
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The boundary edges are the fine edges e that nest a coarse edge F, and the interior
edges are the remaining fine edges of the agglomerate. For the boundary edges, the
interpolation weights can be defined physically. Since the edge degrees of freedom are
voltage drops along the edges, the boundary weights are simply the ratio of the length
of the boundary edge to the length of coarse edge that it nests. With these boundary
weights, the interior weights are given by the local inversion

ee” e”*

P! = (AL AL

4.2. Relaxation Schemes. Since the equations for both the nodes and edges
are Poisson-like, pointwise Gauss-Seidel can be used for each degree of freedom. But
as in system pde’s, the sweeping order of relaxation produces different smoothers. One
can relax all the nodes of the nodal grid and then all the edges of the edge grid, to
give the hybrid block Gauss-Seidel scheme of [16]. One can also apply a multiplicative
Schwarz smoother similar to the one of [2], but where now a node and all the edges
branching out of it are solved simultanuously. This is more costly than the pointwise
smoother, but it gives robustness. Yet an intermediate ordering is to update a node
and then pointwise update all the edges branching out of this node in turn. Since an
edge connects two nodes, a given edge is updated more than once in a sweep. Hence,
this smoother is more costly than the pointwise hybrid smoother.

5. Numerical Experiments. This multigrid algorithm has currently been testedl]
on two-dimensional uniform grids. Three-dimensional problems and algebraic multi-
grid variants of this algorithm will be presented in a forthcoming paper. The problems
solved in this paper are (2.3) on a unit square. Problems with constant and variable
a and § are examined, both standard Nedelec interpolation and the operator-based
interpolations described in the previous section are used, and the smoothers described
in the previous section are employed. (Note that operator-based interpolation pro-
duces multilevel structures that do not satisfy exactness.) V(1,1) cycles are used,
and all experiments are performed with a zero righthand side, a random initial guess,
and a stopping criterion of twelve order magnitude reduction of the [2—norm of the
initial residual. The schemes used are

e Method 1: Hybrid Gauss-Seidel smoother— all nodes updated then all edges.

e Method 2: Intermediate Gauss-Seidel smoother— pointwise update one node
and then all edges branching out of it in turn.

e Method 3: Node-edge decoupling on coarse grids— i.e. only the block-diagonal
terms of (4.8) are used on the coarse grids (see the discussion after (4.8)).

e Method 4: Multiplicative Schwarz smoother— simultaneously solve all edges
connected to a node. The nodal degrees of freedom are not involved; this
method is used for comparison.

Problem 1: o =1, 8 = constant. This experiment was conducted to illustrate the
robustness of the scheme as f — 0, so that the operator becomes singular. Table
5.1 contains the V (1, 1) iteration counts. For each iteration column, the left count is
for Nedelec interpolation and the right count for operator-based interpolation. From
these results, all methods are robust with respect to the size of 8. In particular, not
preserving exactness on coarse grids does not affect convergence. Also, the number
of iterations decreases as the smoother becomes “stronger” (Method 2), and Method
3 performs just as well as Method 1 because V3 = 0 so that the edge and nodal
components of the divergence-free near-nullspace of (4.2) decouple.

Problem 2: Variable a, 8. We consider the performance of this multigrid method
on variable coefficient problems. Problem 2a will involve coefficients

a = (2 + sin 407x)%(2 + cos 407y)?
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B = (2 + cos407x)*(2 + sin 407y)?,
and Problem 2b will involve grid-aligned jump coefficients

a = C(2 + sin407z)?(2 + cos 407y)?
B = C(2 + cos 40mx)*(2 + sin 407y)?,

where jump C' is described in Fig. 5.1. The results are tabulated in Table 5.2. For

0.1 | 1072

10 10M4

Fic. 5.1. Jump C of Problem 2b.

both problems, we see poor performance when Nedelec interpolation is used, and a
dramatic improvement when operator-based interpolation is used. Note that Method
3 performs just as Method 1, which is a bit surprising. Also note that Method 2
performs better than Method 4. Both of these methods do not satisfy exactness
on the coarse grids, but only Method 2 has systems for the curl-free component on
the coarse grids. Lastly, note that the performance of methods 1-3 with operator-
based interpolation are unaffected by jumps in the coefficients, whereas coefficient
jumps noticeably affects the convergence when Nedelec interpolation is used in these
methods.

We also consider an example that demonstrates the importance of using operator-
based interpolation in the Galerkin coarsening procedure. In Table 5.3, we consider
Problem 2a again but this time with operator-based interpolation used in the solve
phase and Nedelec interpolation used in the Galerkin coarsening procedure. As this
table shows, there is almost no improvement in using operator-based interpolation in
the solve phase only (compare with the left columns of Table 5.2, Problem 2a). The
coarse grid operators must be formed with these operators also.

Problem 3: Constant coefficient jumps. Our final experiment further examines jump
coefficients, but now with jumps that are not grid-aligned on the coarse grids. The
log scale of the coefficients are shown in Fig. 5.2 (Problem 3a) and Fig. 5.3 (Problem
3b), which has a more dramatic jump pattern for @ and 8. The order of magnitude
of the jumps are around 10. Results are given in Table 5.4. Again operator-based
interpolation performs better than Nedelec interpolation but not as dramatically this
time, especially for Problem 3a. This can be accredited to the localization of the
coefficient variations. Also, Problem 3b shows Method 1 performing better than
Method 3.

6. Conclusions. We presented a multigrid method for solving variable coeffi-
cient Maxwell’s equations. This method does not construct interpolation operators
based on multilevel commutativity constraints, and hence, does not satisfy exactness
on the coarse levels. Rather, interpolation operators are separately developed for the
nodes and edges, and operator-based techniques are used to capture the coefficient
variations. Moreover, the relevant effects of exactness are obtained by having equa-
tions for the curl-free gradients on the coarse levels. Numerical results demonstrate
the effectiveness of this algorithm.
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log of alpha log of beta

F1G. 5.2. Log scale of jumps in o and B for Problem 3a.

log of alpha log of beta

F1G. 5.3. Log scale of jumps in o and B for Problem 3b.
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| B || h [ Method 1 | Method 2 | Method 3 | Method 4 |
1/16 12/11 8/8 12/13 /7
1/32 19/19 12/12 20/19 10/11
1/64 24/24 14/15 24/24 12/13
103 1/128 26/26 15/15 26/26 13/13
1/256 26/26 15/15 26/26 13/13
1/512 26/26 15/15 26/26 13/13
1/16 | 17/i7 11/12 18/19 10/10
1/32 23/23 15/15 23/23 12/13
1/64 | 26/26 15/16 26/26 13/13
102 1/128 26/26 16/16 26/26 13/13
1/256 26/26 15/15 26/26 13/13
1/512 27/27 15/15 27/27 13/13
1/16 || 18/17 12/13 19/19 11/11
1/32 || 2324 15/15 23/23 13/13
1/64 | 26/26 16/16 26/26 13/13
10" || 1/128 || 26/26 16/16 26/26 13/13
1256 | 26/26 | 15/15 | 26/26 | 13/13
1/512 | 26/26 15/15 26/26 13/13
1/16 | 17/18 13/12 19/18 12/11
1/32 23/24 15/15 23/23 13/13
1/64 26/26 16/16 26/26 13/13
10° || 1/128 || 26/26 16/16 26/26 13/13
1/256 || 26/26 15/15 | 26/26 13/13
1512 || 26/26 | 15/15 | 26/26 | 13/13
1/16 || 17/18 12/13 17/17 12/11
1/32 | 23/23 15/15 23/23 13/13
1/64 | 26/26 16/16 26/26 13/13
10t || 1/128 | 26/26 15/15 26,26 13/13
1/256 || 26/26 15/15 | 26/26 13/13
1/512 || 27/27 15/15 27/27 13/13
1/16 | 18/17 13/13 16/17 11/12
1/32 | 23/23 15/15 23/23 13/13
1/64 | 26/26 16/16 26/26 13/13
1072 || 1/128 || 26/26 16/16 26/26 13/13
1/256 | 26/26 | 15/15 | 26/26 | 13/13
1/512 | 26/26 15/15 26/26 13/13
1/16 | 17/i7 13/13 17/18 11/11
1/32 23/23 15/15 23/23 13/13
1/64 26/26 16/16 26/26 13/13
10-% || 1/128 || 26/26 16/16 26/26 13/13
1256 | 26/26 | 15/15 | 26/26 | 13/13
1/512 | 27/27 15/15 27/27 13/13
1716 || 17/17 13/12 18/17 11/11
1/32 || 23/23 15/15 23/23 13/13
1/64 || 26/26 15/16 26/26 13/13
104 || 1/128 || 26/26 16/16 26/26 13/13
1256 | 26/26 | 15/15 | 26/26 | 13/13
1/512 | 26/26 15/15 26/26 13/13
116 | 17/16 | 13/13 | 17/ir | 1i/i1
132 | 23/23 | 15/15 | 24/23 | 13/13
1/64 | 26/26 16/16 26/26 13/13
105 || 1/128 || 26/26 16/16 26/26 13/13
1256 | 26/26 | 15/15 | 26/26 | 13/13
1/512 || 27/27 15/15 27/27 13/13
TABLE 5.1

V(1,1)-cycle results for Problem 1, o = 1, 8 = constant. The iteration counts on the left and
right are for Nedelec interpolation and operator-based interpolation, respectively.
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| Problem || h || Method 1 [ Method 2 | Method 3 | Method 4 |

1716 || 54/15 48/11 54/17 48/18
1/32 | 64/18 58/13 64/20 54/20
1/64 | 71/19 59/12 71/20 53/19
2a 1/128 | 57/23 53/14 57/23 50/16
1/256 | 53/25 49/15 53/25 47/13
1/512 | 49/26 45/15 49/26 44/13
1/16 || 69/13 62/11 94/15 59/44

1/32 || 127/15 96,/12 126/18 85/26
1/64 || 108/18 85/12 110/23 77/45
2b 1/128 || 141/23 | 102/13 | 140/23 87/43
1/256 | 154/25 | 106/15 | 153/25 89/31

1/512 | 127/26 92/15 127/26 78/21
TABLE 5.2
V(1,1)-cycle results for variable coefficients, Problems 2a & 2b.

| h ] Method 1 | Method 2 | Method 3 | Method 4 ]

1/16 47 47 47 46

1/32 61 56 61 54

1/64 62 58 62 53

1/128 51 48 51 46

1/256 47 45 47 43

1/512 43 41 43 39
TABLE 5.3

V(1,1)-cycle with operator-based interpolation in the solve phase and Nedelec interpolation in
Galerkin coarsening, Problems 2a.

| Problem || h [ Method 1 | Method 2 | Method 3 | Method 4 |

1/16 | 86/25 65/26 86/25 48/26
1/32 || 37/18 35/11 37/18 29/12
1/64 || 31/20 29/13 31/20 24/12
3a 1/128 || 31/25 30/15 31/25 26/13
1/256 || 27/26 26/15 27/26 23/13
1/512 | 28/26 28/15 28/26 25/13

1/16 || 144/44 | 148/43 | 161/60 | 124/37
1/32 || 120/38 | 122/38 | 134/46 | 106/26

1/64 86/42 87/42 92/46 72/25
3b 1/128 | 80/31 81/30 78/36 68/20
1/256 || 75/29 75/28 77/33 66/18
1/512 || 69/27 68/25 68/30 58/17
TABLE 5.4

V(1,1)-cycle results for “non-aligned” jump coefficients.



