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A NEW CLASS OF AMG INTERPOLATION METHODS BASED ON
MATRIX-MATRIX MULTIPLICATIONS

RUIPENG LI∗, BJORN SJOGREEN∗, AND ULRIKE MEIER YANG∗

Abstract. A new class of distance-two interpolation methods for algebraic multigrid (AMG) that
can be formulated in terms of sparse matrix-matrix multiplications is presented and analyzed. Com-
pared with current similar methods, the proposed algorithms exhibit improved efficiency and porta-
bility to various computing platforms, since they allow to easily exploit existing high-performance
sparse matrix kernels. The new interpolation methods have been implemented in hypre [15], a widely-
used parallel multigrid solver library. With the proposed interpolations, the overall time of hypre’s
BoomerAMG setup can be considerably reduced, while sustaining equivalent, sometimes improved,
convergence rates. Numerical results for a variety of test problems on parallel machines are presented
that support the superiority of the proposed interpolation operators over the existing ones in hypre.
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1. Introduction. The problem of solving linear systems with large sparse ma-
trices often arises in many fields of science and engineering when computing the nu-
merical solution of partial differential equations (PDEs). Algebraic multigrid (AMG)
[6, 29, 31] has been an efficient scalable parallel solver or preconditioner for such sys-
tems due to its numerical scalability and good coarse-grain parallelism [4]. However
the emergence of recent high performance computers, which achieve their largest
performance potential through the use of accelerators, such as graphics processing
units (GPUs), presents some serious challenges to an efficient AMG implementation.
GPUs require a high level of small grain parallelism, which is hard to achieve with
unstructured sparse matrices, generally based on a compressed sparse row (CSR) data
structure. In addition, best performance is achieved for large matrices and vectors,
however the hierarchy of AMG requires dealing with decreasing matrix sizes on coarser
levels. Nevertheless, despite these issues, much progress has been made on porting
AMG and other sparse solvers on GPUs, see, e.g., [5, 8, 9, 16,21,22,26,28,30,33].

AMG consists of a setup and a solve phase. In the setup phase, for each level, a
coarsening algorithm is applied to generate the variables for the next level, a prolonga-
tion operator P and a restriction operator R, often defined as R = PT , and the coarse
grid operator RAP are generated. During the solve phase, the error is smoothed with
a few sweeps of a generally simple iterative method such as Jacobi or Gauss-Seidel,
and R and P are used to move between levels. For more details see [14]. When choos-
ing highly parallel smoothers [3] based on matrix-vector operations, such as Jacobi or
polynomial smoothers, fairly good performance on GPUs can be achieved for the AMG
solve cycle. It is more difficult to port AMG setup phase. The coarse grid operator is
obtained by performing two sparse matrix-matrix operations or a triple matrix prod-
uct, which has also been very challenging. There has however been recent progress on
the development of efficient sparse matrix-matrix multiplications [10,13,17,23,25] on
GPUs. Commonly used coarsening schemes such as HMIS [12] that lead to good con-
verging methods possess larger grain parallelism, but the individual processes contain
sequential portions, not suitable for GPUs. However, PMIS [12] is a highly parallel
coarsening scheme and amenable for porting to GPUs. It is a modification of a par-

∗Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, P. O. Box
808, L-561, Livermore, CA 94551 ({li50,sjogreen2,yang11}@llnl.gov). This work was performed
under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344 (LLNL-JRNL-812088).

1



allel maximal independent set algorithm by Luby [24]. To achieve good convergence,
it often needs to be combined with distance-two interpolation, such as the extended
and the extended+i approaches [11]. Current implementations of these methods, as
can be found in hypre [15], are not directly appropriate for GPUs. While they are
parallel, i.e. each row of the interpolation matrix can be computed independently, the
computation of the interpolation weights requires many conditional statements and
parsing of branches that inhibit efficient execution on accelerators.

We propose here a new class of interpolation operators, which we will call “MM-
interpolation operators”. They are similar to extended and extended+i interpolation,
but can be computed on GPUs more efficiently, since they are composed of basic
sparse matrix and vector kernels, including sparse matrix-matrix (MM) multiplica-
tions. While our original goal was to develop interpolation operators suitable for
GPUs, it turns out that the new methods also perform better on CPUs. We investi-
gate their convergence, performance and implementation differences. We additionally
propose several new long range MM-interpolation operators [34] that can be used in
combination with more aggressive coarsening, which can have additional performance
benefits by decreasing operator and memory complexities. We present numerical re-
sults for a variety of problems on a parallel computer utilizing its CPUs.

We adopt the following notations from [7]. The cardinality of a set s is denoted
by |s|. The number of unknowns of the linear system is n. The index set {1, 2, . . . , n}
is partitioned into fine and coarse points, F and C, by coarsening algorithms, and
nf = |F | and nc = |C|. The (i, j)-entry of a matrix A is denoted by aij or [A]ij . By
Ni we denote the neighborhood of i, i.e., Ni = {j | aij 6= 0, j 6= i}, which can be
divided into Ns

i and Nw
i consisting of the points that strongly and weakly influence i

respectively. By definition, xi is strongly influenced by xj if −aij ≥ θmaxk 6=i{−aik}.
Also, we define F si = Ns

i ∩ F and Csi = Ns
i ∩ C.

2. History of extended and extended+i interpolation. Interpolation for-
mulae for AMG are generally based on the characteristic of the smoothness of an error
vector x, i.e.,

aiixi +
∑
j∈F s

i

aijxj +
∑
k∈Cs

i

aikxk +
∑

m∈Nw
i

aimxm ≈ 0. (2.1)

Since smooth error varies slowly in the direction of strong connections, the error xj
for F -points j ∈ F si can be expressed by the errors associated with Csi as

xj ≈
∑
l∈Cs

i

ajl∑
m∈Cs

i
ajm

xl. (2.2)

This is also called “collapsing the stencils” [14]. Dividing by the sum of connections
to strong C-points in (2.2) allows to interpolate constants exactly. Since the weak
couplings with Nw

i are less important, we simply replace xm with xi. Therefore, this
allows the following definition of the so-called “classical” interpolation [29,32]:

wik = −

aik +
∑
j∈F s

i

aijajk∑
l∈Cs

i
ajl

aii +
∑
m∈Nw

i
aim

, k ∈ Csi . (2.3)

Due to a condition that strongly connected F -points require a common C-point, which
was guaranteed in the original AMG coarsening algorithm [29], and since many of the
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targeted matrices coming from PDEs are M-matrices, where off-diagonal elements are
of the opposite sign as the diagonal elements, the sum

∑
l∈Cs

i
ajl in the denominator

generally does not vanish. However if A is not an M-matrix, it is possible that, assum-
ing a positive diagonal, a large positive off-diagonal element can lead to a cancellation.
Note that even if the matrix A at the finest level is an M-matrix, this might not be
the case for matrices on the coarser levels. In order to avoid this situation, (2.3) was
modified by using ājk and ājl defined as

ājm =

{
0 if sign(ajm) = sign(ajj)

ajm otherwise.
, m = k, l (2.4)

in the place of ajk and ajl respectively.
The classical Ruge-Stüben coarsening [29], which uses a second pass to enforce

that two fine points have a common coarse point, can lead to large complexities and
unsuitability for massively parallel computing, so PMIS and HMIS coarsening [12]
were introduced to address such problems. Specifically, the second pass was dropped
in HMIS and a highly parallel approach based on Luby’s method [19,24] was used in
PMIS. It was shown that using the classical interpolation (2.3) in combination with
PMIS often leads to poor convergence [11]. As a remedy, interpolation operators that
can reach additional C-points at a larger range can yield better convergence, such as
the extended interpolation [11], for which an augmented interpolatory set

Ĉi =
⋃

j∈{{i}∪F s
i }

Csj , (2.5)

was defined. Replacing Csi with Ĉi in (2.3) leads to the extended interpolation formula

wik = −

aik +
∑
j∈F s

i

aij ājk∑
l∈Ĉi

ājl

aii +
∑
m∈{Nw

i \Ĉi} aim
, k ∈ Ĉi . (2.6)

It contains an additional change: since it is now possible for weak connections from i
to Ĉi to be included in the numerator, weak connections that end up being included
should no longer be added to the diagonal, to correctly interpolate constants.

Another variant that is referred to as the “extended+i” interpolation, includes an
extra connection between a point in F si and i itself, which, specifically, is given by

wik = −

aik +
∑
j∈F s

i

aij ājk∑
l∈{Ĉi∪{i}} ājl

aii +
∑
m∈{Nw

i \Ĉi} aim + δi
, δi =

∑
j∈F s

i

aijaji∑
l∈{Ĉi∪{i}} ājl

, k ∈ Ĉi . (2.7)

This approach can yield better convergence than (2.6) for certain cases [11], which will
be also shown in Section 8. Once the interpolation operators are built, truncation is
typically deployed to control complexity. A common strategy of truncation is dropping
entries with small magnitudes and rescaling the remaining interpolation weights.

Implementing extended+i interpolation can be fairly complex. First, one needs
to determine the interpolatory set for each F -point. Next, the computation of the
numerical values requires checking whether each connection ajk is in the interpolatory
set and is weak or strong, which leads to a large number of if-statements on various
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branches. While good coarse-grain parallelism can be achieved once the communica-
tion pattern is established, the algorithms exhibit little fine-grain parallelism needed
for efficient use of modern many-core architectures. Park et al. [27] implemented a
threaded version of the extended+i interpolation in hypre, which required sophisti-
cated hash routines to achieve reasonable speedups. A more in-depth analysis of the
current implementations is described in Section 6.

3. The class of MM interpolation operators. To achieve a fine-grain parallel
implementation of extended and extended+i interpolation, we decided to approach
their definition from a different angle. Instead of focusing on the individual weights
we took a more holistic view of the interpolation operator and came up with a formula
that is based on sparse MM multiplications. An obvious advantage of this approach
is that it simplifies the implementation by utilizing existing optimized sparse kernels
on various computing platforms and thus increases portability. As we will see in this
section, the new interpolation operators can be presented in a compact form that
consists of MM multiplications and simple vector operations. Before we present this
formulation, we relate the new weights to the weights of the extended interpolation.
Replacing Csi in (2.2) with Csj and substituting it into (2.1), a new interpolation
formula can be written as

wik = −

âik +
∑
j∈F s

i

aij âjk∑
l∈Cs

j
ajl

aii +
∑
m∈Nw

i
aim

, k ∈ Ĉi, (3.1)

where

âmk =

{
amk k ∈ Csm
0 k /∈ Csm

, m = i, j. (3.2)

The main difference in (3.1), compared with (2.6), is that all coefficients in the numer-
ator are associated with strong connections only, and therefore all weak connections
aim, m ∈ Nw

i are now included in the denominator. Moreover, we no longer require
the modification in (2.4) that prevents cancellation, since according to the definition
of the strength of connections (SoC), coefficients with the same sign as the diagonal
element will be eliminated as weak connections. These changes simplify the evalua-
tion of the interpolation weights and, as we will see later, also allow to express the
whole interpolation operator in a clean multiplication formula. The modification to
the extended+i interpolation (2.7) is similar.

In the next sections, we use the following notations: diag(v) denotes the diagonal
matrix with vector v as the diagonal, and diag(A) is the vector that consists of the
diagonal of matrix A. Thus, diag(diag(A)) is the diagonal matrix that consist of the
diagonal of A. Let ef ∈ Rnf and ec ∈ Rnc be the vectors of all ones, and ei the
i-th canonical basis vector. We suppose A is partitioned per the F/C splitting as the
2-by-2 block structure (

AFF AFC
ACF ACC

)
, (3.3)

and also A = D + As + Aw, where D = diag(diag(A)), and As and Aw contain the
off-diagonal strong and the weak connections according to the SoC respectively. Using
the F/C splitting we can present the interpolation operator P in the form P = (WI ),
where W ∈ Rnf×nc contains the interpolation weights.
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3.1. “MM-ext” interpolation. We can now define the MM form of the new
extended interpolation formula (3.1), to which we refer as the MM-ext interpolation.
Using DFF , AsFF and AsFC as the submatrices conforming to (3.3), it follows that the
matrix W can be computed as the following multiplication

W = −
[
(DFF +Dγ)−1(AsFF +Dβ)

][
D−1β AsFC

]
≡ −ÃsFF ÃsFC , (3.4)

where

Dβ = diag(AsFCec), (3.5)

Dγ = diag(AwFF ef +AwFCec), (3.6)

i.e. Dβ contains the row sums of AsFC and Dγ has the row sums of AwFF and AwFC .

More specifically, each element of ÃsFF and ÃsFC can be obtained as

[ÃsFF ]ij =

{
α−1i [Dβ ]ii, i = j

α−1i [AsFF ]ij , i 6= j
, with αi = [DFF ]ii + [Dγ ]ii , (3.7)

[ÃsFC ]ij = [Dβ ]−1ii [AsFC ]ij . (3.8)

Notice that (3.8) requires [Dβ ]ii 6= 0 if i ∈ F sk for some k ∈ F , which usually can
be ensured by coarsening algorithms since i and k should share at least one C-point
in their interpolatory sets. However, if this is not the case, we can simply fix it by
replacing [Dβ ]−1ii with 0 and add aki to [Dγ ]kk. Lastly, we remark here that DFF , Dβ ,
Dγ as well as the diagonal scaling from the left D−1β AsFC in (3.4) can all be determined
locally without communicating with other processes when A is distributed row-wise
as in the parallel CSR format in hypre’s AMG implementation BoomerAMG [18].

3.2. “MM-ext+i” interpolation. We discuss the MM multiplication form of
the new extended+i interpolation, which we call the MM-ext+i interpolation. It is
based on the formula (2.7) using the same modification used to get (3.1) from (2.6).
As before, the formula of MM-ext+i changes by adding i into the interpolatory set
of j along with Csj . As in MM-ext, all the weak connections of i are added to the
diagonal and only strong connections are included in the remainder of the formula.
Figure 3.1 illustrates the computation pattern of a row of W corresponding to i ∈ F
in both MM-ext and MM-ext+i, and the difference in MM-ext+i by the inclusion of
the point i. The most significant difference in computing this interpolation as opposed

C

F

jj

i

AFF AFC

(a) MM-ext

C

F

jj

i

AFF AFC

(b) MM-ext+i

Fig. 3.1. Extended and Extended+i interpolations in MM multiplication forms

to MM-ext is that the scaling matrix Dβ in (3.4) is no longer constant for all the F -
points, but depends on each i, which we now denote by Dβ(i) , for i ∈ F . As a result,
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the diagonal scaling cannot be easily absorbed inside ÃsFC as in (3.4), whereas we
scale (from the right) each row i of AsFF with (a different) D−1

β(i) instead. Therefore,

it follows that the matrix W of the MM-ext+i interpolation takes the form

W = −
[
(DFF +Dγ +Dθ)

−1(ÂsFF + I)
]
AsFC ≡ −ÃsFFAsFC , (3.9)

where for i ∈ F

eTi Â
s
FF = eTi A

s
FFD

−1
β(i) , (3.10)

Dβ(i) = diag(AsFF ei) +Dβ , (3.11)

the terms eTi A
s
FF and AsFF ei are the i-th row and column of AsFF respectively, and

Dθ = diag(diag(ÂsFFA
s
FF )). (3.12)

We note here that to compute (3.12) only the diagonal of ÂsFFA
s
FF is needed, i.e.

one should not compute the whole product. Due to scaling from the right in (3.10),
communications for the off-process entries of Dβ(i) are needed, in a distributed code.
The invariant part, namely Dβ , that does not depend on i, can be computed and
communicated once, with the same communication pattern as in a sparse matrix-by-
vector with AsFF . For determining the other part that varies with i, i.e, AsFF ei, it is
important to realize that we do not need to gather the entire i-th column of AsFF on
each process. Only the elements corresponding to F si are needed, since they are just
needed to scale eTi A

s
FF . Hence, it is required to retrieve the off-process rows of AsFF

that correspond to F si , which has the same communication pattern that is needed in
performing the MM multiplication (AsFF )2. Furthermore, it is not difficult to see that
Dθ can be computed in a similar way without requiring more communication. More
details on the parallel implementation will be given in Section 5.

3.3. “MM-ext+e” interpolation. The increased complexity of MM-ext+i
over MM-ext, particularly the additional requirement of communicating the extra
matrix rows, are caused by the fact that the interpolatory set of j includes i, i.e.,

xj ≈
∑

l∈Cs
j∪{i}

ajl∑
m∈Cs

j∪{i}
ajm

xl . (3.13)

We investigate a simplified approach by replacing aji with an estimate µj by averaging
the connections in F sj , i.e.,

xj ≈

∑
l∈Cs

j
ajlxl + µjxi∑

l∈Cs
j
ajl + µj

with µj =
∑
m∈F s

j

ajm|F sj |−1 , (3.14)

where |F sj | denotes the number of points in F sj . Apparently, the coefficients in (3.14)
do not vary with i for different j, and approximating aji with µj makes sense, partic-
ularly for isotropic problems. With Dβ and Dγ defined as before, it is straightforward
to derive the expression of the W matrix as

W = −
[
(DFF +Dγ +Dτ )−1 (AsFF +Dλ)

][
D−1λ AsFC

]
≡ −ÃsFF ÃsFC , (3.15)

with

[Dλ]ii = [Dβ ]ii + µi, (3.16)

[Dτ ]ii =
∑
j∈F s

i
aijµj [Dλ]−1jj . (3.17)
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We remark here that, compared with MM-ext+i, there is no diagonal scaling from
the right or varying with different i ∈ F anymore; the matrix Dτ plays the same
role as Dθ for including the contribution from i itself, but is much easier to compute;
and lastly Dλ can now be determined locally while Dτ requires communicating the
value of µj [Dλ]−1jj for off-process index j with neighboring processes. This eliminates
the communication of complete matrix rows needed for MM-ext+i. We refer to this
interpolation as the MM-ext+e interpolation, since the connection to point i has been
replaced by an estimate.

4. Convergence comparisons. In this section, we compare the convergence of
the new interpolation operators with the original extended and extended+i interpola-
tion for a variety of problems. We consider first a few two-dimensional problems, which
include two Poisson problems, one with a five-point stencil and a second one with a
nine-point stencil on a 1000 × 1000 grid, as well as two problems with anisotropies of
0.001 rotated by 45 and 60 degrees on a 512 × 512 grid. Since our final goal is the im-
plementation on GPUs, we choose a highly parallel coarsening scheme and smoother,
i.e. PMIS coarsening and Jacobi smoothing with a weight of 0.85. For the anisotropy
rotated by 60 degrees, which is a hard problem for AMG, we use two sweeps of Jacobi
with a weight of 0.5. We use a zero initial guess and a random right-hand side, and
stop convergence when the relative residual is smaller than 10−8. We use truncation
to at most 4 coefficients per row for the interpolation operator, which is the default
in hypre. We record the operator complexities (Cop), which are defined by the sum of
the numbers of nonzeros of all the A operators in the AMG hierarchy divided by the
number of nonzeros of A, the number of iterations for AMG as a solver and the setup
times. For the anisotropy rotated by 60 degrees, we also record the number of conju-
gate gradient (CG) iterations when using AMG as the preconditioner. We denote the
original extended and extended+i interpolations by “ext” and “ext+i” respectively.

As reported in Tables 4.1 and 4.2, we see overall similar operator complexities
and setup times with some slight improvements for the new interpolation routines for
the 9-point problem. Overall, we achieve similar convergence for the corresponding
interpolation routines, except for MM-ext when applied to the anisotropy rotated by
60 degrees.

Table 4.1
AMG for the 5-point and the 9-point 2D Poisson problem on a 1000×1000 square with random

right-hand side using different interpolation operators.

Method
5-point 9-point

Cop #its time Cop #its time
ext 2.42 29 1.28 1.53 18 1.57
ext+i 2.40 24 1.40 1.52 18 1.75
MM-ext 2.42 29 1.26 1.53 19 1.37
MM-ext+i 2.40 24 1.29 1.53 19 1.43
MM-ext+e 2.40 24 1.27 1.52 18 1.40

Next, we consider several three-dimensional problems on a 80 × 80 × 80 grid:
a 7-point and a 27-point Poisson problem, and a problem with jumps of 6 orders of
magnitude. In Table 4.3, we see overall similar convergence and operator complexities,
however the setup times for the MM-ext* operators are clearly lower than their ext*
counterparts, particularly for the 27-point problem, where they take only about half
the amount of time as the original prolongation operators. We further investigate the

7



Table 4.2
AMG for a problem with by 45 degrees and by 60 degrees rotated anisotropies on a 512×512

square mesh using different interpolation operators. The number of iterations of AMG precondi-
tioned CG is shown in parentheses.

Method
45 degrees 60 degrees

Cop #its time Cop #its time
ext 2.06 41 0.27 2.49 285 (42) 0.46
ext+i 2.06 25 0.27 2.63 168 (33) 0.50
MM-ext 2.06 41 0.28 2.39 444 (52) 0.44
MM-ext+i 2.06 25 0.29 2.57 149 (31) 0.47
MM-ext+e 2.06 25 0.29 2.57 158 (31) 0.48

reasons for this in Section 6.

Table 4.3
AMG for the 7-point and the 27-point 3D Poisson problem, and a problem with jumps on a

80× 80× 80 cube with a random right-hand side using different interpolation operators.

Method
7-point 27-point Jumps

Cop #its time Cop #its time Cop #its time
ext 2.80 23 1.49 1.21 15 3.20 2.92 47 1.50
ext+i 2.74 20 1.63 1.21 15 3.51 2.86 46 1.63
MM-ext 2.85 23 1.18 1.21 15 1.61 2.94 45 1.18
MM-ext+i 2.77 21 1.25 1.21 15 1.82 2.89 45 1.24
MM-ext+e 2.77 21 1.20 1.21 15 1.67 2.89 47 1.21

Finally, we include a few results to evaluate scalability and different types of par-
allelism of AMG setup with the proposed interpolation algorithms when used as a
preconditioner of CG. For these experiments we used a right-hand side of all ones.
One of the advantages in computing the MM-ext* interpolation operators is the large
amount of fine-grain parallelism that allows straightforward threading, which is much
simpler than previous efforts in [27]. The numerical experiments were conducted
on a Linux workstation with a 12-core CPU, where the code was compiled by the
mpicc compiler with optimization level -O2 and OpenMP (with hypre’s configure op-
tions, --with-openmp --enable-hopscotch --enable-persistent). In Tables 4.4
and 4.5, we report the AMG setup times and the total times for the sequential runs,
the runs using 12 MPI tasks and 1 thread for each task (labelled as ‘p-n’), and the
runs with 1 MPI task and 12 OpenMP threads (labelled as ‘t-n’), for solving the 7pt
and the 27pt problems on n× n× n grids.

As before, we achieved improved setup times for the MM-ext* interpolation op-
erators, where, in particular, the 27-point problems showed the best improvements.
This is the case for all types of experiments: sequential, distributed and threaded par-
allelism. Also, as in the previous experiments, we see equivalent convergence, in some
cases even slightly improved convergence. Since the original extended interpolation
in hypre has not been threaded, we do not present timings for this case.

5. Parallel implementation. All the aforementioned interpolation algorithms
have been implemented in hypre. In this section, we discuss some implementation
details, especially, with the focus on the efficient implementations for distributed
memory environments. In hypre, distributed sparse matrices are stored in the paral-
lel CSR format (ParCSR), for which each process owns a chunk of consecutive rows
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Table 4.4
AMG setup times with the different interpolation operators considered for 3D 7pt and 27pt

Poisson problems of size n3

7pt 27pt

n ext ext+i
MM-

ext
MM-
ext+i

MM-
ext+e ext ext+i

MM-
ext

MM-
ext+i

MM-
ext+e

40 0.25 0.27 0.21 0.22 0.21 0.45 0.49 0.25 0.27 0.26
80 1.48 1.63 1.19 1.24 1.20 3.06 3.44 1.51 1.70 1.54

120 4.90 5.40 3.85 4.03 3.84 10.55 11.83 5.40 6.17 5.53
p-120 0.84 0.91 0.69 0.76 0.69 1.68 1.79 0.91 1.07 0.95
p-160 2.03 2.08 1.53 1.62 1.55 3.70 4.15 2.09 2.55 2.10
t-120 — 0.98 0.82 0.87 0.86 — 1.91 1.14 1.28 1.16
t-160 — 2.37 1.92 2.04 1.99 — 4.57 2.69 2.94 2.76

Table 4.5
Total times and number of iterations (in parentheses) for AMG-PCG with various interpolation

operators for a 3D 7pt and 27pt diffusion problem of size n3

7pt 27pt

n ext ext+i
MM-

ext
MM-
ext+i

MM-
ext+e ext ext+i

MM-
ext

MM-
ext+i

MM-
ext+e

40 0.33 0.35 0.29 0.30 0.29 0.53 0.58 0.35 0.36 0.36
(12) (12) (12) (12) (12) (9) (9) (10) (9) (10)

80 2.18 2.32 1.94 1.94 1.89 3.86 4.25 2.41 2.64 2.33
(14) (13) (14) (13) (13) (11) (11) (11) (11) (11)

120 7.49 7.92 6.66 6.58 6.22 13.53 14.82 8.39 9.17 8.53
(14) (14) (15) (14) (13) (12) (12) (12) (12) (12)

p-120 1.68 1.74 1.59 1.56 1.47 2.71 2.90 1.94 2.09 1.97
(14) (14) (15) (14) (13) (12) (13) (12) (12) (12)

p-160 4.16 4.20 3.68 3.61 3.54 6.35 7.02 4.74 5.20 4.76
(15) (15) (15) (14) (14) (13) (14) (13) (13) (13)

t-120 — 1.85 1.77 1.74 1.67 — 2.94 2.18 2.32 2.20
— (14) (15) (14) (13) — (12) (12) (12) (12)

t-160 — 4.63 4.21 4.15 4.10 — 7.45 5.36 5.61 5.44
— (15) (15) (14) (14) — (14) (13) (13) (13)

that are further split into the “on-process” and the “off-process” CSR matrix blocks.
A clear advantage of this splitting is that typically in parallel matrix operations, the
computations involved with the on-process block can be overlapped with the commu-
nications. Figure 5.1 illustrates the storage of the local rows, and the splitting into
the “diag” and the “offd” matrices. Similarly, vectors are distributed conformingly to
the sparse matrix and saved in the parallel vector (ParVec) format.

Fig. 5.1. The storage of local rows of a ParCSR matrix

Proc i = + AoffdAdiag

ri

ri+1riri+1
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The implementation of the MM-ext interpolation is presented in Algorithm 1,
where at step 4 we utilize the existing distributed MM multiplication routine. The
MM-ext+i method is presented in Algorithm 2. Notice that an extra communication
step is performed at step 3. The required entries in the i-th column of AsFF and the i-th

entry of diag(ÂsFFA
s
FF ) are computed at step 4, as in (3.11) and (3.12). A (probably)

simpler alternative to implement this step is by computing the transpose of AsFF in
advance, which, however, apparently requires more memory and communication.

Algorithm 1 The MM-ext interpolation

Input: coefficient matrix A, C/F splitting and SoC matrix S
Output: interpolation matrix P

1: Extract diag(DFF ) in ParVec, and AsFF and AsFC in ParCSR based on S
2: Compute diag(Dβ) in (3.5) and diag(Dγ) in (3.6), stored in ParVec

3: Diagonally scale AsFF and AsFC for ÃsFF and ÃsFC as in (3.4)
4: Compute W = −ÃsFF ÃsFC
5: Allocate P = (WI ) and copy W into P

Algorithm 2 The MM-ext+i interpolation

Input: coefficient matrix A, C/F splitting and SoC matrix S
Output: interpolation matrix P

1: Extract diag(DFF ) in ParVec, and AsFF and AsFC in ParCSR based on S
2: Compute diag(Dβ) in (3.5) and diag(Dγ) in (3.6), stored in ParVec
3: Communicate for the external diag(Dβ) and the external rows of AsFF in a CSR

matrix Xext, corresponding to the off-process column indices of the local AsFF .
4: Scale each row i of AsFF as in (3.10): for each [AsFF ]ij 6= 0, go to row j, search

for [AsFF ]ji in either the diagonal part of AsFF or in Xext, depending on whether

j is on- or off-process, and calculate [ÂsFF ]ij =
(
[AsFF ]ji + [Dβ ]jj

)−1
[AsFF ]ij .

Accumulate [ÂsFF ]ij [A
s
FF ]ji in [Dθ]ii per (3.12).

5: Diagonally scale ÂsFF for ÃsFF as in (3.9)
6: Compute W = −ÃsFF ÃsFC
7: Allocate P = (WI ) and copy W into P

The implementation of the MM-ext+e algorithm should be straightforward at
this stage, so we omit the details for brevity.

6. Analyzing implementation of extended and MM-ext interpolation.
In this section, we discuss the differences in the implementations between the original
extended (ext) and the proposed MM-ext interpolations to get a better understanding
of the differences in timings we observed in the Section 4. To simplify the discussion,
we focus on the sequential version, where we already see a big difference in tim-
ings. We will estimate the number of floating point operations, specifically additions,
multiplications and divisions for both versions. We will also count the number of
if-statements or checks as we call them here, since the implementation of the original
interpolation operators required many such branch statements, which are problem-
atic when porting the code to GPUs and can also prevent compilers from performing
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optimizations. We will use the following notations:

S strength matrix contains strong connections in A, no diagonal elements
n number of rows of A
m average number of nonzeros per row in A without the diagonal element

nnz(M) number of nonzeros of matrix M
σ strength ratio defined as nnz(S)/(nnz(A)− n)
σ̃ strength ratio when some weak connections are included; σ ≤ σ̃ ≤ 1
nF number of fine points.
nC number of coarse points and equivalent to n− nF .
ρ fine point ratio, defined as nF /n, coarse point ratio is 1− ρ.

We will start by discussing storage requirements for both versions. Matrices are
stored in the CSR format using an integer array ‘I’ of length n+ 1, which marks the
beginning for each row within the array ‘J’ for the column indices and the data array.
We will assume double precision for the data and 32-bit integers for the integer arrays,
thus multiplying the numbers for real arrays by two. Note that hypre also assumes
that the first element in each row is the diagonal element, allowing for easy access to
the diagonal.

Both versions require the original matrix A and the strength matrix S, which does
not have a data array and omits the diagonal elements, an integer array of length n
to mark whether a point is an F - or a C-point (CFmarker), an integer array of length
n to map the original column indices to new column indices (CFMap) required for P or
AsFF and AsFC and the final P -matrix. Extended interpolation additionally requires
an integer array PMarker of length n used to mark strong fine connections or positions
within P when generating the interpolation data structure and when populating it.
We need about (3m+ 1)n 32-bit units for A, (σm+ 1)n for S, and 3nnz(P ) +n units
for P . This leads to a total of [(3 + σ)m + 6]n + 3nnz(P ) units for the extended
interpolation.

The MM-ext interpolation requires additionally the matrices AsFF , AsFC , W , an
integer array of length ρn to mark positions when generating W and arrays Dβ and
Dγ of length ρn. Note that Dγ can be combined with DFF to save storage. Note
that in our implementation and analysis, the diagonal is included in AsFF , which is
different from the definition for AsFF that we use in other sections of this paper. AsFF
requires about (3σρm + 1)ρn units, AsFC about [3σ(1 − ρ)m + 1]ρn units, and W
about 3[nnz(P )− (1− ρ)n] + ρn units. Combining all these numbers leads to a total
of [(3 + σ)m+ 9ρ+ 3σρ+ 4]n+ 6nnz(P ) units for the MM-ext interpolation. Clearly,
MM-ext requires more memory than extended interpolation.

The implementation of the extended interpolation in hypre consists of basically
two phases: in Phase 1, the structure of P is determined and created as well as a map
of current column indices to new coarse column indices for P , whereas in Phase 2,
the interpolation weights are evaluated and the structure of P is populated.

Phase 1 loops through CFmarker to determine if a point i is coarse or fine, re-
quiring a total of n checks over the course of the phase. If i is coarse, the counter
for nnz(P ) is increased and CFMap is updated. If i is one of the ρn F -points, the
process in Figure 6.1 is performed for matrix S and c = σm. Phase 1 requires about
n+ ρn(1 + σρm)(2− ρ)σm checks.

In Phase 2, the column indices and weights are inserted into P one row at a time.
Phase 2 loops through CFmarker to check if i is fine or coarse. If i is a coarse point,
the weight is set to one and the column index is inserted. If i is a fine point, two tasks
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Fig. 6.1. Typical code portion in implementation of extended interpolation. Mi denotes the i-the
row of a matrix M and c the average number of coefficients per row. Note that this code portion
performs approximately (1 + ρc)(2− ρ)c checks.

1 for j=Mi[i],...,Mi[i+1] /* c coefficients */

2 if (Mj[j] is a C-point) /* c checks */

3 if (PMarker[Mj[j]] < RowStart) /* (1− ρ)c checks */

4 ...

5 else /* ρc times */

6 for k=Mi[j],...,Mi[j+1]

7 if (Mj[k] is a C-point) /* c checks */

8 if (PMarker[Mj[k]] < RowStart) /* (1− ρ)c checks */

9 ...

are performed: first, inserting the column indices, second, computing and inserting
the weights into the i-th row of P . While performing the first task, a marker array
(PMarker) is generated to mark strong fine points, indicated as a negative number, or
in case of a C-point to mark its position within the data and column indices arrays of
P . This information is used to efficiently access locations, to initialize weights with
zero, and to set column indices. The position information is also used to accumulate
values when computing the weights during the second task. The first task uses the
code in Figure 6.1 parsing S as in Phase 1. Therefore, this portion of the code across
all rows requires the same amount of checks as in Phase 1, not counting checks needed
for computing and inserting the weights, which is described next.

To perform the second task for row i, which is only performed when i is an F -
point, it is necessary to parse A. While this portion of the code is structured similarly
to Figure 6.1, it is slightly different. Note that c = m here, since A is parsed skipping
the diagonal element. The code does not include Line 3, but instead checks in Line 5
whether Mj[j] is a strong fine point requiring ρm checks. Before parsing A in Line
6, a check is made to determine the sign of the diagonal. Line 7 checks if this is a
relevant C-point. There are (1 − ρ)σ̃m of them, since they can also include weakly
connected C-points as we are parsing A. Line 8 checks the sign to avoid cancellation
of row sums by large elements of the same sign as the diagonal element. The portion
between Lines 5 and 9 performs 1+m+(1−ρ)σ̃m checks. A code portion is performed
afterwards including a check that insures a sum is not equal zero and a portion similar
to Lines 6 to 8. This leads to a total of ρn[m+ρm+σρm[2+2m+2(1−ρ)σ̃m] checks
for the second task in Phase 2 across all F -points.

We now estimate the floating point operations. Referring to Figure 6.1, if Mj[j]
is a coarse point, a data value is added to the interpolation weight using the location
given by PMarker, requiring (1− ρ)σ̃m adds. Note that, since we are parsing A and
not S, this coefficient can also be a weak coarse connection. If PMarker[Mj[j]] is
negative, Mj[j] is a strong fine connection. We then parse the j-th row of A to
accumulate the row sum of the coarse connections k of point j. If k is coarse and
of the opposite sign as the diagonal, aij is added to the diagonal (that is (1 − ρ)σ̃m
adds). If the sum is larger than zero, which we assume to generally be the case for this
analysis, the coefficient aij is divided by the sum and stored in a variable. Then the
j-th row of A is parsed again, and the product of ajk with the stored value is added
to the appropriate position in P , requiring (1 − ρ)σ̃m adds and multiplications. If j
is neither coarse nor a strong fine neighbor (about [1 − σ̃ + ρ(σ̃ − σ)]m coefficients),
aij is treated as a weak connection and added to the diagonal. Finally every weight
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in row Pi is divided by the value accumulated in the diagonal.

Since there are a total of ρn fine points, the generation of the weights requires
about ρn[(1−ρ)σ̃m+2σρm(1−ρ)σ̃m+(1−σ+ρ(σ̃−σ))m] additions, ρnσσ̃ρm(1−ρ)
multiplications and ρnσρm + nnz(P ) − (1 − ρ)n divisions. Combining the checks of
Phase 1 and both parts of Phase 2 leads to 2n + 2ρn(1 + σρm)(2 − ρ)σm + ρn[m +
ρm+ σρm[2 + 2m+ 2(1− ρ)σ̃m] checks.

To analyze the new interpolation we will refer to the steps outlined in Algorithm
1. In Step 1, AsFF and AsFC are generated. Generating mappings for both fine and
coarse indices to new column indices requires n checks. Determining the number of
coefficients for each matrix requires parsing S to determine the number of coefficients
for each matrix.This requires n + σρmn checks. To populate the matrices requires
parsing S again checking for coarse connections, while also parsing A. Now additional
checks are required to skip weak connections in A leading to a total of n+ρmn checks.
In Step 2, adding weak connections to the diagonal requires n checks, and merging
W into P in Step 5 requires another n checks. Step 4, the multiplication of ÃsFF ,
which has ρn rows and on average ρσm + 1 nonzeros per row, with ÃsFC , which
has on average σ(1 − ρ)m nonzeros per row, consists of 2 phases: the generation of
the structure of W followed by its population. It uses a PMarker array similarly as
described for the extended interpolation to mark positions and avoid over-counting of
indices in W , requiring a total of 2σρ(1− ρ)(σρm+ 1)mn checks. To avoid dividing
by zeros requires an additional 2ρn checks. Combining this leads to a total of 5n +
2ρn+ [1 + σ + 2σ(1− ρ)(σρm+ 1)]ρmn checks.

Now we estimate the number of floating point operations. In Step 2, generating
Dβ requires σρ(1−ρ)mn additions, and computing Dγ+DFF by determining the row
sums of A and subtracting the row sums of AsFF and Dβ requires ρn(2 + m + σρm)

additions (or subtractions). In Step 3, generating ÃsFF requires ρn divisions and
σρ2mn multiplications, and computing ÃsFC requires another ρn divisions and σρ(1−
ρ)mn multiplications. Finally, we estimate Step 4 to take about ρσ(σρm+1)(1−ρ)mn
multiplications and additions. Adding these numbers leads to 2ρn + (2 + σ)ρmn +
σ2ρ2(1−ρ)m2n additions, σρmn[1+(1−ρ)(σρm+1)] multiplications and 2ρn divisions.

The results for both interpolation algorithms are combined in Table 6.1. We
generally arranged the larger components first and lined them up for better compar-
isons. As such we consider portions containing m2 to be generally more significant,
specifically for larger stencils. Comparing checks between both algorithms, we see
that the number of checks are significantly larger for the extended interpolation. This
is not surprising, since the generation of matrices containing only strong coefficients
eliminates many checks. We also see that the number of additions is larger for the
extended interpolation. Since it is possible for the MM-ext interpolation to generate
the row sums of only strong coefficients ahead of time and store them, many additions
can be avoided. Since in the extended interpolation weak coefficients can be included
in the sums it is not possible to generate them ahead of time. The number of multi-
plications appears fairly similar with some additional multiplications since divisions
are avoided in MM-ext by storing inverses. This approach leads to more divisions for
the extended interpolation.

We measured the individual times for performing the two interpolation operators
on the first two levels of the 7pt and the 27pt problem on a 80 × 80 × 80 grid using
optimization level -O2. We present the parameters and times for the individual rou-
tines, which are measured in seconds in Table 6.2. The upper portion of Table 6.3
contains the estimates we received inserting the parameters into the formulae in Table
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Table 6.1
Estimates of number of checks, floating point operations and memory in extended and MM-ext

interpolation

extended interpolation MM-ext interpolation

Checks 2ρ2m2nσ[σ(2− ρ) + σ̃(1− ρ) +
1] + ρmn(1 + 4σ) + 2n

2ρ2m2nσ2(1− ρ) + ρmn[1 + 3σ −
2σρ)] + (5 + 2ρ)n

Adds 2σσ̃(1−ρ)ρ2m2n+ρmn(1−σρ) σ2(1−ρ)ρ2m2n+ρmn(1−σρ+2σ)+2ρn

Mults σσ̃(1− ρ)ρ2m2n σ2(1− ρ)ρ2m2n+ σρmn(2− ρ)

Divs σρ2mn+ nnz(P )− (1− ρ)n 2ρn

Memory [(3 + σ)m+ 6]n+ 3nnz(P ) [(3 + σ)m+ 4 + 9ρ+ 3σρ]n+ 6nnz(P )

6.1. We see that the extended interpolation requires significantly more checks, about
four times as many for the ‘7pt, lvl 1’ problem, and seventeen times as many for the
’27pt, lvl 1’ problem, but approximately similar total amounts of floating point oper-
ations. The MM-ext interpolation operator for the latter problem can be generated
about three times as fast as the extended interpolation operator. Note that while the
extended interpolation has more divisions, replacing those with multiplications does
not change the times significantly. It is harder to compare the operators on level 2,
since we do not have the exact value for σ̃, we just present an interval here for the
lowest (no weak connections included) and highest (all weak connections included)
estimated value. The actual value is expected to be somewhere in between.

To get additional understanding of the differences, we used the performance tool
perf [2] to measure individual events for the two routines. We specifically list numbers
for instructions, cycles, cache-references, cache-misses, page faults, memory stores and
branch instructions in Table 6.3. Since several runs of perf led to variations of about
1-3 percent for the first 3 matrices and up to 5 percent for the smallest matrix, we list
here the average numbers of three runs. While these numbers are not accurate, they
provide additional information. Generally, the MM-ext interpolation has significantly
more page faults and cache misses than extended interpolation, however lower (often
much lower) numbers of instructions, cycles and branch instructions. The latter
explains its better times. Comparing the number of instructions with the times,
we see similar proportions.

Table 6.2
Parameters for 2 levels of the 7pt and 27pt problems

time time
n m ρ σ σ̃ nnz(P ) ext MM-ext

7pt, lvl 1 512,000 5.9 0.69 1.0 1.0 5.0n 0.15 0.13
7pt, lvl 2 159,443 26.9 0.84 0.42 1.0 8.7n 0.28 0.10

(0.42)
27pt, lvl 1 512,000 25.3 0.92 1.0 1.0 9.0n 1.86 0.57
27pt, lvl 2 41,999 56.7 0.88 0.34 1.0 14.6n 0.20 0.05

(0.34)
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Table 6.3
Estimates for checks, and floating point operations using Table 6.1 and performance events

using performance tool perf for 2 levels of the 7pt and 27pt problems

7pt, lvl 1 7pt, lvl 2 27pt, lvl 1 27pt, lvl 2
ext MM-ext ext MM-ext ext MM-ext ext MM-ext

Checks 109.2n 27.3n 769.0n 110.4n 2458.8n 143.8n 2660.5n 280.8n
(729.2n) (2526.4n)

Adds 11.5n 15.9n 83.2n 49.7n 88.5n 93.6n 238.1n 105.2n
(43.4n) (104.0n)

Mults 5.1n 10.5n 34.3n 25.4n 43.3n 68.5n 101.6n 53.5n
(14.4n) (34.5n)

Divs 7.5n 1.4n 16.5n 1.7n 30.3n 1.8n 29.4n 1.8n
Memory 44.6n 65.9n 124.1n 156.8n 134.2n 170.2n 239.2n 289.8n

instruct. 942n 882n 5613n 2111n 18,228n 4,544n 19,080n 4,403n
cycles 958n 637n 6,996n 1,976n 14,689n 3,010n 19,008n 3,510n
cache ref 9.8n 14.0n 32.7n 29.7n 70.1n 42.5n 118.1n 48.8n
cache mis 1.81n 5.61n 5.37n 11.07n 8.21n 24.09n 4.86n 6.45n
pg. faults 804 5633 836 4814 2694 5907 1559 2600
mem-stores 58.0n 87.7n 129.2n 154.3n 225.3n 266.8n 254.4n 255.9n
branch inst 207.9n 147.2n 1397.7n 372.8n 4,784.9n 835.2n 4900.8n 855.1n

7. Two-stage MM-interpolation. The extended interpolation operators can
have larger memory requirements than desired even when using truncation. There-
fore, efforts have been made to coarsen even more aggressively to lower the overall
operator complexities of the AMG hierarchy. Aggressive coarsening typically needs to
be combined with longer range interpolation algorithms, such as multi-pass interpo-
lation [31], to deal with the fact that C-points are now often more than distance-two
apart. However, multi-pass interpolation is based on direct interpolation, which gen-
erally leads to worse convergence than distance-two interpolation. In [34], a two-stage
interpolation operator was introduced that is based on distance-two interpolation and
has shown to lead to better convergence than multi-pass interpolation. However,
one drawback of two-stage interpolation is its expensive setup. Since the class of
MM-interpolation operators has shown significantly improved setup times, we want
to investigate here whether this approach has the same effect on a MM formulation
of two-stage interpolation operators.

The basic idea of aggressive coarsening is to perform a second C/F splitting of
the C-points obtained by the first coarsening phase. The final C/F splitting can be
represented by the following three sets:

F 1 : the original F -points, i.e., F 1 ≡ F ,
F 2 : the original C-points that become F -points at the 2nd coarsening,
C2 : the final C-points after the second coarsening,

(7.1)

where the final F -set is F 1∪F 2 and the final C-set equals C2. As the name suggests,
two-stage interpolation consists of two stages. During the first stage, a distance-two
interpolation operator, such as extended or the extended+i interpolation, is applied
using the original F - and C-sets, i.e, F 1 and F 2 ∪ C2. This generates the first-stage
interpolation matrix

P1 =

W1 W0

I
I

 , (7.2)
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where W1 ∈ Rnf×|F 2| and W0 ∈ Rnf×|C2| contain the interpolation weights from F 1 to
F 2 and C2 respectively. During the second stage, the weight matrix W2 ∈ R|F 2|×|C2|

is computed for the now fine points in F 2 with the interpolatory set C2, leading to
the second-stage interpolation matrix

P2 =

(
W2

I

)
. (7.3)

The final interpolation operator can be generated by multiplying the two matrices:

P = P1P2 =

W0 +W1W2

W2

I

 . (7.4)

7.1. Two-stage MM-ext interpolation. According to the C/F splitting (7.1)
in the two stages, A is reordered and partitioned into the 3× 3 block form: AF 1F 1 AF 1F 2 AF 1C2

AF 2F 1 AF 2F 2 AF 2C2

AC2F 1 AC2F 2 AC2C2

 , (7.5)

and once again split into its diagonal, strong and weak parts, i.e., A = D+As +Aw.
During the first stage (7.2), we apply the MM-ext interpolation using the first block
row, which leads to the following matrix

[W1,W0] = −(DF 1F 1 +Dγ)−1(AsF 1F 1 +Dβ)[D−1β AsF 1F 2 , D−1β AsFC2 ] (7.6)

≡ −ÃsF 1F 1 [ÃsF 1F 2 , ÃsF 1C2 ] , (7.7)

where Dγ and Dβ are the same as in (3.5) and (3.6) with AFC = [AF 1F 2 , AF 1C2 ].
For the second stage, it is easy to see that we need to consider the matrix blocks,(

∗ ∗ AF 1C2

AF 2F 1 AF 2F 2 AF 2C2

)
. (7.8)

We use the following definitions to express (7.3),

Dβk
= diag(AsFkC2ec2), k = 1, 2 (7.9)

Dγ2 = diag(AwF 2F 1ef +AwF 2F 2ef2 +AwF 2C2ec2), (7.10)

where ef2 ∈ R|F 2| and ec2 ∈ R|C2| denote vectors of all ones, and therefore

W2 = −(DF 2F 2 +Dγ2)−1
(
AsF 2F 1D−1β1

AsF 1C2 + (AsF 2F 2 +Dβ2)D−1β2
AsF 2C2

)
(7.11)

≡ −ÃsF 2F 1ÃsF 1C2 − ÃsF 2F 2ÃsF 2C2 , (7.12)

with

ÃsF 2F 1 = (DF 2F 2 +Dγ2)−1AsF 2F 1 , (7.13)

ÃsF 2F 2 = (DF 2F 2 +Dγ2)−1(AsF 2F 2 +Dβ2
), (7.14)

ÃsFkC2 = D−1βk
AsFkC2 , k = 1, 2. (7.15)

Notice that it is possible that Dβ1 and Dβ2 are singular, so that their inverses are
not defined. The fix mentioned at the end of Section 3.1 can also be applied, i.e. the
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rows of AsF 1C2 and AsF 2C2 corresponding to the zero diagonal entries of Dβ1
and Dβ2

are scaled by 0. Moreover, the associated elements of AsF 2F 1 and AsF 2F 2 should be
added to Dγ2 to correctly interpolate constants. Note that W2 can be computed as

the multiplication of the matrix containing ÃF 2Fk with the matrix containing ÃFkC2

for k = 1, 2 using the stucture in (7.8). The final interpolation matrix is obtained by
substituting W0, W1 and W2 into (7.4).

7.2. Two-stage MM-ext+i and MM-ext+e interpolation. The two-stage
MM-ext+i and MM-ext+e interpolation operators can be derived in a similar way. For
the sake of completeness, we give below their expressions. The first-stage MM-ext+i
interpolation operator is

[W1,W0] = −(DF 1F 1 +Dγ +Dθ)
−1(ÂsF 1F 1 + I)[AsF 1F 2 , AsF 1C2 ], (7.16)

where Dθ and ÂsF 1F 1 are the same as in (3.10) and (3.12). The second-stage interpo-
lation is given by

W2 = −(DF 2F 2 +Dγ2 +Dθ2)−1
(
ÂsF 2F 1AsF 1C2 + (ÂsF 2F 2 + I)AsF 2C2

)
, (7.17)

where, for k = 1, 2, the matrix ÂsF 2Fk is computed by scaling AsF 2Fk with

D
β
(i)
k

= diag(AsFkF 2ei +AsFkC2ec2), (7.18)

in the same way as (3.10), and Dθ2 = diag(d1 + d2) with dk = diag(ÂsF 2FkA
s
FkF 2).

Finally, we describe the two-stage MM-ext+e. For the first stage, we have

[W1,W0] = −(DF 1F 1 +Dγ +Dτ )−1(AsF 1F 1 +Dλ)D−1λ [AsF 1F 2 , AsF 1C2 ], (7.19)

with Dλ and Dτ the same as defined in (3.16) and (3.17) respectively. For the second
stage, we define the diagonal matrix Dµk

, for k = 1, 2, as follows

[Dµk
]ii = s−1i

∑2
l=1

∑
j [AsFkF l ]ij , i = 1, 2, . . . , |F k|, (7.20)

where si denotes combined number of nonzeros of the i-th rows of AsFkF 1 and AsFkF 2 .
Thus, the second-stage interpolation weight matrix can be written as

W2 = −(DF 2F 2 +Dγ2 +Dτ2)−1
(
AsF 2F 1D−1λ1

AsF 1C2 + (AsF 2F 2 +Dλ2
)D−1λ2

AsF 2C2

)
,

where, for k = 1, 2, Dλk
= Dβk

+Dµk
, and Dτ2 is defined similarly as Dτ by

[Dτ2 ]ii =
∑2
k=1

∑
j [AF 2Fk ]ij [Dµk

]jj [Dλk
]−1jj . (7.21)

Note that, differently than two-stage MM-ext, two-stage MM-ext+i requires AF 1F 2

and MM-ext+e requires the use of AF 1F 1 and AF 1F 2 in their second stages, leading
to additional computation cost. While two-stage MM-ext+i needs to extract columns
from AF 1F 2 requiring the expensive communication of rows of matrices from neigh-
boring processes, two-stage MM-ext+e can generate Dµk

locally.

8. Numerical Results. The experiments were conducted on a Linux cluster at
Lawrence Livermore National Laboratory with 62 nodes, each of which is equipped
with a 40-core IBM Power9 CPU. The code was written in C, included in hypre’s
BoomerAMG and compiled by IBM mpixlc compiler with Spectrum MPI. We com-
pared the new MM-interpolation operators with extended (denoted by ext) and ex-
tended+i interpolation (denoted by ext+i) for various structured and unstructured
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diffusion problems, using AMG as a preconditioner for CG. We also tested the use of
one level of aggressive coarsening in AMG with the 5 different settings that are listed
and described in Table 8.1. The method 2sMei is only partially implemented, i.e. the
first pass uses MM-ext+i but the second stage uses ext+i, i.e. the routine that is also
used for 2sei, since we did not expect to gain anything using the new formulation due
to its much larger communication requirements compared with 2sMe and 2sMee.

Table 8.1
Experiment settings for the interpolation algorithms with 1-level aggressive coarsening

mp multi-pass interpolation on the 1st level, ext+i on the remaining levels
2sei 2-stage ext+i on the 1st level, MM-ext+i on the remaining levels
2sMe 2-stage MM-ext on the 1st level, MM-ext on the remaining levels
2sMei partial 2-stage MM-ext+i on the 1st level, MM-ext+i on the remainings
2sMee 2-stage MM-ext+e on the 1st level, MM-ext+e on the remaining levels

8.1. Structured diffusion problems. We first present the results for a variety
of structured model problems that include

7pt/27pt 3D Poisson problems on a cube with 7- and 27-point stencils,
sysLap System of Poisson equations with 3 variables per mesh point,
Jumps 3D 7-point Poisson problem with jumps in coefficients of up to 106,
Aniso3D 3-D Poisson problem with anistropy of 0.001 in the y-direction,
Aniso2D45◦ 2-D Poisson problem with anisotropy of 0.001 and 45◦ rotations,
Aniso2D60◦ 2-D Poisson problem with anisotropy of 0.001 and 60◦ rotations.

All runs were executed on 16 compute nodes with a total of 640 cores. For a set of
larger problems, we used 8 million degrees of freedom per node, leading to the global
problem size of 128 million for the 3-D scalar PDE problems, and 384 million for the
problem from the system of PDE. For a set of smaller problems, we used 1 million
degree of freedoms per node, and 3 million for sysLap. The Aniso2D problem has 8
million unknowns per node, for which we did not use aggressive coarsening, since it
significantly deteriorates convergence. We used PMIS coarsening and the weighted
Jacobi smoother with the following weights ω for different problems.

7pt/27pt sysLap Jumps
Jumps w/

(2sei, 2sMe)
Aniso

3D
Aniso
2D45◦

Aniso
2D60◦

ω 0.85 0.5 0.85 0.8 0.85 0.85 0.7

The results for the structured diffusion problems are reported in Tables 8.2, 8.3
and 8.4, where AMG setup, solve and total times and the number of iterations are pre-
sented. The best results are highlighted in boldface. We can clearly see that for most
cases the AMG setup time is considerably shortened when using MM-interpolation
operators compared with extended and extended+i interpolation. The required num-
ber of iterations is comparable or even reduced in some cases. Therefore, the total
time is generally improved. Among the MM-interpolation methods, the setup time
of MM-ext and MM-ext+e is typically shorter than that of MM-ext+i, which is con-
sistent with the discussion in Section 3, since they do not require the communication
for retrieving the external matrix rows. The results when using aggressive coarsening
are similar, i.e., the total times for the new interpolation operators are typically bet-
ter than 2sei. While generally AMG setup with multi-pass interpolation is still the
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Table 8.2
Results for various interpolation operators for the set of larger structured problems. All timings

are in seconds. The best results are highlighted in boldface.

no aggressive coarsening 1 level aggressive coarsening

ext ext+i
MM-

ext
MM-
ext+i

MM-
ext+e mp 2sei 2sMe 2sMei 2sMee

7pt

setup 1.45 1.55 1.01 1.06 1.01 0.66 0.99 0.77 0.80 0.75
solve 1.00 1.18 1.12 1.00 0.93 1.22 0.87 0.97 0.85 0.86
total 2.45 2.73 2.13 2.06 1.94 1.88 1.86 1.74 1.65 1.61
iter 18 22 19 18 17 30 22 25 22 22

27pt

setup 3.09 3.25 1.54 1.67 1.49 0.99 3.06 1.45 1.68 1.49
solve 1.35 1.53 1.23 1.22 1.24 1.69 1.35 1.39 1.41 1.39
total 4.44 4.78 2.77 2.89 2.73 2.68 4.41 2.84 3.09 2.88
iter 18 21 16 16 16 26 21 21 21 21

sysLap

setup 8.18 8.45 5.99 6.06 5.85 3.34 4.56 3.66 3.64 3.51
solve 12.19 13.72 12.65 11.38 11.37 11.21 9.03 10.25 8.85 8.87
total 20.37 22.17 18.64 17.44 17.36 14.55 13.59 13.91 12.49 12.38
iter 39 45 40 37 37 64 48 52 47 47

Jumps

setup 1.53 1.77 1.11 1.18 1.06 0.67 1.19 0.85 0.87 0.85
solve 2.32 2.04 2.24 1.66 1.72 2.18 1.77 2.10 1.58 1.60
total 3.85 3.81 3.35 2.84 2.78 2.85 2.96 2.95 2.45 2.45
iter 39 35 38 29 30 56 45 52 42 43

fastest, however using the MM-strategy has brought two-stage interpolation setup
times within reach and made them a very good alternative option with better conver-
gence and often better total times. Finally, notice that the convergence of MM-ext
and 2sMe is generally worse compared with the interpolation algorithms that include
connections to i or their estimates, particularly, for harder problems with jumps and
rotated anisotropies.

8.2. Unstructured diffusion problems. We next consider two diffusion prob-
lems with 3-D unstructured FEM meshes, depicted in Figure 8.1, which were dis-
cretized with finite element package MFEM [1]. The sphere-in-sphere problem uses
an unstructured tetrahedral mesh on a spherical domain that has a spherical hollow
in the middle, see Figure 8.1a for an illustration. The larger problem has 136, 501, 953
degrees of freedom, while the smaller problem has 17, 143, 777. The second unstruc-
tured problem is posed on a crooked pipe, see [20] for a detailed description of the
problem, which uses an unstructured hexahedral mesh as shown in Figure 8.1b. This
problem is very challenging due to the dense layer of highly stretched elements in the
neighborhood of the material interface, which are added to resolve the diffusion layer
(zoom shown in 8.1c). The larger problem has 59, 604, 993 degrees of freedom, and
the smaller problem has 7, 544, 257. This problem requires a better smoother than
Jacobi, so symmetric l1-Gauss-Seidel was used.

The results for the unstructured problems are reported in Table 8.5. The operator
complexity (o.c.) is roughly the same among all the interpolation methods, so the
memory cost of the AMG hierarchy is similar. With aggressive coarsening, the oper-
ator complexity of “mp”, which is based on the simple direct interpolation, is lower
than the complexities of the two-stage approaches. Similar as the structured prob-
lems, the MM-interpolation algorithms show improvements in both setup and solve
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Table 8.3
Results for various interpolation operators for the set of smaller structured problems. All tim-

ings are in seconds. The best results are highlighted in boldface.

no aggressive coarsening 1 level aggressive coarsening

ext ext+i
MM-

ext
MM-
ext+i

MM-
ext+e mp 2sei 2sMe 2sMei 2sMee

7pt

setup 0.29 0.30 0.18 0.18 0.18 0.13 0.28 0.15 0.15 0.15
solve 0.13 0.13 0.13 0.13 0.13 0.11 0.10 0.14 0.12 0.09
total 0.42 0.42 0.31 0.31 0.32 0.24 0.38 0.29 0.27 0.24
iter 16 17 16 15 15 26 20 23 20 20

27pt

setup 0.48 0.52 0.25 0.30 0.27 0.19 0.48 0.27 0.31 0.29
solve 0.22 0.24 0.18 0.18 0.17 0.24 0.30 0.28 0.26 0.23
total 0.70 0.76 0.43 0.48 0.44 0.43 0.78 0.56 0.57 0.52
iter 15 16 14 14 14 24 21 21 21 21

sysLap

setup 1.62 1.62 0.94 0.92 0.92 0.90 1.20 0.66 0.70 0.64
solve 1.86 1.79 1.93 1.75 1.69 2.06 1.63 1.94 1.67 1.71
total 3.47 3.41 2.87 2.67 2.61 2.96 2.83 2.60 2.37 2.35
iter 35 35 35 32 32 57 43 47 43 43

Jumps

setup 0.33 0.30 0.18 0.19 0.18 0.13 0.25 0.14 0.15 0.15
solve 0.24 0.23 0.31 0.24 0.24 0.28 0.23 0.28 0.23 0.23
total 0.57 0.53 0.49 0.43 0.42 0.41 0.49 0.42 0.38 0.38
iter 36 33 39 32 33 51 38 47 38 39

Table 8.4
Results for the 3-D anisotropic and the 2-D rotated anisotropic problems. All timings are in

seconds. Aggressive coarsening was not used for the 2-D problems. The best results are highlighted
in boldface.

no aggressive coarsening 1 level aggressive coarsening

ext ext+i
MM-

ext
MM-
ext+i

MM-
ext+e mp 2sei 2sMe 2sMei 2sMee

Aniso3D

setup 1.25 1.28 0.96 0.96 0.96 0.60 0.90 0.69 0.70 0.71
solve 1.01 0.91 1.02 0.93 0.92 1.19 1.05 1.23 1.18 1.17
total 2.26 2.19 1.98 1.99 1.88 1.79 1.95 1.92 1.88 1.88
iter 16 14 16 14 14 29 25 27 26 26

Aniso2D45◦

setup 0.40 0.40 0.40 0.39 0.39 — — — — —
solve 1.01 0.69 1.05 0.77 0.73 — — — — —
total 1.41 1.09 1.45 1.16 1.12 — — — — —
iter 22 15 23 16 16 — — — — —

Aniso2D60◦

setup 0.70 0.71 0.58 0.65 0.65 — — — — —
solve 3.29 2.76 4.17 2.64 2.61 — — — — —
total 3.99 3.47 4.75 3.29 3.26 — — — — —
iter 71 57 92 54 55 — — — — —

times. The MM-ext+i and MM-ext+e algorithms perform about equally well and
outperform the other methods without aggressive coarsening. When using aggressive
coarsening, 2sMei and 2sMee generally outperform the other two-stage methods.

9. Conclusion. We introduced a new class of interpolation operators for alge-
braic multigrid that are based on sparse matrix-matrix multiplications. We inves-
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(a) Sphere-in-sphere problem (b) Crooked pipe problem (c) Layer of stretched ele-
ments

Fig. 8.1. The mesh for the sphere-in-sphere problem, and the crooked pipe problem where a
dense layer of highly stretched elements has been added to the neighborhood of the material interface.

Table 8.5
Results for the unstructured diffusion problems. The best results are highlighted in boldface.

no aggressive coarsening 1 level aggressive coarsening

ext ext+i
MM-

ext
MM-
ext+i

MM-
ext+e mp 2sei 2sMe 2sMei 2sMee

setup 0.52 0.47 0.29 0.29 0.30 0.17 0.39 0.20 0.20 0.19
Sphere solve 0.14 0.16 0.16 0.14 0.14 0.15 0.13 0.15 0.13 0.14
small total 0.66 0.63 0.45 0.43 0.44 0.32 0.52 0.35 0.33 0.33

iter 13 14 14 12 12 22 18 20 18 19
o.c. 2.11 2.07 2.15 2.09 2.10 1.12 1.17 1.20 1.17 1.17
setup 3.16 3.23 2.31 2.30 2.26 0.92 1.74 1.13 1.21 1.12

Sphere solve 1.25 1.22 1.18 1.08 1.10 1.25 1.05 1.21 1.05 1.04
large total 4.41 4.45 3.49 3.38 3.36 2.17 2.79 2.34 2.26 2.16

iter 16 16 15 14 14 25 20 23 20 20
o.c. 2.14 2.11 2.19 2.13 2.14 1.13 1.18 1.22 1.18 1.18
setup 0.63 0.53 0.39 0.37 0.39 0.24 0.38 0.29 0.30 0.28

Pipe solve 2.24 2.29 2.35 1.95 1.97 1.68 1.90 1.78 1.62 1.51
small total 2.87 2.82 2.74 2.32 2.36 1.92 2.28 2.07 1.92 1.79

iter 144 150 154 127 128 243 251 237 234 222
o.c. 1.90 1.88 1.88 1.90 1.91 1.08 1.11 1.12 1.11 1.11
setup 2.67 2.71 1.56 1.71 1.63 0.67 1.73 0.91 1.08 0.94

Pipe solve 16.32 15.46 16.73 14.21 14.46 14.64 14.98 15.36 14.16 13.94
large total 18.99 18.17 18.29 15.92 16.09 15.31 16.71 16.27 15.24 14.88

iter 183 177 193 160 163 315 306 308 292 283
o.c. 1.90 1.89 1.87 1.89 1.89 1.08 1.11 1.13 1.11 1.12

tigated their convergence for various problems and analysed their performance in
comparison to current similar interpolation operators. We found that the new inter-
polation operators in general showed similar convergence as their counterparts. While
the original goal was to find new formulations for AMG interpolatiom operators that
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are more suitable for GPUs than the current ones, it turned out that the new methods
also show better performance on CPUs. Analysing their implementation showed that
the new methods need more memory, but significantly less if statements and branch-
ing operations, and have overall better fine-grain parallelism. We also investigated
versions of the new methods in the context of two-stage interpolation operators for
more aggressive coarsening schemes and found that they overcame previous large setup
times making two-stage interpolation more competitive with multi-pass interpolation.
While hypre v.2.1.9 includes GPU-implementations of MM-ext and MM-ext+i inter-
polation, there are future plans to add additional GPU-enabled MM-interpolation
operators in hypre and to evaluate their performance.
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